ZX Spectrum Next Programming Notes

Theodore (Alex) Evans

June 19, 2023

ii

Contents

1 Introduction 1
2 Video 3
2.1 General Features L . 3
2.1.1 Video Layering and Transparency 3
2.1.2 Palette. 5
2.1.3 Scrolling 7
2.14 Clpping o o o 7

22 Layer 1 7
2.2.1 Colour Attributeso 8
2.2.2 Layer 1 Scrolling 12
2.2.3 Layer 1 Clipping 13
2.24 ZX Spectrum Mode 13
2.2.5 Alternate Page Mode 14
2.2.6 Timex Hi-Colour Mode 15
2.2.7 Timex Hi-Resolution Mode 16
2.2.8 Lo-Resolution Mode 17

23 Layer2 18
2.3.1 Configuration oo 18
232 Scrolling 21
2.3.3 Clipping o oo 21

2.4 Layer 3 (Tilemap) Mode 22

il

iv CONTENTS

2.4.1 General Description 0oL 22

2.4.2 Data Structures. Lo 23

2.4.3 Memory Organization & Display Layer. 24

2.4.4 Combining ULA & Tilemap 25

2.4.5 Configuration L oo 25

24.6 Scrolling 29

2.4.7 Clipping« o 29

2.5 Spriteso 31
2.5.1 Sprite Patterns L 32

2.5.2 Sprite Palette oo 34

2.5.3 Sprite Attributes oL 35

2.5.4 Relative Sprites 37

2.5.5 Programming Sprites. 38

2.5.6 Global Control of Sprites 42

3 Audio 45
3.1 ZX Spectrum 1-bito oL 45
3.2 Sampled 8-bit 45
3.3 Turbosound o 46
331 PiAudio 48

4 Basic Input/Output 49
4.1 Keyboard 49
4.2 Game Controllers L 51
43 Mouse 53
4.4 Keymapping. o o i it e e e 54
441 Keyboard oo 55

4.4.2 Joysticko 55

5 Memory 57
5.1 Memory Management 57

5.1.1 Default Layout 57

CONTENTS

51.2 RAM . . .

5.1.3 ROM
5.2 Interactions between paging methods
5.3 Memory Map

5.3.1 Global Memory Map

5.3.2 780 Visible Memory Map
54 Memory Decoding oo

6 zxnDMA

6.1 Overview e
6.2 Accessing the zxnDMA,
6.3 Description e
6.4 Modes of Operation,
6.5 Programming the zxanDMA
6.6 zxnDMA Registers
6.7 Programming examples Lo oL

7 Copper and Display Timing
7.1 Timing Lo
7.2 Imstructions
7.3 Control
7.4 Configuration L oL
8 Interrupts
8.1 Imterrupt Types
8.2 Imterrupt Modes
8.3 Z8OCTC e

9 Serial Communication

10 Raspberry Pi0 Acceleration

11 System Software

o7
60
62
63
63
63
63

65
65
65
65
66
66
67
72

79
80
84
86
88

93
93
96
99

101

105

111

vi CONTENTS

11.1 CP/M .« . 111
11.1.1 Utilities o o0 oo 111

11.1.2 BDOSo 122

11.1.3 BIOS o 167

11.1.4 Memory Select and Move Functions 173

11.2 NextZXOS o 178
11.3 NextZXOS 178
11.3.1 +3DOS compatible APT 178

11.3.2 esxDOS compatible APT 185

11.3.3 Next Extensions 185

11.3.4 esxDOS compatible APT 186

A Ports 193
Al 8bit 194
A2 16-bit 198

B Registers 205
B.1 ZX Spectrum Next Registers 205
B.2 AY-3-8912 235
B.3 zxDMA 237

C Extended Opcodes to Mnemonics 239
C.1 Single Byte Opcodes 239
C.2 $CBxx Bit Operations 243
C3 $DDxxIX 246
C4 $EDxx Block/Port 247
Ch5 SFDxxIY 248
C.6 $DDCBxx IX Bit Operations 250
C.7 $FDCBxx IY Bit Operations 250

D Mnemonics to Extended Opcodes 251

E File Formats 263

CONTENTS vii

El AKY . .o 263
E2 BAS . oo 263
E3 BMPo 263
E.4 DOT, DOTX, DOTN, DOTN-X 263
E5 DSK . oo 264
E6 BESP . . oo 264
E7 GDEo 264
E8 MOD 264
EO NDR . . o\ oot 264
ELONEX . . oot e 264
EALO . oo 264
EA2P3D . .o 264
EA3PT3 © o oo e e 265
EIAP . oo 265
EA5SDH . ..o 265
EL6SID . o oot 265
EATSCR . oo 265
E18 SHC, MC, MLT oo 266
EL9SHRo 267
E.20 SL2, NXT . . o ot e e e 267
E2LSLR . . o oo 267
E22SNA . .. 268
E23SND . . oo 268
E24SNX . o oo 268
E25SPR . . oo 268
E26 TAP 268
E.27 TXT,DOC,ASM,INLCFGMD oo 268
E28 TZX . o o oo e 269
E29 WAV 269
E30 XM . .ot 269

E317Z3toZ8 269

viii

E327Z80.
E337ZIP

Call Tables

F.1 BDOS Call Table
F.2 BIOS Call Table
F.3 NextZXOS Calls
F.3.1 +3DOS Compatible Calls
F.3.2 +3DOS compatible error codes
F.3.3 esxDOS Compatible Calls

Keyboard Codes
G.1 ZX Spectrum Next (keymap data)
G.2 PS/2 (keymap address)

CONTENTS

Chapter 1

Introduction

The ZX Spectrum Next is an extension of the original ZX Spectrum implemented
in FPGA which implements many of the common additions to the system in-
cludin the characteristics of all of the original ZX Spectrum line, including the
Timex/Sinclair 2068, along with a number of characteristics to modernize the
design.

This document is an attempt to consolidate the programming interface for the
ZX Spectrum Next into a single location. This document started when much of
the documentation on the ZX Spectrum Next site (https://www.specnext.com/)
was out of date and/or difficult to figure out. The way to figure out how things
actually worked was to either dig through the forums and ask questions or find
someones code that implemented a particular bit of functionality and reverse
engineer it. The situation has greatly improved and this document may even
be redundant at this point.

Description from http://www.specnext.com/about/:

The Spectrum Next is fully implemented with FPGA technology, ensuring it can
be upgraded and enhanced while remaining truly compatible with the original
hardware by using special memory chips and clever design. Here’s what under
the hood of the machine:

e Processor: Z80n normal and turbo modes

e Memory: 1024Kb RAM (expandable to 2048Kb on board)

e Video: Multilayer video implementing classic ZX Spectrum, Timex Hi-
Resolution, Timex Hi-Colour, LoRes, Layer 2, and Tilemap video modes
with Hardware sprites

e Video Output: RGB, VGA, HDMI

e Storage: SD Card slot, with DivMMC-compatible protocol

e Audio: ZX Spectrum 1-bit audio, Turbo Sound Next (3x AY-3-8912 au-
dio chips with stereo output), stereo PCM audio, and ability to use Pi

CHAPTER 1. INTRODUCTION

accelerator as a sound source

Joystick: DB9 compatible with Cursor, Kempston and Interface 2 proto-
cols (selectable)

PS/2 port: Mouse with Kempston mode emulation and an external key-
board

e Special: Multiface functionality for memory access, savegames, cheats etc.
e Tape support: Mic and Ear ports for tape loading and saving

e Expansion: Original external bus expansion port and accelerator expan-
sion port

Accelerator board (optional): Pi Zero with GPU / 1Ghz CPU / 512Mb
RAM

e Network (optional): Wi Fi module

e Extras: Real Time Clock (optional), internal speaker (optional)

Chapter 2

Video

ZX Spectrum Next video splits the display types into four categories (layer 1
(ULA/Timex/LoRes), layer 2, layer 3 (tilemap) and sprites) which have their
own sets of controls for colour palettes, clipping, and scrolling. Some aspects
of ULA and tilemap are tied together, but all the rest operate in a largely
independent manner using a layering system. The ULA category has a number
of separate video modes that it can use. One of these (LoRes) is incompatible
with using tilemaps (This may have change in the most recent cores).

2.1 General Features

There are a number of control features for the various video modes that are done
in a unified fashion. These features are layering and transparency, palettes,
scrolling, and clipping. For the sake of convenience we will occasionally talk
about a global coordinate system for graphics on the ZX Next. This coordinate
system has (0, 0) at the upper left corner of the usable display area and (319,
255) at the lower right corner. Individual pixels generally correspond to integer
locations in this grid, but some modes may either double or halve this grid.
This will be discussed in the sections for each of the video layers.

2.1.1 Video Layering and Transparency

Video for the ZX Next is composed of a number of features and layers each
of which may have its own set of video modes. Not all of these features are
mandatory.

By composing together the border colour and transparency fallback color, layer
1 (ULA, Timex modes, or LoRes), layer 2 (256 x 192 x 256, 320 x 256 x 256, or

3

4 CHAPTER 2. VIDEO

640 x 256 x 16), layer 3 (16 or 2 colour tiles), and sprites; we generate the full
video display.

The border /transparency fallback is the bottom with the ordering of the layers
controlled by a combination of the video layering register (Next register $15 (21)
bits 4-2), the interaction of layers 1 and 3 (Next register $6B (107) bit 0), and
whether or not a pixel in layer 2 is set as a priority colour.

Register (R/W) $15 (21) = Sprite and Layer System Setup

e bit 7 = LoRes mode (0 on reset)
e bit 6 = Sprite priority (0 on reset)
— 0 = sprite 127 on top
— 1 = sprite 0 on top
e bit 5 = Enable sprite clipping in over border mode (0 on reset)
e bits 4-2 = set layers priorities (000 on reset)

- 000-SLU
- 001-LSU
- 010-SUL
- 011-LUS
—100-U S L
- 101-ULS

— 110 - S(U+L) ULA and Layer 2 combined, colours clamped to 7

— 111 - S(U+L-5) ULA and Layer 2 combined, colours clamped to [0,7]
e bit 1 = Enable Sprites Over border (0 on reset)
e bit 0 = Enable Sprites (0 on reset)

Transparency for Layer 2, Layer 1, and 1-bit Tilemaps are controlled by Next
register $14 (20) and defaults to $E3. Sprites and 4-bit Tilemaps have their
own registers ($4B and $4C respectively) for setting their transparency index
(not colour). This colour ignores the state of the least significant blue bit, so
$E3 equates to both $1C6 and $1C7. For Sprites and Tilemaps transparency
is determined by colour index. For Sprites this is controlled by register $4B
(with only the least significant 4-bits being relevant for 16-colour Sprites). For
Tilemaps, the transparency index is set by register $4C. If all layers are trans-
parent, the transparency fallback colour is displayed. This is set by register
$4A.

Register (R/W) $14 (20) = Global transparency color
e bits 7-0 = Transparency color value ($E3 after a reset)

(Note: this value is 8-bit, so the transparency is compared against only by the
MSB bits of the final 9-bit colour)

(Note2: this only affects Layer 2, ULA and LoRes. Sprites use register $4B for
transparency and tilemap uses nextreg $4C)

Register (R/W) $4A (74) = Fallback Colour Value

e bits 7-0 = 8-bit colour if all layers are transparent ($E3 on reset)

2.1. GENERAL FEATURES)

(black on reset = 0)

Register (R/W) $4B (75) = Sprite Transparency Index
e bits 7-0 = Index value ($E3 if reset)

For 4-bit sprites only the bottom 4-bits are relevant.

Register (R/W) $4C (76) = Level 3 Transparency Index

e bits 7-4 = Reserved, must be 0
e bits 3-0 = Index value ($OF on reset)

2.1.2 Palette

Next Colour Palettes FEach video mode group has a pair of palettes assigned
to it a primary and an alternate palette. Each palette entry is actually a 9-bit
value (RRRGGGBBB) and can be set by selecting a palette using nextreg $43
(palette control), the entry using nextreg $40 (palette index), then writing the
value into nextreg $44 (palette value, 9-bit) using pairs of consecutive writes for
each palette value or nextreg $41 (palette value, 8-bit). Once a palette index
has been selected writes automatically increment the palette index number so
it is possible to efficiently write the values for a collection of palette entries.

Register (R/W) $40 (64) = Palette Index Select
e bits 7-0 = Palette Index Number
Selects the palette index to change the associated colour

For ULA only, INKs are mapped to indices 0 through 7, BRIGHT INKs to
indices 8 through 15, PAPERSs to indices 16 through 23 and BRIGHT PAPERs
to indices 24 through 31. In EnhancedULA mode, INKs come from a subset
of indices from 0 through 127 and PAPERs from a subset of indices from 128
through 255.

The number of active indices depends on the number of attribute bits assigned
to INK and PAPER out of the attribute byte.

In ULAplus mode, the last 64 entries (indices 192 to 255) hold the ULAplus
palette. The ULA always takes border colour from PAPER for standard ULA
and Enhanced ULA

Register (R/W) $41 (65) = 8-bit Palette Data
e bits 7-0 = Colour Entry in RRRGGGBB format

The lower blue bit of the 9-bit internal colour will be the logical or of bits 0 and
1 of the 8-bit entry. After each write, the palette index auto-increments if aut-
increment has been enabled (NextReg $43 bit 7), Reads do not auto-increment.

Register (R/W) $43 (67) = Palette Control

6 CHAPTER 2. VIDEO

e bit 7 = Disable palette write auto-increment.
e bits 6-4 = Select palette for reading or writing:
— 000 = ULA first palette
— 001 = Layer 2 first palette
— 010 = Sprite first palette
— 011 = Layer 3 first palette
100 = ULA second palette
— 101 = Layer 2 second palette
— 110 = Sprite second palette
— 111 = Layer 3 second palette
bit 3 = Select Sprite palette (0 = first palette, 1 = second palette)
bit 2 = Select Layer 2 palette (0 = first palette, 1 = second palette)
bit 1 = Select ULA palette (0 = first palette, 1 = second palette)
bit 0 = Enable EnhancedULA mode if 1. (0 after a reset)

Register (R/W) $44 (68) = 9-bit Palette Data
Non Level 2

1st write
e bits 7-0 = MSB (RRRGGGBB)
2nd write
e bits 7-1 = Reserved, must be 0
e bit 0 = LSB (B)

Level 2

1st write
e bits 7-0 = MSB (RRRGGGBB)
2nd write
e bit 7 = Priority
e bits 6-1 = Reserved, must be 0
e bit 0 = LSB (B)

9-bit Palette Data is entered in two consecutive writes; the second write au-

toincrements the palette index if auto-increment is enabled in NextREG $43 bit
7

If writing an L2 palette, the second write’s D7 holds the L2 priority bit which
if set (1) brings the colour defined at that index on top of all other layers. If
you also need the same colour in regular priority (for example: for enviromental
masking) you will have to set it up again, this time with no priority.

Reads return the second byte and do not autoincrement. Writes to nextreg $40,
$41, $41, or $43 reset to the first write.

2.2. LAYER 1 7

2.1.3 Scrolling

The ZX Spectrum Next has four sets of scrolling registers to independently
contol the display offsets of various video modes (Layer2, ULA, Tilemap, and
LoRes). When the video is offset, the portion that is pushed off the screen
(to the left and or top) then becomes visible on the opposite side of the screen
so that the video offset values are effectively the coordinates of the origin in a
toroidal universe.

2.1.4 Clipping

The ZX Spectrum Next has four clipping registers create a window of the layer
that is visible. Clipping is managed by a set of four successive writes to the
clipping register applicable for the video mode. If a section is masked off by
clipping, it is as if the area were the transparency colour and the video lyers
behind it become visible.

2.2 Layer 1
Table 2.1: Layer 1 Mode summary

Mode Resolution Colour
ULA 256x192 ULA 8x8
Timex Alt 256x192 ULA 8x8
HiCol 256x192 ULA 8x1
HiRes 512x192 2 colours
128 Alt 256x192 ULA 8x8
LoRes 128x96 256 colours
Rad 128 x96 16 colours

The Layer 1 consists of ZX Spectrum ULA video, Timex video modes, and the
Spectrum Next’s lores video modes all use 16k memory bank 5 or 7 with the data
coming from some combination of addresses $0000-$17FF (bitmap 1), $1800-
$1AFF (attribute 1), $2000-$37FF (bitmap 2), and $3800-$3AFF (attribute
2) within the selected bank. Assuming default memory mapping and the use
of bank 5 this will be mapped as some combination of memory $4000-$57FF,
$5800-$5AFF, $6000-$77FF, $780-$7AFF. All of the modes other than the lores
mode can either use the default ZX Spectrum colours, ULANext mode, or an
emulation of ULAplus. In the Spectrum and Timex modes all colours are either
Paper (foreground), paper (background), or border colours.

8 CHAPTER 2. VIDEO

Table 2.2: Layer 1 Memory Map

BM1 | Attr1 | BM2 | Attr2 | BM a | Attr a
Bank 5 5 5 5 7 7
start $0000 $1800 $2000 $3800 $0000 $1800
end $17FF | $1AFF | $37FF | $3AFF | $17FF | $1AFF
ULA * *
Timex Alt * *
HiCol * *
HiRes
128 Alt * *
LoRes * *
Rad 1 2

2.2.1 Colour Attributes

The ZX Spectrum Next has three major modes for colour attributes: the ZX
Spectrum attribute mapping, which is augmented by using the ZX Spectrum
Next’s palette; ULANext, which allows the user to how many foreground and
how many background colous are to be selected by the attribute bytes; and an
emulation of ULAplus.

ULA Colour In ULA colour INKs are mapped to indices 0-7, Bright INKS
to indices 8-15, PAPERs to indices 16-23 and Bright PAPERs to indices 24-31.
This is the default state for interpreting ULA palettes.

Table 2.3: ULA Colour
Bit 716 |5 4 3 2 |1 |0

Function F B PQ P1 PO 12 Il I()

ULANext The ULANext modes use a varying number of bits from the at-
tribute byte to determine the ink colours as the palette index from the appropri-
ate bits (all others being zero) and the paper colours coming from the indicated
value+128 with palette format 255 being a special case where all the bits de-
termine the ink colour while the paper is always palette index 128. The ULA
always takes border colour from paper. ULANext is enabled using bit 0 of nex-
treg $43 (palette control) and controlled with nextreg $42 (ULA Next attribute
byte format)

ULAplus The ZX Next emulates ULAPlus using the last 64 (192-255) entries
of the ULA palette. ULAplus is controlled using two ports: $BF3B (register
port) and $FF3B (data port)

2.2. LAYER 1 9

Table 2.4: ULANext
Bit 7 6 5 4 3 2 1 0

format 1 Pﬁ P5 P4 P3 PQ P1 PO IO
format 3 P5 P4 P3 P2 P1 PO 11 IO
format 7 P4 P3 P2 P1 Po 12 Il IO
format 15 P3 P2 Pl P() Ig IQ Il IO
format 31 P2 P1 P() .[4 Ig I2 .[1 I(]
format 63 P1 Po I5 I4 13 IQ Il Io
format 127 Po I6 15 I4 13 IQ 11 I()
format 255 I7 I6 I5 14 13 12 Il IO

I/0 ports ULAplus is controlled by two ports.
$BF3B is the register port (write only)
The byte output will be interpreted as follows:

e Bits 7-6: Select the register group. Two groups are currently available:
— 00=palette group
When this group is selected, the sub-group determines the entry in
the palette table (0-63).
— 0l=mode group
The sub-group is (optionally) used to mirror the video functionality
of Timex port $FF as follows:
e Bits 5-0: Select the register sub-group
Mode group
e Bits 5-3: Sets the screen colour in hi-res mode.
— 000=Black on White
— 001=Blue on Yellow
— 010=Red on Cyan
— 011=Magenta on Green
— 100=Green on Magenta
— 101=Cyan on Red
— 110=Yellow on Blue
— 111=White on Black
e Bits 2-0: Screen mode.
— 000=screen 0 (bank 5)
— 001=screen 1 (bank 5)
— 010=hi-colour (bank 5)
— 100=screen 0 (bank 7)
— 101=screen 1 (bank 7)
— 110=hi-colour (bank 7)
— 110=hi-res (bank 5)
— 111=hi-res (bank 7)

$FF3B is the data port (read/write)

10 CHAPTER 2. VIDEO

When the palette group is selected, the byte written will describe the color.
When the mode group is selected, the byte output will be interpreted as follows:

e Bit 0: ULAplus palette on (1) / off (0)
e Bit 1: (optional) grayscale: on (1) / off (0) (same as turing the color off
on the television)

Implementations that support the Timex video modes use the $FF register as
the primary means to set the video mode, as per the Timex machines. It is left
to the individual implementations to determine if reading the port returns the
previous write or the floating bus.

GRB palette entries G3R3B2 encoding
For a device using the GRB colour space the palette entry is interpreted as
follows

e Bits 7-5: Green intensity.
e Bits 4-2: Red intensity.
e Bits 1-0: Blue intensity.

This colour space uses a sub-set of 9-bit GRB. The missing lowest blue bit is set
to OR of the other two blue bits (Bb becomes 000 for 00, and Bb1 for anything
else). This gives access to a fixed half the potential 512 colour palette. The
reduces the jump in intensity in the lower range in the earlier version of the
specification. It also means the standard palette can now be represented by the
ULAplus palette.

Grayscale palette entries This is an optional ULAPIlus feature that is not
supported on the Next.

In grayscale mode, each palette entry describes an intensity from zero to 255.
This can be achieved by simply removing the colour from the output signal.

Limitations Although in theory 64 colours can be displayed at once, in prac-
tice this is usually not possible except when displaying colour bars, because the
four CLUTs are mutually exclusive; it is not possible to mix colours from two
CLUTs in the same cell. However, with software palette cycling it is possible to
display all 256 colours on screen at once.

Emulation The 64 colour mode lookup table is organized as 4 palettes of 16
colours.

Bits 7 and 6 of each Spectrum attribute byte (normally used for FLASH and
BRIGHT) will be used as an index value (0-3) to select one of the four colour
palettes.

2.2. LAYER 1 11

Each colour palette has 16 entries (8 for INK, 8 for PAPER). Bits 0 to 2 (INK)
and 3 to 5 (PAPER) of the attribute byte will be used as indexes to retrieve
colour data from the selected palette.

With the standard Spectrum display, the BORDER colour is the same as the
PAPER colour in the first CLUT. For example BORDER 0 would set the border
to the same colour as PAPER 0 (with the BRIGHT and FLASH bits not set).

The complete index can be calculated as
ink colour = (FLASH * 2 + BRIGHT) * 16 + INK paper_colour = (FLASH
* 2 + BRIGHT) * 16 + PAPER + 8

Palette file format The palette format doubles as the BASIC patch loader.
This enables you to edit patches produced by other people.

;33 64 colour palette file format (intermal) - version 1.0
;35 copyright (c) 2009 Andrew Owen

;33 The palette file is stored as a BASIC program with embedded
;33 machine code

header:

db 0x00 ; program file

db 0x14, 0x01, "64colour" ; file name
dw 0x0097 ; data length
dw 0x0000 ; autostart line

dw 0x0097 ; program length

;3 0 RANDOMIZE USR ((PEEK VAL "2
;3 3635"+VAL "256"*xPEEK VAL "23636"
;3)+VAL "48"): LOAD "": REM

db 0x00, 0x00, 0x93, 0x00, 0xf9, OxcO, 0x28, 0x28
db Oxbe, Oxb0O, 0x22, 0x32, 0x33, 0x36, 0x33, 0x35
db 0x22, 0x2b, 0xb0, 0x22, 0x32, 0x35, 0x36, 0x22
db 0O0x2a, Oxbe, 0xb0O, 0x22, 0x32, 0x33, 0x36, 0x33
db 0x36, 0x22, 0x29, 0x2b, 0xb0, 0x22, 0x34, 0x38
db 0x22, 0x29, 0x3a, Oxef, 0x22, 0x22, 0x3a, Oxea

start:

di ; disable interrupts

1d hl, 38 ; HL = length of code

add hl, bc ; BC = entry point (start) from BASIC
1d bc, O0xbf3b ; register select

1d a, 64 ; mode group

out (c), a ;

1d a, 1 ;

1d b, Oxff ; choose register port
out (c), a ; turn palette mode on
xor a ; first register

setreg:

12 CHAPTER 2. VIDEO

1d b, O0xbf ; choose register port

out (c), a ; select register

ex af, af' ; save current register select
1d a, (hl) ; get data

1d b, Oxff ; choose data port

out (c), a ; set it

ex af, af' ; restore current register

inc hl ; advance pointer

inc a ; increase register

cp 64 ; are we nearly there yet?

jr nz, setreg ; repeat until all 64 have been done
ei ; enable interrupts

ret ; return

533 this is where the actual data is stored. The following is an
;3; example palette.

registers:

db 0x00, 0x02, 0x18, Ox1lb, 0xcO, 0xc3, 0xd8, Oxdb ; INK

db 0x00, 0x02, 0x18, O0x1b, 0xcO, 0xc3, 0xd8, Oxdb ; PAPER

db 0x00, 0x03, Oxlc, Ox1f, Oxe0, Oxe3, Oxfc, Oxff ; +BRIGHT
db 0x00, 0x03, Oxlc, Ox1f, Oxe0, 0Oxe3, Oxfc, Oxff ;

db Oxdb, 0xd8, 0xc3, 0xcO, Ox1lb, 0x18, 0x02, 0x00 ; +FLASH
db Oxdb, 0xd8, 0xc3, 0xcO, Oxlb, 0x18, 0x02, 0x00 ;

db Oxff, Oxfc, Oxe3, 0Oxe0, Ox1f, Oxlc, 0x03, 0x00 ; +BRIGHT/
db Oxff, Oxfc, Oxe3, 0xe0O, Ox1f, Oxlc, 0x03, 0x00 ; +FLASH

terminating_byte:

db 0x0d

2.2.2 Layer 1 Scrolling

Layer 1 has two sets of scrolling registers. One for the the legacy modes (ZX
Spectrum, Alternate Page, Timex Hi-Resoulution, and Timex Hi-colour) and
a second set for the two ZX Spextrum Next specific LoRes modes. All modes
scroll as if they were 256 x 192 screens located at global coordinates (32, 32) to
(287, 223), The registers for the legacy modes are $26 and $27 and the registers
for the LoRes modes are $32 and $33.

Register (R/W) $26 (38) = ULA Horizontal Scroll Control
e bits 7-0 = ULA X Offset (0-255) (0 on reset)

Register (R/W) $27 (39) = ULA Vertical Scroll Control
e bits 7-0 = ULA Y Offset (0-191) (0 on reset)

Register (R/W) 832 (50) = Layer 1,0 (LoRes) Horizontal Scroll Control)
e Dbits 7-0 = X Offset (0-255) ($00 on reset)

2.2. LAYER 1 13

Layer 1,0 (LoRes) scrolls in "half-pixels" at the same resolution and smoothness
as Layer 2.

Register (R/W) $33 (51) = Layer 1,0 (LoRes) Vertical Scroll Control)
e bits 7-0 =Y Offset (0-191) ($00 on reset)

Layer 1,0 (LoRes) scrolls in "half-pixels" at the same resolution and smoothness
as Layer 2.

2.2.3 Layer 1 Clipping

All of the modes in the Layer 1 share a single clipping register, $1A. The clip
index may alternately be set using register $1C. This is expecially useful for
reading the current clipping coordinates as reads on the clipping register do not
change the index. Note that clipping coordinates are based on a full display
area for the mode of 256 x 192 resolution even though not all modes have that
resolution.

Register (R/W) $1A (26) = Layer 0 (ULA /LoRes) Clip Window Definition

e bits 7-0 = Coord. of the clip window
1st write = X1 position
2nd write = X2 position
3rd write = Y1 position
4rd write = Y2 position

The values are 0,255,0,191 after a Reset
Reads do not advance the clip position

Register (R/W) $1C (28) = Clip Window Control

Read
e bits 7-6 = Layer 3 Clip Index
e bits 5-4 = Layer 0/1 Clip Index
e bits 3-2 = Sprite clip index
e bits 1-0 = Layer 2 Clip Index

Write

bits 7-4 = Reserved, must be 0
bit 3 - reset Layer 3 clip index
bit 2 - reset Layer 0/1 clip index
bit 1 - reset sprite clip index.
bit 0 - reset Layer 2 clip index.

2.2.4 7ZX Spectrum Mode

Timex mode 0

14 CHAPTER 2. VIDEO

This is the default ULA mode and has its origins in the original ZX Spectrum.
It uses 256 x 192 pixels located at global coordinates (32, 32) to (287, 223)
with 8 x 8 colour attribute areas mapped into a 32 x 24 grid. If Timex modes
are not enabled, this and the LoRes mode are the only ones available, so you
would switch back to this mode by writing 000xxxxx to Next register $15 (21,
the sprites and layers register). If another Timex mode is enabled, then this is
mode 0 so you would write 0 to port $ff to enable it. This is a 256 x 192 video
mode. The bitmap 1 area is used for selection between ink and paper colours
with one bit per pixel and the attribute 1 area for colour attributes.

The easiest way to visualize the mapping of this mode is to think of the 256 x 192
area as being divided into a 32 x 24 grid of 8 x 8 characters. IF we consider
X and Y as the position in the grid and R to the the row within the char-
acter. For ink/paper selection, O=paper, 1=ink and the entries are stored
left to right as Isb to msb within the bye. The address for a pixel value is:
0R4R3Y5Y1YoRoR1 RyCyC3CoC1Cy. Each 8 x 8 cell has its own colour attribute
where the address for an attribute cell is 0110R4R3RsR1 RyC4C3C5C1Cy in
other words mapped lineally column-wise starting at the beginning of the at-
tribute 1 area.

Code:

;3 from any other Timex mode:
1d a, $00

14 c,$ff

out (c),a

;5 from LoRes mode:

1d bc,$243B ; next register select port
1d a,$15

out (c),a

1d bc,$253B ; next register r/w port

in a, (c)

and $7f

out (c),a

2.2.5 Alternate Page Mode

Timex mode 1

This mode is the same as ZX Spectrum mode except it is at an alternate ad-
dresses. Alternate page mode is selected by enabling Timex modes by writing
00xxxx1xx to Next register $08 (8, Peripheral 3 setting) then writing 1 to the
Timex ULA port ($ff). It is identical to ZX Spectrum mode except the pixel are

mapped to the bitmap 2 area giving use pixel addresses of 1R4R3Y5Y1 Yy Ro Ry RyC4C3C2C1Cy
and the attributes to the attribute 2 area with addresses of 1110R4 Rz Ro R1 RyC1C3C>C1 Cy.

Code:

;; disable LoRes mode:

2.2. LAYER 1 15

1d bc,$243B ; next register select port
1d a,$15

out (c),a

1d bc,$253B ; next register r/w port

in a, (c)

and $7f

out (c),a

;; set Timex mode

1d bc,$243B ; next register select port
14 a, $08

out (c),a

1d bc,$253B ; next register r/w port

in a, (c)

or $04

out (c),a

;3 set alternate page mode

ld c,$£ff

1d a,$01

out (c),a

2.2.6 Timex Hi-Colour Mode

Timex mode 2

This mode is a 256 x 192 video mode located at global coordinates (32, 32)
to (287, 223) with 8 x 1 colour attribute mapping on a 32 x 192 grid. It is
selected by writing 2 to the Timex ULA port ($ff). Pixel mapping in this
mode is the same as in ZX Spectrum mode using the bitmap 1 area based
on O0R4R3Y5Y 1 YoRoR1 RyC4C3C5C1Cy. The colour attributes use the bitmap 2
area with 8 x1 colour attribute areas corresponding to the addresses 1R, R3Y2Y1 Yy Ro R1 RyCyC3C2C1Cy.

Code:

;3 disable LoRes mode:

1d bc,$243B ; next register select port
1d a,$15

out (c),a

1d bc,$253B ; next register r/w port

in a, (c)

and $7f

out (c),a

;; set Timex mode

1d bc,$243B ; next register select port
14 a,$08

out (c),a

1d bc,$253B ; next register r/w port

in a, (c)

or $04

out (c),a

;3 set hi-colour mode

1d c,$£ff

1d a,$02

out (c),a

16 CHAPTER 2. VIDEO

2.2.7 Timex Hi-Resolution Mode

Timex mode 6

This is a monochrome 512 x 192 video mode located at global coordinates (32,
32) to (287, 223) with each pixel being half width. It is selected by writing
to the Timex ULA port ($ff with values that also select which two colours (or
colour entries in ULANext mode) you use.

Table 2.5: Hi-Resolution Colours

Port Oxff bits 5-3 | Attribute | Ink Paper
000 01111000 | black white
001 01110001 | blue yellow
010 01101010 | red cyan
011 01100011 | magenta | green
100 01011100 | green magenta
101 01010101 | cyan red

110 01001110 | yellow blue

111 01000111 | white black

Pixels are mapped into both the bitmap 1 and bitmap 2 areas where 8-pixel
wide character columns alternate between the two bitmap areas. The pixels
within a byte being rendered left to right Isb to msb as in other Spectrum video
modes. The addresses for each row within a character are based on a 64 x 32
grid of 8 x 8 characters which using a 64 x 24 R, C, and Y scheme gives us
addresses of the form CoR4R3Y5Y1YgRoR1 RoC5C4C3CyCh.

Code:

;; disable LoRes mode:
1d bc,$243B ; next register select port
1d a,$15
out (c),a
1d bc,$253B ; next register r/w port
in a, (c)
and $7f
out (c),a
;; set Timex mode
1d bc,$243B ; next register select port
14 a,$08
out (c),a
1d bc,$253B ; next register r/w port
in a, (c)
or $04
out (c¢),a
; set hi-res mode, black on white
1d c,$£ff
1d a, $06
out (c),a

2.2. LAYER 1 17

2.2.8 Lo-Resolution Mode

This is a Spectrum Next specific video mode with a resolution of 128 x 96 located
at global coordinates (32, 32) to (287, 223) with each pixel being double height
and double width replacing the old Radistan mode. It can either allow for 16
colours, in which case it uses either the bitmap 1 area or the bitmap 2 area, or
256 colours using both bitmap 1 and bitmap 2. The colour of each pixel can be
selected independently with data ordered linearly in a row major fashion. In the
case of 16 colour mode, the nybbles describing the colours are X major (MSN
LSN). Scrolling is by half pixels and uses different registers ($32 and $33) from
the rest of the ULA group modes. LoRes mode is enabled by writing 100zzzzx
to Next register $15 (the sprites and layers register) with Next register $6A used
to decide whether it is 16 or 256 colours.

Register (R/W) $15 (21) = Sprite and Layer System Setup

e bit 7 = LoRes mode (0 on reset)
e bit 6 = Sprite priority (0 on reset)
— 0 = sprite 127 on top
— 1 = sprite 0 on top
e bit 5 = Enable sprite clipping in over border mode (0 on reset)
o bits 4-2 = set layers priorities (000 on reset)

—000-SLU
—001-LSU
- 010-SUL
- 011-LUS
—100-USL
- 101-ULS

— 110 - S(U+L) ULA and Layer 2 combined, colours clamped to 7

— 111 - S(U+L-5) ULA and Layer 2 combined, colours clamped to [0,7]
e bit 1 = Enable Sprites Over border (0 on reset)
e bit 0 = Enable Sprites (0 on reset)

Register (R/W) $32 (50) = Layer 1,0 (LoRes) Horizontal Scroll Control)
e bits 7-0 = X Offset (0-255) ($00 on reset)

Layer 1,0 (LoRes) scrolls in "half-pixels" at the same resolution and smoothness
as Layer 2.

Register (R/W) $33 (51) = Layer 1,0 (LoRes) Vertical Scroll Control)
e bits 7-0 = Y Offset (0-191) ($00 on reset)

Layer 1,0 (LoRes) scrolls in "half-pixels" at the same resolution and smoothness
as Layer 2.

Register (R/W) $6A (106) = Layer 1,0 (LoRes) Control

e bits 7-6 = reserved, must be 0

18 CHAPTER 2. VIDEO

bit 5 = Enable Radistan (16-colour) (0 on reset)

bit 4 = Radistan DFILE switch (xor with bit 0 of port $ff) (0 on reset)
bits 3-0 = Radistsan palette offset (0 on reset)

bits 1-0 = ULAplus palette offset (0 on reset)

Code: 256 colour

;3 enable LoRes mode:

nextreg $15,$80

53 256-colour mode

1d bc,$243B ; next register select port
14 a,$6A

out (c),a

1d bc,$253B ; next register r/w port

in a, (c)

and $EF ; lores radistan control

out (c¢),a

Code: 16 colour

;; enable LoRes mode:
nextreg $15,$80

;3 16-colour mode
nextreg $6A4,$10

2.3 Layer 2

Layer 2 is a for bitmapped graphics. It supports modes with 256 x 192 x 256
resolution at global coordinates (32, 32) to (287, 223) mapped linearly left to
right /top to bottom, 320 x 256 x 256 resolution at global coordinates (0, 0) to
(318, 255) mapped top to bottom/left to right, and 640 x 256 x 16 resolution at
global coordinates (0, 0) to (319, 255) with half width pixels mapped so that the
nybbles in a byte are adjacent columns (MSN on the left) and bytes running top
to bottom/left to right. It can be mapped starting at any 16k memory blocks.
The 256 x 192 x 256 mode requires 3 consecutive blocks (48k) while the others
use 5 consecutive blocks (80k).

2.3.1 Configuration

Layer 2 is enabled using port $123B or register $69. The mode is selected using
register $70. How layer 2 memory is overlaid on main memory is controled by
port $123B and register $70. The location in memory is controlled by register
$12 with a shadow area pointed to by register $13 for double buffering. Finally
port $123B is used to select either the main RAM area or the shadow RAM
area for rendering the layer.

Port $123B (4667) Layer 2
Bit4 =20

2.3. LAYER 2 19

bits 7-6 = Video RAM bank select
00 = first 16k
01 = second 16k
10 = third 16k
11 = first 48k
bit 5 = Reserved, must be 0
bit 4 =0
bit 3 = Shadow layer 2 select
bit 2 = Enable layer 2 read paging
bit 1 = Layer 2 visible (mirrored in register $69)
bit 0 = Enable layer 2 write paging

Bit4=1

bits 7-5 = Reserved, must be 0
bit4 =1

bit 3 = Reserved, must be 0

bit 2-0 = 16k bank relative offset

Register (R/W) $12 (18) = Layer 2 Active RAM bank

e bit 7 = Reserved, must be 0
e bits 6-0 = Starting 16k RAM bank (point to bank 8 after a Reset, NextZXOS
modifies to 9)

Register (R/W) $13 (19) = Layer 2 Shadow RAM bank

e bits 7 = Reserved, must be 0
e bits 6-0 = Starting 16k RAM bank (point to bank 11 after a Reset,
NextZXOS modifies to 12)

Register (R/W) $69 (105) = Display Control 1

e bit 7 = Layer 2 Enable (Port $123B bit 1 alias)
e bit 6 = ULA Shadow display enable (Port $7FFD bit 3 alias)
e bits 5-0 = Timex alias (Port $FF alias)

Register (R/W) $70 (112) = Layer 2 Control

e bits 7-6 = Reserved, must be 0
e bits 5-4 = Resolution (00 on soft reset)
— 00 = 256 x 192 x 256
— 01 = 320 x 256 x 256
— 10 = 640 x 256 x 16
— 11 = Do not use
e bits 3-0 = Palette offset ($0 on soft reset)

Code: 256 x 192, Write only overlaid on ROM

p_layer2: defl $123b
start:
1d bc,p_layer2

20

1d a,$03
out (c),a
call wrtpage
1d bc,p_layer2
1d a, $43
out (c),a
call wrtpage
1d bc,p_layer2
1d a,$83
out (c),a
call wrtpage
ret
wrtpage:
1d hl,$0000
1d bc,$0040
loop:
1d (hl),b
inc hl
djnz loop
dec c
jr nz,loop

)

enable, wo,

enable, wo,

enable, wo,

1st 16k

2nd 16k

3rd 16k

40%256 writes

CHAPTER 2. VIDEO

Code: 256 x 192 resolution

r_mmu_7: defl $57
r_displ: defl $69
r_layer2: defl $70
start:

nextreg r_displ,$80 ;
nextreg r_layer2,$00 ;

14 a,$12
loopl:

nextreg r_mmu_7,a

1d bc,$0020

1d hl,$E000
loop2:

1d (hl),D

inc hl

djnz loop2

dec ¢

jp NZ,loop2

inc a

cp $18

jp NZ,loopil

enable layer 2

256x192x256

page 18=bank 9

map page into slot 7

20*256

address of slot 7

stop at page 24

8k

Code: 320 x 256 resolution

r_mmu_7: defl $57
r_displ: defl $69
r_layer2: defl $70
start:

nextreg r_displ,$80 ;
nextreg r_layer2,$10 ;

1d a,$12
loopl:

nextreg r_mmu_7 ,a

1d bc,$0020

enable layer 2

320x256x256

page 18=bank 9

map page into slot 7

20*256

8k

2.3. LAYER 2 21

1d hl,$E000 ; start of slot 7
loop2:

1d (hl),b

inc hl

djnz loop2

dec c

jp NZ,loop2

inc a

cp $1C ; stop at page 28

jp NZ,loopl

Code: 640 x 256 resolution

r_mmu_7: defl $57
r_displ: defl $69
r_layer2: defl $70

start:
nextreg r_displ, $80 ; enable layer 2
nextreg r_layer2, $20 ; 640x256x16
1d a, $12 ; page 18=bank 9
loopl:
nextreg r_mmu_7, a ; map page into slot 7
1d bc, $0020 ; 20%256 = 8k
1d hl, $E000 ; start address for slot 7
loop2:
1d (hl), b
inc hl
djnz loop2
dec c
jp NZ, loop2
inc a
cp $1C ; stop at page 28

jp NZ, loopl

2.3.2 Scrolling

Scrolling Layer 2 is controlled by registers $16 and $17. (Is there a third scrolling
register for layer 27)

Register (R/W) $16 (22) = Layer 2 Horizontal Scroll Control
e bits 7-0 = X Offset (0-255)(0 on reset)

Register (R/W) $17 (23) = Layer 2 Vertical Scroll Control
o bits 7-0 =Y Offset (0-191)(0 on reset)

2.3.3 Clipping

The Clip area for is based on the local coordinate system for the mode in
question and is set using register $18 with the option of selection which write
in active using register $1C.

22 CHAPTER 2. VIDEO

Register (R/W) $18 (24) = Layer 2 Clip Window Definition

e bits 7-0 = Coords of the clip window
1st write - X1 position
2nd write - X2 position
3rd write - Y1 position
4rd write - Y2 position

Reads do not advance the clip position
The values are 0,255,0,191 after a Reset

Register (R/W) $1C (28) = Clip Window Countrol
Read

e bits 7-6 = Layer 3 Clip Index

e bits 5-4 = Layer 0/1 Clip Index

e bits 3-2 = Sprite clip index

e bits 1-0 = Layer 2 Clip Index
Write

e bits 7-4 = Reserved, must be 0

e bit 3 - reset Layer 3 clip index

e bit 2 - reset Layer 0/1 clip index

e bit 1 - reset sprite clip index.

e bit 0 - reset Layer 2 clip index.

2.4 Layer 3 (Tilemap) Mode

Started with documentation by Phoebus Dokos, February 25, 2019. Partially
rewritten for clarity and to add core 3.00.00 features.

2.4.1 General Description

The tilemap is a hardware character oriented display. It uses a set of user defined
4-bit, 16-colour, or 1-bit, 2-colour 8 x 8 tiles. The tiles can be dispplayed in two
resolutions: 40 x 32 tiles (320 x 256 pixels) and 80 x 32 tiles (640 x 256 pixels).

The display area on screen is the same as the sprite layer, meaning it overlaps
the standard 256 x 192 area by 32 pixels on all sides. Vertically this is larger
than the physical HDMI display, which will cut off the top and bottom character
rows making the visible area 40 x 30 or 80 x 30, but the full area is visible on
VGA.

The obvious application for the tilemap is for a fast, clearly readable and wide
multicoloured character display. Less obvious perhaps is that it can also be used
to make fast and wide resolution full colour backgrounds with easily animated

2.4. LAYER 3 (TILEMAP) MODE 23

components such as have historically been used in many games.

The tilemap is defined by two data structures and configured using four Nex-
tRegs. The NextRegs are $6b (107), Tilemap Control; $6¢ (108), Default
Tilemap Attribute, $6¢ (110); Tilemap Base Address; and $6d (111) Tile Defi-
nitions Base Address.

2.4.2 Data Structures

Tilemap The first data structure is the tilemap itself which indicates what
characters occupy each cell on screen. Each tilemap entry is either one or two
bytes.

If entries are two bytes each, the first byte for each entry is bits 0-7 of the
tile number, while the second byte is an attribute byte which is interpreted
acctording to the mode set in the tilemap control register ($6b). For 40 x 32
resolution, a full size tilemap will occupy 2560 bytes, and for 80 x 32 resolution
the space taken is twice that at 5120 bytes. The tilemap entries are stored in
X-major order and each two-byte tilemap entry consists of a tile number byte
(bits 0-7 of the tile number) followed an attribute byte:

Tilemap Attribute Byte 4-bit

bits 7-4 : most significant 4-bits of palette entry

bit 3 : x mirror

bit 2 : y mirror

bit 1 : rotate

bit 0 : ULA over tilemap (in 512 tile mode, bit 8 of the tile number)

Tilemap Attribute Byte 1-bit

bits 7-1 : most significan 7-bits of palette entry
bit 0 : ULA over tilemap (in 512 tile mode, bit 8 of the tile number)

The character displayed is indicated by the “tile number” which can be thought
of as an ASCII code. The tile number is normally eight bits allowing up to 256
unique tiles to be displayed but this can be extended to nine bits for 512 unique
tiles if 512 tile mode is enabled via the Tilemap Control register ($6b).

The other bits are tile attributes that modify how the tile image is drawn. Their
function is the same as the equivalent sprite attributes for sprites. Bits apply
rotation then mirroring, and colour can be shifted with a palette offset. If 512
tile mode is not enabled, bit 8 will determine if the tile is above or below the
ULA display on a per tile basis.

When using 1-byte tilemap entries, the map consists of the tile numbers for
tile in the map with the tilemap attribute byte for every tile coming from the
default tilemap attribute register ($6c).

24 CHAPTER 2. VIDEO

Tile Definitions The second data structure is the tile definitions themselves.
To find the difinition for a specific tile you would look at (base address) + (tile
number) * (definition size).

For 4-bit, 16-colour, tiles, each 8 x 8 tile takes up 32 bytes. Each pixel uses four
bits to select one of 16 colours. A tile is defined in X major order with packing
in the X direction in the same way that 4-bit sprites are defined. The 4-bit
colour of each pixel is augmented by the 4-bit palette offset from the tilemap in
the most significant bits to form an 8-bit colour index that is looked up in the
tilemap palette to determine the final 9-bit colour sent to the display. Ane of
the 16 colours for each tile is the transparency color.

For 1-bit, 2-colour, tiles, each 8 x 8 tile takes up 8 bytes. Each pixel uses one bit
to select one of two colours. A tile is defined in X major order with packing in
the X direction. The 1-bit colour of each pixel is augmented by the 7-bit palette
offset from the tilemap in the most significant bits to form an 8-bit colour index
that is looked up in the tilemap palette to determine the final 9-bit colour sent
to the display. Transparency for each tile is according to the global transparency
colour.

The tilemap display surface extends 32 pixels around the central 256 x 192
display. The origin of the clip window is the top left corner of this area 32 pixels
to the left and 32 pixels above the central 256 x 192 display. The X coordinates
are internally doubled to cover the full 320 pixel width of the surface. The clip
window indicates the portion of the tilemap display that is non-transparent and
its indicated extent is inclusive; it will extend from X1*2 to X2*2+1 horizontally
and from Y1 to Y2 vertically.

Bit 0 can be set to choose stencil mode for the combined output of the ULA
and tilemap. Bit 6 determines what colour is used in SLU modes 6 & 7 where
the ULA is combined with Layer 2 to generate highlighting effects.

2.4.3 Memory Organization & Display Layer

The tilemap is a logical extension of the ULA and its data structures are con-
tained in 16k banks 5 and 7 (first half only). If both the ULA and tilemap
are enabled, this means that the tilemap’s map and tile definitions should be
arranged within the 24k to avoid overlap with the display ram used by the ULA.

The tilemap exists on the same display layer as the ULA. The graphics generated
by the ULA and tilemap are combined before being forwarded to the SLU layer
system as layer U.

2.4. LAYER 3 (TILEMAP) MODE 25

2.4.4 Combining ULA & Tilemap

The combination of the ULA and tilemap is done in one of two modes: the
standard mode or the stencil mode.

The standard mode uses bit 8 of a tile’s tilemap entry to determine if a tile is
above or below the ULA. The source of the final pixel generated is then the
topmost non-transparent pixel. If the ULA or tilemap is disabled then they are
treated as transparent.

The stencil mode will only be applied if both the ULA and tilemap are enabled.
In the stencil mode, the final pixel will be transparent if either the ULA or
tilemap are transparent. Otherwise the final pixel is a logical AND of the
corresponding colour bits. The stencil mode allows one layer to act as a cut-out
for the other.

2.4.5 Configuration

Register (R/W) $68 (104) = ULA Control

e bit 7 = Disable ULA output (0 on reset)
e bit 6-5 = Color blending control for layering modes 6 & 7 (3.01.01)
— 00 = ULA as blend colour
— 01 = No blending
— 10 = ULA/Tilemap mix result as blend colour
11 = Tilemap as blend colour
e bit 4 = Cancel entries in 8x5 matrix for extended keys (3.01.04)
e bit 3 = Enable ULAplus (0 on reset)
e bit 2 = Enable ULA half pixel scroll (0 on reset)
may change
e bit 1 = Reserved (must be 0)
e bit 0 = Enable stencil mode (0 on reset)
When ULA and Layer 3 are enabled, if either are transparent, the result
is transparent, otherwise the result is the logical AND of both colours.

Bit 0 controls how Layer 1 (ULA) and Layer 3 are combined. If cleared they are
combined in the normal manner. Priority and transparency determine which of
the two is shown. Setting enables stencil mode.

Register (R/W) $6B (107) = Layer 3 (Tilemap) Control

e bit 7 = Layer 3 Enable (0 on reset)
e bit 6 = Layer 3 Size control (0 on reset)
— 0 = 40x32
— 1= 80x32
e bit 5 = Disable Arrtibute Entry (0 on reset)
e bit 4 = palette select (0 on reset)
e bit 3 = Enable Text mode (1-bit tilemap) (0 on reset)

26 CHAPTER 2. VIDEO

e bit 2 = Reserved, must be 0
e bit 1 = Activate 512 tile mode (0 on reset)
e bit 0 = Enable Layer 3 on top of ULA (0 on reset)

Bits 7 & 6 enable the tilemap and select resolution. Bit 4 selects one of two
tilemap palettes used for final colour lookup. Bit 5 changes the structure of the
tilemap so that it contains only 8-bit tilemap entries instead of 16-bit tilemap
entries. If 8-bit, the tilemap only contains tile numbers and the attributes are
instead taken from nextreg $6C.

Bit 5 determines whether the attribute byte for each tile come from the tilemap
(0) or from the default tile attribute register (1).

Bit 4 selects either the primary tilemap palette (0) or the secondary tilemap
palette (1).

Bit 3 selects whether to use 4-bit, 16-colour, or 1-bit 2-colour tiles.

Bit 1 activates 512 tile mode. In this mode, the “ULA over tilemap” bit in a
tile’s attribute is re-purposed as the ninth bit of the tile number, allowing up to
512 unique tiles to be displayed. In this mode, the ULA is always on top of the
tilemap.

Bit 0 forces the tilemap to be on top of the ULA. It can be useful in 512 tile
mode to change the relative display order of the ULA and tilemap.

Register (R/W) $6C (108) = Default Layer 3 Attribute*

bits 7-4 = Palette Offset ($00 on reset)

bit 3 = X mirror (0 on reset)

bit 2 =Y mirror (0 on reset)

bit 1 = Rotate (0 on reset)

bit 0 = Bit 8 of the tile number (512 tile mode) (0 on reset)
bit 0 = ULA over tilemap (256 tile mode) (0 on reset)

*Active tile attribute if bit 5 of nextreg $6B is set.

If bit 5 of nextreg $6B is set, the tilemap structure is modified to contain only
8-bit tile numbers instead of the usual 16-bit tilemap entries. In this case, the
tile attributes used are taken from this register instead.

Register (R/W) $6E (110) = Layer 3 Tilemap Base Address

e bit 7 = Bank Select (3.01.08)
0 = Bank 5
1 = Bank 7
e bit 6 = Reserved, must be 0
e bits 5-0 = MSB of address of the tilemap in Bank 5 (16k) or 7 (8k) ($2C
on reset)

Soft Reset default $2C - This is because the address is $6C00 so the MSB is
$6C. But the stored value is only the lower 6 bits so it’s an offset into the 16k

2.4. LAYER 3 (TILEMAP) MODE 27

Bank 5. To calculate therefore subtract $40 leaving you with $2C.

The value written is an offset into the 16k Bank 5 or the 8k lower half of Bank
7 allowinf the tilemap to be placed at any multiple of 256 bytes.

This register determines the tilemapis base address in bank 5. The base address
is the MSB of an offset into the 16k bank, allowing the tilemap to begin at any
multiple of 256 bytes in the bank. Writing a physical MSB address in $40-$7f
or $c0-$ff, corresponding to traditional ULA physical addresses, is permitted.
The value read back should be treated as a fully significant 8-bit value.

The tilemap will be 40 x 32 or 80 x 32 in size depending on the resolution selected
in nextreg $6B. Each entry in the tilemap is normally two bytes but can be one
byte if attributes are eliminated by setting bit 5 of nextreg $6B.

Register (R/W) $6F (111) = Layer 3 Tile Definitions Base Address

e bit 7 = Select bank (3.01.08)
0 = Bank 5
1 = Bank 7
e bit 6 = Reserved, must be 0
e bits 5-0 = MSB of address of the tile definitions in Bank 5 (16k) or 7 (8k)
(30C on reset)

Soft Reset default $0C - This is because the address is $4C00 so the MSB is
$4C. But the stored value is only the lower 6 bits so it’s an offset into the 16k
Bank 5. To calculate therefore subtract $40 leaving you with $0C.

The value written is an offset into the 16k Bank 5 or the 8k lower half of Bank
7 allowing the tilemap to be placed at any multiple of 256 bytes.

This register determines the base address of tile definitions in bank 5. As with
nextreg $6E, the base address is the MSB of the an offset into the 16k bank,
allowing tile definitions to begin at any multiple of 256 bytes in the bank. Writ-
ing a physical MSB address in $40-$7f or $c0-$ff, corresponding to traditional
ULA physical addresses, is permitted. The value read back should be treated
as a fully significant 8-bit value.

Each tile definition is 32 bytes in size and is located at address:
Tile Def Base Addr + 32 * (Tile Number)

Register (R/W) $4C (76) = Level 3 Transparency Index

e bits 7-4 = Reserved, must be 0
e bits 3-0 = Index value ($0F on reset)

Defines the transparent colour index for 4-bit tiles. The 4-bit pixels of a tile
definition are compared to this value to determine if they are transparent. In
the case of 1-bit tiles transparency is determined by comparing the final pixel
colour against the global transparency colour.

For palette information see palette section.

28 CHAPTER 2. VIDEO

Code: 40x32 Tilemap, no attributes

screen: defl $4000
ulaattr: defl $5800
tilemap: defl $5b00
org $8000
start:
di

;3 load tile descriptions
1d hl,tilemap
1d bc,$0005
Xor a
.loop:
14 (hl),a
inc hl
djnz .loop
dec ¢
jp NZ,.loop
1d de,tilemap+$0500
1d hl,tiles
1ld bc,tiles_end-tiles
ldir

;3 setup tilemap mode

nextreg $4c,$00 ; tile transparency index 0

nextreg $6b, $ald ; enable tilemap 40x32, no attributes, <
palette O

nextreg $6c,$00 ; default attr, tilemap over ula

nextreg $6e,$1b ; tilemap starts at $5b00

nextreg $6f,$20 ; tile definition start at $6000

nextreg $43,$30 ; set select tilemap palette and primary <
palette

nextreg $40,$00 ; palette index O

;3 write palette
1d hl,palette
1d b, $20
.loop:
1d a,(hl)
inc hl
nextreg $44,a
djnz .loop

;; write tiles
1d bc,$1010
1d hl,tilemap+12+8%40
Xor a
.loop:
1d (hl),a
inc hl
inc a
djnz .loop
add hl,40-16
1d b, $10
dec ¢
jp NZ,.loop

2.4. LAYER 3 (TILEMAP) MODE 29

;3 setup background (ULA attributes)
1d hl,ulaattr+11+6%*32
1d a,$78
1d bc, $0a09
.loop:
1d (hl),a
inc hl
djnz .loop
1d b, $0a
add hl,32-10
dec ¢
jp NZ,.loop

;3 infinite loop
.loop:

jp .loop

;3 Tile patterns
tiles:

include "tiles.asm"
tiles_end:

;; Palette data
palette:

include "palette.asm"

2.4.6 Scrolling

Scrolling Layer 3 is controlled by registers $2F, $30, and $31.
Register (R/W) $2F (47) = Layer 3 (Tilemap) Horizontal Scroll Control MSB

e bits 7-2 = Reserved, must be 0
e bits 1-0 = X Offset MSB ($00 on reset)

Meaningful Range is 0-319 in 40 char mode, 0-639 in 80 char mode

Register (R/W) $30 (48) = Layer 3 (Tilemap) Horizontal Scroll Control LSB
e bits 7-0 = X Offset LSB ($00 on reset)

Meaningful range is 0-319 in 40 char mode, 0-639 in 80 char mode

Register (R/W) $31 (49) = Layer 3 (Tilemap) Vertical Scroll Control
o bits 7-0 =Y Offset (0-255) ($00 on reset)

2.4.7 Clipping

The Clip area for is based on the local coordinate system for the mode in
question and is set using register $18 with the option of selection which write
in active using register $1C.

Register (R/W) $1B (27) = Layer 3 (Tilemap) Clip Window Definition

30

CHAPTER 2. VIDEO

bits 7-0 = Coord. of the clip window
1st write = X1 position
2nd write = X2 position
3rd write = Y1 position
4rd write = Y2 position

The values are 0,159,0,255 after a Reset
Reads do not advance the clip position
The X coords are internally doubled.

Register (R/W) $1C (28) = Clip Window Control

Read

Write

bits 7-6 = Layer 3 Clip Index
bits 5-4 = Layer 0/1 Clip Index
bits 3-2 = Sprite clip index
bits 1-0 = Layer 2 Clip Index

bits 7-4 = Reserved, must be 0
bit 3 - reset Layer 3 clip index
bit 2 - reset Layer 0/1 clip index
bit 1 - reset sprite clip index.
bit 0 - reset Layer 2 clip index.

Changes Since 2.00.26

1.

512 Tile Mode. In 2.00.26, the 512 tile mode was automatically selected
when the ULA was disabled. With the ULA disabled, the tilemap at-
tribute bit “ULA on top” was re-purposed to be bit 8 of the tile number.
In 2.00.27, selection of the 512 tile mode is moved to bit 1 of Tilemap
Control nextreg $6B. This way 512 tile mode can be independently cho-
sen without disabling the ULA. The “ULA on top” bit is still taken as bit
8 of the tile number and in the 512 mode, the tilemap is always displayed
underneath the ULA.

. Tilemap Always On Top of ULA. In 2.00.27, bit 0 of Tilemap Control

nextreg $6B is used to indicate that the tilemap should always be displayed
on top of the ULA. This allows the tilemap to display over the ULA when
in 512 mode.

1-bit tilemaps. In 3.00.00, a number of modifications were made to acco-
midate 1-bit tilemaps.

Bank select. In 3.01.08 bit 7 of both Tilemap Base Address nextreg $6E
and Tile Definitions Base Address nextreg $6F enabled selecting bewteen
bank 5 (16k) and bank 7 (8k). Before this Layer 3 exclusively used bank
5.

2.5. SPRITES 31

Future Direction The following compatible changes may be applied at a
later date:

1. Addition of a bit to Tilemap Control to select a reduced tilemap area of
size 32 x 24 or 64 x 24 that covers the ULA screen.

2.5 Sprites

February 25, 2019 Victor Trucco

The Spectrum Next has a hardware sprite system with the following character-
istics:

e Total of 128 sprites

e Display surface is 320 x 256 overlapping the ULA screen by 32 pixels on
each side

e Minimum of 100 sprites per scanline*

e Choice of 512 colours for each pixel

e Site of each sprite is 16 x 16 pixels but sprites can be magnified 2x, 4x
or 8x horizontally and vertically

e Sprites can be mirrored and rotated

e Sprites can be grouped together to form larger sprites under the control
of a single anchor

e A 16K pattern memory can contain 64 8-bit sprite images or 128 4-bit
sprite images and combinations in-between

e A per sprite palette offset allows sprites to share images but colour them
differently

e A nextreg interface allows the copper to move sprites during the video
frame

* A minimum of 100 16 x 16 sprites is guaranteed to be displayed in any scanline.
Any additional sprites will not be displayed with the hardware ensuring sprites
are not partially plotted.

The actual limit is determined by how many 28MHz clock cycles there are in a
scanline. The sprite hardware is able to plot one pixel cycle and uses one cycle
to qualify each sprite. Since the number of cycles there are in a scanline varies
with video timing (HDMI, VGA), the number of pixels that can be plotted
also varies but the minimum will be 1600 pixels per line including overhead
cycles needed to qualify 100 sprites. Since sprites magified horizontally involve
plotting more pixels, 2x, 4x, and 8x sprites will take more cycles to plot and
the presence of these sprites in a line will reduce the total number of sprites
that can be plotted.

32 CHAPTER 2. VIDEO

2.5.1 Sprite Patterns

Sprite patterns are the images that each sprite can take on. The images are
stored in a 16K memory internal to the FPGA and are identified by pattern
number. A particular sprite chooses a pattern by storing a pattern number in
its attributes.

All sprites are 16 x 16 pixels in size but the come in two flavours: 4-bit and
8-bit. The bit width describes how many bits are used to code the colour of
each pixel.

An 8-bit sprite uses a full byte to colour each of its pixels so that each pixel can
be one of 256 colours. In this case, a 16 x 16 sprite requires 256 bytes of pattern
memory to store its image.

A 4-bit sprite uses a nibble to colour each of its pixels so that each pixel can be
one of 16 colours. In this case, a 16 x 16 sprite requires just 128 bytes of pattern
memory to store its image.

The 16K pattern memory can contain any combination of these images, whether
they are 128 bytes or 256 bytes and their locations in the pattern memory are
described by a pattern number. This pattern number is 7 bits with bits named
as follows:

Pattern Number

N5 N4 N3 N2 N1 NO N6

N6, despite the name, is the least significant bit.

This 7-bit pattern number can identify 128 patterns in the 16k pattern memory,
each of which are 128 bytes in size. The full 7-bits are therefore used for 4-bit
sprites.

For 8-bit sprites, N6=0 always. The remaining 6 bits can identify 64 patterns,
each of which is 256 bytes in size.

The N5:NO,N6 bits are stored in a particular sprite’s attributes to identify which
image a sprite uses.

8-Bit Sprite Patterns The 16 x 16 pixel image uses 8-bits for each pixel so
that each pixel can be one of 256 colours. One colour indicates transparency
and this is programmed into the Sprite Transparency Index register (nextreg
$4B). By default the transparent value is $E3.

As an example of an 8-bit sprite, let’s have a look at figure 1.1.

Using the default palette, which is initialised with RGB332 colours from 0-255,
the hexadecimal values for this pattern arranged in a 16 x 16 array are shown

2.5. SPRITES 33

Figure 2.1: Pattern Example

below:

04040404040404E3E3E3E3E3E3E3E3E3
O4FFFFFFFFFFO4E3E3E3E3E3E3E3E3E3
O04FFFBFBFBFFO4E3E3E3E3E3E3E3E3E3
O4AFFFBF5F5FBFFO4E3E3E3E3E3E3E3E3
O4AFFFBF5A8ASFBFFO4E3E3E3E3E3E3E3
O4FFFFFBA844A8FBFF04E3E3E3E3E3E3
040404FFFBA844A8FBFFO4E3E3E3E3E3
E3E3E304FFFBA84444FBFF04E304E3E3
E3E3E3E304FFFB444444FBFF044D04E3
E3E3E3E3E304FFFB44444444FA4D04E3
E3E3E3E3E3E304FFFB44FFF54404E3E3
E3E3E3E3E3E3E304FF44F5A804E3E3E3
E3E3E3E3E3E3E3E304FA4404A804E3E3
E3E3E3E3E3E3E3044D4D04E304F504E3
E3E3E3E3E3E3E3E30404E3E3E304FA04
E3E3E3E3E3E3E3E3E3E3E3E3E3E30404

Here $E3 is used as the transparent index.

