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ABSTRACT: Place-based data is required in wildfire analyses, particularly in regions of diverse terrain that foster not
only strong gradients in meteorological variables, but also complex fire behaviour. However, a majority of downscaling
methods are inappropriate for wildfire application due to the lack of daily timescales and variables such as humidity and
winds that are important for fuel flammability and fire spread. Two statistical downscaling methods, the daily Bias corrected
Spatial Downscaling (BCSD) and the Multivariate Adapted Constructed Analogs (MACA) that directly incorporate daily
data from global climate models, were validated over the western US using global reanalysis data. While both methods
outperformed results obtained from direct interpolation from reanalysis, MACA exhibited additional skill in temperature,
humidity, wind, and precipitation due to its ability to jointly downscale temperature and dew point temperature, and its
use of analog patterns rather than interpolation. Both downscaling methods exhibited value added information in tracking
fire danger indices and periods of extreme fire danger; however, MACA outperformed the daily BCSD due to its ability
to more accurately capture relative humidity and winds. Copyright  2011 Royal Meteorological Society
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1. Introduction

Climate and weather are key enablers and drivers of wild-
fire regimes (e.g. Swetnam and Betancourt, 1990) and a
host of other related ecosystem disturbances (e.g. Parme-
san et al., 2000). From a purely atmospheric perspective,
wildfire potential is a collective response to climatology
(i.e. vegetation distribution, e.g. Stephenson, 1990), low-
frequency climate variability (i.e. fuel availability and
quantity, e.g. Littell et al., 2009), the integrated sequence
of daily meteorological conditions in the days to months
prior to ignition (i.e. moisture content of fuel, ignition
efficiency, e.g. Deeming 1977), lightning ignitions (e.g.
Rorig and Ferguson, 1999), and meteorological condi-
tions during active burning (e.g. Flannigan and Harring-
ton, 1988). The historical range of variability of these
factors defines wildfire regimes. Climate change has the
potential to result in conditions outside the contempo-
rary range of variability for such systems, thus having
widespread implications for wildfire and ecosystems (e.g.
Torn and Fried, 1992; McKenzie et al., 2004; Flannigan
et al., 2009).

Projected changes in meteorology at spatial and tempo-
ral scales are to better understand the impacts of climate
change on wildfire regimes. While global climate models
(GCMs) are the primary tool for such projections, sev-
eral hurdles must be addressed to translate GCM output
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into locally relevant meteorological data for use in impact
assessment. These include selecting GCMs appropriate
for a given study area and application (e.g. Mote and
Salathé, 2010), removing model biases, and accounting
for the inherent scale mismatch between the coarse hori-
zontal resolution of GCMs and the scale usually needed
for local applications (e.g. Fowler et al., 2007). Down-
scaling addresses the latter hurdles through dynamical or
empirical links between climate at large scales (as sim-
ulated by GCMs) and that at finer scales (not directly
simulated by GCMs). Downscaling is especially critical
in regions of complex terrain characterized by steep spa-
tial gradients in meteorological variables and mesoscale
circulation. These features also tend to define areas prone
to wildfire and extreme fire behaviour (e.g. Sharples,
2009).

Two fundamental types of downscaling exist: dynam-
ical and statistical. Dynamical downscaling nests a
regional climate model in a global climate model, and is
advantageous in that it physically resolves processes that
occur at scales smaller than the driving GCM. However,
dynamical downscaling suffers from biases introduced by
the driving GCM (e.g. Plummer et al., 2006) and compu-
tational demands. Thus, current dynamical downscaling
capabilities are limited by a lack of ensembles, and have
to date been used sparingly in climate impact assessment.
By contrast, statistical downscaling is computationally
efficient, is able to directly incorporate observations used
in operational decision-making or modelling, and can be
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applied across multiple GCMs to develop ensembles for
scenario building. Statistical downscaling assumes that
synoptic-scale meteorology and local physiographic fea-
tures influence local meteorology. These relationships are
then used to develop quantitative relationships between
physically meaningful large-scale predictors and local
predictands. However, statistical downscaling is not with-
out fault as methods often assume stationarity though
time, and ignore first principles of meteorology (e.g.
Fowler et al., 2007).

