

Model performance: results for CMIP6

Mario Acosta

BSC colleagues

ISENES3 partners

V. Balaji, Niki Zadeh, HPC-TF Group, ...

CPMIP metrics for CMIP6

IS-ENES3 1st General Assembly 25-27th March 2020 Toulouse, France

CMIP6

- Understanding past, present and future climate changes arising from natural, unforced variability or in response to changes in radiative forcing in a multi-model context.
- Coordinated CMIP Experiments, designed to understand specific aspects of the model response.
- Different institutions contribute to CMIP6 with different configurations, resolutions, platforms, members...
 - We have different models running similar configurations.
 - We have same models running similar configurations on different platforms.
 - We have same model on same platform running different configurations.
 - •

CPMIP collection

IS-ENES3 1st General Assembly 25-27th March 2020 Toulouse, France

About the CPMIP Metrics

- V. Balaji et al. 2017
- https://www.geosci-model-dev.net/10/19/2017/gmd-10-19-2017.pdf

About the ISENES3 collection

- Adapted by each institution to collect CPMIP metrics during CMIP6 experiments.
- Coordination and collection from WP4-NA3, including internal and external partners.
- Analysis and publication of the results (including ES-DOC update).

About future plans

- Improvement, extension and portability of CPMIP metrics: learning from the experience.
- Carbon footprint collaboration.
- Final collection/analysis will be at the end of 2020, for all CMIP6 experiments for IS-ENES3 and external partners.
- Working in collaboration with the community (V. Balaji, HPC-TF...).

CPMIP metrics

IS-ENES3 1st General Assembly 25-27th March 2020 *Toulouse, France*

Metric	used to evaluate								
Simulation Year Per Day (SYPD)	how efficient is your sim job per each year of the simulation								
Core-hours Per Year (CHPY)	how efficient is your sim job with respect to the number of parallel resources used								
Complexity	the number of prognostic variables per component								
Actual SYPD	how affect queue time and interruptions to the complete experiment								
Parallelization	total number of cores allocated for the run								
Energy Cost Per Year (JCPY)	how much energy is needed per each year of simulation								
Memory Bloat	the ratio between actual and ideal memory size								
Data Output Cost	how much time and resources are used performing I/O								
Data Intensity	the amount of data produced per compute-hour								
Coupling Cost	how much time and resources are used in the cost of the coupling algorithm as well as load imbalance								

IS-ENES3 1st General Assembly 25-27th March 2020

Toulouse. France

CPMIP metrics

Metric	used to evaluate
Simulation Year Per Day (SYPD)	how efficient is your sim job per each year of the simulation
Core-hours Per Year (CHPY)	how efficient is your sim job with respect to the number of parallel resources used
Complexity	the number of prognostic variables per component
Actual SYPD	how affect queue time and interruptions to the complete experiment
Parallelization	total number of cores allocated for the run
Energy Cost Per Year (JCPY)	how much energy is needed per each year of simulation
Memory Bloat	the ratio between actual and ideal memory size
Data Output Cost	how much time and resources are used performing I/O
Data Intensity	the amount of data produced per compute-hour
Coupling Cost	how much time and resources are used in the cost of the coupling algorithm as well as load imbalance

- Improve the computational performance evaluation of our ESMs
 - Compare the performance of models running similar CMIP6 experiments.
 - Evaluate the performance of a model compared to others with a similar complexity.
 - Evaluate the performance of one platform compared to others running the same model.
 - Evaluate the efficiency of a model when the complexity increase (more components, higher resolution...).
 - Evaluate the performance of a model from different points of view and find main bottlenecks.