These 256 bytes would be stored in pattern memory in left to right, top to
bottom order.

4-Bit Sprite Patterns The 16 x 16 pixel image uses 4-bits for each pixel
so that each pixel can be one of 16 colours. One colour indicates transparency
and this is programmed into the lower 4-bits of the Sprite Transparency Index
register (nextreg $4B). By default the transparency value is $3. Note that the
same register is shared with 8-bit patterns to identify the transparent index.

Since each pixel only occupies 4-bits, two pixels are stored in each byte. The
leftmost pixel is stored in the upper 4-bits and the rightmost pixel is stored in
the lower 4-bits.

As an example we will use the same sprite image as was given in the 8-bit
pattern example. Here only the lower 4 bits of each pixel is retained to confine
each pixel’s color to 4-bits:

4444444333333333

34 CHAPTER 2. VIDEO

4FFFFF4333333333
4FBBBF4333333333
4FB55BF433333333
4FB588BF43333333
4FFB848BF4333333
444FB848BF433333
3334FB844BF43433
33334FB444BF4D43
333334FB4444AD43
3333334FB4F54433
33333334F4584333
333333334A448433
33333334DD434543
33333333443334A4
3333333333333344

$3 is used as the transparent index.

These 128 bytes would be stored in pattern memory in left to right, top to
bottom order.

The actual colour that will appear on screen will depend on the palette, de-
scribed below. The default palette will not likely generate suitable colours for
4-bit sprites.

2.5.2 Sprite Palette

Each pixel of a sprite image is 8-bit for 8-bit patterns or 4-bit for 4-bit patterns.
The pixel value is known as a pixel colour index. This colour index is combined
with the sprite’s palette offset. The palette offset is a 4-bit value added to the
top 4-bits of the pixel colour index. The purpose of the palette offset is to allow
a sprite to change the colour of an image.

The final sprite colour index generated by the sprite hardware is then the sum
of the pixel index and the 4-bit palette offset. In pictures using binary math:

8-bit Sprite
PPPP0000
+ IIIIIIII

S8SSS8SS8S

4-bit Sprite
PPPP0000
+ 0000IIII

SSSSSSSS = PPPPIIII

Where “PPPP” is the 4-bit palette offset from the sprite’s attributes and the
“T’s represent the pixel value from the sprite pattern. The final sprite index is
represented by the 8-bit value “SSSSSSSS”.

For 4-bit sprites the palette offset can be thought of as selecting one of 16
different 16-colour palettes.

2.5. SPRITES 35

This final 8-bit sprite index is then passed through the sprite palette which acts
like a lookup table that returns the 9-bit RGB333 colour associated with the
sprite index.

At power up, the sprite palette is initialized such that the sprite index passes
through unchanged and is therefore interpretted as an RGB332 colour. The
missing third blue bit is generated as the logical OR, of the two other blue bits.
In short, for 8-bit sprites, the sprite index also acts like the colour when using
the default palette.

2.5.3 Sprite Attributes

A sprite’s attributes is a list of properties that determine how and where the
sprite is drawn.

Each sprite is described by either 4 or 5 attribute bytes listed below:
Sprite Attribute 0

XXXXXXXX

The least significant eight bits of the sprite’s X coordinate. The ninth bit is
found in sprite attribute 2.

Sprite Attribute 1

YYYYYYYY

The least significant eight bits of the sprite’s Y coordinate. The ninth bit is
optional and is found in attribute 4.

Sprite Attribute 2

PPPPIXMYMR X8/PR

P = 4-bit Palette Offset

XM = 1 to mirror the sprite image horizontally

YM = 1 to mirror the sprite image vertically

R = 1 to rotate the sprite image 90 degrees clockwise

X8 = Ninth bit of the sprite’s X coordinate

PR = 1 to indicate P is relative to the anchor’s palette offset (relative sprites
only)

Rotation is applied before mirroring.

Relative sprites, described below, replace X8 with PR.

Sprite Attribute 3

V E N6 N4 N3 N2 N1 NO

36

CHAPTER 2. VIDEO

R=0X=0Y=0 R=0X=1Y=0 R=0X=0Y=1 R=0X=1Y=1

R=1X=0Y=0 R=1X=1Y=0 R=1X=0Y=1 R=1X=1Y=1

Figure 2.2: All Rotate and Mirror Flags

V = 1 to make the sprite visible

E = 1 to enable attribute byte 4

N = Sprite pattern to use 0-63

If E=0, the sprite is fully described by sprite attributes 0-3. The sprite pattern
is an 8-bit one identified by pattern N=0-63. The sprite is an anchor and cannot
be made relative. The sprite is displayed as if sprite attribute 4 is zero.

If E=1, the sprite is further described by sprite attribute 4.

Sprite Attribute 4

A. Extended Anchor Sprite

HN6 TXXYY Y8

H = 1 if the sprite pattern is 4-bit

N6 = 7th pattern bit if the sprite pattern is 4-bit

T = 0 if relative sprites are composite type else 1 for unified type

XX = Magnification in the X direction (00 = 1x, 01 = 2x, 10 = 4 x 4,
11 = 8x)

YY = Magnification in the Y direction (00 = 1x, 01 = 2x, 10 = 4x, 11
= 8X)

Y8 = Ninth bit of the sprite’s Y coordinate

H,N6 must not equal 0,1 as this combination is used to indicate a relative
sprite.

. Relative Sprite, Composite Type

0O1N6XXYYPO

N6 = Tth pattern bit if the sprite pattern is 4-bit

XX = Magnification in the X direction (00 = 1x, 01 = 2x, 10 = 4x, 11
= 8x)

YY = Magnification in the Y direction (00 = 1x, 01 = 2x, 10 = 4x, 11
= 8x)

PO = 1 to indicate the sprite pattern number is relative to the anchor’s

. Relative Sprite, Unified Type

01N600O0OFPO

N6 = Tth pattern bit if the sprite pattern is 4-bit
PO = 1 to indicate the sprite pattern number is relative to the anchor’s

2.5. SPRITES 37

The display surface for sprites is 320 x 256. The X coordinate of the sprite is
nine bits, ranging over 0-511, and the Y coordinate is optionally nine bits again
ranging over 0-511 or is eight bits ranging over 0-255. The full extent 0-511
wraps on both axes, meaning a sprite 16 pixels wide plotted at X coordinate
511 would see its first pixel not displayed (coordinate 511) and the following
pixels displayed in coordinates 0-14.

The full display area is visible in VGA. However, the HDMI display is vertically
shorter so the top eight pixel rows (Y = 0-7) and the bottom eight pixel rows
(Y = 248-255) will not be visible on an HDMI display.

Sprites can be fully described by sprite attributes 0-3 if the E bit in sprite
attribute 3 is zero. These sprites are compatible with the original sprite module
from core versions prior to 2.00.26.

If the E bit is set then a fifth sprite attribute, sprite attribute 4, becomes active.
This attribute introduces scaling, 4-bit patterns, and relative sprites. Scaling is
self-explanatory and 4-bit patterns were described in the last section. Relative
sprites are described in the next section.

2.5.4 Relative Sprites

Normal sprites (sprites that are not relative) are known as anchor sprites. As
the sprite module draws sprites in the order 0-127 (there are 128 sprites), it
internally stores characteristics of the last anchor sprite seen. If following sprites
are relative, they inherit some of these characteristics, which allows relative
sprites to have, among other things, coordinates relative to the anchor. This
means moving the anchor sprite also causes its relatives to move with it.

There are two types of relative sprites supported known as “Composite Sprites”
and “Unified Sprites”. The type is determined by the anchor in the T bit of
sprite attribute 4.

A. Composite Sprites
The sprite module records the following information from the anchor:
Anchor.visible
Anchor.Y
Anchor.palette offset
Anchor.N (pattern number)
Anchor.H (indicates if the sprite uses 4-bit patterns)
These recorded items are not used by composite sprites:
e Anchor.rotate
e Anchor.xmirror
e Anchor.ymirror
e Anchor.xscale
e Anchor.yscale
The anchor determines if all its relative sprites use 4-bit patterns or not.

38

CHAPTER 2. VIDEO

The visibility of a particular relative sprite is the result of ANDing the
anchor’s visibility with the relative sprite’s visibility. In other words, if
the anchor is invisible then so are all its relatives.

Relative sprites only have 8-bit X and Y coordinates (the ninth bits are
taken for other purposes). These are signed offsets from the anchor’s X, Y
coordinate. Moving the anchor moves all its relatives along with it.

If the relative sprite has its PR bit set in sprite attribute 2, then the
anchor’s palette offset is added to the relative sprite’s to determine the
active palette offset for the relative sprite. Otherwise the relative sprite
uses its own palette offset as usual.

If the relative sprite has its PO bit set in sprite attribute 4, then the
anchor’s pattern number is added to the relative sprite’s to determine the
pattern used for display. Otherwise the relative sprite uses its own pattern
number as usual. The intention is to supply a method to easily animate
a large sprite by manipulating the pattern number in the anchor.

A composite sprite is like a collection of independent sprites tied to an
anchor.

. Unified Sprites

Unified sprites are a further extension of the composite type. The same
information is recorded from the anchor and the same behaviour as de-
scribed under composite sprites applies.

The difference is the collection of anchor and relatives is treated as if it
were a single 16 x 16 sprite. The anchor’s rotation, mirror, and scaling
bits apply to all its relatives. Rotating the anchor causes all the relatives
to rotate around the anchor. Mirroring the anchor causes the relatives to
mirror around the anchor. The sprite hardware will automatically adjust
X,Y coords and rotation, scaling and mirror bits of all relatives according
to settings in the anchor.

Unified sprites should be defined as if all its parts are 16 x 16 in size with
the anchor controlling the look of the whole.

A unified sprite is like a big version of an individual 16 x 16 sprite controlled
by the anchor.

2.5.5 Programming Sprites

Sprites are created via three io registers and a nextreg interface.

Port $303B (12347) Sprite Slot/Flags

Write: Sprite Slot Select

select sprite slot for Sprite Attribute and Sprite Pattern ports which indepen-
dently auto-increment

Read: Sprite status

bits 7-2 = reserved
bit 1 = Max sprites per line
bit 0 = Collision flag

2.5. SPRITES 39

reading clears flags

XSSSsSsSssSs
N6 XNNNNNN

A write to this port has two effects.

One is it selects one of 128 sprites for writing sprite attributes via port $57.

The other is it selects one of 128 4-bit patterns in pattern memory for writing
sprite patterns via port $5B. The N6 bit shown is the least significant in the
7-bit pattern number and should always be zero when selecting one of 64 8-bit
patterns indicated by N.

Port $57 (87) Sprite Attributes

Byte 1

bits 7-0 = LSB of X coordinate (bit 8 is in byte 3)
Byte 2

bits 7-0 = LSB of Y coordinate (bit 8 is in byte 5)
Byte 3

bits 7-4 = Palette Offset

bit 3 = Enable X Mirror

bit 2 = Enable Y Mirror

bit 1 = Enable Roration

bit 0 = By Sprite Type
Anchor = MSB of X coordinate
Relative = Enable relative palette offset

Byte 4

bit 7 = Enable visibility
bit 6 = Enable Byte 5
bit 5-0 = Pattern Index (“name”)

Byte 5 (optional)
Anchor

bit 7-6 = type and pattern
00 = 8-bit color
01 = relative
10 = 4-bit color, lower half of pattern (bytes 0-127)
11 = 4-bit color, upper half of pattern (byets 128-255)
bit 5 = Attached relative sprite type
0 = composite
1 = big sprite
bit 4-3 = X-axis scale factor
00 = 1x

40 CHAPTER 2. VIDEO

01 = 2x
10 = 4x
11 = 8x

bit 2-1 = Y-axis scale factor
bit 0 = MSB of Y coordinate

Composite Relative

bits 7-6 = 01
bit 5 = N6
8-bit
Reserved, must be 0
4-bit
0 = lower half of pattern (bytes 0-127)
1 = upper half of pattern (bytes 128-255)
bit 4-3 = X-axis scale factor
bit 2-1 = Y-axis scale factor
bit 0 = Enable relative pattern offset

Big-sprite Relative

bits 7-6 = 01
bit 5 = N6
8-bit
Reserved, must be 0
4-bit
0 = lower half of pattern (bytes 0-127)
1 = upper half of pattern (bytes 128-255)
bit 4-1 = Reserved, must be 0
bit 0 = Enable relative pattern offset

Once a sprite is selected via port $303B, its attributes can be written to this
port one byte after another. Sprites can have either four or five attribute bytes
and the internal attribute pointer will move onto the next sprite after those
four or five attribute bytes are written. This means you can select a sprite via
port $303B and write attributes for as many sequential sprites as desired. The
attribute pointer will roll over from sprite 127 to sprite 0.

Port $5B (91) Sprite Pattern
Load data into sprite pattern memory auto-incrementing. Port $303B can be
used to set the starting sprite pattern number.

Once a pattern number is selected via port $303B, the 256-byte or 128-byte pat-
tern can be written to this port. The internal pattern pointer auto-increments
after each write so as many sequential patterns as desired can be written. The
internal pattern pointer will roll over from pattern 127 to pattern 0 (4-bit pat-
terns) or from pattern 63 to pattern 0 (8-bit patterns) automatically.

Port $303B (R)

2.5. SPRITES 41

0o000OO0OO0OMC

M = 1 if the maximum number of sprites per line was exceeded
C = 1 if any two displayed sprites collide on screen
Reading this port automatically resets the M and C bits.

Besides the i/o interface, there is a nextreg interface to sprite attributes. The
nextreg interface allows the copper to manipulate sprites and grants the program
random access to a sprite’s individual attribute bytes.

Register (R/W) $34 (52) = Sprite Number
Lockstep (NextReg $09 bit 4 set)

e bit 7 = Pattern address offset (Add 128 to pattern address)
e bits 6-0 = Sprite number 0-127, Pattern number 0-63
effectively performs an out to port $303B

No Lockstep (NextReg $09 bit 4 clear)

e bit 7 = Reserved, must be 0
e bits 6-0 = Sprite number 0-127

This register selects which sprite has its attributes connected to the sprite at-
tribute registers

Register (W) $35 (53) = Sprite Attribute 0
e bits 7-0 = Sprite X coordinate LSB (MSB in NextReg $37)

Register (W) $75 (117) = Sprite Attribute 0 (Auto-incrementing)
See nextreg $35

Register (W) $36 (54) = Sprite Attribute 1
e bits 7-0 = Sprite Y coordinate LSB (MSB in NextReg $39)

Register (W) $76 (118) = Sprite Attribute 1 (Auto-incrementing)
See nextreg $36

Register (W) $37 (55) = Sprite Attribute 2

bits 7-4 = 4-bit Palette offset

bit 3 = Enable horizontal mirror (reverse)
bit 2 = Enable vertical mirror (reverse)
bit 1 = Enable 90° Clockwise Rotation

Normal Sprites
e bit 0 = X coordinate MSB
Relative Sprites
e bit 0 = Palette offset is relative to anchor sprite

Rotation is applied before mirroring

42 CHAPTER 2. VIDEO

Register (W) $77 (119) = Sprite Attribute 2 (Auto-incrementing)
See nextreg $37

Register (W) $38 (56) = Sprite Attribute 3

e bit 7 = Enable Visiblity
e bit 6 = Enable Attribute 4 (0 = Attribute 4 effectively $00)
e bits 5-0 = Sprite Pattern Number

Register (W) $78 (120) = Sprite Attribute 3 (Auto-incrementing)
See nextreg $38

Register (W) $39 (57) = Sprite Attribute 4
Normal Sprites

bit 7 = 4-bit pattern switch (0 = 8-bit sprite, 1 = 4-bit sprite)

bit 6 = Pattern number bit-7 for 4-bit, 0 for 8-bit

bit 5 = Type of attached relative sprites (0 = Composite, 1 = Unified)
bits 4-3 = X scaling (00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)

bits 2-1 = Y scaling (00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)

bit 0 = MSB of Y coordinate

Relative, Composite Sprites

bit 7-6 = 01

bit 5 = Pattern number bit-7 for 4-bit, 0 for 8-bit

bits 4-3 = X scaling (00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)
bits 2-1 = Y scaling (00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)
bit 0 = Pattern number is relative to anchor

Relative, Unified Sprites

bit 7-6 = 01

bit 5 = Pattern number bit-7 for 4-bit, 0 for 8-bit
bits 4-1 = 0000

bit 0 = Pattern number is relative to anchor

Register (W) $79 (121) = Sprite Attribute 4 (Auto-incrementing)
See nextreg $39

2.5.6 Global Control of Sprites

The following nextreg are also of interest for sprites.
Register (R/W) $09 (9) = Peripheral 4 setting:

bit 7 = PSG 2 Mono Enable (0 on hard reset)

bit 6 = PSG 1 Mono Enable (0 on hard reset)

bit 5 = PSG 0 Mono Enable (0 on hard reset)

bit 4 = Sprite ID lockstep enable (1 = Nextreg $34 and 10 Port $303B
are in lockstep, 0 on reset)

2.5. SPRITES 43

e bit 3 = divMMC mapRAM bit Control (reset bit 7 of port $E3)
e bit 2 = HDMI audio mute (0 on hard reset)
e bits 1-0 = scanlines
— 00 = scanlines off
— 01 = scanlines 12.5%
— 10 = scanlines 25%
— 11 = scanlines 50%
In Sprite lockstep, NextREG $34 and Port $303B are in lockstep

Register (R/W) $15 (21) = Sprite and Layer System Setup

e bit 7 = LoRes mode (0 on reset)
e bit 6 = Sprite priority (0 on reset)
— 0 = sprite 127 on top
— 1 = sprite 0 on top
e bit 5 = Enable sprite clipping in over border mode (0 on reset)
e bits 4-2 = set layers priorities (000 on reset)

- 000-SLU
—001-LSU
- 010-SUL
- 011-LUS
- 100-USL
- 101-ULS

— 110 - S(U+L) ULA and Layer 2 combined, colours clamped to 7

— 111 - S(U+L-5) ULA and Layer 2 combined, colours clamped to [0,7]
e bit 1 = Enable Sprites Over border (0 on reset)
e bit 0 = Enable Sprites (0 on reset)

The sprite module draws sprites in the order 0-127 in each scanline. Bit 6
determines whether sprite 0 is topmost or sprite 127 is topmost.

Bits 4:2 determine layer priority and how sprites overlay or are obscured by
other layers.

Register (R/W) $19 (25) = Sprite Clip Window Definition

e bits 7-0 = Cood. of the clip window
1st write - X1 position
2nd write - X2 position
3rd write - Y1 position
4rd write - Y2 position

The values are 0,255,0,191 after a Reset
Reads do not advance the clip position

When the clip window is enabled for sprites in "over border" mode, the X coords
are internally doubled and the clip window origin is moved to the sprite origin
inside the border.

When the clip window is enabled for sprites in “over border” mode, the X coords

44 CHAPTER 2. VIDEO

are internally doubled and the clip window origin is moved to the sprite origin
inside the border.

Sprites will only be visible inside the clipping window. When not in over-
border mode (bit 1 of nextreg $15) the clipping window is given in ULA screen
coordinates with 0,0 correspoding to the top left corner of the ULA screen. In
over-border mode, the clipping window’s origin is moved to the sprite coordinate
origin 32 pixels to the left and 32 pixels above the ULA screen origin.

Regardless, sprite position is always in sprite coordinates with 32,32 correspond-
ing to the top left corner of the ULA screen.

Register (R/W) $1C (28) = Clip Window Control

Read
e bits 7-6 = Layer 3 Clip Index
e bits 5-4 = Layer 0/1 Clip Index
e bits 3-2 = Sprite clip index
e bits 1-0 = Layer 2 Clip Index

Write

bits 7-4 = Reserved, must be 0
bit 3 - reset Layer 3 clip index
bit 2 - reset Layer 0/1 clip index
bit 1 - reset sprite clip index.
bit 0 - reset Layer 2 clip index.

Register (R/W) $4B (75) = Sprite Transparency Index
e bits 7-0 = Index value ($E3 if reset)

For 4-bit sprites only the bottom 4-bits are relevant.

Chapter 3

Audio

3.1 ZX Spectrum 1-bit

The baseline sound of the ZX Spectrum was produced by toggling the Ear bit
(bit 4) of $fe (254) The ULA port to produce 1-bit audio. It is enabled by bit
4 of Next register $08 (8). While this does work on the ZX Spectrum Next,
there are other much better methods and this is only supported for backward
compatibility.

Code:

;3 enable internal speaker
1d bc, $243B

14 a, $08

out (c),a

1d bc, $253B

in a, (c)

or $10

out (c),a

3.2 Sampled 8-bit

The ZX Next has four 8-bit D/A audio channels connected to provide sampled
stereo sound. Channels A and B are the left channels, while C and D are the
right channels. In order use 8-bit sound, it must first be enabled by setting
bit 3 on nextreg $08. In order to emulate legacy hardware there are a number
of ports that can be used to control the four channels additionally these are
mirrored to three nextregs to enable driving audio using the copper. Channel A
is mapped to ports $0f, $3f, and $f1; channel B to ports $1f and $£3 and nextreg
$2C; channel C to ports $4f, and $f9 and nextreg $2E; and channel D to: $5f

45

46 CHAPTER 3. AUDIO

and $fb; with port $df connected to both channel A and C and nextreg $2D
connected to both channel A and D.

Code:

;; enable SpecDrum/Convox audio
1d bc, $243B

1d a, $08

out (c),a

1d bc, $253B

in a, (c)

or $08

out (c),a

3.3 Turbosound

TurboSound consists of the implementation of three AY-3-8912 chips. To enable
TurboSound set bit 1 of Next Register $08 (8). Once enabled the sound chips
and registers of the sound chips are selected using port $fffd (65533) TurboSound
Next Control while the registers are accessed using $bffd () Sound Chip Register
Access. To enable access to a particular chip write 111111xx to the control
register where 01=AY1, 10=AY2, and 11=AY3. Access to particular registers
of the selected chip is selected by writing the register number to the control
register. You can then access a chip register using the access port.

Code:

;3 enable TurboSound audio
1d bc, $243B

1d a, $08

out (c),a

1d bc, $253B

in a, (c)

or $02

out (c),a

Each of the three AY chips has three channels, A, B, and C whose mapping is
controlled by bit 5 of Next register 0x08 (8).

Register (R/W) $00 (0) = Channel A fine tune
Register (R/W) $01 (1) = Channel A coarse tune (4 bits)
Register (R/W) $02 (2) = Channel B fine tune
Register (R/W) $03 (3) = Channel B coarse tune (4 bits)
Register (R/W) $04 (4) = Channel C fine tune
Register (R/W) 805 (5) = Channel C coarse tune (4 bits)
Register (R/W) $06 (6) = Noise period (5 bits)

3.3. TURBOSOUND 47

Register (R/W) 807 (7) = Tone Enable

bit 5 = Channel C tone enable (O=enable, 1=disable)
bit 4 = Channel B tone enable (O=enable, 1=disable)
bit 3 = Channel A tone enable (0=enable, 1=disable)
bit 2 = Channel C noise enable (0=enable, 1=disable)
bit 1 = Channel B noise enable (0=enable, 1=disable)
bit 0 = Channel A noise enable (0=enable, 1=disable)

Register (R/W) $08 (8) = Channel A amplitude

e bit 4 = enable fixed amplitude

— 0 = fixed amplitude

— 1 = use envelope generator (bits 0-3 ignored)
e bits 3-0 = value of fixed amplitude

Register (R/W) $09 (9) = Channel B amplitude

e bit 4 = enable fixed amplitude

— 0 = fixed amplitude

— 1 = use envelope generator (bits 0-3 ignored)
e bits 3-0 = value of fixed amplitude

Register (R/W) $0A (10) = Channel C amplitude

e bit 4 = enable fixed amplitude

— 0 = fixed amplitude

— 1 = use envelope generator (bits 0-3 ignored)
e bits 3-0 = value of fixed amplitude

Register (R/W) $0B (11) = Envelope period fine
Register (R/W) $0C (12) = Envelope period coarse
Register (R/W) $0D (13) = Envelope shape

e bit 3 = Continue
— 0 = drop to amplitude 0 after 1 cycle
— 1 = use ‘Hold’ value
e bit 2 = Attack
— 0 = generator counts down
— 1 = generator counts up
e bit 1 = Alternate
hold =0
— 0 = generator resets after each cycle
— l=generator reverses direction each cycle
hold=1
— 0 = hold final value
— 1 = hold initial value
e bit 0 = Hold
— 0 = cycle continuously

48 CHAPTER 3. AUDIO

— 1 = perform one cycle and hold

3.3.1 Pi Audio

If connected the Pi Zero is configured to use the ZX Next as a soundcard over
an I2S interface making the Raspberry Pi a fully configurable audio source for
the ZX Spectrum Next.

Chapter 4

Basic Input/Output

The basic I/O (human interface) system of the ZX Spectrum Next supports
keyboard, mouse and game controllers. These all extend the functionality found
on common ZX Spectrum peripherals. game controllers and PS/2 keyboards can
be customized to simulate responses on the stock keyboard.

4.1 Keyboard

The ZX Spectrum Next can use a classic ZX Spectrum keyboard with a 8 x 5
matrix, an extended ZX Spectrum Next keyboard with a 8 x 7 matrix (the one
used in a cased Next or the custom cases for the N-Go), or a PS/2 keyboard. In
all of these cases the system translates the physical signals to look like a classic
Spectrum keyboard with access to the additional lines of the ZX Spectrum Next
keyboard as well.

The classic Spectrum part of the matrix is accessed using port $xxFE where
there is a single unset bit in “xx” to select the row being read. Next extensions
are read using Nextregs $B0 and $B1 to read columns 5 and 6.

Bit 0 1 2 | 3| 4] $BO $B1 b
$FEFE || Cap Sh Z X|C|V]| => Extend 0
$FDFE A S D|F |G| <« Cap Lk 1
$FBFE Q W E|R|T| | Graph 2
$F7FE 1 2 3 141|5 T True Vid || 3
$FBFE 0 9 8 | 716 Inv Vid 4
$EFFE P (0] 1] U]|Y , Break 5
$DFFE Enter L K|J|H " Edit 6
$BFFE || Space | SymSh | M | N | B ; Del 7

N
Nej

50 CHAPTER 4. BASIC INPUT/OUTPUT

Port $7FFE (32766) Keyboard 8 (read only)

bit 0: 'B’
bit 1: "N’
bit 2: "M’
bit 3: Symbol Shift
bit 4: Space
Port $BFFE (49150) Keyboard 7 (read only)
bit 0 = "H’
bit 1 ="J
bit 2 = 'K’
bit 3 =L’
bit 4 = Enter

Port $DFFE (57342) Keyboard 6 (read only)

bit 0 =Y’
bit 1 ="U’
bit 2 =T
bit 3 ='0’
bit 4 =P’
Port SEFFE (61438) Keyboard 5 (read only)
bit 0 = ‘6’
bit 1 =7
bit 2 = ‘&
bit 3 =9’
bit 4 = ‘0’
Port $F7FE (63486) Keyboard 4 (read only)
bit 0 = ‘5’
bit 1 =4’
bit 2 = ‘3’
bit 3 = 2’
bit 4 = ‘1’
Port $FBFE (64510) Keyboard 3 (read only)
bit 0 = ‘T’
bit 1 = ‘R’
bit 2 = ‘E’
bit 3 = ‘W’
bit 4 — ‘Q’
Port $FDFE (65022) Keyboard 2 (read only)
bit 0 = ‘G’

bit 1 = ‘F’

4.2. GAME CONTROLLERS o1

bit 2 = ‘D’
bit 3 = S’
bit 4 = ‘A’
Port $FEFE (65278) Keyboard 1 (read only)
bit 0 = ‘V’
bit 1 = ‘C’
bit 2 = ‘X’
bit 3 = ‘Z’

bit 4 = Caps Shift
Register (R) $B0 (176) = Extended Keys 0 (3.01.04)

bit 7 = 1 if ; pressed

bit 6 = 1 if pressed

bit 5 = 1 if , pressed

bit 4 = 1 if . pressed

bit 3 = 1 if UP pressed

bit 2 = 1 if DOWN pressed
bit 1 = 1 if LEFT pressed
bit 0 = 1 if RIGHT pressed

Register (R) $B1 (177) = Extended Keys 1 (3.01.04)

bit 7 = 1 if DELETE pressed

bit 6 = 1 if EDIT pressed

bit 5 = 1 if BREAK pressed

bit 4 = 1 if INV VIDEO pressed
bit 3 = 1 if TRUE VIDEO pressed
bit 2 = 1 if GRAPH pressed

bit 1 = 1 if CAPS LOCK pressed
bit 0 = 1 if EXTEND pressed

4.2 Game Controllers

The ZX Spectrum used a number of joystick standards and the ZX Spectrum
Next can make Atari controllers or Mega Drive controllers look like many of
these standards. Atari joystick and driving (not the similar looking paddle)
controllers are supported by the interface. The interface supports Mega Drive
controllers with up to 11 buttons (start, a, b, ¢, x, y, z, up, down, left, right).
It is possible to map unused buttons to keys and simulate unavailable buttons
with keys.

Nextreg $05 selects the interface mode for each of the two joysticks. If in
Kempston or Megadrive mode the joystick 1 can be read using port $1F and
joystick 2 using port $37. When using these ports in Megadrive mode, some

52 CHAPTER 4. BASIC INPUT/OUTPUT

buttons will be paired A/X, B/Y, C/Z with B/Y also corresponding to the
single fire button on Atari joysticks. In order to disambiguate presses of A/X,
B/Y, and C/Z it is necessary to also read nextreg $B2.

Port $1F (31) Kempston/Mega Drive Joystick 1/DAC A
Read

bit 7 = "start” button
bit 6 = A button

bit 5 = Fire 2/C button
bit 4 = Fire 1/B button

bit 3 = Up

bit 2 = Down

bit 1 = Left

bit 0 = Right
Disable with Nextreg $05
Write

bits 7-0 = DAC Value

The XYZ buttons on md pads can be read through nextreg 0xB2.

The joysticks can also be placed in i/o mode see nextreg 0x0B.

All eleven md pad buttons can be assigned to the keyboard see nextreg 0x05.
Port $37 (55) Kempston/Mega Drive Joystick 2

Read

bit 7 = start” button
bit 6 = A button

bit 5 = Fire 2/C button
bit 4 = Fire 1/B button

bit 3 = Up
bit 2 = Down
bit 1 = Left
bit 0 = Right

The XYZ buttons on md pads can be read through nextreg $B2.
The joysticks can also be placed in i/o mode see nextreg $0B.
All eleven md pad buttons can be assigned to the keyboard see nextreg $05.

Register (R/W) $05 (5) = Peripheral 1 Settings

bits 7-6 = joystick 1 mode (MSB)
bits 5-4 = joystick 2 mode (MSB)
bit 3 = joystick 1 mode (LSB)
bit 2 = 50/60 Hz mode (0 = 50Hz, 1 = 60Hz)
bit 1 = joystick 2 mode (LSB)
bit 0 = Enable Scandoubler
0 = Disabled for CRT
1 = Enabled for VGA

4.3. MOUSE 53

Joystick modes

* %

B

000 = Sinclair 2 (67890)

001 = Kempston 2 (port $37)

010 = Kempston 1 (port $1F)
011 = Megadrive 1 (port $1F)
100 = Cursor

101 = Megadrive 2 (port $37)

110 = Sinclair 1 (12345)

111 = User Defined Keys Joystick

Joysticks can be placed in i/o mode via nextreg 0x0B.
Programming the user defined keys joystick is done through the ps2 keymap
interface on nextreg 0x28, 0x29 and 0x2B:

. Write 128 to nextreg 0x28

Write 0 (left joystick) or 16 (right joystick) to nextreg 0x29

. Write eleven bytes to nextreg 0x2B. The bytes correspond to the eleven

buttons on an md pad (X=11ZY START ACBUD L R=1)

Each byte written identifies a key in the 8x7 membrane; bits 5:3 select the
row and bits 2:0 select the column with 111 meaning no action.

In all joystick modes, excess buttons on an md pad not read via ports will
generate key input if so programmed.

Register (R) $B2 (178) = Extended MD Pad Buttons (3.01.10)

4.3

bit 7 = 1 if Right Pad X Pressed

bit 6 = 1 if Right Pad Z Pressed

bit 5 = 1 if Right Pad Y Pressed

bit 4 = 1 if Right Pad START Pressed
bit 3 = 1 if Left Pad X Pressed

bit 2 = 1 if Left Pad Z Pressed

bit 1 = 1 if Left Pad Y Pressed

bit 0 = 1 if Left Pad START Pressed

Mouse

A mouse attached to the PS/2 port looks like a kempston mouse to the system.
Port $FADF is used to read the state of the mouse wheel and buttons while
ports $FBDF and $FBDF are used to read the X and Y positions.

Port $FADF (64223) Kempston Mouse Buttons

bits 7-4 = Wheel delta since last read
bit 3 = fourth button

bit 2 = middle button

bit 1 = left button

54 CHAPTER 4. BASIC INPUT/OUTPUT

bit 0 = right button
Port $FBDF (64479) Kempston Mouse X
bits 7-0 = X coordinate of mouse
Port $FFDF (65503) Kempston Mouse Y
bits 7-0 = Y coordinate of mouse (0-192)

4.4 Keymapping

Both a PS/2 keyboard and the contoller buttons can be given custom keyboard
mappings. These mappings are accomplished using nextregs $28 (keymap ad-
dress MSB), $29 (keymap address LSB), $2A (keymap data MSB) and $2B
(keymap data LSB).

Keymap data format:

e bit 8 = reserved, must be 0
e bits 7-6 = modifier
00 = No modifier
01 = Caps Shift
10 = Symbol Shift
11 = Special Function
e bits 5-3 = row
e bits 2-0 = column (111 = no action)

If data is special function, the row will 0 and the column will be as follows:

0 = F1, hard reset

0 = F2, toggle scandoubler /hdmi reset
0 = F3, toggle 50/60 Hz

0 = F4, soft reset

0 = F5, (temporary) expansion bus on
0 = F6, (temporary) expansion bus off
0 = F7, change scanline weight

0 = F8, change CPU speed

Register (R/W) $28 (40) = Stored Palette Value and PS/2 Keymap Address
MSB
Read

e Dbits 7-0 = Stored palette value (see NextREG $44)
Write

e bit 7 = PS/2 or Joystick
— 0 = PS/2 keymap
— 1 = Key joystick

4.4. KEYMAPPING 95

e bits 6-1 = Reserved, must be 0
e bit 0 = PS/2 Keymap Address MSB

Register (W) $29 (41) = PS/2 Keymap Address LSB
e bits 7-0 = PS/2 Keymap Address LSB
Register (W) $2A (42) = PS/2 Keymap Data MSB

e bits 7-1 = Reserved, must be 0
e bit 0 = PS/2 Keymap Data MSB

Register (W) $2B (43) = PS/2 Keymap Data LSB
e bits 7-0 = PS/2 Keymap Data LSB

(writing this register auto-increments the address)

4.4.1 Keyboard

To remap PS/2 keyboard keys, the starting address for the keymap data is
written to nextregs $28 and $29 keyboard data address followed by writing
the data to nextregs $2A and $2B with the write to $2B autoincrementing the
address for the data.

PS/2 keyboard function keys F9-F12 cannot be remapped and have a fixed
function.

e 9 = Multiface NMI/Function key modifier (with 1-8 sends special func-
tion F1-F8)

e 10 = divMMC NMI

e F11 = expansion bus on

e F12 = expansion bus off

4.4.2 Joystick

To map joystick buttons an $80 is written to nextreg followed by a $00 (left)
or $10 (right) to nextreg $29 to select which joystick is being mapped to the
keyboard 11 writes to nextgreg $2B to indicate the key(s) for each button. Each
byte to addresses the row and column of the ZX Next keyboard with bits 5-3
being the row and bits 2-0 being the column (column 7, 111 is no action).

56

CHAPTER 4. BASIC INPUT/OUTPUT

Chapter 5

Memory

The ZX Spectrum Next commonly has with either IMB or 2MB SRAM memory.
This is more the 64kB directly addressable by its Z80N CPU. It is therefore
necessary to use some form of memory paging to address all of the memory.
This is accomplished using 8k pages or 16k banks. 256k of the total memory is
used by the ROM images and device specific RAM leaving either 768k (pages
0-95/banks 0-47) or 1792k (pages 0-223/banks 0-111) that can be paged in as
RAM. Pages 10, 11, and 14 are a little odd in that rather than coming from the
normal SRAM, they come from BRAM internal to the FPGA.

5.1 Memory Management

There are a number of different systems for controling memory papping into the
64k memory space of the Z80N CPU in the ZX Next: ZX Next native memory
paging, ZX Spectrum 128, ZX Spectrum +3, divMMC, and Multiface.

5.1.1 Default Layout

The default mapping of memory banks is the same as on 128k Spectrum models
with a ROMO (128k editor and menu system) mapped in at $0000-$3FFF, bank
5 at $4000-$7FFF, bank 2 at $8000-$BFFF, and bank 0 at $C000-$FFFF.

5.1.2 RAM

ZX Spectrum Next Native Registers $50 to $57 control the which SRAM
pages are in each of the eight memory slots. Registers $50 and $51 support

o7

58 CHAPTER 5. MEMORY

the special value $FF which indicates that the currently selected ROM is to be
mapped into slots 0 and/or 1 ($0000-$3FFF).

Register (R/W) $50 (80) = MMU Slot 0 Control
e bits 7-0 = 8k RAM page at position $0000 to $1FFF (3ff on reset)

Pages can be from 0 to 223 on a fully expanded Next.
A 255 value causes the ROM to become visible.

Register (R/W) $51 (81) = MMU Slot 1 Control
e bits 7-0 = 8k RAM page at position $2000 to $3FFF (3ff on reset)

Pages can be from 0 to 223 on a fully expanded Next.
A 255 value causes the ROM to become visible.

Register (R/W) $52 (82) = MMU Slot 2 Control

e bits 7-0 = 8k RAM page at position $4000 to $5FFF ($0A on reset)
Pages can be from 0 to 223 on a fully expanded Next.
Register (R/W) $53 (83) = MMU Slot 3 Control

e bits 7-0 = 8k RAM page at position $6000 to $7TFFF ($0B on reset)
Pages can be from 0 to 223 on a fully expanded Next.
Register (R/W) $54 (84) = MMU Slot 4 Control

e bits 7-0 = 8k RAM page at position $8000 to $9FFF ($04 on reset)
Pages can be from 0 to 223 on a fully expanded Next.
Register (R/W) $55 (85) = MMU Slot 5 Control

e bits 7-0 = 8k RAM page at position $A000 to $BFFF ($05 on reset)
Pages can be from 0 to 223 on a fully expanded Next.
Register (R/W) $56 (86) = MMU Slot 6 Control

e bits 7-0 = 8k RAM page at position $C000 to $DFFF ($00 on reset)
Pages can be from 0 to 223 on a fully expanded Next.
Register (R/W) $57 (87) = MMU Slot 7 Control

e bits 7-0 = 8k RAM page at position $E000 to SFFFF (301 on reset)
Pages can be from 0 to 223 on a fully expanded Next.

Writing to ports $1FFD, $7FFD and $DFFD writes $FF to MMUO and MMU1
and writes appropriate values to MMU6 and MMU?Y to map in the selected 16k
bank.

+3 special modes override the MMUs if used.

5.1. MEMORY MANAGEMENT 99

In addition the ZX Next has special controls which allow the data area for Layer
2 to be overlaied on memory in a fashion that permits selective read or write
access. For details see the section on Layer 2 video.

ZX Spectrum 128 In addition to the native memory management, the ZX
Next supports a memory management system that is an expanded, and back-
ward compatible, version of the the system used on earlier ZX Spectrum models.
This system uses registers $1FFD, $7FFD, and $DFFD.

Port $1FFD (8189) Plus 3 Memory Paging Control

bits 7-3 = Unused, nust be 0
bit 2 = High bit of ROM selection (low bit is in Port $7FFD)
00 = ROMO = 128k editor and menu system
01 = ROM1 = 128k syntax checker
10 = ROM2 = +3DOS
11 = ROM3 = 48k BASIC
bit 1 = Special mode: Low bit of memory configuration number
bit 0 = Paging mode
0 = Normal
1 = Special

You should echo writes to $5B67
Port $7FFD (32765) Memory Paging Control

bits 7-6 = Extra two bits for 16k RAM bank if in Pentagon 512k/1024k
mapping mode (nextreg $8f)
bit 5 = Lock memory paging
bit 4 = low bit of ROM Select (high bit is in Port $1FFD)
00 = ROMO = 128k editor and menu system
01 = ROM1 = 128k syntax checker
10 = ROM2 = +3DOS
11 = ROM3 = 48k BASIC
bit 3 = Shadow screen toggle
bits 2-0 = LSB of Bank number for slot 4 (MSB is in Port $DFFD)

Disable with bit 5 port $7FFD
Port $DFFD (57341) Next Memory Bank Select

bits 7-4 = Reserved, must be 0
bits 3-0 = MSB of bank number for slot 4 (LSB is in Port $7FFD)

Spectrum 128 Standard Paging 128-style memory management can only
alter the bank addressed at $c000 (16k-slot 4, or 8k-slots 7-8). The active 16k-
bank at $c000 is selected by writing the 3 LSBs of the 16k-bank number to
the bottom 3 bits of Memory Paging Control ($7FFD), and the 4 MSBs to

60 CHAPTER 5. MEMORY

the bottom 4 bits of Next Memory Bank Select ($DFFD). (The reason for the
division is that the original Spectrum 128, having only 128k of memory, only
needed 3 bits.)

If you are using the standard interrupt handler or OS routines, then any time
you write to Memory Paging Control ($7FFD) you should also store the value
at $5B5C. Any time you write to Plus 3 Memory Paging Control ($1FFD) you
should also store the value at $5B67. There is no corresponding system variable
for the Next-only Next Memory Bank Select ($DFFD) and standard OS routines
may not support the extended banks properly.

Paging out ROM ROM can be paged out by enabling AllRam mode, or
by using Next memory management. Beware that some programs may assume
that they can find ROM service routines at fixed addresses between $0000-$3fff.
More importantly, if the default interrupt mode (IM 1) is set, the Z80 will jump
the program counter to $0038 every frame expecting to find an interrupt handler
there. If it does not, pain and suffering will likely result. DI is your friend. On
the plus side, this does allow you to write your own interrupt handler without
the nuisance of using IM 2.

Spectrum 128 Special Paging “Special paging mode” (also called “AllRam
mode” or “CP/M mode”) is enabled by writing a value with the LSB set to Plus
3 Memory Paging Control ($1FFD). Depending on the 3 low bits of this value
a memory configuration is selected as follows:

Table 5.1: Special Paging Modes

Bits 2-0 | Slot 1 | Slot 2 | Slot 3 | Slot 4

1 0 1 2 3

3 4 5 6 7

5 4 5 6 3

7 4 7 6 3
5.1.3 ROM

The ZX Spectrum Next had several ROMS: ROMO (16k) - 128k editor and menu
system, ROM1 (16k) - 128k syntax checker, ROM2 (16k) - +-3DOS, ROM3 (16k)
- 48k BASIC, divMMC/esxDOS ROM (8k), divMMC RAM (128k), Multiface
ROM (8k) and Alternate ROM (16k).

ZX Next native Slots 0 and 1 select use by ROM by selecting page $FF.
Which what ROM is mapped in is determined by the other memory management
system. If the rest of the system selected the 48k ROM, Nextreg $8C determines

5.1. MEMORY MANAGEMENT 61

whether the actual 48k ROM, or the ZX Next Alternate ROM is in use. In
addition, it is possible to enable writing to the Alternate ROM.

Register (R/W) $8C (140) = Alternate ROM

Immediate

bit 7 = Alt ROM Enable (0 on hard reset)

bit 6 = Alt ROM visible ONLY during writes (0 on hard reset)
bit 5 = Reserved, must be 0

bit 4 = 48k ROM Lock (0 on hard reset)

After Soft Reset (copied into bits 7-4)

bit 3 = Alt ROM Enable (0 on hard reset)

bit 2 = Alt ROM visible ONLY during writes (0 on hard reset)
bit 1 = Reserved, must be 0

bit 0 = 48k ROM Lock (0 on hard reset)

ZX Spectrum 128k

ROM paging and selection $0000-$3fff is usually mapped to ROM. This
area can only be fully remapped using Next memory management. ROM is not
considered one of the numbered banks; it is mapped to the two 8k-banks by
default, or by setting their 8k-bank numbers to 255.

The 128k Spectrum has 2 ROM pages. Which of these is mapped is selected by
altering Bit 4 of Memory Paging Control ($7FFD). The +2a/+3 has 4 ROM
pages; the extra bit needed to select between these is bit 2 of Plus 3 Mem-
ory Paging Control ($1FFD). This maintains compatibility with the original
machines’” ROM paging as long as the ROM is not paged out.

divMMC The divMMC ROM mapping can take priority when it is enabled
by port $E3 or, when automapping has been enabled by nextreg $06, when it
has been automapped due to reading one of the appropriate addresses. Port
$E3 also controls whether the divMMC maps the esxDOS ROM or divMMC
RAM page 3 into slot 0 and which divMMC RAM page is mapped into slot 1.

Port $E3 (227) divMMC Control
Disable with bit 2 of Nextreg $09

bit 7 = conmem, enable divMMC memory
bit 6 = mapram, enable divMMC allRAM mode
bits 5-4 = reserved
bits 3-0 = bank, selected divMMC ram bank for $2000-$3FFF region
e conmem can be used to manually control divMMC mapping. When en-
abled
$0000-$1FFF contains esxDOS ROM or esxDOS page 3

62 CHAPTER 5. MEMORY

$2000-$3FFF contains esxDOS RAM page selected by bits 3-0

e divMMC automatically maps itself in when instruction fetches hit specific
addresses in the ROM. When this happens, the esxDOS ROM (or di-
vMMC bank 3 if mapram is set) appears in $0000-$1FFF and the selected
divMMC bank appears as RAM in $2000-$3FFF

e bit 6 can only be set, once set only a power cycle can reset it. nextreg $09
bit 3 can be set to reset this bit.

divMMC automapping is normally disabled by NextZXOS see nextreg $06 bit
4.
Register (R/W) 306 (6) = Peripheral 2 Settings

bit 7 = Enable F8 cpu speed hotkey (soft reset = 1)
bit 6 = Divert BEEP only to internal speaker (hard reset = 0)
bit 5 = Enable F3 50/60 Hz hotkey (soft reset = 1)
bit 4 = Enable divmme nmi by DRIVE button (hard reset = 0)
bit 3 = Enable multiface nmi by M1 button (hard reset = 0)
bit 2 = PS/2 mode (config mode only)
— 0 = keyboard primary
— 1 = mouse primary
bits 1-0 = Audio chip mode
- 00=YM
01 = AY
— 10 = ZXN-8950 (3.02.00)
11 = Hold all AY in reset

Multiface Need to find useful docs on the Multiface memory.

9f 1-In, 128-In2

1f 1-Out

bf 128-In, 3-Out

3f 128-Out, 3-In, 3-button
Tf3f 3-7fid

1£3f 3-1ffd

5.2 Interactions between paging methods

Changes made in 128 style and Next style memory management are synchro-
nized. The most recent change always has priority. This means that

using 128-style memory management to select a new 16k-bank in 16k-slot 4
will update the MMU registers for the two 8k-slots with the corresponding 8k-
bank numbers. enabling AllRam mode will update all of the 8k-bank values
with the appropriate 8k-slot numbers. These may then be overwritten using
Next memory management without needing to alter the value at port $1FFD.

5.3. MEMORY MAP 63

Since the 128-style memory management ports are not readable, there is no
synchronization applicable in the other direction.

5.3 Memory Map

5.3.1 Global Memory Map

Physical Address | Size | Description
$000000-$S00FFFF 64k ZX Spectrum ROM (ROMO-3)
$010000-$011FFF 8k EsxDOS ROM
$012000-3013FFF 8k Multiface ROM
$014000-3017FFF 16k EsxDOS Extra ROM
$018000-301BFFF 16k Alternate ROM
$01C000-$01FFFF | 16k Multiface RAM
$020000-$03FFFF 128k | DivMMC RAM
$040000-30FFFFF | 768k | Standard RAM
$100000-$1FFFFF | 1024k | Expanded RAM

Normal RAM is divided into 8k pages or 16k banks which may be mapped into
the 64k memory space by the memory management hardware of the Next. Some
of these pages have special properties.

Pages 10, 11 and 14 are used by Layer 1/0 (ULA) video modes with 10 used by
standard Spectrum ULA video, 10 and 11 used by Timex Hi-res and Hi-colour
modes, 11 used by Timex alternate video and page 14 used by the ULA shadow
mode. Pages 10 an 11 are usable by Layer 3 (Tilemap) video.

5.3.2 Z80 Visible Memory Map

5.4 Memory Decoding

The ZX Next uses a heirarchical memory decoding scheme. Looking at the
virtual memory address, the decode order is:

ROM area $0000-$1000

1. bootrom

multiface

divimmec

layer 2 mapping
mmu

config

romcs expansion bus

N ok W

64

8. rom

Mid memory $2000-$DFFF

1. layer 2 mapping
2. mmu

High memory $E000-$SFFFF

1. mmu

CHAPTER 5. MEMORY

Chapter 6

zxnDMA

February 25, 2019 Phoebus Dokos Off Hardware, Resources,
The ZX Spectrum Next DMA (zxnDMA)

6.1 Overview

The ZX Spectrum Next DMA (zxnDMA) is a single channel dma device that
implements a subset of the Z80 DMA functionality. The subset is large enough
to be compatible with common uses of the similar Datagear interface available
for standard ZX Spectrum computers and compatibles. It also adds a burst

mode capability that can deliver audio at programmable sample rates to the
DAC device.

6.2 Accessing the zxnDMA

The zxnDMA is mapped to a single Read/Write IO Port 0x6B which is the same
one used by the Datagear but unlike the Datagear it doesn’t also map itself to
a second port 0x0B similar to the MB-02 interface.

PORT $6b: zxnDMA

6.3 Description

The normal Z80 DMA (Z8410) chip is a pipelined device and because of that
it has numerous off-by-one idiosyncrasies and requirements on the order that

65

66 CHAPTER 6. ZXNDMA

certain commands should be carried out. These issues are not duplicated in the
zxnDMA. You can continue to program the zxnDMA as if it is were a Z8410
DMA device but it can also be programmed in a simpler manner.

The single channel of the zxnDMA chip consists of two ports named A and B.
Transfers can occur in either direction between ports A and B, each port can
describe a target in memory or 10, and each can be configured to autoincrement,
autodecrement or stay fixed after a byte is transferred.

A special feature of the zxnDMA can force each byte transfer to take a fixed
amount of time so that the zxnDMA can be used to deliver sampled audio.

6.4 Modes of Operation

The zxnDMA can operate in a z80-dma compatibility mode.

The z80-dma compatibility mode is selected by setting bit 6 of nextreg $06. In
this mode, all transfers involve length-+1 bytes which is the same behaviour as
the z80-dma chip. In zxn-dma mode, the transfer length is exactly the number
of bytes programmed. This mode is mainly present to accommodate existing
spectrum software that uses the z80-dma and for cp/m programs that may have
a z80-dma option.

The zxnDMA can also operate in either burst or continuous modes.

Continuous mode means the DMA chip runs to completion without allowing the
CPU to run. When the CPU starts the DMA, the DMA operation will complete
before the CPU executes its next instruction.

Burst mode nominally means the DMA lets the CPU run if either port is not
ready. This condition can’t happen in the zxnDMA chip except when operated
in the special fixed time transfer mode. In this mode, the zxnDMA will let the
CPU run while it waits for the fixed time to expire between bytes transferred.

Note that there is no byte transfer mode as in the Z80 DMA.

6.5 Programming the zxnDMA

Like the Z80 DMA chip, the zxnDMA has seven write registers named WRO-
WR6 that control the device. Each register WR0-WR6 can have zero or more
parameters associated with it.

In a first write to the zxnDMA port, the write value is compared against a
bitmask to determine which of the WR0-WRG6 is the target. Remaining bits in
the written value can contain data as well as a list of associated parameter bits.
The parameter bits determine if further writes are expected to deliver parameter

6.6. ZXNDMA REGISTERS 67

values. If there are multiple parameter bits set, the expected order of parameter
values written is determined by parameter bit position from right to left (bit 0
through bit 7). Once all parameters are written, the zxnDMA again expects a
regular register write selecting WR0-WR6.

The table X.Y describes the registers and the bitmask required to select them
on the zxnDMA.

Table 6.1: zxnDMA Registers

Group | Register Function Description Bitmask Notes

WRO | Direction Operation and Port A configuration | 0XXXXXAA | AA must NOT be 00
WR1 | Port A configuration 0XXXX100

WR2 | Port B configuration 0XXXX000

WR3 | Activation 1XXXXX00 | It’s best to use WR6
WR5H Ready and Stop configuration 10XXX010

WR6 Command Register 1IXXXXX11

6.6 zxnDMA Registers

These are described below following the same convention used by Zilog for its
DMA chip:

WRO0 — Write Register Group 0

D7 D6 D5 D4 D3 D2 D1 DO BASE REGISTER BYTE
0 | | | | | | |

| | | | | 0 O Do not use
| | | | | 0 1 Transfer (Prefer this for Z80 DMA compatibility)
| | | | | 1 0 Do not use (Behaves like Transfer, Search on Z80
| | | | | DMA)
| | | | | 1 1 Do not use (Behaves like Transfer, Search/Trans-
| | | | | fer on Z80 DMA)
| | | | 0 = Port B -> Port A (Byte transfer direction)
| | I | 1=Port A ->PortB
| | | v

D7 D6 D5 D4 D3 D2 D1 DO PORT A STARTING ADDRESS (LOW BYTE)
| | \

D7 D6 D5 D4 D3 D2 D1 DO PORT A STARTING ADDRESS (HIGH BYTE)
v

D7 D6 D5 D4 D3 D2 D1 DO BLOCK LENGTH (LOW BYTE)
v

D7 D6 D5 D4 D3 D2 D1 DO BLOCK LENGTH (HIGH BYTE)

Several registers are accessible from WRO. The first write to WRO is to the base
register byte. Bits D6:D3 are optionally set to indicate that associated registers
in this group will be written next. The order the writes come in are from D3 to
D6 (right to left). For example, if bits D6 and D3 are set, the next two writes
will be directed to PORT A STARTING ADDRESS LOW followed by BLOCK
LENGTH HIGH.

68

CHAPTER 6. ZXNDMA

WRI1 — Write Register Group 1

D7 Dé

< —— ———— — —— —

D7 D6
o o

PrRrOO—————a0

(=}

D3 D2
1

D1 DO BASE REGISTER BYTE

0o 0

|
0 = Port A is memory
1 = Port A is I0

= Port A

Port A
Port A

= Port A

D3 D2
o o

address
address
address
address

H R, OO—pk
O O—O

decrements
increments
is fixed
is fixed

PORT A VARIABLE TIMING BYTE

Cycle Length = 4
Cycle Length = 3
Cycle Length = 2
Do not use

The cycle length is the number of cycles used in a read or write operation. The
first cycle asserts signals and the last cycle releases them. There is no half cycle
timing for the control signals.

WR2 — Write Register Group 2

D7 Dé

D7 D

o<t ————— — — — — —

D7 Dé

PP OO—————0

=)

o
A —————— &

(=}

D3 D2
I o

D1 DO BASE REGISTER BYTE

0o 0

|
0 = Port B is memory
1 = Port B is I0

= Port B

Port B
Port B

= Port B

D3 D2
o o0

D3 D2

address
address
address
address

=}

HRrOO—pmk
P OrO—O

D1 DO

decrements
increments
is fixed
is fixed

PORT B VARIABLE TIMING BYTE

= Cycle Length = 4

Cycle Length
Cycle Length = 2
Do not use

n
w

ZXN PRESCALAR (FIXED TIME TRANSFER)

The ZXN PRESCALAR is a feature of the zxnDMA implementation. If non-
zero, a delay will be inserted after each byte is transferred such that the total
time needed for each transfer is determined by the prescalar. This works in
both the continuous mode and the burst mode. If the DMA is operated in burst
mode, the DMA will give up any waiting time to the CPU so that the CPU can
run while the DMA is idle.

The rate of transfer is given by the formula “Frate = 875kHz / prescalar” or,
rearranged, “prescalar = 875kHz / Frate”. The formula is framed in terms of

6.6. ZXNDMA REGISTERS 69

a sample rate (Frate) but Frate can be inverted to set a transfer time for each
byte instead. The 875kHz constant is a nominal value assuming a 28MHz system
clock; the system clock actually varies from this depending on the video timing
selected by the user (HDMI, VGAO0-6) so for complete accuracy the constant
should be prorated according to documentation for nextreg $11.

In a DMA audio setting, selecting a sample rate of 16kHz would mean setting
the prescalar value to 55. This sample period is constant across changes in CPU
speed.

WR3 — Write Register Group 3

D7 D6 D5 D4 D3 D2 D1 DO BASE REGISTER BYTE
1 | 0o 0 o0 o o0 o
|
1 = DMA Enable

The Z80 DMA defines more fields but they are ignored by the zxnDMA.

The two other registers defined by the Z80 DMA in this group on D4 and D3
are implemented by the zxnDMA but they do nothing.

It is preferred to start the DMA by writing an Enable DMA command to WR6.

WR4 — Write Register Group 4

D7 D6 D5 D4 D3 D2 D1 DO BASE REGISTER BYTE
1 o0 1 1 o 1
I I
0 0 = Do not use (Behaves like Continuous mode, Byte mode on Z80 DMA)
0 1 = Continuous mode
1 0 = Burst mode
1 1 = Do not use

I
v
D7 D6 D5 D4 D3 D2 D1 DO PORT B STARTING ADDRESS (LOW BYTE)
|
\
D7 D6 D5 D4 D3 D2 D1 DO PORT B STARTING ADDRESS (HIGH BYTE)

The Z80 DMA defines three more registers in this group through D4 that define
interrupt behaviour. Interrups and pulse generation are not implemented in the
zxnDMA nor are these registers available for writing.

WRS5 — Write Register Group 5

D7 D6 D5 D4 D3 D2 D1 DO BASE REGISTER BYTE

1 0 | | 0 0 1 0
|
0 = /ce only
1 = /ce & /wait multiplexed

|
|
|
|
0 = Stop on end of block

1 Auto restart on end of block

70 CHAPTER 6. ZXNDMA

The /ce & /wait mode is implemented in the zxnDMA but is not currently used.
This mode has an external device using the DMA’s /ce pin to insert wait states
during the DMA’s transfer.

The auto restart feature causes the DMA to automatically reload its source
and destination addresses and reset its byte counter to zero to repeat the last
transfer when a previous one is finished.

WR6 — Command Register

D7 D6 D5 D4 D3 D2 D1 DO BASE REGISTER BYTE
1 ? ? ? ? ? 1 1
| | | | |
1 0 0 0 0 =\$C3 = Reset
1 0 0 0 1 = \$C7 = Reset Port A Timing
1 0 O 1 0 = \$CB = Reset Port B Timing
0 1 1 1 1= \$BF = Read Status Byte
0 0 0 1 0= \$8B = Reinitialize Status Byte
o 1 0 O 1 = \$A7 = Initialize Read Sequence
1 0 0 1 1 = \$CF = Load
1 0 1 0 0 =\$D3 = Continue
0 0 0 O 1=\$87 = Enable DMA
0 0 0 0 0 = \$83 = Disable DMA
+--0 1 1 1 0 = \$BB = Read Mask Follows
|
D7 D6 D5 D4 D3 D2 D1 DO READ MASK
o | | | | | |

(=]
N
(=4
(o)
o
a
(=]
=
=]
w
o
%
o
it
=]
o

Status Byte

D7 D6 D5 D4 D3 D2 D1 DO Byte Counter Low
D7 D6 D5 D4 D3 D2 D1 DO Byte Counter High
D7 D6 D5 D4 D3 D2 D1 DO Port A Address Low
D7 D6 D5 D4 D3 D2 D1 DO Port A Address High
D7 D6 D5 D4 D3 D2 D1 DO Port B Address Low

D7 D6 D5 D4 D3 D2 D1 DO Port B Address High

Unimplemented Z80 DMA commands are ignored.

Prior to starting the DMA, a LOAD command must be issued to copy the Port
A and Port B addresses into the DMA’s internal pointers. Then an iEnable
DMA1 command is issued to start the DMA.

The iContinuei command resets the DMA’s byte counter so that a following
iEnable DMA1 allows the DMA to repeat the last transfer but using the current
internal address pointers. I.e. it continues from where the last copy operation
left off.

6.6. ZXNDMA REGISTERS 71

Registers can be read via an 10 read from the DMA port after setting the read
mask. (At power up the read mask is set to $7f). Register values are the current
internal dma counter values. So iPort Address A Lowi is the lower 8-bits of Port
A’s next transfer address. Once the end of the read mask is reached, further
reads loop around to the first one.

The format of the DMA status byte is as follows:
00E1101T
E is set to 0 if the total block length has been transferred at least once.

T is set to 1 if at least one byte has been transferred.

Operating speed The zxnDMA operates at the same speed as the CPU, that
is 3.5MHz, TMHz or 14MHz. This is a contended clock that is modified by the
ULA and the auto-slowdown by Layer2.

Auto-slowdown occurs without user intervention if speed exceeds TMhz and the
active Layer2 display is being generated (higher speed operation resumes when
the active Layer2 display is not generated). Programmers do NOT need to
account for speed differences regarding DMA transfers as this happens auto-
matically.

Because of this, the cycle lengths for Ports A and B can be set to their minimum
values without ill effects. The cycle lengths specified for Ports A and B are
intended to selectively slow down read or write cycles for hardware that cannot
operate at the DMA’s full speed.

The DMA and Interrupts The zxnDMA cannot currently generate inter-
rupts.

The other side of this is that while the DMA controls the bus, the Z80 cannot
respond to interrupts. On the Z80, the nmi interrupt is edge triggered so if an
nmi occurs the fact that it occurred is stored internally in the Z80 so that it will
respond when it is woken up. On the other hand, maskable interrupts are level
triggered. That is, the Z80 must be active to regularly sample the /INT line to
determine if a maskable interrupt is occurring. On the Spectrum and the ZX
Next, the ULA (and line interrupt) are only asserted for a fixed amount of time
30 cycles at 3.5MHz. If the DMA is executing a transfer while the interrupt is
asserted, the CPU will not be able to see this and it will most likely miss the
interrupt. In burst mode, the CPU will never miss these interrupts, although
this may change if multiple channels are implemented.

72 CHAPTER 6. ZXNDMA
6.7 Programming examples

A simple way to program the DMA is to walk down the list of registers WRO-
WR5, sending desired settings to each. Then start the DMA by sending a
LOAD command followed by an ENABLE DMA command to WR6. Once
more familiar with the DMA, you will discover that the amount of information
sent can be reduced to what changes between transfers.

1. Assembly
Short example program to DMA memory to the screen then DMA a sprite
image from memory to sprite RAM, and then showing said sprite scroll
across the screen.

;3zxnDMA programming example

;33 (c) Jim Bagley

DMA_RESET equ $c3
DMA_RESET_PORT_A_TIMING equ $c7
DMA_RESET_PORT_B_TIMING equ $cb
DMA_LOAD equ $cf ; %11001111
DMA_CONTINUE equ $d3
DMA_DISABLE_INTERUPTS equ $af
DMA_ENABLE_INTERUPTS equ $ab
DMA_RESET_DISABLE_INTERUPTS equ $a3
DMA_ENABLE_AFTER_RETI equ $b7
DMA_READ_STATUS_BYTE equ $bf
DMA_REINIT_STATUS_BYTE equ $8b
DMA_START_READ_SEQUENCE equ $a7
DMA_FORCE_READY equ $b3
DMA_DISABLE equ $83

DMA_ENABLE equ $87
DMA_WRITE_REGISTER_COMMAND equ $bb
DMA_BURST equ %11001101
DMA_CONTINUOUS equ %10101101
ZXN_DMA_PORT equ $6b
SPRITE_STATUS_SLOT_SELECT equ $303B
SPRITE_IMAGE_PORT equ $5b
SPRITE_INFO_PORT equ $57

333

IFDEF testing
org $6000
ELSE

org $2000
ENDIF

6.7. PROGRAMMING EXAMPLES 73

start

1d hl, $0000
1d de, $4000
1d bc, $800

call TransferDMA ; copy some random data to the screen
;5 pointing to ROM for now, for the purpose of showing
;3 how to do a DMA copy.

