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Subseasonal Timescales 

2

2weeks -2 months
Minor errors in initial conditions lead to 

chaotic growth over time
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Forecasts of 
Opportunity

certain conditions lead to more 
predictable behaviour than others

Beyond the weather timescale we 
must look for specific states of the 
earth system, i.e. “opportunities”,  

that lead to enhanced predictable 
behavior.
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See  Mariotti et al. (2020) and Albers and Newman (2019) 
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Madden-Julian Oscillation [MJO]

When the MJO is active, we use information about the state of the MJO 
today to predict what will happen to U.S. weather in the coming weeks
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Madden-Julian Oscillation [MJO]

When the MJO is NOT active
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Neural Networks 
for Subseasonal 

Prediction

How can we utilize neural networks 
to identify forecasts of opportunity 

for subseasonal prediction?

6



Colorado State University

Neural Networks 

What are (artificial) neural networks?
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data prediction
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Artificial Neural Networks [ANN]
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Artificial Neural Networks [ANN]

linear regression! 
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Artificial Neural Networks [ANN]

● linear regression with non-linear mapping by an 

“activation function”

● training of the network is merely determining the weights 

“w” and bias/offset “b" 
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Artificial Neural Networks [ANN]
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Artificial Neural Networks [ANN]

data prediction

12



Colorado State University

Artificial Neural Networks [ANN]

data prediction
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Complexity and nonlinearities of the ANN allow it to learn 
many different pathways of predictable behaviour

Once trained, you have an array of weights and biases which 
can be used for prediction on new data
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Can Neural Networks identify forecasts of 
opportunity for subseasonal prediction? 

1. When? When do we see periods of enhanced 

predictability?

2. Why? Why is there predictability? Where is it 
coming from?
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Subseasonal prediction network set-up

15Mayer and Barnes (under review)

Outgoing Longwave Radiation
(OLR)

.
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Subseasonal prediction network set-up
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Subseasonal prediction network set-up
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3 weeks later...
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Forecasts of opportunity with Neural Networks

1. When? When do we see periods of enhanced 

predictability? 

2. Why? Why is there predictability? Where is it 
coming from?

18
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Model Confidence: Softmax Activation

19Mayer and Barnes (under review)
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Model Confidence: Softmax Activation
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Mayer and Barnes (under review)
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Model Confidence: Softmax Activation
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= Probability/Confidence
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High confidence predictions 
may indicate Forecasts of 

Opportunities

Mayer and Barnes (under review)
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Low HighNeural Network Confidence Threshold
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Model Confidence as Forecasts of Opportunity

23Mayer and Barnes (under review)
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Neural Network Confidence Threshold

Model Confidence as Forecasts of Opportunity

As confidence threshold ↑s, accuracy ↑s 

Model finds forecasts of opportunity!
We expect 

this -- MJO!

Number of opportunities goes down

24Mayer and Barnes (under review)
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1. When? When do we see periods of enhanced 

predictability?  Model Confidence

2. Why? Why is there predictability? Where is it 
coming from?

25

Forecasts of opportunity with Neural Networks
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1. When? When do we see periods of enhanced 

predictability?  Model Confidence

2. Why? Why is there predictability? Where is it 
coming from?
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Forecasts of opportunity with Neural Networks
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Layerwise 
Relevance 

Propagation
LRP → What did the model learn?

What are relevant physical structures of 
OLR in the tropics for prediction over 

the North Atlantic?
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Layerwise Relevance Propagation

28

where the network looked to 
determine it was a “cat”

Trained Neural Network

Montavon et al. (2017), Pattern Recognition; Montavon et al. (2018), Digital Signal Processing

Trained Neural Network

Prediction: CAT ✓

Prediction: CAT ✓
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Subseasonal prediction network set-up
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Subseasonal prediction network set-up
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Mayer and Barnes (under review)

hidden layers

?
3 weeks earlier...



What are relevant physical structures of OLR 

in the tropics for prediction over the North 

Atlantic?
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Layerwise Relevance Propagation

This may be MJO Phase 3-4

32Mayer and Barnes (under review)
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Layerwise Relevance Propagation
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This may be MJO Phase 7-8

Mayer and Barnes (under review)
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Clustering LRP There are individual LRP maps for 
each prediction!
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KMeans - Clustering LRP
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This may be MJO Phase 7-8

Mayer and Barnes (under review)
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KMeans - Clustering LRP
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This may be MJO Phase 7-8

Mayer and Barnes (under review)

New Forecast of Opportunity!
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KMeans - Clustering LRP

This may be MJO Phase 3-4

37Mayer and Barnes (under review)
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KMeans - Clustering LRP

This may be MJO Phase 4

38Mayer and Barnes (under review)

This may be MJO Phase 3-4
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KMeans - Clustering LRP

39Mayer and Barnes (under review)

Cluster 1 (Positive Predictions) Cluster 1 (Negative Predictions)
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KMeans - Clustering LRP
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Clustering is a useful tool for identifying one or more forecasts of opportunity

Mayer and Barnes (under review)

Cluster 1 (Positive Predictions) Cluster 1 (Negative Predictions)

MJO → NAO → MJO 
(Lin et al. 2009; Lin & Brunet 2011)
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Forecasts of opportunity with Neural 
Networks
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1. When? When do we see periods of enhanced 

predictability? Model Confidence

2. Why? Why is there predictability? Where is it 
coming from?     Layerwise Relevance Propagation
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Conclusions
● We can use Neural Networks to further understand subseasonal 

prediction
● Model Confidence can identify opportunities for increased accuracy
● Layerwise Relevance Propagation opens the ‘black box’ 

○ We can learn how the network made its prediction
○ Science! We can find new sources of predictability from extracting 

knowledge from the neural network
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