CPMIP: Community List

Model / Institution	People Involved
CNRM-CM6	E. Maisonnave, S.Valcke, Marie Pierre Moine
IPSL-CM	Arnaud Caubel
EC-Earth	Mario Acosta, Uwe Fladrich, Philippe Le Sager
MetO	Harry Shepherd, JC Rioual
СМСС	Italo Epicoco, Silvia Mocavero
MPI-M-DKRZ	Maria Moreno, Reinhard Budich
U. Read	Grenville Lister, Bryan Lawrence
Nor-ESM	Alok Kumar Gupta
NCAR CESM	Gary Strand
TOPAZ/MOM5	Paulo Nobre
GFDL	Niki Zadeh

CMIP6 Summary

CMIP6 Experiments: Institutions/Models	Useful SY	Total SY	Useful Data Produced (PB)	Total Data Produced (PB)	Useful CH (Mh)	Total CH (Mh)	Total Energy Cost (Joules)	Carbon Footprint (CO2/KWh)
EC-Earth	17,598	27,568	0.73	1.34	27.2	41.8	1.27x10 ¹²	162.6t
CNRM-CERFACS	23,620	72,000	1.2	1.98	106.4	325	3.13E+12	49.5t
IPSL	53,000	143,000	1.2	7	100	270	6.16E+12	122t
СМСС	965	NA	0.965	NA	1.99	NA	1.61E+12	
UKMO	23,431	NA	7.3	NA	473	NA	1.76E+13	572.5t
DKRZ	1,276	1,321	0.606	NA	5.52	5.90	4.09E+11	24.8t
NCC-NORESM2	6,484	NA	0.297	NA	11.7	NA	4.75E+11	
NERC	640	NA	0.460	NA	55.497	NA	2.17E+12	
MPI	24,175	35,000	1.9	NA	968.116	NA	6.20E+11	37.6t

^{*} We have also Useful SY, Useful Data and Useful CH per CMIP6 experiment

CMIP6 Summary

IS-ENES3 1st General Assembly 25-27th March 2020 Toulouse, France

CMIP6 Experiments: Institutions/Models	Use SY	Plea		Useful Data Produced ese numbers	s as first (an	Useful CH -(Mh)	Total CH (n)	Total Energy Cost (Joules)	Carbon Footprint (CO2/KWh)	
EC-Earth	17,5	not •	not accurate) approximationTotal Energy cost is calculated				41.8	1.27x10 ¹²	162.6t	
CNRM-CERFACS	23,6	multiplying useful SY and the proportional average of JPSY for				$\frac{1}{2}$				
IPSL	53,0		the set of institution	f CMIP6 exp	eriment per	100	270	6.16E+12	122t	
CMCC	96	•	 CO2 is calculated using factor conversion and PUE, proposed by 1.99 NA 1.61E		1.61E+12					
UKMO	23,4		carbon fo	ootprint grou		473	NA	1.76E+13	572.5t	
DKRZ	1,2		discussio	on.		5.52	5.90	4.09E+11	24.8t	
NCC-NORESM2	6,4	84	NA	0.297	NA	11.7	NA	4.75E+11		
NERC	64	10	NA	0.460	NA	55.497	NA	2.17E+12		
MPI	24,1	175	35,000	1.9	NA	968.116	NA	6.20E+11	37.6t	

^{*} We have also Useful SY, Useful Data and Useful CH per CMIP6 experiment

CMIP6 Summary

CMIP6 Experiments: Institutions/Models	Useful SY	Total SY	Useful Data Produced (PB)	Total Data Produced (PB)	Useful CH (Mh)	Total CH (Mh)	Total Energy Cost (Joules)	Carbon Footprint (CO2/KWh)
EC-Earth	17,598	27,568	0.73	1.34	27.2	41.8	1.27x10 ¹²	162.6t
CNRM-CERFACS	23,620	72,000	1.2	1.98	106.4	325	3.13E+12	49.5t
IPSL	53,000	143,000	1.2	7	100	270	6.16E+12	122t
СМСС	965	NA	0.965	NA	1.99	NA	1.61E+12	
UKMO	23,431	NA	7.3	NA	473	NA	1.76E+13	572.5t
DKRZ	1,276	1,321	0.606	NA	5.52	5.90	4.09E+11	24.8t
NCC-NORESM2	6,484	NA	0.297	NA	11.7	NA	4.75E+11	
NERC	640	NA	0.460	NA	55.497	NA	2.17E+12	
MPI	24,175	35,000	1.9	NA	968.116	NA	6.20E+11	37.6t

