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Introduction



Motivation: Complex dynamics of the climate system

System of interest:

X1

X2

X 3

Goal:

Contribute to a better understanding of Earth’s complex weather and

climate system.
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Approach of the Climate Informatics Group @DLR Jena

Climate Informatics in general:

Use modern tools of machine learning, statistics, and data science to aid

climate and Earth system sciences.

Focus of the Climate Informatics Group @DLR Jena∗:

• Development of methods

• Provisioning of open-source software implementations† for

application by domain scientists

• Methods based on the modern causal inference framework

∗www.climateinformaticslab.com
†https://github.com/jakobrunge/tigramite
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Causal inference



Causal inference and causal discovery

Causal inference:

• Defines notions of cause and effect in a mathematical framework.

• Casts causal questions within this framework.

• Specifies assumptions and develops methods for answering these

questions.
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Causal inference and causal discovery

Causal inference:

• Defines notions of cause and effect in a mathematical framework.

• Casts causal questions within this framework.

• Specifies assumptions and develops methods for answering these

questions.

Sub-field: Causal discovery

• Specifies assumptions and develops methods for learning cause and

effect relationships from observational data.
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On the notion of causation

Correlation is not causation:

Statistical dependencies in observational data do not by themselves imply

causal relationships.

⇒ Need assumptions to connect stat. dependencies and causation
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On the notion of causation

Correlation is not causation:

Statistical dependencies in observational data do not by themselves imply

causal relationships.

⇒ Need assumptions to connect stat. dependencies and causation

Working definition of causality:

Variable X causes variable Y if an experimental manipulation that

changes X (and only X ) leads to a change of Y .

⇒ experimental mode of inferring causation

A theory of causality:

Framework of causal inference, largely developed and popularized by

Judea Pearl, Peter Spirtes, Clark Glymour, Richard Scheines.

Textbooks: [Pearl, 2000, Spirtes et al., 2000, Peters et al., 2017].
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Modelling causal relationships: Structural causal models

Intuition:

A structural causal model (SCM) specifies the functional causal

relationships between a set of random variables.

Example (scientifically oversimplied, for illustration only):

Structural causal model:

Xclouds := fclouds(Xaerosols, Xenv. facs., ηclouds)

Xaerosols := faerosols(Xenv. facs., ηaerosols)

Xenv. facs. := fenv. facs.(ηenv. facs.)

Causal graph:

Aerosols Clouds

Environmental
factors

Causal graph:

Specifies the direct causes of each variable.
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Modelling causal relationships: Structural causal models
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relationships between a set of random variables.
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Modelling causal relationships: Structural causal models
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Why is causal knowledge important?

Scientific understanding:

Knowledge of cause and effect relationships is an essential part of the

physical understanding of natural processes.

Robust prediction & forecasting:

Predictive systems consistent with the underlying causal structures are

thought to be more robust under changing environmental conditions.

Attribution:

Questions of the type Why did this event happen? or Is this due to

climate change? are of causal nature.
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How to obtain causal knowledge?

1. Experimentation:

Deliberately manipulate the system and observe the consequences.
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How to obtain causal knowledge?

2. Simulation:

Experimentation inside a simulated version of the system.
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How to obtain causal knowledge?

3. Causal discovery:

Learn from observational data, given certain assumptions.

X1

X2

X 3
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Causal discovery



Learning causal relationships from statistical independencies

Today’s approach to causal discovery:

Learn causal graph from statistical tests of (conditional) independencies*

in observational data

⇒ CI-based causal discovery

*Conditional independence:

For random variables X , Y , and Z with distribution p: X and Y are conditionally

independent Z , denoted as X ⊥⊥ Y | Z , if p(x |y , z) = p(x |z) for all x , y , z.
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Learning causal relationships from statistical independencies

Today’s approach to causal discovery:

Learn causal graph from statistical tests of (conditional) independencies*

in observational data

⇒ CI-based causal discovery

Enabling assumptions:

1. Observational data is generated by a structural causal model

(this true SCM is unknown)

2. No accidental independencies ⇒ more on this later

3. Optional: No unobserved confounders ⇒ more on this later

*Conditional independence:

For random variables X , Y , and Z with distribution p: X and Y are conditionally

independent Z , denoted as X ⊥⊥ Y | Z , if p(x |y , z) = p(x |z) for all x , y , z.
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Causal graphs and (conditional) independencies

Fact:

The structure of the causal graph often has observable implications in

terms of (conditional) independencies in the observed data.

