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Subseasonal Timescales

WEATHER EVENTS $2S EXTREMES SEASONAL OUTLOOKS

2weeks -2 months

. Minor errors in initial conditions lead to
“ chaotic growth over time

Prediction skill

hours 2 weeks 1 month

3 months 12 months
Prediction lead time

Adapted from: iri.columbia.edu/news/ga-subseasonal-prediction-project
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FO recasts Of Beyond the weather timescale we
Opportunity

must look for specific states of the
earth system, i.e. “opportunities”,
that lead to enhanced predictable

certain conditions lead to more behavior.
predictable behaviour than others

See Mariotti et al. (2020) and Albers and Newman (2019)
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Madden-Julian Oscillation [MJOI

Madden-Julian Oscillation and mid-latitude impacts
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When the MJO is active, we use information about the state of the MJO
today to predict what will happen to U.S. weather in the coming weeks
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Madden-Julian Oscillation [MJOI

Madden-Julian Oscillation and mid-latitude impacts
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When the MJO is NOT active
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Neu ral Networks How can we utilize neural networks
fO Y Su bseaSOnal to identify forecasts of opportunity

for subseasonal prediction?

Prediction




Neural Networks

What are (artificial) neural networks?
data —— — prediction
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Artificial Neural Networks [ANN]

inputs




Artificial Neural Networks [ANN]

inputs node

= X,W,+ X, W, +b

linear regression!



Artificial Neural Networks [ANN]

inputs node

X,W,+ X, W, +b)

activation( 1

e linear regression with non-linear mapping by an
“activation function”

e training of the network is merely determining the weights
“w” and bias/offset “b"

Colorado State University 10




Artificial Neural Networks [ANN]

inputs hidden layers outputs
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Artificial Neural Networks [ANN]

data —»

Colorado State University
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Artificial Neural Networks [ANN]
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Complexity and nonlinearities of the ANN allow it to learn
many different pathways of predictable behaviour

Once trained, you have an array of weights and biases which
can be used for prediction on new data
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Can Neural Networks identify forecasts of
S opportunity for subseasonal prediction?

1. When do we see periods of enhanced
predictability?

2. Why is there predictability? Where is it
coming from?

Colorado State University
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Subseasonal prediction network set-up
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Subseasonal prediction network set-up

Outgoing Longwave Radiation hidden layers
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Subseasonal prediction network set-up

Outgoing Longwave Radiation hidden layers

(OLR) v

Circulation
500 hPa Geopotential Height
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Binary 3 weeks later...
Classification
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@ Forecasts of opportunity with Neural Networks
N

1. When? When do we see periods of enhanced
predictability?

2. Why?Why is there predictability? Where is it
coming from?

Colorado State University
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Model Confidence: Softmax Activation
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Model Confidence: Softmax Activation

Last hidden layer

Colorado State University

Softmax =| vy

exp(z;)
Ej e:z:p(xj)

Mayer and Barnes (under review)
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Model Confidence: Softmax Activation

Last hidden layer

Softmax = | y; =

T Eg e:z:p( ])

Colorado State University

eTp(T)

. . = Probability/Confidence

High confidence predictions
may indicate Forecasts of
Opportunities
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Model Confidence as Forecasts of Opportunity
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Model Confidence as Forecasts of Opportunity

Colorado State University
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Model Confidence as Forecasts of Opportunity

95
As confidence threshold 1s, accuracy 1s . e

- Tralr.nngNalldatlon We expect
Model finds forecasts of opportunity! . Testing this -- MJO!
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@ Forecasts of opportunity with Neural Networks
) 8

1. When? When do we see periods of enhanced
predictability? Model Confidence

2. Why?Why is there predictability? Where is it
coming from?
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@ Forecasts of opportunity with Neural Networks
) 8

1. When? When do we see periods of enhanced
predictability? Model Confidence

2. Why?Why is there predictability? Where is it
coming from?
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Layerwise
Relevance

What are relevant physical structures of
OLR in the tropics for prediction over

Propagation the North Atlantic?

LRP — What did the model learn?




Layerwise Relevance Propagation

Trained Neural Network

Trained Neural Network

where the network looked to
determine it was a “cat”

Colorado State University
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Subseasonal prediction network set-up

Outgoing Longwave Radiation hidden layers
(OLR)

Circulation
500 hPa Geopotential Height

3 weeks later...
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Subseasonal prediction network set-up

Outgoing Longwave Radiation hidden layers
(OLR)

Circulation
500 hPa Geopotential Height

3 weeks earlier...
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What are relevant physical structures of OLR
In the tropics for prediction over the North
Atlantic?




I:ayerwise Relevance Propagation =~

c) Positive Sign Predictions (N=168)
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This may be MJO Phase 3-4
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I:ayerwise Relevance Propagation =~

d) Negative Sign Predictions (N=175)
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This may be MJO Phase 7-8
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. There are individual LRP maps for
CluSterlng LRP each prediction!




KMeans - Clustering LRP

f) Neative Sign Prediction Cluster 1

(N=127)
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This may be MJO Phase 7-8
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KMeans - Clustering LRP

f) Neatie Sign Prediction Cluster 1 (N=127)
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h) Negative Sign Prediction Cluster 2 (N=48
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KMeans - Clustering LRP

e) Positive Sign Prediction Cluster 1 (N=92)
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This may be MJO Phase 3-4
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KMeans - Clustering LRP

e) Positive Sign Prediction Cluster 1 (N=92) g) Positive Sign Prediction Cluster 2 (N=76)
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KMeans - Clustering LRP

Cluster 1 (Positive Predictions) Cluster 1 (Negative Predictions)
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KMeans - Clustering LRP

MJO — NAO - MJO

(Lin et al. 2009; Lin & Brunet 2011)

Cluster 1 (Positive Predictions) Cluster 1 (Negative Predictions)

Clustering is a useful tool for identifying one or more forecasts of opportunity
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@ Forecasts of opportunity with Neural
S Networks

Colorado State University

When? When do we see periods of enhanced
predictability? Model Confidence

. Why?Why is there predictability? Where is it

coming from? Layerwise Relevance Propagation

41



Email: kimayer@rams.colostate.edu
@ CO“C[USIO“S Twitter: @kiri_mayer
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We can use Neural Networks to further understand subseasonal
prediction
Model Confidence can identify opportunities for increased accuracy
Layerwise Relevance Propagation opens the ‘black box’

o  We can learn how the network made its prediction

o Science! We can find new sources of predictability from extracting
knowledge from the neural network
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