The increased need for place-based climate projections
has resulted in a proliferation in downscaling methods
and datasets in recent years. While some downscaling
methods may suffice for certain applications, they may
not be ideal for addressing the needs for other applica-
tions. Although several downscaled products have been
developed for hydrologic modelling and impact assess-
ment (e.g. Maurer and Hidalgo, 2008; Salathé et al.,
2007), downscaling methods and datasets that specifi-
cally address the needs of the fire community have been
lacking to date. For example, whereas wildfire poten-
tial is a collective response to temperature, precipita-
tion, humidity, winds, and other meteorological variables
across a spectrum of timescales, most downscaling meth-
ods have been performed at monthly temporal resolution,
and only for temperature and precipitation. To advance
the utility of GCM output for wildfire and other natural
hazards applications, downscaling methods that encapsu-
late the spatial and temporal behaviour of meteorological
data to ascertain elements such as fuel moistures, fire
danger indices (e.g. National Fire Danger Rating Sys-
tem [NFDRS], Canadian Forest Fire Danger Rating Sys-
tem [CFFDRS]) and critical fire weather situations are
needed.

This paper compares two statistical downscaling meth-
ods across the western continental US (west of 104 °W
longitude) in the context of fire danger metrics widely
used in operational fire management. The study area
was selected because the complex meteorology across
the heterogeneous landscape of the western US necessi-
tates downscaling, as well as the prominence of wildfire
on natural resources and human infrastructure across the
region. Section 2 provides an overview of the down-
scaling methodologies and limitations. A comparison and
discussion of the results is presented in Section 3. Con-
cluding remarks are presented in Section 4.

2. Data and methods

2.1. Statistical downscaling methods

Statistical downscaling techniques offer advantages in
ease of use, but often contain a number of caveats (Fowler
et al., 2007 for a review). The primary limitations of
established downscaling methods are separated into three
primary categories: space, time and covariability. First,
spatial limitations imposed using statistical interpolation
is problematic in regions of complex topography, such as
the western US, where observational evidence suggests

that the interaction of the atmospheric circulation with
physiographic gradients drives local to regional-scale
variability (e.g. Abatzoglou et al., 2009) and critical fire-
weather patterns (e.g. Hughes and Hall, 2010). Second,
applications that require daily and sub-daily input may
be remiss if the richer temporal spectrum of information
available from GCMs is not incorporated. Finally, vari-
ables are often downscaled independent of one another
in most statistical downscaling methods. This results in
decoupling of first principles of meteorology (e.g. the
relationship between temperature and relative humidity)
and may result in physically implausible outcomes. Two
classes of established downscaling methods are elabo-
rated on: bias correction and spatial downscaling (BCSD)
method, and constructed analogs (CA) method.

The BCSD method (Wood et al., 2004; Salathé et al.,
2007; Maurer and Hidalgo, 2008) has been used exten-
sively for impact assessment in the US and globally (e.g.
Karl et al., 2009). This two-step method first corrects for
biases in GCM data using a quantile-based mapping of
monthly temperature and precipitation from GCMs to
observations aggregated to a common resolution. Bias
correction matches the statistical moments of observa-
tions and GCM output covering a common time period
(e.g. late 20th century), and accordingly adjusts for biases
in GCM output for projected time periods (e.g. 21st
century) by assuming a constant model bias. Second,
monthly anomalies of bias corrected GCM output are
spatially interpolated to the downscaled resolution and
multiplied (added) to climatological precipitation (tem-
perature) fields. Daily data can be obtained by disaggre-
gating monthly output to daily time scales by resampling
a historical month and scaling daily data to match the
monthly projections (e.g. Wood et al., 2004). Temporal
disaggregation is limited in that it can only be applied
in restricted domains, may produce physically unrealis-
tic meteorology and makes the assumption that synoptic
meteorology is stationary (restricts any changes in higher
order sub-monthly statistics – e.g. length of dry spells).
While the BCSD method may yield useful information
for wildfire applications that require data on monthly and
longer timescales (e.g. drought indices), the lack of infor-
mation at sub-monthly timescales limits its utility.