1d a,0 ; sprite image number we want to update
1d bc,SPRITE_STATUS_SLOT_SELECT
out (c),a ; set the sprite image number

1d bc,1*256 ; number to transfer (1)
1ld hl,testsprite ; from
call TransferDMASprite ; transfer to sprite ram

nextreg 21,1 ; turn sprite on. for more info on this

;3 check out

;; https://www.specnext.com/tbblue-io-port-system/

1d de,0

1d (xpos),de ; set initial X position (doesn't need it
;; for this demo, but if you run the .loop again it will
;; continue from where it was

1d a,$20

1d (ypos),a ; set initial Y position

.loop

1d a,0 ; sprite number we want to position

1d bc,SPRITE_STATUS_SLOT_SELECT

out (c),a

1d de, (xpos)

1d hl,(ypos) ; ignores H so doing this rather than
;3 1d a,(ypos):1d 1,a

1d bc,(image) ; not flipped or palette shifted
call SetSprite

halt

1d de, (xpos)

inc de

1d (xpos) ,de

1d a,d

cp $01

jr nz,.loop ; if high byte of xpos is not 1 (right of
;3 screen)

1d a,e

cp $20+1

jr nz,.loop ; if low byte is not $21 just off the right
;; of the screen, $20 is off screen but as the INC DE is
;3 just above and not updated sprite after it, it needs
;3 to be $21

Xor a

ret ; return back to basic with 0K

xpos dw O ; x position
ypos db O ; y position

5>

5

H

H

these next two BITS and IMAGE are swapped as bits needs
to go into B register image db 0+$80 ; use image 0 (for

74

>

5

the image we transfered)+$80 to set the sprite to active

CHAPTER 6. ZXNDMA

bits db 0 ; not flipped or palette shifted

cl
c2
c3
cd
ch
c6
c7
c8

= %11100000
= %11000000
= %10100000
= %10000000
= %01100000
= %01000000
= %00100000
= %00000000

testsprite

3

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db

cl,cl,cl,cl,cl,cl,cl,cl,cl,cl,cl,cl,cl,cl,cl,cl
cl,c2,c2,c2,c2,c2,c2,c2,c2,c2,c2,c2,c2,c2,c2,cl
cl,c2,¢c3,c3,c3,c3,c3,c3,c3,c3,c3,c3,c3,c3,c2,cl
cl,c2,c3,c4,c4,c4,c4,c4,c4,c4,c4,c4,c4,c3,c2,cl
cl,c2,c3,c4,c5,c5,c5,c5,c5,cb,c5,c5,c4,c3,c2,cl
cl,c2,c3,c4,c5,c6,c6,c6,c6,c6,c6,cb,c4,c3,c2,cl
cl,c2,c3,c4,c5,c6,c7,c7,c7,c7,c6,cb,c4,c3,c2,cl
cl,c2,c3,c4,c5,c6,c7,c8,c8,c7,c6,c5,c4,c3,c2,cl
cl,c2,c3,c4,c5,c6,c7,c8,c8,c7,c6,c5,c4,c3,c2,cl
cl,c2,c3,c4,c5,c6,c7,c7,c7,c7,c6,cb,c4,c3,c2,cl
cl,c2,c3,c4,c5,c6,c6,c6,c6,c6,c6,c5,c4,c3,c2,cl
cl,c2,c3,c4,c5,c5,c5,¢c5,c5,cb5,c5,c5,c4,c3,c2,cl
cl,c2,c3,c4,c4,c4,c4,c4,c4d,c4d,c4,c4,c4,c3,c2,cl
cl,c2,¢c3,¢3,¢c3,c3,c3,¢c3,c3,c3,c3,c3,c3,c3,c2,cl
cl,c2,c2,c2,c2,c2,c2,c2,c2,c2,c2,c2,c2,c2,c2,cl
cl,cl,cl,cl,cl,cl,cl,cl,cl,cl,cl,cl,cl,cl,cl,cl

555 de = X
55 1 =Y
5353 b = bits
533 C = sprite image
SetSprite
push bc

1d bc,SPRITE_INFO_PORT
out (c),e ; Xpos

out (c),l1 ; Ypos

pop hl

1d a,d

and 1

or

h

out (c),a
1d a,l:or $80

out (c),a ; image
ret
;33 hl = source
55, de = destination
533 bc = length
33 mmmmmm e e
TransferDMA
di

1d (DMASource),hl

6.7. PROGRAMMING EXAMPLES

1d (DMADest) ,de
1d (DMALength),bc
1d hl,DMACode

1d b,DMACode_Len
1d c,ZXN_DMA_PORT
otir

ei

ret

DMACode db DMA_DISABLE
db %01111101 ; RO-Transfer mode, A -> B, write adress
;5 + block length
DMASource dw O ; RO-Port A, Start address
;3 (source address)
DMALength dw O ; RO-Block length (length in bytes)
db %01010100 ; Rl-write A time byte, increment, to
;3 memory, bitmask
db %00000010 ; 2t
db %01010000 ; R2-write B time byte, increment, to
;3 memory, bitmask
db %00000010 ; R2-Cycle length port B
db DMA_CONTINUOUS ; R4-Continuous mode (use this for
;3 block transfer), write dest adress
DMADest dw O ; R4-Dest address (destination address)
db %10000010 ; R5-Restart on end of block, RDY active
;3 LOW
db DMA_LOAD ; R6-Load
db DMA_ENABLE ; R6-Enable DMA

DMACode_Len equ $-DMACode

553 hl = source

;33 bc = length

;3; set port to write to with TBBLUE_REGISTER_SELECT
;33 prior to call
TransferDMAPort

di

1d (DMASourceP) ,hl
1d (DMALengthP) ,bc
1d hl,DMACodeP

1d b,DMACode_LenP
1d c,ZXN_DMA_PORT
otir

ei

ret

DMACodeP db DMA_DISABLE
db %01111101 ; RO-Transfer mode, A -> B, write adress
;5 + block length
DMASourceP dw O ; RO-Port A, Start address (source address)
DMALengthP dw O ; RO-Block length (length in bytes)
db %01010100 ; Rli-read A time byte, increment, to
;3 memory, bitmask
db %00000010 ; R1-Cycle length port A
db %01101000 ; R2-write B time byte, increment, to

75

76

db
db
dw
db
db
db

memory , bitmask

CHAPTER 6. ZXNDMA

%00000010 ; R2-Cycle length port B
%10101101 ; R4-Continuous mode (use this for block

transfer), write dest adress
$253b ; R4-Dest address

(destination address)

%10000010 ; R5-Restart on end of block, RDY active

LOwW
DMA_LOAD ; R6-Load

DMA_ENABLE ; R6-Enable DMA

DMACode_LenP equ $-DMACodeP

30

5

b

5

= source
= length

TransferDMASprite

di
1d
1d
1d
1d
1d

(DMASourceS) ,hl
(DMALengthS) ,bc
hl,DMACodeS
b,DMACode_LenS
c,ZXN_DMA_PORT

otir

ei

ret

DMACodeS db DMA_DISABLE

db

5

%01111101 ; RO-Transfer mode,

+ block length

DMASourceS dw O ; RO-Port A,
DMALengthS dw 0 ; RO-Block length (length in bytes)

db
db
db
db
db

dw

db
db
db

%01010100 ; Rl-read A time byte,

memory , bitmask

-> B, write adress

Start address (source address)

increment, to

%00000010 ; R1-Cycle length port A

%01101000 ; R2-write B time byte,

memory , bitmask

increment, to

%00000010 ; R2-Cycle length port B
%10101101 ; R4-Continuous mode (use this for block

transfer), write dest adress

SPRITE_IMAGE_PORT ; R4-Dest address (destination <«

address)

%10000010 ; R5-Restart on end of block, RDY active

LOw
DMA_LOAD ; R6-Load

DMA_ENABLE ; R6-Enable DMA

DMACode_LenS equ $-DMACodeS

de = dest, a = fill value,
DMAFill
di

1d
1d
1d
1d
1d
1d

(FillValue) ,a
(DMACDest) ,de
(DMACLength) ,bc
hl ,DMACCode
b,DMACCode_Len
c,ZXN_DMA_PORT

PROGRAMMING EXAMPLES

otir
ei
ret

FillValue db 22
DMACCode db DMA_DISABLE

db %01111101
DMACSource dw FillValue
DMACLength dw O

db %00100100,%00010000,%10101101
DMACDest dw O

db DMA_LOAD ,DMA_ENABLE
DMACCode_Len equ $-DMACCode

IFDEF testing

savesna "dmatest.sna",start

ELSE

fin

savebin "DMATEST",start,fin-start
ENDIF

78

CHAPTER 6. ZXNDMA

Chapter 7
Copper and Display Timing

From: KevB (aka 9bitcolour)

Introduction The ZX Spectrum Next includes a co-processor named “COP-
PER”. It functions in a similar way to the Copper found in the Commodore
Amiga Agnus custom chip. It’s role is to free the Z80 of tasks that require the
writing of hardware registers at precise pixel co-ordinates.

Overview The ZX Spectrum Next COPPER has three instructions: NOOP,
MOVE, WAIT.

NOOP is used to fine tune timing. MOVE writes data to a specific range of
hardware registers. WAIT waits for a pixel position on the video display.

These instructions are stored in 2k (2048 BYTES) of dedicated write-only pro-
gram RAM also known as a “Copper list”.

Each instruction is 16 bits (WORD) in size allowing for a maximum of 1024
instructions to be stored in the program RAM. The COPPER uses an internal
10 bit program counter (PC) which wraps to zero at the end of the list. The
PC can be reset to zero, this is the default value after a hard/soft reset.

The instructions are stored in big endian format and transferred to the 2k
program RAM using the Z80 or DMA (bits 15..8 followed by bits 7..0).

Three write-only hardware registers control access to the program RAM as well
as the operating modes.

System performance is not affected when the COPPER is executing instructions.
The hardware registers and COPPER program RAM are not connected to the

main memory BUS. The overall design of this system together with the use of

79

80 CHAPTER 7. COPPER AND DISPLAY TIMING

alternate clock edges means that contention between the COPPER, Z80 and
DMA has been eliminated.

The COPPER has a base clock speed of 13.5Mhz for HDMI and 14Mhz for
VGA.

The bandwidth is around 14 million single cycle NOOP/WAIT instructions and
7 million two cycle MOVE instructions per second.

7.1 Timing

To fully understand the COPPER, you must first understand the display timing
for each of the machines and video modes found in the ZX Spectrum Next.

There are several display timing configurations due to the four machine types,
two refresh rates, two video systems (VGA/HDMI) and Timex HIRES mode.

Details of these timings are outlined in this chapter.

Machines The ZX Spectrum Next has four machine types (48k, 128k, Pen-
tagon, and HDMI). The machine timing and HDMI determine the number of
T-states per line which determines the base dot clock frequency and Z80/DMA
clock speed.

This guide groups machine types by their timing for convenience. The HDMI
video mode overrides the default machine timing so it is included as an extra
machine type which does not exist in the official documentation.

Display The ZX Spectrum Next doesn’t have video modes based on resolution
that you would expect to find on graphics card based hardware. There is one
fixed resolution of 256 x 192 which can be doubled to 512 x 192 in Timex HIRES
mode. What it does have is the ability to set the refresh rate from 50Hz to 60Hz
and horizontal dot clock. This in turn together with the VGA and HDMI timing
affects the vertical line count giving several combinations in total.

VGA modes 0..6 are included as one single VGA mode as the internal machine
timing is constant across those seven refresh rate steps.

More details can be found in Video modes.

Resolution There are two main horizontal resolutions: standard 256 x 192
and Timex HIRES 512 x 192. Details of LORES 128 x 96 are not included to
simplify this guide.

The frame buffer height is fixed at 192 pixels and surrounded by a large border
and overscan as well as horizontal and vertical blanking periods.

7.1. TIMING 81

There are five vertical line counts: 261, 262, 311, 312, 320. Several pixels are
hidden in the overscan and blanking periods beyond the visible border.

The result is 256 x 192 and 512 x 192 pixel resolutions with a large border.

The colour of the visible border beyond the frame buffer can be manipulated.
Visual changes will not show during the overscan and blanking periods.

Dot Clock The dot clock on the ZX Spectrum Next runs at 13.5Mhz for
HDMI and around 14Mhz for VGA. The COPPER clock runs at the same
frequency as the dot clock. For v3.00 the copper runs at twice the frequency of
the dot clock.

The number of dot clocks per line is calculated by multiplying the number of
3.5Mhz Z80 T-states per line by four. Example: 228Ts * 4 = 912 dot clocks.

The number of dot clocks per second is calculated by the following:
T-states per line * 4 * line count * refresh rate

In standard 256 x 192 resolution the duration of one pixel is two dot clocks. In
Timex HIRES 512 x 192 resolution the duration of one pixel is one dot clock.

Details of the dot clock counts can be found in tables 5.1 and 5.2.

Table 7.1: Vertical Line Counts and Dot Clock Combinations

System Lines | Clocks

48K VGA 50Hz 312 224.0 * 4 = 896
128K VGA 50Hz 311 228.0 * 4 = 912
PENTAGON VGA 50Hz | 320 224.0 * 4 = 896
48K VGA 60Hz 262 224.0 * 4 = 896
128K VGA 60Hz 261 228.0 * 4 =912
HDMI 50Hz 312 216.0 * 4 = 864
HDMI 60Hz 262 214.5 * 4 = 858

Table 7.2: Dot Clocks per Second
System Lines | Clocks Freq
48K VGA 50Hz 312 13977 600 | 14.0Mhz ()
128K VGA 50Hz 311 14 181 600 | 14.2Mhz (28Mhz)
PENTAGON VGA 50Hz | 320 14 336 000 | 14.3Mhz (28Mhz)
48K VGA 60Hz 262 14 085 120 | 14.1Mhz (28Mhz)
()
()
()

28Mhz

128K VGA 60Hz 261 14 281 920 | 14.3Mhz (28Mhz
HDMI 50Hz 312 13 478 400 | 13.5Mhz (27Mhz
HDMI 60Hz 262 13 487 760 | 13.5Mhz (27Mhz

82 CHAPTER 7. COPPER AND DISPLAY TIMING

Coordinates The top left pixel of the frame buffer is line 0 and horizontal
dot clock 0. This is also known as “0,0”.

The bottom right pixel of the frame buffer in standard 256 x 192 resolution is
line 191 and horizontal dot clocks 510+511.

The bottom right pixel of the frame buffer in Timex HIRES 512 x 192 resolution
is line 191 and horizontal dot clock 511.

The line one pixel above the frame buffer is the last line of the video frame and
equal to the total line count minus one (312-1 for example).

The line one pixel below the frame buffer is line 192.

The COPPER horizontal dot clock compare is locked to every eight pixels in
standard 256 x 192 resolution and every sixteen pixels in Timex HIRES 512 x 192
resolution. The NOOP instruction can be used to fine tune timing in single dot
clock steps.

Compare The COPPER uses a 9 bit vertical line compare allowing it to
handle the various line counts.

The COPPER horizontal compare is 6 bits meaning that it can wait for 64
positions across each line. The range of this value is limited by the machine
timing as that determines the number of dot clocks per line.

Table 7.3: Maximum Horizontal COPPER Compare

System Max
HDMI 52
Pentagon | 54
48k 54
128k 55

Each horizontal compare is in steps of 16 dot clocks to cover the full range across
a raster line.

16 dot clocks = 4 pixels in lo 128 x 96 resolution
16 dot clocks = 8 pixels in standard 256 x 192 resolution
16 dot clocks = 16 pixels in high 512 x 192 resolution

There is some slack to consider after the maximum horizontal compare value.
The slack is calculated using the following:

dot clocks per line - maximum horizontal compare * 16

Table 5.5 provides details of the horizontal display, left/right border, blanking
and COPPER dot clock/pixel position compare values:

Table 5.6 provides a detailed list of vertical display, top/bottom border and

7.1. TIMING

Table 7.4: Slack Dot Clocks After Maximum Compare

83

clocks/line slack

858 (52 * 16 = 832) | 26 dot clocks

864 (52 * 16 = 832) | 32 dot clocks

896 (54 * 16 = 864) | 32 dot clocks

912 (55 * 16 = 880) | 32 dot clocks

Table 7.5: Horizontal Timing

Compare | Standard | Timex HDMI 48k 128k Pentagon
0-31 0-255 0-511 Display Display Display Display
32-36 256-295 512-591 | R-Border | R-Border | R-Border | R-Border
37 296-303 592-607 | R-Border | R-Border | Blanking | Blanking
38-48 304-391 608-783 | Blanking | Blanking | Blanking | Blanking
49 392-399 784-799 | L-Border | Blanking | Blanking | L-Border
50-52 400-423 800-847 | L-Border | L-Border | L-Border | L-Border
53-54 424-439 848-879 | — L-Border | L-Border | L-Border
55 440-447 880-895 | — - L-Border | —

— Dot clock compare is out of range.

blanking as well as maximum COPPER line compare. It also provides the ULA
VBLANK interrupt line number.

Table 7.6: Vertical Timing

Line HDMI 50Hz HDMI 60Hz 48k 50Hz 48k 60Hz 128k 50Hz 128k 60Hz Pentagon
0-191 Display Display Display Display Display Display Display
192-211 B-Border B-Border B-Border B-Border B-Border B-Border B-Border
212-224 B-Border Blanking B-Border B-Border B-Border B-Border B-Border
225-231 B-Border Blanking B-Border Blanking B-Border Blanking B-Border
232-238 Blanking Blanking B-Border Blanking B-Border Blanking B-Border
239 Blanking Blanking B-Border T-Border B-Border T-Border B-Border*
240 Blanking Blanking B-Border T-Border B-Border T-Border B-Border
241-244 Blanking Blanking B-Border T-Border B-Border T-Border Blanking
245-247 Blanking T-Border B-Border T-Border B-Border T-Border Blanking
248 Blanking T-Border B-Border* T-Border B-Border* T-Border Blanking
249-255 Blanking T-Border Blanking T-Border Blanking T-Border Blanking
255 Blanking T-Border Blanking T-Border Blanking T-Border T-Border
256 Blanking* T-Border Blanking T-Border Blanking T-Border T-Border
257-260 Blanking T-Border Blanking T-Border Blanking T-Border T-Border
261 Blanking T-Border Blanking T-Border Blanking - T-Border
262 Blanking - Blanking - Blanking - T-Border
263-271 Blanking - T-Border - T-Border — T-Border
272-310 T-Border - T-Border - T-Border - T-Border
311 T-Border - T-Border - - - T-Border
312-319 — — — — — — T-Border

Line compare is out of range
* ULA VBLANK interrupt.

Note: The HDMI overscan and blanking period is larger than that of a VGA
monitor which can auto-adjust alignment. The following data is based on visible
results from various monitors thus subject to refinement.

Pixels are visible during DISPLAY /BORDER and hidden during BLANKING.

Overscan The visible area of the display can extend to resolutions exceeding
256 x 192.

84 CHAPTER 7. COPPER AND DISPLAY TIMING

The 50/60 Hz refresh rate mode dictates the vertical limit.

VGA and HDMI differ with VGA providing more visible pixels beyond the range
of HDMI. Table 5.7 provides ideal extended pixel resolutions:

Maximum Extended VGA Resolutions
50Hz = 352 x 288 (standard 256 resolution)
60Hz = 352 x 240 (standard 256 resolution)

Table 7.7: Ideal Extended Resolutions for Both VGA and HDMI
Freq | Resolution | Top | Bottom | Left | Right

50Hz | 336x288 32 32 40 40
60Hz | 336x240 24 24 40 40

Table 5.8 provides COPPER horizontal position and vertical line compare pa-
rameters for ideal extended resolutions:

Table 7.8: Ideal Extended Resolution Display Parameters

Timing Video | Ref Lines | Top | Bot | Left Right | Ext Res

0/1 48k VGA 50Hz | 312 280 | 223 | 51.1 36.15 | 80x64 | 336x256
0/1 48k VGA 60Hz | 262 246 | 207 | 51.1 36.15 | 80x48 | 336x240
2/3 128k VGA 50Hz | 311 279 | 223 | 52.1 36.15 | 80x64 | 336x256
2/3 128k VGA 60Hz | 261 245 | 207 | 52.1 36.15 | 80x48 | 336x240
4 Pentagon | VGA 50Hz | 320 288 | 223 | 51.1 36.15 | 80x64 | 336x256
0/1 48k HDMI | 50Hz | 312 280 | 223 | 49.1 36.15 | 80x64 | 336x256
0/1 48k HDMI | 60Hz | 262 246 | 207 | 48.11 | 36.15 | 80x48 | 336x240
2/3 128k HDMI | 50Hz | 312 280 | 223 | 49.1 36.15 | 80x64 | 336x256
2/3 128k HDMI | 60Hz | 262 246 | 207 | 48.11 | 36.15 | 80x48 | 336x240
4 Pentagon | HDMI | 50Hz | 312 280 | 223 | 49.1 36.15 | 80x64 | 336x256
4 Pentagon | HDMI | 60Hz | 262 246 | 207 | 48.11 | 36.15 | 80x48 | 336x240

TOP: Initial line of the extended top border area - see notes below*

BOT: Last line of the extended bottom border area - see notes below™
LEFT: First pixel of the extended left border area - see notes below**

RIGHT: Last pixel of the extended right border area - see notes below**
* Line compare value for MOVE (bits 8..0).
** The integer part is the horizontal value for MOVE (bits 14..9).

** The fractional part is specified in dot clocks (NOOP instructions).

7.2 Instructions

This section describes the behaviour of the COPPER instructions as well as the
bit definitions and execution time.

The three 16 bit COPPER instructions are comprised of the following bit defi-

nitions:

7.2. INSTRUCTIONS 85

Table 7.9: Instruction Bit Definition
Name 15-8 7-0 Clocks

NOOP | 00000000 00000000 1
MOVE | ORRRRRRR | DDDDDDDD | 2
WAIT | ITHHHHHHV | VVVVVVVV | 1
H 6 bit horizontal dot clock compare

V 9 bit vertical line compare

R 7 bit Next register 0x00..0x7F

D 8 bit data

NOOP NOOP (no-operation) executes in one dot clock. It is useful for fine
tuning timing, initialising COPPER RAM and 'NOP’ out COPPER program
instructions.

It can be used to align colour and display changes to half pixel positions in
standard 256 x 192 resolution. Its duration is equal to one Timex HIRES pixel.

This guide uses the name 'NOOP’ to avoid confusion with the Z80 opcode NOP.

MOVE MOVE executes in two dot clocks. It moves 8 bits of data into any
of the Next hardware registers in the range $00 (0) .. $7F (127).

The WORD value $0000 is reserved for the NOOP instruction so no register
access is carried out for that special case. Register $00 is read-only so not
affected by the restriction of not being able to write zero to it.

This instruction can perform 7 million register writes per second for VGA and
6.75 million register writes per second for HDMI.

WAIT WAIT executes in one dot clock. It performs a compare with the
current vertical line number and the current horizontal dot clock.

WAIT will hold until the current raster line matches the 9 bit value stored in
bits 8..0. When the line compare matches, WAIT will still hold if the current
horizontal dot clock is less than the value in bits 14..9.

This compare logic means that out of order vertical line compares will cause the
COPPER to wait until the next video frame as the test is for an exact match of
the line number. The COPPER will continue to the next instruction after an
out of order horizontal pixel position compare as the test checks for the current
dot clock being greater than or equal to the compare value.

WAIT will stop the COPPER when a compare is made against an out of range
vertical line or horizontal dot clock position as they will never occur

A standard way to terminate a COPPER program is to wait for line 511 and
horizontal position 63. This encodes into the instruction WORD $FFFF.

86 CHAPTER 7. COPPER AND DISPLAY TIMING

The horizontal dot clock position compare includes an adjustment meaning that
the compare completes three dot clocks early in standard 256 x 192 resolution
and two dot clocks early in Timex HIRES 512 x 192 resolution. In practice,
a pixel position can be specified with clocks to spare to write a register value
before the pixel is displayed. This saves software having to auto-adjust positions
to arrive early. It also means that a wait for 0,0 can affect the first pixel of the
frame buffer before it is displayed and set the scroll registers without visual
artefacts.

Example The following example provides a simple COPPER program to
move data to a hardware register at two specific pixel positions. The BYTES
for the program are listed in the left column:

PAL8 equ Ox41 ; 8 bit palette hardware register
$80,$00 WAIT 0,0 ; wait for pixel position 0,0 (H,V)
$00,$00 NOOP ; fine tune timing by one dot clock
$41,$E0 MOVE PAL8,11100000b ; write RED to palette register
$CO, $BF WAIT 32,191 ; wait for pixel position 256,191
$00,$00 NOOP ; fine tune timing by one dot clock
$41,$00 MOVE PAL8,00000000b ; write BLACK to palette register
$FF, $FF WAIT 63,511 ; wait for an out of range position

7.3 Control

The COPPER is controlled by the following three write-only registers:

$60 (96) Copper data
$61 (97) Copper control LO BYTE
$62 (98) Copper control HI BYTE

The COPPER instructions are written one BYTE at a time to the program
RAM using register $60 (Copper data).

An index system is used to select the destination write address within the 2K
program RAM. Eleven bits are needed to represent the index. Registers $61
and $62 hold this 11 bit index.

The index increments each time one BYTE is written to register $60. The index
wraps to zero when the last BYTE of program RAM is written.

The instruction data is normally written in big endian format although there is
no rule stating that partial instruction BYTES cannot be written. It is safe to
write to the COPPER program RAM while the COPPER is executing as long
the instruction data written does not create a mall formed instruction which
comprises of one half of the current executing instruction and one half the new
instruction - this could result in unexpected behaviour.

7.3. CONTROL 87

The Z80 and DMA can be used to write the instruction data.

Writing to program RAM while the COPPER is running has no impact on
system performance as the RAM is contention free. COPPER timing is not
affected by the Z80 or DMA writing to the program RAM. Program RAM is
write-only.

The contents of the 2k program RAM are preserved during a hard/soft reset.

Register $61 holds the lower 8 bits of the index. Register $62 holds the upper 3
bits of the index as well as two control bits which set the COPPER operating
mode.

Table 7.10: Register Bit Definitions

Reg | 7-0 Description
0x60 | DDDDDDDD | BYTE data to write to COPPER program RAM
0x61 | ITIITIIT Program RAM index 7..0
0x62 | CCO00IIL Program RAM index 10..8 and control bits
D 8 bit data

I 11 bit index
C 2 bit control

The COPPER has an internal 10 bit program counter (PC). Each instruction
advances the program counter by one after completion. The program counter
wraps to zero after the last instruction at location 1023. This causes the copper
list to loop.

The program counter defaults to zero during a hard/soft reset.

The control bits require a change to update the operating mode. This feature
preserves COPPER operation when setting the program RAM index address.

The program counter is preserved when stopping the COPPER. Two of the four
control settings reset the internal PC to zero.

Table 5.11 describes the control bits:

Table 7.11: Control Mode Definitions
Name CC | Description

STOP 00 STOP COPPER
RESET | 01 RESET PC and start COPPER
START | 10 START COPPER

* The control mode names used in this guide differ from the official names.

Here is a detailed description of the control bits:

STOP This is the default operating mode set during a hard/soft reset. The
COPPER is idle in this state and will STOP if currently executing when entering

88 CHAPTER 7. COPPER AND DISPLAY TIMING

this mode. It is safe to write to any location within the 2K program RAM when
the COPPER is stopped.

Entering STOP mode preserves the internal program counter so that the COP-
PER may continue when restarted.

RESET The program counter is RESET to zero when entering this mode.
The COPPER is started if idle otherwise entering this mode acts as a jump to
location zero when the COPPER is running.

START Entering this mode causes an idle COPPER to start executing in-
structions from the current program counter. Entering this mode while the
COPPER is running has no effect other than to disable FRAME mode if active.

FRAME The program counter is RESET to zero when entering this mode.
The COPPER is started if idle otherwise entering this mode acts as a jump to
location zero when the COPPER is running.

Entering this state enables FRAME mode. The program counter will be reset
to zero each frame at 0,0.

7.4 Configuration

Hardware registers provide timing and configuration data allowing software to
build and configure COPPER programs that function correctly across the var-
ious video modes and machine types. It is not essential to detect the machine
type but it should be noted that software should not assume that it is run-
ning on a specific machine as the COPPER hardware is available across all four
machine types.

Three registers can be read to determine the machine configuration for Ts per
line, dot clocks, refresh rate, line count and maximum horizontal dot clock/pixel
position compare.

Refresh Rate The refresh rate must be taken into account and can change
real-time so should be monitored and auto-configured when the COPPER is
active as the line count will change with the refresh rate. This could lead to the
COPPER waiting for lines that never occur.

Register (R/W) $05 (5) = Peripheral 1 Settings

e bits 7-6 = joystick 1 mode (MSB)
e bits 5-4 = joystick 2 mode (MSB)
e bit 3 = joystick 1 mode (LSB)

7.4. CONFIGURATION 89

e bit 2 = 50/60 Hz mode (0 = 50Hz, 1 — 60Hz)
e bit 1 = joystick 2 mode (LSB)
e bit 0 = Enable Scandoubler

0 = Disabled for CRT

1 = Enabled for VGA

Joystick modes

000 = Sinclair 2 (67890)

001 = Kempston 2 (port $37)

010 = Kempston 1 (port $1F)
011 = Megadrive 1 (port $1F)
100 = Cursor

101 = Megadrive 2 (port $37)

110 = Sinclair 1 (12345)

111 = User Defined Keys Joystick

*

Joysticks can be placed in i/o mode via nextreg 0x0B.
Programming the user defined keys joystick is done through the ps2 keymap
interface on nextreg 0x28, 0x29 and 0x2B:

*

1. Write 128 to nextreg 0x28

Write 0 (left joystick) or 16 (right joystick) to nextreg 0x29

3. Write eleven bytes to nextreg 0x2B. The bytes correspond to the eleven
buttons on an md pad (X=11ZY START ACB U D L R=1)

4. Each byte written identifies a key in the 8x7 membrane; bits 5:3 select the
row and bits 2:0 select the column with 111 meaning no action.
In all joystick modes, excess buttons on an md pad not read via ports will
generate key input if so programmed.

B

Video Modes The video mode can only be changed during the boot process
so one initial read is required of this register during software start up phase.

The machine timing is identical for the seven VGA modes although the physical
refresh rate of the video output speeds up for each mode in turn by roughly
1Hz. The internal timing of the machine remains constant and as close to the
original hardware as possible. VGA is a perfect Amstrad ZX Spectrum 128k
+3 for example as far as timing is concerned across the seven VGA modes.

The effect of this speed up means that mode 0 will execute in one second of time
whereas mode 6 will execute in a shorter time period. Mode 0 is as close to
50/60 Hz as possible where mode 6 is closer to 60/70 Hz. That would mean that
one second of machine time for mode 6 will execute in 0.83 seconds of human
time when running 50 frames per second at 60Hz.

The eighth mode (mode 7) is used for HDMI timing. Machine configuration is
forced for this mode. Line counts, Ts and various other settings are set to meet
the rigid HDMI timing specification. For mode 7, 50/60 Hz are rock solid but

90 CHAPTER 7. COPPER AND DISPLAY TIMING

the original hardware timing loses Ts across all machines to meet HDMI display
requirements.

Software that was previously written for specific hardware with hard-coded soft-
ware timing loops may fail. This is one of the risks of coding timing loops
counting Ts. We saw evidence of this with the release of the 1985 Sinclair ZX
Spectrum 128k+ and the later Amstrad models as previous software written for
the ZX Spectrum 48k/48k+ would fail when trying to display colour attribute
and border effects as the number of Ts per line was changed from 224Ts (1982
original 48k) to 228Ts (128k models). The ZX Spectrum Next runs slower in
HDMI mode. Demos may fail to display correctly and games may slow down
although setting the Z80 to 7Mhz can solve the game slow down, demos should
be run in VGA mode for maximum compatibility.

Video timing also affects audio output as the sample rate can vary depending
on the output timing method.

The following register allows software to read the video timing mode:
Register (R/W) $11 (17) = Video Timing (writable in config mode only)

e bits 7-3 = Reserved, must be 0
e bits 2-0 = Mode (VGA = 0..6, HDMI = 7)
— 000 = Base VGA timing, clk28 = 28000000

001 = VGA setting 1, clk28 = 28571429
010 = VGA setting 2, clk28 = 29464286
— 011 = VGA setting 3, clk28 = 30000000
100 = VGA setting 4, clk28 = 31000000
— 101 = VGA setting 5, clk28 = 32000000
110 = VGA setting 6, clk28 = 33000000

— 111 = HDMI, clk28 = 27000000
50/60Hz selection depends on bit 2 of register $05
Only writable in config mode

Machine Type The machine type register can be used to provide the number
of Ts per line, line count, dot clock and maximum horizontal COPPER wait.

The dot clock (DC) is the number of Ts per line * 4.
The maximum horizontal COPPER wait (H) is in multiples of 16 clocks.
Video mode 7 (HMDI) overrides the timing.

The following list shows the various parameters that can be gained from reading
the machine register combined with the refresh register and video mode bits:

Register (R/W) 803 (3) = Machine Type

e bit 7 (R) = nextreg $44 second byte indicator

7.4. CONFIGURATION 91

bit 7 (W) = allow changes to bits 6-4 (0 on hard reset)
bits 6-4 = Display Timing
— 000 = Internal use
001 = ZX 48k
— 010 = ZX 128k/2+
011 = ZX +2A/+2B/+3
100 = Pentagon
bit 3 = Display Timing user lock control (0 on hard reset)
bits 2-0 = Machine type (write on config mode only) determines ROMs

loaded
— 000 = Configuration mode
— 001 = ZX 48k

— 010 = ZX 128k/+2 (Grey)
011 = ZX +2A/+2BB/+3/Next Native
— 100 = Pentagon

Summary Table 5.13 provides a full list of video timing configuration data:

Table 7.12: Summary of Video Modes

Timing Video | Refresh | T-States | Clocks | Lines | Width | HRZ | Max | Slack | Adjust
0/1 48k VGA | 50Hz 224 896 312 256 448 54 32 -3
0/1 48k VGA | 50Hz 224 896 312 512 448 54 32 -2
0/1 48k VGA | 60Hz 224 896 262 256 448 54 32 -3
0/1 48k VGA 60Hz 224 896 262 512 448 54 32 -2
2/3 128k VGA | 50Hz 228 912 311 256 456 55 32 -3
2/3 128k VGA | 50Hz 228 912 311 512 456 55 32 -2
2/3 128k VGA | 60Hz 228 912 261 256 456 55 32 -3
2/3 128k VGA | 60Hz 228 912 261 512 456 55 32 -2
4 Pentagon | VGA | 50Hz 224 896 320 256 448 55 32 -3
4 Pentagon | VGA | 50Hz 224 896 320 512 448 55 32 -2
0/1 48k HDMI | 50Hz 216 864 312 256 432 52 32 -3
0/1 48k HDMI | 50Hz 216 864 312 512 432 52 32 -2
0/1 48k HDMI | 60Hz 214.5 858 262 256 429 52 26 -3
0/1 48k HDMI | 60Hz 214.5 858 262 512 429 52 26 -2
2/3 128k HDMI | 50Hz 216 864 312 256 432 52 32 -3
2/3 128k HDMI | 50Hz 216 864 312 512 432 52 32 -2
2/3 128k HDMI | 60Hz 214.5 858 262 256 439 52 26 -3
2/3 128k HDMI | 60Hz 214.5 858 262 512 439 52 26 -2
4 Pentagon | HDMI | 50Hz 216 864 312 256 432 52 32 -3
4 Pentagon | HDMI | 50Hz 216 864 312 512 432 52 32 -2
4 Pentagon | HDMI | 60Hz 214.5 858 262 256 439 52 26 -3
4 Pentagon | HDMI | 60Hz 214.5 858 262 512 439 52 26 -2

92

CHAPTER 7. COPPER AND DISPLAY TIMING

Chapter 8

Interrupts

8.1 Interrupt Types

The Z80 has three different hardware interrupt signals: RESET, NMI, and INT.

RESET RESET is used to return the CPU to a known state. When the
RESET line is pulled low, a RESET is generated. The CPU then does several
things. I, and R are set to $00. PC is set to $0000. SP becomes $FFFF. A and
F are set to $FF. The interrupt mode is set to 0. And (maskable) interrupts are
disabled by clearing IFF1 and IFF2.

NMI NMI is the non-maskable interrupt. Upon receiving a non-maskable
interrupt (NMI being pulled low) one of two sequences occur depending on the
calue of bit 3 of the interrupt control register (nextreg $CO0).

Register (R/W) $C0 (192) = Interrupt Control (3.01.09)
(%00 on reset)

e bits 7-5 = Programmable portion of IM2 vector *
e bit 4 = Reserved, must be 0
e bit 3 — Enable stackless NMI response**
e bits 2-1 = Reserved, must be 0
e bit 0 = Maskable interrupt mode
0 - pulse
1-1IM2

* In IM2 mode vector generated is:

e bits 7-5 = nextreg $CO0 bits 7-5
e bits 4-1 = Interrupt source

93

94 CHAPTER 8. INTERRUPTS

0 - line interrupt (highest priority)

1- UART 0 Rx

2 - UART 1 Rx

3-10 - CTC channels 0-7
11 - ULA

12 - UART 0 Tx
13 - UART 1 Tx (lowest priority)
e bit0 =0

* In IM2 mode the expansion bus is the lowest priority interrupter and if no
vector is supplied externally the $FF is generated.

** The return address pushed during an nmi acknowledge cycle will be written
to the appropriate nextreg instead of memory (the stack pointer will be decre-
mented) and the RETN after acknowledge will take its return address from
nextreg instead of memory (the stack pointer will be incremented). If bit 3 = 0
and in other circumstances, RETN functions normally.

If bit 3 is clear (0) PC is pushed on the stack, IFF1 is copied to IFF2, IFF1
is cleared (inhibiting maskable interrupts). The NMI should end with RETN
which copies the contents of IFF2 to IFF1 (returning the interrupt state to what
it was before the NMI) and PC is popped off the stack.

If bit 3 is set (1) PC is stored in the NMI return address registers (nextregs
$C2 and $C3), IFF1 is copied to IFF2, IFF1 is cleared (inhibiting maskable
interrupts). The NMI should end with RETN which copies the contents of
IFF2 to IFF1 (returning the interrupt state to what it was before the NMI) and
PC is compied from the NMI return address registers.

Register (R/W) $C2 (194) = NMI Return Address LSB (3.01.09)
($00 on reset)

Register (R/W) $C3 (195) = NMI Return Address MSB (3.01.09)
(300 on reset)

INT The interrupt generally of most interest to programmers is INT. So much
so that if programmers talk about interrupts on the Z80, they are probebly only
talking about INT. The processing of INT is controlled by IFF1 and IFF2 which
are set using EI to enable interrupts and reset using DI to disable interrupts.
Interrupts can happen at any time and should preserve register contents. If none
of your code uses the alternate registers the EXX and EX AF,AF’ instructions
can make this faster and easier. Interrupt routined should end with EI and
RETT to reenable interrupts, potentially inform the interrupting device that its
interrupt has been serviced, and return from the interrupt routine. In general
the Spectrum machines do not make any distingtion between RET and RETI,
but future developments in the ZX Spectrum Next may make the distinction
important.

8.1. INTERRUPT TYPES 95

The ZX Spectrum Next has 14 internal sources for INT signals. This can be en-
abled and disabled using nextregs $C4 — $C6. Which signals have been received
can be read/cleared using nexregs $C8 — $CA.

Interrupt Enable

Register (R/W) $C4 (196) = Interrupt Enable 0 (3.01.08)
(%81 on reset)

e bit 7 = Expansion bus INT

e bits 6-2 = Reserved must be zero
e bit 1 = Line

e bit 0 = ULA

Register (R/W) $C5 (197) = Interrupt Enable 1 (3.01.08)
(300 on reset)

bit 7 = ctc channel 7 zc/to
bit 6 = ctc channel 6 zc/to
bit 5 = ctc channel 5 zc/to
bit 4 = ctc channel 4 zc/to
bit 3 = ctc channel 3 zc/to
bit 2 = ctc channel 2 zc/to
bit 1 = ctc channel 1 zc/to
bit 0 = ctc channel 0 zc/to

Register (W) $C6 (198) = Interrupt Enable 2 (3.01.08)
(%00 on reset)

bit 7 = Reserved, must be 0
bit 6 = UART1 Tx empty

bit 5 = UART1 Rx half full *
bit 4 = UART1 Rx available *
bit 3 = Reserved, must be 0
bit 2 = UARTO0 Tx empty

bit 1 = UARTO Rx half full *
bit 0 = UARTO Rx available *

* For each UART, Rx half full and Rx available are shared interrupts

Interupt Status

Register (R/W) $C8 (200) = Interrupt Status 0 (3.01.09)
(%00 on reset)

e bits 7-2 = Reserved, must be zero
e bit 1 = Line
e bit 0 = ULA

* Set bits indicate the device generated an interrupt in the past * Writes clear
bits where bits are set except in IM2 mode

96 CHAPTER 8. INTERRUPTS

Register (R/W) $C9 (201) = Interrupt Status 1 (3.01.09)

bit 7 = ctc channel 7 zc/to
bit 6 = ctc channel 6 zc/to
bit 5 = ctc channel 5 zc/to
bit 4 = ctc channel 4 zc/to
bit 3 = ctc channel 3 zc/to
bit 2 = ctc channel 2 zc/to
bit 1 = ctc channel 1 zc¢/to
bit 0 = ctc channel 0 zc/to

* Set bits indicate the device generated an interrupt in the past * Writes clear
bits where bits are set except in IM2 mode

Register (R/W) $CA (202) = Interrupt Status 2 (3.01.09) ($00 on reset)

bit 7 = Reserved, must be zero
bit 6 = UART1 Tx empty

bit 5 = UART1 Rx almost full *
bit 4 = UART1 Rx available *
bit 3 = Reserved must be zero
bit 2 = UARTO0 Tx empty

bit 1 = UARTO0 Rx almost full *
bit 0 = UARTO Rx available *

* For each UART Rx half full and Rx available are shared interrupts ** Set
bits indicate the device generated an interrupt in the past ** Writes clear bits
where bits are set except in IM2 mode

Internal Interrupt Sources

0 = Line (highest priority)

1 = UART 0 Rx

2 = UART 1 Rx

3-10 = CTC channels 0-7

11 = ULA

12 = UART 0 Tx

13 = UART 1 Tx (lowest priority)

8.2 Interrupt Modes

IMO When an interrupt is received by the CPU it disables interrupts and
executes the instruction placed on the bus by the interrupting device and (no
known use on the Next) It is enabled with the IMO instruction and enabling
interrupts (EI).

8.2. INTERRUPT MODES 97

IM1 When an interrupt is received, the CPU disables interrupts and jumps to
an interrupt handler at $0038 (normally in ROM). The ROM interrupt handler
updates the frame counter and scans the keyboard. This is the default interrupt
handling method for the ZX Spectrum and is probably the method to use if you
don’t need the ROMs for anything. It is enabled using the IM1 instruction and
enabling interrupts.

IM2 The ZX Spectrum Next has both a legacy method for handling IM2 and
an updated one which makes better use of the capabilities of IM2 which was
added in Core 3.01.09.

The ZX Spectrum Next has 14 interrupt devices which can all be given inde-
pendent interrupt vectors when using IM2. These interrupts are controlled by
nextregs $C0 — $CF. The address of the vector for a given interrupt is created
by composing the I register (bits 15-0), nextreg $CO bits 7-5 (bits 7-5) and the
interrupt number of the interrupt device (bits 4-1). This means that even if
you use all 14 internal interrupt sources, your interrupt vector table is no more
than 28 bytes which can be at any 32 byte boundry. It also means that far less
processing has to be done on interrupts which are received. External interrupts
are a little different. If no vector is supplied by a device the implied LSB will
be $FF.

While in IM2 mode, it is possible for interrupts to interrupt DMA transfers. This
capability is controlled by The DMA Interrupt enable registers (nextregs $CC
— $CE). When DMA is interrupted, one instruction of the main program will
be processed, then the interrupt will be taken. On return, DMA will continue.

Register (R/W) $CC (204) = DMA Interrupt Enable 0 (3.01.09) (300 on reset)

e bits 7-2 = Reserved, must be 0
e bit 1 = Line
e bit 0 = ULA

* Set bits indicate the specified interrupt will interrupt a DMA operation when
in IM2 mode

Register (R/W) $CD (205) = DMA Interrupt Enable 1 (3.01.09) ($00 on reset)

bit 7 = CTC channel 7 zc/to
bit 6 = CTC channel 6 zc/to
bit 5 = CTC channel 5 zc/to
bit 4 = CTC channel 4 zc/to
bit 3 = CTC channel 3 zc/to
bit 2 = CTC channel 2 zc/to
bit 1 = CTC channel 1 zc/to
bit 0 = CTC channel 0 zc/to

* Set bits indicate the corresponding interrupt will interrupt a DMA operation
when in IM2 mode

98

CHAPTER 8. INTERRUPTS

Register (R/W) $CE (206) = DMA Interrupt Enable 2 (3.01.09) (300 on reset)

bit 7 = Reserved, must be 0
bit 6 = UART1 Tx empty
bit 5 = UART1 Rx half full
bit 4 = UART1 Rx available
bit 3 = Reserved, must be 0
bit 2 = UARTO0 Tx empty
bit 1 = UARTO Tx half full
bit 0 = UARTO Tx available

* Set bits indicate the corresponding interrupt will interrupt a DMA operation
when in IM2 mode.

In legacy mode, when the CPU receives an interrupt it disables interrupts and
jumps to an interrupt routine starting at the contents of the jump table at 1. The
start of the interrupt routine is the contents of I*$100+bus and I*$100+bus+1.
Most devices that can supply interrupts on the ZX Spectrum leave the data
bus in a floating state. As a result the interpreted state of the data bus while
generally $FF is not entirely predictable. The solution to place your interrupt
routine at an address where the MSB and LSB are the same ($0101, $0202, ...
$FFFF) then place 257 copies of that value in a block starting at I*$100 (you
can set the value of the I register).

Code:

;3 my program
org $8000

;; enable interrupt mode im2
1d i, $fe

im2

ei

;3 program body

;3 interrupt routine

handler:

;3 preserve registers used
;3 handle interrupt

;3 restore registers

ei

reti

33 jump to interrupt routine
org $fdfd

jp handler

;3 im2 jump table

org $fe00 ; not actually legal
defs $101,$fd

8.3. Z80 CTC 99

8.3 Z80 CTC

(3.01.08) Currently does not woprk properly, in particular IM2 still acts much
like the original spectrum interrupt mode.

Eight (currently four) independent CTC channels are available on ports $183B
through $1F3B. These perform counter/timer functions that can be used to
generate timer interrupts or to generate interrupts on behalf of physical signals.

The CTC is a standard Zilog part. Its datasheet can be found at http://www.zilog.com/docs/z80/ps0181.pdf
. The Zilog documentation is ambiguous around how soft resets are treated so
the following clarifies some points in the Next’s implementation.

1. Hard reset requires both a control word and a time constant to be written
to a channel even if bit 2 = 0 in the first control word.

2. Soft reset with bit 2 = 0 causes the entire control register to be modified.
Soft reset with bit 2 = 1 does not change the control register contents. In
both cases a time constant must follow to resume operation.

3. Changing the trigger edge selection in bit 4 while the channel is in opera-
tion counts as a clock edge. A pending timer trigger will be fired and, in
counter mode, an edge will be received.

4. ZC/TO is asserted for one clock cycle and not for the entire duration that
the count is at zero.

At the moment, any interrupt generated by the CTC will assert the z80’s /INT
line for 32 cpu cycles. This is the same way that the ULA and line interrupts
operate.

At the moment, the ZC/TO output of each channel is fed into the CLK/TRG
input of the succeeding channel so that time and count periods can be cascaded.

Programming Initial values are set by a write of a channel control word
followed by a time constant. In timer mode, the counter decrements every time
it is triggered. In counter mode it decrements every time the prescaler counter
reaches zero.

Channel Control Word

bit 7 = Enable Interrupt
bit 6 = Mode
— 0 = Timer mode
— 1 = Counter mode
bit 5 = Prescalar value (Timer mode only)
-0=16
— 1 =256
bit 4 = CLK/TRG edge selection
— 0 = Falling Edge
— 1 = Rising Edge

100

CHAPTER 8. INTERRUPTS

bit 3 = Timer Trigger (Timer mode only)
— 0 = Starts on loading of time constant
— 1 = Starts on CLK/TRG

bit 2 = Time constant follows

bit 1 = Software reset

bit 0 = 0 (Control Word)

If we are running at 28MHz (Mode 0) and wish to trigger an interrupt every 1
sec, that is 28 million T-States/cycles we could program CTC 5 as a counter
with a prescalar of 16 and a period of 175, CTC 6 as a counter with a prescalar
of 16 and a period of 125, and CTC 7 as a timer with a period of 5.

CTC 5 triggers ZC5 every 280 cycles or 10 usec.
CTC 6 triggers ZC6 every 560,000 cycles or 20 msec.

CTC 7 triggers ZC7 and an interrupt every 28,000,000 cycles or 1 sec.

di

set up interrupt routine

im 2

1d bc,$183B
1d hl, $FFFA
;3 routine

1d de,interrupt

1d (hl),de
1d i, $FF
1d a,l

out (c),a

set up CTC 5

1d b, $1D
14 a, $87
out (c),a
;3 soft,
1d a, $05
out (c),a

set up CTC 6

inc b

14 a, $47
out (c),a
;3 control
1d a,$7D
out (c),a

set up CTC 7

inc b

14 a, $47
out (c),a
;3 control
1d a, $AF
ei

control

]

CTC 0
address pointing to start of

start of interrupt routine

interrupt

Vector to address at on this interrupt

CTC 5

Interrupt mode, timer mode,

once every 5 times

CTC 6

16x, counter mode, time constant,
125 = once every 2000 times

CTC 7

16x, counter mode, time constant,
175 = once every 2800 times

time constant,

soft,

soft,

Chapter 9

Serial Communication

The Spectrum Next has two independent fully featured UARTs. The UARTS
share I/O ports so it is important to select the correct one before communicating
with it. Each has its own 64 byte Tx buffer and 512 byte Rx buffer. One
UART can be connected to either the ESP of joystick port while the other can
be connected to the Raspberry Pi accelerator or joystick port. The UARTS
are controlled using ports $37, $133B, $143B, $153B, and $163B. The UARTSs
are connected to the IM2 interrupt system. Nextreg $c6 allows interrupts to be
enabled for the status of each UART. UART interrupts correspond to interrupts
1, 2, 12, and 13 (see Interrupts).

Port $37 (55) Kempston/Mega Drive Joystick 2
Read

bit 7 = "start” button
bit 6 = A button

bit 5 = Fire 2/C button
bit 4 = Fire 1/B button

bit 3 = Up
bit 2 = Down
bit 1 = Left

bit 0 = Right

The XYZ buttons on md pads can be read through nextreg $B2.
The joysticks can also be placed in i/o mode see nextreg $0B.
All eleven md pad buttons can be assigned to the keyboard see nextreg $05.

Port $133B (4923) UART tx
Read: UART Status

bit 7 = RX in break condition
bit 6 = RX framing error

101

102 CHAPTER 9. SERIAL COMMUNICATION

bit 5 = next RX byte was recieved after error (framing, overflow)
bit 4 = TX buffer is empty

bit 3 = RX buffer near full (over 3/4) (3.01.09)

bit 2 = RX buffer overflow

bit 1 = TX buffer full

bit 0 = RX buffer has data

Write: UART Transmit

Port $143B (5179) UART rx
Read: UART Receive
Write: UART Prescalar

bit 7 = select prescalar part
0 = Bits 6-0 of prescalar
1 = Bits 13-7 of prescalar
bits 6-0 = Prescalar bits

Port $153B (5435) UART select

bit 7 = Reserved (0)
bit 6 = UART select (0 on soft reset) **
0 = ESP
1=Pi*
bit 5 = Reserved (0)
bit 4 = Prescalar valid in this write
bit 3 = Reserved (0)
bits 2-0 = Bits 16-14 of prescalar (0 on hard reset)

* P1 GPIO must be configured for UART, see nextreg $A0
* BEither UART can be redirected to the joystick ports, see port $037

Port $153B (5435) UART frame (upcoming)
(318 on hard reset)

bit 7 = Immediately reset Rx and Tx to idle and empty FIFOs
bit 6 = Assert break (Tx=0) when Tx reaches idle

bit 5 = Enable hardware flow control *

bits 4-3 = Number of bits in a frame

00 = 5 bits
01 = 6 bits
10 = 7 bits
11 = 8 bits

bit 2 = Enable parity
bit 1 = Parity
0 = Even parity
1 = Odd parity
bit 0 = Number of stop bits
0 = 1 stop bit
1 = 2 stop bits

103

* The ESP ignores hardware flow control
In joystick i/o mode only cts is available

Register (R/W) $C0 (192) = Interrupt Control (3.01.09)
(300 on reset)

e bits 7-5 = Programmable portion of IM2 vector *
e bit 4 = Reserved, must be 0
e bit 3 = Enable stackless NMI response**
e bits 2-1 = Reserved, must be 0
e bit 0 = Maskable interrupt mode
0 - pulse
1-1IM2

* In IM2 mode vector generated is:

e bits 7-5 = nextreg $CO0 bits 7-5
e bits 4-1 = Interrupt source
0 - line interrupt (highest priority)

1-UART 0 Rx

2 - UART 1 Rx

3-10 - CTC channels 0-7
11 - ULA

12 - UART 0 Tx
13 - UART 1 Tx (lowest priority)
e bit 0 =20

* In IM2 mode the expansion bus is the lowest priority interrupter and if no
vector is supplied externally the $FF is generated.

** The return address pushed during an nmi acknowledge cycle will be written
to the appropriate nextreg instead of memory (the stack pointer will be decre-
mented) and the RETN after acknowledge will take its return address from
nextreg instead of memory (the stack pointer will be incremented). If bit 3 = 0
and in other circumstances, RETN functions normally.

Register (W) $C6 (198) = Interrupt Enable 2 (3.01.08)
(%00 on reset)

bit 7 = Reserved, must be 0
bit 6 = UART1 Tx empty

bit 5 = UART1 Rx half full *
bit 4 = UART1 Rx available *
bit 3 = Reserved, must be 0
bit 2 = UARTO0 Tx empty

bit 1 = UARTO Rx half full *
bit 0 = UARTO0 Rx available *

* For each UART, Rx half full and Rx available are shared interrupts

104 CHAPTER 9. SERIAL COMMUNICATION

Chapter 10

Raspberry Pi0 Acceleration

The Spectrum Next has a header (with male pins) which can be attached to a
Raspberry Pi Zero. There is a modified version of DietPi called NextPi which is
the standard distro for the Raspberry Pi0 accelerator. Software for the general
public should be written assuming that it will be interfacing with a Pi0 running
this distro.

If you are more adventurous, you may choose to use another distro, or even
another accelerator that uses the Raspberry Pi style (40 pin) expansion bus.
Chief concers when doing this is that you have a console presented on the UART
that defaults to 115,200 bps, you don’t need to login, the machine is configured
with a driver to treat the I2S interface as a sound card, and the presence of the
nextpi scripts.

The Raspberry Pi 0 has a Broadcom BCM2835 SoC with an ARMv6 core, a
Videocore 4 GPU, and its own 512 MB memory and HDMI output. It has its
own SD card from which it boots. For this application the Pi 0 ships with a
1GB microSD card containing NextPi a customized version of DietPi.

The Pi Zero, if installed, is a smart peripheral for the ZX Spectrum Next.
Available interfaces are: low level access to the GPIO pins, higher level access
to standardized I/O interfaces, and use of the Pi Zero as a sound card.

When using the low level GPIO interface Pi Zero GPIO pins 2-27 can be config-
ured as either inputs or outputs using nextregs $90-$93. If they are outputs, the
output state can be set by writing to nextregs $98-$9b. The current status of
the GPIO pins can be read from nextregs $98-$9b whether it is the state driven
by the ZX Spectrum Next or the state drive by some other peripherial attached
to the bus (normally the Raspberry Pi Zero).

Register (R/W) $90 (144) = Pi GPIO output enable 1/4
e bit 7 = Enable Pin 7 (0 on reset)

105

106 CHAPTER 10. RASPBERRY PI0 ACCELERATION

bit 6 = Enable Pin 6 (0 on reset)
bit 5 = Enable Pin 5 (0 on reset)
bit 4 = Enable Pin 4 (0 on reset)
bit 3 = Enable Pin 3 (0 on reset)
bit 2 = Enable Pin 2 (0 on reset)
bit 1 = Enable Pin 1 (cannot be enabled) (0 on reset)
bit 0 = Enable Pin 0 (cannot be enabled) (0 on reset)

Register (R/W) $91 (145) = Pi GPIO output enable 2/4

bit 7 = Enable Pin 15 (0 on reset)
bit 6 = Enable Pin 14 (0 on reset)
bit 5 = Enable Pin 13 (0 on reset)
bit 4 = Enable Pin 12 (0 on reset)
()

)

t
t

bit 3 = Enable Pin 11 (0 on reset
bit 2 = Enable Pin 10 (0 on reset
bit 1 = Enable Pin 9 (0 on reset)
bit 0 = Enable Pin 8 (0 on reset)

Register (R/W) $92 (146) = Pi GPIO output enable 3/4

e bit 7 = Enable Pin 23 (0 on reset)
e bit 6 = Enable Pin 22 (0 on reset)
e bit 5 = Enable Pin 21 (0 on reset)
e bit 4 = Enable Pin 20 (0 on reset)
e bit 3 = Enable Pin 19 (0 on reset)
e bit 2 = Enable Pin 18 (0 on reset)
e bit 1 = Enable Pin 17 (0 on reset)
e bit 0 = Enable Pin 16 (0 on reset)

Register (R/W) $93 (147) = Pi GPIO output enable 4/4

bits 7-4 = Reserved

bit 3 = Enable Pin 27 (0 on reset)
bit 2 = Enable Pin 26 (0 on reset)
bit 1 = Enable Pin 25 (0 on reset)
bit 0 = Enable Pin 24 (0 on reset)

Register (R/W) $98 (152) = Pi GPIO Pin State 1/4

bit 7 = Pin 7 Data (1 on reset)
bit 6 = Pin 6 Data (1 on reset)
bit 5 = Pin 5 Data (1 on reset)
bit 4 = Pin 4 Data (1 on reset)
bit 3 = Pin 3 Data (1 on reset)
bit 2 = Pin 2 Data (1 on reset)
bit 1 = Pin 1 Data (1 on reset)
bit 0 = Pin 0 Data (1 on reset)

Register (R/W) $99 (153) = Pi GPIO Pin State 2/4

107

bit 7 = Pin 15 Data (1 on reset)
bit 6 = Pin 14 Data (1 on reset)
bit 5 = Pin 13 Data (1 on reset)
bit 4 = Pin 12 Data (1 on reset)
bit 3 = Pin 11 Data (1 on reset)
bit 2 = Pin 10 Data (1 on reset)
bit 1 = Pin 9 Data (1 on reset)
bit 0 = Pin 8 Data (1 on reset)

Register (R/W) $9A (154) = Pi GPIO Pin State 3/4

e bit 7 = Pin 23 Data (1 on reset)
e bit 6 = Pin 22 Data (1 on reset)
e bit 5 = Pin 21 Data (1 on reset)
e bit 4 = Pin 20 Data (1 on reset)
e bit 3 = Pin 19 Data (1 on reset)
e bit 2 = Pin 18 Data (1 on reset)
e bit 1 = Pin 17 Data (1 on reset)
e bit 0 = Pin 16 Data (1 on reset)

Register (R/W) $9B (155) = Pi GPIO Pin State 4/4

bits 7-4 = Reserved

bit 3 = Pin 27 Data (1 on reset
bit 2 = Pin 26 Data (1 on reset
bit 1 = Pin 25 Data (1 on reset
bit 0 = Pin 24 Data (1 on reset

Standardized 1/O access with the Pi Zero can use the I12C , SPI, or UART
interfaces and is configured using nextreg $a0. Any enabled port will disable
low level (write) access to the corresponding GPIO pins.

Register (R/W) $A0 (160) = Pi Peripheral Enable

bits 7-6 = Reserved, must be 0
bit 5 = Enable UART on GPIO 14, 15 (0 on reset)*
bit 4 = Communication Type (0 on reset)
— 0 = Rx to GPIO 15, Tx to GPIO 14 (Pi)
— 1 = Rx to GPIO 14, Tx to GPIO 15 (Pi Hats)
bit 3 = Enable 12C on GPIO 2, 3 (0 on reset)*
bits 2-1 = Reserved, must be 0
bit 0 = Enable SPI on GPIO 7, 8, 9, 10, 11 (0 on reset)*

*Qverrides GPIO Enables

The I2C interface is controlled using ports $103b (SCL) and $113b (SDA).
This is the same I2C interface that is used for the optional Real Time Clock.
Interfacing with the Pi Zero over I?C is complicated by the fact that it is
a master/slave interface, but both the ZX Spectrum Next and Pi Zero are
configured to be bus masters.

— — — —

108 CHAPTER 10. RASPBERRY PI0 ACCELERATION

Port $103B (4155) 12C SCL (rtc, rpi)
Port $113B (4411) I?C SDA (rtc, rpi)

The SPI interface is controlled using ports $e7 (/CS) and $eb (/DATA). The
SPI interface is shared between the SD card(s), the flash memory, and the
Pi Zero. Interfacing with the Pi Zero over SPI is complicated by the fact it
is a master/slave interface and both the ZX Spectrum Next and Pi Zero are
configured to be bus masters.

Port $E7 (231) SPI CS (SD card, flash, rpi)
Disable with bit 2 of Nextreg $09

Port $EB (235) SPI DATA (SD card, flash, rpi)
Disable with bit 2 of Nextreg $09

The default means of communication between the ZX Next and the Pi is through
the UART interface (see serial communications chapter). In order to communi-
cate withe the Pi the Pi UART must be connected to the Pi by setting nextreg
$a0 bits 5 and 4 to 1, selecting the Pi UART by setting port $153b bit 6 to 1
and ensuring that both ends are using matching communication protocols (by
default 115,200 bps, 8N1 and no flow control). On the Pi end the UART is
connected to the serial console.

;33 enable UART connection with Pi Zero
1d c,$3b
1d b,$15 ; UART control
; select Pi on UART control
in a, (c)
or $40
out (c),a
1d b,$24 ; Next Register Select
1d a, $a0
out (c),a
inc b ; Next Register Data
;33 Enable UART on GPIO and select Pi
in a, (c)
or $30
out (c),a

The I2S sound interface between the ZX Spectrum Next and the Pi Zero is
controlled by nextregs $a2 and $a3. Normally, one would control the Pi through
some other channel such as the UART recieve audio from the Pi to either use
as a fulloy programmable sound card or to allow loading of tape files on the ZX
Spectrum Next.

Register (R/W) $A2 (162) = Pi I12S Audio Control

e bits 7-6 = 12S State ($00 on reset)
— 00 = I2S Disabled
— 01 = IS is mono, source R
— 10 = I*S is mono, source L
— 11 = I%S is stereo

109

bit 5 = Reserved, must be 0
bit 4 = Audio Flow Direction (0 on reset)
— 0=PCM_DOUT to Pi, PCM_DIN from Pi (Hats)
— 1=PCM_DOUT from Pi, PCM_DIN to Pi (Pi)
bit 3 = Mute left (0 on reset)
bit 2 = Mute right (0 on reset)
bit 1 = Slave mode, Reserved must be 1 (remove in 3.01.05)
bit 0 = Direct I2S audio to EAR on port $FE (0 on reset)

Register (R/W) $A3 (163) = Pi I?S Clock Divide (Master Mode) (removed in
3.01.05)

e bits 7-0 = Clock divide value (30B on reset)

Divider = 238461 _ 1 or Rate = 258461 _
Rate Divider+1

110 CHAPTER 10. RASPBERRY PI0 ACCELERATION

Chapter 11

System Software

11.1 CP/M

The ZX Spextrum Next has support for CP/M+ 3.0. CP/M was the most
popular microcomputer coperating system prior to the advent of MS-DOS.

11.1.1 Utilities

From the Digital Research: CP/M 3 Command Reference Manual 1984

This section documents all standard CP/M+ 3 commands plus those extras
included with the ZX Spectrum Next CP/M system.

COLOURS

Syntax: COLOURS [RGB] paper ink

Function: Sets the screen colours

Parameters:

paper Paper (background) colour

ink Ink (foreground) colour

Options:

RGB Causes ink and paper colours to be interpreted as 9-bit octal RGB
numbers

Notes: Sets the screen colours using standard ZX colours or octal 9-bit RGB
numbers.