^{*} We have also Useful SY, Useful Data and Useful CH per CMIP6 experiment

173.96

76.86

300

300

47.64

33.61

0.130

0.140

11.50

15.90

7.05

12.22

9746

1962

11.00

13.00

GFDL-

GFDL-

OM4-p5

OM4-p25

8.16

E+07

2.18

E+07

Model- Exp-Inst.	Resol	Cmpx	SYPD	ASYPD	CHSY	Paral.	JPSY	Coup. C	Mem. B.	DO.	DI	Useful Years
EC- Earth3- BSC	1.60 E+07	0.31	15.2	9.87	1119	768	4.41 E+07	0.080	11	1.12	0.03	3765
EC-Earth- KNMI	1.60 E+07	0.31	16.2	16.2	1286	868						1009
EC- EarthVeg- SMHI	1.60 E+07		12.44	6.653	1676	864					0.028	6337
GFDL- CM4-piC	8.35 E+07	31.00	9.98	8.16	15383	6399	5.88 E+08	0.260	16.09	1.24	89.43	657
GFDL- ESM4-piC	2.45 E+07	140.0 0	8.65	7.46	13570	4893	5.19 E+08	0.270	40.57		43.99	1124

4671

1300

3.72

E+08

7.50

E+07

Model- Exp- Inst.	Resol	Cmpx	SYPD	ASYPD	CHSY	Paral.	JPSY	Coup.	Mem. B.	DO.	DI	Useful Years
CNRM- CM6-1	1.02 E+07	181	6.5	5	1920	520	4.80 E+07					
CNRM- CM6-1-atm	2.24 E+06	128	7.3	6.1	1320	393	3.50 E+07					
CNRM- CM6-1-HR	2.79 E+08	181	1.5	1.48	19040	1347	5.28 E+08					
CNRM- CM6-1-HR- atm	1.65 E+08	128	2.2	1.8	8720	781	2.28 E+08					
IPSL- CM6A	1.04 E+07	750	12	11.5	1900	950	1.16 E+08	0.050	10	1.20	0.07	53,000
NorESM2- LM	7.77 E+06		13.84	3.03	1664	960	5.60 E+07	0.035			0.065	5463
NorESM2- MM	9.10 E+06		8.96	6,14	4885	1824	1.65 E+08	0.32			0.06	1021

1864

18860

991

INF	ouse, France											
Model- Exp- Inst.	Resol	Cmpx	SYPD	ASYPD	CHSY	Paral.	JPSY	Coup. C	Mem. B.	DO.	DI	Useful Years
HadGEM3- GC31-MM- UKMO	1.42 E+08	236	1.65	1.32	62836	4320	2.33 E+09	0.105	120	1.02	0.05	2386
HadGEM3- GC31-LL- UKMO	1.41 E+07	228	4	3.55	13392	2232	4.97 E+08	0.061	46	1.03	0.074	5610
UKESM1-	1.41	372	4.3	3.6	16074	2880	5.97	0.098	4.6	1.03	0.019	15435

878

312

The IS-ENES3 project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824084

3.21

E+08

2.56

E+07

1.11

E+07

UKESM1-1.41 372 4.3 3.6 16074 2880 5.97 0.098 4.6 1.03 0.019 0-LL-E+07 E+08

515352

388.7

163.2

UKMO

DKRZ-

ESM1-HR

ESM1-LR

ESM1-LR-

MPI-

MPI-

MPI-

ATM

2.00

E+07

3.12

E+06

8.67

E+05

13.33

55.6

45.9

11

22.7

25.2

Model- Exp- Inst.	Resol	Cmpx	SYPD	ASYPD	CHSY	Paral.	JPSY	Coup. C	Mem. B.	DO.	DI	Useful Years
UKESM1- 0-LL- NERC	1.14 E+07	252	2.02	1.1	8568	720	3.18 E+08	0.078	28	1.19	39	195
UKESM1- AMIP- NERC	2.35 E+06	202	1.64	1.41	7358	504	1.04 E+08	0	52.5	1.31	25.7	45
HadGEM3- GC3.1- SS_NERC	1.14 E+07	150	4.25	1.06	12268	2160	4.33 E+08	0.047	56.8	1.41	194	70
HadGEM3- GC3.1- MM_NERC	1.97 E+08	54	0.58	0.46	192412	4656	7.70 E+09	0.21	154		107	65
HadGEM3- GC3.1- LL_NERC	1.24 E+09	54	0.49	0.34	585540	12024	2.30 E+10		183	1.41	207	65