The CA method identifies commonality between the
synoptic-scale field from a GCM and a catalog of
observed synoptic-scale fields from observations (Zorita
and von Storch, 1999; Hidalgo et al., 2008). The principle
of analog-based downscaling aligns more closely with
the first principles of meteorology in its ability to
directly incorporate daily synoptic patterns from GCMs.
As climate change is composed of changes in the
magnitude and frequency of meteorological fields, the
direct incorporation of daily meteorology is important in
elucidating impacts sensitive to sequencing of weather
patterns and extremes. The CA is also more apt to
model regionally complex meteorological phenomena
(e.g. rain shadowing, inversions, local winds) that are not
captured through interpolation based methods. However,
the CA method is not without limitations, including its
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negligence of model biases and inability to address no-
analog situations that may arise in a future climate.

Two novel downscaling methodologies are presented
that build off the BCSD and CA methods: a daily
BCSD method and the newly termed Multivariate Adap-
tive Constructed Analogs (MACA) method. To compare
downscaling skill of these methods, a common domain
(30–50 °N, 100–126 °W) and set of predictor variables
is selected. The choice of predictor variables is a criti-
cal component of statistical downscaling and its ability to
physically represent downscaled output and change under
future climate scenarios (e.g. Fowler et al., 2007). Pre-
dictor variables are paired directly to downscaled output
(e.g. GCM precipitation used to model downscaled pre-
cipitation) based on their ability to express the myriad of
physical processes simulated under future climate (e.g.
Maurer and Hidalgo, 2008). GCM outputs used as predic-
tors included daily maximum and minimum temperature,
precipitation, dew point temperature (derived from spe-
cific humidity) and wind velocity. As widely available
output from GCMs is generally restricted to daily spe-
cific humidity, it is assumed that daily maximum and
minimum relative humidity coincide with daily minimum
and maximum temperatures, respectively.

2.1.1. Daily BCSD

Whereas the BCSD method has conventionally been used
to downscale climate data at monthly scales, the method
can be extended to operate on daily timescales. Two
modifications to the BCSD method described above are
made. First, daily GCM output is spatially interpolated to
the downscaled grid. These fields are then bias corrected
using quantile mapping. However, instead of restricting
the sample distribution for daily bias correction to a single
calendar day of the year (e.g. only using 8 July data for
all years to bias correct 8 July data for a given year),
quantile mapping is performed by populating the sample
distribution using a 15-day moving window centered on
each calendar day. Temperature, precipitation, and wind
speed are bias corrected directly. Relative humidity is
first estimated from bias corrected temperature and dew
point temperature, after which a secondary bias correction
to observed relative humidity is performed. Quantile
mapping adjustments determined from late 20th century
GCM experiments and observations, can be transferred to
future time slices, therein preserving changes in statistical
moments between the two periods.

2.1.2. Multivariate adapted constructed analogs
(MACA)

Although the CA method includes several desirable
downscaling qualities, there are limitations to its applica-
bility. The strengths of the CA method are built upon and
additional measures incorporated to circumvent limita-
tions by: (1) bias correcting GCM output, (2) accounting
for no analog situations and (iii) incorporating additional
variables. The MACA is described in the steps below:

1. Bias correction: The CA method described in Hidalgo
et al. (2008) does not correct for GCM biases, and
instead uses pattern matching of anomaly fields. The
procedure described in 2.1.1 is used to map daily
GCM data to the aggregated observations similar to
the Bias Corrected Constructed Analogs of Maurer
et al. (2010).