Examples:

111

112 CHAPTER 11. SYSTEM SOFTWARE

colours 1 6

colours rgh 000 750
COPYSYS

Syntax: COPYSYS
Function: Copy CP/M system

Notes: COPYSYS copies the CP/M Plus system from a CP/M Plus system
diskette to another diskette. The new diskette must have the same format as
the original system diskette.

DATE

Syntax: DATE
DATE C
DATE CONTINUOUS
DATE time-specification
DATE SET

Function: The DATE command lets you display and set the date and time of
day.

Parameters:

time-specification Time/date in the format MM,/DD/YY HH:MM:SS
Options:

C Continuously show the date and time until a key is pressed
CONTINUOUS Continuously show the date and time until a key is pressed
SET Prompt the user for the current date and time

Notes: The DATE command is a transient utility that lets you display and set
the date and time of day. When you start CP/M 3, the date and time are set
to the creation date of your CP/M 3 system. Use DATE to change this initial
value to the current date and time.

Examples:

DATE

DATE C

DATE CONTINUOUS
DATE 08/13/82 09:15:37
DATE SET

DEVICE

Syntax:

11.1. CP/M 113

DEVICE

DEVICE NAMES

DEVICE VALUES

DEVICE logical-dev {XON|NOXON |baud-rate},

DEVICE physical-dev {XON|NOXON baud-rate}

DEVICE logical-dev=physical-dev {option} {,physical-dev {option},...}
DEVICE logical-dev = NULL

DEVICE CONSOLE {PAGE}

DEVICE CONSOLE {COLUMNS=n, LINES=n}

DEVICE displays current logical device assignments and physical device names.
DIR (built-in)

Syntax:
DIR
DIR d:
DIR filespec
DIR d: options
DIR filespec,... filespec options

The DIR command displays the names of files catalogued in the directory of an
online disk that belong to current user number and have the Directory (DIR)
attribute. DIR accepts the * and ? wildcards in the file specification.

The DIR command with options displays the names of files and the character-
istics associated with the files. DIR is a built-in utility. DIR with options is a
transient utility and must be loaded into memory from the disk.

DIRSYS/DIRS (built-in)

Syntax:
DIRSYS
DIRSYS d:
DIRSYS filespec

The DIRSYS command lists the names of files in the current directory that have
the system (SYS) attribute. DIRSYS accept the * and ? wildcards in the file
specification. DIRSYS is a built-in utility.

DUMP

Syntax:
DUMP filespec

DUMP displays the contents of a file in and ASCII format.
ECHO (ZX Spectrum Next)

Syntax:
ECHO string

114 CHAPTER 11. SYSTEM SOFTWARE

Echo characters to the terminal
The following special character sequences may be used

e \a alert (bell) (ASCII 7)

e \b backspace (ASCII 8)

e \e escape (ASCII 27)

e \n line feed (ASCII 10)

e \r carriage return (ASCII 13)

e \linterpret further characters as lower-case

e \u interpret further characters as upper-case
e \\backslash (’\’)

Note that CP/M converts all your typed characters to upper-case before pro-
viding them to ECHO.COM. Therefore you will need to use \l and \u to specify
the case of characters if it is important (in ESCape sequences, for example).

ED

Syntax:
ED
ED input-filespec
ED input-filespec {d: | output-filespec}

Character file editor. To redirect or rename the new version of the file specify
the destination drive or destination filespec.

ERASE/ERA (built-in)

Syntax:
ERASE
ERASE filespec
ERASE filespec [CONFIRM]

The ERASE command removes one or more files from the directory of a disk.
Wildcard characters are accepted in the filespec. Directory and data space are
automatically reclaimed for later use by another file. The ERASE command
can be abbreviated to ERA.

[CONFIRM] option informs the system to prompt for verification before erasing
each file that matches the filespec. CONFIRM can be abbreviated to C.

EXIT (ZX Spectrum Next)

Syntax:
EXIT

The EXIT command leaves CP/M (rebooting the ZX Spectrum Next)
EXPORT (ZX Spectrum Next)

Syntax:
EXPORT cpm-filespec nextzxos-filespec

11.1. CP/M 115

NextZXOS file export utility
Export file to a NextZXOS drive.
GENCOM

Syntax:
GENCOM COM-Eilespec RSX-filespec... RSX-Eilespec {{LOADER | SCB=(Offset,value)|}
GENCOM RSX-filespec ... RSXfilespec {[NULL | SCB=(Offset,value)l}
GENCOM filename
GENCOM filename [SCB=(offset,value)]

The GENCOM command attaches RSX files to a COM file, or creates a dummy
COM file containing only RSXS. It can also restore a previously GENCOMed
file to the original COM file without the header and RSXS, add or replace RSXs
in already GENCOMed files, and attach header records to COM files without
RSXS.

GENCPM

Syntax:
GENCPM {AUTO|AUTO DISPLAY}

GENCPM creates a memory image CPM3.SYS file, containing the CP/M 3
BDOS and customized BIOS. The GENCPM utility performs late resolution
of intermodule references between system modules. GENCPM can accept its
command input interactively from the console or from a file GENCPM.DAT.

In the nonbanked system, GENCPM creates a CPM3.SYS file from the BDOS3.SPR
and BIOS3.SPR files. In the banked system, GENCPM creates the CPM3.SYS
file from the RESBDOS3.SPR, the BNKBDOS3.SPR and the BNKBIOS3.SPR
files. Remember to back up your CPM3.SYS file before executing GENCPM,
because GENCPM deletes any existing CPM3.SYS file before it generates a new
system.

GET

Syntax:
GET {CONSOLE INPUT FROM} FILE filespec options
GET {CONSOLE INPUT FROM} CONSOLE

GET directs the system to take console input from a file for the next system
comand or user program entered at the console.

Console input is taken from a file until the program terminates. If the file is
exhausted before program input is terminated, the program looks for subsequent
input from the console. If the program terminates before exhausting all its input,
the system reverts back to the console for console input.

HELP

Syntax:
HELP

116 CHAPTER 11. SYSTEM SOFTWARE

HELP topic

HELP topic subtopic

HELP topic [NOPAGE]

HELP topic subtopicl...subtopic8
HELP >topic

HELP > .subtopic

HELP displays a list of topics and provides summarized information for CP/M
Plus commands.

Typing HELP topic displays information about that topic. Typing HELP topic
subtopic displays information about that subtopics One or two letters is enough
to identify the topics. After HELP displays information for your topic, it dis-
plays the special prompt HELP> on your screen, followed by a list of subtopics.

Enter ? to display list of main topics.

Enter a period and subtopic name to access subtopics.

Enter a period to redisplay what you just read.

Press RETURN to return to the CP/M Plus system prompt.
[NOPAGE] option disables the 24 lines per page console display.
Press any key to exit a display and return to the HELP> prompt.

HEXCOM

Syntax:
HEXCOM filename

The HEXCOM Command generates a command file (filetype COM) from a
HEX input file. it names the output tile with the same filename as the input
file but with filetype COM. HEXCOM always looks for a file with filetype HEX.

IMPORT (ZX Spectrum Next)

Syntax:
IMPORT nextzxos-filespec
IMPORT nextzxos-filespec cpm-filespec

NextZXOS file import utility
List or import files from a NextZXOS drive.

INITDIR (Not included)

Syntax:
INITDIR d:

The INITDIR command initializes a disk directory to allow date and time
stamping of files on that disk. INITDIR can also recover time/date directory
space.

NEXTREG (ZX Spectrum Next)
Syntax:

11.1. CP/M 117

NEXTREG register {value}
NextReg Utility
Show or change a NextReg register (use at your own risk!)
LIB (Not included)

Syntax:
LIB filespec options
LIB filespec options=filespec <modifier> f filespec<modifier>

A library is a file that contains a collection of object modules.

Use the LIB utility to create libraries, and to append, replace, select, or delete
modules from an existing library. Use LIB to obtain information about the
contents of library files. LIB creates and maintains library files that contain
object modules in Microsoft REL file format. These modules are produced by
the Digital Research relocatable macro-assembler program, RMAC, or other
language translator that produces modules in Microsoft REL file format.

You can use LINK-80 to link the object modules contained in a library to other
object files. LINK-80 automatically selects from the library only those modules
needed by the program being linked, and then forms an executable file with a
filetype of Com.

LINK (Not included)

Syntax:
LINK filespec [options]
LINK filespec [options],...filespec [options]
LINK filespec [options|=filespec [options],...

LINK combines relocatable object modules such as those produced by RMAC
and PL/I- 80 into a COM file ready for execution. Relocatable files can contain
external references and publics. Relocatable files can reference modules in li-
brary files. LINK searches the library files and includes the referenced modules
in the output file. See the Programmer’s Utilities Guide for the CP/M Family
of Operating Systems for a complete description of LINK-80.

Use LINK option switches to control execution parameters. Link options follow
the file specifications and are enclosed within square brackets. Multiple switches
are separated by commas.

MAC (Not included)

Syntax:
MAC filename [$options]

MAC, the CP/M Plus macro assembler, reads assembly language statements
from a file of type ASM, assembles the statements, and produces three out-
put files with the input filename and filetypes of HEX, PRN, and SYM. File-

118 CHAPTER 11. SYSTEM SOFTWARE

name.HEX contains Intel hexadecimal format object code. Filename.PRN con-
tains an annotated source listing that you can print or examine at the console.
Filename.SYM contains a sorted list of symbols defined in the program.

Use options to direct the input and output of MAC. Use a letter with the
option to indicate the source and destination drives, and console, printer, or
zero output. Valid drive names are A through 0. X, P, and Z specify console,
printer, and zero output, respectively.

PATCH

Syntax:
PATCH filename.typ n

The PATCH command displays or installs patch number n to the CP/M Plus
system or command files. The patch number n must be between 1 and 32
inclusive.

PIP

Syntax:
PIP Destination = Source
PIP d:[Gn]=filespec [options]
PIP filespec|Gn]=filespec [options]
PIP filespec|Gn|device—=filespec [options| device

The file copy program PIP copies files, combines files, and transfers files between
disks, printers, consoles, or other devices attached to your computer. The first
filespec is the destination. The second filespec is the source. Use two or more
source filespecs separated by commas to combine two or more files into one file.
[options] is any combination of the available options. The [Gn| option in the
destination filespec tells PIP to copy your file to that user number. PIP with no
command tail displays an * prompt and awaits your series of commands, entered
and processed one line at a time. The source or destination can optionally be
any CP/M Plus logical device.

PUT

Syntax:
PUT CONSOLE {OUTPUT TO} FILE filespec {option}
PUT PRINTER {OUTPUT TO} FILE filespec {option}
PUT CONSOLE {OUTPUT TO} CONSOLE
PUT PRINTER {OUTPUT TO} PRINTER

PUT puts console or printer output to a file for the next command entered at
the console, until the program terminates. Then console output reverts to the
console. Printer output is directed to a file until the program terminates. Then
printer output is put back to the printer.

PUT with the SYSTEM option directs all subsequent console/printer output to
the specified file. This option terminates when you enter the PUT CONSOLE

11.1. CP/M 119

or PUT PRINTER command.
RENAME /REN (built-in)

Syntax:
RENAME
RENAME new-filespec=old-filespec

RENAME lets you change the name of a file in the directory of a disk. To change
several filenames in one command use the * or ? wildcards in the file specifica-
tions. You can abbreviate the RENAME command to REN. REN prompts you
for input.

RMAC (Not included)

Syntax:
RMAC filespec options

RMAC, a relocatable macro assembler, assembles ASM files into REL files that
you can link to create COM files.

RMAC options specify the destination of the output files. Replace d with the
destination drive letter for the output files.

SAVE

Syntax:
SAVE

SAVE copies the contents of memory to a file. To use SAVE, first issue the
SAVE command, then run your program which reads a file into memory. Your
program exits to the SAVE utility which prompts you for a filespec to which
it copies the contents of memory, and the beginning and ending address of the
memory to be SAVED.

SET

Syntax:
SET [options]
SET d: [options]
SET filespec [options]
SET [option = modifier]
SET filespec [option = modifier]

SET initiates password protection and time stamping of files. It also sets the file
and drive attributes Read/Write, Read/Ounly, DIR and SYS. It lets you label a
disk and passord protect the label. To enable time stamping of files, you must
first run INITDIR to format the disk directory.

SET Default password operation:

Syntax:
SET [DEFAULT=password]

120 CHAPTER 11. SYSTEM SOFTWARE

Instructs the system to use a default password if you do not enter a password
for a password-protected file.

SET Time-stamp operations:

Syntax:
SET d: [CREATE=O0ON|OFF]
SET d: [ACCESS=ON|OFF]
SET d: [UPDATE=ON|OFF]

The above set commands allw YOU to keep a record of the time and date of
file creation and update or of the last access update of your files.

SET Drive operations:

Syntax:
SET d: [RO]
SET d: [RW]

Adds or removes write protection from a drive.
SETDEF

Syntax:
SETDEF
SETDEF [TEMPORARY=d:]
SETDEF d:i,d:i,d:i,d:i
SETDEF [ORDER= (typl, typn)]
SETDEF [DISPLAY | NO DISPLAY)
SETDEF [PAGE | NOPAGE]

SETDEF allows the user to display or define up to four drives for the program
search order, the drive for temporary files, and the filetype search order. The
SETDEF definitions affect only the loading of programs and/or execution of
SUBMIT (SUB) files. SETDEF turns on/off the system Display and Console
Page modes. When on, the system displays the location and name of programs
loaded or SUBmit files executed, and stops after displaying one full console
screen of information.

SHOW

Syntax:
SHOW
SHOW d:
SHOW d: [SPACE]
SHOW d: [LABEL]
SHOW d: [USERS]
SHOW d: |DIR]
SHOW d: [DRIVE]

The SHOW command displays the following disk drive information:

11.1. CP/M 121

access mode and the amount of free disk space
disk label

current user number

number of files for each user number on the disk
number of free directory entries for the disk
drive characteristics

SID

Syntax:
SID [pgm-filespec|,{sym-filespec}

The SID symbolic debugger allows you to monitor and test programs developed
for the 8080 microprocessor. SID supports real-time breakpoints, fully moni-
tored execution, symbolic disassembly, assembly, and memory display and fill
functions. SID can dynamically load SID utility programs to provide traceback
and histogram facilities.

SUBMIT

Syntax:
SUBMIT
SUBMIT filespec
SUBMIT filespec argument ... argument

The SUBMIT command lets you execute a group (batch) of commands from a
SUBmit file (a file with filetype of SUB).

SUB files:
The SUB file can contain the following types of lines:

any valid CP/M Plus command

any valid CP/M Plus command with SUBMIT parameters ($0-$9)
any data input line

any program input line with parameters ($0 to $9)

The command line cannot exceed 135 characters.
TERMINFO (ZX Spectrum Next)

Syntax:
TERMINFO

This program provides information on the terminal facilities provided by the
BIOS on the ZX Spectrum Next.

TERMSIZE (ZX Spectrum Next)

Syntax:
TERMSIZE top left height width

Terminal resize utility

122 CHAPTER 11. SYSTEM SOFTWARE

Size can be up to 32x80 (defaults to 24x80, suitable for many programs). If
setting a reduced size, the top and left parameters can be used to make the
image more centered on your screen.

TYPE/TYP (built-in)

Syntax:
TYPE
TYPE filespec
TYPE filespec [PAGE]
TYPE filespec [NOPAGE]

The TYPE command displays the contents of an ASCII character file on your
screen.

UPGRADE (ZX Spectrum Next)

Syntax:
UPGRADE

UPGRADE CP/M from C:/NEXTZXOS/CPMBASE.P3D
USER/USE (built-in)

Syntax:
USER
USER n

The USER command sets the current user number. The disk directory can be
divided into distinct groups according to a User Number. User numbers range
from 0 through 15.

XREF (Not included)

Syntax:
XREF {d:} filename {$P}

XREF provides a cross-reference summary of variable usage in a program.
XREF requires the PRN and SYM files produced by MAC or RMAC for input
to the program. The SYM and PRN files must have the same filename as the
filename in the XREF command tail. XREF outputs a file of type XRF.

11.1.2 BDOS

From the CP/M 3 Programmers’ Guide 1984

This section documents all BDOS system calls to include the parameters that
must be passes to them and the values that are returned to the calling program.

BDOS function 0: SYSTEM RESET

Entry Parameters:

11.1. CP/M 123

C: $00

The System Reset function terminates the calling program and returns control
to the CCP via a warm start sequence. Calling this function has the same effect
as a jump to location $0000 of Page Zero.

Note that the disk subsystem is not reset by System Reset under CP/M 3. The
calling program can pass a return code to the CCP by calling Function 108,
Get/Set Program Return Code, prior to making a System Reset call or jumping
to location $0000.

BDOS function 1: CONSOLE INPUT
Entry Parameters:

C: $01
Returned Value:

A: ASCII Character

The Console Input function reads the next character from the logical console,
CONIN:, to register A. Graphic characters, along with carriage return, line-feed,
and backspace, CTRL-H, are echoed to the console. Tab characters, CTR-L-1,
are expanded in columns of 8 characters. CTRL-S, CTRL-Q, and CTRL-P are
normally intercepted as described below. All other non-graphic characters are
returned in register A but are not echoed to the console.

When the Console Mode is in the default state Function 1 intercepts the stop
scroll, CTRL-S, start scroll, CTRL-Q, and start/stop printer echo, CTRL-P,
characters. Any characters that are typed following a CTRL-S and preceding
a CTRL-Q are also intercepted. However, if start/stop scroll has been disabled
by the Console Mode, the CTRL-S, CTRL-Q, and CTRL-P characters are not
intercepted. Instead, they are returned in register A, but are not echoed to the
console.

If printer echo has been invoked, all characters that are echoed to the console
are also sent to the list device, LST:. Function 1 does not return control to
the calling program until a non-intercepted character is typed, thus suspending
execution if a character is not ready.

BDOS function 2: CONSOLE OUTPUT
Entry Parameters:

C: $02
E: ASCII Character

The Console Output function sends the ASCII character from register E to
the logical console device, CONOUT:. When the Console Mode is in the de-
fault state (see Section 2.2.1), Function 2 expands tab characters, CTRL-1, in
columns of 8 characters, checks for stop scroll, CTRL-S, start scroll, CTRL-Q,
and echoes characters to the logical list device, LST:, if printer echo, CTRL-P,

124 CHAPTER 11. SYSTEM SOFTWARE

has been invoked.
BDOS function 3: AUXILIARY INPUT
Entry Parameters:
C: $03
Returned Value:
A: ASCII Character

The Auxiliary Input function reads the next character from the logical auxiliary
input device, AUXIN:, into register A. Control does not return to the calling
program 'l the character is read. unti

BDOS function 4: AUXILIARY OUTPUT
Entry Parameters:

C: $04
E: ASCII Character

The Auxiliary Output function sends the ASCII character from register E to
the logical auxiliary output device, AUXOUT:.

BDOS function 5: LIST OUTPUT
Entry Parameters:

C: $05
E: ASCII Character

The List Output function sends the ASCII character in register E to the logical
list device, LST:.

BDOS function 6: DIRECT CONSOLE I/0

Entry Parameters:

C: $06

E: function/data (see description)
Returned Value:
A: char/status/no value (see description)

CP/M 3 supports direct I/O to the logical console, CONIN:, for those special-
ized applications where unadorned console input and output is required. Use
Direct Console I/O carefully because it bypasses all the normal control character
functions. Programs that perform direct I/O through the BIOS under previous
releases of CP/M should be changed to use direct I/O so that they can be fully
supported under future releases of MP/M and CP/M.

A program calls Function 6 by passing one of four different values in register E.

e 3FF Console input/status command returns an input character; if no char-

11.1. CP/M 125

acter is ready, a value of zero is returned.

e $FE Console status command (On return, register A contains 00 if no
character is ready; otherwise it contains $FF.)

e $FD Console input command, returns an input character; this function
will suspend the calling process until a character is ready.

e ASCII Function 6 assumes that register E contains a valid ASCII charar-
acter and sends it to the console.

BDOS function 7: AUXILIARY INPUT STATUS
Entry Parameters:

C: $07
Returned Value:
A: Auxiliary Input Status

The Auxiliary Input Status function returns the value $FF in register A if a
character is ready for input from the logical auxiliary input device, AUXIN:. If
no character is ready for input, the value $00 is returned.

BDOS function 8: AUXILIARY OUTPUT STATUS
Entry Parameters:

C: $08
Returned Value:

A: Auxiliary Output Status

The Auxiliary Output Status function returns the value $FF in register A if the
logical auxiliary output device, AUXOUT?:, is ready to accept a character for
output. If the device is not ready for output, the value $00 is returned.

BDOS function 9: PRINT STRING
Entry Parameters:

C: 309
DE: String Address

The Print String function sends the character string addressed by register pair
DE to the logical console, CONOUT:, until it encounters a delimiter in the
string. Usually the delimiter is a dollar sign, $, but it can be changed to any
other value by Function 110, Get/Set Output Delimiter. If the Console Mode
is in the default state, Function 9 expands tab characters, CTRL-I, in columns
of 8 characters. It also checks for stop scroll, CTRL-S, start scroll, CTRL-Q,
and echoes to the logical list device, LST:, if printer echo, CTRL-P, has been
invoked.

BDOS function 10: READ CONSOLE BUFFER

Entry Parameters:

126 CHAPTER 11. SYSTEM SOFTWARE

C: $0A
DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Console Buffer function reads a line of edited console input from
the logical console, CONIN:, to a buffer that register pair DE addresses. It
terminates input and returns to the calling program when it encounters a return,
CTRL-M, or a line feed, CTRL-J, character. Function 10 also discards all input
characters after the input buffer is filled. In addition, it outputs a bell character,
CTRL-G, to the console when it discards a character to signal the user that the
buffer is full. The input buffer addressed by DE has the following format:

where mx is the maximum number of characters which the buffer holds, and
nc is the number of characters placed in the buffer. The characters entered by
the operator follow the nc value. The value mx must be set prior to making a
Function 10 call and may range in value from 1 to 255. Setting mx to zero is
equivalent to setting mx to one. The value nc is returned to the calling program
and may range from zero to mx. If nc < mx, then uninitialized positions follow
the last character, denoted by 7?7 in the figure. Note that a terminating return
or line feed character is not placed in the buffer and not included in the count
nc.

If register pair DE is set to zero, Function 10 assumes that an initialized input
buffer is located at the current DMA address (see Function 26, Set DMA Ad-
dress). This allows a program to put a string on the screen for the user to edit.
To initialize the input buffer, set characters c1 through cn to the initial value
followed by a binary zero terminator.

When a program calls Function 10 with an initialized buffer, Function 10 oper-
ates as if the user had typed in the string. When Function 10 encounters the
binary zero terminator, it accepts input from the console. At this point, the
user can edit the initialized string or accept it as it is by pressing the RETURN
key. However, if the initialized string contains a return, CTRL-M, or a linefeed,
CTRL-J, character, Function 10 returns to the calling program without giving
the user the opportunity to edit the string.

The level of console editing supported by Function 10 differs for the banked
and nonbanked versions of CP/M 3. Refer to the CPIM Plus (CPIM Version
3) Operating System User’s Guide for a detailed description of console editing.
In the nonbanked version, Function 10 recognizes the following edit control
characters.

Nonbanked CP/M 3

e rub/del Removes and echoes the last character; GENCPM can change this
function to CTRL-H
e CTRL-C Reboots when at the beginning of line; the Console Mode can

11.1.

CP/M 127

disable this function

e CTRL-E Causes physical end of line

CTRL-H Backspaces one character position; GENCPM can change this
function to rub/del

CTRL-J (Line-feed) terminates input line

CTRL-M (Return) terminates input line

CTRL-P Echoes console output to the list device

CTRL-R Retypes the current line after new line

CTRL-U Removes current line after new line

CTRL-X Backspaces to beginning of current line

The banked version of CP/M 3 expands upon the editing provided in the non-
banked version. The functionality of the two versions is similar when the cursor
is positioned at the end of the line. However, in the banked version, the user
can move the cursor anywhere in the current line, insert characters, delete char-
acters, and perform other editing functions. In addition, the banked version
saves the previous command line; it can be recalled when the current line is
empty. In the banked version, Function 10 recognizes the following edit control
characters.

Banked CP/M 3

rub/del Removes and echoes the last character if at the end of the line;
otherwise deletes the character to the left of the current cursor position;
GENCPM can change this function to CTRL-H.

e CTRL-A Moves cursor one character to the left.
e CTRL-B Moves cursor to the beginning of the line when not at the be-

ginning; otherwise moves cursor to the end of the line.

CTRL-C Reboots when at the beginning of line; the Console Mode can
disable this function.

CTRL-E Causes physical end-of-line; if the cursor is positioned in the
middle of a line, the characters at and to the right of the cursor are
displayed on the next line.

e CTRL-F Moves cursor one character to the right.
e CTRL-G Deletes the character at the current cursor position when in the

middle of the line; has no effect when the cursor is at the end of the line.
CTRL-H Backspaces one character position when positioned at the end
of the line,; otherwise deletes the character to the left of the cursor;
GENCPM can change this function to rub/del.

CTRL-J (Line-feed) terminates input; the cursor can be positioned any-
where in the line; the entire input line is accepted; sets the previous line
buffer to the input line.

CTRL-K Deletes all characters to the right of the cursor along with the
character at the cursor.

CTRL-M (Return) terminates input; the cursor can be positioned any-
where in the line; the entire input line is accepted; sets the previous line
buffer to the input line.

128 CHAPTER 11. SYSTEM SOFTWARE

e CTRL-P Echoes console output to the list device.

e CTRL-R Retypes the characters to the left of the cursor on the new line.

e CTRL-U Updates the previous line buffer to contain the characters to the
left of the cursor; deletes current line, and advances to new line.

e CTRL-W Recalls previous line if current line is empty; otherwise moves
cursor to end-of-line.

e CTRL-X Deletes all characters to the left of the cursor.

For banked systems, Function 10 uses the console width field defined in the
System Control Block. If the console width is exceeded when the cursor is
positioned at the end of the line, Function 10 automatically advances to the
next line. The beginning of the line can be edited by entering a CTRL-R.

When a character is typed while the cursor is positioned in the middle of the
line, the typed character is inserted into the line. Characters at and to the
right of the cursor are shifted to the right. If the console width is exceeded, the
characters disappear off the right of the screen. However, these characters are
not lost. They reappear if characters are deleted out of the line, or if a CTRL-E
is typed.

BDOS function 11: GET CONSOLE STATUS
Entry Parameters:

C: $0B
Returned Value:

A: Console Status

The Get Console Status function checks to see if a character has been typed
at the logical console, CONIN:. If the Console Mode is in the default state,
Function 11 returns the value $01 in register A when a character is ready. If a
character is not ready, it returns a value of $00.

If the Console Mode is in CTRL-C Only Status mode, Function 11 returns the
value $01 in register A only if a CTRL-C has been typed at the console.

BDOS function 12: RETURN VERSION NUMBER
Entry Parameters:

C: $0C
Returned Value:

HL: Version Number

The Return Version Number function provides information that allows version
independent programming. It returns a two-byte value in register pair HL:
H contains $00 for CP/M and L contains $31, the BDOS file system version
number. Function 12 is useful for writing applications programs that must run
on multiple versions of CP/M and MP /M.

11.1. CP/M 129

BDOS function 13: RESET DISK SYSTEM
Entry Parameters:
C: $0D

The Reset Disk System function restores the file system to a reset state where
all the disk drives are set to read-write (see Functions 28 and 29), the default
disk is set to drive A, and the default DMA address is reset to $0080. This
function can be used, for example, by an application program that requires disk
changes during operation. Function 37, Reset Drive, can also be used for this
purpose.

BDOS function 14: SELECT DISK
Entry Parameters:

C: $0E
E: Selected Disk

Returned Value:

A: Error Flag
H: Physical Error

The Select Disk function designates the disk drive named in register E as the
default disk for subsequent BDOS file operations. Register E is set to 0 for drive
A, 1 for drive B, and so on through 15 for drive P in a full 16-drive system.
In addition, Function 14 logs in the designated drive if it is currently in the
reset state. Logging-in a drive activates the drive’s directory until the next disk
system reset or drive reset operation.

FCBs that specify drive code zero (dr = $00) automatically reference the cur-
rently selected default drive. FCBs with drive code values between 1 and 16,
however, gnore the selected default drive and directly reference drives A through
P.

Upon return, register A contains a zero if the select operation was successful. If
a physical error was encountered, the select function performs different actions
depending on the BDOS error mode (see Function 45). If the BDOS error mode
is in the default mode, a message identifying the error is displayed at the console,
and the calling program is terminated. Otherwise, the select function returns
to the calling program with register A set to $FF and register H set to one of
the following

physical error codes:

e 01 Disk I/O Error
e 04 Invalid drive

BDOS function 15: OPEN FILE

Entry Parameters:

130 CHAPTER 11. SYSTEM SOFTWARE

C: $0F
DE: FCB Address

Returned Value:

A: Directory Code
H: Physical or Extended Error

The Open File function activates the FCB for a file that exists in the disk
directory under the currently active user number or user zero. The calling
program passes the address of the FCB in register pair DE, with byte 0 of
the FCB specifying the drive, bytes 1 through 11 specifying the filename and
filetype, and byte 12 specifying the extent. Usually, byte 12 of the FCB is
initialized to zero.

If the file is password protected in Read mode, the correct password must be
placed in the first eight bytes of the current DMA, or have been previously
established as the default password (see Function 106). If the current record
field of the FCB, cr, is set to $FF, Function 15 returns the byte count of the
last record of the file in the cr field. You can set the last record byte count for
a file with Function 30, Set File Attributes. Note that the current record field
of the FCB, cr, must be zeroed by the calling program before beginning read or
write operations if the file is to be accessed sequentially from the first record.

If the current user is non-zero, and the file to be opened does not exist under
the current user number, the open function searches user zero for the file. If
the file exists under user zero, and has the system attribute, t2’, set, the file is
opened under user zero. Write operations are not supported for a file that is
opened under user zero in this manner.

If the open operation is successful, the user’s FCB is activated for read and write
operations. The relevant directory information is copied from the matching
directory FCB into bytes d0 through dn of the FCB. If the file is opened under
user zero when the current user number is not zero, interface attribute {8’ is set
to one in the user’s FCB. In addition, if the referenced file is password protected
in Write mode, and the correct password was not passed in the DMA, or did
not match the default password, interface attribute f7’ is set to one. Write
operations are not supported for an activated FCB if interface attribute {7’ or
8’ is true.

When the open operation is successful, the open function also makes an Access
date and time stamp for the opened file when the following conditions are sat-
isfied: the referenced drive has a directory label that requests Access date and
time stamping, and the FCB extent number field is zero.

Upon return, the Open File function returns a directory code in register A
with the value $00 if the open was successful, or $FF, 255 decimal, if the file
was not found. Register H is set to zero in both of these cases. If a physical
or extended error was encountered, the Open File function performs different
actions depending on the BDOS error mode (see Function 45). If the BDOS

11.1. CP/M 131

error mode is in the default mode, a message identifying the error is displayed at
the console and the program is terminated. Otherwise, the Open File function
returns to the calling program with register A set to $FF, and register H set to
one of the following physical or extended error codes:

01 : Disk I/O Error

04 : Invalid drive error

07 : File password error

09 : 7 in the FCB filename or filetype field

BDOS function 16: CLOSE FILE

Entry Parameters:

C: $10
DE: FCB Address

Returned Value:

A: Directory Code
H: Physical or Extended Error

The Close File function performs the inverse of the Open File function. The
calling program passes the address of an FCB in register pair DE. The referenced
FCB must have been previously activated by a successful Open or Make function
call (see Functions 15 and 22). Interface attribute f5’ specifies how the file is to
be closed as shown below:

e 5" = 0 - Permanent close (default mode)
e 5’ =1 - Partial close

A permanent close operation indicates that the program has completed file
operations on the file. A partial close operation updates the directory, but
indicates that the file is to be maintained in the open state.

If the referenced FCB contains new information because of write operations to
the FCB, the close function permanently records the new information in the
referenced disk directory. Note that the FCB does not contain new information,
and the directory update step is bypassed if only read or update operations have
been made to the referenced FCB.

Upon return, the close function returns a directory code in register A with the
value $00 if the close was successful, or $FF, 255 Decimal, if the file was not
found. Register H is set to zero in both of these cases. If a physical or extended
error is encountered, the close function performs different actions depending on
the BDOS error mode (see Function 45). If the BDOS error mode is in the
default mode, a message identifying the error is displayed at the console, and
the calling program is terminated. Otherwise, the close function returns to the
calling program with register A set to $FF and register H set to one of the
following physical error codes:

e 01 Disk I/O error

132 CHAPTER 11. SYSTEM SOFTWARE

e 02 Read/only disk
e 04 Invalid drive error

BDOS function 17: SEARCH FOR FIRST
Entry Parameters:

C: $11
DE: FCB Address

Returned Value:

A: Directory Code
H: Physical Error

The Search For First function scans the directory for a match with the FCB
addressed by register pair DE. Two types of searches can be performed. For
standard searches, the calling program initializes bytes 0 through 12 of the
referenced FCB, with byte 0 specifying the drive directory to be searched, bytes
1 through 11 specifying the file or files to be searched for,, and byte 12 specifying
the extent. Usually byte 12 is set to zero. An ASCII question mark, 63 decimal,
3F hex, in any of the bytes 1 through 12 matches all entries on the directory
in the corresponding position. This facility, called ambiguous reference, can be
used to search for multiple files on the directory. When called in the standard
mode, the Search function scans for the first file entry in the specified directory
that matches the FCB, and belongs to the current user number.

The Search For First function also initializes the Search For Next function.
After the Search function has located the first directory entry matching the
referenced FCB, the Search For Next function can be called repeatedly to locate
all remaining matching entries. In terms of execution sequence, however, the
Search For Next call must either follow a Search For First or Search For Next
call with no other intervening BDOS disk-related function calls.

If byte 0 of the referenced FCB is set to a question mark, the Search function
ignores the remainder of the referenced FCB, and locates the first directory
entry residing on the current default drive. All remaining directory entries
can be located by making multiple Search For Next calls. This type of search
operation is not usually made by application programs, but it does provide
complete flexibility to scan all current directory values. Note that this type of
search operation must be performed to access a drive’s directory label.

Upon return, the Search function returns a Directory Code in register A with
the value 0 to 3 if the search is successful, or $FF, 255 Decimal, if a matching
directory entry is not found. Register H is set to zero in both of these cases.
For successful searches, the current DMA is also filled with the directory record
containing the matching entry, and the relative starting position is A * 32 (that
is, rotate the A register left 5 bits, or ADD A five times). Although it is
not usually required for application programs, the directory information can be

11.1. CP/M 133

extracted from the buffer at this position.

If the directory has been initialized for date and time stamping by INITDIR,
then an SFCB resides in every fourth directory entry, and successful Directory
Codes are restricted to the values 0 to 2. For successful searches, if the matching
directory record is an extent zero entry, and if an SFCB resides at offset 96 within
the current DMA, contents of (DMA Address + 96) = $21, the SFCB contains
the date and time stamp information, and password mode for the file. This
information is located at the relative starting position of 97 + (A * 10) within
the current DMA in the following format:

e 0 - 3 Create or Access Date and Time Stamp Field
e 4 - 7 Update Date and Time Stamp Field
e 8 : Password Mode Field

If a physical error is encountered, the Search function performs different actions
depending on the BDOS error mode (see Function 45). If the BDOS error mode
is in the default mode, a message identifying the error is displayed at the console,
and the calling program is terminated. Otherwise, the Search function returns
to the calling program with register A set to $FF, and register H set to one of
the following physical error codes:

e 01 Disk I/O error
e 04 Invalid drive error

BDOS function 18: SEARCH FOR NEXT
Entry Parameters:

C: $12
Returned Value:

A: Directory Code
H: Physical Error

The Search For Next function is identical to the Search For First function,
except that the directory scan continues from the last entry that was matched.
Function 18 returns a Directory code in register A, analogous to Function 17.

Note: in execution sequence, a Function 18 call must follow either a Function
17 or another Function 18 call with no other intervening BDOS disk-related
function calls.

BDOS function 19: DELETE FILE
Entry Parameters:

C: $13
DE: FCB Address

Returned Value:
A: Directory Code

134 CHAPTER 11. SYSTEM SOFTWARE

H: Extended or Physical Error

The Delete File function removes files or XFCBs that match the FCB addressed
in register pair DE. The filename and filetype can contain ambiguous references,
that is, question marks in bytes f1’ through t3’, but the dr byte cannot be
ambiguous, as it can in the Search and Search Next functions. Interface attribute
5 specifies the type of delete operation that is performed.

e {5’ = 0 - Standard Delete (default mode)
e {5’ = 1 - Delete only XFCBs

If any of the files that the referenced FCB specify are password protected, the
correct password must be placed in the first eight bytes of the current DMA
buffer, or have been previously established as the default password (see Function
106).

For standard delete operations, the Delete function removes all directory entries
belonging to files that match the referenced FCB. All disk directory and data
space owned by the deleted files is returned to free space, and becomes available
for allocation to other files. Directory XFCBs that were owned by the deleted
files are also removed from the directory. If interface attribute f5’ of the FCB is
set to 1, Function 19 deletes only the directory XFCBs that match the referenced
FCB.

Note: if any of the files that match the input FCB specification fall the password
check, or are Read-Only, then the Delete function does not delete any files or
XFCBS. This applies to both types of delete operations.

In nonbanked systems, file passwords and XFCBs are not supported. Thus, if
the Delete function is called with interface attribute 5’ set to true, the Delete
function performs no action but returns with register A set to zero.

Upon return, the Delete function returns a Directory Code in register A with
the value 0 if the delete is successful, or $FF, 255 Decimal, if no file that matches
the referenced FCB is found. Register H is set to zero in both of these cases.
If a physical, or extended error is encountered, the Delete function performs
different actions depending on the BDOS error mode (see Function 45). If
the BDOS error mode is the default mode, a message identifying the error is
displayed at the console and the calling program is terminated. Otherwise, the
Delete function returns to the calling program with register A set to $FF and
register H set to one of the following physical or extended error codes:

01 : Disk I/O error

02 : Read-Only disk

03 : Read-Only file

04 : Invalid drive error
07 : File password error

BDOS function 20: READ SEQUENTIAL

Entry Parameters:

11.1. CP/M 135

C: $14
DE: FCB Address

Returned Value:

A: Error Code
H: Physical Error

The Read Sequential function reads the next 1 to 128 128-byte records from
a file into memory beginning at the current DMA address. The BDOS Multi-
Sector Count (see Function 44) determines the number of records to be read.
The default is one record. The FCB addressed by register pair DE must have
been previously activated by an Open or Make function call.

Function 20 reads each record from byte cr of the extent, then automatically
increments the cr field to the next record position. If the cr field overflows, then
the function automatically opens the next logical extent and resets the cr field to
0 in preparation for the next read operation. The calling program must set the
cr field to 0 following the Open call if the intent is to read sequentially from the
beginning of the file. Upon return, the Read Sequential function sets register
A to zero if the read operation is successful. Otherwise, register A contains an
error code identifying the error as shown below:

01 Reading unwritten data (end-of-file)
09 Invalid FCB

10 Media change occurred

255 Physical Error; refer to register H

Error Code 01 is returned if no data exists at the next record position of the
file. Usually, the no data situation is encountered at the end of a file. However,
it can also occur if an attempt is made to read a data block that has not been
previously written, or an extent which has not been created. These situations
are usually restricted to files created or appended with the BDOS random write
functions (see Functions 34 and 40).

Error Code 09 is returned if the FCB is invalidated by a previous BDOS close
call that returns an error.

Error Code 10 is returned if a media change occurs on the drive after the refer-
enced FCB is activated by a BDOS Open, or Make Call.

Error Code 255 is returned if a physical error is encountered and the BDOS error
mode is Return Error mode, or Return and Display Error mode (see Function
45). If the error mode is the default mode, a message identifying the physical
error is displayed at the console, and the calling program is terminated. When
a physical error is returned to the calling program, register H contains one of
the following error codes:

e 01 Disk I/O error
e 04 Invalid drive error

136 CHAPTER 11. SYSTEM SOFTWARE

On all error returns except for physical error returns, A = 255, Function 20
sets register H to the number of records successfully read before the error is
encountered. This value can range from 0 to 127 depending on the current
BDOS Multi-Sector Count. It is always set to zero when the Multi-Sector
Count is equal to one.

BDOS function 21: WRITE SEQUENTIAL
Entry Parameters:

C: $15
DE: FCB Address

Returned Value:

A: Error Code
H: Physical Error

The Write Sequential function writes 1 to 128 128-byte data records, beginning
at the current DMA address into the file named by the FCB addressed in reg-
ister pair DE. The BDOS Multi-Sector Count (see Function 44) determines the
number of 128 byte records that are written. The default is one record. The
referenced FCB must have been previously activated by a BDOS Open or Make
function call.

Function 21 places the record into the file at the position indicated by the cr
byte of the FCB, and then automatically increments the cr byte to the next
record position. If the cr field overflows, the function automatically opens, or
creates the next logical extent, and resets the cr field to 0 in preparation for the
next write operation. If Function 21 is used to write to an existing file, then
the newly written records overlay those already existing in the file. The calling
program must set the cr field to 0 following an Open or Make call if the intent
is to write sequentially from the beginning of the file.

Function 21 makes an Update date and time for the file if the following condi-
tions are satisfied: the referenced drive has a directory label that requests date
and time stamping, and the file has not already been stamped for update by a
previous Make or Write function call.

Upon return, the Write Sequential function sets register A to zero if the write
operation is successful. Otherwise, register A contains an error code identifying
the error as shown below:

01 No available directory space

02 No available data block

09 Invalid FCB

10 Media change occurred

255 Physical Error : refer to register H

Error Code 01 is returned when the write function attempts to create a new
extent that requires a new directory entry, and no available directory entries

11.1. CP/M 137

exist on the selected disk drive.

Error Code 02 is returned when the write command attempts to allocate a new
data block to the file, and no unallocated data blocks exist on the selected disk
drive.

Error Code 09 is returned if the FCB is invalidated by a previous BDOS close
call that returns an error.

Error Code 10 is returned if a media change occurs on the drive after the refer-
enced FCB is activated by a BDOS Open or Make call.

Error Code 255 is returned if a physical error is encountered and the BDOS error
mode is Return Error mode, or Return and Display Error mode (see Function
45). If the error mode is the default mode, a message identifying the physical
error is displayed at the console, and the calling program is terminated. When
a physical error is returned to the calling program, register H contains one of
the following error codes:

e 01 Disk I/O error

e 02 Read-Only disk

e 03 Read-Only file or File open from user 0 when the current user number
is non-zero or File password protected in Write mode

e 04 Invalid drive error

On all error returns, except for physical error returns, A = 255, Function 21
sets register H to the number of records successfully written before the error
was encountered. This value can range from 0 to 127 depending on the current
BDOS Multi-Sector Count. It is always set to zero when the Multi-Sector Count
is set to one.

BDOS function 22: MAKE FILE
Entry Parameters:

C: $16
DE: FCB Address

Returned Value:

A: Directory Code
H: Physical or Extended Error

The Make File function creates a new directory entry for a file under the current
user number. It also creates an XFCB for the file if the referenced drive has a
directory label that enables password protection on the drive, and the calling
program assigns a password to the file.

The calling program passes the address of the FCB in register pair DE, with byte
0 of the FCB specifying the drive, bytes 1 through 11 specifying the filename
and filctype, and byte 12 set to the extent number. Usually, byte 12 is set to
zero. Byte 32 of the FCB, the cr field, must be initialized to zero, before or

138 CHAPTER 11. SYSTEM SOFTWARE

after the Make call, if the intent is to write sequentially from the beginning of
the file.

Interface attribute f6’ specifies whether a password is to be assigned to the
created file.

e 6’ = 0 - Do not assign password (default)
e f6’ = 1 - Assign password to created file

When attribute 6’ is set to 1, the calling program must place the password in
the first 8 bytes of the current DMA buffer, and set byte 9 of the DMA buffer
to the password mode (see Function 102). Note that the Make function only
interrogates interface attribute f6’ if passwords are activated on the referenced
drive. In nonbanked systems, file passwords are not supported, and attribute
f6’ is never interrogated.

The Make function returns with an error if the referenced FCB names a file that
currently exists in the directory under the current user number.

If the Make function is successful, it activates the referenced FCB for file op-
erations by opening the FCB, and initializes both the directory entry and the
referenced FCB to an empty file. It also initializes all file attributes to zero. In
addition, Function 22 makes a Creation date and time stamp for the file if the
following conditions are satisfied: the referenced drive has a directory label that
requests Creation date and time stamping and the FCB extent number field is
equal to zero. Function 22 also makes an Update stamp if the directory label
requests update stamping and the FCB extent field is equal to zero.

If the referenced drive contains a directory label that enables password protec-
tion, and if interface attribute f6” has been set to 1, the Make function creates
an XFCB for the file. In addition, Function 22 also assigns the password, and
password mode placed in the first nine bytes of the DMA, to the XFCB.

Upon return, the Make function returns a directory code in register A with the
value 0 if the make operation is successful, or $FF, 255 decimal, if no directory
space is available. Register H is set to zero in both of these cases. If a physical
or extended error is encountered, the Make function performs different actions
depending on the BDOS error mode (see Function 45). If the BDOS error mode
is the default mode, a message identifying the error is displayed at the console,
and the calling program is terminated. Otherwise, the Make function returns
to the calling program with register A set to $FF, and register H set to one of
the following physical or extended error codes:

01 : Disk I/O error

02 : Read-Only disk

04 : Invalid drive error

08 : File already exists

09 : ? in filename or filetype field

BDOS function 23: RENAME FILE

11.1. CP/M 139

Entry Parameters:

C: $17
DE: FCB Address

Returned Value:

A: Directory Code
H: Physical or Extended Error

The Rename function uses the FCB, addressed by register pair DE, to change
all directory entries of the file specified by the filename in the first 16 bytes of
the FCB to the filename in the second 16 bytes. If the file specified by the first
filename is password protected, the correct password must be placed in the first
eight bytes of the current DMA buffer, or have been previously established as
the default password (see Function 106). The calling program must also ensure
that the filenames specified in the FCB are valid and unambiguous, and that
the new filename does not already exist on the drive. Function 23 uses the dr
code at byte 0 of the FCB to select the drive. The drive code at byte 16 of the
FCB is ignored.

Upon return, the Rename function returns a Directory Code in register A with
the value 0 if the rename is successful, or $OFF, 255 Decimal, if the file named
by the first filename in the FCB is not found. Register H is set to zero in both of
these cases. If a physical or extended error is encountered, the Rename function
performs different actions depending on the BDOS error mode (see Function
45). If the BDOS error mode is the default mode, a message identifying the
error is displayed at the console and the program is terminated. Otherwise, the
Rename function returns to the calling program with register A set to $OFF and
register H set to one of the following physical or extended error codes:

01 Disk I/O error

02 Read-Only disk

03 Read-Only file

04 Invalid drive error

07 File password error

08 File already exists

09 ? in filename or filetype field

BDOS function 24: RETURN LOGIN VECTOR

Entry Parameters:
C: $18
Returned Value:
HL: Login Vector

Function 24 returns the login vector in register pair HL. The login vector is a
16-bit value with the least significant bit of L corresponding to drive A, and the
highorder bit of H corresponding to the 16th drive, labelled P. A 0 bit indicates

140 CHAPTER 11. SYSTEM SOFTWARE

that the drive is not on-line, while a 1 bit indicates the drive is active. A drive
is made active by either an explicit BDOS Select Disk call, number 14, or an
implicit selection when a BDOS file operation specifies a non-zero dr byte in the
FCB. Function 24 maintains compatibilty with earlier releases since registers A
and L contain the same values upon return.

BDOS function 25: RETURN CURRENT DISK
Entry Parameters:

C: $19
Returned Value:

A: Current Disk

Function 25 returns the currently selected default disk number in register A.
The disk numbers range from 0 through 15 corresponding to drives A through
P.

BDOS function 26: SET DMA ADDRESS
Entry Parameters:

C: $1A
DE: DMA Address

DMA is an acronym for Direct Memory Address, which is often used in con-
nection with disk controllers that directly access the memory of the computer
to transfer data to and from the disk subsystem. Under CP/M 3, the current
DMA is usually defined as the buffer in memory where a record resides before
a disk write, and after a disk read operation. If the BDOS Multi-Sector Count
is equal to one (see Function 44), the size of the buffer is 128 bytes. However,
if the BDOS Multi-Sector Count is greater than one, the size of the buffer must
equal N * 128, where N equals the Multi-Sector Count.

Some BDOS functions also use the current DMA to pass parameters, and to
return values. For example, BDOS functions that check and assign file passwords
require that the password be placed in the current DMA. As another example,
Function 46, Get Disk Free Space, returns its results in the first 3 bytes of
the current DMA. When the current DMA is used in this context, the size of
the buffer in memory is determined by the specific requirements of the called
function.

When a transient program is initiated by the CCP, its DMA address is set
to $0080. The BDOS Reset Disk System function, Function 13, also sets the
DMA address to $0080. The Set DMA function can change this default value
to another memory address. The DMA address is set to the value passed in the
register pair DE. The DMA address remains at this value until it is changed by
another Set DMA Address, or Reset Disk System call.

BDOS function 27: GET ADDR(ALLOC)

11.1. CP/M 141

Entry Parameters:
C: $1B
Returned Value:
HL: ALLOC Address

CP/M 3 maintains an allocation vector in main memory for each active disk
drive. Some programs use the information provided by the allocation vector
to determine the amount of free data space on a drive. Note, however, that
the allocation information might be inaccurate if the drive has been marked
Read-Only.

Function 27 returns in register pair HL, the base address of the allocation vector
for the currently selected drive. If a physical error is encountered when the
BDOS error mode is one of the return modes (see Function 45), Function 27
returns the value $FFFF in the register pair HL.

In banked CP/M 3 systems, the allocation vector can be placed in bank zero.
In this case, a transient program cannot access the allocation vector. However,
the BDOS function, Get Disk Free Space (Function 46), can be used to directly
return the number of free 128-byte records on a drive. The CP/M 3 utilities that
display a drive’s free space, DIR and SHOW, use Function 46 for that purpose.

BDOS function 28: WRITE PROTECT DISK
Entry Parameters:
C: $1C

The Write Protect Disk function provides temporary write protection for the
currently selected disk by marking the drive as Read-Only, No program can
write to a disk that is in the Read-Only state. A drive reset operation must
be performed for a Read-Only drive to restore it to the Read-Write state (see
Functions 13 and 37).

BDOS function 29: GET READ-ONLY VECTOR
Entry Parameters:

C: 1$D
Returned Value:

HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL that indicates which drives
have the temporary Read-Only bit set. The Read-Only bit can be set only by
a BDOS Write Protect Disk call.

The format of the bit vector is analogous to that of the login vector returned
by Function 24. The least significant bit corresponds to drive A, while the most
significant bit corresponds to drive P.

142 CHAPTER 11. SYSTEM SOFTWARE

BDOS function 30: SET FILE ATTRIBUTES
Entry Parameters:

C: $1E
DE: FCB Address

Returned Value:

A: Directory Code
H: Physical or Extended error

By calling the Set File Attributes function, a program can modify a file’s at-
tributes and set its last record byte count. Other BDOS functions can be called
to interrogate these file parameters, but only Function 30 can change them.
The file attributes that can be set or reset by Function 30 are fl’ through f4’,
Read-Only, t1°, System, t2’, and Archive, t3’. The register pair DE addresses
an FCB containing a filename with the appropriate attributes set or reset. The
calling program must ensure that it does not specify an ambiguous filename. In
addition, if the specified file is password totected, the correct password must be
placed in the first eight bytes of the current DMA buffer or have been previously
established as the default password (see Function 106).

Interface attribute f6’ specifies whether the last record byte count of the specified
file is to be set:

e 6 = 0 - Do not set byte count (default mode)
e f6’ = 1 - Set byte count

If interface attribute 6’ is set, the calling program must set the cr field of the
referenced FCB to the byte count value. A program can access a file’s byte
count value with the BDOS Open, Search, or Search Next functions.

Function 30 searches the referenced directory for entries belonging to the current
user number that matches the FCB specified name and type fields. The function
then updates the directory to contain the selected indicators, and if interface
attribute f6’ is set, the specified byte count value. Note that the last record
byte count is maintained in byte 13 of a file’s directory FCBS.

File attributes t1’, t2’, and t3’ are defined by CP/M 3. (They are described in
Section 2.3.4.) Attributes fI’ through f4’ are not presently used, but can be useful
for application programs, because they are not involved in the matching program
used by the BDOS during Open File and Close File operations. Indicators {5’
through {8 are reserved for use as interface attributes.

Upon return, Function 30 returns a Directory Code in register A with the value
0 if the function is successful, or $FF, 255 Decimal, if the file specified by the
referenced FCB is not found. Register H is set to zero in both of these cases.
If a physical or extended error is encountered’, the Set File Attributes function
performs different actions depending on the BDOS error mode (see Function
45). If the BDOS error mode is the default mode, a message identifying the

11.1. CP/M 143

error is displayed at the console, and the program is terminated. Otherwise,
Function 30 returns to the calling program with reg’ls-Ler A set to $FF, and
register H set to one of the following physical or extended error codes:

01 Disk I/O error

02 Read-Only disk

04 Select error

07 File password error

09 ? in filename or filetype field

BDOS function 31: GET ADDR(DPB PARMS)

Entry Parameters:
C: $§1F
Returned Value:
HL: DPB Address

Function 31 returns in register pair HL the address of the BIOS-resident Disk
Parameter Block, DPB, for the currently selected drive. (Refer to the CP/M
Plus (CP/M Version 3) Operating System System Guide for the format of the
DPB). The calling program can use this address to extract the disk parameter
values.

If a physical error is encountered when the BDOS error mode is one of the return
modes (see Function 45), Function 31 returns the value $FFFF in the register
pair HL.

BDOS function 32: SET/GET USER CODE
Entry Parameters:

C: $20
Returned Value:

E: $FF (get) or User Code (set)
A: Current Code or (no value)

A program can change, or interrogate the currently active user number by calling
Function 32. If register E = $FF, then the value of the current user number is
returned in register A, where the value is in the range of 0 to 15. If register E
is not $FF, then the current user number is changed to the value of E, modulo
16.

BDOS function 33: READ RANDOM

Entry Parameters:

C: $21
DE: FCB Address

Returned Value:

144 CHAPTER 11. SYSTEM SOFTWARE

A: Error Code
H: Physical Error

The Read Random function is similar to the Read Sequential function except
that the read operation takes place at a particular random record number,
selected by the 24-bit value constructed from the three byte, r0, rl, r2, field
beginning at position 33 of the FCB. Note that the sequence of 24 bits is stored
with the least significant byte first, rO, the middle byte next, rl, and the high
byte last, r2. The random record number can range from 0 to 262,143. This
corresponds to a maximum value of 3 in byte r2.

To read a file with Function 33, the calling program must first open the base ex-
tent, extent 0. This ensures that the FCB is properly initialized for subsequent
random access operations. The base extent may or may not contain any allo-
cated data. Function 33 reads the record specified by the random record field
into the current DMA address. The function automatically sets the logical ex-
tent and current record values, but unlike the Read Sequential function, it does
not advance the current record number. Thus, a subsequent Read Random call
rereads the same record. After a random read operation, a file can be accessed
sequentially, starting from the current randomly accessed position. However,
the last randomly accessed record is reread or rewritten when switching from
random to sequential mode.

If the BDOS Multi-Sector Count is greater than one (see Function 44), the Read
Random function reads multiple consecutive records into memory beginning
at the current DMA. The rO, rl, and r2 field of the FCB is automatically
incremented to read each record. However, the FCBs random record number is
restored to the first record’s value upon return to the calling program.

Upon return, the Read Random function sets register A to zero if the read
operation was successful. Otherwise, register A contains one of the following
error codes:

01 Reading unwritten data (end-of-file)
03 Cannot close current extent

04 Seek to unwritten extent

06 Random record number out of range
10 Media change occurred

255 Physical Error : refer to register H

Error Code 01 is returned if no data exists at the next record position of the
file. Usually, the no data situation is encountered at the end of a file. However,
it can also occur if an attempt is made to read a data block that has not been
previously written.

Error Code 03 is returned when the Read Random function cannot close the
current extent prior to moving to a new extent.

Error Code 04 is returned when a read random operation accesses an extent
that has not been created.

11.1. CP/M 145

Error Code 06 is returned when byte 35, r2, of the referenced FCB is greater
than 3.

Error Code 10 is returned if a media change occurs on the drive after the refer-
enced FCB is activated by a BDOS Open or Make Call.

Error Code 255 is returned if a physical error is encountered, and the BDOS
error mode is one of the return modes (see Function 45). If the error mode
is the default mode, a message identifying the physical error is displayed at
the console, and the calling program is terminated. When a physical error is
returned to the calling program, register H contains one of the following error
codes:

e 01 Disk I/O error
e 04 Invalid drive error

On all error returns except for physical errors, A = 255, the Read Random
function sets register H to the number of records successfully read before the
error is encountered. This value can range from 0 to 127 depending on the
current BDOS Multi-Sector Count. It is always set to zero when the Multi-
Sector Count is equal to one.

BDOS function 34: WRITE RANDOM
Entry Parameters:

C: $22
DE: FCB Address

Returned Value:

A: Error Code
H: Physical Error

The Write Random function is analogous to the Read Random function, except
that data is written to the disk from the current DMA address. If the disk extent
or data block where the data is to be written is not already allocated, the BDOS
automatically performs the allocation before the write operation continues.

To write to a file using the Write Random function, the calling program must
first open the base extent, extent 0. This ensures that the FCB is properly
initialized for subsequent random access operations. If the file is empty, the
calling program must create the base extent with the Make File function before
calling Function 34. The base extent might or might not contain any allocated
data, but it does record the file in the directory, so that the file can be displayed
by the DIR utility.

The Write Random function sets the logical extent and current record positions
to correspond with the random record being written, but does not change the
random record number. Thus, sequential read or write operations can follow a
random write, with the current record being reread or rewritten as the calling
program switches from random to sequential mode.

146 CHAPTER 11. SYSTEM SOFTWARE

Function 34 makes an Update date and time stamp for the file if the following
conditions are satisfied: the referenced drive has a directory label that requests
Update date and time stamping if the file has not already been stamped for
update by a previous BDOS Make or Write call.

If the BDOS Multi-Sector Count is greater than one (see Function 44), the Write
Random function reads multiple consecutive records into memory beginning
at the current DMA. The rO, rl, and r2 field of the FCB is automatically
incremented to write each record. However, the FCB’s random record number
is restored to the first record’s value when it returns to the calling program.
Upon return, the Write Random function sets register A to zero if the write
operation is successful. Otherwise, register A contains one of the following error
codes:

02 No available data block

03 Cannot Close current extent

05 No available directory space

06 Random record number out of range
10 Media change occurred

255 Physical Error : refer to register H

Error Code 02 is returned when the write command attempts to allocate a new
data block to the file and no unallocated data blocks exist on the selected disk
drive.

Error Code 03 is returned when the Write Random function cannot close the
current extent prior to moving to a new extent.

Error Code 05 is returned when the write function attempts to create a new
extent that requires a new directory entry and no available directory entries
exist on the selected disk drive.

Error Code 06 is returned when byte 35, r2, of the referenced FCB is greater
than 3.

Error Code 10 is returned if a media change occurs on the drive after the refer-
enced FCB is activated by a BDOS Open or Make Call.

Error Code 255 is returned if a physical error is encountered and the BDOS
error mode is one of the return modes (see Function 45). If the error mode
is the default mode, a message identifying the physical error is displayed at
the console, and the calling program is terminated. When a physical error is
returned to the calling program, it is identified by register H as shown below:

01 Disk I/O error

02 Read-Only disk

03 Read-Only file or File open from user 0 when the current user number
is nonzero or File password protected in Write mode

e 04 Invalid drive error

On all error returns, except for physical errors, A = 255, the Write Random

11.1. CP/M 147

function sets register H to the number of records successfully written before
the error is encountered. This value can range from 0 to 127 depending on the
current BDOS Multi-Sector Count. It is always set to zero when the Multi-
Sector Count is equal to one.

BDOS function 35: COMPUTE FILE SIZE
Entry Parameters:

C: $23
DE: FCB Address

Returned Value:

A: Error Flag
H: Physical or Extended error
Random Record Field Set

The Compute File Size function determines the virtual file size, which is, in
effect, the address of the record immediately following the end of the file. The
virtual size of a file corresponds to the physical size if the file is written sequen-
tially. If the file is written in random mode, gaps might exist in the allocation,
and the file might contain fewer records than the indicated size. For example, if
a single record with record number 262,143, the CP/M 3 maximum is written
to a file using the Write Random function, then the virtual size of the file is
262,144 records even though only 1 data block ’is actually allocated.

To compute file size, the calling program passes in register pair DE the address
of an FCB in random mode format, bytes rO, rl and r2 present. Note that the
FCB must contain an unambiguous filename and filetype. Function 35 sets the
random record field of the FCB to the random record number + 1 of the last
record in the file. If the r2 byte is set to 04, then the file contains the maximum
record count 262,144.

A program can append data to the end of an existing file by calling Function
35 to set the random record position to the end of file, and then performing a
sequence of random writes starting at the preset record address.

Note: the BDOS does not require that the file be open to use Function 35.
However, if the file has been written to, it must be closed before calling Function
35. Otherwise, an incorrect file size might be returned.

Upon return, Function 35 returns a zero in register A if the file specified by the
referenced FCB is found, or an $FF in register A if the file is not found. Register
H is set to zero in both of these cases. If a physical error is encountered, Function
35 performs different actions depending on the BDOS error mode (see Function
45). If the BDOS error mode is the default mode, a message identifying the error
is displayed at the console and the program is terminated. Otherwise, Function
35 returns to the calling program with register A set to $FF, and register H set
to one of the following physical errors:

148 CHAPTER 11. SYSTEM SOFTWARE

e 01 Disk I/O error
e 04 Invalid drive error

BDOS function 36: SET RANDOM RECORD
Entry Parameters:

C: $24
DE: FCB Address

Returned Value:
Random Record Field Set

The Set Random Record function returns the random record number of the next
record to be accessed from a file that has been read or written sequentially to
a particular point. This value is returned in the random record field, bytes rO,
rl, and r2, of the FCB addressed by the register pair DE. Function 36 can be
useful in two ways,

First, it is often necessary to initially read and scan a sequential file to extract
the positions of various key fields. As each key is encountered, Function 36 is
called to compute the random record position for the data corresponding to this
key. If the data unit size is 128 bytes, the resulting record number minus one is
placed into a table with the key for later retrieval. After scanning the entire file
and tabularizing the keys and their record numbers, you can move directly to a
particular record by performing a random read using the corresponding random
record number that you saved earlier. The scheme is easily generalized when
variable record lengths are involved, because the program need only store the
buffer-relative byte position along with the key and record number to find the
exact starting position of the keyed data at a later time.

A second use of Function 36 occurs when switching from a sequential read
or write over to random read or write. A file is sequentially accessed to a
particular point in the file, then Function 36 is called to set the record number,
and subsequent random read and write operations continue from the next record
in the file.

BDOS function 37: RESET DRIVE

Entry Parameters:

C: $25
DE: Drive Vector

Returned Value:
A: $00

The Reset Drive function programmatically restores specified drives to the reset
state. A reset drive is not logged-in and is in Read-Write status. The passed
parameter in register pair DE is a 16-bit vector of drives to be reset, where
the least significant bit corresponds to the first drive A, and the high-order bit

11.1. CP/M 149

corresponds to the sixteenth drive, labelled P. Bit values of 1 indicate that the
specified drive is to be reset.

BDOS function 38: ACCESS DRIVE
Entry Parameters:
C: $26

This is an MP/M function that is not supported under CP/M 3. If called, the
file system returns a zero In register A indicating that the access request is
successful.

BDOS function 39: FREE DRIVE
Entry Parameters:
C: $27

This is an MP/M function that is not supported under CP/M 3. If called,
the file system returns a zero In register A indicating that the free request is
successful.

BDOS function 40: WRITE RANDOM WITH ZERO FILL
Entry Parameters:

C: $28
DE: FCB address

Returned Value:

A: Error Code
H: Physical Error

The Write Random With Zero Fill function is identical to the Write Random
function (Function 34) with the exception that a previously unallocated data
block is filled with zeros before the record is written. If this function has been
used to create a file, records accessed by a read random operation that contain all
zeros identify unwritten random record numbers. Unwritten random records in
allocated data blocks of files created using the Write Random function (Function
34) contain uninitialized data.

