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Abstract

Over the past decade, embeddings — numerical representations of
machine learning features used as input to deep learning models — have
become a foundational data structure in industrial machine learning
systems. TF-IDF, PCA, and one-hot encoding have always been key tools
in machine learning systems as ways to compress and make sense of
large amounts of textual data. However, traditional approaches were
limited in the amount of context they could reason about with increasing
amounts of data. As the volume, velocity, and variety of data captured
by modern applications has exploded, creating approaches specifically
tailored to scale has become increasingly important.

Google’s Word2Vec paper made an important step in moving from
simple statistical representations to semantic meaning of words. The
subsequent rise of the Transformer architecture and transfer learning, as
well as the latest surge in generative methods has enabled the growth
of embeddings as a foundational machine learning data structure. This
survey paper aims to provide a deep dive into what embeddings are,
their history, and usage patterns in industry.
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1 Introduction

Implementing deep learning models has become an increasingly important
machine learning strategy1 for companies looking to build data-driven prod-
ucts. In order to build and power deep learning models, companies collect and
feed hundreds of millions of terabytes of multimodal2 data into deep learning
models. As a result, embeddings — deep learning models’ internal represen-
tations of their input data — are quickly becoming a critical component of
building machine learning systems.

For example, they make up a significant part of Spotify’s item recom-
mender systems [27], YouTube video recommendations of what to watch [11],
and Pinterest’s visual search [31]. Even if they are not explicitly presented
to the user through recommendation system UIs, embeddings are also used
internally at places like Netflix to make content decisions around which shows
to develop based on user preference popularity.

Figure 1: Left to right: Products that use embeddings used to generate recommended items:
Spotify Radio, YouTube Video recommendations, visual recommendations at Pinterest, BERT
Embeddings in suggested Google search results

The usage of embeddings to generate compressed, context-specific repre-
sentations of content exploded in popularity after the publication of Google’s
Word2Vec paper [47].

1Check out the machine learning industrial view Matt Turck puts together every year, which
has exploded in size.

2Multimodal means a variety of data usually including text, video, audio, and more recently
as shown in Meta’s ImageBind, depth, thermal, and IMU.
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Figure 2: Embeddings papers in arXiv by month. It’s interesting to note the decline in
frequency of embeddings-specific papers, possibly in tandem with the rise of deep learning
architectures like GPT source

Building and expanding on the concepts in Word2Vec, the Transformer
[66] architecture, with its self-attention mechanism, a much more specialized
case of calculating context around a given word, has become the de-facto
way to learn representations of growing multimodal vocabularies, and its rise
in popularity both in academia and in industry has caused embeddings to
become a staple of deep learning workflows.

However, the concept of embeddings can be elusive because they’re neither
data flow inputs or output results - they are intermediate elements that live
within machine learning services to refine models. So it’s helpful to define
them explicitly from the beginning.

As a general definition, embeddings are data that has been transformed
into n-dimensional matrices for use in deep learning computations. The
process of embedding (as a verb):

• Transforms multimodal input into representations that are easier to
perform intensive computation on, in the form of vectors, tensors, or
graphs [51]. For the purpose of machine learning, we can think of
vectors as a list (or array) of numbers.

• Compresses input information for use in a machine learning task — the
type of methods available to us in machine learning to solve specific
problems — such as summarizing a document or identifying tags or
labels for social media posts or performing semantic search on a large
text corpus. The process of compression changes variable feature
dimensions into fixed inputs, allowing them to be passed efficiently
into downstream components of machine learning systems.

• Creates an embedding space that is specific to the data the embeddings
were trained on but that, in the case of deep learning representations,
can also generalize to other tasks and domains through transfer
learning — the ability to switch contexts — which is one of the
reasons embeddings have exploded in popularity across machine
learning applications

5

https://github.com/veekaybee/what_are_embeddings/blob/main/notebooks/fig_2_embeddings_papers.ipynb


What do embeddings actually look like? Here is one single embedding,
also called a vector, in three dimensions. We can think of this as a repre-
sentation of a single element in our dataset. For example, this hypothetical
embedding represents a single word "fly", in three dimensions. Generally, we
represent individual embeddings as row vectors.[

1 4 9
]

(1)

And here is a tensor, also known as a matrix3, which is a multidimensional
combination of vector representations of multiple elements. For example, this
could be the representation of "fly", and "bird."[

1 4 9
4 5 6

]
(2)

These embeddings are the output of the process of learning embeddings,
which we do by passing raw input data into a machine learning model. We
transform that multidimensional input data by compressing it, through the
algorithms we discuss in this paper, into a lower-dimensional space. The
result is a set of vectors in an embedding space.