2. Epoch adjustment: The main limitation of analog
based methods is the potential of no analogs under
future climate scenarios (e.g. a heat-wave during the
late 21st century). Differences between the means of
future time slices (2046–2065) and the means of his-
torical (e.g. 20th century runs covering 1971–2000)
time slices are removed using a 21-day moving win-
dow. Differences are taken as additive for temperature
and dew point temperature, and multiplicative for pre-
cipitation and wind speed.

3. Constructed Analogues: Following Hidalgo et al.
(2008), a daily GCM field (‘target’ pattern) is built
by identifying the 30 best predictor patterns (based
on pattern root mean square error) taken from a
library of observed patterns that fall within 45 days
of the target date. Following Maurer et al. (2010),
analogs are selected based on absolute values rather
than anomalies. Linear combinations of accompany-
ing fine-scale patterns yield the downscaled field. In
contrast to methods that downscale variables indepen-
dent of one another, the MACA method is performed
jointly for temperature (maximum and minimum) and
dew point temperature to improve coherence across
downscaled fields. Analogs are identified separately
for wind velocity and precipitation due to the inabil-
ity to easily weight the influence of all variables in an
analog search.

4. Epoch adjustment: Adjustments performed in step 2
are reintroduced.

5. Bias correction: A final quantile mapping procedure is
performed on the downscaled output to ensure statisti-
cal moments of the downscaled data conform to obser-
vations (i.e. Maurer et al., 2010). Relative humidity
fields are calculated from dew point temperature and
temperatures, after which the data are bias corrected
to observed relative humidity.

2.1.3. Advantages and caveats of methods

The daily BCSD and MACA methods are advantageous
over other available methodologies for use in wildfire
applications for two primary reasons. First, the direct use
of daily GCM output avoids a caveat of other down-
scaling approaches that assume stationarity in synoptic
meteorology by resampling historical daily weather. This
is particularly critical given that wildfire growth and
behaviour is sensitive to sequences of daily synoptic pat-
terns and extremes (e.g. Flannigan and Harrington, 1988;
Abatzoglou and Kolden, 2011). Secondly, these methods
are capable of incorporating humidity and winds that are
of critical importance for assessing fire danger.

Similar to other downscaling methods, these meth-
ods come with caveats in their application. First, analog
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approaches are sensitive to the geographic extent of the
chosen domain (e.g. Fowler et al., 2007), with the influ-
ence of domain dependence differing across variables
(Hidalgo et al., 2008). Secondly, the skill of downscal-
ing method is subject to the ability of the GCM to
simulate synoptic patterns. This point emphasizes the
importance of GCM selection in application of down-
scaled data (Sheridan and Lee, 2010), and suggests that
models unable to simulate the spatiotemporal features
of synoptic meteorology may be ill-suited for down-
scaling (e.g. Schoof and Pryor, 2006). Third, the accu-
racy of downscaling methods typically degrades near
the tails of the distribution, resulting in extremes to
generally be underestimated (e.g. Fowler et al., 2007);
however, extreme value theory methods may be used
in statistical downscaling to target extreme events (e.g.
Benestad, 2010). Finally, these downscaling methods
assume a static relationship between synoptic and sub-
synoptic scales. Changes in climate are likely to alter
land-surface conditions (e.g. soil moisture, snow cover),
thereby resulting in changes at local scales (e.g. amplified
warming in regions of snow cover loss) that may devi-
ate from those determined using statistical methods (e.g.
Salathé et al., 2009). As the availability of output from
regional climate models becomes available, the statistical
downscaling methods can be used in hybrid statistical-
dynamical downscaling.

2.2. Data sources

Statistical downscaling requires a long-term high-quality
data that encompass a representative sample of observa-
tions. While the methodology presented herein is appli-
cable to any long-term observed dataset, efforts here are
focused on observations tailored to wildfire applications.
High-resolution gridded data of surface fire-weather con-
ditions are limited due to either inadequate spatial and
temporal scales, or an incomplete set of variables. A
recently developed daily high-resolution (8-km; 5-arc
s) gridded dataset that covers the continental US from
1979–2008 (Abatzoglou and Brown, 2009) is utilized
in the calibration and assessment of the downscaling
methods.