CPMIP metrics

IS-ENES3 1st General Assembly 25-27th March 2020 Toulouse, France

- Improve the computational performance evaluation of our ESMs
 - Compare the performance of models running similar CMIP6 experiments.
 - Evaluate the performance of a model compared to others with a similar complexity.
 - Evaluate the performance of one platform compared to others running the same model.
 - Evaluate the efficiency of a model when the complexity increase (more components, higher resolution...).
 - Evaluate the performance of a model from different points of view and find main bottlenecks.

Platforms: Mistral (DKRZ), MN4 (BSC), Curie (IPSL),

CMIP6 Type Experiment: sspX-X.X

Model- Exp- Inst.	Resol	Cmpx	SYPD	ASYPD	CHSY	Paral.	JPSY	Coup. C	Mem. B.	DO.	DI	Useful Years
DKRZ- MPI- ESM1-HR	2.00 E+07		13.33	11	515352		3.21 E+08					1864
EC-Earth3- BSC	1.60 E+07	0.31	15.2	9.87	1119	768	4.41 E+07	0.080	11	1.12	0.03	3765
IPSL- CM6A	1.04 E+07	750	12	11.5	1900	950	1.16 E+08	0.050	10	1.20	0.07	53,000
NorESM2- LM	7.77 E+06		13.8 4	3.03	1664	960	5.60 E+07	0.035			0.065	5463

Platforms: Rhino (KNMI), [xce,xcf,xcs-r] (UKMO), Beaufix2 (CNRM), SCC (CMCC), Mistral (DKRZ)

CMIP6 Type Experiment: abrupt4xCO2

Model- Exp- Inst.	Resol	Cmpx	SYPD	ASYPD	CHSY	Paral.	JPSY	Coup. C	Mem. B.	DO.	DI	Useful Years
EC-Earth- Aerchem- KNMI	1.60 E+07	11	3.03	3.03	3549	448			11			730
HadGEM3- GC31-LL- UKMO	1.41 E+07	228	4	3.55	13392	2232	4.97 E+08	0.061	46	1.03	0.074	5610
CNRM- CM6-1	1.02 E+07	181	6.5	5	1920	520	4.80 E+07					
CMCC- CM2-SR5	8.00E +06	844	6.68	6.5	2068	576	1.67 E+09	0.074	17.8	1.04	0.05	965

Platforms: Archer (NERC), Beaufix2 (CNRM), [xce,xcf,xcs-r] (UKMO)

CMIP6 Type Experiment: HiRes

Model- Exp- Inst.	Resol	Cmpx	SYPD	ASYPD	CHSY	Paral.	JPSY	Coup. C	Mem. B.	DO.	DI	Useful Years
HadGEM3- GC3.1- LL_NERC	1.24 E+09	54	0.49	0.34	585540	12024	2.30 E+10		183	1.41	207	65
CNRM- CM6-1-HR	2.79 E+08	181	1.5	1.48	19040	1347	5.28 E+08					
HadGEM3- GC3.1- MM_NERC	1.97 E+08	54	0.58	0.46	192412	4656	7.70 E+09	0.21	154		107	65
HadGEM3- GC31-MM- UKMO	1.42 E+08	236	1.65	1.32	62836	4320	2.33 E+09	0.105	120	1.02	0.05	2386

CPMIP metrics

IS-ENES3 1st General Assembly 25-27th March 2020 Toulouse, France

- Improve the computational performance evaluation of our ESMs
 - Compare the performance of models running similar CMIP6 experiments.
 - Evaluate the performance of a model compared to others with a similar complexity.
 - Evaluate the performance of one platform compared to others running the same model.
 - Evaluate the efficiency of a model when the complexity increase (more components, higher resolution...).
 - Evaluate the performance of a model from different points of view and find main bottlenecks.