BDOS function 41: TEST AND WRITE RECORD
Entry Parameters:

C: $29
DE: FCB Address

Returned Value:

A: Error Code
H: Physical Error

The Test and Write Record function is an MP /M function that is not supported

150 CHAPTER 11. SYSTEM SOFTWARE

under CP/M 3. If called, Function 41 returns with register A set to $FF and
register H set to zero.

BDOS function 42: LOCK RECORD
Entry Parameters:

C: $2A
DE: FCB Address

Returned Value:
A: 300

The Lock Record function is an MP/M II function that is supported under
CP/M 3 only to provide compatibility between CP/M 3 and MP/M. It is in-
tended for use in situations where more than one running program has Read-
Write access to a common file. Because CP/M 3 is a single-user operating
system in which only one program can run at a time, this situation cannot oc-
cur. Thus, under CP/M 3, Function 42 performs no action except to return the
value $00 in register A indicating that the record lock operation is successful.

BDOS function 43: UNLOCK RECORD
Entry Parameters:

C: $2B
DE: FCB Address

Returned Value:
A: 300

The Unlock Record function is an MP/M II function that is supported un-
der CP/M 3 only to provide compatibility between CP/M 3 and MP/M. It is
intended for use in situations where more than one running program has Read-
Write access to a common file. Because CP/M 3 is a single-user operating
system in which only one program can run at a time, this situation cannot oc-
cur. Thus, under CP/M 3, Function 43 performs no action except to return the
value $00 in register A indicating that the record unlock operation is successful.

BDOS function 44: SET MULTI-SECTOR COUNT
Entry Parameters:

C: $2C

E: Number of Sectors
Returned Value:
A: Return Code

The Set Multi-Sector Count function provides logical record blocking under
CP/M 3. Tt enables a program to read and write from 1 to 128 records of 128
bytes at a time during subsequent BDOS Read and Write functions.

11.1. CP/M 151

Function 44 sets the Multi-Sector Count value for the calling program to the
value passed in register E. Once set, the specified Multi-Sector Count remains in
effect until the calling program makes another Set Multi-Sector Count function
call and changes the value. Note that the CCP sets the Multi-Sector Count to
one when it initiates a transient program.

The Multi-Sector Count affects BDOS error reporting for the BDOS Read and
Write functions. If an error interrupts these functions when the Multi-Sector is
greater than one, they return the number of records successfully read or written
in register H for all errors except for physical errors (A = 255).

Upon return, register A is set to zero if the specified value is in the range of 1
to 128. Otherwise, register A is set to $FF.

BDOS function 45: SET BDOS ERROR MODE

Entry Parameters:

C: $2D
E: BDOS Error Mode

Returned Value:
None

Function 45 sets the BDOS error mode for the calling program to the mode
specified in register E. If register E is set to $FF, 255 decimal, the error mode
is set to Return Error mode. If register E is set to $FE, 254 decimal, the error
mode is set to Return and Display mode. If register E is set to any other value,
the error mode is set to the default mode.

The SET BDOS Error Mode function determines how physical and extended
errors (see Section 2.2.13) are handled for a program. The Error Mode can exist
in three modes: the default mode, Return Error mode, and Return and Display
Error mode. In the default mode, the BDOS displays a system message at the
console that identifies the error and terminates the calling program. In the
return modes, the BDOS sets register A to $FF, 255 decimal, places an error
code that identifies the physical or extended error in register H and returns
to the calling program. In Return and Display mode, the BDOS displays the
system message before returning to the calling program. No system messages
are displayed, however, when the BDOS is in Return Error mode.

BDOS function 46: GET DISK FREE SPACE
Entry Parameters:

C: $2E
E: Drive

Returned Value:

First 3 bytes of current DMA buffer
A: Error Flag

152 CHAPTER 11. SYSTEM SOFTWARE

H: Physical Error

The Get Disk Free Space function determines the number of free sectors, 128
byte records, on the specified drive. The calling program passes the drive num-
ber in register E, with 0 for drive A, 1 for B, and so on, through 15 for drive
P in a full 16drive system. Function 46 returns a binary number in the first
3 bytes of the current DMA buffer. This number is returned in the following
format:

fso fsl fs2
Disk Free Space Field Format

fso = low byte
fsl = middle byte
fs2 = high byte

Note that the returned free space value might be inaccurate if the drive has
been marked Read-Only.

Upon return, register A is set to zero if the function is successful. However,
if the BDOS Error Mode is one of the return modes (see Function 45), and a
physical error is encountered, register A is set to $FF, 255 decimal, and register
H is set to one of the following values:

e 01 - Disk I/O error
e 04 - Invalid drive error

BDOS function 47: CHAIN TO PROGRAM
Entry Parameters:

C: $2F
E: Chain Flag

The Chain To Program function provides a means of chaining from one program
to the next without operator intervention. The calling program must place a
command line terminated by a null byte, OOH, in the default DMA buffer. If
register E is set to $FF, the CCP initializes the default drive and user number
to the current program values when it passes control to the specified transient
program. Otherwise, these parameters are set to the default CCP values. Note
that Function 108, Get/Set Program Return Code, can be used to pass a two
byte value to the chained program.

Function 47 does not return any values to the calling program and any encoun-
tered errors are handled by the CCP.

BDOS function 48: FLUSH BUFFERS

Entry Parameters:

C: $30

11.1. CP/M 153

Returned Value:

A: Error Flag
H: Physical Error

E: Purge Flag

The Flush Buffers function forces the write of any write-pending records con-
tained in internal blocking/deblocking buffers. If register E is set to $FF, this
function also purges all active data buffers. Programs that provide write with
read verify support need to purge internal buffers to ensure that verifying reads
actually access the disk instead of returning data that is resident in internal
data buffers. The CP/M 3 PIP utility is an example of such a program.

Upon return, register A is set to zero if the flush operation is successful. If
a physical error is encountered, the Flush Buffers function performs different
actions depending on the BDOS error mode (see Function 45). If the BDOS
error mode is in the default mode,, a message identifying the error is displayed
at the console and the calling program is terminated. Otherwise, the Flush
Buffers function returns to the calling program with register A set to $FF and
register H set to the following physical error code:

e 01 Disk I/O error
e 02 Read/only disk
e 04 Invalid drive error

BDOS function 49: GET/SET SYSTEM CONTROL BLOCK
Entry Parameters:

C: $31
DE: SCB PB Address

Returned Value:

A: Returned Byte
HL: Returned Word

Function 49 allows access to parameters located in the CP/M 3 System Control
Block (SCB). The SCB is a 100-byte data structure residing within the BDOS
that contains flags and data used by the BDOS, CCP and other system compo-
nents. Note that Function 49 is a CP/M 3 specific function. Programs intended
for both MP/M 11 and CP/M 3 should either avoid the use of this function or
isolate calls to this function in CP/M 3 version-dependent sections.

To use Function 49, the calling program passes the address of a data structure
called the SCB parameter block in register pair DE. This data structure identi-
fies the byte or word of the SCB to be updated or returned. The SCB parameter
block is defined as:

SCBPB: DB OFFSET ; Offset within SCB
DB SET ; OFFH if setting a byte
; OFEH if setting a word

154 CHAPTER 11. SYSTEM SOFTWARE

; OO1H - OFDH are reserved
; OOOH if a get operation
DW VALUE ; Byte or word value to be set

The OFFSET parameter identifies the offset of the field within the SCB to be
updated or accessed. The SET parameter determines whether Function 49 is to
set a byte or word value in the SCB or if it is to return a byte from the SCB.
The VALUE parameter is used only in set calls. In addition, only the first byte
of VALUE is referenced in set byte calls.

Use caution when you set SCB fields. Some of these parameters reflect the
current state of the operating system. If they are set to invalid values, software
errors can result. In general, do not use Function 49 to set a system parameter
if another BDOS function can achieve the same result. For example, Function
49 can be called to update the Current DMA Address field within the SCB.
This is not equivalent to making a Function 26, Set DMA Address call, and
updating the SCB Current DMA field in this way would result in system errors.
However, you can use Function 49 to return the Current DMA address. The
System Control Block is summarized in 11.1.

If Function 49 is called with the OFFSET parameter of the SCB parameter block
greater than $63, the function performs no action but returns with registers A
and HL set to zero.

BDOS function 50: DIRECT BIOS CALLS
Entry Parameters:

C: $32
DE: BIOS PB Address

Returned Value:
BIOS RETURN

Function 50 provides a direct BIOS call through the BDOS to the BIOS. The
calling program passes the address of a data structure called the BIOS Pa-
rameter Block (BIOSPB) in register pair DE. The BIOSPB contains the BIOS
function number and register contents as shown below:

BIOSPB: db FUNC ; BIOS function no.
db AREG ; A register contents
dw BCREG ; BC register contents
dw DEREG ; DE register contents
dw HLREG ; HL register contents

System Reset (Function 0) is equivalent to Function 50 with a BIOS function
number of 1.

Note that the register pair BIOSPB fields (BCREG, DEREG, HLREG) arc
defined in low byte, high byte order. For example, in the BCREG field, the first
byte contains the C register value, the second byte contains the B register value.

11.1. CP/M 155

Under CP/M 3, direct BIOS calls via the BIOS jump vector are only supported
for the BIOS Console I/O and List functions. You must use Function 50 to call
any other

BIOS functions. In addition, Function 50 intercepts BIOS Function 27 (Select
Memory) calls and returns with register A set to zero. Refer to the CPIM Plus
(CP/M Version 3) Operating System System Guide for the definition of the
BIOS functions and their register passing and return conventions.

BDOS function 59: LOAD OVERLAY
Entry Parameters:

C: $3B
DE: FCB Address

Returned Value:

A: Error Code
H: Physical Error

Only transient programs with an RSX header can use the Load Overlay function
because BDOS Function 59 is supported by the LOADER module. The calling
program must have a header to force the LOADER to remain resident after the
program is loaded (see Section 1.3).

Function 59 loads either an absolute or relocatable module. Relocatable modules
are identified by a filetype of PRL. Function 59 does not call the loaded module.

The referenced FCB must be successfully opened before Function 59 is called.
The load address is specified in the first two random record bytes of the FCB,
rO and rl. The LOADER returns an error if the load address is less than $100,
or if performing the requested load operation would overlay the LOADER, or
any other Resident System Extensions that have been previously loaded.

When loading relocatable files, the LOADER requires enough room at the load
address for the complete PRL file including the header and bit map (see Ap-
pendix B). Otherwise an error is returned. Function 59 also returns an error on
PRL file load requests if the specified load address is not on a page boundary.

Upon return, Function 59 sets register A to zero if the load operation is suc-
cessful. If the LOADER RSX is not resident in memory because the calling
program did not have a RSX header, the BDOS returns with register A set to
$FF and register H set to zero. If the LOADER detects an invalid load address,
or if insufficient memory is available to load the overlay, Function 59 returns
with register A set to $FE. All other error returns are consistent with the error
codes returned by BDOS Function 20, Read Sequential.

BDOS function 60: CALL RESIDENT SYSTEM EXTENSION

Entry Parameters:

C: $3C

156 CHAPTER 11. SYSTEM SOFTWARE

DE: RSX PB Address
Returned Value:

A: Error Code
H: Physical Error

Function 60 is a special BDOS function that you use when you call Resident
System Extensions. The RSX subfunction is specified in a structure called the
RSX Parameter Block, defined as follows:

RSXPB: db FUNC ; RSX Function number
db NUMPARMS ; Number of word Parameters
dw PARMETER1 ; Parameter I
dw PARMETER2 ; Parameter 2

dw PARMETERN ; Parameter n

RSX modules filter all BDOS calls and capture RSX function calls that they
can handle. If there is no RSX module present in memory that can handle a
specific RSX function call, the call is not trapped, and the BDOS returns $FF in
registers A and L. RSX function numbers from 0 to 127 are available for CP/M
3 compatible software use. RSX function numbers 128 to 255 are reserved for
system use.

BDOS function 98: FREE BLOCKS
Entry Parameters:

C: $62
Returned Value:

A: Error Flag
H: Physical Error

The Free Blocks function scans all the currently logged-in drives, and for each
drive returns to free space all temporarily-allocated data blocks. A temporarily-
allocated data block is a block that has been allocated to a file by a BDOS write
operation but has not been permanently recorded in the directory by a BDOS
close operation. The CCP calls Function 98 when it receives control following
a system warm start. Be sure to close your file, particularly any file you have
written to, prior to calling Function 98.

In the nonbanked version of CP/M 3, Function 98 frees only temporarily allo-
cated blocks for systems that request double allocation vectors in GENCPM.

Upon return, register A is set to zero if Function 98 is successful. If a physical
error is encountered, the Free Blocks function performs different actions depend-
ing on the BDOS error mode (see Function 45). If the BDOS error mode is in
the default mode, a message identifying the error is displayed at the console and
the calling program is terminated. Otherwise, the Free Blocks function returns
to the calling program with register A set to $FF and register H set to the

11.1. CP/M 157

following physical error code:

e 04 : Invalid drive error
BDOS function 99: TRUNCATE FILE
Entry Parameters:

C: $63
DE: FCB Address

Returned Value:

A: Directory Code
H: Extended or Physical Error

The Truncate File function sets the last record of a file to the random record
number contained in the referenced FCB. The calling program passes the address
of the FCB in register pair DE, with byte 0 of the FCB specifying the drive,
bytes 1 through 11 specifying the filename and filetype, and bytes 33 through
35, rO, rl, and r2, specifying the last record number of the file. The last record
number is a 24 bit value, stored with the least significant byte first, rO, the
middle byte next, rl, and the high byte last, r2. This value can range from 0 to
262,143, which corresponds to a maximum value of 3 in byte r2.

If the file specified by the referenced FCB is password protected, the correct
password must be placed in the first eight bytes of the current DMA buffer, or
have been previously established as the default password (see Function 106).

Function 99 requires that the file specified by the FCB not be open, particularly
if the file has been written to. In addition, any activated FCBs naming the file
are not valid after Function 99 is called. Close your file before calling Function
99, and then reopen it after the call to continue processing on the file.

Function 99 also requires that the random record number field of the referenced
FCB specify a value less than the current file size. In addition, if the file is
sparse, the random record field must specify a record in a region of the file
where data exists.

Upon return, the Truncate function returns a Directory Code in register A with
the value 0 if the Truncate function is successful, or $FF, 255 decimal, if the file
is not found or the record number is invalid. Register H is set to zero in both of
these cases. If a physical or extended error is encountered, the Truncate function
performs different actions depending on the BDOS error mode (see Function
45). If the BDOS error mode is in the default mode, a message identifying the
error is displayed at the console and the program is terminated. Otherwise, the
Truncate function returns to the calling program with register A set to $FF and
register H set to one of the following physical or extended error codes:

e 01 Disk I/O error
e 02 Read-Only disk
e 03 Read-Only file

158 CHAPTER 11. SYSTEM SOFTWARE

e 04 Invalid drive error
e (07 File password error
e 09 7 in filename or filetype field

BDOS function 100: SET DIRECTORY LABEL
Entry Parameters:

C: $64
DE: FCB Address

Returned Value:

A: Directory Code
H: Physical or Extended Error

The Set Directory Label function creates a directory label, or updates the exist-
ing directory label for the specified drive. The calling program passes in register
pair DE the address of an FCB containing the name, type, and extent fields to
be assigned to the directory label. The name and type fields of the referenced
FCB are not used to locate the directory label in the directory; they are simply
copied into the updated or created directory label. The extent field of the FCB,
byte 12, contains the user’s specificat-on of the directory label data byte. The
definition of the directory label data byte is:

bit 7 - Require passwords for password-protected files (Not supported in non-
banked CP/M 3 systems)

bit 6 - Perform access date and time stamping

bit 5 - Perform update date and time stamping

bit 4 - Perform create date and time stamping

bit 0 - Assign a new password to the directory label

If the current directory label is password protected, the correct password must
be placed in the first eight bytes of the current DMA, or have been previously
established as the default password (see Function 106). If bit 0, the low-order
bit, of byte 12 of the FCB is set to 1, it indicates that a new password for the
directory label has been placed in the second eight bytes of the current DMA.

Note that Function 100 is implemented as an RSX, DIRLBL.RSX, in nonbanked
CP/M 3 systems. If Function 100 is called in nonbanked systems when the
DIRLBL.RSX is not resident an error code of $0FF is returned.

Function 100 also requires that the referenced directory contain SFCBs to ac-
tivate date and time stamping on the drive. If an attempt is made to activate
date and time stamping when no SFCBs exist, Function 100 returns an error
code of $FF in register A and performs no action. The CP/M 3 INITDIR utility
initializes a directory for date and time stamping by placing an SFCB record in
every fourth entry of the directory.

Function 100 returns a Directory Code in register A with the value 0 if the
directory label create or update is successful, or $FF, 255 decimal, if no space

11.1. CP/M 159

exists in the referenced directory to create a directory label, or if date and time
stamping was requested and the referenced directory did not contain SFCBS.
Register H is set to zero in both of these cases. If a physical error or extended
error is encountered, Function 100 performs different actions depending on the
BDOS error mode (see Function 45). If the BDOS error mode is the default
mode, a message identifying the error is displayed at the console and the calling
program is terminated. Otherwise, Function 100 returns to the calling program
with register A set to $FF and register H set to one of the following physical or
extended error codes:

01 Disk I/O error

02 Read-Only disk

04 Invalid drive error
07 File password error

BDOS function 101: RETURN DIRECTORY LABEL DATA

Entry Parameters:

C: $65
E: Drive

Returned Value:

A: Directory Label Data Byte
H: Physical Error

The Return Directory Label Data function returns the data byte of the directory
label for the specified drive. The calling program passes the drive number in
register E with 0 for drive A, 1 for drive B, and so on through 15 for drive P
in a full sixteen drive system. The format of the directory label data byte is
shown below:

bit 7 - Require passwords for password protected files
bit 6 - Perform access date and time stamping

bit 5 - Perform update date and time stamping

bit 4 - Perform create date and time stamping

bit 0 - Directory label exists on drive

Function 101 returns the directory label data byte to the calling program in
register A. Register A equal to zero indicates that no directory label exists on
the specified drive. If a physical error is encountered by Function 101 when the
BDOS Error mode is in one of the return modes (see Function 45), this function
returns with register A set to $FF, 25S decimal, and register H set to one of the
following:

e 01 Disk I/O error
e 04 Invalid drive error

BDOS function 102: READ FILE DATE STAMPS AND PASSWORD
MODE

160 CHAPTER 11. SYSTEM SOFTWARE

Entry Parameters:

C: $66
DE: FCB Address

Returned Value:

A: Directory Code
H: Physical Error

Function 102 returns the date and time stamp information and password mode
for the specified file in byte 12 and bytes 24 through 32 of the specified FCB.
The calling program passes in register pair DE, the address of an FCB in which
the drive, filename, and filetype fields have been defined.

If Function 102 is successful, it sets the following fields in the referenced FCB:

byte 12 : Password mode field
bit 7 - Read mode
bit 6 - Write mode
bit 4 - Delete mode

Byte 12 equal to zero indicates the file has not been assigned a password. In
nonbanked systems, byte 12 is always set to zero.

byte 24 - 27 Create or Access time stamp field
byte 28 - 31 Update time stamp field

The date stamp fields are set to binary zeros if a stamp has not been made.
The format of the time stamp fields is the same as the format of the date and
time structure described in Function 104.

Upon return, Function 102 returns a Directory Code in register A with the value
zero if the function is successful, or $FF, 255 decimal, if the specified file is not
found. Register H is set to zero in both of these cases. If a physical or extended
error is encountered, Function 102 performs different actions depending on the
BDOS error mode (see Function 45). If the BDOS error mode is in the default
mode, a message identifying the error is displayed at the console and the calling
program is terminated. Otherwise, Function 102 returns to the calling program
with register A set to $FF and register H set to one of the following physical or
extended error codes:

e 01 Disk I/O error
e 04 Invalid drive error
e 09 ? in filename or filetype field

BDOS function 103: WRITE FILE XFCB
Entry Parameters:

C: $67
DE: FCB Address

11.1. CP/M 161

Returned Value:

A: Directory Code
H: Physical Error

The Write File XFCB function creates a new XFCB or updates the existing
XFCB for the specified file. The calling program passes in register pair DE
the address of an FCB in which the drive, name, type, and extent fields have
been defined. The extent field specifies the password mode and whether a new
password is to be assigned to the file. The format of the extent byte is shown
below:

FCB byte 12 (ex) : XFCB password mode

bit 7 - Read mode

bit 6 - Write mode

bit 5 - Delete mode

bit 0 - Assign new password to the file

If the specified file is currently password protected, the correct password must
reside in the first eight bytes of the current DMA, or have been previously
established as the default password (see Function 106). If bit 0 is set to 1, the
new password must reside in the second eight bytes of the current DMA.

Upon return, Function 103 returns a Directory Code in register A with the
value zero if the XFCB create or update is successful, or $FF, 255 decimal, if no
directory label exists on the specified drive, or the file named in the FCB is not
found, or no space exists in the directory to create an XFCB. Function 103 also
returns with $FF in register A if passwords are not enabled by the referenced
directory’s label. On nonbanked systems, this function always returns with
register A = $FF because passwords are not supported. Register H is set to
zero in all of these cases. If a physical or extended error is encountered, Function
103 performs different actions depending on the BDOS error mode (see Function
45). If the BDOS error mode is the default mode, a message identifying the error
is displayed at the console and the calling program is terminated. Otherwise,
Function 103 returns to the calling program with register A set to $FF and
register H set to one of the following physical or extended error codes:

01 Disk I/O error

02 Read-Only disk

04 Invalid drive error

07 File password error

09 ? in filename or filetype field

BDOS function 104: SET DATE AND TIME

Entry Parameters:

C: $68
DE: DAT Address

162 CHAPTER 11. SYSTEM SOFTWARE

Returned Value:
none

The Set Date and Time function sets the system internal date and time. The
calling program passes the address of a 4-byte structure containing the date
and time specification in the register pair DE. The format of the date and time
(DAT) data structure is:

byte 0 - 1 Date field
byte 2 Hour field
byte 3 Minute field

The date is represented as a 16-bit integer with day 1 corresponding to January
1, 1978. The time is represented as two bytes: hours and minutes are stored as
two BCD digits.

This function also sets the seconds field of the system date and time to zero.
BDOS function 105: GET DATE AND TIME

Entry Parameters:

C: $69
DE: DAT Address

Returned Value:

A: seconds
DAT set

The Get Date and Time function obtains the system internal date and time.
The calling program passes in register pair DE, the address of a 4-byte data
structure which receives the date and time values. The format of the date and
time, DAT, data structure is the same as the format described in Function
104. Function 105 also returns the seconds field of the system date and time in
register A as a two digit BCD value.

BDOS function 106: SET DEFAULT PASSWORD
Entry Parameters:

C: $6A
DE: Password Address

Returned Value:
none

The Set Default Password function allows a program to specify a password value
before a file protected by the password is accessed. When the file system accesses
a password-protected file, it checks the current DMA, and the default password
for the correct value. If either value matches the file’s password, full access to
the file is allowed. Note that this function performs no action in nonbanked

11.1. CP/M 163

CP/M 3 systems because file passwords are not supported.

To make a Function 106 call, the calling program sets register pair DE to the
address of an 8-byte field containing the password.

BDOS function 107: RETURN SERIAL NUMBER
Entry Parameters:

C: $6B
DE: Serial Number Field

Returned Value:
Serial number field set

Function 107 returns the CP/M 3 serial number to the 6-byte field addressed
by register pair DE.

BDOS function 108: GET/SET PROGRAM RETURN CODE
Entry Parameters:

C: $6C
DE: $OFFFF (Get) or Program Return Code (Set)

Returned Value:
HL: Program Return Code or (no value)

CP/M 3 allows programs to set a return code before terminating. This pro-
vides a mechanism for programs to pass an error code or value to a following
job step in batch environments. For example, Program Return Codes are used
by the CCP in CP/M 3’s conditional command line batch facility. Conditional
command lines are command lines that begin with a colon, :. The execution
of a conditional command depends on the successful execution of the preceding
command. The CCP tests the return code of a terminating program to deter-
mine whether it successfully completed or terminated in error. Program return
codes can also be used by programs to pass an error code or value to a chained
program (see Function 47, Chain To Program).

A program can set or interrogate the Program Return Code by calling Function
108. If re ’ster pair DE = $FFFF, then the current Program Return Code is
returned in register pair HL. Otherwise, Function 108 sets the Program Return
Code to the ’value contained in register pair DE. Program Return Codes are
defined in 11.2

BDOS function 109: GET/SET CONSOLE MODE

Entry Parameters:

C: $6D
DE: $FFFF (Get) or Console Mode (Set)

Returned Value:

164 CHAPTER 11. SYSTEM SOFTWARE

HL: Console Mode or (no value)

A program can set or interrogate the Console Mode by calling Function 109. If
register pair DE = $FFFF, then the current Console Mode is returned in register
HL. Otherwise, Function 109 sets the Console Mode to the value contained in
register pair DE.

The Console Mode is a 16-bit system parameter that determines the action of
certain BDOS Console I/O functions. The definition of the Console Mode is:

bit 0 = 1 - CTRL-C only status for Function 1 1.
= 0 - Normal status for Function 1 1.
bit 1 = 1- Disable stop scroll, CTRL-S, start scroll, CTRL-Q, support.
= 0-Enable stop scroll, start scroll support.
bit 2 = 1- Raw console output mode. Disables tab expansion for Functions 2,
9 and 111. Also disables printer echo, CTIRL-P, support.
= 0 - Normal console output mode.
bit 3 = 1 - Disable CTRL-C program termination
= 0 - Enable CTRL-C program termination
bits 8,9 -Console status mode for RSXs that perform console input redirection
from a file. These bits determine how the RSX responds to console status
requests.
bit 8 = 0, bit 9 = 0 - conditional status
bit 8 = 0, bit 9 = 1 - false status
bit 8 = 1, bit 9 = 0 - true status
bit 8 = 1, bit 9 = 1 - bypass redirection

Note that the Console Mode bits are numbered from right to left.

The CCP initializes the Console Mode to zero when it loads a program unless
the program has an RSX that overrides the default value. Refer to Section 2.2.1
for detailed information on Console Mode.

BDOS function 110: GET/SET OUTPUT DELIMITER
Entry Parameters:

C: $6E
DE: SFFFF (Get) or
E: Output Delimiter (Set)

Returned Value:
A: Output Delimiter or (no value)

A program can set or interrogate the current Output Delimiter by calling Func-
tion 110. If register pair DE = $FFFF, then the current Output Delimiter is
returned in register A. Otherwise, Function 110 sets the Output Delimiter to
the value contained in register E.

Function 110 sets the string delimiter for Function 9, Print String. The default
delimiter value is a dollar sign, $. The CCP restores the Output Delimiter to

11.1. CP/M 165

the default value when a transient program is loaded.
BDOS function 111: PRINT BLOCK
Entry Parameters:

C: $6F
DE: CCB Address

Returned Value:
none

The Print Block function sends the character string located by the Charac-
ter Control Block, CCB, addressed in register pair DE, to the logical console,
CONOUT:. If the Console Mode is in the default state (see Section 2.2.1),
Function 111 expands tab characters, CTRL-I, in columns of eight characters.
It also checks for stop scroll, CTRL-S, start scroll, CTRL-Q, and echoes to the
logical list device, LST:, if printer echo, CTRL-P, has been invoked.

The CCB format is:

byte 0 - 1 Address of character string (word value)
byte 2 - 3 Length of character string (word value)

BDOS function 112: LIST BLOCK
Entry Parameters:

C: $70
DE: CCB Address

Returned Value:
none

The List Block function sends the character string located by the Character
Control Block, CCB, addressed in register pair DE, to the logical list device,
LST:.

The CCB format is:

byte 0 - 1 Address of character string (word value)
byte 2 - 3 Length of character string (word value)

BDOS function 152: PARSE FILENAME
Entry Parameters:

C: $98
DE: PFCB Address

Returned Value:

HL: Return code
Parsed file control block

166 CHAPTER 11. SYSTEM SOFTWARE

The Parse Filename function parses an ASCII file specification and prepares
a File Control Block, FCB. The calling program passes the address of a data
structure called the Parse Filename Control Block, PFCB, in register pair DE.
The PFCB contains the address of the input ASCII filename string followed by
the address of the target FCB as shown below:

PFCB: DW INPUT ; Address of input ASCII string
DW FCB ; Address of target FCB

The maximum length of the input ASCII string to be parsed is 128 bytes. The
target FCB must be 36 bytes in length.

Function 152 assumes the input string contains file specifications in the following
form:

{d:}ilename{.typ}{;password}

where items enclosed in curly brackets are optional. Function 152 also accepts
isolated drive specifications d: in the input string. When it encounters one, it
sets the filename, filetype, and password fields in the FCB to blank.

The Parse Filename function parses the first file specification it finds in the input
string. The function first eliminates leading blanks and tabs. The function then
assumes that the file specification ends on the first delimiter it encounters that
is out of context with the specific field it is parsing. For instance, if it finds
a colon, and it is not the second character of the file specification, the colon
delimits the entire file specification.

Function 152 recognizes the following characters as detimiters:

space

tab

return

nut|

; (semicolon) - except before password field

= (equal)

< (less than)

> (greater than)

. (period) - except after filename and before filetype
: (colon) - except before filename and after drive

, (comma)

| (vertical bar)

[(left square bracket)

| (right square bracket)

If Function 152 encounters a non-graphic character in the range 1 through 31
not listed above, it treats the character as an error. The Parse Filename function
initializes the specified FCB shown in 11.3.

If an error occurs, Function 152 returns an $FFFF in register pair HL.

11.1. CP/M 167

On a successful parse, the Parse Filename function checks the next item in
the input string. It skips over trailing blanks and tabs and looks at the next
character. If the character is a null or carriage return, it returns a 0 indicating
the end of the input string. If the character is a delimiter, it returns the address
of the delimiter. If the character is not a delimiter, it returns the address of the
first trailing blank or tab.

If the first non-blank or non-tab character in the input string is a null, 0, or
carriage return, the Parse Filename function returns a zero indicating the end
of string.

If the Parse Filename function is to be used to parse a subsequent file spec-
ification in the input string, the returned address must be advanced over the
delimiter before placing it in the PFCB.

11.1.3 BIOS

System Initialization Functions

This section defines the BIOS system initialization routines BOOT, WBOOT,
DEVTBL, DEVINI, and DRVTBL.

BIOS Function 0: BOOT

Get Control from Cold Start Loader and Initialize System
Entry Parameters: None
Returned Values: None

The BOOT entry point gets control from the Cold Start Loader in Bank 0
and is responsible for basic system initialization. Any remaining hardware ini-
tialization that is not done by the boot ROMS, the Cold Boot Loader, or the
LDRBIOS should be performed by the BOOT routine.

BIOS Function 1: WBOOT

Get Control When a Warm Start Occurs
Entry Parameters: None
Returned Values: None

The WBOOT entry point is entered when a warm start occurs. A warm start
is performed whenever a user program branches to location 0000H or attempts
to return to the CCP.

BIOS Function 20: DEVTBL

Return Address of Character I/O Table
Entry Parameters: None
Returned Values: HL=address of Chrtbl

The DEVTBL and DEVINI entry points allow you to support device assignment

168 CHAPTER 11. SYSTEM SOFTWARE

with a flexible, yet completely optional system. It replaces the IOBYTE facility
of CP/M 2.2.

BIOS Function 21: DEVINI

Initialize Character I/O Device
Entry Parameters: C=device number, 0-15
Returned Values: None

The DEVINI routine initializes the physical character device specified in register
C to the baud rate contained in the appropriate entry of the CHRTBL.

BIOS Function 22: DRVTBL

Return Address of Disk Drive Table
Entry Parameters: None
Returned Values:

HL=Address of Drive Table of Disk Parameter Headers (DPH); Hashing
can utilized if specified by the DPHs Referenced by this DRVTBL.
HL=S$ffff if no Drive Table; GENCPM does not set up buffers. Hashing is
supported.

HL=$fffe if no Drive Table; GENCPM does not set up buffers. Hashing
is not supported.

The first instruction of this subroutine must be an LXI H,<address> where
<address> is one of the above returned values. The GENCPM utility accesses
the address in this instruction to locate the drive table and the disk parameter
data structures to determine which system configuration to use.

Character I/0 Functions

This section defines the CP/M 3 character I/O routines CONST, CONIN,
CONOUT, LIST, AUXOUT, AUXIN, LISTST, CONOST, AUXIST, and AUX-
OST. CP/M 3 assumes all simple character I/O operations are performed in
eight-bit ASCII, upper and lowercase, with no parity. An ASCII CTRL-Z ($1a)
denotes an end-of-file condition for an input device.

In CP/M 3, you can direct each of the five logical character devices to any
combination of up to twelve physical devices. Each of the five logical devices
has a 16-bit vector in the System Control Block (SCB) . Each bit of the vector
represents a physical device where bit 15 corresponds to device zero, and bit 4
is device eleven. Bits 0 through 3 are reserved for future system use.

BIOS Function 2: CONST

Sample the Status of the Console Input Device
Entry Parameters: None
Returned value:

11.1. CP/M 169

A=$ff if a console character is ready to read
A=8$00 if no console character is ready to read

Read the status of the currently assigned console device and return $ff in register
A if a character is ready to read, and $ff in register A if no console characters
are ready.

BIOS Function 3: CONIN

Read a Character from the Console
Entry Parameters: None
Returned Values: A—Console Character

Read the next console character into register A with no parity. If no console
character is ready, wait until a character is available before returning.

BIOS Function 4: CONOUT

Output Character to Console
Entry Parameters: C=Console Character
Returned Values: None

Send the character in register C to the console output device. The character is
in ASCII with no parity.

BIOS Function 5: LIST

Output Character to List Device
Entry Parameters: C=Character
Returned Values: None

Send the character from register C to the listing device. The character is in
ASCII with no parity.

BIOS Function 6: AUXOUT

Output a Character to the Auxiliary Output Device
Entry Parameters: C=Character
Returned Values: None

Send the character from register C to the currently assigned AUXOUT device.
The character is in ASCII with no parity.

BIOS Function 7: AUXIN

Read a Character from the Auxiliary Input Device
Entry Parameters: None
Returned Values: A=Character

Read the next character from the currently assigned AUXIN device into register
A with no parity. A returned ASCII CTRL-Z ($1a) reports an end-of-file.

BIOS Function 15: LISTST
Return the Ready Status of the List Device

170 CHAPTER 11. SYSTEM SOFTWARE

Entry Parameters: None
Returned Values:

A=8$00 if list device is not ready to accept a character
A=$fT if list device is ready to accept a character

BIOS Function 17: CONOST

Return Output Status of Console
Entry Parameters: None
Returned Values:

A=8fT if ready
A=800 if not ready

The CONOST routine checks the status of the console. CONOST returns an
$fT if the console is ready to display another character. This entry point allows
for full polled handshaking communications support.

BIOS Function 18: AUXIST

Return Input Status of Auxiliary Port
Entry Parameters: None
Returned Values:

A=8$fT if ready
A=800 if not ready

The AUXIST routine checks the input status of the auxiliary port. This en-
try point allows full polled handshaking for communications support using an
auxiliary port.

BIOS Function 19: AUXOST

Return Output Status of Auxiliary Port
Entry Parameters: None
Returned Values:

A=8$ff if ready
A=800 if not ready

The AUXOST routine checks the output status of the auxiliary port. This
routine allows full polled handshaking for communications support using an
auxiliary port.

Disk I/O Functions

This section defines the CP/M 3 BIOS disk I/O routines HOME, SELDSK,
SETTRK, SETSEC, SETDMA, READ, WRITE, SECTRN, MULTIO, and
FLUSH.

BIOS Function 8: HOME

11.1. CP/M 171

Select Track 00 of the Specified Drive
Entry Parameters: None
Returned Values: None

Return the disk head of the currently selected disk to the track 00 position. Usu-
ally, you can translate the HOME call into a call on SETTRK with a parameter
of 0.

BIOS Function 9: SELDSK

Select the Specified Disk Drive
Entry Parameters:

C=Disk Drive (0-15)
E=Initial Select Flag

Returned Values:

HL=Address of Disk Parameter Header (DPH) if drive exists
HL=0000H if drive does not exist

Select the disk drive specified in register C for further operations, where register
C contains 0 for drive A, 1 for drive B, and so on to 15 for drive P. On each disk
select, SELDSK must return in HL the base address of a 25-byte area called the
Disk Parameter Header. If there is an attempt to select a nonexistent drive,
SELDSK returns HL=%0000 as an error indicator. On entry to SELDSK, you
can determine if it is the first time the specified disk is selected. Bit 0, the
least significant bit in register E, is set to 0 if the drive has not been previously
selected. This information is of interest in systems that read configuration
information from the disk to set up a dynamic disk definition table.

BIOS Function 10: SETTRK

Set Specified Track Number
Entry Parameters: BC=Track Number
Returned Values: None

Register BC contains the track number for a subsequent disk access on the
currently selected drive. Normally, the track number is saved until the next
READ or WRITE occurs.

BIOS Function 11: SETSEC

Set Specified Sector Number
Entry Parameters: BC=Sector Number
Returned Values: None

Register BC contains the sector number for the subsequent disk access on the
currently selected drive. This number is the value returned by SECTRN. Usu-
ally, you delay actual sector selection until a READ or WRITE operation occurs.

BIOS Function 12: SETDMA

172 CHAPTER 11. SYSTEM SOFTWARE

Set Address for Subsequent Disk I/0
Entry Parameters: BC=Direct Memory Access Address
Returned Values: None

Register BC contains the DMA (Direct Memory Access) address for the subse-
quent READ or WRITE operation. For example, if B = $00 and C = $80 when
the BDOS calls SETDMA, then the subsequent read operation reads its data
starting at $80, or the subsequent write operation gets its data from 80H, until
the next call to SETDMA occurs.

BIOS Function 13: READ

Read a Sector from the Specified Drive
Entry Parameters: None
Returned Values:

A=3$00 if no errors occurred
A=$01 if nonrecoverable error condition occurred
A=8$ff if media has changed

Assume the BDOS has selected the drive, set the track, set the sector, and
specified the DMA address. The READ subroutine attempts to read one sector
based upon these parameters, then returns one of the error codes in register A
as described above.

If the value in register A is $00, then CP/M 3 assumes that the disk operation
completed properly. If an error occurs, the BIOS should attempt several retries
to see if the error is recoverable before returning the error code.

If an error occurs in a system that supports automatic density selection, the
system should verify the density of the drive. If the density has changed, return a
$ff in the accumulator. This causes the BDOS to terminate the current operation
and relog in the disk.

BIOS Function 14: WRITE

Write a Sector to the Specified Disk
Entry Parameters: C=Deblocking Codes
Returned Values:

A=8$00 if no error occurred
A=$01 if physical error occurred
A=802 if disk is Read-Only
A=8$ff if media has changed

Write the data from the currently selected DMA address to the currently selected
drive, track, and sector. Upon each call to WRITE, the BDOS provides the
following information in register C:

0 = deferred write
1 = nondeferred write
2 = deferred write to the first sector of a new data block

11.1. CP/M 173

This information is provided for those BIOS implementations that do block-
ing/deblocking in the BIOS instead of the BDOS.

BIOS Function 16: SECTRN
Translate Sector Number Given Translate Table Entry Parameters:

BC=Logical Sector Number
DE=Translate Table Address

Returned Values: HL=Physical Sector Number

SECTRN performs logical sequential sector address to physical sector transla-
tion to improve the overall response of CP/M 3.

BIOS Function 23: MULTIO

Set Count of Consecutive Sectors for READ or WRITE
Entry Parameters: C=Multisector Count
Returned Values: None

To transfer logically consecutive disk sectors to or from contiguous memory
locations, the BDOS issues a MULTIO call, followed by a series of READ or
WRITE calls. This allows the BIOS to transfer multiple sectors in a single disk
operation. The maximum value of the sector count is dependent on the physical
sector size, ranging from 128 with 128-byte sectors, to 4 with 4096-byte sectors.
Thus, the BIOS can transfer up to 16K directly to or from the TPA with a
single operation.

BIOS Function 24: FLUSH

Force Physical Buffer Flushing for User-supported Deblocking
Entry Parameters: None
Returned Values:

A=8%00 if no error occurred
A=8%001 if physical error occurred
A=%002 if disk is Read-Only

The flush buffers entry point allows the system to force physical sector buffer
flushing when your BIOS is performing its own record blocking and deblocking.
The BDOS calls the FLUSH routine to ensure that no dirty buffers remain in
memory.

11.1.4 Memory Select and Move Functions

This section defines the memory management functions MOVE, XMOVE, SELMEM,
and SETBNK.
BIOS Function 25: MOVE

Memory-to-Memory Block Move

174 CHAPTER 11. SYSTEM SOFTWARE

Entry Parameters:

HL—Destination address
DE=Source address
BC=Count

Returned Values: HL and DE must point to next bytes following move operation

The BDOS calls the MOVE routine to perform memory to memory block moves
to allow use of the Z80 LDIR instruction or special DMA hardware, if available.
Note that the arguments in HL and DE are reversed from the Z80O machine
instruction, necessitating the use of XCHG instructions on either side of the
LDIR. The BDOS uses this routine for all large memory copy operations. On
return, the HL and DE registers are expected to point to the next bytes following
the move.

Usually, the BDOS expects MOVE to transfer data within the currently selected
bank or common memory. However, if the BDOS calls the XMOVE entry point
before calling MOVE, the MOVE routine must perform an interbank transfer.

BIOS Function 27: SELMEM

Select Memory Bank
Entry Parameters: A=Memory Bank
Returned Values; None

The SELMEM entry point is only present in banked systems. The banked
version of the CP/M 3 BDOS calls SELMEM to select the current memory
bank for further instruction execution or buffer references. You must preserve
or restore all registers other than the accumulator, A, upon exit.

BIOS Function 28: SETBNK

Specify Bank for DMA Operation
Entry Parameters: A=Memory Bank
Returned Values: None

SETBNK only occurs in the banked version of CP/M 3. SETBNK specifies the
bank that the subsequent disk READ or WRITE routine must use for memory
transfers. The BDOS always makes a call to SETBNK to identify the DMA
bank before performing a READ or WRITE call. Note that the BDOS does not
reference banks other than 0 or 1 unless another bank is specified by the BANK
field of a Data Buffer Control Block (BCB).

BIOS Function 29: XMOVE

Set Banks for Following MOVE
Entry Parameters:

B—=destination bank
C=source bank

Returned Values: None

11.1. CP/M 175

XMOVE is provided for banked systems that support memory-to- memory DMA
transfers over the entire extended address range. Systems with this feature
can have their data buffers located in an alternate bank instead of in common
memory, as is usually required. An XMOVE call affects only the following
MOVE call. All subsequent MOVE calls apply to the memory selected by the
latest call to SELMEM. After a call to the XMOVE function, the following call
to the MOVE function is not more than 128 bytes of data.

Clock Support Function

This section defines the clock support function TIME.
BIOS Function 26: TIME

Get and Set Time
Entry Parameters: C=Time Get/Set Flag
Returned values: None

The BDOS calls the TIME function to indicate to the BIOS whether it has just
set the Time and Date fields in the SCB, or whether the BDOS is about to get
the Time and Date from the SCB. On entry to the TIME function, a zero in
register C indicates that the BIOS should update the Time and Date fields in
the SCB. A $ff in register C indicates that the BDOS has just set the Time and
Date in the SCB and the BIOS should update its clock. Upon exit, you must
restore register pairs HL and DE to their entry values.

176 CHAPTER 11. SYSTEM SOFTWARE

Table 11.1: System Control Block
Offset-7 | Description
00 - 04 | Reserved For System Use
05 BDOS version number
06 - 09 User Flags
0A - OF | Reserved For System Use
10 - 11 | Program Error return code
12 - 19 | Reserved For System Use

1A Console Width (columns)
1B Console Column Position
1C Console Page Length

1D - 21 | Reserved For System Use
22 - 23 | CONIN Redirection flag
24 - 25 | CONOUT Redirection flag
26 - 27 | AUXIN Redirection flag
2A - 2B | LSTOUT Redirection flag

2C Page Mode

2D Reserved For System Use
2K CTRL-H Active

2F Rubout Active

30 - 32 | Reserved For System Use
33 -34 | Console Mode

35-36 | Reserved For System Use
37 Output Delimiter

39 - 3B | Reserved For System Use
3C - 3D | Current DMA Address

3E Current Disk

3F - 43 | Reserved For System Use
44 Current User Number

45 - 49 Reserved For System Use
4A BDOS Multi-Sector Count
4B BDOS Error Mode

4C - 4F | Drive Search Chain (DISKS A:E:F:)
50 Temporary File Drive

51 Error Disk

52 - 56 Reserved For System Use
57 BDOS flags

58 - 5C | Date Stamp
5D - 5E | Common Memory Base Address
5F - 63 | Reserved For System Use

11.1. CP/M

177

Table 11.2: Program Return Codes

Code

Meaning

0000 - FEFF

Successful return

FF00 - FFFE | Unsuccessful return

0000

loaded as the result of program chain.

FFO00 - FFFC | Reserved

FFFD
FFFE

The program is terminated because of a fatal BDOS error.

Table 11.3: FCB Format

Location

Contents

byte 0

byte 1-8

byte 9-11

byte 12-15
byte 16-23

byte 24-31

The drive field is set to the specified drive. If the

drive is not specified the default drive code is used. 0 =
default 1 = A 2 = B.

The name is set to the specified filename. All letters

are converted to upper-case. If the name is not eight characters
long the remaining bytes in the filename field are padded with
blanks. If the filename has an asterisk * all remaining bytes
in the filename field are filled in with question marks 7. An
error occurs if the filename is more than eight bytes long.

The type is set to the specified filetype. If no

filetype is specified the type field is initialized to

blanks. All letters are converted to upper-case. If the type is
not three characters long the remaining bytes in the filetype
field are padded with blanks. If an asterisk * occurs all
remaining bytes are filled in with question marks ?. An error
occurs if the type field is more than three bytes long.

Filled in with zeros.

The password field is set to the specified

password. If no password is specified it is initialized to
blanks. If the password is less than eight characters long
remaining bytes are padded with blanks. All letters are converted
to upper-case. If the password field is more than eight bytes
long an error occurs. Note that a blank in the first position of
the password field implies no password was specified.

Reserved for system use.

The CCP initializes the Program Return Code to zero unless the program is

The program is terminated by the BDOS because the user typed a CTRL-C.

178 CHAPTER 11. SYSTEM SOFTWARE

11.2 NextZXOS

11.3 NextZXO0S

A ZX Spectrum I/O system supported by the ZX Spectrum Next. This Docu-

mentation is largely from Garry Lancaster’s DOCs at https://gitlab.com/thesmog358/tbblue/blob/maste
Before making any calls disable writes to Layer 2 in the $0000-$3fIf area with

port $123b.

11.3.1 +3DOS compatible API

Generally to make these calls, you need to set up: place ROM 2 at $0000-$3fIf,
RAM bank 7 at $c000-$fIff, stack below $bfe0, and set up the parameters for the
call in the indicated registers. Call the function at its address. Then, restore
your system to its previous configuration. In general the carry bit of F is cleared
on error with the error code in A. Calls generally affect the contnts of AF, BC,
DE, HL, and IX leaving AF’, BC’, DE’, HL’, IY, and SP intact. To simplify,
descriptions will assume this is true and only indicate exceptions to the rule.

$0056 IDE_ STREAM OPEN
Open stream to a channel

$0059 IDE_ STREAM CLOSE
Close stream and attached channel
$005c IDE_ STREAM IN

Get byte from current stream
$005f IDE_ STREAM OUT
Write byte to current stream

$0062 IDE_ STREAM PTR
Get or set pointer information for current stream
$00A0 IDE_ VERSION

Get IDEDOS version number
$00A3 IDE _INTERFACE
Initialise card interfaces

$00A6 IDE_INIT

Initialise IDEDOS

$00A9 IDE_DRIVE

11.3. NEXTZXOS

Get unit handle

$00AC IDE_ SECTOR_READ
Low-level sector read

$00AF IDE_SECTOR_WRITE
Low-level sector write

$00B2 IDE_ FORMAT

Format a partition

$00B5 IDE _ PARTITION FIND
Find named partition

$00B8 IDE_ PARTITION NEW
Create partition

$00BB IDE_ PARTITION INIT
Initialise partition

$00BE IDE_PARTITION ERASE

Delete a partition

$00C1 IDE_ PARTITION RENAME

Rename a partition

$00C4 IDE_ PARTITON READ
Read a partition entry

$00C7 IDE_ PARTITION WRITE
Write a partition entry

$00CA IDE_ PARTITION _WINFO
Write type-specific partition information
$00CD IDE _PARTITION OPEN
Open a partition

$00D0 IDE _ PARTITION CLOSE

Close a partition

$00D3 IDE_ PARTITION GETINFO
Get byte from type-specific partition information
$00D6 IDE_ PARTITION SETINFO

Set byte in type-specific partition information

179

180 CHAPTER 11. SYSTEM SOFTWARE

$00D9 (217) IDE_ SWAP OPEN
Open a swap partition (file)

$00DC IDE_ SWAP CLOSE

Close a swap partition

$00DF IDE_ SWAP OUT

Write block to swap partition

$00E2 IDE_ SWAP IN

Read block from swap partition

$00E5 (231) IDE__ SWAP EX
Exchange block with swap partition
Deprecated, use IDE_ SWAP IN and IDE_ SWAP OUT
$00ES IDE__ SWAP POS

Get current block number in swap partition
$00EB IDE_ SWAP MOVE

Set current block number in swap partition
$O0OEE IDE_ SWAP RESIZE

Change block size of swap partition

$00F1 (241) IDE_DOS MAP

Map drive to partition or physical device
$00F4 (244) IDE_DOS UNMAP
Unmap drive

$00F7 (247) IDE_DOS MAPPING
Get drive mapping

$00FA IDE__DOS UNPERMANENT
Remove permanent drive mapping

$00FD (253) IDE_ SNAPLOAD

Load a snapshot

$0100 DOS INITIALISE

Initialise +3DOS

$0103 DOS _VERSION

Get +3DOS issue and version numbers

11.3. NEXTZXOS

$0106 (262) DOS _OPEN
Create and/or open a file

$0109 DOS CLOSE

Close a file

$010C DOS ABANDON
Abandon a file

$010F DOS_REF_ HEAD
Point at the header data for this file
$0112 DOS_READ

Read bytes into memory

$0115 DOS_WRITE

Write bytes from memory

$0118 DOS _BYTE_ READ
Read a byte

$011B DOS BYTE_ WRITE
Write a byte

$011E (286) DOS CATALOG
Catalog disk directory

$0121 (289) DOS FREE SPACE
Free space on disk

$0124 DOS DELETE

Delete a file

$0127 DOS _ RENAME
Rename a file

$012A DOS_BOOT

Boot an operating system or other program

$012D DOS_SET_DRIVE
Set /get default drive
$0130 DOS_SET _USER

Set/get default user number

$0133 (307) DOS_ GET _POSITION

181

182 CHAPTER 11.

Get file pointer for random access
$0136 DOS _SET POSITION

Set file pointer for random access

$0139 (313) DOS_GET _EOF

Get end of file position for random access
$013C DOS _GET 1346

Get memory usage in pages 1 3 4 6
$013F DOS SET 1346

Re-allocate memory usage in pages 1 3 4 6
$0142 DOS _FLUSH

Bring disk up to date

$0145 DOS _SET ACCESS

Change open file’s access mode

$0148 DOS _SET ATTRIBUTES
Change a file’s attributes

$014B DOS OPEN_DRIVE

Open a drive as a single file

$014E DOS _SET MESSAGE
Enable/disable error messages

$0151 DOS REF XDPB

Point at XDPB for low level disk access
$0154 DOS_MAP_ B

Map B: onto unit 0 or 1

$0157 DD INTERFACE

Is the floppy disk driver interface present?
$015A DD INIT

Initialise disk driver

$015D DD _SETUP

Specify drive parameters

$0160 DD _SET RETRY

Set try/retry count

SYSTEM SOFTWARE

11.3. NEXTZXOS

$0163 DD READ SECTOR
Read a sector

$0166 DD _WRITE SECTOR
Write a sector

$0169 DD CHECK SECTOR
Check a sector

$016C DD _FORMAT

Format a track

$016F DD _READ ID

Read a sector identifier

$0172 DD _TEST UNSUITABLE
Test media suitability

$0175 DD _LOGIN

Log in disk, initialise XDPB

$0178 DD _SEL FORMAT
Pre-initialise XDPB for DD FORMAT
$017B DD _ASK 1

Is unit 1 (external drive) present?
$017E DD DRIVE STATUS
Fetch drive status

$0181 DD EQUIPMENT

What type of drive?

$0184 DD _ENCODE

Set intercept routine for copy protection

0187 DD_L_XDPB

Initialise an XDPB from a disk specification

$018A DD_L_DPB

Initialise a DPB from a disk specification

$018D DD _L_SEEK
uPD765A seek driver
$0190 DD L READ

183

184 CHAPTER 11.

uPD765A read driver

$0193 DD L WRITE

uPD765A write driver

$0196 DD L ON_MOTOR

Motor on, wait for motor-on time

$0199 DD L T OFF_ MOTOR
Start the motor-off ticker

$019C DD L OFF MOTOR

Turn the motor off

$01a2 IDE _IDENTIFY

Return IDE drive identity information
$01ab IDE_ PARTITIONS

Get number of open partitions

$01bl (433) IDE_PATH

Create, delete, change or get directory
$01b4 (436) IDE_CAPACITY

Get card capacity

$01b7 (439) IDE_ GET _LFN

Get long filename

Obtain a long file name and other file information.
$01ba (442) IDE_ BROWSER

File browser

$01bd (445) IDE_ BANK

Allocate or free 8K pages in ZX or DivMMC memory
$01c0 IDE_BASIC

Execute a BASIC command line

$01c3 IDE_ WINDOW _ LINEIN
Input line from current window stream
$01c6 IDE_ WINDOW _STRING
Output string to current window stream

$01c9 IDE_INTEGER VAR

SYSTEM SOFTWARE

11.3. NEXTZXOS 185

Get or set NextBASIC integer variable

$0lcc IDE_RTC

Query the real-time-clock module

$01cf IDE_DRIVER

Access the driver API

$01d2 IDE_ MOUNT

Unmount /remount SD cards

$01d2 IDE_ MOUNT

Unmount /remount SD cards

$01d5 IDE__ MODE

Query NextBASIC display mode info, or change mode
$01d8 IDE_ TOKENISER

Convert BASIC between plain text & tokenised forms

11.3.2 esxDOS compatible API

11.3.3 Next Extensions

$0085 DISK FILEMAP

unsigned char esx_disk_filemap(uint8_t handle,struct esx_filemap <
*fmap)

Obtain a map of card addresses describing the space occupies by the file. Can
be called multiple times if the buffer is filled, continuing from previous.

DISK_STREAM _BYTES

void *esx_disk_stream_bytes(void *dst,uintl16_t len)

$0087 DISK STREAM END

unsigned char esx_disk_stream_end(void)

Stop current streaming operation.

DISK_STREAM _SECTORS

void *esx_disk_stream_sectors(void *dst,uint8_t sectors)

$0086 DISK STREAM START

186 CHAPTER 11. SYSTEM SOFTWARE

unsigned char esx_disk_stream_start (struct esx_filemap_entry *<
entry)

Start reading from the card in streaming mode.

DOS_CATALOG

unsigned char esx_dos_catalog(struct esx_cat *cat)

DOS CATALOG NEXT

unsigned char esx_dos_catalog_next(struct esx_cat *cat)

DOS_GETSET DRIVE

unsigned char esx_dos_get_drive(void)
unsigned char esx_dos_set_drive(unsigned char drive)

11.3.4 esxDOS compatible API

The esxDOS-compatible AP is a bit simpler to use than the +3DOS-compatible
APL

To make a call, you only need to set up the entry parameters as indicated and
perform a RST $08; DEFB hook code. On return, registers AF,BC,DE,HL will
all be changed. IX,IY and the alternate registers are never changed (except for
M_P3DOS).

(Note that the standard 48K BASIC ROM must be paged in to the bottom of
memory, but this is the usual situation after starting a machine code program
with a USR function call).

Notice that error codes are different from those returned by +3DOS calls, and
also the carry flag is SET for an error condition when returning from an esxDOS
call (instead of RESET), as is the case for +3DOS).

If desired, you can use the M GETERR hook to generate a BASIC error report
for any error returned, or even use it to generate your own custom BASIC error
report.

All of the calls where a filename is specified will accept long filenames (LFNs)
and most will accept wildcards (for an operation such as F_OPEN where a
single file is always used, the first matching filename will be used).

$00A9 F _CHDIR

unsigned char esx_f_chdir (unsigned char *pathname)

Change directory.

11.3. NEXTZXOS 187

$00AF F_ CHMOD

unsigned char esx_f_chmod(unsigned char *xfilename, uint8_t <«
attr_mask, uint8_t attr)

Modify file attributes.
$009BF _CLOSE

unsigned char esx_f_close(unsigned char handle)

Close a file or directory.

F_CLOSEDIR

unsigned char esx_f_closedir (unsigned char handle)

$00A0 F_ FGETPOS

uint32_t esx_f_fgetpos(unsigned char handle)

Get current file position.

$00A1 F_FSTAT

unsigned char esx_f_fstat(unsigned char handle, struct esx_stat *<«
es)

Get file information/status.

$00A2 F_ FTRUNC

unsigned char esx_f_ftrunc(unsigned char handle, uint32_t size)

Truncate/extend file.

F_GET_CANONICAL PATH

unsigned char esx_f_get_canonical_path(char *pathname, char *¢
canonical)

$00A8 F_ GETCWD

unsigned char esx_f_getcwd(unsigned char *buf)

Get current working directory.

F_GETCWD_ DRIVE

unsigned char esx_f_getcwd_drive(unsigned char drive, char *buf)

$00B1 F_ GETFREE

188 CHAPTER 11. SYSTEM SOFTWARE

uint32_t esx_f_getfree(void)

Gets free space on drive.

$00AA F _MKDIR

unsigned char esx_f_mkdir (unsigned char *pathname)

Create directory.

$009A F_OPEN

unsigned char esx_f_open(unsigned char *filename ,unsigned char <
mode)

Open a file.
$00A3 F_ OPENDIR

unsigned char esx_f_opendir (unsigned char *dirname)
unsigned char esx_f_opendir_ex(unsigned char *dirname ,uint8_t <
mode)

Open directory.
$009A F_ OPEN

unsigned char esx_f_open_p3(unsigned char *filename ,unsigned char<
mode ,struct esx_p3_hdr *h)

Open a file.
$009D F_ READ

uint16_t esx_f_read(unsigned char handle, void *dst, size_t <«
nbytes)

Read bytes from file.
$00A4 F_ READDIR

unsigned char esx_f_readdir (unsigned char handle,struct <
esx_dirent *dirent)

Read next directory entry.

$00B0 F_ RENAME

unsigned char esx_f_rename(unsigned char #*o0ld, unsigned char *new<>

)

Rename or move a file.

$00A7 F_ REWINDDIR

11.3. NEXTZXOS 189

unsigned char esx_f_rewinddir(unsigned char handle)

Rewind directory position to the start of the directory.

$00AB F_ RMDIR

unsigned char esx_f_rmdir (unsigned char *pathname)

Remove directory.

$009F F_ SEEK

uint32_t esx_f_seek(unsigned char handle, uint32_t distance, <
unsigned char whence)

Seek to position in file.

$00A6 F_ SEEKDIR

unsigned char esx_f_seekdir (unsigned char handle,uint32_t pos)

Set current directory position.
$00AC F_STAT
Get unopened file information /status.

$009C F_SYNC

unsigned char esx_f_sync(unsigned char handle)

Sync file changes to disk.
$00A5 F_ TELLDIR

uint32_t esx_f_telldir (unsigned char handle)

Get current directory position.

$00AE F_ TRUNC

unsigned char esx_f_trunc(unsigned char *filename,uint32_t size)

Truncate/extend unopened file.

$00AD F_ UNLINK

unsigned char esx_f_unlink(unsigned char *filename)

Delete file.
$009E F_ WRITE

190 CHAPTER 11. SYSTEM SOFTWARE

uintl6_t esx_f_write(unsigned char handle, void *src, size_t <
nbytes)

Write bytes to file.
IDE_ BANK ALLOC

unsigned char esx_ide_bank_alloc(unsigned char banktype)

IDE_BANK _AVAIL

unsigned char esx_ide_bank_avail (unsigned char banktype)

IDE_BANK_FREE

unsigned char esx_ide_bank_free(unsigned char banktype, unsigned <
char page)

IDE _BANK RESERVE

unsigned char esx_ide_bank_reserve(unsigned char banktype,+
unsigned char page)

IDE_BANK_ TOTAL

unsigned char esx_ide_bank_total(unsigned char banktype)

IDE_BROWSER

unsigned char esx_ide_browser (uint8_t browsercaps, void *<¢
filetypes, char xhelp,char *dst_sfn, char *dst_1lfn)

IDE_GET_LFN

unsigned char esx_ide_get_lfn(struct esx_lfn *dir, struct <«
esx_cat_entry *query)

IDE_MODE_GET

unsigned char esx_ide_mode_get(struct esx_mode *mode)

IDE_MODE_SET

unsigned char esx_ide_mode_set(struct esx_mode *mode)

$0088 M_ DOSVER
Get API version/mode information.

$0092 M _DRVAPI

unsigned char esx_m_drvapi(struct esx_drvapi *)

11.3. NEXTZXOS 191

Access API for installable drivers.

$0095 M_ ERRH

void esx_m_errh(void (*handler) (uint8_t error))

Install error handler for dot command.

$008F M EXECCMD

uintl6_t esx_m_execcmd (unsigned char *cmdline)

Execute a dot command.

$00SE M GETDATE

unsigned char esx_m_getdate(struct dos_tm x)

Get the current date/time.
$0093 M_ GETERR

void esx_m_geterr (uintl6_t error ,unsigned char *msg)

$008D M GETHANDLE

unsigned char esx_m_gethandle(void)

Get the file handle of the currently running dot command

$0089 M _GETSETDRV

unsigned char esx_m_getdrv(void)
unsigned char esx_m_setdrv(unsigned char drive)

Get or set the default drive.
$0091 M_SETCAPS

unsigned char esx_m_setcaps (unsigned char caps)

$008B M_ TAPEIN

unsigned char esx_m_tapein_close(void)

unsigned char esx_m_tapein_flags(uint8_t flags)

uintl16_t esx_m_tapein_getpos(void)

unsigned char esx_m_tapein_info(uint8_t *drive,unsigned char *<°
filename)

unsigned char esx_m_tapein_open(unsigned char *filename)

unsigned char esx_m_tapein_setpos(uintl16_t block)

unsigned char esx_m_tapein_toggle_pause(void)

192 CHAPTER 11. SYSTEM SOFTWARE

Tape input redirection control.

$008C M_TAPEOUT

unsigned char esx_m_tapeout_close(void)

unsigned char esx_m_tapeout_info(uint8_t #*drive,unsigned char *¢
filename)

unsigned char esx_m_tapeout_open(unsigned char *appendname)

unsigned char esx_m_tapeout_trunc(unsigned char *filename)

Tape output redirection control.