Intuition:

• Statistical dependencies derive from causal relationships

• Conditioning can block and open the flow of information
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Causal graphs and (conditional) independencies

Example:

• X influences Y : X��⊥⊥Y

• Y influences Z : Y��⊥⊥Z

• X influences Z through Y : X��⊥⊥Z

• Knowing Y , X does not say more about Z : X ⊥⊥ Z | Y
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Causal graphs and (conditional) independencies

Example:

• X influences Y : X��⊥⊥Y

• Y influences Z : Y��⊥⊥Z

• X influences Z through Y : X��⊥⊥Z

• Knowing Y , X does not say more about Z : X ⊥⊥ Z | Y

General rule: d-separation

Graphical criterion to read off all (conditional) independencies implied by

the structure of a given causal graph [Pearl, 1985, Pearl, 1988].

No accidental independencies:

There are no independencies beyond those implied by the causal graph.
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CI-based causal discovery without unobserved confounders

Idea:

• Perform statistical tests of (conditional) independence in

observational data

• Use test results to constrain the structure of the causal graph

Example 1:

Test decisions:

• X��⊥⊥Y

• Y��⊥⊥Z

• X ⊥⊥ Z

Possible causal graphs:
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CI-based causal discovery without unobserved confounders

Idea:

• Perform statistical tests of (conditional) independence in

observational data

• Use test results to constrain the structure of the causal graph

Example 2:

Test decisions:

• X��⊥⊥Y

• Y��⊥⊥Z

• X��⊥⊥Z

• X ⊥⊥ Z | Y

Possible causal graphs:

observationally equivalent graphs
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Unobserved confounders make causal discovery more difficult

Without unobserved confounders:

X��⊥⊥Y ⇒

With unobserved confounders:

X��⊥⊥Y ⇒
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Our research:

Causal discovery for time series



CI-based causal discovery for time series

X1

X2

X 3

X 4

Particularities:

• Variables are resolved in time

•
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CI-based causal discovery for time series

Additional statistical challenges:

• High dimensionality (resolving in time)

• Ill-calibrated statistical tests of independence (autocorrelation)

• Low detection power (autocorrelation)

⇒ standard algorithms often yield bad statistical performance
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• High dimensionality (resolving in time)

• Ill-calibrated statistical tests of independence (autocorrelation)

• Low detection power (autocorrelation)

⇒ standard algorithms often yield bad statistical performance

Our contribution:

Statistical problems alleviated by specialized algorithms† developed by

the Climate Informatics Group @DLR Jena:

• PCMCI time-lagged links only & no unobserved confounders [Runge et al., 2019]

• PCMCI+ no unobserved confounders [Runge, 2020]

• LPCMCI (Latent-PCMCI) [Gerhardus and Runge, 2020]

†available at: https://github.com/jakobrunge/tigramite
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LPCMCI: Latent-PCMCI

X1

X2

X 3

X 4

LPCMCI allows for:

• Contemporaneous links (also PCMCI+ does)

• Unobserved confounders
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LPCMCI: Latent-PCMCI

X1

X2

X 3

X 4

LPCMCI allows for:

• Contemporaneous links (also PCMCI+ does)

• Unobserved confounders

Basic idea:
More powerful CI tests by iterative learning of and subsequent

conditioning on direct causes.
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LPCMCI achieves strong gains in recall

Results of numerical experiments:

For autocorrelated continuous data LPCMCI shows strong gains in recall

as compared to the current state of the art algorithm*

*the SVAR-FCI algorithm by [Malinsky and Spirtes, 2018]
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Conditioning sets are extended with known causal parents



Conditioning sets are extended with known causal parents
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