CPMIP metrics

- Improve the computational performance evaluation of our ESMs
 - Compare the performance of models running similar CMIP6 experiments.
 - Evaluate the performance of a model compared to others with a similar complexity.
 - Evaluate the performance of one platform compared to others running the same model.
 - Evaluate the efficiency of a model when the complexity increase (more components, higher resolution...).
 - Evaluate the performance of a model from different points of view and find main bottlenecks.

Model Configuration: EC-Earth3 and EC-earth-veg

Platforms: MN4 (BSC), Beskow and Tetralith (SMHI) and Rhino (KNMI)

CMIP6 Type Experiment: historical, piControl, ssp1-2.6, ssp2-4.5,

ssp3-7.0, ssp5-8.5, ssp1-1.9, ssp5-3.4-OS

	SYPD	ASYPD	CHSY	Coupling Cost	Data Output Cost	Parallel
CMIP6 Experiments	BSC: 15.2 KNMI:16.2 SMHI:12.4	BSC: 9.87 KNMI:16.2 SMHI:6.65	BSC: 1119 KNMI:1276 SMHI:1676	BSC: 8% KNMI: SMHI:	BSC: 12% KNMI: SMHI:	BSC: 768 KNMI: 864 SMHI: 864

Model Configuration: EC-Earth3 and EC-earth-veg

Platforms: MN4 (BSC), Beskow and Tetralith (SMHI) and Rhino (KNMI)

CMIP6 Type Experiment: historical, piControl, ssp1-2.6, ssp2-4.5,

ssp3-7.0, ssp5-8.5, ssp1-1.9, ssp5-3.4-OS

	SYPD	ASYPD	CHSY	Coupling Cost	Data Output Cost	Parallel
CMIP6 Experiments	BSC: 15.2 KNMI:16.2 SMHI:12.4	BSC: 9.87 KNMI:16.2 SMHI:6.65	KNMI:1276	BSC: 8% KNMI: SMHI:	BSC: 12% KNMI: SMHI:	BSC: 768 KNMI: 864 SMHI: 864

Comparing Platforms (BSC and KNMI)

CHSY

MN4 and Rhino have similar performance

Model Configuration: EC-Earth3 and EC-earth-veg

Platforms: MN4 (BSC), Tetralith (SMHI) and Rhino (KNMI)

CMIP6 Type Experiment: historical, piControl, ssp1-2.6, ssp2-4.5,

ssp3-7.0, ssp5-8.5, ssp1-1.9, ssp5-3.4-OS

	SYPD	ASYPD	CHSY	Coupling Cost	Data Output Cost	Parallel
CMIP6 Experiments	BSC: 15.2 KNMI:16.2 SMHI:12.4	BSC: 9.87 KNMI:16.2 SMHI:6.65	BSC: 1119 KNMI:1276 SMHI:1676	BSC: 8% KNMI: SMHI: (15%)	BSC: 12% KNMI: SMHI:	BSC: 768 KNMI: 864 SMHI: 864

Comparing Configurations (KNMI and SMHI)

SYPD 👢

CHSY

Coupling Cost

Memory Size

LPJGUESS is less efficient than IFS or NEMO

Model Configuration: EC-Earth3 and EC-earth-veg

Platforms: MN4 (BSC), Beskow and Tetralith (SMHI) and Rhino (KNMI)

CMIP6 Type Experiment: historical, piControl, ssp1-2.6, ssp2-4.5,

ssp3-7.0, ssp5-8.5, ssp1-1.9, ssp5-3.4-OS

	SYPD	ASYPD	CHSY	Coupling Cost	Data Output Cost	Parallel
CMIP6 Experiments	BSC: 15.2 KNMI:16.2 SMHI: 12.4	BSC: 9.87 KNMI:16.2 SMHI: 6.65	BSC: 1119 KNMI:1276 SMHI:1676	BSC: 8% KNMI: SMHI:	BSC: 12% KNMI: SMHI:	BSC: 768 KNMI: 864 SMHI: 864