SLICE _DIRENT

struct esx_dirent_slice *esx_slice_dirent(struct esx_dirent x)

EXTENDED SNA_ LOAD

unsigned char extended_sna_load(unsigned char handle)

P3DOS_COPY_CSTR_TO_ PSTR

unsigned char *p3dos_copy_cstr_to_pstr(char *pdst, const char *¢
csrc)

P3DOS_COPY_PSTR_TO_CSTR

unsigned char *p3dos_copy_pstr_to_cstr(char *cdst, const char *¢
psrc)

P3DOS_CSTR_TO_PSTR

unsigned char *p3dos_cstr_to_pstr(unsigned char *s)

P3DOS_DOSNAME_FROM _CATNAME

char *p3dos_dosname_from_catname (char *dosname, char *catname)

P3DOS_EDRV_FROM_PDRV

unsigned char p3dos_edrv_from_pdrv(unsigned char pdrv)

P3DOS_PDRV_FROM _EDRV

unsigned char p3dos_pdrv_from_edrv(unsigned char edrv)

P3DOS_PSTR_TO_CSTR

unsigned char *p3dos_pstr_to_cstr (unsigned char x*s)

Appendix A

Ports

Table A.1: ZX Spectrum Ports

R W 16 -0 Port(hex) Description Disable

* * XX XXX XXXX XXX0 $fe ULA

* * XXXX XXXX 1111 1111 $F Timex video/floating bus Nextreg $08 bit 2
* OXXX XXXX XXXX XX01 $7fFd ZX Spectrum 128 memory Port $7ffd bit 5
* 01XX XXXX XXXX XX01 $7fFd ZX Spectrum 128 memory Port $7ffd bit 5

+3 only
* 1101 XXXX XXXX XX01 $dffd ZX Spectrum 128 memory Port $7ffd bit 5
(precedence over AY)

* 0001 XXXX XXXX XX01 $1fFd ZX Spectrum +3 memory Port $7ffd bit 5

* 0000 XXXX XXXX XX01 ZX Spectrum +3 floating bus Port $7ffd bit 5

* * 0010 0100 0011 1011 $243b NextREG Register Select

* * 0010 0101 0011 1011 $253b NextREG data/value
* 0001 0000 0011 1011 $103b i2¢ SCL (rtc)

* * 0001 0001 0011 1011 $113b i2¢c SDA (rtc)

* * 0001 0010 0011 1011 $123b Layer 2

* * 0001 0011 0011 1011 $133b UART tx

* * 0001 0100 0011 1011 $143b UART rx

* * 0001 0101 0011 1011 $153b UART control

* * 0001 1XXX 0011 1011 $183b CTC 8 channels $183b-$1f3b

* * XXXX XXXX 0110 1011 $6b zxnDMA

* * 11XX XXXX XXXX X101 $fFfd AY reg Nextreg $06 bit 0

* * 10XX XXXX XXXX X101 $bfid AY dat (readable on +3 only) Nextreg $06 bit 0

* 10XX XXXX XXXX 0101 $bff5 AY inf (inside bffd decoding)
* XXXX XXXX 0000 1111 $0f DAC A Nextreg $08 bit 3
* XXXX XXXX 1111 0001 $f1 DAC A (precedence over XXFD) Nextreg $08 bit 3
* XXXX XXXX 0011 1111 $3f DAC A Nextreg $08 bit 3
* XXXX XXXX 1101 1111 $df DAC A/C specdrum Nextreg $08 bit 3
* XXXX XXXX 0001 1111 $1f DAC B Nextreg $08 bit 3
* XXXX XXXX 1111 0011 $£3 DAC B Nextreg $08 bit 3
* XXXX XXXX 0100 1111 $4f DAC C Nextreg $08 bit 3
* XXXX XXXX 1111 1001 $£9 DAC C (precedence over XXFD) Nextreg $08 bit 3
* XXXX XXXX 0101 1111 $5f DAC D Nextreg $08 bit 3
* XXXX XXXX 1111 1011 $fb DAC D Nextreg $08 bit 3
* XXXX XXXX 1110 0111 $e7 SPI /CS (sd card/flash/rpi) Nextreg $09 bit 2

* * XXXX XXXX 1110 1011 $eb SPI /DATA Nextreg $09 bit 2

* * XXXX XXXX 1110 0011 $e3 divMMC Control Nextreg $09 bit 2

* XXXX 1011 1101 1111 $fbdf Kempston mouse x Nextreg $09 bit 3

* XXXX 1111 1101 1111 $fFdf Kempston mouse y Nextreg $09 bit 3

* XXXX 1010 1101 1111 $fadf Kempston mouse wheel/buttons Nextreg $09 bit 3

* XXXX XXXX 0001 1111 $1f Kempston joy 1 Nextreg $05

* XXXX XXXX 0011 0111 $37 Kempston joy 2 Nextreg $05

* * XXXX XXXX 0001 1111 $1f Multiface 1 disable

* * XXXX XXXX 1001 1111 $9f Multiface 1 enable

* * XXXX XXXX 0001 1111 $1f Multiface 128 v87.12 disable

* * XXXX XXXX 1001 1111 $9f Multiface 128 v87.12 enable

* * XXXX XXXX 0011 1111 $3f Multiface 128 v87.2 disable

* * XXXX XXXX 1011 1111 $bf Multiface 128 v87.2 enable

* * XXXX XXXX 1011 1111 $bf Multiface 43 disable

* * XXXX XXXX 0011 1111 $3f Multiface 43 enable

* * 0011 0000 0011 1011 $303b Sprite slot/flags
* XXXX XXXX 0101 0111 $57 Sprite attributes
* XXXX XXXX 0101 1011 $5b Sprite pattern
* 1011 1111 0011 1011 $bf3b ULAPIlus register

* * 1111 1111 0011 1011 $3b ULAPIlus data

193

194 APPENDIX A.

A.1 8-bit

Port $6B (107) DMA Control (Z80 Mode, 3.01.02)
Port $0F (15) DAC B

bits 7-0 = DAC Value
Disable with bit 3 of Nextreg $08

Port $1F (31) Kempston/Mega Drive Joystick 1/DAC A
Read

bit 7 = "start” button
bit 6 = A button

bit 5 = Fire 2/C button
bit 4 = Fire 1/B button

bit 3 = Up

bit 2 = Down

bit 1 = Left

bit 0 — Right
Disable with Nextreg $05
Write

bits 7-0 = DAC Value

The XYZ buttons on md pads can be read through nextreg 0xB2.
The joysticks can also be placed in i/o mode see nextreg 0x0B.

PORTS

All eleven md pad buttons can be assigned to the keyboard see nextreg 0x05.

Port $37 (55) Kempston/Mega Drive Joystick 2
Read

bit 7 = "start” button
bit 6 = A button

bit 5 = Fire 2/C button
bit 4 = Fire 1/B button

bit 3 = Up
bit 2 = Down
bit 1 = Left
bit 0 = Right

The XYZ buttons on md pads can be read through nextreg $B2.
The joysticks can also be placed in i/o mode see nextreg $0B.

All eleven md pad buttons can be assigned to the keyboard see nextreg $05.

Port $3F (63) DAC A
bits 7-0 = DAC Value
Disable with bit 3 of Nextreg $08

A.l. 8BIT 195

Port $4F (79) DAC C
bits 7-0 = DAC Value
Disable with bit 3 of Nextreg $08

Port $57 (87) Sprite Attributes
Byte 1

bits 7-0 = LSB of X coordinate (bit 8 is in byte 3)
Byte 2

bits 7-0 = LSB of Y coordinate (bit 8 is in byte 5)
Byte 3

bits 7-4 = Palette Offset

bit 3 = Enable X Mirror

bit 2 = Enable Y Mirror

bit 1 = Enable Roration

bit 0 = By Sprite Type
Anchor = MSB of X coordinate
Relative = Enable relative palette offset

Byte 4

bit 7 = Enable visibility
bit 6 = Enable Byte 5
bit 5-0 = Pattern Index (“name”)

Byte 5 (optional)
Anchor

bit 7-6 = type and pattern
00 = 8-bit color
01 = relative
10 = 4-bit color, lower half of pattern (bytes 0-127)
11 = 4-bit color, upper half of pattern (byets 128-255)
bit 5 = Attached relative sprite type
0 = composite
1 = big sprite
bit 4-3 = X-axis scale factor

00 = 1x
01 = 2x
10 = 4x
11 = 8x

bit 2-1 = Y-axis scale factor
bit 0 = MSB of Y coordinate

Composite Relative

bits 7-6 = 01

196 APPENDIX A. PORTS

bit 5 = N6
8-bit

Reserved, must be 0
4-bit

0 = lower half of pattern (bytes 0-127)

1 = upper half of pattern (bytes 128-255)
bit 4-3 = X-axis scale factor
bit 2-1 = Y-axis scale factor
bit 0 = Enable relative pattern offset

Big-sprite Relative

bits 7-6 = 01
bit 5 = N6
8-bit
Reserved, must be 0
4-bit
0 = lower half of pattern (bytes 0-127)
1 = upper half of pattern (bytes 128-255)
bit 4-1 = Reserved, must be 0
bit 0 = Enable relative pattern offset

Port $5B (91) Sprite Pattern
Load data into sprite pattern memory auto-incrementing. Port $303B can be
used to set the starting sprite pattern number.

Port $5F (95) DAC D
bits 7-0 = DAC Value
Disable with bit 3 of Nextreg $08
Port $6B (107) DMA Control (Next Mode, 3.01.02)
Port $DF (223) Kempston/Megadrive joystick 1/DAC A,D Read

bit 7 = "start” button
bit 6 = A button

bit 5 = Fire 2/C button
bit 4 = Fire 1/B button

bit 3 = Up

bit 2 = Down

bit 1 = Left

bit 0 = Right
Disable with Nextreg $05
Write

bits 7-0 = DAC Value

The XYZ buttons on md pads can be read through nextreg $B2.
The joysticks can also be placed in i/o mode see nextreg $0B.

A.l. 8BIT 197

All eleven md pad buttons can be assigned to the keyboard see nextreg $05.
Disable with bit 3 of Nextreg $08 Port $E3 (227) divMMC Control
Disable with bit 2 of Nextreg $09

bit 7 = conmem, enable divMMC memory
bit 6 = mapram, enable divMMC allRAM mode
bits 5-4 = reserved
bits 3-0 = bank, selected divMMC ram bank for $2000-$3FFF region

e conmem can be used to manually control divMMC mapping. When en-
abled
$0000-$1FFF contains esxDOS ROM or esxDOS page 3
$2000-$3FFF contains esxDOS RAM page selected by bits 3-0

e divMMC automatically maps itself in when instruction fetches hit specific
addresses in the ROM. When this happens, the esxDOS ROM (or di-
vMMC bank 3 if mapram is set) appears in $0000-$1FFF and the selected
divMMC bank appears as RAM in $2000-$3FFF

e bit 6 can only be set, once set only a power cycle can reset it. nextreg $09
bit 3 can be set to reset this bit.

divMMC automapping is normally disabled by NextZXOS see nextreg $06 bit
4.

Port $E7 (231) SPI CS (SD card, flash, rpi)

Disable with bit 2 of Nextreg $09

Port $EB (235) SPI DATA (SD card, flash, rpi)
Disable with bit 2 of Nextreg $09

Port $F1 (241) DAC A (precedence over $xxFD)
bits 7-0 = DAC Value

Disable with bit 3 of Nextreg $08

Port $F3 (243) DAC B
bits 7-0 = DAC Value

Disable with bit 3 of Nextreg $08

Port $F9 (249) DAC C (precedence over $xxFD)
bits 7-0 = DAC Value

Disable with bit 3 of Nextreg $08

Port $FB (251) DAC A,.D
bits 7-0 = DAC Value

Disable with bit 3 of Nextreg $08

Port $FE (254) ULA
bits 7-5 = Unused

198 APPENDIX A. PORTS

bit 4 = enable ear output

bit 3 = enable mic output

bit 2-0 = border colour

nextreg $08 bit 0 can be set to delect issue 2 keyboard which will affect
reads of bit 6.

Port $FF (255) Timex Sinclair/Floating Bus

bit 7 = memory paging (not on ZX Next)
bit 6 = Disable generation of interrupts
bit 5-3 = Hi-res mode color combination
000 = Black on white (indexes 0, 135)
001 = Blue on Yellow (indexes 1, 134)
010 = Green on Magenta (indexes 2, 133)
011 = Cyan on Red (indexes 3, 132)
100 = Red on Cyan (indexes 4, 131)
101 = Magenta on Green (indexes 5, 130)
110 = Yellow on Blue (indexes 6, 129)
111 = White on Black (indexes 7, 128)
bit 2-0 = ULA Mode
000 = Normal ULA address
001 = Alternate ULA address
010 = Hi-color mode
110 = Hi-res mode

Disable with bit 2 of Nextreg $08

A.2 16-bit

Port $103B (4155) I?C SCL (rtc, rpi)
Port $113B (4411) 12C SDA (rtc, rpi)
Port $123B (4667) Layer 2

Bit4 =0

bits 7-6 = Video RAM bank select
00 = first 16k
01 = second 16k
10 = third 16k
11 = first 48k

bit 5 = Reserved, must be 0

bit4 =0

bit 3 = Shadow layer 2 select

bit 2 = Enable layer 2 read paging

bit 1 = Layer 2 visible (mirrored in register $69)
bit 0 = Enable layer 2 write paging

A.2. 16-BIT 199

Bit4=1

bits 7-5 = Reserved, must be 0
bit 4 =1

bit 3 = Reserved, must be 0

bit 2-0 = 16k bank relative offset

Port $133B (4923) UART tx
Read: UART Status

bit 7 = RX in break condition

bit 6 = RX framing error

bit 5 = next RX byte was recieved after error (framing, overflow)
bit 4 = TX buffer is empty

bit 3 = RX buffer near full (over 3/4) (3.01.09)

bit 2 = RX buffer overflow

bit 1 = TX buffer full

bit 0 = RX buffer has data

Write: UART Transmit

Port $143B (5179) UART rx
Read: UART Receive
Write: UART Prescalar

bit 7 = select prescalar part
0 = Bits 6-0 of prescalar
1 = Bits 13-7 of prescalar
bits 6-0 = Prescalar bits

Port $153B (5435) UART select

bit 7 = Reserved (0)
bit 6 = UART select (0 on soft reset) **
0 = ESP
1=Pi*
bit 5 = Reserved (0)
bit 4 = Prescalar valid in this write
bit 3 = Reserved (0)
bits 2-0 = Bits 16-14 of prescalar (0 on hard reset)

* Pi GPIO must be configured for UART, see nextreg $A0
* Either UART can be redirected to the joystick ports, see port $037

Port $153B (5435) UART frame (upcoming)
(318 on hard reset)

bit 7 = Immediately reset Rx and Tx to idle and empty FIFOs
bit 6 = Assert break (Tx=0) when Tx reaches idle
bit 5 = Enable hardware flow control *

200 APPENDIX A. PORTS

bits 4-3 = Number of bits in a frame

00 = 5 bits
01 = 6 bits
10 = 7 bits
11 = 8 bits

bit 2 = Enable parity
bit 1 = Parity
0 = Even parity
1 = Odd parity
bit 0 = Number of stop bits
0 = 1 stop bit
1 = 2 stop bits

* The ESP ignores hardware flow control
In joystick i/o mode only cts is available

Port $183B (6203) CTC Channel 0 Port $193B (6459) CTC Channel 1 Port
$1A3B (6715) CTC Channel 2 Port $1B3B (6971) CTC Channel 3 Port $1C3B
(7227) CTC Channel 4 Port $1D3B (7483) CTC Channel 5 Port $1E3B (7739)
CTC Channel 6 Port $183B (6203) CTC Channel 7 Port $1FFD (8189) Plus
3 Memory Paging Control

bits 7-3 = Unused, nust be 0
bit 2 = High bit of ROM selection (low bit is in Port $7FFD)
00 = ROMO = 128k editor and menu system
01 = ROM1 = 128k syntax checker
10 = ROM2 = +3DOS
11 = ROM3 = 48k BASIC
bit 1 = Special mode: Low bit of memory configuration number
bit 0 = Paging mode
0 = Normal
1 = Special

You should echo writes to $5B67
Port $243B (9275) Next Register Select
Port $253B (9531) Next Register Data

Port $303B (12347) Sprite Slot/Flags

Write: Sprite Slot Select

select sprite slot for Sprite Attribute and Sprite Pattern ports which indepen-
dently auto-increment

Read: Sprite status

bits 7-2 = reserved

bit 1 = Max sprites per line
bit 0 = Collision flag
reading clears flags

A.2. 16-BIT 201

Port $7FFD (32765) Memory Paging Control

bits 7-6 = Extra two bits for 16k RAM bank if in Pentagon 512k/1024k
mapping mode (nextreg $8f)
bit 5 = Lock memory paging
bit 4 = low bit of ROM Select (high bit is in Port $1FFD)
00 = ROMO = 128k editor and menu system
01 = ROM1 = 128k syntax checker
10 = ROM2 = +3DOS
11 = ROM3 = 48k BASIC
bit 3 = Shadow screen toggle
bits 2-0 = LSB of Bank number for slot 4 (MSB is in Port $DFFD)

Disable with bit 5 port $7FFD
Port $7FFE (32766) Keyboard 8 (read only)

bit 0: "B’

bit 1: "N’

bit 2: "M’

bit 3: Symbol Shift
bit 4: Space

Port $BF3B (48955) ULAplus register

bits 7-6 = Select register group
— 00 = palette group
— 01 = mode group
bits 5-0 = data
If palette group, selects index 0-63 in ULAplus palette
If mode group, ignored

Port $BFF5 (49141) AY Info (3.01.09
(R)

bits 7-6 = Active AY chip
— 01 = AY 0 active
— 10 = AY 1 active
— 11 = AY 2 active
bit 5 = Reserved
bits 4-0 = currently selected AY register

Port $BFFD (49149) AY Data
Port $BFFE (49150) Keyboard 7 (read only)

bit 0 = "H’
bit 1 ="J
bit 2 = 'K’
bit 3 = 'L’

bit 4 = Enter

202 APPENDIX A. PORTS

Port $DFFD (57341) Next Memory Bank Select

bits 7-4 = Reserved, must be 0
bits 3-0 = MSB of bank number for slot 4 (LSB is in Port $7FFD)

Port $DFFE (57342) Keyboard 6 (read only)

bit 0 =Y’
bit 1 ="U’
bit 2 =T
bit 3 =0’
bit 4 =P’

Port $EFF7 (61431) Pentagon 1024 paging

bit 3 = 1 to overlay the bottom 16k with ram from 16k bank 0

bit 2 = 0 to enable Pentagon 1024 mapping and disable bit 5 port 0x7ffd
locking, 1 to select standard zx128 mapping **

** Applies only when pentagon 1024 mapping mode is enabled via nextreg

0x8f.
Port $EFFE (61438) Keyboard 5 (read only)
bit 0 = ‘6’
bit 1 =7
bit 2 = ‘8’
bit 3 = ‘9’
bit 4 = ‘0’
Port $F7FE (63486) Keyboard 4 (read only)
bit 0 = ‘5’
bit 1 = ‘4’
bit 2 = ‘3’
bit 3 = 2’
bit 4 = ‘1’

Port $FADF (64223) Kempston Mouse Buttons

bits 7-4 = Wheel delta since last read
bit 3 = fourth button

bit 2 = middle button

bit 1 = left button

bit 0 = right button

Port $FBDF (64479) Kempston Mouse X
bits 7-0 = X coordinate of mouse
Port $FBFE (64510) Keyboard 3 (read only)

bit 0 = ‘1"
bit 1 = ‘R’

A.2. 16-BIT 203
bit 2 = ‘E’
bit 3 = W’
bit 4 = ‘Q’

Port $FDFE (65022) Keyboard 2 (read only)

bit 0 = ‘G’
bit 1 = ‘F’
bit 2 = ‘D’
bit 3 = ‘S’
bit 4 = ‘A’

Port $FEFE (65278) Keyboard 1 (read only)

bit 0 = ‘V’
bit 1 = ‘C’
bit 2 = ‘X’
bit 3 = ‘2’

bit 4 = Caps Shift
Port $FF3B (65339) ULAplus data

If palette group, 8-bit (RRRGGGBB) value for current index
If mode group, bit 1 = enable ULAplus

Port $FFDF (65503) Kempston Mouse Y
bits 7-0 = Y coordinate of mouse (0-192)

Port $FFFD (65533) AY Control and AY register Select (3.01.09)
Read

bits 7-0 = data in selected register of active AY chip
Select Chip

bit 7=1

bit 6 = Enable left

bit 5 = Enable Right

bits 4-2 = Reserved, must be 1
bits 1-0 = AY chip select

00 = Unused
01 =AY 2
10=AY 1
11 =AY O

Select Register

bit 7=0
bits 6-5 = Reserved, must be 0
bits 4-0 = Register Number

204 APPENDIX A. PORTS

Appendix B

Registers

B.1 ZX Spectrum Next Registers

The ZX Next stores configuration state in a field of registers. These registers
are accessible via two I/O ports or via the special nextreg instructions.

Port $243B (9275) is used to set the register number, listed below.

Port $253B (9531) is used to access the register value.

Some registers are accessible only during the initialization process.

Register (R) $00 (0) = Machine ID

00000001 = DE1A

00000010 = DE2A

00000101 = FBLABS

00000110 = VTRUCCO

00000111 = WXEDA

00001000 = EMULATORS

00001010 = ZX Spectrum Next

00001011 = Multicore

10011010 = ZX Spectrum Next Core on unAmiga Reloaded
10101010 = ZX Spectrum Next Core on unAmiga
10111010 = ZX Spectrum Next Core on SiDi
11001010 = ZX Spectrum Next Core on MIST
11011010 = ZX Spectrum Next Core on MiSTer
11101010 = ZX Spectrum Next Core on ZX-DOS
11111010 = ZX Spectrum Next Anti-brick

Register (R) $01 (1) = Core Version

e bits 7-4 = Major version number

205

206

APPENDIX B. REGISTERS

bits 3-0 = Minor version number
See register $OE for sub minor version number

Register (R/W) $02 (2) = Reset

Read

Write

bit 7 = Expansion bus RESET Asserted

bits 6-5b = Reserved

bit 4 = Multiface NMI generated by I/O trap (experimental) (3.01.11)
bit 3 = Indicates multiface NMI was generated by this nextreg (3.01.09)
bit 2 = Indicates divimmc NMI was generated by this nextreg (3.01.09)
bit 1 = Last reset was Hard reset

bit 0 = Last reset was Soft reset

bit 7 = Hold Expansion bus and ESP RESET

bits 6-5 = Reserved, must be 0

bit 4 = clear I/O trap (experimental)(3.01.10)

bit 3 = Generate multiface NMI ** (write zero to clear) (3.01.09)
bit 2 = Generate divmme NMI ** (write zero to clear) (3.01.09)
bit 1 = generate Hard reset * (reboot)

bit 0 = generate Soft reset *

* Hard reset has precedence
* These signals are ignored if the multiface, divmme, dma or external NMI mas-
ter is active Register (R/W) $03 (3) = Machine Type

bit 7 (R) = nextreg $44 second byte indicator
bit 7 (W) = allow changes to bits 6-4 (0 on hard reset)
bits 6-4 = Display Timing
— 000 = Internal use
— 001 = ZX 48k
— 010 = ZX 128k/2+
— 011 = ZX +2A/+2B/+3
— 100 = Pentagon
bit 3 = Display Timing user lock control (0 on hard reset)
bits 2-0 = Machine type (write on config mode only) determines ROMs
loaded
— 000 = Configuration mode
001 = ZX 48k
010 = ZX 128k/+2 (Grey)
— 011 = ZX +2A/+2BB/+3/Next Native
100 = Pentagon

Register (W) $04 (4) = Configuration Mapping

bits 7 = Reserved, must be 0
bits 6-0 = 16k SRAM bank mapping*® (300 on hard reset)

B.1.

ZX SPECTRUM NEXT REGISTERS 207

* Maps a 16k SRAM bank over the bottom 16k. Applies only in config
mode when the bootrom is disabled

** Even multiples of 256k are unreliable if storing data in sram for the
mext core started.

*** number of useful bits changed from 5 to 7 in core 3.01.06

Register (R/W) $05 (5) = Peripheral 1 Settings

bits 7-6 = joystick 1 mode (MSB)
bits 5-4 = joystick 2 mode (MSB)
bit 3 = joystick 1 mode (LSB)
bit 2 = 50/60 Hz mode (0 = 50Hz, 1 — 60Hz)
bit 1 = joystick 2 mode (LSB)
bit 0 = Enable Scandoubler
0 = Disabled for CRT
1 = Enabled for VGA

Joystick modes

* %

N

000 = Sinclair 2 (67890)

001 = Kempston 2 (port $37)

010 = Kempston 1 (port $1F)
011 = Megadrive 1 (port $1F)
100 = Cursor

101 = Megadrive 2 (port $37)

110 = Sinclair 1 (12345)

111 = User Defined Keys Joystick

Joysticks can be placed in i/o mode via nextreg 0x0B.
Programming the user defined keys joystick is done through the ps2 keymap
interface on nextreg 0x28, 0x29 and 0x2B:

. Write 128 to nextreg 0x28

Write 0 (left joystick) or 16 (right joystick) to nextreg 0x29

. Write eleven bytes to nextreg 0x2B. The bytes correspond to the eleven

buttons on an md pad (X=11ZY START A CB UD L R=1)

Each byte written identifies a key in the 8x7 membrane; bits 5:3 select the
row and bits 2:0 select the column with 111 meaning no action.

In all joystick modes, excess buttons on an md pad not read via ports will
generate key input if so programmed.

Register (R/W) 306 (6) = Peripheral 2 Settings

bit 7 = Enable F8 cpu speed hotkey (soft reset = 1)
bit 6 = Divert BEEP only to internal speaker (hard reset = 0)
bit 5 = Enable F3 50/60 Hz hotkey (soft reset = 1)
bit 4 = Enable divmmc nmi by DRIVE button (hard reset = 0)
bit 3 = Enable multiface nmi by M1 button (hard reset = 0)
bit 2 = PS/2 mode (config mode only)

— 0 = keyboard primary

208 APPENDIX B. REGISTERS

— 1 = mouse primary
e bits 1-0 = Audio chip mode
— 00 =YM
01 = AY
— 10 = ZXN-8950 (3.02.00)
— 11 = Hold all AY in reset

Register (R/W) $07 (7) = Turbo mode

Read
e bits 7-6 = Reserved
e bits 5-4 = Current Actual CPU Speed
e bits 3-2 = Reserved
e bits 1-0 = Current Selected CPU Speed (00 on reset)

Write

e bits 7-2 = Reserved, must be 0
e bits 1-0 = Select CPU Speed

CPU Speeds
e 00 = 3.5MHz
e 01 = 7TMHz
e 10 = 14MHz
e 11 = 28MHz

Register (R/W) $08 (8) = Peripheral 3 Settings

bit 7 = 128K Banking Unlock (inverse of port $7FFD, bit 5) (0 on reset)
bit 6 = Disable RAM and Port Contention (0 on reset)

bit 5 = PSG Stereo Mode Control (0 = ABC, 1 = ACB) (0 on hard reset)
bit 4 = Enable internal speaker (1 on hard reset)

bit 3 = Enable DACs (0 on hard reset)

bit 2 = Enable read of port $FF (Timex) (0 on hard reset)

bit 1 = Enable Multiple PSGs (0 on hard reset)

bit 0 = Enable Issue 2 Keyboard

Register (R/W) $09 (9) = Peripheral 4 setting:

bit 7 = PSG 2 Mono Enable (0 on hard reset)

bit 6 = PSG 1 Mono Enable (0 on hard reset)

bit 5 = PSG 0 Mono Enable (0 on hard reset)

bit 4 = Sprite ID lockstep enable (1 = Nextreg $34 and 10 Port $303B
are in lockstep, 0 on reset)

bit 3 = divMMC mapRAM bit Control (reset bit 7 of port $E3)
e bit 2 = HDMI audio mute (0 on hard reset)

e bits 1-0 = scanlines

— 00 = scanlines off

— 01 = scanlines 12.5%

— 10 = scanlines 25%

B.1. ZX SPECTRUM NEXT REGISTERS 209

— 11 = scanlines 50%
In Sprite lockstep, NextREG $34 and Port $303B are in lockstep

Register (R/W) $0A (10) = Peripheral 5 setting:

e bits 7-6 = Multiface type (00 on hard reset)
— 00 = Multiface +3 (enable port 0x3F, disable port 0xBF)
— 01 = Multiface 128 v87.2 (enable port 0xBF, disable port 0x3F)
— 10 = Multiface 128 v87.12 (enable port 0x9F, disable port 0x1F)
— 11 = Multiface 1 (enable port 0x9F, disable port 0x1F)

e bit 5 = Reserved, must be zero
e bit 4 = Enable divmmec automap (hard reset = 0) (3.01.10)
e bit 3 = 1 to reverse left and right mouse buttons (3.01.07)
e bit 2 = Reserved, must be 0
e bits 1-0 = mouse dpi (00 on hard reset) (3.01.05)

— 00 = low dpi

— 01 = default

— 10 = medium dpi

— 11 = high dpi

Register (R/W) $0B (11) = Joystick I/O Mode

bit 7 = 1 to enable i/o mode
bit 6 = Reserved, must be 0
bits 5-4 = 1/O Mode
— 00 = bit bang
— 01 = clock
— 10 = uart on left joystick port
— 11 = uart on right joystick port
bits 3-1 = Reserved, must be 0
bit 0 = Parameter
bit bang : copied to pin 7
clock
% 0 = hold high when clock becomes high
x 1 =run *
uart
* 0 = redirect esp uart0 to joystick
* 1 = redirect pi uartl to joystick
(Tx out on pin 7, Rx in from pin 9, CTS n in from pin 6 **)

The state of output pin 7 is stored internally in a register and is retained across
changing modes and while i/o mode is disabled. While in i/o mode, keyboard
joystick types (Sinclair, Cursor, etc) produce no readings but the current state of
pins can still be read via the Kempston ports. When leaving i/o mode, joystick
operation resumes after 64 scan lines have passed.

CTC channel 3 is currently used to drive pin 7 in clock mode. Freq = Fctc3 /
2.

* CTS_n is only active if the seleced uart is in hw flow control mode. Register

210 APPENDIX B. REGISTERS

(R) $OE (14) = Core Version (sub minor number)

e bits 7-0 = Core sub minor version number
(see register $01 for the major and minor version number)

Register (R) $OF (15) = Board ID (3.02.00)

e bits 7-4 = Reserved, 0

e bits 3-0 = Board 1D

e bit 0 = Parameter
0000 = ZXN Issue 2, XC6SLX16-2FTG256, 128Mbit W25Q128JV,
24bit spi, 64K*8 core size
0001 = ZXN Issue 3, XC6SLX16-2FTG256, 128Mbit W25Q128JV,
24bit spi, 64K*8 core size
0010 = ZXN Issue 4, XC7A15T-1CSG324, 256Mbit MX24L.25645QG,
32bit spi, 64K*34 core size

Register (R/W) $10 (16) = Core Boot
Read

bits 7 = Reserved

bits 6-2 = Core ID (3.02.00)

bit 1 = Drive (divmmc) button pressed
bit 0 = M1 (multiface) button pressed

Write

e bit 7 = Reboot FPGA using selected core (0 on reset)
e bits 6-5 = Reserved, must be 0
e bits 4-0 = Core ID
Core ID with bits 4-0 can only be set in configuration mode

Register (R/W) $11 (17) = Video Timing (writable in config mode only)

e bits 7-3 = Reserved, must be 0
e bits 2-0 = Mode (VGA = 0..6, HDMI = 7)
— 000 = Base VGA timing, clk28 = 28000000

001 = VGA setting 1, clk28 = 28571429
— 010 = VGA setting 2, clk28 = 29464286
011 = VGA setting 3, clk28 = 30000000
— 100 = VGA setting 4, clk28 = 31000000
— 101 = VGA setting 5, clk28 = 32000000
110 = VGA setting 6, clk28 = 33000000

— 111 = HDMI, clk28 = 27000000
50/60Hz selection depends on bit 2 of register $05
Only writable in config mode

Register (R/W) $12 (18) = Layer 2 Active RAM bank

e bit 7 = Reserved, must be 0
e Dbits 6-0 = Starting 16k RAM bank (point to bank 8 after a Reset, NextZXO0S

B.1. ZX SPECTRUM NEXT REGISTERS 211

modifies to 9)
Register (R/W) $13 (19) = Layer 2 Shadow RAM bank

e bits 7 = Reserved, must be 0
e bits 6-0 = Starting 16k RAM bank (point to bank 11 after a Reset,
NextZXOS modifies to 12)

Register (R/W) $14 (20) = Global transparency color
e bits 7-0 = Transparency color value ($E3 after a reset)

(Note: this value is 8-bit, so the transparency is compared against only by the
MSB bits of the final 9-bit colour)

(Note2: this only affects Layer 2, ULA and LoRes. Sprites use register $4B for
transparency and tilemap uses nextreg $4C)

Register (R/W) $15 (21) = Sprite and Layer System Setup

e bit 7 = LoRes mode (0 on reset)
e bit 6 = Sprite priority (0 on reset)
— 0 = sprite 127 on top
— 1 = sprite 0 on top
e bit 5 = Enable sprite clipping in over border mode (0 on reset)
o bits 4-2 = set layers priorities (000 on reset)
—000-SLU
- 001-LSU
- 010-SUL
- 011-LUS
- 100-USL
- 101-ULS
— 110 - S(U+L) ULA and Layer 2 combined, colours clamped to 7
— 111 - S(U+L-5) ULA and Layer 2 combined, colours clamped to [0,7]
e bit 1 = Enable Sprites Over border (0 on reset)
e bit 0 = Enable Sprites (0 on reset)

Register (R/W) $16 (22) = Layer 2 Horizontal Scroll Control
e bits 7-0 = X Offset (0-255)(0 on reset)

Register (R/W) $17 (23) = Layer 2 Vertical Scroll Control
e bits 7-0 =Y Offset (0-191)(0 on reset)

Register (R/W) $18 (24) = Layer 2 Clip Window Definition

e bits 7-0 = Coords of the clip window
1st write - X1 position
2nd write - X2 position
3rd write - Y1 position
4rd write - Y2 position

Reads do not advance the clip position

212 APPENDIX B. REGISTERS

The values are 0,255,0,191 after a Reset
Register (R/W) $19 (25) = Sprite Clip Window Definition

e bits 7-0 = Cood. of the clip window
1st write - X1 position
2nd write - X2 position
3rd write - Y1 position
4rd write - Y2 position

The values are 0,255,0,191 after a Reset
Reads do not advance the clip position

When the clip window is enabled for sprites in "over border" mode, the X coords
are internally doubled and the clip window origin is moved to the sprite origin
inside the border.

Register (R/W) $1A (26) = Layer 0 (ULA /LoRes) Clip Window Definition
e bits 7-0 = Coord. of the clip window
1st write = X1 position
2nd write = X2 position

3rd write = Y1 position
4rd write = Y2 position

The values are 0,255,0,191 after a Reset
Reads do not advance the clip position

Register (R/W) $1B (27) = Layer 3 (Tilemap) Clip Window Definition
e bits 7-0 = Coord. of the clip window
1st write = X1 position
2nd write = X2 position

3rd write = Y1 position
4rd write = Y2 position

The values are 0,159,0,255 after a Reset
Reads do not advance the clip position
The X coords are internally doubled.

Register (R/W) $1C (28) = Clip Window Control

Read
e bits 7-6 = Layer 3 Clip Index
e bits 5-4 = Layer 0/1 Clip Index
e bits 3-2 = Sprite clip index
e bits 1-0 = Layer 2 Clip Index

Write

e bits 7-4 = Reserved, must be 0
e bit 3 - reset Layer 3 clip index
e bit 2 - reset Layer 0/1 clip index

B.1. ZX SPECTRUM NEXT REGISTERS 213

e bit 1 - reset sprite clip index.
e bit 0 - reset Layer 2 clip index.

Register (R) $1E (30) = Active video line (MSB)

e bits 7-1 — Reserved
e bit 0 = Active line MSB

Register (R) $1F (31) = Active video line (LSB)
e bits 7-0 = Active line LSB (0-255)
Register (R/W) $22 (34) = Line Interrupt control

bit 7 = (R) ULA asserting interrupt

bit 7 = (W) Reserved, must be 0

bits 6-3 = Reserved, must be 0

bit 2 = Disable ULA Interrupt (0 on reset)

bit 1 = Enable Line Interrupt (0 on reset)

bit 0 = MSB of Line Interrupt line value (0 on reset)

Register (R/W) $23 (35) = Line Interrupt value LSB
e bits 7-0 = Line Interrupt line value LSB (0-255)(0 on reset)

Register (R/W) $24 (36) = Reserved
Protection against “OUT ($3B),A”

Register (R/W) $26 (38) = ULA Horizontal Scroll Control
e bits 7-0 = ULA X Offset (0-255) (0 on reset)
Register (R/W) $27 (39) = ULA Vertical Scroll Control
e bits 7-0 = ULA Y Offset (0-191) (0 on reset)

Register (R/W) $28 (40) = Stored Palette Value and PS/2 Keymap Address
MSB
Read

e bits 7-0 = Stored palette value (see NextREG $44)
Write

e bit 7 = PS/2 or Joystick
— 0 = PS/2 keymap
— 1 = Key joystick
e bits 6-1 = Reserved, must be 0
e bit 0 = PS/2 Keymap Address MSB

Register (W) $29 (41) = PS/2 Keymap Address LSB
e bits 7-0 = PS/2 Keymap Address LSB
Register (W) $2A (42) = PS/2 Keymap Data MSB

214 APPENDIX B. REGISTERS

e bits 7-1 = Reserved, must be 0
e bit 0 = PS/2 Keymap Data MSB

Register (W) $2B (43) = PS/2 Keymap Data LSB
e bits 7-0 = PS/2 Keymap Data LSB
(writing this register auto-increments the address)

Register (R/W) $2C (44) = DAC B Mirror (Left)/ I2S Left Sample MSB
Read

e bits 7-0 = IS Left Sample MSB
Write
e bits 7-0 = 8-bit sample left DAC ($80 on reset)

Register (R/W) $2D (45) = DAC A+D Mirror (mono/ I12S Sample LSB
Read

e bits 7-0 = IS Last Sample LSB
Write
e bits 7-0 = 8-bit sample DACs A + D ($80 on reset)

Register (R/W) $2E (46) = DAC C Mirror (Right/ I2S Risht Sample MSB
Read

e bits 7-0 = I2S Right Sameple MSB
Write
e bits 7-0 = 8-bit sample Right DACs C ($80 on reset)
Register (R/W) $2F (47) = Layer 3 (Tilemap) Horizontal Scroll Control MSB

e bits 7-2 = Reserved, must be 0
e bits 1-0 = X Offset MSB ($00 on reset)

Meaningful Range is 0-319 in 40 char mode, 0-639 in 80 char mode

Register (R/W) $30 (48) = Layer 3 (Tilemap) Horizontal Scroll Control LSB
e bits 7-0 = X Offset LSB ($00 on reset)

Meaningful range is 0-319 in 40 char mode, 0-639 in 80 char mode

Register (R/W) $31 (49) = Layer 3 (Tilemap) Vertical Scroll Control
e Dbits 7-0 = Y Offset (0-255) ($00 on reset)

Register (R/W) $32 (50) = Layer 1,0 (LoRes) Horizontal Scroll Control)
e bits 7-0 = X Offset (0-255) ($00 on reset)

Layer 1,0 (LoRes) scrolls in "half-pixels" at the same resolution and smoothness
as Layer 2.

B.1. ZX SPECTRUM NEXT REGISTERS 215

Register (R/W) $33 (51) = Layer 1,0 (LoRes) Vertical Scroll Control)
e bits 7-0 = Y Offset (0-191) ($00 on reset)

Layer 1,0 (LoRes) scrolls in "half-pixels" at the same resolution and smoothness
as Layer 2.

Register (R/W) $34 (52) = Sprite Number
Lockstep (NextReg $09 bit 4 set)

e bit 7 = Pattern address offset (Add 128 to pattern address)
e bits 6-0 = Sprite number 0-127, Pattern number 0-63
effectively performs an out to port $303B

No Lockstep (NextReg $09 bit 4 clear)

e bit 7 = Reserved, must be 0
e bits 6-0 = Sprite number 0-127

This register selects which sprite has its attributes connected to the sprite at-
tribute registers

Register (W) $35 (53) = Sprite Attribute 0

e bits 7-0 = Sprite X coordinate LSB (MSB in NextReg $37)
Register (W) $36 (54) = Sprite Attribute 1

e bits 7-0 = Sprite Y coordinate LSB (MSB in NextReg $39)
Register (W) $37 (55) = Sprite Attribute 2

bits 7-4 = 4-bit Palette offset

bit 3 = Enable horizontal mirror (reverse)
bit 2 = Enable vertical mirror (reverse)
bit 1 = Enable 90 Clockwise Rotation

Normal Sprites
e bit 0 = X coordinate MSB
Relative Sprites
e bit 0 = Palette offset is relative to anchor sprite
Rotation is applied before mirroring
Register (W) $38 (56) = Sprite Attribute 3

e bit 7 = Enable Visiblity
e bit 6 = Enable Attribute 4 (0 = Attribute 4 effectively $00)
e bits 5-0 = Sprite Pattern Number

Register (W) $39 (57) = Sprite Attribute 4
Normal Sprites

e bit 7 = 4-bit pattern switch (0 = 8-bit sprite, 1 = 4-bit sprite)

216 APPENDIX B. REGISTERS

bit 6 = Pattern number bit-7 for 4-bit, 0 for 8-bit

bit 5 = Type of attached relative sprites (0 = Composite, 1 = Unified)
bits 4-3 = X scaling (00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)

bits 2-1 = Y scaling (00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)

bit 0 = MSB of Y coordinate

Relative, Composite Sprites

bit 7-6 = 01

bit 5 = Pattern number bit-7 for 4-bit, 0 for 8-bit

bits 4-3 = X scaling (00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)
bits 2-1 =Y scaling (00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)
bit 0 = Pattern number is relative to anchor

Relative, Unified Sprites

bit 7-6 = 01

bit 5 = Pattern number bit-7 for 4-bit, 0 for 8-bit
bits 4-1 = 0000

bit 0 = Pattern number is relative to anchor

Register (R/W) $40 (64) = Palette Index Select
e bits 7-0 = Palette Index Number

Selects the palette index to change the associated colour

For ULA only, INKs are mapped to indices 0 through 7, BRIGHT INKs to
indices 8 through 15, PAPERs to indices 16 through 23 and BRIGHT PAPERs
to indices 24 through 31. In EnhancedULA mode, INKs come from a subset
of indices from 0 through 127 and PAPERs from a subset of indices from 128
through 255.

The number of active indices depends on the number of attribute bits assigned
to INK and PAPER out of the attribute byte.

In ULAplus mode, the last 64 entries (indices 192 to 255) hold the ULAplus
palette. The ULA always takes border colour from PAPER for standard ULA
and Enhanced ULA

Register (R/W) $41 (65) = 8-bit Palette Data
e bits 7-0 = Colour Entry in RRRGGGBB format

The lower blue bit of the 9-bit internal colour will be the logical or of bits 0 and
1 of the 8-bit entry. After each write, the palette index auto-increments if aut-
increment has been enabled (NextReg $43 bit 7), Reads do not auto-increment.

Register (R/W) $42 (66) = ULANext Attribute Byte Format
e bits 7-0 = Attribute byte’s INK representation mask (7 on reset)

The mask can only indicate a solid sequence of bits on the right side of the
attribute byte (1, 3, 7, 15, 31, 63, 127 or 255).

B.1. ZX SPECTRUM NEXT REGISTERS 217

INKs are mapped to base index 0 in the palette and PAPERs and border are
mapped to base index 128 in the palette.

The 255 value enables the full ink colour mode making all the palette entries
INK. PAPER and border both take on the fallback colour (nextreg $4A) in this
mode.

Register (R/W) $43 (67) = Palette Control

e bit 7 = Disable palette write auto-increment.
e bits 6-4 = Select palette for reading or writing:

— 000 = ULA first palette

— 001 = Layer 2 first palette

— 010 = Sprite first palette

— 011 = Layer 3 first palette

— 100 = ULA second palette

— 101 = Layer 2 second palette

— 110 = Sprite second palette

— 111 = Layer 3 second palette
bit 3 = Select Sprite palette (0 = first palette, 1 = second palette)
bit 2 = Select Layer 2 palette (0 = first palette, 1 = second palette)
bit 1 = Select ULA palette (0 = first palette, 1 = second palette)
bit 0 = Enable EnhancedULA mode if 1. (0 after a reset)

Register (R/W) $44 (68) = 9-bit Palette Data
Non Level 2

1st write
e bits 7-0 = MSB (RRRGGGBB)
2nd write
e bits 7-1 = Reserved, must be 0
e bit 0 = LSB (B)

Level 2

1st write
e bits 7-0 = MSB (RRRGGGBB)
2nd write
e bit 7 = Priority
e bits 6-1 = Reserved, must be 0
e bit 0 = LSB (B)

9-bit Palette Data is entered in two consecutive writes; the second write au-
toincrements the palette index if auto-increment is enabled in NextREG $43 bit
7

If writing an L2 palette, the second write’s D7 holds the L2 priority bit which
if set (1) brings the colour defined at that index on top of all other layers. If
you also need the same colour in regular priority (for example: for enviromental
masking) you will have to set it up again, this time with no priority.

218 APPENDIX B. REGISTERS

Reads return the second byte and do not autoincrement. Writes to nextreg $40,
$41, $41, or $43 reset to the first write.

Register (R/W) $4A (74) = Fallback Colour Value
e bits 7-0 = 8-bit colour if all layers are transparent ($E3 on reset)
(black on reset = 0)
Register (R/W) $4B (75) = Sprite Transparency Index
e bits 7-0 = Index value ($E3 if reset)
For 4-bit sprites only the bottom 4-bits are relevant.
Register (R/W) $4C (76) = Level 3 Transparency Index

e bits 7-4 = Reserved, must be 0
e bits 3-0 = Index value ($0F on reset)

Register (R/W) $50 (80) = MMU Slot 0 Control
e bits 7-0 = 8k RAM page at position $0000 to $1FFF ($ff on reset)

Pages can be from 0 to 223 on a fully expanded Next.
A 255 value causes the ROM to become visible.

Register (R/W) $51 (81) = MMU Slot 1 Control
e bits 7-0 = 8k RAM page at position $2000 to $3FFF ($ff on reset)

Pages can be from 0 to 223 on a fully expanded Next.
A 255 value causes the ROM to become visible.

Register (R/W) $52 (82) = MMU Slot 2 Control

e bits 7-0 = 8k RAM page at position $4000 to $5FFF ($0A on reset)
Pages can be from 0 to 223 on a fully expanded Next.
Register (R/W) $53 (83) = MMU Slot 3 Control

e bits 7-0 = 8k RAM page at position $6000 to $7FFF ($0B on reset)
Pages can be from 0 to 223 on a fully expanded Next.
Register (R/W) $54 (84) = MMU Slot 4 Control

e bits 7-0 = 8k RAM page at position $8000 to $IFFF (304 on reset)
Pages can be from 0 to 223 on a fully expanded Next.
Register (R/W) $55 (85) = MMU Slot 5 Control

e bits 7-0 = 8k RAM page at position $A000 to $BFFF ($05 on reset)
Pages can be from 0 to 223 on a fully expanded Next.
Register (R/W) $56 (86) = MMU Slot 6 Control

B.1. ZX SPECTRUM NEXT REGISTERS 219

e bits 7-0 = 8k RAM page at position $C000 to $DFFF ($00 on reset)
Pages can be from 0 to 223 on a fully expanded Next.
Register (R/W) $57 (87) = MMU Slot 7 Control

e bits 7-0 = 8k RAM page at position $E000 to $SFFFF ($01 on reset)
Pages can be from 0 to 223 on a fully expanded Next.

Writing to ports $1FFD, $7FFD and $DFFD writes $FF to MMUO and MMU1
and writes appropriate values to MMU6 and MMU? to map in the selected 16k
bank.

+3 special modes override the MMUs if used.
Register (W) $60 (96) = Copper Data 8-bit Write
e bits 7-0 = Byte to write to copper instruction memory

Note that each copper instruction is two bytes long, after a write, the coppen
address is auto-incremented to the next memory position.

After a write, the index is auto-incremented to the next memory position.
Register (W) $61 (97) = Copper Address LSB

e bits 7-0 = Copper instruction memory address LSB (0 on reset)
Register (W) $62 (98) = Copper Control

e bits 7-6 = Start Control
00 = Copper fully stopped
01 = Copper start, execute the list from index 0, and loop to the
start
10 = Copper start, execute the list from last point, and loop to the
start
11 = Copper start, execute the list from index 0, and restart the list
when the raster reaches position (0,0)

e bits 2-0 = Copper instruction memory address (MSB) (0 on reset)

Register (W) $63 (99) = Copper Data 16-bit Write
e bits 7-0 = Byte to write to copper instruction memory

The 16-bit value is written in pairs. The first 8-bits are the MSB and are
destined for an even copper instruction address. The sesond 8-bits are the LSB
and are destined for an odd copper instruction address.

After each write, the copper address is auto-incremented to the next memory
position.

After a write to an odd address, the all 16-bits are written to copper memory
at once.

Register (R/W) $64 (100) = Vertical Line Count Offset (3.01.05)

220 APPENDIX B. REGISTERS

e bits 7-0 = Offset added to the vertical line counter
affects copper, line interrupt and active line count.
Normally the ula’s pixel row 0 aligns with vertical line count 0. With a
non-zero offset, the ula’s pixel row 0 will align with the vertical line offset.
Eg, if the offset is 32 then vertical line 32 will correspond to the first pixel
row in the ula and vertical line 0 will align with the first pixel row of the
tilemap and sprites.

* Since a change in offset takes effect when the ula reaches row 0, the change
can take up to one frame to occur.

Register (R/W) $68 (104) = ULA Control

e bit 7 = Disable ULA output (0 on reset)
e Dbit 6-5 = Color blending control for layering modes 6 & 7 (3.01.01)
— 00 = ULA as blend colour
— 01 = No blending
— 10 = ULA/Tilemap mix result as blend colour
— 11 = Tilemap as blend colour
e Dbit 4 = Cancel entries in 8x5 matrix for extended keys (3.01.04)
e bit 3 = Enable ULAplus (0 on reset)
e bit 2 = Enable ULA half pixel scroll (0 on reset)
may change
e bit 1 = Reserved (must be 0)
e bit 0 = Enable stencil mode (0 on reset)
When ULA and Layer 3 are enabled, if either are transparent, the result
is transparent, otherwise the result is the logical AND of both colours.

Register (R/W) $69 (105) = Display Control 1

e bit 7 = Layer 2 Enable (Port $123B bit 1 alias)
e bit 6 = ULA Shadow display enable (Port $7FFD bit 3 alias)
e Dbits 5-0 = Timex alias (Port $FF alias)

Register (R/W) $6A (106) = Layer 1,0 (LoRes) Control

bits 7-6 = reserved, must be 0

bit 5 = Enable Radistan (16-colour) (0 on reset)

bit 4 = Radistan DFILE switch (xor with bit 0 of port $ff) (0 on reset)
bits 3-0 = Radistsan palette offset (0 on reset)

bits 1-0 = ULAplus palette offset (0 on reset)

Register (R/W) $6B (107) = Layer 3 (Tilemap) Control

e bit 7 = Layer 3 Enable (0 on reset)
e bit 6 = Layer 3 Size control (0 on reset)
— 0 = 40x32
— 1 = 80x32
e bit 5 = Disable Arrtibute Entry (0 on reset)
e bit 4 = palette select (0 on reset)

B.1. ZX SPECTRUM NEXT REGISTERS 221

bit 3 = Enable Text mode (1-bit tilemap) (0 on reset)
bit 2 = Reserved, must be 0

bit 1 = Activate 512 tile mode (0 on reset)

bit 0 = Enable Layer 3 on top of ULA (0 on reset)

Register (R/W) $6C (108) = Default Layer 3 Attribute*

bits 7-4 = Palette Offset ($00 on reset)

bit 3 = X mirror (0 on reset)

bit 2 = Y mirror (0 on reset)

bit 1 = Rotate (0 on reset)

bit 0 = Bit 8 of the tile number (512 tile mode) (0 on reset)
bit 0 = ULA over tilemap (256 tile mode) (0 on reset)

*Active tile attribute if bit 5 of nextreg $6B is set.
Register (R/W) $6E (110) = Layer 3 Tilemap Base Address

e bit 7 = Bank Select (3.01.08)
0 = Bank 5
1 = Bank 7
e bit 6 = Reserved, must be 0
e bits 5-0 = MSB of address of the tilemap in Bank 5 (16k) or 7 (8k) ($2C
on reset)

Soft Reset default $2C - This is because the address is $6C00 so the MSB is
$6C. But the stored value is only the lower 6 bits so it’s an offset into the 16k
Bank 5. To calculate therefore subtract $40 leaving you with $2C.

The value written is an offset into the 16k Bank 5 or the 8k lower half of Bank
7 allowinf the tilemap to be placed at any multiple of 256 bytes.

Register (R/W) $6F (111) = Layer 3 Tile Definitions Base Address

e bit 7 = Select bank (3.01.08)
0 = Bank 5
1 = Bank 7
e bit 6 = Reserved, must be 0
e bits 5-0 = MSB of address of the tile definitions in Bank 5 (16k) or 7 (8k)
(30C on reset)

Soft Reset default $0C - This is because the address is $4C00 so the MSB is
$4C. But the stored value is only the lower 6 bits so it’s an offset into the 16k
Bank 5. To calculate therefore subtract $40 leaving you with $0C.

The value written is an offset into the 16k Bank 5 or the 8k lower half of Bank
7 allowing the tilemap to be placed at any multiple of 256 bytes.

Register (R/W) $70 (112) = Layer 2 Control

e bits 7-6 = Reserved, must be 0
e bits 5-4 = Resolution (00 on soft reset)

222 APPENDIX B. REGISTERS

— 00 = 256 x 192 x 256
— 01 = 320 x 256 x 256
— 10 = 640 x 256 x 16
— 11 = Do not use
e bits 3-0 = Palette offset ($0 on soft reset)

Register (R/W) $71 (113) = Layer 2 X Scroll MSB

e bits 7-1 = Reserved, must be 0
e bits 0 = MSB of X Offset

Register (W) $75 (117) = Sprite Attribute 0 (Auto-incrementing)
See nextreg $35

Register (W) $76 (118) = Sprite Attribute 1 (Auto-incrementing)
See nextreg $36

Register (W) $77 (119) = Sprite Attribute 2 (Auto-incrementing)
See nextreg $37

Register (W) $78 (120) = Sprite Attribute 3 (Auto-incrementing)
See nextreg $38

Register (W) $79 (121) = Sprite Attribute 4 (Auto-incrementing)
See nextreg $39

Register (R/W) $7F (127) = User Register 0
e bits 7-0 = User Register ($FF on hard reset)
Caution NextReg numbers above $7F are inaccessible to the Copper

Register (R/W) $80 (128) = Expansion Bus Enable
Immediate

e bit 7 = Expansion Bus Enable (0 on hard reset)(3.01.07)

e bit 6 = Enable ROMCS ROM replacement from divimme banks 14/15
(experimental, 3.01.03)

e bit 5 = I/O cycle Disable/Ignore IORQULA (0 on hard reset)

e bit 4 = Memory cycle Disable/Ignore ROMCS (0 on hard reset)

After Soft Reset (Copied into bits 7-4)

e bit 3 = Expansion Bus Enable (0 on hard reset)

e bit 2 = Enable ROMCS ROM replacement from divimme banks 14/15
(experimental, 3.01.03)

e bit 1 = I/0O cycle Disable/Ignore IORQULA (0 on hard reset)

e bit 0 = Memory cycle Disable/Ignore ROMCS (0 on hard reset)

Register (R/W) $81 (129) = Expansion Bus Control

e bit 7 = (R) Expansion bus ROMCS asserted
e bit 6 = Allow peripherials to override the ULA on some even port reads
(300-$0E) (Rotoronics Wafadrive)(3.01.07)

B.1.

ZX SPECTRUM NEXT REGISTERS 223

bit 5 = Disable expansion bus NMI debounce (Opus Discovery)(3.01.07)
bit 4 = (W) Propagate max CPU clock at all times (0 on hard reset)
bits 3-2 = Reserved, must be 0

bits 1-0 = Max CPU Speed when Expansion Bus is enabled ($00 on hard
reset, currently fixed at $00)

— 00 = 3.5 MHz
— 01 =7 MHz

— 10 = 14 MHz
— 11 = 28 MHz

Register (R/W) $82 (130) = Internal Port decoding control 1/4

bit 7 = Enable Kempston Port 2 (Port $37) (1 on reset)

bit 6 = Enable Kempston Port 1 (Port $1F) (1 on reset)

bit 5 = Enable DMA (Port $6B) (1 on reset)

bit 4 = Enable 43 Floating Bus (1 on reset)

bit 3 = Enable 43 Paging (Port $1FFD) (1 on reset)

bit 2 = Enable Next Memory Paging (Port $DFFD) (1 on reset)
bit 1 = Enable Paging (Port $7FFD) (1 on reset)

bit 0 = Enable Timex (Port $FF) (1 on reset)

Register (R/W) $83 (131) = Internal Port decoding control 2/4

e bit 7 = Enable Layer 2 (Port $123B) (1 on reset)
e bit 6 = Enable Sprites (Ports $57, $5B, $303B) (1 on reset)

bit 5 = Enable Kempston Mouse (Ports $FADF, $FBDF, $FFDF) (1 on
reset)

bit 4 = Enable UART (Ports $133B, $143B, $153B) (1 on reset)

bit 3 = Enable SPI (Ports $E7, $EB) (1 on reset)

bit 2 = Enable I?C (Ports $103B, $113B) (1 on reset)

bit 1 = Enable Multiface (two variable ports) (1 on reset)

bit 0 = Enable divMMC (Port $E3) (1 on reset)

Register (R/W) $84 (132) = Internal Port decoding control 3/4

bit 7 = Enable SPECdrum Mono DAC (Port $DF) (1 on reset)

bit 6 = Enable Covox/GS Mono DAC (Port $B3) (1 on reset)

bit 5 = Enable Pentagon/ATM DAC (Port $FB) (1 on reset)

bit 4 = Enable Covox Stereo DAC (Ports $0F, $4F) (1 on reset)

bit 3 = Enable Profi/Covox Stereo DAC (Ports $3F, $5F) (1 on reset)
bit 2 = Enable Soundrive DAC Mode 2 (Ports $F1, $F3, $F9, $FB) (1 on
reset)

bit 1 = Enable Soundrive DAC Mode 1 (Ports $0F, $1F, $4F, $5F) (1 on
reset)

bit 0 = Enable AY (Ports $FFFD, $BFFD) (1 on reset)

Register (R/W) $85 (133) = Internal Port decoding control 4/4

bit 7 = Enable configuration of port decoding on soft reset (3.01.01)
bits 6-4 = Reserved

224

APPENDIX B. REGISTERS

bit 3 = Enable Z80 CTC ports $183B, $193B, $1A3B, $1B3B, $1C3B,
$1D3B, $1E3B, and $1F3B

bit 2 = Enable Pentagon 1024 memory port $EFF7

bit 1 = Enable DMA port $0B (3.01.02)

bit 0 = Enable ULAplus (Ports $BF3B, $FF3B) (1 on reset)

Register (R/W) $86 (134) = Expansion Port decoding control 1/4

bit 7 = Enable Kempston Port 2 (Port $37) (1 on reset)

bit 6 = Enable Kempston Port 1 (Port $1F) (1 on reset)

bit 5 = Enable DMA (Port $6B) (1 on reset)

bit 4 = Enable +3 Floating Bus (1 on reset)

bit 3 = Enable +3 Paging (Port $1FFD) (1 on reset)

bit 2 = Enable Next Memory Paging (Port $DFFD) (1 on reset)
bit 1 = Enable Paging (Port $7FFD) (1 on reset)

bit 0 = Enable Timex (Port $FF) (1 on reset)

Register (R/W) $87 (135) = Expansion Port decoding control 2/4

e bit 7 = Enable Layer 2 (Port $123B) (1 on reset)
e bit 6 = Enable Sprites (Ports $57, $5B, $303B) (1 on reset)

bit 5 = Enable Kempston Mouse (Ports $FADF, $FBDF, $FFDF) (1 on
reset)

bit 4 = Enable UART (Ports $133B, $143B, $153B) (1 on reset)

bit 3 = Enable SPI (Ports $E7, $EB) (1 on reset)

bit 2 = Enable 12C (Ports $103B, $113B) (1 on reset)

bit 1 = Enable Multiface (two variable ports) (1 on reset)

bit 0 = Enable divMMC (Port $E3) (1 on reset)

Register (R/W) $88 (136) = Expansion Port decoding control 3/4

bit 7 = Enable SPECdrum Mono DAC (Port $DF) (1 on reset)

bit 6 = Enable Covox/GS Mono DAC (Port $B3) (1 on reset)

bit 5 = Enable Pentagon/ATM DAC (Port $FB) (1 on reset)

bit 4 = Enable Covox Stereo DAC (Ports $0F, $4F) (1 on reset)

bit 3 = Enable Profi/Covox Stereo DAC (Ports $3F, $5F) (1 on reset)
bit 2 = Enable Soundrive DAC Mode 2 (Ports $F1, $F3, $F9, $FB) (1 on
reset)

bit 1 = Enable Soundrive DAC Mode 1 (Ports $0F, $1F, $4F, $5F) (1 on
reset)

bit 0 = Enable AY (Ports $FFFD, $BFFD) (1 on reset)

Register (R/W) $89 (137) = Expansion Port decoding control 4/4

bit 7 = Enable configuration of port decoding on soft reset (3.01.01)

bits 6-4 = Reserved

bit 3 = Enable Z80 CTC ports $183B, $193B, $1A3B, $1B3B, $1C3B,
$1D3B, $1E3B, and $1F3B

bit 2 = Enable Pentagon 1024 memory port $EFF7

bit 1 = Enable DMA port $0B (3.01.02)

B.1. ZX SPECTRUM NEXT REGISTERS 225

e bit 0 = Enable ULAplus (Ports $BF3B, $FF3B) (1 on reset)
The Internal Port Decoding Enables always apply.

When the Expansion Bus is enabled, the Expansion Bus Port Decoding Enables
are logically ANDed with the Internal Enables. A result of 0 for the correspond-
ing bit indicates the internal device is disabled. If the Expansion Bus is enabled,
this allows 1/O cycles for disabled ports to propagate to the Expansion Bus,
otherwise corresponding I/O cycles to the Expansion Bus are filtered.

Register (R/W) $8A (138) = Expansion Bus I/O Propagate Control

bits 7-3 = Reserved, must be 0

bit 4 = Propagate port $FF I/O Cycles (0 on hard reset, 3.01.02)

bit 3 = Propagate port $1FFD I/0 Cycles (0 on hard reset)

bit 2 = Propagate port $DFFD I/0 Cycles (0 on hard reset)

bit 1 = Propagate port $7FFD I/O Cycles (0 on hard reset)

bit 0 = Propagate port $FE I/O Cycles (1 on hard reset, 3.01.03: 0 on
hard reset)

Register (R/W) $8C (140) = Alternate ROM

Immediate

bit 7 = Alt ROM Enable (0 on hard reset)

bit 6 = Alt ROM visible ONLY during writes (0 on hard reset)
bit 5 = Reserved, must be 0

bit 4 = 48k ROM Lock (0 on hard reset)

After Soft Reset (copied into bits 7-4)

bit 3 = Alt ROM Enable (0 on hard reset)

bit 2 = Alt ROM visible ONLY during writes (0 on hard reset)
bit 1 = Reserved, must be 0

bit 0 = 48k ROM Lock (0 on hard reset)

Register (R/W) $8E (142) = Spectrum 128k Memory Mapping (3.01.01)

bit 7 = Bank number bit 3 (port $dffd bit 0)
bit 6-4 = Bank number bits 2-0 (port $7ffd bits 2-0)
bit 3 = Enable change ram page (read as 1)
bit 2 = Paging mode (port $1ffd bit 0)
— 0 = Normal paging mode
— 1 = Special paging mode (lot bit of memory configuration)
Normal Paging Mode
e bits 1-0 = ROM selection (port $1ffd bit 1 and $7ffd bit 4)
Special (all RAM) Paging Mode
e bits 1-0 = RAM configuration selection (port $1ffd bits 2-1)

Writes can affect all ports $7ffd, $dffd, and $1ffd
Writes can always change the ROM /allRAM mapping
Writes immediately change the current MMU mapping as if by port write.

226 APPENDIX B. REGISTERS

Register (R/W) $8F (143) = Memory Mapping Mode (3.01.06)

e bits 7-2 = Reserved, must be zero
e bits 1-0 = Mapping mode applied
— 00 = Standard ZX 128k +3
— 01 = Profi (removed in 3.01.09)
— 10 = Pentagon 512k
11 = Pentagon 1024k (limited to 768k on 1MB machines)

* Standard ZX 128k +3 = principally ports $7FFD, $DFFD, and $1FFD
Pentagon 512k = principally port $7FFD

Pentagon 1024k = principally ports $7FFD and $EFF7

* The mapping modes affect how ports $7FFD, $DFFD, $1FFD, and $EFF7
carry out memory paging, see ports

Register (R/W) $90 (144) = Pi GPIO output enable 1/4

bit 7 = Enable Pin 7 (0 on reset)
bit 6 = Enable Pin 6 (0 on reset)
bit 5 = Enable Pin 5 (0 on reset)
bit 4 = Enable Pin 4 (0 on reset)
)
)

bit 3 = Enable Pin 3 (0 on reset
bit 2 = Enable Pin 2 (0 on reset
bit 1 = Enable Pin 1 (cannot be enabled) (0 on reset)
bit 0 = Enable Pin 0 (cannot be enabled) (0 on reset)

Register (R/W) $91 (145) = Pi GPIO output enable 2/4

bit 7 = Enable Pin 15 (0 on reset)
bit 6 = Enable Pin 14 (0 on reset)
bit 5 = Enable Pin 13 (0 on reset)
bit 4 = Enable Pin 12 (0 on reset)
()

)

NN N N N

t
t

bit 3 = Enable Pin 11 (0 on reset
bit 2 = Enable Pin 10 (0 on reset
bit 1 = Enable Pin 9 (0 on reset)
bit 0 = Enable Pin 8 (0 on reset)

Register (R/W) $92 (146) = Pi GPIO output enable 3/4

e bit 7 = Enable Pin 23 (0 on reset)
e bit 6 = Enable Pin 22 (0 on reset)
e bit 5 = Enable Pin 21 (0 on reset)
e bit 4 = Enable Pin 20 (0 on reset)
e bit 3 = Enable Pin 19 (0 on reset)
e bit 2 = Enable Pin 18 (0 on reset)
e bit 1 = Enable Pin 17 (0 on reset)
e bit 0 = Enable Pin 16 (0 on reset)

Register (R/W) $93 (147) = Pi GPIO output enable 4/4
e bits 7-4 = Reserved

B.1.