The observed gridded dataset of Abatzoglou and
Brown (2009) was developed by blending three data
sources: (1) National Center for Environmental Predic-
tion’s (NCEP) North American Regional Reanalysis
(NARR; Mesinger et al. 2006, 32-km horizontal reso-
lution, 3-hrly), (2) Parameter-elevation Regressions on
Independent Slopes Model (PRISM; Daly et al., 1994,
4-km horizontal resolution, monthly), and (3) local obser-
vations of relative humidity and wind speed from Remote
Automated Weather Stations (RAWS, 900+ sites, daily
observations at 1300 local time). The data provide
daily maximum and minimum temperatures and relative
humidity; daily accumulated precipitation and precipita-
tion duration; and temperature, relative humidity, wind
velocity, and state of the weather for 1300 local time,
all variables needed in NFDRS calculations. Temper-
ature, dew point temperature and precipitation adhere

to surface observations from PRISM at monthly and
lower frequency timescales, with intra-monthly depar-
tures adhering to NARR through the use of time varying
ratios (e.g. Di Luzio et al., 2008). As a final step, relative
humidity and wind speeds from NARR were bias cor-
rected to RAWS. Potential shortcomings of this dataset
include: (1) the observed tendency of NARR to under-
estimate precipitation extremes during the warm season
(e.g. Becker et al., 2009), (2) potential climate inhomo-
geneities in underlying station data and, (3) the lack of
detailed (<10-km) wind velocity that may not capture
mesoscale features.

Assessing the skill of downscaling using GCM out-
put is problematic due to the lack of validation data and
the inability to separate biases introduced from the GCM
and the downscaling method. Alternatively, the European
Centre for Medium-Range Weather Forecasts (ECMWF)
ERA-Interim reanalysis (Simmons et al., 2007) from
1989–2008 is employed as a verifiable GCM surrogate.
Reanalyses are functionally similar to GCMs in spatial
and temporal resolution in that both simulate synoptic-
scale features, but fail to resolve complex topography
and mesoscale features. The distinct difference between
a GCM and reanalysis is that the reanalysis assimi-
lates observations including upper-air temperature and
moisture, and is constrained to observations at synoptic-
scales. Many of the same observations (e.g. radioson-
des) are assimilated into both the ERA-Interim reanalysis
and NARR (included in developing the high-resolution
observed dataset), therein not making the datasets com-
pletely independent. However, the datasets are treated
as being independent on the basis that (1) ECMWF and
NCEP reanalysis employ different assimilation models
and data sources, (2) the NARR is a regional model
nested within a global model, and (3) the high-resolution
gridded dataset incorporates surface observations that are
not assimilated into either reanalysis.

Although reanalysis is regarded as a ‘best case’ GCM,
it is by no means a perfect GCM. Surface temperatures
are well represented by the reanalysis through strong
linkages between assimilated lower-tropospheric temper-
atures and surface temperatures. Precipitation, however,
is derived by the model itself through parameterisations
and has been shown to exhibit substantial biases (e.g.
Widmann and Bretherton, 2000). Surface observations
including 2-m humidity and 10-m wind velocity remain
a challenging field to validate and model (e.g. Timbal
et al., 2009).

2.3. Assessment of skill

Downscaled data are cross-validated to evaluate the
reproducibility of observations at local scales from the
ERA-Interim reanalysis covering the period 1989–2008.
Cross-validation allows for the complete library of data
to be used in the quantile mapping and analogue search
(aside from the day being downscaled); however, the
cross-validation does not utilize the epoch adjustment
methodology of MACA (steps 2 and 4) given the short
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period of record. The downscaling methods are quanti-
tatively compared using the correlation coefficient and
root mean square error (RMSE) for the cool season
(Nov–Apr) and warm season (May–Oct). These down-
scaling methods are compared to direct linear interpola-
tion from reanalysis. Statistical skill is assessed as the rel-
ative accuracy (examined through correlation and RMSE)
of the downscaling methods relative to direct interpola-
tion from reanalysis.