	SYPD	ASYPD
GFDL-CM4-piC CMCC-CM5-SR5 IPSL-CM6 MPI-ESM1-HR	9.98 6.68 12 13.33	8.16 6.5 11.5

Model Configuration: EC-Earth3 and EC-earth-veg

Platforms: MN4 (BSC), Beskow and Tetralith (SMHI) and Rhino (KNMI)

CMIP6 Type Experiment: historical, piControl, ssp1-2.6, ssp2-4.5,

ssp3-7.0, ssp5-8.5, ssp1-1.9, ssp5-3.4-OS

	SYPD	ASYPD	CHSY	Coupling Cost	Data Output Cost	Parallel
CMIP6 Experiments	BSC: 15.2 KNMI:16.2 SMHI: 12.4	BSC: 9.87 KNMI:16.2 SMHI: 6.65	BSC: 1119 KNMI:1276 SMHI:1676	BSC: 8% KNMI: SMHI:	BSC: 12% KNMI: SMHI:	BSC: 768 KNMI: 864 SMHI: 864

	SYPD	ASYPD
GFDL-OM4-p25	11.50	7.05
HadGEM3-GC3.1-SS_NERC	4.25	1.06
NorESM2-LM	13.84	3.03
MPI-ESM1-LR	55.6	22.7

experiment	Туре	platform	compiler	paralleliza tion
EC-Earth-BSC	AMIP	CCA	Intel	756
EC-Earth-BSC	AMIP	MN4	Intel	516

*Total Times are based on CMIP6-AMIP Test (20 years, 5 member average)

narallelizati

		paranenzau					Data		
	experiment	on	SYPD	ASYPD	RSYPD	CHPSY	Volume		
	cab(CCA)	756	16.57	12.7	9.7	1043.93	21GB		
	mas(MN4)	516	17.97	17.51	3.97	648.41	21GB		
		Queue T.	Run Model	Queue Model	Run Model		Queue Post		Queue Post
	experiment	Model (Avg)	(Avg)	(Tot)	(Tot)	Post (Avg)	(Avg)	Post (Tot)	(Tot)
)	cab(CCA)	00:23:00	01:26:23	08:20:10	29:01:42	00:16:54	00:00:50	05:35:24	00:19:32
	mas(MN4)	00:01:47	01:21:05	00:27:46	26:53:32	00:11:42	01:23:37	04:13:03	34:20:08

Data

(HH:MM:SS)

experiment	Туре	platform	compiler	paralleliza tion
EC-Earth-BSC	AMIP	CCA	Intel	756
EC-Earth-BSC	AMIP	MN4	Intel	516

*Total Times are based on CMIP6-AMIP Test (20 years, 5 member average)

parallelizati

		paramonean					Jala		
	experiment	on	SYPD	ASYPD	RSYPD	CHPSY	Volume		
	cab(CCA)	756	16.57	12.7	9.7	1043.93	21GB		
	mas(MN4)	516	17.97	17.51	3.97	648.41	21GB		
		Queue T.	Run Model	Queue Model	Run Model		Queue Post		Queue Post
	experiment	Model (Avg)	(Avg)	(Tot)	(Tot)	Post (Avg)	(Avg)	Post (Tot)	(Tot)
)	cab(CCA)	00:23:00	01:26:23	08:20:10	29:01:42	00:16:54	00:00:50	05:35:24	00:19:32
	mas(MN4)	00:01:47	01:21:05	00:27:46	26.53.32	00:11:42	01.23.37	04:13:03	34.20.08

Data

(HH:MM:SS)

experiment	Туре	platform	compiler	paralleliza tion
EC-Earth-BSC	AMIP	CCA	Intel	756
EC-Earth-BSC	AMIP	MN4	Intel	516