ZX SPECTRUM NEXT REGISTERS 227

bit 3 = Enable Pin 27 (0 on reset
bit 2 = Enable Pin 26 (0 on reset
bit 1 = Enable Pin 25 (0 on reset
bit 0 = Enable Pin 24 (0 on reset

)
)
)
)

Register (R/W) $98 (152) = Pi GPIO Pin State 1/4

bit 7 = Pin 7 Data (1 on reset)

(
bit 6 = Pin 6 Data (1 on reset)
bit 5 = Pin 5 Data (1 on reset)
bit 4 = Pin 4 Data (1 on reset)
bit 3 = Pin 3 Data (1 on reset)
bit 2 = Pin 2 Data (1 on reset)
bit 1 = Pin 1 Data (1 on reset)
bit 0 = Pin 0 Data (1 on reset)

Register (R/W) $99 (153) = Pi GPIO Pin State 2/4

bit 7 = Pin 15 Data (1 on reset)
bit 6 = Pin 14 Data (1 on reset)
bit 5 = Pin 13 Data (1 on reset)
bit 4 = Pin 12 Data (1 on reset)
bit 3 = Pin 11 Data (1 on reset)
bit 2 = Pin 10 Data (1 on reset)
bit 1 = Pin 9 Data (1 on reset)
bit 0 = Pin 8 Data (1 on reset)

Register (R/W) $9A (154) = Pi GPIO Pin State 3/4

bit 7 = Pin 23 Data (1 on reset)
bit 6 = Pin 22 Data (1 on reset)
bit 5 = Pin 21 Data (1 on reset)
bit 4 = Pin 20 Data (1 on reset)
bit 3 = Pin 19 Data (1 on reset)
bit 2 = Pin 18 Data (1 on reset)
bit 1 = Pin 17 Data (1 on reset)
bit 0 = Pin 16 Data (1 on reset)

Register (R/W) $9B (155) = Pi GPIO Pin State 4/4

bits 7-4 — Reserved

bit 3 = Pin 27 Data (1 on reset)
bit 2 = Pin 26 Data (1 on reset)
bit 1 = Pin 25 Data (1 on reset)
bit 0 = Pin 24 Data (1 on reset)

Register (R/W) $A0 (160) = Pi Peripheral Enable

bits 7-6 = Reserved, must be 0

e bit 5 = Enable UART on GPIO 14, 15 (0 on reset)*
e bit 4 = Communication Type (0 on reset)

228 APPENDIX B. REGISTERS

— 0 = Rx to GPIO 15, Tx to GPIO 14 (Pi)
— 1 = Rx to GPIO 14, Tx to GPIO 15 (Pi Hats)
e bit 3 = Enable I2C on GPIO 2, 3 (0 on reset)*
e bits 2-1 = Reserved, must be 0
e bit 0 = Enable SPI on GPIO 7, 8, 9, 10, 11 (0 on reset)*

*Overrides GPIO Enables
Register (R/W) $A2 (162) = Pi 12S Audio Control

e bits 7-6 = IS State ($00 on reset)
— 00 = I%S Disabled
— 01 = I2S is mono, source R
— 10 = I*S is mono, source L
— 11 = I%S is stereo
bit 5 = Reserved, must be 0
bit 4 = Audio Flow Direction (0 on reset)
— 0=PCM_DOUT to Pi, PCM_DIN from Pi (Hats)
— 1=PCM_DOUT from Pi, PCM_DIN to Pi (Pi)
bit 3 = Mute left (0 on reset)
bit 2 = Mute right (0 on reset)
bit 1 = Slave mode, Reserved must be 1 (remove in 3.01.05)
bit 0 = Direct 123 audio to EAR on port $FE (0 on reset)

Register (R/W) $A3 (163) = Pi I12S Clock Divide (Master Mode) (removed in
3.01.05)

e bits 7-0 = Clock divide value ($0B on reset)

Divider = 338461 _ 1 or Rate = 205461
Rate Divider+1

Register (R/W) $A8 (168) = ESP WiFi GPIO Output Enable

bits 7-3 = Reserved, must be sero

bit 2 = GPIO2 output enable (fixed at 0, GPIO2 is read-only)
bit 1 = Reserved, must be zero

bit 0 = GPIOO0 output enable (fixed at 0, GPIO2 is read-only)

Register (R/W) $A9 (169) = ESP WiFi GPIO

bits 7-3 = Reserved, must be sero

bit 2 = Read/Write GPIO2 (reset = 1)
bit 1 = Reserved, must be zero

bit 0 = Read/Write GPIOO (reset = 1)

Register (R) $B0 (176) = Extended Keys 0 (3.01.04)

bit 7 = 1 if ; pressed
bit 6 = 1 if pressed

bit 5 = 1 if , pressed
bit 4 = 1 if . pressed

B.1.

ZX SPECTRUM NEXT REGISTERS

bit 3 = 1 if UP pressed

bit 2 = 1 if DOWN pressed
bit 1 = 1 if LEFT pressed
bit 0 = 1 if RIGHT pressed

Register (R) $B1 (177) = Extended Keys 1 (3.01.04)

bit 7 = 1 if DELETE pressed

bit 6 = 1 if EDIT pressed

bit 5 = 1 if BREAK pressed

bit 4 = 1 if INV VIDEO pressed
bit 3 = 1 if TRUE VIDEO pressed
bit 2 = 1 if GRAPH pressed

bit 1 = 1 if CAPS LOCK pressed
bit 0 = 1 if EXTEND pressed

Register (R) $B2 (178) = Extended MD Pad Buttons (3.01.10)

bit 7 = 1 if Right Pad X Pressed

bit 6 = 1 if Right Pad Z Pressed

bit 5 = 1 if Right Pad Y Pressed

bit 4 = 1 if Right Pad START Pressed
bit 3 = 1 if Left Pad X Pressed

bit 2 = 1 if Left Pad Z Pressed

bit 1 = 1 if Left Pad Y Pressed

bit 0 = 1 if Left Pad START Pressed

Register (R/W) $B8 (184) = Divmmc Entry Points 0 (3.01.10)
(383 on reset)

Register (R/W) $B9 (185) = Divmmec Entry Points Valid 0 (3.01.10)

bit 7 = enable automap on address $0038 (instruction fetch)
bit 6 = enable automap on address $0030 (instruction fetch)
bit 5 = enable automap on address $0028 (instruction fetch)
bit 4 = enable automap on address $0020 (instruction fetch)
bit 3 = enable automap on address $0018 (instruction fetch)
bit 2 = enable automap on address $0010 (instruction fetch)
bit 1 = enable automap on address $0008 (instruction fetch)
bit 0 = enable automap on address $0000 (instruction fetch)

(301 on reset)

bit 7 = address $0038
bit 6 = address $0030
bit 5 = address $0028
bit 4 = address $0020
bit 3 = address $0018
bit 2 = address $0010
bit 1 = address $0008
bit 0 = address $0000

229

230 APPENDIX B. REGISTERS

0 = Only when ROM3 is present
1 = Always

Register (R/W) $BA (186) = Divmmmc Entry Points Timing 0 (3.01.10)
(300 on reset)

bit 7 = address $0038

bit 6 = address $0030

bit 5 = address $0028

bit 4 = address $0020

bit 3 = address $0018

bit 2 = address $0010

bit 1 = address $0008

bit 0 = address $0000
0 = Delayed mapping
1 = Instant mapping

Register (R/W) $BB (187) = Divmmec Entry Points 1 (3.01.10)
($CD on reset)

e bit 7 = enable automap on address $3Dxx (instant, ROM3, TRDOS)

e bit 6 = enable automap on address $1FF8-1FFF (delayed)

e bit 5 = enable automap on address $056A (delayed, ROM3, tape traps,
nextzxos)

e bit 4 = enable automap on address $04D7 (delayed, ROM3, tape traps,
nextzxos)

e bit 3 = enable automap on address $0562 (delayed, ROM3, tape traps,
esxdos, divmmc)

e bit 2 = enable automap on address $04C6 (delayed, ROM3, tape traps,
esxdos, divmmc)

e bit 1 = enable automap on address $0066 (instant, button)

e bit 0 = enable automap on address $0066 (delayed, button)

Register (R/W) $C0 (192) = Interrupt Control (3.01.09)
(300 on reset)

e bits 7-5 = Programmable portion of IM2 vector *
e bit 4 = Reserved, must be 0
e bit 3 = Enable stackless NMI response**
e bits 2-1 = Reserved, must be 0
e bit 0 = Maskable interrupt mode
0 - pulse
1-1IM2

* In IM2 mode vector generated is:

e bits 7-5 = nextreg $CO bits 7-5

e bits 4-1 = Interrupt source
0 - line interrupt (highest priority)
1- UART 0 Rx

B.1. ZX SPECTRUM NEXT REGISTERS 231

2 - UART 1 Rx

3-10 - CTC channels 0-7

11 - ULA

12 - UART 0 Tx

13 - UART 1 Tx (lowest priority)
e bit0 =0

* In IM2 mode the expansion bus is the lowest priority interrupter and if no
vector is supplied externally the $FF is generated.

** The return address pushed during an nmi acknowledge cycle will be written
to the appropriate nextreg instead of memory (the stack pointer will be decre-
mented) and the RETN after acknowledge will take its return address from
nextreg instead of memory (the stack pointer will be incremented). If bit 3 = 0
and in other circumstances, RETN functions normally.

Register (R/W) $C2 (194) = NMI Return Address LSB (3.01.09)
(300 on reset)

Register (R/W) $C3 (195) = NMI Return Address MSB (3.01.09)
(300 on reset)

Register (R/W) $C4 (196) = Interrupt Enable 0 (3.01.08)
(881 on reset)

e bit 7 = Expansion bus INT

e bits 6-2 = Reserved must be zero
e bit 1 = Line

e bit 0 = ULA

Register (R/W) $C5 (197) = Interrupt Enable 1 (3.01.08)
(%00 on reset)

bit 7 = ctc channel 7 zc/to
bit 6 = ctc channel 6 zc/to
bit 5 = ctc channel 5 zc/to
bit 4 = ctc channel 4 zc/to
bit 3 = ctc channel 3 zc/to
bit 2 = ctec channel 2 zc¢/to
bit 1 = ctc channel 1 zc/to
bit 0 = ctc channel 0 zc/to

Register (W) $C6 (198) = Interrupt Enable 2 (3.01.08)
(300 on reset)

bit 7 = Reserved, must be 0
bit 6 = UART1 Tx empty

bit 5 = UART1 Rx half full *
bit 4 = UART1 Rx available *
bit 3 = Reserved, must be 0
bit 2 = UARTO0 Tx empty

232 APPENDIX B. REGISTERS

e bit 1 = UARTO Rx half full *
e bit 0 = UARTO Rx available *

* For each UART, Rx half full and Rx available are shared interrupts
Register (W) $C7 (199) = Reserved (3.01.09)

Register (R/W) $C8 (200) = Interrupt Status 0 (3.01.09)
(800 on reset)

e bits 7-2 = Reserved, must be zero
e bit 1 = Line
e bit 0 = ULA

* Set bits indicate the device generated an interrupt in the past * Writes clear
bits where bits are set except in IM2 mode

Register (R/W) $C9 (201) = Interrupt Status 1 (3.01.09)

bit 7 = ctc channel 7 zc/to
bit 6 = ctc channel 6 zc/to
bit 5 = ctc channel 5 zc/to
bit 4 = ctc channel 4 zc/to
bit 3 = ctc channel 3 zc/to
bit 2 = ctc channel 2 zc/to
bit 1 = ctc channel 1 zc/to
bit 0 = ctc channel 0 zc/to

* Set bits indicate the device generated an interrupt in the past * Writes clear
bits where bits are set except in IM2 mode

Register (R/W) $CA (202) = Interrupt Status 2 (3.01.09) ($00 on reset)

bit 7 = Reserved, must be zero
bit 6 = UART1 Tx empty

bit 5 = UART1 Rx almost full *
bit 4 = UART1 Rx available *
bit 3 = Reserved must be zero
bit 2 = UARTO0 Tx empty

bit 1 = UARTO0 Rx almost full *
bit 0 = UARTO0 Rx available *

* For each UART Rx half full and Rx available are shared interrupts ** Set
bits indicate the device generated an interrupt in the past ** Writes clear bits
where bits are set except in IM2 mode

Register (W) $CB (203) = Reserved (3.01.09)
Register (R/W) $CC (204) = DMA Interrupt Enable 0 (3.01.09) ($00 on reset)

e bits 7-2 = Reserved, must be 0
e bit 1 = Line
e bit 0 = ULA

B.1. ZX SPECTRUM NEXT REGISTERS 233

* Set bits indicate the specified interrupt will interrupt a DMA operation when
in IM2 mode

Register (R/W) $CD (205) = DMA Interrupt Enable 1 (3.01.09) ($00 on reset)

bit 7 = CTC channel 7 zc/to
bit 6 = CTC channel 6 zc/to
bit 5 = CTC channel 5 zc/to
bit 4 = CTC channel 4 zc/to
bit 3 = CTC channel 3 zc/to
bit 2 = CTC channel 2 zc/to
bit 1 = CTC channel 1 zc/to
bit 0 = CTC channel 0 zc/to

* Set bits indicate the corresponding interrupt will interrupt a DMA operation
when in IM2 mode

Register (R/W) $CE (206) = DMA Interrupt Enable 2 (3.01.09) ($00 on reset)

bit 7 = Reserved, must be 0
bit 6 = UART1 Tx empty
bit 5 = UART1 Rx half full
bit 4 = UART1 Rx available
bit 3 = Reserved, must be 0
bit 2 = UARTO0 Tx empty
bit 1 = UARTO0 Tx half full
bit 0 = UARTO0 Tx available

* Set bits indicate the corresponding interrupt will interrupt a DMA operation
when in IM2 mode.

Register (W) $CF (207) = Reserved (3.01.09)
Register (R/W) $D8 (216) = I/O Traps (experimental)(3.01.10)

e bits 7-1 = Reserved, must be 0
e bit 0 = Enable FDC traps on ports $2ffd and $3ffd

* Ani/o trap generates a multiface NMI with nextreg $02 indicating which trap
occurred

Traps cannot be triggered by the DMA or while the multiface, dma, or external
NMI is active

Register (R/W) $D9 (217) = I/O Trap Write (experimental)(3.01.10)
e bits 7-0 = The byte written during trapped 1/0
Register (R/W) $DA (218) = I/O Trap Cause (experimental)(3.02.00)

e bits 7-0 = The trap cause
0 = none (zero at same time as nextreg $02 bit 4 is 0)
1 = port $2FFD read
2 = port $3FFD read

234 APPENDIX B. REGISTERS

3 = port $3FFD write

* If nextreg $02 bit 4 indicates an I/O cycle was trapped, this register indicates
the cause

Register (R/W) $F0 (240) = XDEV CMD (issue 4 only)(3.02.00)

e Select mode
Read
—bit7=1
— bits 6-2 = reserved
— bits 1-0 = currently selected device
00 = none
01 = Xilinx DNA
10 = Xilinx XADC
Write
— bit 7 = 1 to enter select mode, 0 to enter selected device mode (no
other bits have effect)
— bit 6 = 1 to change selected device
— bits 5-2 = reserved
— bits 1-0 = selected device
00 = none
01 = Xilinx DNA
10 = Xilinx XADC
e Xilinx DNA Mode
Read
— bits 7-1 = reserved
— bit 0 = dna bit (serial stream shifts left)
the first eight bits read will indicate the length of the following dna
bits
Write
— bit 7 = 1 to enter select mode (write has no other effect)
otherwise causes dna string to reload, ready for fresh read
— bits 6-0 = reserved
e Xilinx XADC Mode (Documented in Xilinx Series 7 UG480)
Read
— bit 7 = reserved
— bit 6 = 1 if XADC is busy with conversion (BUSY)
— bits 5-2 = reserved
— bit 1 = 1 if XADC conversion completed since last read (EOC, read
clears)
— bit 0 = 1 if XADC conversion sequence completed since last read
(EOS, read clears)
Write
— bit 7 = 1 to enter select mode (write has no other effect)
— bit 6 = 1 to reset XADC (RESET)

B.2. AY-3-8912 235

— bits 5-1 = reserved
— bit 0 = 1 to start conversion (CONVST)

* Re-enter select mode at any time by writing to the register with bit 7 set
Select a device to communicate with by writing to the register with bits 6 & 7
set

Exit select mode by writing zero to bit 7; thereafter the particular device is
attached to the nextreg

Register (R/W) $F8 (248) = XADC REG (issue 4 only)(3.02.00) reset = 0
e bit 7 = 1 to write to XADC DRP port, 0 to read from XADC DRP port

*k

e bits 6-0 = XADC DRP register address DADDR

* An XADC register read or write is initiated by writing to this register
There must be at least six 28 MHz cycles after each r/w to this register
* Reads as 0

Register (R/W) $F9 (249) = XADC DO (issue 4 only)(3.02.00)

e bits 7-0 = LSB data connected to XADC DRP data bus D7:0
* DRP reads store result here, DRP writes take value from here
Register (R/W) $FA (250) = XADC D1 (issue 4 only)(3.02.00)

e bits 7-0 = MSB data connected to XADC DRP data bus D15:8
* DRP reads store result here, DRP writes take value from here

Register (W) $FF (255) = Debug LEDs (DE-1, DE-2 am Multicore only)

B.2 AY-3-8912

(R/W) $00 (0) = Channel A fine tune
e bits 7-0 = Channel A frequency bits 7-0
(R/W) $01 (1) = Channel A coarse tune

e bits 7-4 = Reserved
e bits 4-0 = Channel A frequency bits 11-8

(R/W) $02 (0) = Channel B fine tune
e bits 7-0 = Channel A frequency bits 7-0
(R/W) $03 (1) = Channel B coarse tune

e bits 7-4 = Reserved
e bits 4-0 = Channel A frequency bits 11-8

236 APPENDIX B.

(R/W) $04 (0) = Channel C fine tune
e bits 7-0 = Channel A frequency bits 7-0
(R/W) $05 (1) = Channel C coarse tune

e bits 7-4 = Reserved
e bits 4-0 = Channel A frequency bits 11-8

(R/W) $06 (6) = Noise period

e bits 7-5 = Reserved
e bits 4-0 = Noise period to noise generator

(R/W) 807 (7) = Mixer control I/O Enable

Active low (O=enable, 1= disable)
bit 7-6: Reserved

bit 5: Channel C noise enable

bit 4: Channel B noise enable

bit 3: Channel A noise enable

bit 2: Channel C tone enable

bit 1: Channel B tone enable

bit 0: Channel A tone enable

(R/W) $0A (10) = Channel A amplitude

e bits 7-5 = Reserved
e bit 4 = Amplitude mode

— O=fixed amplitude

— 1=use envelope generator (bits 0-3 ignored)
e bits 0-3 = value of fixed amplitude

(R/W) $0B (11) = Channel B amplitude

like channel A amplitude
(R/W) $0C (12) = Channel C amplitude
like channel A amplitude
(R/W) $0D (13) = Envelope period fine
e bits 7-0 = Envelop period LSB
(R/W) $0E (14) = Envelope period coarse
e bits 7-0 = Envelop period MSB
(R/W) $OF (15) = Envelope shape

e bits 7-4 = Reserved

e bit 3 = Continue
— 0=drop to amplitude 0 after 1 cycle
— 1=use ‘Hold’ value

REGISTERS

B.3. ZXDMA

e bit 2 = Attack
— O=generator counts down
— l=generator counts up

e bit 1-0 = Alternate & Hold

— 00=generator resets after each cycle

— 01=hold final value

— 10=generator reverses direction each cycle

— 11=hold initial value

B.3 zxDMA

237

Group Register Function Description Bitmask Notes

WRO Direction Operation and Port A configuration | 0XXXXXAA | AA must NOT be 00
WRI1 Port A configuration 0XXXX100

WR2 Port B configuration 0XXXX000

WR3 Activation 1XXXXX00 It’s best to use WR6
WR5 Ready and Stop configuration 10XXX010

WR6 Command Register IXXXXX11

238 APPENDIX B. REGISTERS

Appendix C

Extended Opcodes to
Mnemonics

C.1 Single Byte Opcodes

Table C.1: $00-$1F

[Op [780 [8080 [Sz [T H Op [780 [8080 [Sz T]
$00 nop nop 1 4 $10 djnz x - 2 13/8
$01 1d bc,xx Ixi b,xx 3 10 $11 1d de,xx Ixi d,xx 3 10
$02 1d (bc),a stax b 1 7 $12 1d (de),a stax d 1 7
$03 inc be inx b 1 6 $13 inc de inx d 1 6
$04 inc b inr b 1 4 $14 inc d inr d 1 4
$05 dec b der b 1 4 $15 dec d der d 1 4
306 1d b,x mvi b,x 2 7 $16 1d d,x mvi d,x 2 7
307 rlca rlc 1 4 $17 rla ral 1 4
$08 ex af,af’ - 1 4 $18 jrx - 2 12
$09 add hl,bc dad b 1 11 $19 add hl,de dad d 1 11
$0A | 1d a,(bc) ldax b 1 7 $1A | 1d a,(de) Idax d 1 7
$0B | dec bc dex b 1 6 $1B | dec de dex d 1 6
$0C | incc icr ¢ 1 4 $1C | ince icr e 1 4
$0D | dec ¢ der ¢ 1 4 $1D | dece der e 1 4
$0E Id ¢,x mvi ¢,x 2 7 $1E 1d e,x mvi e,x 2 7
$OF rrca rrc 1 4 $1F rra rar 1 4

239

240 APPENDIX C. EXTENDED OPCODES TO MNEMONICS

Table C.2: $20-$3F

l Op [780 [8080 [Sz [T H Op [780 [8080 [Sz [T]
$20 jr nz,x — 2 [12/7 $30 jr nc,x - 2 [12/7
$21 1d hl,xx Ixi h,xx 3 10 $31 1d sp,xx Ixi sp,xx 3 10
$22 Id (xx),hl | shld xx 3 16 $32 d (xx),a sta xx 3 13
$23 inc hl inx h 1 6 $33 inc sp inx sp 1 6
$24 inc h inr h 1 4 $34 inc (hl) inr m 1 11
$25 dec h der h 1 4 835 dec (hl) der m 1 11
$26 1d h,x mvi h,x 2 7 $36 1d (hl),x mvi m,x 2 10
$27 daa daa 1 4 $37 scf stc 1 4
$28 jr z,x - 2 | 12/7 $38 jrex - 2 | 12/7
$29 add hl,hl dad h 1 11 $39 add hl,sp dad sp 1 11
$2A 1d hl,(xx) lhld xx 3 16 $3A 1d a,(xx) lda xx 3 13
$2B dec hl dex h 1 6 $3B dec sp dcx sp 1 6
$2C inc 1 inr 1 1 4 $3C inc a inr a 1 4
$2D | decl der 1 1 4 $3D | dec a der a 1 4
$2E | 1d Lx mvi 1,x 2 7 $3E | 1d a,x mvi a,x 2 7
$2F | cpl cma 1 4 $3F | ccf cmc 1 4

Table C.3: $40-$5F
[Op [780 [8080 [Sz [T][Op [7280 [8080 [Sz [T |
$40 1d b,b mov b,b 1 4 $50 1d d,b mov d,b 1 4
$41 1d b,c mov b,c 1 4 $51 1d d,c mov d,c 1 4
$42 1d b,d mov b,d 1 4 $52 1d d,d mov d,d 1 4
$43 1d b,e mov b,e 1 4 $53 1d d,e mov d,e 1 4
$44 1d b,h mov b,h 1 4 $54 1d d,h mov d,h 1 4
$45 1d b,1 mov b,l 1 4 $55 1d d,1 mov d,l 1 4
$46 Id b,(hl) | mov b,m 1 7 $56 1d d,(hl) | mov d,m 1 7
$47 1d b,a mov b,a 1 4 $57 1d d,a mov d,a 1 4
$48 1d ¢,b mov c,b 1 4 $58 1d e,b mov e,b 1 4
$49 1d c,c mov c,c 1 4 $59 1d e,c mov e,c 1 4
$4A | 1d c,d mov c,d 1 4 $5A | 1d ed mov e,d 1 4
$4B 1d c,e mov c,e 1 4 $5B 1d eje mov e,e 1 4
$4C 1d ¢c,h mov c¢,h 1 4 $5C 1d e,h mov e,h 1 4
$4D 1d c,l mov c,l 1 4 $5D 1d e,l mov e,l 1 4
$4E 1d c,(hl) mov ¢,m 1 7 $5E 1d e,(hl) mov e,m 1 7
$4F | 1d c,a mov c,a 1 4 $5F | 1d e,a mov e,a 1 4
Table C.4: $60-$7F
[Op [780 [8080 [Sz [T [Op [780 [8080 [Sz] T]
$60 1d h,b mov h,b 1 4 $70 1d (hl),b | mov m,b 1 4
$61 1d h,c mov h,c 1 4 $71 1d (hl),c mov m,c 1 4
$62 1d h,d mov h,d 1 4 $72 1d (hl),d mov m,d 1 4
$63 1d h,e mov h,e 1 4 $73 1d (hl),e mov m,e 1 4
$64 1d h,h mov h,h 1 4 $74 1d (hl),h | mov m,h 1 4
$65 1d h,1 mov h,l 1 4 375 1d (hl),1 mov m,l 1 4
366 1d h,(hl) | mov h,m 1 7 376 halt halt 1| 4+
$67 1d h,a mov h,a 1 4 $77 1d (hl),a mov m,a 1 7
$68 1d I,b mov 1,b 1 4 $78 1d a,b mov a,b 1 4
$69 1d 1,c mov l,c 1 4 $79 Id a,c mov a,c 1 4
$6A | 1d 1,d mov 1,d 1 4 $7A | 1d a,d mov a,d 1 4
$6B 1d Le mov le 1 4 $7B 1d a,e mov a,e 1 4
$6C 1d Lh mov Lh 1 4 $7C 1d a,h mov a,h 1 4
$6D 1d 1,1 mov 1,1 1 4 $7D 1d a,l mov a,l 1 4
$6E | 1d L,(hl) mov 1,m 1 7 $7E | 1d a,(hl) | mov a,m 1 7
$6F 1d L,a mov la 1 4 $7F Id a,a mov a,a 1 4

C.1. SINGLE BYTE OPCODES 241
Table C.5: $80-$9F
l Op [780 [8080 [Sz [T H Op [780 [8080 [Sz [T]
$80 add a,b add b 1 4 $90 sub b sub b 1 4
$81 add a,c add ¢ 1 4 $91 sub ¢ sub ¢ 1 4
$82 add a,d add d 1 4 $92 sub d sub d 1 4
$83 add a,e add e 1 4 $93 sub e sub e 1 4
$84 add a,h add h 1 4 $94 sub h sub h 1 4
$85 add a,l add 1 1 4 395 sub 1 sub 1 1 4
$86 add a,(hl) add m 1 7 396 sub (hl) sub m 1 7
$87 add a,a add a 1 4 $97 sub a sub a 1 4
$88 adc a,b adc b 1 4 $98 sbc a,b sbb b 1 4
$89 adc a,c adc ¢ 1 4 $99 sbc a,c sbb ¢ 1 4
$8A | adc a,d adc d 1 4 $9A | sbc a,d sbb d 1 4
$8B adc a,e adc e 1 4 $9B sbc a,e sbb e 1 4
$8C adc a,h adc h 1 4 $9C sbc a,h sbb h 1 4
$8D adc a,l adc 1 1 4 $9D sbc a,l sbb 1 1 4
$8E | adc a,(hl) adc m 1 7 $9E | sbc a,(hl) | sbb m 1 7
$8F adc a,a adc a 1 4 39F sbc a,a sbb a 1 4
Table C.6: $A0-$BF
l Op [780 [8080 [Sz [T H Op [780 [8080 [Sz [T]
$A0 and b ana b 1 4 $B0 or b ora b 1 4
$A1 and ¢ ana ¢ 1 4 $B1 or ¢ ora ¢ 1 4
$A2 and d ana d 1 4 $B2 or d ora d 1 4
$A3 and e ana e 1 4 $B3 or e ora e 1 4
$A4 and h ana h 1 4 $B4 or h ora h 1 4
$A5 and 1 ana | 1 4 $B5 or 1 ora 1 1 4
$A6 and (hl) | anam 1 7 $B6 or (hl) ora m 1 7
SAT and a ana a 1 4 $B7 or a ora a 1 4
$A8 xor b xra b 1 4 $B8 cp b cmp b 1 4
$A9 XOr ¢ xra ¢ 1 4 $B9 cpc cmp ¢ 1 4
SAA xor d xra d 1 4 $BA cp d cmp d 1 4
$AB Xor e Xra e 1 4 $BB cp e cmp e 1 4
$AC xor h xra h 1 4 $BC cp h cmp h 1 4
$AD | xorl xra 1 1 4 $BD | cpl cmp 1 1 4
$AE | xor (hl) Xra m 1 7 $BE cp (hl) | cmp m 1 7
$AF | xor a xra a 1 4 $BF | cp a cmp a 1 4
Table C.7: $C0-$DF
[Op [780 [8080 [Sz]| T [Op [780 [8080 [Sz | T]
$Co ret nz rnz 1 11/5 $DO ret nc rnc 1 11/5
$C1 pop bc pop b 1 10 $D1 pop de pop d 1 10
$C2 jp nz,xx jnz xx 3 10 $D2 jp nc,xx jnc xx 3 10
$C3 jp xx jmp xx 3 10 $D3 out (x),a out x 2 11
3C4 call nz,xx | cnz xx 3 | 17/10 $D4 call nc,xx | cnc xx 3 | 17/10
$C5 push bc push b 1 11 $D5 push de push d 1 11
$C6 add a,x adi x 2 7 $D6 sub x sui x 2 7
$C7 rst 00h rst O 1 11 $D7 rst 10h rst 2 1 11
$C8 ret z rz 1 11/5 $D8 ret ¢ re 1 11/5
$C9 ret ret 1 10 $D9 exx - 1 4
$CA | jp z,xx jz xx 3 10 $DA | jp c,xx jc xx 3 10
$CB | xxBITxx - +1 - $DB | in a,(x) in x 2 11
$CC call z,xx cz XX 3 17/10 $DC call ¢,xx cc XX 3 17/11
$CD call xx call xx 3 17 $DD xxIXxx — +1 —
$CE | adc a,x aci x 2 7 $DE | sbc a,x sbi x 2 7
$CF rst 08h rst 1 1 11 $DF rst 18h rst 3 1 11

242 APPENDIX C. EXTENDED OPCODES TO MNEMONICS

Table C.8: $EO-$FF

l Op [780 [8080 [Sz [T H Op [780 [8080 [Sz [T]
$EO0 ret po rpo 1 11/5 $FO ret p rp 1 11/5
$E1 pop hl pop h 1 10 $F1 pop af pOp psw 1 10
$E2 jp po,xx jpo xx 3 10 $F2 jp p,xx jp xx 3 10
SE3 ex (sp),hl | xthl 1 19 $F3 di di 1 4
$E4 call po,xx | cpo xx 3 17/10 $F4 call p,xx cp XX 3 | 17/10
3E5 push hl push h 1 11 $F5 push af push psw 1 11
3E6 and x ani x 2 7 $F6 or x ori x 2 7
$SE7 rst 20h rst 4 1 11 $F7 rst 30h rst 6 1 11
SES8 ret pe rpe 1 11/5 $F8 ret m rm 1 11/5
$E9 jp (hl) pchl 1 4 $F9 1d sp,hl sphl 1 [§
$EA | jp pe,xx jpe xx 3 10 $FA | jp m,xx jm xx 3 10
$EB ex de,hl xchg 1 4 $FB ei ei 1 4
$EC call pe,xx cpe 3 17/10 $FC call m,xx | cm xx 3 17/10
$ED xx80xx - +1 - $FD xxIYxx - +1 -
$EE | xor x xri x 2 7 $FE | cp x cpi x 2 7
SEF rst 28h rst 5 1 11 SFF rst 38h rst 7 1 11

C.2. $CBXX BIT OPERATIONS

C.2 $CBxx Bit Operations

Table C.9: $CB00-$CB1F

[Op Mnemonic [Sz T H Op Mnemonic [Sz T
$CB00 rlc b 2 8 $CB10 rl b 2 8
$CBO1 rlc ¢ 2 8 $CB11 rl ¢ 2 8
$CB02 rle d 2 8 $CB12 rl d 2 8
$CBO03 rlc e 2 8 $CB13 rl e 2 8
$CB04 rlc h 2 8 $CB14 rl h 2 8
$CBO05 rlc 1 2 8 $CB15 rl 1 2 8
$CB06 rlc (hl) 2 | 15 $CB16 rl (hl) 2 | 15
$CBO7T rlc a 2 8 $CB17 rl a 2 8
$CBO08 rrc b 2 8 $CB18 rr b 2 8
$CB09 rre ¢ 2 8 $CB19 T c 2 8
$CBOA rre d 2 8 $CB1A rr d 2 8
$CBOB rrc e 2 8 $CB1B T e 2 8
$CB0OC rrc h 2 8 $CB1C rr h 2 8
$CBOD rrc | 2 8 $CB1D rrl 2 8
$CBOE | rrc (hl) 2 | 15 $CBI1E | rr (hl) 2 | 15
$CBOF rrc a 2 8 $CB1F T a 2 8

Table C.10: $CB20-$CB3F

[Op Mnemonic [Sz [T [Op [Mnemonic | Sz T
$CB20 sla b 2 8 $CB30 sll b 2 8
$CB21 sla ¢ 2 8 $CB31 sll ¢ 2 8
$CB22 sla d 2 8 $CB32 sll d 2 8
$CB23 sla e 2 8 $CB33 sll e 2 8
$CB24 sla h 2 8 $CB34 sll h 2 8
$CB25 sla 1 2 8 $CB35 sl 1 2 8
$CB26 | sla (hl) 2 | 15 || $CB36 | sl (hl) 2 | 15
$CB27 sla a 2 8 $CB37 sll a 2 8
$CB28 sra b 2 8 $CB38 srl b 2 8
$CB29 sra ¢ 2 8 $CB39 srl ¢ 2 8
$CB2A sra d 2 8 $CB3A srl d 2 8
$CB2B sra e 2 8 $CB3B srl e 2 8
$CB2C sra h 2 8 $CB3C srl h 2 8
$CB2D sra 1 2 8 $CB3D srl 1 2 8
$CB2E | sra (hl) 2| 15 $CB3E | srl (hl) 2| 15
$CB2F sra a 2 8 $CB3F srl a 2 8

243

244 APPENDIX C. EXTENDED OPCODES TO MNEMONICS

Table C.11: $CB40-$CB5F

[Op [Mnemonic | Sz [T][Op [Mnemonic [Sz | T |
$CB40 bit 0,b 2 8 $CB50 bit 2,b 2 8
$CB41 bit 0,c 2 8 $CB51 bit 2,c 2 8
$CB42 bit 0,d 2 8 $CB52 bit 2,d 2 8
$CB43 bit 0,e 2 8 $CB53 bit 2,e 2 8
$CB44 bit 0,h 2 8 $CB54 bit 2,h 2 8
$CB45 bit 0,1 2 8 $CB55 bit 2,1 2 8
$CB46 | bit 0,(hl) 2 | 12 || $CB56 | bit 2,(hl) 2 | 12
$CB47 bit 0,a 2 8 $CB57T bit 2,a 2 8
$CB48 bit 1,b 2 8 $CB58 bit 3,b 2 8
$CB49 bit 1,c 2 8 $CB59 bit 3,c 2 8
$CB4A bit 1,d 2 8 $CB5A bit 3,d 2 8
$CB4B bit 1,e 2 8 $CB5B bit 3,e 2 8
$CB4AC | bit 1,h 2| 8 || $cB5C | bit 3,h 2| 8
$CB4D bit 1,1 2 8 $CB5D bit 3,1 2 8
$CB4E | bit 1,(hl) 2 | 12 $CB5E | bit 3,(hl) 2 | 12
$CB4F bit 1,a 2 8 $CB5F bit 3,a 2 8

Table C.12: $CB60-$CB7F

[Op [Mnemonic [Sz [T][Op [Mnemonic [Sz | T |
$CB60 bit 4,b 2 8 $CB70 bit 6,b 2 8
$CB61 bit 4,c 2 8 $CB71 bit 6,c 2 8
$CB62 bit 4,d 2 8 $CB72 bit 6,d 2 8
$CB63 | bit 4,e 2| 8 || $CB73 | bit 6,e 2| 8
$CB64 bit 4,h 2 8 $CB74 | bit 6,h 2 8
$CB65 bit 4,1 2 8 $CB75 bit 6,1 2 8
$CB66 | bit 4,(hl) 2 | 12 || $CB76 | bit 6,(hl) 2 | 12
$CB67 bit 4,a 2 8 $CB77 bit 6,a 2 8
$CB68 | bit 5,b 2| 8 || $cB78 | bit 7,b 2| 8
$CB69 bit 5,c 2 8 $CB79 bit 7,c 2 8
$CB6A bit 5,d 2 8 $CB7A bit 7,d 2 8
$CB6B bit 5,e 2 8 $CB7B bit 7,e 2 8
$CB6C bit 5,h 2 8 $CB7C bit 7,h 2 8
$CB6D | bit 5,1 2 8 $CB7D | bit 7,1 2 8
$CB6E | bit 5,(hl) 2 | 12 $CB7E | bit 7,(hl) 2 | 12
$CB6F bit 5,a 2 8 $CB7F bit 7,a 2 8

Table C.13: $CB80-$CBIF

[Op [Mnemonic [Sz [T H Op [Mnemonic [Sz [T]
$CB80 res 0,b 2 8 $CB90 res 2,b 2 8
$CB81 res 0,c 2 8 $CB91 res 2,c 2 8
$CB82 res 0,d 2 8 $CB92 res 2,d 2 8
$CB83 res O,e 2 8 $CB93 res 2,e 2 8
$CB84 res 0,h 2 8 $CBY4 res 2,h 2 8
$CB85 res 0,1 2 8 $CB95 res 2,1 2 8
$CB86 res 0,(hl) 2 | 15 $CB96 res 2,(hl) 2 | 15
$CB87 res 0,a 2 8 $CB97 res 2,a 2 8
$CB88 res 1,b 2 8 $CB98 res 3,b 2 8
$CB89 res 1,c 2 8 $CB99 res 3,c 2 8
$CB8A res 1,d 2 8 $CB9A res 3,d 2 8
$CB8B res 1,e 2 8 $CB9B res 3,e 2 8
$CB8C res 1,h 2 8 $CB9C res 3,h 2 8
$CB8D | res 1,1 2 8 $CBID | res 3,1 2 8
$CB8E | res 1,(hl) 2 | 15 $CBY9E | res 3,(hl) 2 | 15
$CB8F | res l,a 2 8 $CBIOF | res 3,a 2 8

C.2. $CBXX BIT OPERATIONS

Table C.14: $CBA0-$CBBF

[Op [Mnemonic [Sz [T][Op [Mnemonic [Sz [T |
$CBAO res 4,b 2 8 $CBBO0 res 6,b 2 8
$CBA1 res 4,c 2 8 $CBB1 res 6,c 2 8
$CBA2 res 4,d 2 8 $CBB2 res 6,d 2 8
$CBA3 res 4,e 2 8 $CBB3 res 6,e 2 8
$CBA4 res 4,h 2 8 $CBB4 res 6,h 2 8
$CBA5 res 4,1 2 8 $CBB5 res 6,1 2 8
$CBA6 res 4,(hl) 2| 15 $CBB6 res 6,(hl) 2| 15
$CBA7 res 4,a 2 8 $CBB7 res 6,a 2 8
$CBAS8 res 5,b 2 8 $CBBS res 7,b 2 8
$CBA9 res 5,c 2 8 $CBB9 res 7,c 2 8
$CBAA | res5,d 2 8 $CBBA | res 7,d 2 8
$CBAB res 5,e 2 8 $CBBB res 7,e 2 8
$CBAC res 5,h 2 8 $CBBC res 7,h 2 8
$CBAD res 5,1 2 8 $CBBD res 7,1 2 8
$CBAE | res 5,(hl) 2 | 15 $CBBE | res 7,(hl) 2 | 15
$CBAF | res 5,a 2 8 $CBBF | res 7,a 2 8

Table C.15: $CBC0-$CBDF

[Op [Mnemonic | Sz | T][Op [Mnemonic [Sz [T |
$CBCO set 0,b 2 8 $CBDO set 2,b 2 8
$CBC1 set 0,c 2 8 $CBD1 set 2,c 2 8
$OBC2 | set 0,d 2 | 8| $CBD2 | set 2,d 2| 8
$CBC3 set 0,e 2 8 $CBD3 set 2,e 2 8
$CBC4 set 0,h 2 8 $CBD4 set 2,h 2 8
$CBC5 set 0,1 2 8 $CBD5 set 2,1 2 8
$CBC6 set 0,(hl) 2 15 $CBD6 set 2,(hl) 2 15
$CBC7 set 0,a 2 8 $CBD7 set 2,a 2 8
$CBCS8 set 1,b 2 8 $CBDS8 set 3,b 2 8
$CBC9 set 1,c 2 8 $CBD9 set 3,c 2 8
$CBCA set 1,d 2 8 $CBDA set 3,d 2 8
$CBCB set 1,e 2 8 $CBDB set 3,e 2 8
$CBCC set 1,h 2 8 $CBDC set 3,h 2 8
$CBCD set 1,1 2 8 $CBDD set 3,1 2 8
$CBCE | set 1,(hl) 2 | 15 $CBDE | set 3,(hl) 2 | 15
$CBCF | set l,a 2 8 $CBDF | set 3,a 2 8

Table C.16: $CBE0-$CBFF

[Op [Mnemonic [Sz [T H Op [Mnemonic [Sz [T]
$CBEO set 4,b 2 8 $CBFO set 6,b 2 8
$CBE1 set 4,c 2 8 $CBF1 set 6,c 2 8
$CBE2 set 4,d 2 8 $CBF2 set 6,d 2 8
$CBE3 set 4,e 2 8 $CBF3 set 6,e 2 8
$CBE4 set 4,h 2 8 $CBF4 set 6,h 2 8
$CBE5 set 4,1 2 8 $CBF5 set 6,1 2 8
$CBE6 | set 4,(hl) 2 | 15 || $CBF6 | set 6,(hl) 2 | 15
$CBET set 4,a 2 8 $CBF7 set 6,a 2 8
$CBE8 | set 5,b 2 8 $CBF8 | set 7,b 2 8
$CBE9 set 5,c 2 8 $CBF9 set 7,c 2 8
$CBEA set 5,d 2 8 $CBFA set 7,d 2 8
$CBEB set 5,e 2 8 $CBFB set 7,e 2 8
$CBEC set 5,h 2 8 $CBFC set 7,h 2 8
$CBED set 5,1 2 8 $CBFD set 7,1 2 8
$CBEE | set 5,(hl) 2 | 15 $CBFE | set 7,(hl) 2 | 15
$CBEF set 5,a 2 8 $CBFF set 7,a 2 8

245

246 APPENDIX C. EXTENDED OPCODES TO MNEMONICS

C.3 $DDxx IX

Table C.17: $DD00-$DD5E
[Op [Mnemonic [Sz [T H Op [Mnemonic [
$DD09 add ix,bc 15 $DD35 dec (ix+x)
$DD19 add ix,de 15 $DD36 Id (ix+x),x
$DD21 1d ix,xx 14 $DD39 add ix,sp
$DD22 1d (xx),ix 20 $DD44 Id b,ixh
$DD23 inc ix 10 $DD45 1d b,ixl
$DD24 inc ixh 8 $DD46 1d b, (ix+x)
$DD25 dec ixh 8 $DD4C 1d c,ixh
$DD26 1d ixh,x $DD4D 1d c,ixl
$DD29 add ix,ix 15 $DD4E 1d c,(ix+x)
$DD2A 1d ix,(xx) 20 $DD54 1d d,ixh
$DD2B dec ix 10 $DD55 1d d,ixl
$DD2C | inc ixl 8 $DD56 1d d,(ix+x)
$DD2D | dec ixl 8 $DD5C | 1d e,ixh
$DD2E 1d ixl,x 11 $DD5D 1d e,ixl
$DD34 | inc (ix+x) 23 || $DD5E | 1d e,(ix+x)

10p]
N
)

WHENNNENWNNNE NN
=
=
WNNWNNWNNNNNNOW
o]

Table C.18: $DD60-$CBSE

[Op [Mnemonic [Sz [T H Op [Mnemonic [Sz [T]
$DD60 1d ixh,b 2 8 $DD70 1d (ix+x),b 3 | 19
$DD61 1d ixh,c 2 8 $DD71 Id (ix+x),c 3| 19
$DD62 1d ixh,d 2 8 $DD72 1d (ix+x),d 3 | 19
$DD63 1d ixh,e 2 8 $DD73 1d (ix+x),e 3| 19
$DD64 1d ixh,ixh 2 8 $DD74 1d (ix+x),h 3 | 19
$DD65 1d h,(ix+x) 3| 19 $DD75 1d (ix+x),1 3 | 19
$DD65 1d ixh,ix1 2 8 $DD77 1d (ix+x),a 3| 19
$DD67 Id ixh,a 2 8 $DD7C | 1d a,ixh 2 8
$DD68 1d ixl,b 2 8 $DD7D | 1d a,ix] 2 8
$DD69 1d ixl,c 2 8 $DD7E 1d a,(ix+x) 3| 19
$DD6A | 1d ixl,d 2 8 $DD84 add a,ixh 2 8
$DD6B 1d ixl,e 2 8 $DD85 add a,ixl 2 8
$DD6C | 1d ixl,ixh 2 2 $DD86 add a,(ix+x) 3| 19
$DD6D | 1d ixl,ixl 2 2 $DD8C adc a,ixh 2 8
$DD6E | 1d 1,(ix+x) 3| 19 $DD8D | adc a,ixl 2 8
$DD6F 1d ixl,a 2 8 $DDSE adc a,(ix+x) 3 | 19

C.4. $EDXX BLOCK/PORT

Table C.19: $DD90-$DDFF

247

[Op [Mnemonic [Sz [T [[Op [Mnemonic | Sz [T |
$DDY4 sub ixh 2 8 $DDB4 or ixh 2 8
$DD95 sub ixl 2 8 $DDB5 or ixl 2 8
$DD96 sub (ix+x) 3 19 $DDB6 or (ix+x) 3| 19
$DD9C sbc a,ixh 2 8 $DDBC cp ixh 2 8
$DDID sbc a,ixl 2 8 $DDBD | cp ixl 2 8
$DDIE sbc a,(ix+x) 3 1 $DDBE | cp (ix+x) 2 | 19
$DDA4 and ixh 2 8 $DDCB xBIT+IXx +1 -
$DDAS5 and ixl 2 8 $DDE1 pop ix 2 14
$DDA6 and (ix+x) 3119 $DDE3 ex (sp),ix 2 | 23
$DDAC | xor ixh 2 8 $DDE5 push ix 2 15
$DDAD | xor ixl 2 8 $DDE9 jp (ix) 3 8
$DDAE | xor (ix+x) 3| 19 || SDDF9 | 1d sp,ix 2 | 10

C.4 S$EDxx Block/Port

Table C.20: SED00-SEDAF
[Op [Mnemonic [Sz [T [Op [Mnemonic [Sz [T |

$ED23 swapinb * 2 8 $ED40 in b,(c) 2 | 12
$ED24 mirror a * 2 8 $ED41 out (c¢),b 2 | 12
SED27 test x * 3| 11 $ED42 sbc hl,bc 2 15
$ED28 bsla de,b * 2 8 $ED43 1d (xx),bc 4 | 20
$ED29 bsra de,b * 2 8 $ED44 neg 2 8
$ED2A | bsrl de,b * 2 8 $ED45 retn 2 14
$ED2B | bsrf de,b * 2 8 $ED46 im 0 2 8
$ED2C | brlc de,b * 2 8 $ED47 1d i,a 2 9
$ED30 mul d,e * 2 8 $ED48 in ¢,(c) 2 | 12
$ED31 add hl,a * 2 8 $ED49 out (c),c 2 | 12
$ED32 add de,a * 2 8 SED4A adc hl,bc 2 15
$ED33 | add bc,a * 2| 8| SED4B | ld be,(xx) | 4 | 20
$ED34 add hl,xx * 4 16 $ED4D reti 2 14
$ED35 add de,xx * 4 16 SED4F Id r,a 2 9
$ED36 add bc,xx * 4 16

* ZX Spectrum Next extension

248 APPENDIX C. EXTENDED OPCODES TO MNEMONICS

Table C.21: $ED50-$EDSF
[Op [Mnemonic | Sz [T][Op [Mnemonic [Sz [T |
$ED50 | in d,(c) 12 $ED67 | rrd 2 [18
$ED51 out (c),d 12 $ED68 in 1,(c)
$ED52 sbc hl,de 15 $SED69 out (c),l
$ED53 Id (xx),de 20 $ED6A | adc hlhl
$ED56 im 1 8 $ED6B 1d hl,(xx)
$ED57 1d a,i 9 SED6F rld
$ED58 in e,(c) 12 $ED70 in f,(c)
$ED59 out (c),e 12 SEDT71 out (c),f
$SED5A adc hl,de SED72 sbc hl,sp
$ED5B | 1d de,(xx) 20 $ED73 1d (xx),sp
$ED5E | im 2 8 $ED78 in a,(c)
$ED5SF | Id a,r 9 $ED79 out (c),a
$ED60 in h,(c) 12 $ED7A | adc hl,sp
$ED61 out (c),h 12 $ED7B | 1d sp,(xx)
$ED62 sbc hl,hl 15 $ED8A | push xx
$ED63 | 1d (xx),hl

NN N NN EDNDDNDNDNN NN N
—
928
RN NN R NNNN NN N
=
ot

Table C.22: $ED90-$EDFF
[Op [Mnemonic [Sz [T H Op [Mnemonic [Sz [T]

$ED90 outinb * 2 16 SEDAA | ind 2 16
$EDI91 nextreg r,v * 4 | 20 $EDAB | outd 2 16
$ED92 nextreg r,a * 3 17 $EDAC lddx * 2 16
$ED93 pixeldn * 2 8 $EDBO Idir 2 | 21/16
$ED94 pixelad * 2 8 $EDB1 cpir 2 | 21/16
$ED95 setae * 2 8 $EDB2 inir 2 | 21/16
$ED9S | jp (c) * 2| 13 || $EDB3 | otir 2 | 21/16
$EDAO 1di 2 16 $EDB4 Idirx * 2 21/16
$EDA1 | cpi 2 16 $EDB7 ldpirx * 2 | 21/16
$EDA2 ini 2 16 $EDBS8 1ddr 2 21/16
$EDA3 outi 2 16 $EDB9 cpdr 2 21/16
$EDA4 ldix * 2 16 $SEDBA indr 2 21/16
SEDA5 | ldws * 2 | 14 $EDBB | otdr 2 | 12/16
$EDAS 1dd 2 16 $SEDBC Iddrx * 2 21/16
$EDA9 | cpd 2 16

* ZX Spectrum Next extension

C.5 S$FDxx IY

C.5. $FDXXIY

Table C.23: $FD00-$FD5F

[Op [Mnemonic [Sz [T H Op [Mnemonic [Sz [T]
$FDO09 add iy,bc 2 | 15 $FD35 dec (iy+x) 3 | 23
$FD19 add iy,de 2 | 15 $FD36 1d (iy+x),x 5| 19
$FD21 | 1d iy,xx 4 | 14 || $FD39 | add iy,sp 2 | 15
$FD22 | 1d (xx),iy 4 | 20 || $FD44 | 1d b,iyh 2| 8
$FD23 inc iy 2 10 $FD45 1d b,iyl 2 8
$FD24 inc iyh 2 8 $FD46 1d b,(iy+x) 2 19
$FD25 dec iyh 2 8 $FD4C | 1d c,iyh 2 8
$FD26 1d iyh,x 3 11 $FD4D 1d c,iyl 2 8
$FD29 | add iy,iy 2 | 15 || $FD4E | ld c,(iytx) | 3 | 19
$FD2A 1d iy, (xx) 4 20 $FD54 1d d,iyh 2 8
$FD2B dec iy 2 10 $FD55 1d d,iyl 2 8
$FD2C | inc iyl 2| 8 || $FD56 | 1dd,(iyix) | 3 | 19
$FD2D | dec iyl 2 | 8 || $FD5C | 1d e,iyh 2| 8
$FD2E | 1d iyl,x 4 | 11 || $FD5D | 1d e,iyl 2| 8
$FD34 | inc (iy+x) | 3 | 23 || $FDSE | Id e,(iy+x) | 3 | 19

Table C.24: $FD60-$FDSF
[Op [Mnemonic [Sz [T [Op [Mnemonic Sz T |

SFDG0 | 1d iyh,b 21 8 $SFD70 | 1d (iy x),b 31 19

$FD61 | 1d iyh,c 2| 8 || $FD71 | 1d (iy+x).c 3| 19

$FD62 | 1d iyh.d 2| 8 || $FD72 | 1d (iy+x),d 3| 19

$FD63 1d iyh,e 2 8 $FD73 1d (iy+x),e 3 19

$FD64 | 1d iyh,iyh 2| 8| $FD74 | 1d (iy+x).h 3| 19

$FD65 | 1d h,(iy+x) | 3 | 19 || $FD75 | 1d (iy+x),l 3| 19

$FD65 | 1d iyh,iyl 2 | 8 || $FD77 | 1d (iy+x).a 3| 19

$FD67 | 1d iyh,a 2| 8 || $FD7C | 1d a,iyh 2| 8

$FD68 1d iyl,b 2 8 $FD7D 1d a,iyl 2 8

$FD69 1d iyl,c 2 8 $FD7E 1d a,(iy+x) 3 19

$FD6A | 1d iyl,d 2 8 $FD84 add a,iyh 2 8

$FD6B | 1d iyl,e 2 | 8 || SFD85 | add a,iyl 2| 8

$FD6C 1d iyl,iyh 2 2 $FD86 add a,(iy+x) 3 19

$FD6D 1d iyl,iyl 2 2 $FD8C adc a,iyh 2 8

$FD6E | 1d 1,(iy+x) 3119 $FD8D | adc a,iyl 2 8

$FD6F | 1d iyl,a 2 8 $FD8E | adc a,(iy+x) 3| 19

Table C.25: $FD90-$FDFF
[Op [Mnemonic [Sz [T H Op [Mnemonic [Sz T]

$FD94 sub iyh 2 8 $FDB4 or iyh 2 8

$FD95 sub iyl 2 8 $FDB5 or iyl 2 8

$FD96 sub (iy+x) 31 19 $FDB6 or (iy+x) 3| 19

$FD9C sbc a,iyh 2 8 $FDBC | cp iyh 2 8

$FDID | she a,iyl 2| 8| $FDBD | cp iyl 2| 8

$FDI9E sbc a,(iy+x) 3 1 $FDBE | cp (iy+x) 2 | 19

$FDA4 and iyh 2 8 $FDCB xBIT+IYx +1

$FDA5S and iyl 2 8 $FDE1 pop iy 2 | 14

3FDAG6 and (iy+x) 31 19 $FDE3 ex (sp),iy 2 | 23

$SFDAC xor iyh 2 8 $FDE5 push iy 2 15

$FDAD | xor iyl 2 8 $FDE9 | jp (iy) 3 8

$FDAE | xor (iy+x) 3] 19 $FDF9 1d sp,iy 2 | 10

249

250 APPENDIX C. EXTENDED OPCODES TO MNEMONICS

C.6 $DDCBxx IX Bit Operations

Table C.26: $DDCB00-$DDCBFF
[Op [Mnemonic [Sz [T H Op [Mnemonic [Sz [T]
$DDCBO06 rle (ix+x) 4 | 23 $DDCBOE rrc (ix+x) 4 | 23
$DDCB16 rl (ix+x) 4 | 23 $DDCBILE rr (ix+x) 4 | 23
$DDCB26 sla (ix-+x) 4 | 23 $DDCB2E sra (ix-+x) 4 | 23
$DDCB36 | sl (ix-+x) 4 | 23 || SDDCB3E | sil (ix-+x) 4| 23
$DDCB46 | bit 0,(ixtx) | 4 | 20 || $DDCB4E | bit 1,(ixix) | 4 | 20
$DDCB56 | bit 2,(ixtx) | 4 | 20 || SDDCBSE | bit 3,(ixtx) | 4 | 20
$DDCB66 | bit 4,(ix+x) | 4 | 20 || $DDCB6E | bit 5,(ix+x) | 4 | 20
$DDCBT76 bit 6,(ix+x) 4 | 20 $DDCBTE bit 7,(ix+x) 4 | 20
$DDCB86 res 0,(ix+x) 4 | 23 $DDCBSE res 1,(ix+x) 4 | 23
$DDCBY6 res 2,(ix+x) 4 | 23 $DDCBYE res 3,(ix+x) 4 | 23
$DDCBAG6 | res 4,(ix+x) 4 | 23 $DDCBAE | res 5,(ix+x) 4 | 23
$DDCBB6 | res 6,(ix+x) 4 | 23 $DDCBBE | res 7,(ix+x) 4 | 23
$DDCBC6 | set 0,(ix+x) 4 | 23 $DDCBCE | set 1,(ix+x) 4 | 23
$DDCBD6 | set 2,(ix+x) | 4 | 23 || $DDCBDE | set 3,(ix+x) | 4 | 23
$DDCBE6 | set 4,(ix+x) 4 | 23 $DDCBEE | set 5,(ix+x) 4 | 23
$DDCBF6 | set 6,(ix+x) 4 | 23 $DDCBFE | set 7,(ix+x) 4 | 23
C.7 $FDCBxx IY Bit Operations
Table C.27: $FDCB00-$FDCBFF
[Op [Mnemonic [Sz [T [Op [Mnemonic [Sz T |
$SFDCB06 rlc (iy+x) 4 23 SFDCBOE rrc (iy+x) 4 | 23
$FDCB16 | rl (iy+x) 4 | 23 || $FDCBIE | 1r (iy-+x) 4| 23
$FDCB26 sla (iy+x) 4 | 23 $SFDCB2E sra (iy+x) 4 | 23
$FDCB36 sll (iy+x) 4 | 23 $SFDCB3E srl (iy+x) 4 | 23
$FDCB46 | bit 0,(iy+x) | 4 | 20 || $FDCB4E | bit 1,(iy+x) | 4 | 20
$FDCB56 | bit 2,(iy+x) | 4 | 20 || $FDCBSE | bit 3,(iy+x) | 4 | 20
$FDCB66 | bit 4,(iy1x) | 4 | 20 || $FDCB6E | bit 5,(iy1x) | 4 | 20
$FDCB76 | bit 6,(iy+x) | 4 | 20 || $FDCB7E | bit 7,(iy+x) | 4 | 20
$FDCB86 res 0,(iy+x) 4 | 23 $SFDCBSE res 1,(iy+x) 4 | 23
$FDCB96 res 2,(iy+x) 4 | 23 $SFDCB9E res 3,(iy+x) 4 | 23
$FDCBAG6 | res 4,(iy+x) 4 | 23 $FDCBAE | res 5,(iy+x) 4 | 23
$FDCBB6 | res 6,(iy+x) 4 | 23 $FDCBBE | res 7,(iy+x) 4 | 23
$FDCBC6 | set 0,(iy+x) 4 | 23 $FDCBCE | set 1,(iy+x) 4 | 23
$FDCBD6 | set 2,(iy+x) 4 | 23 $FDCBDE | set 3,(iy+x) 4 | 23
$FDCBEG | set 4,(iy+x) | 4 | 23 || $FDCBEE | set 5,(iy+x) | 4 | 23
$FDCBF6 | set 6,(iy+x) 4 | 23 $FDCBFE | set 7,(iy+x) 4 | 23

Appendix D

Mnemonics to Extended

Opcodes

Table D.1: aci-adc
Mnemonic Opcode Sz T Mnemonic | Opcode Sz T
aci x $CE 2 7 adc a,l $8D 1 4
adc a,(hl) $8E 1 7 adc a,x $CE 2 7
adc a,(ix+x) | $DD8E 3 19 | adca $8F 1 4
adc a,(iy+x) | $FDSE 3 19 | adcb $88 1 4
adc a,a $8F 1 4 adc ¢ $89 1 4
adc a,b $88 1 4 adc d $8A 1 4
adc a,c $89 1 4 adc e $8B 1 4
adc a,d $8A 1 4 adc hl,bc SED4A 2 15
adc a,e $8B 1 4 adc hl,de SED5A 2 15
adc a,h $8C 1 4 adc hl,hl SEDGA 2 15
adc a,ixh $DD8C 2 8 adc hl,sp SED7TA 2 15
adc a,ixl $DD8D | 2 8 adc h $8C 1 4
adc a,iyh $FD8C 2 8 adc 1 $8D 1 4
adc a,iyl $FD8D 2 8 adc m $8E 1 7

251

252 APPENDIX D. MNEMONICS TO EXTENDED OPCODES

Table D.2: add
Sz T

Mnemonic Opcode Mnemonic Opcode Sz T
add a,(hl) $86 1 7 add de,xx * SED35 4 16
add a,(ix+x) | $DD8&6 3 19 | add d $82 1 4
add a,(iy+x) | $FD86 3 19 | adde $83 1 4
add a,b $80 1 4 add hl,bc $09 1 11
add a,d $82 1 4 add hl;hl $29 1 11
add a,e $83 1 4 add hl,sp $39 1 11
add a,ixh $DD8&4 2 8 add h $84 1 4
add a,ixl $DD85 2 8 add ix,bc $DDO09 2 15
add a,iyh $FDg4 2 8 add ix,de $DD19 2 15
add a,iyl $FDS&5 2 8 add ix,ix $DD29 2 15
add a,l $85 1 4 add ix,sp $DD39 2 15
add a,x $C6 2 7 add iy,bc $FDO09 2 15
add a $87 1 4 add iy,de $FD19 2 15
add bc,a * $ED33 2 8 add iy,iy $FD29 2 15
add bc,xx * $ED36 4 16 add iy,sp $FD39 2 15
add b $80 1 4 add 1 $85 1 4
add ¢ $81 1 4 add m $86 1 7
add de,a * $ED32 2 8
Table D.3: adi-ani
Mnemonic Opcode Sz T Mnemonic Opcode Sz T
adi x 3C6 2 7 and b $A0 1 4
ana a SAT 1 4 and ¢ $A1 1 4
ana b $A0 1 4 and d $A2 1 4
ana c $A1 1 4 and e $A3 1 4
ana d $A2 1 4 and h $A4 1 4
ana e $A3 1 4 and ixh $DDA4 2 8
ana h $A4 1 4 and ixl $DDAS5 2 8
ana | $A5 1 4 and iyh $FDA4 2 8
ana m $A6 1 7 and iyl $FDAS 2 8
and (hl) 3A6 1 7 and 1 $A5 1 4
and (ix+4x) $DDA6 3 19 and x $E6 2 7
and (iy+x) | $FDA6 3 19 | anix $E6 2 7
and a $AT 1 4
Table D.4: bit 0-bit 3
Mnemonic Opcode Sz T Mnemonic Opcode Sz T
bit 0, (hl) $CB46 2 | 12 | bit 2,(h0) $CB56 2 | 12
bit 0,(ix+x) | $DDCB46 | 4 | 20 | bit 2,(ixtx) | $DDCB56 | 4 | 20
bit 0,(iy+x) | $FDCB46 | 4 | 20 | bit 2,(iy+x) | $FDCB56 | 4 | 20
bit 0,a $CB47 2 8 bit 2,a $CB57 2 8
bit 0,b $CB40 2 8 bit 2,b $CB50 2 8
bit 0,c $CB41 2 8 bit 2,c $CB51 2 8
bit 0,d $CB42 2 8 bit 2,d $CB52 2 8
bit 0,e $CB43 2 8 bit 2,e $CB53 2 8
bit 0,h $CB44 2 8 bit 2,h $CB54 2 8
bit 0,1 $CB45 2 8 bit 2,1 $CB55 2 8
bit 1,(hl) $CB4E 2 | 12 | bit 3,(hl) $CB5E 2 | 12
bit 1,(ix+x) | $DDCB4E | 4 | 20 | bit 3,(ix+x) | $DDCB5SE | 4 | 20
bit 1,(iy+x) | $FDCB4E | 4 | 20 | bit 3,(iy+x) | $FDCB5E | 4 | 20
bit 1,a $CB4F 2 8 bit 3,a $CB5F 2 8
bit 1,b $CB48 2 bit 3,b $CB58 2 8
bit 1,c $CB49 2 8 bit 3,c $CB59 2 8
bit 1,d $OB4A 2 | 8 | bit3,d $CB5A 2 |8
bit 1,e $CB4B 2 8 bit 3,e $CB5B 2 8
bit 1,h $CB4C 2 8 bit 3,h $CB5C 2 8
bit 1,1 $CB4D 2 8 bit 3,1 $CB5D 2 8