Word
Sentence

Image

Multimodal data

[1, 4, 9]
[1, 4, 7]
[12, 0, 3]

Embedding Space

Algorithm

Figure 3: The process of embedding.

We often talk about item embeddings being in X dimensions, ranging
anywhere from 100 to 1000, with diminishing returns in usefulness somewhere
beyond 200-300 in the context of using them for machine learning problems4.
This means that each item (image, song, word, etc) is represented by a vector
of length X, where each value is a coordinate in an X-dimensional space.

We just made up an embedding for "bird", but let’s take a look at what a
real one for the word "hold" would look like in the quote, as generated by the
BERT deep learning model,

"Hold fast to dreams, for if dreams die, life is a broken-winged bird that
cannot fly." — Langston Hughes

We’ve highlighted this quote because we’ll be working with this sentence
as our input example throughout this text.

3The difference between a matrix and a tensor is that it’s a matrix if you’re doing linear
algebra and a tensor if you’re an AI researcher.

4Embedding size is tunable as a hyperparameter but so far there have only been a few
papers on optimal embedding size, with most of the size of embeddings set through magic and
guesswork
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1 import torch
2 from transformers import BertTokenizer, BertModel
3

4 # Load pre-trained model tokenizer (vocabulary)
5 tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
6

7 text = """Hold fast to dreams, for if dreams die, life is a broken-winged bird
that cannot fly."""↪→

8

9 # Tokenize the sentence with the BERT tokenizer.
10 tokenized_text = tokenizer.tokenize(text)
11

12 # Print out the tokens.
13 print (tokenized_text)
14

15 ['[CLS]', 'hold', 'fast', 'to', 'dreams', ',', 'for', 'if', 'dreams', 'die',
',', 'life', 'is', 'a', 'broken', '-', 'winged', 'bird', 'that', 'cannot',
'fly', '.', '[SEP]']

↪→

↪→

16

17 # BERT code truncated to show the final output, an embedding
18

19 [tensor([-3.0241e-01, -1.5066e+00, -9.6222e-01, 1.7986e-01, -2.7384e+00,
20 -1.6749e-01, 7.4106e-01, 1.9655e+00, 4.9202e-01,

-2.0871e+00,↪→

21 -5.8469e-01, 1.5016e+00, 8.2666e-01, 8.7033e-01,
8.5101e-01,↪→

22 5.5919e-01, -1.4336e+00, 2.4679e+00, 1.3920e+00,
-3.9291e-01,↪→

23 -1.2054e+00, 1.4637e+00, 1.9681e+00, 3.6572e-01,
3.1503e+00,↪→

24 -4.4693e-01, -1.1637e+00, 2.8804e-01, -8.3749e-01,
1.5026e+00,↪→

25 -2.1318e+00, 1.9633e+00, -4.5096e-01, -1.8215e+00,
3.2744e+00,↪→

26 5.2591e-01, 1.0686e+00, 3.7893e-01, -1.0792e-01,
5.1342e-01,↪→

27 -1.0443e+00, 1.7513e+00, 1.3895e-01, -6.6757e-01,
-4.8434e-01,↪→

28 -2.1621e+00, -1.5593e+01, 1.5249e+00, 1.6911e+00,
-1.2916e+00,↪→

29 1.2339e+00, -3.6064e-01, -9.6036e-01, 1.3226e+00,
1.6427e+00,↪→

30 1.4588e+00, -1.8806e+00, 6.3620e-01, 1.1713e+00,
1.1050e+00, ...↪→

31 2.1277e+00])
32

Figure 4: Analyzing Embeddings with BERT. See full notebook source

We can see that this embedding is a PyTorch tensor object, a multidimen-
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sional matrix containing multiple levels of embeddings, and that’s because
in BERT’s embedding representation, we have 13 different layers. One em-
bedding layer is computed for each layer of the neural network. Each level
represents a different view of our given token — or simply a sequence of
characters. We can get the final embedding by pooling several layers, details
we’ll get into as we work our way up to understanding embeddings generated
using BERT.

When we create an embedding for a word, sentence, or image that rep-
resents the artifact in the multidimensional space, we can do any number
of things with this embedding. For example, for tasks that focus on content
understanding in machine learning, we are often interested in comparing two
given items to see how similar they are. Projecting text as a vector allows us
to do so with mathematical rigor and compare words in a shared embedding
space.

x

y

bird

dog

fly

Figure 5: Projecting words into a shared embedding space

Figure 6: Embeddings in the context of an application.