*Total Times are based on CMIP6-AMIP Test (20 years, 5 member average)

parallelizati

experiment	on	SYPD	ASYPD	RSYPD	CHPSY	Volume		
cab(CCA)	756	16.57	12.7	9.7	1043.93	21GB		
mas(MN4)	516	17.97	17.51	3.97	648.41	21GB		
							1	1
	Queue T.	Run Model	Queue Model	Run Model		Queue Post		Queue Post
experiment	Model (Avg)	(Avg)	(Tot)	(Tot)	Post (Avg)	(Avg)	Post (Tot)	(Tot)
cab(CCA)	00:23:00	01:26:23	08:20:10	29:01:42	00:16:54	00:00:50	05:35:24	00:19:32
mas(MN4)	00:01:47	01:21:05	00:27:46	26:53:32	00:11:42	01:23:37	04:13:03	34:20:08

Data

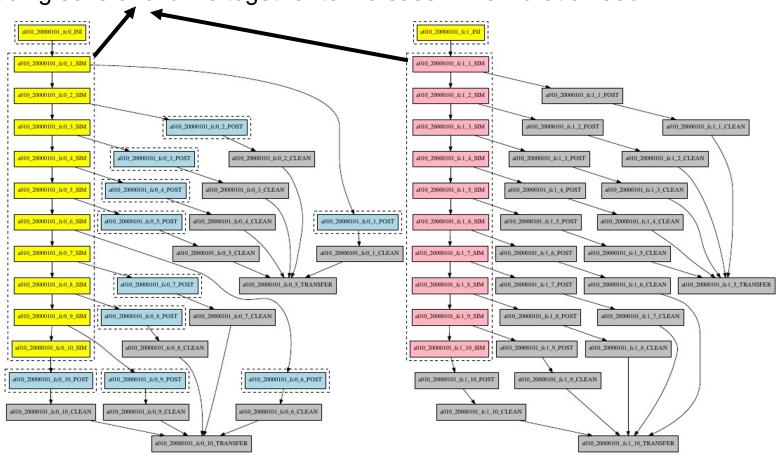
(HH:MM:SS)

IS-ENES3 1st General Assembly 25-27th March 2020 Toulouse, France

experiment	Туре	platform	compiler	paralleliza tion	
EC-Earth-BSC	AMIP	CCA	Intel	756	
EC-Earth-BSC	AMIP	MN4	Intel	516	

*Total Times are based on CMIP6-AMIP Test (20 years, 5 member average)

parallelizati

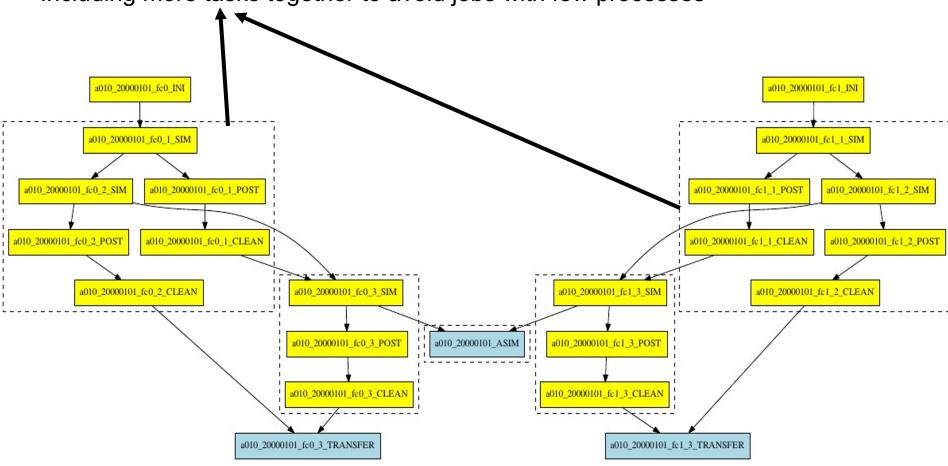

experiment	on	SYPD	ASYPD	RSYPD	CHPSY	Volume		
cab(CCA)	756	16.57	12.7	9.7	1043.93	21GB		
mas(MN4)	516	17.97	17.51	3.97	648.41	21GB		
								l I
	Queue T.	Run Model	Queue Model	Run Model		Queue Post		Queue Post
experiment	Model (Avg)	(Avg)	(Tot)	(Tot)	Post (Avg)	(Avg)	Post (Tot)	(Tot)
cab(CCA)	00:23:00	01:26:23	08:20:10	29:01:42	00:16:54	00:00:50	05:35:24	00:19:32
mas(MN4)	00:01:47	01:21:05	00.27.46	26.53.32	00:11:42	01:23:37	04:13:03	34.20.08