In addition to meteorological variables, the downscal-
ing skill is examined for two daily fire danger indices:
the Energy Release Component (ERC) and the Fosberg
Fire Danger Index (FFWI; Fosberg, 1978). The ERC is
a widely used metric from the NFDRS (Deeming et al.,
1977) that serves as a proxy for fuel moisture content and
fire intensity for a given fuel type (model G, short nee-
dle pine, heavy dead loads is used in the present case).
ERC is a weather-climate hybrid index that considers
the cumulative drying effect of previous daily weather
conditions by integrating temperature, precipitation and
humidity, and hence is a frequently used decision tool
in operational fire management. By contrast, the FFWI
is a flashy weather-driven index derived from temper-
ature, wind speed and relative humidity tailored to the
short-term impacts on wildfire potential irrespective of
fuel abundance or availability.

3. Results and discussion

3.1. Validation of meteorological variables

Validation results were sensitive to both the reanalysis, in
its ability to capture surface observations, and the ability
of the two downscaling methods to improve upon results
obtained from direct interpolation. Temperatures were
well simulated by the reanalysis due to the strong cou-
pling between lower-troposphere air temperature and sur-
face temperature, with the strongest correlations in sum-
mer and for maximum temperatures when the atmosphere
is well mixed (Figure 1). Notably lower correlations were
observed in areas of complex physiographic influences
such as mountain ranges (e.g. Sierra Nevada, Cascades),
valleys (e.g. California’s Central Valley, Idaho’s Snake
River Plain) and coastal regions where local meteorology
often decouples from the synoptic signature. Both down-
scaling methods demonstrated skill through the reduction
of RMSE. While the BCSD method exhibited modest
improvements in correlation, its reliance on spatial inter-
polation resulted in unexplained variance in regions of
complex topography. By contrast, the MACA method
showed additional skill in complex terrain given its abil-
ity to use pattern matching rather than interpolation.

The ability to accurately model relative humidity
requires capturing both moisture and temperature. Reanal-
ysis fields were more adept at tracking daily min-
imum relative humidity, whereas weaker correlations
were found for daily maximum relative humidity and in
locales that often reach 100% humidity and exhibit little

Figure 1. Correlation coefficients (top three rows) and RMSE (bottom
three rows) for daily maximum temperature (left two columns) and
daily minimum temperature (right two columns). From top to bottom
are validation statistics for direct interpolation from reanalysis (INTP),
the daily Bias Correction Spatial Downscaling (BCSD) method, and
the Multivariate Adaptive Constructed Analogs (MACA) method. For
each variable, daily skill is separated into the cool season (Nov–Apr)
and the warm season (May–Oct). Units for RMSE are °C. This figure

is available in colour online at wileyonlinelibrary.com/journal/joc

variance such as coastal zones (Figure 2). Both down-
scaling methods demonstrated added skill, although the
MACA method outperformed the daily BCSD method.
The MACA method performed well over nearly the entire
western US for both maximum and minimum relative
humidity during the warm season, important due to the
role humidity plays in determining fuel moisture during
the fire season. Additional skill observed in the MACA
method is a consequence of not relying on interpolation
based downscaling (e.g. Figure 3), and incorporating a
multivariate analog search for temperature and dew point
temperature. These results suggest the importance of cou-
pling temperature and dew point temperature fields in
downscaling relative humidity as opposed to downscaling
variables independent of one another.