Engineering systems based on embeddings can be computationally ex-
pensive to build and maintain [61]. The need to create, store, and manage
embeddings has also recently resulted in the explosion of an entire ecosystem
of related products. For example, the recent rise in the development of vector
databases to facilitate production-ready use of nearest neighbors semantic
queries in machine learning systems5, and the rise of embeddings as a service6.

As such, it’s important to understand their context both as end-consumers,
product management teams, and as developers who work with them. But in
my deep-dive into the embeddings reference material, I found that there are
two types of resources: very deeply technical academic papers, for people who

5For a survey of the vector database space today, refer to this article
6Embeddings now are a key differentiator in pricing between on-demand ML services
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are already NLP experts, and surface-level marketing spam blurbs for people
looking to buy embeddings-based tech, and that neither of these overlap in
what they cover.

In Systems Thinking, Donella Meadows writes, “You think that because
you understand ’one’ that you must therefore understand ’two’ because one
and one make two. But you forget that you must also understand ’and.’"
[45] In order to understand the current state of embedding architectures and
be able to decide how to build them, we must understand how they came
to be. In building my own understanding, I wanted a resource that was
technical enough to be useful enough to ML practitioners, but one that also
put embeddings in their correct business and engineering contexts as they
become more often used in ML architecture stacks. This is, hopefully, that text.

In this text, we’ll examine embeddings from three perspectives, working
our way from the highest level view to the most technical. We’ll start with
the business context, followed by the engineering implementation, and finally
look at the machine learning theory, focusing on the nuts and bolts of how
they work. On a parallel axis, we’ll also travel through time, surveying the
earliest approaches and moving towards modern embedding approaches.

In writing this text, I strove to balance the need to have precise technical
and mathematical definitions for concepts and my desire to stay away from
explanations that make people’s eyes glaze over. I’ve defined all technical
jargon when it appears for the first time to build context. I include code as
a frame of reference for practitioners, but don’t go as deep as a code tutorial
would7. So, it would be helpful for the reader to have some familiarity with
programming and machine learning basics, particularly after the sections that
discuss business context. But, ultimately the goal is to educate anyone who is
willing to sit through this, regardless of level of technical understanding.

It’s worth also mentioning what this text does not try to be: it does not try
to explain the latest advancements in GPT and generative models, it does not
try to explain transformers in their entirety, and it does not try to cover all
of the exploding field of vector databases and semantic search. I’ve tried my
best to keep it simple and focus on really understanding the core concept of
embeddings.

2 Recommendation as a business problem

Let’s step back and look at the larger context with a concrete example before
diving into implementation details. Let’s build a social media network, Flutter,
the premier social network for all things with wings. Flutter is a web and
mobile app where birds can post short snippets of text, videos, images, and
sounds, to let other birds, insects and bats in the area know what’s up. Its
business model is based on targeted advertising, and its app architecture
includes a "home" feed based on birds that you follow, made up of small
pieces of multimedia content called “flits”, which can be either text, videos,
or photos. The home feed itself is by default in reverse chronological order

7In other words, I wanted to straddle the "explanation" and "reference" quadrants of the
Diátaxis framework
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that is curated by the user. But we also would like to offer personalized,
recommended flits so that the user finds interesting content on our platform
that they might have not known about before.

Figure 7: Flutter’s content timeline in a social feed with a blend of organic followed content,
advertising, and recommendations.

How do we solve the problem of what to show in the timeline here so that
our users find the content relevant and interesting, and balance the needs of
our advertisers and business partners?

In many cases, we can approach engineering solutions without involving
machine learning. In fact, we should definitely start without it [76] because
machine learning adds a tremendous amount of complexity to our working
application [57]. In the case of the Flutter home feed, though, machine learning
forms a business-critical function part of the product offering. From the
business product perspective, the objective is to offer Flutter’s users content
that is relevant8, interesting, and novel so they continue to use the platform.
If we do not build discovery and personalization into our content-centric
product, Flutter users will not be able to discover more content to consume
and will disengage from the platform.

This is the case for many content-based businesses, all of which have feed-
like surface areas for recommendations, including Netflix, Pinterest, Spotify,
and Reddit. It also covers e-commerce platforms, which must surface relevant

8The specific definition of a relevant item in the recommendations space varies and is under
intense academic and industry debate, but generally it means an item that is of interest to the
user
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items to the user, and information retrieval platforms like search engines,
which must provide relevant answers to users upon keyword queries. There
is a new category of hybrid applications involving question-and-answering
in semantic search contexts that is arising as a result of work around the GPT
series of models, but for the sake of simplicity, and because that landscape
changes every week, we’ll stick to understanding the fundamental underlying
concepts.