Data

(HH:MM:SS)

Using workflow manager/queue system wrappers to avoid unneeded queues

Including several chunks together to increase Time Duration Job



IS-ENES3 1st General Assembly 25-27th March 2020 Toulouse, France

Using workflow manager/queue system wrappers to avoid unneeded queues

Including more tasks together to avoid jobs with few processes

Operational global, coupled ~10 km simulations (T1279 - ORCA12):

EC-Earth 3.2 (IFS36r4 + NEMO 3.6 + OASIS3-MCT)

- 5,040 MPI tasks 0.44 SYPD, 160 SDPD
 - 3,209 NEMO
 - 1,584 IFS
 - 69 XIOS
 - 1 runoff mapper
- MareNostrum4 @ BSC

CPMIP analysis ~10km Demo

IS-ENES3 1st General Assembly 25-27th March 2020 Toulouse. France

Positive

Memory size

- Not a problem if it can be distributed among nodes using domain decomposition.
- XIOS requires a lot of memory → Affinity study and distribution among NEMO nodes are mandatory.

Using the number of parallel resources to have a similar SYPD per component waste significant resources (200 unneeded NEMO processes!), Balance study will be mandatory.

Data Output Cost

- Increase the execution time of IFS up to 50%.
- Moving to IO server alternatives is critical and ensure that these new approaches are efficient for the new challenges

ASYPD: Postprocessi ng

- Data intensity is so huge that post-processing is almost impossible. Our tools are not ready to process all this data memory.
- Online alternatives and reduction of useful output should be explored → Coarsening methods, online diagnostics, accelerators...

Lessons learnt about the first collection

- Although CPMIP collection is important, it is secondary during the CMIP execution.
 - Facilitate portable and automatic processes will ensure the collection for all institutions, such as the integration with workflow managers.
 - In the meantime, your help as an extra effort will ensure the success of this collection.
- Some metrics can be collected after CMIP6 experiments, re-running them...
 - But be careful, some institutions have reported that re-run experiments (even partially) is too much expensive.

Lessons learnt about the first collection

- CPMIP collection is not only a dissemination process. It could be a very powerful tool to analyze the computational efficiency of a model across platforms, configurations...
- A proper CPMIP analysis needs some background
 - Specific details for each component of a model will facilitate the analysis.
- We thought that machine variability could be a problem for the comparison.
 - The range of variability is similar for most of the platforms, between 6-10%.

Lessons learnt about the first collection

- Normalize some metrics such as ASYPD could be helpful for future analysis.
 - Many institutions are including queue time and interruptions, but others are including only queue time or adding data movement, cleaning...
 - How much does each one of these sub-metrics affect to the set?
 - Post-processing could affect to ASYPD for some specific configurations, should it be studied? even though it is not included in the critical path of the execution...

Future

- Normalize results and be ready for the ES-DOC update.
- Prepare final collection at the end of 2020.
 - Not only for people finishing CMIP6 experiments but also for institutions who has not provided all metrics yet.
 - More institutions will join us (Sarat Sreepathi-E3SM model, indian and/or chinese models?).
- Interact with each institution to learn more about the particularities of each model for a proper analysis.
- Evaluate the possible improvement of some of the metrics (ASYPD, coupling cost, energy cost...).
- Final analysis, dissemination and publication of the results.

THE CONSORTIUM

Coordinated by CNRS-IPSL, the IS-ENES3 project gathers 22 partners in 11 countries

Meteorologisch Instituut

UK Research and Innovation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°824084

Our website https://is.enes.org/

Follow us on Twitter! @ISENES_RI

Contact us at is-enes@ipsl.fr

Join the community on ZENODO!