Precipitation was assessed using the square root of
precipitation to reduce data skew. Distinct geographic and
seasonal variability was realized for precipitation with the
strongest correlations observed on the windward side of
significant topographic barriers during the cool season
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Figure 2. As in Figure 1, but for minimum relative humidity (left
two columns) and maximum relative humidity (right two columns).
Units for RMSE are %. This figure is available in colour online at

wileyonlinelibrary.com/journal/joc

Figure 3. (a) Interpolated, (b) daily BCSD downscaled, (c) MACA
downscaled, and (d) observed minimum relative humidity anomaly for
4 Sep 2006. Anomalies are computed with respect to the daily average
taken from the 1989–2008 period of record. This figure is available in

colour online at wileyonlinelibrary.com/journal/joc

(Figure 4). While lower correlations were observed in
the immediate lee of the Sierras and Cascades due to
the known difficulties of resolving precipitation processes
across complex terrain (e.g. Widmann et al., 2003),

Figure 4. As in Figure 1, but for precipitation (left two columns) and
wind speed (right two columns). Units for RMSE are mm∧.5 and m/s
for precipitation and wind speed, respectively. This figure is available

in colour online at wileyonlinelibrary.com/journal/joc

MACA showed added skill that support the advantages
of a non-interpolation-based approach. While cool season
precipitation is associated with large-scale circulation and
associated with progressive mid-latitude synoptic systems
that are reasonably well simulated by the reanalysis,
warm season precipitation over the southwestern interior
is heavily influenced by the North American Monsoon.
Convective precipitation associated with ill-defined large-
scale patterns and locally intense precipitation is not
adequately simulated at synoptic-scales by reanalyses
(e.g. Castro et al., 2007). This exemplifies that obtaining
high-quality downscaled fields is contingent upon the
ability of the driving global model (reanalysis or GCM)
to simulate synoptic meteorology and the local character
of precipitation.

Downscaled wind velocity (directional components not
shown) exhibited less geographic and seasonal structure
than other analysed variables. Both the daily BCSD and
MACA methods showed skill, with the MACA method
outperforming the daily BCSD. Scatterplots (not shown)
suggest that strong winds (in the upper quartile) that
are conducive to fire growth were captured across most
locations, and that errors were most acute for lighter
wind speeds not associated with a robust large-scale
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forcing in the reanalysis. However, given that surface
wind speeds exhibit variability at local scales in response
to a consortium of large-scale and fine-scale drivers,
additional large-scale predictors (e.g. 700 hPa heights,
temperature fields) might help improve downscaling
of wind in geographic areas decoupled from synoptic
influences.

3.2. Validation of fire danger and extreme fire danger
periods

On shorter time scales encompassing days to months,
the temporal sequencing of meteorology (i.e. fire danger
indices, ignitions) is heavily used in operational fire man-
agement decision-making (e.g. Kolden and Brown, 2010)
and estimating fire behaviour (Finney, 1998). To bridge
the gap between downscaling individual meteorological
variables, and how downscaled meteorological variables
are integrated to metrics used in wildfire applications, the
downscaling skill for ERC and FFWI is examined.

As a build-up hybrid weather-climate index, ERC is
particularly sensitive to relative humidity and precip-
itation events, and does not incorporate wind speed;
thus, methods and areas that exhibited skill for precip-
itation, temperature, and relative humidity were likely
to do so for ERC (Figure 5). Lower correlations across
the southwestern US and the Colorado Rockies were a
consequence of the inability to capture convective pre-
cipitation associated with the North American Monsoon.
The daily BCSD method exhibited skill across the Pacific
Northwest, the northern half of California and the Great
Basin. The MACA method exhibited additional skill over
a broader geographic area extending from southwestern
California to the northern Rockies.

By contrast, the FFWI is insensitive to precipitation
and is acutely sensitive to wind speed, thus perform-
ing well across the interior southwest and Colorado
plateau where wind speeds were best captured (Figure 5).
Improvements in skill were noted in the downscaling
methods as a consequence of improved representation of
wind speed and humidity. The strong skill of the methods
in tracking FFWI across the interior southwest is impor-
tant in assessing fire potential, given the role of high-
frequency meteorological conditions for wind-driven fires
(Crimmins et al., 2006).