Table D.5: bit 4-bit 7
Sz T

Mnemonic Opcode Mnemonic Opcode Sz T
bit 4,(hl) $CDB66 2 | 12 | bit 6,(h]) $CB76 2 | 12
bit 4,(ix+x) | $DDCB66 4 20 | bit 6,(ix+x) | $DDCB76 4 20
bit 4,(iy+x) | $FDCB66 | 4 | 20 | bit 6,(iy+x) | $FDCB76 | 4 | 20
bit 4,a $CB67 2 8 bit 6,a $CB77 2 8
bit 4,b $CB60 2 8 bit 6,b $CB70 2 8
bit 4,c $CB61 2 8 bit 6,c $CBT71 2 8
bit 4,d $CB62 2 8 bit 6,d $CB72 2 8
bit 4,e $CB63 2 8 bit 6,e $CB73 2 8
bit 4,h $CB64 2 8 bit 6,h $CB74 2 8
bit 4,1 $CB65 2 8 bit 6,1 $CB75 2 8
bit 5,(hl) $CB6E 2 | 12 | bit 7,(hl) $CBTE 2 | 12
bit 5,(ix+x) | $SDDCB6E | 4 | 20 | bit 7,(ix+x) | $DDCB7E | 4 | 20
bit 5,(iy+x) | $FDCB6E | 4 | 20 | bit 7,(iy+x) | $FDCB7E | 4 | 20
bit 5,a $CBGF 2 | 8 | bit7.a $CBTF 2 |8
bit 5,b $CB68 2 8 bit 7,b $CB78 2 8
bit 5,c $CB69 2 8 bit 7,c $CB79 2 8
bit 5,d $CB6A 2 8 bit 7,d $CB7A 2 8
bit 5,e $CB6B 2 8 bit 7,e $CB7B 2 8
bit 5,h $CB6C 2 8 bit 7,h $CB7C 2 8
bit 5,1 $CB6D 2 8 bit 7,1 $CB7D 2 8
Table D.6: brlc-cnz

Mnemonic Opcode Sz T Mnemonic Opcode Sz

brlc de,b * $ED2C 2 8 ccf $3F 1

bsla de,b * $SED28 2 8 cm xx $FC 3 17/10
bsra de,b * $ED29 2 8 cma $2F 1 4

bsrf de,b * $ED2B 2 8 cme $3F 1 4

bsrl de,b * $ED2A 2 8 cmp a $BF 1 4

call ¢,xx $DC 3 17/11 | cmp b $B8 1 4

call m,xx $FC 3 17/10 | cmp ¢ $B9 1 4

call nc,xx $D4 3 17/10 cmp d $BA 1 4

call nz,xx $C4 3 17/10 | cmp e $BB 1 4

call p,xx $F4 3 17/10 | cmp h $BC 1 4

call pe,xx $EC 3 17/10 | cmp 1 $BD 1 4

call po,xx $E4 3 17/10 | cmp m $BE 1 7

call xx $CD 3 17 cne xx $D4 3 17/10
call z,xx $CccC 3 17/10 | cnz xx $C4 3 17/10
cC XX $DC 3 17/11

Table D.7: cp-der

Mnemonic Opcode Sz T Mnemonic Opcode Sz T

cp (hl) $BE 1 7 cpir $EDB1 2 21/16
cp (ix+x) $DDBE | 2 19 cpi $EDA1 2 16

cp (iy+x) $SFDBE 2 19 cpl $2F 1 4

cp a $BF 1 |4 cpo xx $E4 3 | 17/10
cp b $B8 1 4 cz XX $Ccc 3 17/10
cp c $B9 1 4 daa $27 1 4

cp d $BA 1 4 dad b $09 1 11

cp e $BB 1 4 dad d $19 1 11

cp h $BC 1 4 dad h $29 1 11

cp ixh $DDBC 2 8 dad sp $39 1 11

cp ixl $DDBD | 2 8 der a $3D 1 4

cp iyh $FDBC 2 8 der b $05 1 4

cp iyl $FDBD 2 8 der ¢ $0D 1 4

cpl $BD 1 4 der d $15 1 4

cp XX $F4 3 17/10 | dere $1D 1 4

cp x $SFE 2 7 der h $25 1 4

cpdr $SEDB9 2 21/16 der 1 $2D 1 4

cpd SEDA9 2 16 der m $35 1 11

cpe $EC 3 17/10

253

254 APPENDIX D. MNEMONICS TO EXTENDED OPCODES

Table D.8: dex-im

Mnemonic Opcode | Sz | T Mnemonic Opcode Sz T
dex b $0B 1 6 dec iyl $FD2D 2 8
dex d $1B 1 6 dec iy $FD2B 2 10
dex h $2B 1 6 dec 1 $2D 1 4
dcx sp $3B 1 6 dec sp $3B 1 6
dec (hl) $35 1| 11| di $F3 1 |4
dec (ix+x) $DD35 3 23 djnz x $10 2 13/8
dec (iy+x) $FD35 3 23 | el $FB 1 4
dec a $3D 1 4 ex (sp),hl $E3 1 19
dec bc $0B 1 6 ex (sp),ix $DDE3 2 23
dec b $05 1 4 ex (sp),iy $FDE3 2 23
dec ¢ $0D 1 4 ex af,af’ $08 1 4
dec de $1B 1 6 ex de,hl SEB 1 4
dec d $15 1 4 exx $D9 1 4
dec e $1D 1 4 halt $76 1 44
dec hl $2B 1 6 icr ¢ $0C 1 4
dec h $25 1 4 icr e $1C 1 4
dec ixh $DD25 2 8 im 0 $ED46 2 8
dec ixl $DD2D 2 8 im 1 $ED56 2 8
dec ix $DD2B 2 10 im 2 SED5E 2 8
dec iyh $FD25 2 8

Table D.9: in-inx

Mnemonic Opcode | Sz | T Mnemonic | Opcode Sz T
in a,(c) $ED78 2 12 | inc ixl $DD2C 2 8
in a,(x) $DB 2 11 | inc ix $DD23 2 10
in b,(c) $ED40 | 2 | 12 | inciyh $FD24 | 2 | 8
in c,(c) $ED48 | 2 | 12 | inc iyl $FD2C | 2 | 8
in d,(c) $ED50 2 12 inc iy $FD23 2 10
in e,(c) $ED58 2 12 | incl $2C 1 4
in f,(c) $EDT70 2 12 | inc sp $33 1 6
in h,(c) $ED60 2 12 | indr $EDBA | 2 21/16
in 1,(c) $SED68 2 12 ind $SEDAA 2 16
in x $DB 2 11 inir $EDB2 2 21/16
inc (hl) $34 1 | 11 | ini $EDA2 | 2 | 16
inc (ix+x) | $DD34 3 23 | inr a $3C 1 4
inc (iy+x) | $FD34 3 23 | inr b $04 1 4
inc a $3C 1 4 inr d $14 1 4
inc be $03 1 6 inr h $24 1 4
inc b $04 1 4 inr 1 $2C 1 4
inc ¢ $0C 1 4 inr m $34 1 11
inc de $13 1 6 inx b $03 1 6
inc d $14 1 4 inx d $13 1 6
inc e $1C 1 4 inx h $23 1 6
inc hl $23 1 6 inx sp $33 1 6
inc h $24 1 4

Table D.10: jc-jz
Mnemonic Opcode Sz T Mnemonic Opcode Sz T
jc xx $DA 3 10 | jp pe,xx SEA 3 10
jm xx $FA 3 10 | jp po,xx $E2 3 10
jmp xx $C3 3 10 | jp xx $C3 3 10
jnc xx $D2 3 10 | jp xx $F2 3 10
jnz xx $C2 3 10 | jp z,xx $CA 3 10
jp (c) * $EDO98 2 13 | jpe xx SEA 3 10
jp (hl) $E9 1 4 jpo xx $E2 3 10
ip (ix) SDDE9 | 3 | 8 | jrex $38 2 | 12/7
jp (iy) $FDE9 3 8 jr nc,x $30 2 12/7
jp €,xx $DA 3 10 | jr nz,x $20 2 12/7
jp m,xx $FA 3 10 | jrx $18 2 12
jp ne,xx $D2 3 10 | jr z,x $28 2 12/7
jp nz,xx $C2 3 10 | jz xx $CA 3 10
jpP P,xx $F2 3 10

255

Table D.11: 1d (bc),a-1d (iy+x),x

Mnemonic Opcode Sz T Mnemonic Opcode Sz T
d (bc),a $02 T | 7 | 1d(Gxix),e | SDD73 | 3 | 19
1d (de),a $12 1 | 7 | 1d(ix+x),h | $DD74 | 3 | 19
1d (hlj,a $77 1 | 7 | d(ix+x)]l | $DD75 | 3 | 19
1d (hl),b $70 1 | 4 | 1d(ixtx)x | $DD36 | 5 | 19
1d (hl),c $71 1 |4 | 1d(ytx),a | $FD77 | 3 | 19
1d (hl),d $72 1 | 4 | 1d(yrx)b | $FD70 | 3 | 19
1d (hl),e $73 1 4 Id (iy+x),c | $FD71 3 19
1d (h1),h $74 1 | 4 | 1d(iy+x),d | $FD72 | 3 | 19
1d (hl),1 $75 1 |4 | 1d(ytx),e | $FD73 | 3 | 19
1d (h1),x $36 2 | 10 | 1d (iy+x),h | $FD74 | 3 | 19
Id (ix+x),a | $DD77 | 3 | 19 | 1d (iy+x),l | $FD75 | 3 | 19
1d (ix+x),b | $DD70 | 3 | 19 | 1d (iy+x),x | $FD36 | 5 | 19
1d (ix+x),c | $DD71 | 3 | 19
Table D.12: 1d (xx),a-1d a,x

Mnemonic Opcode | Sz | T Mnemonic Opcode Sz T

Id (xx),a $32 3 13 | ldab $78 T [4

Id (xx),bc | $ED43 | 4 | 20 | ld ac $79 1 |4

1d (xx),de $ED53 4 20 1d a,d $7A 1 4

1d (xx),hl $22 3 16 | 1d a,e $7B 1 4

Id (xx),ix | $DD22 | 4 | 20 | 1d a,ixh $DD7C | 2 | 8

Id (xx),iy $FD22 4 20 | Id a,ixl $DD7D 2 8

1d (xx),sp $ED73 4 20 | Id a,iyh $FD7C 2 8

1d a,(bc) $0A 1 7 1d a,iyl $FD7D 2 8

1d a,(de) $1A 1 |7 | 1dai $ED57 | 2 | 9

1d a,(hl) $7E 1 |7 | dal $7D 1 |4

Id a,(ix+x) | $DD7E | 3 | 19 | ld ar SED5F | 2 | 9

1d a,(iy+x) $FD7E 3 19 Id a,x $3E 2 7

1d a,(xx) $3A 3 13

Table D.13: 1d b,(hl)-1d c,x

Mnemonic Opcode Sz T Mnemonic Opcode | Sz T
1d b, (Ll $46 T |7 | Wdcm) $4E T |7

Id b,(ix+x) | $DD46 2 19 | 1d c,(ix+x) | $DD4E 3 19
1d b,(iy+x) | $FD46 | 2 | 19 | 1d c,(iy+x) | SFD4E | 3 | 19
1d b,a $47 1 |4 |1ldeca $4F 1 |4

1d b,b $40 1 4 1d ¢,b $48 1 4

1d b,c $41 1 4 1d c,c $49 1 4

1d b,d $42 1 |4 | 1ded $4A 1 | 4

d be $43 1 |4 | dece $4B 1 |4

1d b,h $44 1 |4 | 1deh $4C 1 |4

1d b,ixh $DD44 2 8 1d c,ixh $DD4C 2 8

1d b,ixl $DD45 2 8 1d c,ixl $DD4D 2 8

1d b,iyh $FD44 | 2 | 8 | ld ciyh $FD4C | 2 | 8

1d b,iyl $FD45 2 8 1d c,iyl $FD4D 2 8

1d b,1 $45 1 |4 | 1del $4D 1 |4

1d b,x $06 2 7 1d ¢,x $0E 2 7

1d bc,(xx) $ED4B 4 20

256 APPENDIX D. MNEMONICS TO EXTENDED OPCODES

Table D.14: 1d d,(hl)-1d ex

Mnemonic Opcode Sz T Mnemonic Opcode Sz T
1d d,(hl) $56 1 7 1d e,(hl) $5E 1 7
1d d,(ix+x) | $DD56 | 3 19 | 1d e,(ix+x) | $SDD5E | 3 19
1d d,(iy+x) $FD56 3 19 | 1d e,(iy+x) $FD5E 3 19
1d d,a $57 1 4 Id e,a $5F 1 4
1d d,b $50 1 4 1d e,b $58 1 4
1d d,c $51 1 4 Id e,c $59 1 4
1d d,d $52 1 4 1d e,d $5A 1 4
1d d,e $53 1 4 Id e,e $5B 1 4
1d d,h $54 1 4 1d e,h $5C 1 4
1d d,ixh $DD54 2 8 1d e,ixh $DD5C 2 8
1d d,ix1 $DD55 2 8 1d e,ixl $DD5D 2 8
1d d,iyh $FD54 2 8 1d e,iyh $FD5C 2 8
1d d,iyl $FD55 2 8 1d e,iyl $FD5D 2 8
1d d,1 $55 1 4 Id e,l $5D 1 4
1d d,x $16 2 7 1d e,x $1E 2 7
1d de,(xx) $ED5B 4 20

Table D.15: 1d h,(hl)-1d ixl,x
Mnemonic Opcode Sz T Mnemonic Opcode Sz T
1d h,(hl) $66 1 7 1d ixh,a $DD67 2 8
1d h,(ix+x) $DD65 3 19 | 1d ixh,b $DD60 2 8
1d h,(iy+x) $FD65 3 19 | 1d ixh,c $DD61 2 8
Id h,a $67 1 4 1d ixh,d $DD62 2 8
1d h,b $60 1 4 1d ixh,e $DD63 2 8
Id h,c $61 1 4 1d ixh,ixh $DD64 2 8
1d h,d $62 1 4 1d ixh,ixl] $DD65 2 8
Id h,e $63 1 4 1d ixh,x $DD26 3 11
1d h,h $64 1 4 1d ixl,a $DD6F 2 8
1d h,l $65 1 4 1d ixl,b $DD68 2 8
Id h,x $26 2 7 1d ixl,c $DD69 2 8
1d hl,(xx) $2A 3 16 | 1d ixl,d $DD6A 2 8
1d hl,(xx) $ED6B 4 20 | Id ixle $DD6B 2 8
1d hl,xx $21 3 10 1d ixl,ixh $DD6C 2 2
Id i,a SED47 2 9 1d ixl,ixl $DD6D 2 2
1d ix,(xx) $DD2A 4 20 | Id ixlx $DD2E 4 11
1d ix,xx $DD21 4 14

Table D.16: 1d iyh,a-1d sp,xx
Mnemonic Opcode Sz T Mnemonic Opcode Sz T
1d iyh,a $FD67 2 8 1d 1,(ix+x) $DD6E 3 19
1d iyh,b $FD60 2 8 1d 1,(iy+x) $FD6E 3 19
1d iyh,c $FD61 2 8 Id lL,a $6F 1 4
1d iyh,d $FD62 2 8 1d L,b $68 1 4
1d iyh,e $FD63 2 8 1d l,c $69 1 4
1d iyh,iyh $FD64 2 8 1d 1,d $6A 1 4
1d iyh,iyl $FD65 2 8 Id le $6B 1 4
1d iyh,x $FD26 3 11 1d Lh $6C 1 4
1d iyl,a $FD6F 2 8 1d 1,1 $6D 1 4
1d iyl,b $FD68 2 8 1d 1,x $2E 2 7
1d iyl,c $FD69 2 8 Id r,a $ED4F 2 9
1d iyl,d $FD6A 2 8 1d sp,(xx) $ED7B 4 20
1d iyl,e $FD6B 2 8 1d sp,hl $F9 1 6
1d iyl,iyh $FD6C 2 2 1d sp,ix $DDF9 2 10
1d iyl,iyl $FD6D | 2 | 2 | 1d sp,iy $FDF9 | 2 | 10
1d iyl,x $FD2E 4 11 1d sp,xx $31 3 10
1d 1,(hl) $6E 1 7

Table D.17: lda-mirror
Mnemonic | Opcode Sz T Mnemonic Opcode Sz T
lda xx $3A 3 13 1di SEDAO 2 16
ldax b $0A 1 7 Idpirx * SEDB7 2 21/16
ldax d $1A 1 7 Idws * $EDAS 2 14
Iddrx * SEDBC | 2 21/16 | lhld xx $2A 3 16
1ddr $SEDBS8 2 21/16 Ixi b,xx $01 3 10
lddx * SEDAC 2 16 Ixi d,xx $11 3 10
ldd $SEDAS 2 16 Ixi h,xx $21 3 10
1dirx * $EDB4 2 21/16 Ixi sp,xx $31 3 10
Idir $EDBO 2 21/16 | mirror a * | $ED24 2 8
1dix * $SEDA4 2 16
Table D.18: mov a,a-mov d,m
Mnemonic Opcode | Sz | T Mnemonic Opcode | Sz | T
mov a,a $7F 1 4 mov c,b $48 1 4
mov a,b 378 1 4 mov ¢,c $49 1 4
mov a,c $79 1 4 mov c,d $4A 1 4
mov a,d $TA 1 4 mov c,e $4B 1 4
mov a,e $7B 1 4 mov ¢,h $4C 1 4
mov a,h 37C 1 4 mov ¢,l $4D 1 4
mov a,l $7D 1 4 mov ¢,m $4E 1 7
mov a,m $7E 1 7 mov d,a $57 1 4
mov b,a $47 1 4 mov d,b $50 1 4
mov b,b $40 1 4 mov d,c $51 1 4
mov b,c $41 1 4 mov d,d $52 1 4
mov b,d $42 1 4 mov d,e $53 1 4
mov b,e $43 1 4 mov d,h $54 1 4
mov b,h $44 1 4 mov d,l $55 1 4
mov b,l $45 1 4 mov d,m $56 1 7
mov b,m $46 1 7
Table D.19: mov e,a-mov m,l
Mnemonic Opcode Sz T Mnemonic Opcode Sz T
mov e,a $5F 1 4 mov la $6F 1 4
mov e,b $58 1 4 mov 1,b 368 1 4
mov e,c $59 1 4 mov l,c $69 1 4
mov e,d $5A 1 4 mov l,d $6A 1 4
mov e,e $5B 1 4 mov Le 368 1 4
mov e,h $5C 1 4 mov Lh $36C 1 4
mov e,l $5D 1 4 mov 1,1 $6D 1 4
mov e,m $5E 1 7 mov 1m $6E 1 7
mov h,a $67 1 4 mov m,a $77 1 7
mov h,b $60 1 4 mov m,b 370 1 4
mov h,c $61 1 4 mov m,c 371 1 4
mov h,d $62 1 4 mov m,d $72 1 4
mov h,e $63 1 4 mov m,e $73 1 4
mov h,h $64 1 4 mov m,h $74 1 4
mov h,l $65 1 4 mov m,l 375 1 4
mov h,m $66 1 7

257

258

APPENDIX D. MNEMONICS TO EXTENDED OPCODES

Table D.20: mul-otir
Mnemonic Opcode Sz T Mnemonic Opcode Sz | T
mul d,e * SED30 2 8 or e $B3 1 4
mvi a,x $3E 2 7 or h $B4 1 4
mvi b,x $06 2 7 or ixh $DDB4 2 8
mvi c,x $0E 2 7 or ixl $DDB5 2 8
mvi d,x $16 2 7 or iyh $FDB4 2 8
mvi e,x $1E 2 7 or iyl $FDB5 2 8
mvi h,x $26 2 7 orl $B5 1 4
mvi 1,x $2E 2 7 or x $F6 2 7
mvi m,x $36 2 10 | ora a $B7 1 4
neg $ED44 2 8 ora b $BO 1 4
nextreg r,a * $ED92 3 17 | orac $B1 1 4
nextreg r,v * | $EDI1 4 20 | orad $B2 1 4
nop $00 1 4 ora e $B3 1 4
or (hl) $B6 1 7 ora h $B4 1 4
or (ix+x) $DDB6 3 19 | oral $B5 1 4
or (iy-+x) $FDB6 | 3 | 19 | oram $B6 1|7
or a $B7 1 4 ori x $F6 2 7
or b $B0 1 4 otdr SEDBB | 2 12/16
or ¢ $B1 1 4 otir SEDB3 2 21/16
or d $B2 1 4
Table D.21: out-rc
Mnemonic Opcode Sz T Mnemonic Opcode Sz T
out (c),a SED79 | 2 | 12 | pop hl SEL T | 10
out (c),b $ED41 2 12 | poph $E1 1 10
out (c),c $ED49 2 12 | pop ix $DDE1 2 14
out (c),d $ED51 2 12 | pop iy SFDE1 2 14
out (c),e $ED59 2 12 | pop psw $F1 1 10
out (c),f $ED71 2 12 | push af $F5 1 11
out (c),h $ED61 2 12 | push bc $C5 1 11
out (c),1 $ED69 2 12 | push b $C5 1 11
out (x),a $D3 2 11 | push de $D5 1 11
out x $D3 2 11 | pushd $D5 1 11
outd SEDAB 2 16 | push hl $E5 1 11
outinb * $ED90 2 16 push h $E5 1 11
outi $EDA3 2 16 | push ix $DDE5 2 15
pchl SE9 1 4 push iy SFDE5 2 15
pixelad * $ED94 2 8 push psw $F5 1 11
pixeldn * $ED93 2 8 push xx $SEDSA 4 *
pop af $F1 1 10 ral $17 1 4
pop bc $C1 1 10 | rar $1F 1 4
pop b $C1 1 10 | rc $D8 1 11/5
pop de $D1 1 10

Table D.22: res O-res 3
Mnemonic Opcode Sz T Mnemonic Opcode Sz T
res 0,(hl) $CBS6 2 [15 | res 2,(ix1x) | SDDCBY6 | 4 | 23
res 0,(ix+x) | $DDCB86 4 23 | res 2,(iy+x) | $FDCB96 4 23
res 0,(iy+x) | $FDCB86 4 23 | res 2,a $CB97 2 8
res 0,a $CB87 2 8 res 2,b $CB90 2 8
res 0,b $CB80 2 8 res 2,c $CBI1 2 8
res 0,c $CB81 2 8 res 2,d $CB92 2 8
res 0,d $CB82 2 8 res 2,e $CB93 2 8
res 0,e $CB83 2 8 res 2,h $CBY4 2 8
res 0,h $CB84 2 8 res 2,1 $CB95 2 8
res 0,1 $CB85 2 | 8 | res3,(hl) $SCBYE 2 | 15
res 1,(hl) $CBSE 2 | 15 | res 3,(ix+x) | $DDCBYE | 4 | 23
res 1,(ix+x) | $DDCBSE | 4 23 | res 3,(iy+x) | $FDCBY9E | 4 23
res 1,(iy+x) | $FDCB8E | 4 23 | res 3,a $CBI9F 2 8
res 1,a $CB8F 2 8 res 3,b $CB98 2 8
res 1,b $CB88 2 8 res 3,c $CB99 2 8
res 1,c $CB89 2 8 res 3,d $CB9A 2 8
res 1,d $CBSA 2 8 res 3,e $CBY9B 2 8
res 1,e $CB8B 2 8 res 3,h $CBIC 2 8
res 1,h $CB8C 2 8 res 3,1 $CBI9D 2 8
res 1,1 $CB8D 2 8
Table D.23: res 4-res 7

Mnemonic Opcode Sz T Mnemonic Opcode Sz T
res 4,(hl) $SCBAG 2 [15 | res 6,(ix'x) | SDDCBB6 | 4 | 23
res 4,(ix+x) | $DDCBA6 4 23 | res 6,(iy+x) | $FDCBB6 4 23
res 4,(iy+x) $FDCBAG6 4 23 | res 6,a $CBB7 2 8
res 4,a $CBAT 2 8 res 6,b $CBBO 2 8
res 4,b $CBAO 2 8 res 6,c $CBB1 2 8
res 4,c $CBA1 2 8 res 6,d $CBB2 2 8
res 4,d $CBA2 2 8 res 6,e $CBB3 2 8
res 4,e $CBA3 2 8 res 6,h $CBB4 2 8
res 4,h $CBA4 2 8 res 6,1 $CBB5 2 8
res 4,1 $CBA5 2 8 res 7,(hl) $CBBE 2 15
res 5,(hl) $CBAE 2 15 | res 7,(ix+x) | $SDDCBBE | 4 23
res 5,(ix+x) | $SDDCBAE | 4 23 | res 7,(iy+x) | $FDCBBE | 4 23
res 5,(iy+x) $SFDCBAE 4 23 | res 7,a $CBBF 2 8
res 5,a $CBAF 2 8 res 7,b $CBBS8 2 8
res 5,b $CBAS8 2 8 res 7,c $CBB9 2 8
res 5,c $CBA9 2 8 res 7,d $CBBA 2 8
res 5,d $CBAA 2 8 res 7,e $CBBB 2 8
res 5,e $CBAB 2 8 res 7,h $CBBC 2 8
res 5,h $CBAC 2 8 res 7,1 $CBBD 2 8
res 5.1 $CBAD 2 | 8

259

260 APPENDIX D. MNEMONICS TO EXTENDED OPCODES

Table D.24: ret-rp

Mnemonic Opcode Sz T Mnemonic Opcode Sz T
ret ¢ $D8 1 11/5 | rla $17 1 4
ret m $F8 1 11/5 | rlc (hl) $CB06 2 15
ret nc $D0 1 11/5 | rle (ix+x) $DDCB06 | 4 23
ret nz $Co 1 11/5 rle (iy-+x) $FDCB06 4 23
ret pe 3E8 1 11/5 | rlc a $CB07 2 8
ret po $EO0 1 11/5 | rlc b $CB00 2 8
ret p $F0 1 11/5 | rlcc $CBO1 2 8
ret z $C8 1 11/5 | rlcd $CB02 2 8
reti $ED4D 2 14 rlc e $CB03 2 8
retn $ED45 2 14 rlc h $CB04 2 8
ret $C9 1 10 rlc 1 $CBO05 2 8

rl (hl) $CB16 2 15 rlca $07 1 4

il (ix+x) | $DDCB16 | 4 | 23 rlc $07 1|4

rl (iy+x) $FDCB16 4 23 rld $EDGF 2 18
rl a $CB17 2 8 rm $F8 1 11/5
rlb $CB10 2 rnc $DO 1 11/5
rl c $CB11 2 8 rnz $Co 1 11/5
rl d $CB12 2 8 rpe SE8 1 11/5
rle $CB13 2 8 rpo $E0 1 11/5
rl h $CB14 2 8 rp $FO0 1 11/5
rl1 $CB15 2 8

Table D.25: rr-rz
Mnemonic Opcode Sz T Mnemonic Opcode Sz T
rr (hl) $CBI1E 2 15 | rrca SOF 1 4
rr (ix+x) $DDCBIE | 4 23 | rrc $OF 1 4
rr (iytx) | SFDCBIE | 4 | 23 | rrd $ED67 | 2 | 18
IT a $CB1F 2 8 rst 00h $C7 1 11
rr b $CB18 2 8 rst 08h $CF 1 11
T C $CB19 2 8 rst 0 $C7 1 11
rr d $CB1A 2 8 rst 10h $D7 1 11
IT e $CB1B 2 8 rst 18h $DF 1 11
rr h $CB1C 2 8 rst 1 $CF 1 11
rrl $CB1D 2 8 rst 20h $E7 1 11
rra $1F 1 4 rst 28h $EF 1 11
rre (hl) $CBOE 2 15 | rst 2 $D7 1 11
rre (ix+4x) $DDCBOE 4 23 rst 30h $F7 1 11
rre (iy+x) $FDCBOE | 4 23 | rst 38h $FF 1 11
rre a $CBOF 2 8 rst 3 $DF 1 11
rrc b $CBO08 2 8 rst 4 $SE7 1 11
rre ¢ $CB09 2 8 rst 5 $EF 1 11
rre d $CBOA 2 8 rst 6 $EFT7 1 11
rre e $CBOB 2 8 rst 7 $FF 1 11
rrc h $CBOC 2 8 rz $C8 1 11/5
rre 1 $CBOD 2 8

Table D.26: sbb-scf

Mnemonic Opcode Sz T Mnemonic Opcode Sz T

sbb a $9F 1 4 sbc a,e $9B 1 4

sbb b $98 1 4 sbc a,h $9C 1 4

sbb ¢ $99 1 4 sbc a,ixh $DD9C 2 8

sbb d $9A 1 4 sbc a,ixl $DD9D 2 8

sbb e $9B 1 4 sbc a,iyh $FDIC 2 8

sbb h $9C 1 4 sbc a,iyl $FD9D 2 8

sbb 1 $9D 1 4 sbc a,l $9D 1 4

sbb m $9E 1 7 sbc a,x $DE 2 7

sbc a,(hl) $9E 1 7 sbc hl,bc $ED42 2 15

sbc a,(ix+x) | $DDY9E 3 1 sbc hl,de $ED52 2 15

sbe a,(iy+x) | $FDI9E 3 1 sbc hl,hl $ED62 2 15

sbc a,a $9F 1 4 sbc hl,sp SED72 2 15

sbc a,b $98 1 4 sbi x $DE 2 7

sbc a,c $99 1 4 scf $37 1 4

sbc a,d $9A 1 4

Table D. 27 set 0-set 3
Mnemonic Opcode Sz Mnemonic Opcode Sz T
set 0,(hI) $CBC6 2 15 set 2,(ix+x) $DDCBD6 4 23
set 0,(ix+x) | $DDCBC6 4 23 | set 2,(iy+x) | $FDCBD6 4 23
set 0,(iy+x) | $FDCBC6 4 23 | set 2,a $CBD7 2 8
set 0,a $CBC7 2 8 set 2,b $CBDO 2 8
set 0,b $CBCO 2 8 set 2,c $CBD1 2 8
set 0,c $CBC1 2 8 set 2,d $CBD2 2 8
set 0,d $CBC2 2 8 set 2,e $CBD3 2 8
set 0,e $CBC3 2 8 set 2,h $CBD4 2 8
set 0,h $CBC4 2 8 set 2,1 $CBD5 2 8
set 0,1 $CBC5 2 8 set 3,(hl) $CBDE 2 15
set 1,(hl) $CBCE 2 | 15 | set 3,(ix+x) | $DDCBDE | 4 | 23
set 1,(ix+x) | $DDCBCE | 4 23 | set 3,(iy+x) | $FDCBDE | 4 23
set 1,(iy+x) | $FDCBCE | 4 23 | set 3,a $CBDF 2 8
set 1,a $CBCF 2 8 set 3,b $CBDS8 2 8
set 1,b $CBCS8 2 8 set 3,c $CBD9 2 8
set 1,c $CBC9 2 8 set 3,d $CBDA 2 8
set 1,d $CBCA 2 8 set 3,e $CBDB 2 8
set 1,e $CBCB 2 8 set 3,h $CBDC 2 8
set 1,h $CBCC 2 8 set 3,1 $CBDD 2 8
set 1,1 $CBCD 2 8
Table D.28: set 4-set 7

Mnemonic Opcode Sz | T Mnemonic Opcode Sz | T
set 4,(hD) $CBE6 2 | 15 | sct 6,(ixtx) | SDDCBF6 | 4 | 23
set 4,(ix+x) | $SDDCBE6 | 4 23 | set 6,(iy+x) | $FDCBF6 4 23
set 4,(iy+x) $FDCBE6 4 23 | set 6,a $CBF7 2 8
set 4,a $CBE7 2 | 8 | set6,b $CBFO 2 |8
set 4,b $CBEO 2 8 set 6,c $CBF1 2 8
set 4,c $CBE1 2 8 set 6,d $CBF2 2 8
set 4,d $CBE2 2 8 set 6,e $CBF3 2 8
set 4,e $CBE3 2 8 set 6,h $CBF4 2 8
set 4,h $CBE4 2 | 8 | set6, $CBF5 2 |8
set 4,1 $CBE5 2 8 set 7,(hl) $CBFE 2 15
set 5,(hl) $CBEE 2 15 | set 7,(ix+x) | SDDCBFE | 4 23
set 5,(ix+x) | $SDDCBEE | 4 23 | set 7,(iy+x) | SFDCBFE | 4 23
set 5,(iy+x) $FDCBEE 4 23 | set 7,a $CBFF 2 8
set 5,a $CBEF 2 8 set 7,b $CBF8 2 8
set 5,b $CBES8 2 8 set 7,c $CBF9 2 8
set 5,c $CBE9 2 8 set 7,d $CBFA 2 8
set 5,d $CBEA 2 8 set 7,e $CBFB 2 8
set 5,e $CBEB 2 8 set 7,h $CBFC 2 8
set 5,h $SCBEC 2 | 8 | set7, $CBFD 2 |8
set 5,1 $CBED 2 | 8

261

262 APPENDIX D. MNEMONICS TO EXTENDED OPCODES

Table D.29: setae-stc

Mnemonic Opcode Sz | T Mnemonic Opcode Sz T
setae ¥ $ED95 2 8 sra (ix+x) | $DDCB2E | 4 23
shld xx $22 3 16 | sra (iy+x) $SFDCB2E 4 23
sla (hl) $CB26 2 15 | sraa $CB2F 2 8
sla (ix+x) $DDCB26 | 4 23 | srab $CB28 2 8
sla (iy+x) $FDCB26 4 23 sra c $CB29 2 8
sla a $CB27 2 8 sra d $CB2A 2 8
sla b $CB20 2 8 sra e $CB2B 2 8
sla ¢ $CB21 2 8 sra h $CB2C 2 8
sla d $CB22 2 8 sra 1 $CB2D 2 8
sla e $CB23 2 8 srl (hl) $CB3E 2 15
sla h $CB24 2 8 srl (ix-+x) $DDCB3E | 4 23
sla 1 $CB25 2 8 srl (iy+x) $SFDCB3E 4 23
sll (hl) $CB36 2 15 srl a $CB3F 2 8
sll (ix+x) $DDCB36 4 23 srl b $CB38 2 8
sll (iy+x) | $FDCB36 | 4 | 23 | silc $CB39 2 | 8
sll a $CB37 2 8 srl d $CB3A 2 8
sll b $CB30 2 8 srl e $CB3B 2 8
sll ¢ $CB31 2 8 srl h $CB3C 2 8
sll d $CB32 2 8 srl 1 $CB3D 2 8
sll e $CB33 2 8 sta xx $32 3 13
sll h $CB34 2 8 stax b $02 1 7
sl 1 $CB35 2 8 stax d $12 1 7
sphl $F9 1 6 stc $37 1 4
sra (hl) $CB2E 2 15
Table D.30: sub-xthl
Mnemonic Opcode Sz T Mnemonic Opcode Sz T
sub (hl) $96 1 7 XOr a SAF 1 4
sub (ix+x) | $DD96 3 19 | xor b $A8 1 4
sub (iy+x) $FD96 3 19 | xorc $A9 1 4
sub a $97 1 4 xor d SAA 1 4
sub b $90 1 4 Xor e $AB 1 4
sub ¢ $91 1 4 xor h $AC 1 4
sub d $92 1 4 xor ixh $DDAC 2 8
sub e $93 1 4 xor ixl $DDAD 2 8
sub h $94 1 4 xor iyh $FDAC 2 8
sub ixh $DDY4 2 8 xor iyl $FDAD 2 8
sub ixl $DDY5 2 8 xor 1 $AD 1 4
sub iyh $FD94 2 8 XOr X SEE 2 7
sub iyl $FD95 2 8 Xra a SAF 1 4
sub 1 $95 1 4 xra b $A8 1 4
sub m $96 1 7 Xxra c $A9 1 4
sub x $D6 2 7 xra d SAA 1 4
sui x $D6 2 7 xra e $AB 1 4
swapinb * $ED23 2 8 xra h $AC 1 4
test x * $ED27 3 11 xra 1 $AD 1 4
xchg $EB 1 4 Xra m SAE 1 7
xor (hl) SAE 1 7 xri x $EE 2 7
xor (ix+x) $DDAE 3 19 xthl $E3 1 19
xor (iy+x) SFDAE | 3 19

Appendix E

File Formats

E.1 AKY

Music file

E.2 BAS

Basic file

E.3 BMP

Windows bitmap. On the ZX Spectrum next, these must be uncompressed and
8 bpp.

E.4 DOT, DOTX, DOTN, DOTN-X

DOT A command file which returns after completion. Can be no longer than
8k and must be compiled to reside in memory starting at $2000. Rather than
using this extension, these live in the dot directory. This is loaded into divmmc
memory.

DOTX An extended dot file than can be more than 8k

DOTN A ZX Next Specific extention to a dot file, allowed to be over 8k

263

264 APPENDIX E.

DOTN-X An extended version of a dotn file.

E.5 DSK
Disk image
E.6 ESP

Update file for Wi-Fi module

E.7 GDE

7ZX Spectrum Next Guide hypertext file

E.8 MOD

Modtracker music file (requires Pi accelerator to play).

E.9 NDR

Nexdaw music file

E.10 NEX

ZX Spectrum Next executable file.

E.11 O

7ZX-80 executable file

E.12 P3D

Disk image file

FILE FORMATS

E.13. PT3 265

E.13 PT3

Protracker 3 music file

E14 P

7ZX-81 executable file

E.15 SDH

Music file (requires Pi accelerator to play)

E.16 SID

Commodore 64 SID music file (requires Pi accelerator to play)

E.17 SCR

ZX Spectrum screen dump

In basic form a 6912 byte file containing the bitmap and colour map for a stan-
dard spectrum image. May have ULAPlus or ULANext color data appended.

ULAplus

e bytes 0-6143 - bitmap: memory order
e bytes 6144-6911 - colour map: memory order
e bytes 6912-6975 - ULAPlus palette data

ULANext

bytes 0-6143 - bitmap: memory order

bytes 6144-6911 - colour map: memory order

byte 6912 - ULANext mode

bytes 6913-between 6228 and 7426 - ULANext palette data, size is depen-
dent on specific ULANext mode and 8 or 9 bit palette entries.

266 APPENDIX E. FILE FORMATS

mode | ink | paper | 8-bit | 9-bit
$01 2 128 130 260
$03 4 64 68 136
$07 8 32 40 80
$OF 16 16 32 64
$1F 32 8 40 80
$3F 64 4 68 136
$7F 128 2 130 260
$FF 256 1 257 | 514

E.18 SHC, MC, MLT

SHC Timex hi-color screen dump

In basic form the 12,288 byte file containing the bitmap and colour map for a
Timex hi-color image. May have ULAPIlus or ULANext color data appended.

ULAplus

e bytes 0-6143 - bitmap: memory order
e bytes 6144-12287 - colour map: memory order
o bytes 12288-12351 - ULAPIus palette data

ULANext

bytes 0-6143 - bitmap: memory order

bytes 6144-12287 - colour map: memory order

byte 12288 - ULANext mode

bytes 12289-between 12304 and 12802 - ULANext palette data, size is
dependent on specific ULANext mode and 8 or 9 bit palette entries.

mode | ink | paper | 8-bit | 9-bit
$01 2 128 130 260
$03 4 64 68 136
$07 8 32 40 80
$OF 16 16 32 64
$1F 32 8 40 80
$3F 64 4 68 136
$7F 128 2 130 260
$FF 256 1 257 | 514

MC A Timex hi-color image. Like .shc, but the bitmap and colour map are
stored in display order.

MLT A Timex hi-color image. Like .shc, but the colour map is stored in
display order.

E.19. SHR 267

E.19 SHR

Timex hi-resolution screen dump.

A 12,288 or 12,289 byte file containing a memory dump of the two 6k screen
areas used by Timex hi-resolution mode in memory order with an optional byte
indicating the colours used.

E.20 SL2, NXI

SL2 ZX Spectrum Next layer 2 screen dump

In its most basic standard form, this is a 49,152 byte file contaning the memory
for the image data.

256x192x8

e bytes 0-49151 - image data: row dominant
e optional bytes 49152-49407 or 49663 - palette data (256 bytes for 8-bit
entries, 512 bytes for 9-bit entries)

320x256x8

e bytes 0-81919 - image data: column dominant
e optional bytes 81920-82175 or 82431 - palette data (256 bytes for 8-bit
entries, 512 bytes for 9-bit entries)

640x256x4

e bytes 0-81919 - image data: column dominant, nybbles in adjacent columns
e optional bytes 81920-81935 or 81951 - palette data (16 bytes for 8-bit
entries, 32 bytes for 9-bit entries)

NXI A version of a 256x192x8 layer 2 image.

e bytes 0-511 - palette data
e bytes 512-49663 - image data

E.21 SLR

7ZX Spectrum Next low-resolution screen dump.

Basic standard form 12,288 byte file contaning the memory for the two 6k areas
for 128x96x8 image files

192x96x8
e bytes 0-12287 - image data: row dominant

268 APPENDIX E. FILE FORMATS

e optional bytes 12288-12543 or 12799 - palette data (256 bytes for 8-bit
entries, 512 bytes for 9-bit entries)

192x96x4 (Radistan)

e bytes 0-6143 - image data: row dominant
e optional bytes 6144-6159 or 6175 - palette data (16 bytes for 8-bit entries,
32 bytes for 9-bit entries)

E.22 SNA

7ZX Spectrum memory snapshot

E.23 SND

Music file (requires Pi accelerator to play)

E.24 SNX

Extended ZX Spectrum memory snapshot to be run in ZX Spectrum Next mode

E.25 SPR
Sprite file
E.26 TAP

ZX Spectrum tape image

E.27 TXT,DOC,ASM,INI,CFG,MD

Text files

E.28. TZX 269

E.28 TZX

ZX Spectrum tape image (able to handle custom tape formats). Requires Pi
accelerator to load.

E.29 WAV

PCM audio file

E.30 XM

XM tracker music file (requires Pi accelerator to play)

E.31 Z3 to Z8

Inform interactive fiction files

E.32 Z80

ZX Spectrum memory snapshot

E.33 ZIP

Zip compressed file

270 APPENDIX E. FILE FORMATS

Appendix F

Call Tables

F.1 BDOS Call Table

271

Name Parameters Return Value

SYSTEM RESET $00 (0)

CONSOLE INPUT $01 (1) A=character

CONSOLE OUTPUT $02 (2) E—=character

AUXILIARY INPUT $03 (3) A=character

AUXILIARY OUTPUT $04 (4) E=character

LIST OUTPUT $05 (5) E—=character

DIRECT CONSOLE I/0 $06 (6) E—=function/data A—char/status
AUXILIARY INPUT STATUS $07 (7) A=status

AUXILIARY OUTPUT STATUS 308 (8) A=status

PRINT STRING $09 (9) DE=string address

READ CONSOLE BUFFER $0A (10) DE=buffer address data in buffer

GET CONSOLE STATUS $0B (11) A=status

RETURN VERSTION NUMBER | $0C (12) HL=version number

RESET DISK SYSTEM $0D (13)

SELECT DISK $0E (14) E=disk A=error flag, E=error
OPEN FILE $0F (15) DE=FCB address A=dir code, H=error
CLOSE FILE $10 (16) DE=FCB address A=dir code, H=error
SEARCH FOR FIRST $11 (17) DE=FCB address A—=dir code, H=error
SEARCH FOR NEXT $12 (18) A=dir code, H=error
DELETE FILE $13 (19) DE=FCB address A=dir code, H=error
READ SEQUENTIAL $14 (20) DE=FCB address A—error code, H=phys error
WRITE SEQUENTIAL $15 (21) DE=FCB address A=error code, H=phys error
MAKE FILE $16 (22) DE=FCB address A=dir code, H=error
RENAME FILE $17 (23) DE=FCB address A=dir code, H=error
RETURN LOGIN VECTOR $18 (24) HL=login vector

RETURN CURRENT DISK $19 (25) A=current disk

SET DMA ADDRESS $1A (26) DE=DMA address

GET ADDRESS (ALLOC) $1B (27) HL=ALLOC address
WRITE PROTECT DISK $1C (28)

GET READ-ONLY VECTOR $1D (29) HL=R/O Vector Value

SET FILE ATTRIBUTES $1E (30) DE=FCB address A=dir code, H=error

GET ADDR (DPB PARAMS) $1F (31) HL—DPB address

GET USER CODE $20 (32) E=S$FF A=user code

SET USER CODE $20 (32) E=user code

READ RANDOM $21 (33) DE=FCB address A=error code, H=phys error
WRITE RANDOM $22 (34) DE=FCB address A—error code, H=phys error
COMPUTE FILE SIZE $23 (35) DE=FCB address A—=error flag, H=error,

272

APPENDIX F. CALL TABLES

Name

Parameters

Return Value

FCB modified

SET RANDOM RECORD $24 (36) DE=FCB address FCB modified

RESET DRIVE $25 (37) DE=Drive vector A=800

ACCESS DRIVE $26 (33)

FREE DRIVE $27 (39)

WRITE RANDOM WITH ZERO $28 (40) DE=FCB address A=error code, H=phys error

FILL

TEST AND WRITE RECORD $29 (41) DE=FCB address A=error code, H=phys error

LOCK RECORD $2A (42) DE=FCB address A=300

UNLOCK RECORD $2B (43) DE=FCB address A=8300

SET MULTI-SECTOR COUNT $2C (44) E=Number of sectors A=return code

SET BDOS ERROR MODE $2D (45) E=BDOS Error mode

GET FREE DISK SPACE $2E (46) E=Drive DMA Buffer modified,
A=error flag, H=error code

CHAIN TO PROGRAM $2F (47) E—=chain flag no return

FLUSH BUFFERS $30 (48) A=error flag, H=error

GET/SET SYSTEM CONTROL $31 (49) DE=SCB PB address A=returned byte,

BLOCK HL=returned word

DIRECT BIOS CALL $32 (50) DE=BIOS PB address BIOS return

LOAD OVERLAY $3B (59) DE=FCB address A=error code, H=phys error

CALL RESIDENT SYSTEM $3C (60) DE=RSX PB address A=error code, H=phys error

EXTENSION

FREE BLOCKS $62 (98) A—error flag, H=error

TRUNCATE FILE $63 (99) DE=FCB address A=dir code, H=error

SET DIRECTORY LABEL $64 (100) DE=FCB address A=dir code, H=error

RETURN DIRECTORY $65 (101) E=drive A=dir label data byte

LABEL DATA H=error

READ FILE STAMPS AND $66 (102) DE=FCB address A=dir code, H=error

PASSWORD MODE

WRITE XFCB $67 (103) DE=FCB address A—=dir code, H=error

SET DATE AND TIME $68 (104) DE=DAT address

GET DATE AND TIME $69 (105) DE=DAT address DAT modified, A=seconds

SET DEFAULT PASSWORD $6A (106) | DE=password address

RETURN SERIAL NUMBER $6B (107) | DE=serial number files serial number field set

GET PROGRAM RET CODE $6C (108) | DE=3FFFF HL=program return code

SET PROGRAM RET CODE $6C (108) DE=program return code

GET CONSOLE MODE $6D (109) | DE=3$FFFF HL=console mode

SET CONSOLE MODE $6D (109) | DE=console mode

PRINT BLOCK $6F (111) DE=CCB address

LIST BLOCK $70 (112) DE=CCB address

PARSE FILENAME $98 (152) DE=PCFB address HL=return code,

PCFB modified

F.2 BIOS Call Table

F.3 NextZXOS Calls

F.3. NEXTZXOS CALLS

273

F.3.1 +3DOS Compatible Calls

Filesystem Calls

DOS_VERSION
DOS~ OPEN*

DOS~ CLOSE
DOS_ABANDON
DOS_REF_HEAD
DOS”_READ

DOS~ WRITE
DOS_BYTE READ
DOS_BYTE_WRITE
DOS~ CATALOG*
DOS”_FREE_SPACE*
DOS_DELETE
DOS_RENAME
DOS_BOOT

DOS_SET DRIVE
DOS”SET_USER
DOS”_GET_POSITION*
DOS_SET _POSITION
DOS_GET_EOF*
DOS”_GET_ 1346
DOS”SET 1346
DOS”FLUSH

DOS_SET _ACCESS
DOS”_SET_ATTRIBUTES
DOS”SET_MESSAGE

DD _L_XDPB
DD L DPB

$0103 (259)
$0106 (262)
$0109 (265)
$010C (268)
$010F (271)
$0112 (274)
$0115 (277)
$0118 (280)
$011B (283)
$011E (286)
$0121 (289)
$0124 (292)
$0127 (295)
$012A (298)
$012D (301)
$0130 (304)
$0133 (307)
$0136 (310)
$0139 (313)
$013C (316)
$013F (319)
$0142 (322)
$0145 (325)
$0148 (328)
$014E (334)

$0187 (391)
$018A (394)

Get +3DOS issue and version numbers
Create and/or open a file

Close a file

Abandon a file

Point at the header data for this file
Read bytes into memory

Write bytes from memory

Read a byte

Write a byte

Catalog disk directory

Free space on disk

Delete a file

Rename a file

Boot an operating system or other program
Set/get default drive

Set/get default user number

Get file pointer for random access

Set file pointer for random access

Get end of file position for random access
Get memory usage in pages 1, 3, 4, 6
Re-allocate memory usage in pages 1, 3, 4, 6
Bring disk up to date

Change open file’s access mode

Change a file’s attributes

Enable/disable error messages

Initialise an XDPB from a disk specification
Initialise a DPB from a disk specification

System Calls

DOS_INITIALISE

IDE_INTERFACE
IDE_INIT

IDE_DRIVE
IDE_SECTOR_READ*
IDE_SECTOR_WRITE*
IDE_PARTITON READ
IDE_PARTITION OPEN
IDE_PARTITION _CLOSE
IDE_PARTITIONS

$0100 (256)

$00A3 (163)
$00A6 (166)
$00A9 (169)
$00AC (172)
$00AF (175)
$00C4 (196)
$00CD (205)
$00DO (208)
$01A5 (421)

Initialise +3DOS

Initialise card interfaces
Initialise IDEDOS

Get unit handle

Low-level sector read
Low-level sector write

Read a partition entry

Open a partition

Close a partition

Get number of open partitions

Unimplemented Calls

DOS_OPEN_DRIVE
DOS_MAP B

DD_INTERFACE
DD_INIT

DD_SETUP

DD_SET RETRY
DD_READ_SECTOR
DD_WRITE SECTOR
DD_CHECK_SECTOR
DD_FORMAT
DD_READ_ID
DD_TEST UNSUITABLE
DD_LOGIN

DD_SEL_ FORMAT
DD_ASK 1
DD_DRIVE_STATUS
DD_EQUIPMENT
DD_ENCODE
DD L SEEK
DD_L_READ
DD_ L~ WRITE

$014B (331)
$0154 (340)

$0157 (343)
$015A (346)
$015D (349)
$0160 (352)
$0163 (355)
$0166 (358)
$0169 (361)
$016C (364)
$016F (367)
$0172 (370)
$0175 (373)
$0178 (376)
$017B (379)
$017E (382)
$0181 (385)
$0184 (388)
$018D (397)
$0190 (400)
$0193 (403)

Open a drive as a single file
Map B: onto unit 0 or 1

Is the floppy disk driver interface present?
Initialise disk driver

Specify drive parameters

Set try/retry count

Read a sector

‘Write a sector

Check a sector

Format a track

Read a sector identifier

Test media suitability

Log in disk, initialise XDPB
Pre-initialise XDPB for DD FORMAT
Is unit 1 & external drive & present?
Fetch drive status

What type of drive?

Set intercept routine for copy protection
uPD765A seek driver

uPD765A read driver

uPD765A write driver

274

DD L _ON_MOTOR
DD_L_T_OFF_ MOTOR
DD_L_OFF_ MOTOR

IDE_ FORMAT
IDE_PARTITION NEW
IDE_PARTITION _INIT
IDE_PARTITION ERASE
IDE_PARTITION _RENAME
IDE_PARTITION WRITE
IDE_PARTITION WINFO
IDE_PARTITION _GETINFO
IDE_PARTITION _SETINFO
IDE_DOS_UNPERMANENT
IDE_IDENTIFY

$0196 (406)
$0199 (409)
$019C (412)

$00B2 (178)
$00B8 (184)
$00BB (187)
$00BE (190)
$00C1 (193)
$00C7 (199)
$00CA (202)
$00D3 (211)
$00D6 (214)
$00FA (250)
$01A2 (418)

APPENDIX F. CALL TABLES

Motor on, wait for motor-on time
Start the motor-off ticker
Turn the motor off

Format a partition

Create partition

Initialise partition

Delete a partition

Rename a partition

Write a partition entry

Write type-specific partition information

Get byte from type-specific partition information
Set byte in type-specific partition information
Remove permanent drive mapping

Return IDE drive identity information

F.3.2 +43DOS compatible error codes

Recoverable disk errors

rc_ready
rc_wp
rc_seek
rc_crc
rc_nodata
rc_mark
rc_unrecog
rc_unknown
rc_ diskchg
rc_unsuit

OO Uk WN = O

Drive not ready

Disk is write protected

Seek fail
CRC data error
No data
Missing address
Unrecognised di
Unknown disk e

mark
sk format
rTOoT

Disk changed whilst 4+3DOS was using it
Unsuitable media for drive

Non-Recoverable errors

20 rc_badname
21 rc_badparam
22 rc_nodrive
23 rc_ nofile

24 rc_exists

25 rc_eof

26 rc_ diskfull
27 rc_dirfull

28 rc_ro

29 rc_number
30 rc_ denied

31 rc_ norename
32 rc_extent

33 rc_uncached
34 rc_toobig

35 rc_notboot
36 rc_inuse

56 rc_invpartition
57 rc_ partexist
58 rc_notimp

59 rc_partopen
60 rc_nohandle
61 rc_notswap
62 rc_mapped

63 rc_noxdpb

64 rc_noswap

65 rc_invdevice
67 rc_cmdphase
68 rc_ dataphase
69 rc_ notdir

74 rc_fragmented

Bad filename
Bad parameter
Drive not found
File not found

File already exists

End of file
Disk full
Directory full
Read-only file

File number not open (or open with wrong access)

Access denied
Cannot rename
Extent missing
Uncached

File too big

between drives

Disk not bootable

Drive in use

Invalid partition
Partition already exists
Not implemented

Partition open
Out of handles

Not a swap partition
Drive already mapped

No XDPB

No suitable swap partition

Invalid device

Command phase error
Data phase error

Not a directory

File is fragmented, use .DEFRAG

F.3. NEXTZXOS CALLS 275

F.3.3

esxDOS Compatible Calls

Low-level calls

disk _filemap $85 (133) obtain file allocation map
disk strmstart $86 (134) start streaming operation
disk strmend $87 (135) end streaming operation

Miscellaneous calls

m_ dosversion $88 (136) get NextZXOS version/mode information

m_ getsetdrv $89 (137) get/set default drive

m_tapein $8B (139) tape redirection control (input)
m_tapeout $8C (140) tape redirection control (output)
m_ gethandle $8D (141) get handle for current dot command
m_getdate $8E (142) get current date/time
m_execcmd $8F (143) execute a dot command
m_setcaps $91 (145) set additional capabilities

m_ drvapi $92 (146) access API for installable drivers
m_ geterr $93 (147) get or generate error message
m_ p3dos $94 (148) execute +3DOS/IDEDOS/NextZXOS call
m_errh $95 (149) register dot command error handler
File calls

f open $9A (154) open file

f close $9B (155) close file

f sync $9C (156) sync file changes to disk

f read $9D (157) read file

f_write $9E (158) write file

f seek $9F (159) set file position

f fgetpos $A0 (160) get file position

f fstat $A1 (161) get open file information

f ftruncate $A2 (162) truncate/extend open file

f _opendir $A3 (163) open directory for reading

f readdir $A4 (164) read directory entry

f telldir $A5 (165) get directory position

f seekdir $A6 (166) set directory position

f rewinddir $AT (167) rewind to start of directory

f getcwd $A8 (168) get current working directory

f chdir $A9 (169) change directory

f mkdir $AA (170) make directory

f rmdir $AB (171) remove directory

f stat $AC (172) get unopen file information

f unlink $AD (173) delete file

f truncate SAE (174) truncate/extend unopen file

f chmod $AF (175) change file attributes

f rename $BO (176) rename/move file

f_getfree $B1 (177) get free space

276 APPENDIX F. CALL TABLES

Appendix G

Keyboard Codes

G.1 ZX Spectrum Next (keymap data)

0 1 2 3 4 5 [§
0 CAPS SHIFT Z X C \ EXTEND 1
1 A S D | F | G| CAPS LOCK GRAPH
2 Q \ E R T TRUE VID INV VID
3 1 2 3 4 5 BREAK EDIT
1 0 9 S | 716 ; “
5 P (@) I U | Y , (comma) . (period)
6 RET L K J H DELETE =
7 7 (space) SYM SHIFT | M | N | B <<= [}

277

G.2 PS/2 (keymap address)

2

w

4

00x

F9

!
ot

F2

F12

7

01x

LAIt

LShift

LCtl

1/!

2@

02x

X

3/#

=|=e|o

5/%

03x

6 //‘I’V

T/&

£
8/

04x

=
/<

B
K

—~| | O

9/(

// /‘.7

-/

05x

VAl

/

bs

06x

(1

N~ O| @ =

[0]

2l

(8]

Esc

NumLk

07x

F11

31

ScrLk

08x

09x

0Ax

0Bx

0Cx

0Dx

0Ex

0Fx

10x

RAIt

PrtSc

RCtl

11x

LWin

RWin

12x

Menu

Power

13x

Sleep

14x

7

[/

15x

|Enter]

Wake

16x

End

Home

Ins

Del

17x

PgDown

PgUp

18x

19x

1Ax

1Bx

1Cx

1Dx

1Ex

1Fx

8LC

SHAOD dYVOHdAHAM O XIANHIIY

List of Figures

2.1 Pattern Example
2.2 All Rotate and Mirror Flags

279

280 LIST OF FIGURES

List of Tables

2.1
2.2
2.3
2.4
2.5

5.1

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

11.1

Layer 1 Mode summary 7
Layer 1 Memory Map 8
ULA Colouro oo o 8
ULANext o e 9
Hi-Resolution Colours 16
Special Paging Modes 60
zxnDMA Registers oo 67
Vertical Line Counts and Dot Clock Combinations 81
Dot Clocks per Second 81
Maximum Horizontal COPPER Compare 82
Slack Dot Clocks After Maximum Compare 83
Horizontal Timing 83
Vertical Timing L 83
Ideal Extended Resolutions for Both VGA and HDMI 84
Ideal Extended Resolution Display Parameters 84
Instruction Bit Definition 85
Register Bit Definitions 87
Control Mode Definitions 87
Summary of Video Modes, 91
System Control Block 176

282

LIST OF TABLES
11.2 Program Return Codes 177
11.3 FCB Format 177
Al ZX Spectrum Ports 193
C.1 $00-81F 239
C.2 $20-83F 240
C.3 $40-85F 240
C4 $60-8TF 240
C.5 $80-89F 241
C6 SAOSBF 241
C.7 SCO-8DF 241
C.8 SEO-SFF 242
C.9 $CBO0-3CBIF 243
C.10 SCB20-SCB3F o 243
C.11 SCB40-SCB5SF o oo 244
C.128CB60-SCBTFo 244
C.138CB80-SCBIOF 244
C.143CBAO-$CBBF 245
C.158CBCO-$CBDF 245
C.16 SCBEO-SCBFF 245
C.17 $DDO00-SDD5F o 246
C.18 $DD60-SCB8F o 246
C.19 $DDY90-3DDFF 247
C.20 SEDOO-SED4F 247
C.21 SED50-SEDSF 248
C.22 SED9O-SEDFF 248
C.23 SFDOO-SFDSF o o 249
C.24 SFDGO-SFD8F 249
C.25 SFD90-$FDFF 249

C.26 $SDDCB00-$DDCBFF 250

LIST OF TABLES 283

C.27T $FDCBOO-$SFDCBFF o e 250
D.1 aci-adco 251
D2 add. 252
D3 adi-ani 252
D4 bit0-bit3 252
D5 bit4-bit 7 253
D.6 brlec-enz 253
D.7 cpder 253
D8 dex-im oo 254
D9 in-inx 254
DI0jc-jz . . . oo 254
D.111d (be),a-ld (iy+x),x o oo 255
D.121d (xx),a-ld a,xo 255
D.131d by(hl)-ld e,x « . o oo 255
D.14ld d,(hl)-ldex 256
D.151d hy(hl)-1d ixl,xo 256
D.161d iyh,a-ld sp,xx.o 256
D.A71da-mirror 257
Di18movaamovdm 257
D.19moveamovm, 257
D20mul-otir 258
D2lout-rc 258
D22resO-res3 259
D23resd-res7 259
D24ret-rpo 260
D25rr-rz 260
D.26sbb-scf 261
D27set O-set 3 261
D.28set 4-set 7 261

D.29setae-stc e 262

284 LIST OF TABLES

D.30sub-xthl 262

Index

access drive, 149

address, 26

attribute, 26

auxiliary input, 124
auxiliary input status, 125
auxiliary output, 124
auxiliary output status, 125
AUXIN, 169

AUXIST, 170

AUXOST, 170

AUXOUT, 169

BOOT, 167

call resident system extension, 155
chain to program, 152

clip window, 29, 43

close file, 131

compute file size, 147

CONIN, 169

CONOST, 170

CONOUT, 169

console input, 123

console output, 123
CONST, 168

delete file, 133

DEVINI, 168

DEVTBL, 167

direct BIOS calls, 154
direct console 1/0, 124
DOS_CATALOG, 181
DOS_FREE SPACE, 181
DOS_GET EOF, 182
DOS_GET_POSITION, 181
DOS_OPEN, 180
DRVTBL, 168

FLUSH, 173
flush buffers, 152
free blocks, 156
free drive, 149

get addr(alloc), 140

get addr(DPB parms), 143
get console mode, 163

get console status, 128

get date and time, 162

get disk free space, 151

get output delimiter, 164
get program return code, 163
get read-only vector, 141

get system control bock, 153
get user code, 143

HOME, 170

IDE_BANK, 184
IDE_BROWSER, 184
IDE_CAPACITY, 184
IDE_DOS_MAP, 180
IDE_DOS_MAPPING, 180
IDE_DOS_UNMAP, 180
IDE_GET_LFN, 184
IDE_PATH, 184
IDE_SNAPLOAD, 180
IDE_SWAP_EX, 180
IDE_SWAP_OPEN, 179

LIST, 169

list block, 165
list output, 124
LISTST, 169
load overlay, 155
lock record, 150

285

286 INDEX

make file, 137 SETBNK, 174
MOVE, 173 SETDMA, 171
MULTIO, 173 SETSEC, 171
SETTRK, 171
open file, 129 system reset, 122
palette, 5, 34 test and write record, 149
parse filename, 165 TIME, 175
print block, 165 transparency, 4, 27, 44
print string, 125 truncate file, 157
READ, 172 unlock record, 150

read console buffer, 125

read file date stamps and password mode,WBOOT’ 167
159 WRITE, 172

write file XFCB, 160

write protect disk, 141

write random, 145

write random with zero fill, 149
write sequential, 136

read random, 143
read sequential, 134
rename file, 138

reset disk system, 128
reset drive, 148
return ct-lrrent disk, 140 XMOVE, 174
return directory label data, 159

return login vector, 139

return serial number, 163

return version number, 128

scroll offset, 29

search for first, 132

search for next, 133
SECTRN, 173

SELDSK, 171

select disk, 129

SELMEM, 174

set BDOS error mode, 151
set console mode, 163

set date and time, 161

set default password, 162
set directory label, 158

set dma address, 140

set file attributes, 141

set multi-sector count, 150
set output delimiter, 164
set program return code, 163
set random record, 148

set system control bock, 153
set user code, 143