In subscription-based platforms9, there is clear business objective that’s
tied directly to the bottom line, as outlined in this 2015 paper [64] about
Netflix’s recsys:

The main task of our recommender system at Netflix is to help
our members discover content that they will watch and enjoy
to maximize their long-term satisfaction. This is a challenging
problem for many reasons, including that every person is unique,
has a multitude of interests that can vary in different contexts, and
needs a recommender system most when they are not sure what
they want to watch. Doing this well means that each member gets
a unique experience that allows them to get the most out of Netflix.
As a monthly subscription service, member satisfaction is tightly
coupled to a person’s likelihood to retain with our service, which
directly impacts our revenue.

Knowing this business context, and given that personalized content is
more relevant and generally gets higher rates of engagement [30] than non-
personalized forms of recommendation on online platforms,10 how and why
might we use embeddings in machine learning workflows in Flutter to show
users flits that are interesting to them personally? We need to first understand
how web apps work and where embeddings fit into them.

2.1 Building a web app

Most of the apps we use today — Spotify, Gmail, Reddit, Slack, and Flutter
— are all designed based on the same foundational software engineering
patterns. They are all apps available on web and mobile clients. They all have
a front-end where the user interacts with the various product features of the
applications, an API that connects the front-end to back-end elements, and a
database that processes data and remembers state.

9In ad-based services, the line between retention and revenue is a bit murkier, and we have
often what’s known as a multi-stakeholder problem, where the actual optimized function is a
balance between meeting the needs of the user and meeting the needs of the advertiser [75]. In
real life, this can often result in a process of enshittification [15] of the platform that leads to
extremely suboptimal end-user experiences. So, when we create Flutter, we have to be very
careful to balance these concerns, and we’ll also assume for the sake of simplification that
Flutter is a Good service that loves us as users and wants us to be happy.

10For more, see this case study on personalized recommendations as well as the intro section
of this paper which covers many personalization use-cases.
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As an important note, features have many different definitions in machine
learning and engineering. In this specific case, we mean collections of
code that make up some front-end element, such as a button or a panel of
recommendations. We’ll refer to these as product features, in contrast with
machine learning features, which are input data into machine learning
models.

This application architecture is commonly known as model-view-
controller pattern [20], or in common industry lingo, a CRUD app, named for
the basic operations that its API allows to manage application state: create,
read, update, and delete.

Figure 8: Typical CRUD web app architecture

When we think of structural components in the architectures of these ap-
plications, we might think first in terms of product features. In an application
like Slack, for example, we have the ability to post and read messages, man-
age notifications, and add custom emojis. Each of these can be seen as an
application feature. In order to create features, we have to combine common
elements like databases, caches, and web services. All of this happens as
the client talks to the API, which talks to the database to process data. At a
more granular, program-specific level, we might think of foundational data
structures like arrays or hash maps, and lower still, we might think about
memory management and network topologies. These are all foundational
elements of modern programming.

At the feature level, though, we see that it not only includes the typical
CRUD operations, such as the ability to post and read Slack messages, but
also elements that are more than operations that alter database state. Some
features such as personalized channel suggestions, returning relevant results
through search queries, and predicting Slack connection invites necessitates
the use of machine learning.

12

https://slack.engineering/personalized-channel-recommendations-in-slack/
https://slack.engineering/search-at-slack/
https://slack.engineering/search-at-slack/
https://slack.engineering/email-classification/


Figure 9: CRUD App with Machine learning service

2.2 Rules-based systems versus machine learning

To understand where embeddings fit into these systems, it first makes sense to
understand where machine learning fits in at Flutter, or any given company,
as a whole. In a typical consumer company, the user-facing app is made up
of product features written in code, typically written as services or parts of
services. To add a new web app feature, we write code based on a set of
business logic requirements. This code acts on data in the app to develop our
new feature.

In a typical data-centric software development lifecycle, we start with the
business logic. For example, let’s take the ability to post messages. We’d like
users to be able to input text and emojis in their language of choice, have the
messages sorted chronologically, and render correctly on web and mobile.
These are the business requirements. We use the input data, in this case, user
messages, and format them correctly and sort chronologically, at low latency,
in the UI.

Figure 10: A typical application development lifecycle

Machine learning-based systems are typically also services in the backend
of web applications. They are integrated into production workflows. But, they
process data much differently. In these systems, we don’t start with business
logic. We start with input data that we use to build a model that will suggest
the business logic for us. For more on the specifics of how to think about these
data-centric engineering systems, see Kleppmann[35].

This requires thinking about application development slightly differently,
and when we write an application that includes machine learning models as
input, however, we’re inverting the traditional app lifecycle. What we have
instead, is data plus our desired outcome. The data is combined into a model,
and it is this model which instead generates our business logic that builds
features.