Fire managers in the US use fire danger indices opera-
tionally in strategic decision making. Of particular inter-
est is extreme fire danger, typically defined as the 90th
or 97th percentile threshold calculated from historical
fire danger indices. These extremes are designated as
critical thresholds for operational fire management, as
they tend to represent conditions at which fire suppres-
sion becomes problematic and ignitions may more easily
become large wildfires. Likewise, empirical analysis has
shown strong relationships between ERC and large wild-
fires in the northern Rockies (Kolden et al., 2010), as well
as with FFWI and large wildfires in Southern California
(e.g. Moritz et al., 2010).

Two examples illustrate the ability of the downscaling
methods to track observed fire danger indices during

Figure 5. As in Figure 1, but for ERC (left two columns) and FFWI
(right two columns). RMSE is unitless. This figure is available in colour

online at wileyonlinelibrary.com/journal/joc

periods of extreme fire danger. Figure 6(a) shows ERC
from 1 June–20 Oct 2006 in the Lolo National Forest
in western Montana (47.4 °N, 114.9 °W). Both the daily
BCSD and MACA methods tracked observations closely,
whereas the direct interpolation from the reanalysis
exhibited a large positive bias. During the period of
extreme fire danger (ERC >97th percentile, denoted by
the dashed horizontal line and derived from historical
observations) from August through mid-September, when
several conflagrations burned in the northern Rockies, the
MACA method was more adept at tracking the magnitude
of ERC than the BCSD method. Figure 6(b) shows FFWI
from 12 Oct to 28 Nov 2007 in the southwestern foothills
of the Angeles National Forest in California (34.3 °N,
118.1 °W) and the observed offshore Santa Ana wind
events of Oct 21–24 and Nov 24 that drove several large
fires across the region. The daily BCSD and MACA
methods captured the extreme fire danger as observed,
suggesting their utility in such settings. In these two
cases, as well as others not explicitly shown, the MACA
method does a better job representing the magnitude
of the extremes, whereas the BCSD method is more
conservative.
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Figure 6. Time series of (a) ERC for 1 Jun–20 Oct 2006, Lolo
National Forest (47.4 °N, 114.9 °W), (b) FFWI for 12 Oct–28 Nov
2007, Angeles National Forest (34.3 °N, 118.1 °W) for observed
(black), direct interpolation from reanalysis (dashed green), daily
BCSD (blue), and MACA (red) methods. The horizontal dashed
black line denotes 97th percentile conditions from derived from
observations from 1979–2008. This figure is available in colour online

at wileyonlinelibrary.com/journal/joc

4. Conclusions

The use of statistical downscaling was shown to perform
well in capturing surface meteorological variables and
fire danger indices across the physiographically challeng-
ing landscape of the western US. However, the MACA
method was shown to be more advantageous due to
(1) MACA’s use of analogs that avoid interpolation based
methods, and (2) MACA’s multivariate approach that
improves the physical relationships between variables
compared to treating variables independently. The supe-
rior ability of MACA to track fire danger indices suggests
that multivariate statistical downscaling is better suited
for applications that are sensitive to a spectrum of mete-
orological variables.

Although the daily BCSD and MACA methods exhib-
ited value-added skill for present day climate conditions,
a few caveats are outlined pertaining to its application
to GCM output and utility for end users. First, statistical
downscaling needs to be derived from a representative
sample distribution of observations. Statistical relation-
ships built using short periods of record (e.g. 10 years)
may be of reduced quality. Second, robust skill in down-
scaling for the observed period does not imply that
skill will remain constant with climate change scenarios.

Finally, in regions and seasons where the GCM lacks
skill, statistical downscaling may not yield useful results
and regional climate modelling may be preferable.

Although downscaling translates large-scale data into
place-based data, downscaling itself does not eliminate
the uncertainty inherent in climate projections. Decision
makers can use downscaling scenarios in a probabilistic
framework to understand impacts and devise adaptation
strategies, but in order for practitioners to make informed
decisions, a transparent explanation of the methodology
and validation is required. As with most datasets, practi-
tioners should be cognizant of the assumptions and limi-
tations of the data sources (i.e. observations and GCMs).
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