Figure 11: ML Development lifecycle
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In short, the difference between programming and machine learning de-
velopment is that we are not generating answers through business rules, but
business rules through data. These rules are then re-incorporated into the
application.

Figure 12: Generating answers via machine learning. The top chart shows a classical
programming approach with rules and data as inputs, while the bottom chart shows a machine
learning approach with data and answers as inputs. [8]

As an example, with Slack, for the channel recommendations product
feature, we are not hard-coding a list of channels that need to be called from
the organization’s API. We are feeding in data about the organization’s users
(what other channels they’ve joined, how long they’ve been users, what
channels the people they’ve interacted the most with Slack in), and building a
model on that data that recommends a non-deterministic, personalized list of
channels for each user that we then surface through the UI.
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Figure 13: Traditional versus ML architecture and infra

2.3 Building a web app with machine learning

All machine learning systems can be examined through how they accomplish
these four steps. When we build models, our key questions should be, "what
kind of input do we have and how is it formatted", and "what do we get as a
result." We’ll be asking this for each of the approaches we look at. When we
build a machine learning system, we start by processing data and finish by
serving a learned model artifact.

The four components of a machine learning system are11:

• Input data - processing data from a database or streaming from a
production application for use in modeling

• Feature Engineering and Selection - The process of examining the
data and cleaning it to pick features. In this case, we mean features
as attributes of any given element that we use as inputs into machine
learning. Examples of features are: user name, geographic location,
how many times they’ve clicked on a button for the past 5 days, and
revenue. This piece always takes the longest in any given machine
learning system, and is also known as finding representations [4] of
the data that best fit the machine learning algorithm. This is where,
in the new model architectures, we use embeddings as input.

• Model Building - We select the features that are important and train
our model, iterating on different performance metrics over and over
again until we have an acceptable model we can use. Embeddings
are also the output of this step that we can use in other, downstream
steps.

11There are infinitely many layers of horror in ML systems [37]. These are still the founda-
tional components.
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• Model Serving - Now that we have a model we like, we serve it to
production, where it hits a web service, potentially cache, and our
API where it then propagates to the front-end for the user to consume
as part of our web app

Figure 14: CRUD app with ML

Within machine learning, there are many approaches we can use to fit
different tasks. Machine learning workflows that are most effective are formu-
lated as solutions to both a specific business need and a machine learning task.
Tasks can best be thought of as approaches to modeling within the categorized
solution space. For example, learning a regression model is a specific case
of a task. Others include clustering, machine translation, anomaly detection,
similarity matching, or semantic search. The three highest-level types of ML
tasks are supervised, where we have training data that can tell us whether the
results the model predicted are correct according to some model of the world.
The second is unsupervised, where there is not a single ground-truth answer.
An example here is clustering of our customer base. A clustering model can
detect patterns in your data but won’t explicitly label what those patterns are.
The third is reinforcement learning which is separate from these two cate-
gories and formulated as a game theory problem: we have an agent moving
through an environment and we’d like to understand how to optimally move
them through a given environment using explore-exploit techniques. We’ll
focus on supervised learning, with a look at unsupervised learning with PCA
and Word2Vec.
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Figure 15: Machine learning task solution space and model families

2.4 Formulating a machine learning problem

As we saw in the last section, machine learning is a process that takes data
as input to produce rules for how we should classify something or filter it
or recommend it, depending on the task at hand. In any of these cases, for
example, to generate a set of potential candidates, we need to construct a
model.

A machine learning model is a set of instructions for generating a given
output from data. The instructions are learned from the features of the input
data itself. For Flutter, an example of a model we’d like to build is a candidate
generator that picks flits similar to flits our birds have already liked, because
we think users will like those, too. For the sake of building up the intuition
for a machine learning workflow, let’s pick a super-simple example that is not
related to our business problem, linear regression, which gives us a continuous
variable as output in response.

For example, let’s say, given the number of posts a user has made and how
many posts they’ve liked, we’d like to predict how many days they’re likely to
continue to stay on Flutter. For traditional supervised modeling approaches
using tabular data, we start with our input data, or a corpus as it’s generally
known in machine learning problems that deal with text in the field known as
NLP (natural language processing).

We’re not doing NLP yet, though, so our input data may look something
like this, where we have a UID (userid) and some attributes of that user, such
as the number of times they’ve posted and number of posts they’ve liked.
These are our machine learning features.
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Table 1: Tabular Input Data for Flutter Users

bird_id bird_posts bird_likes
012 2 5
013 0 4
056 57 70
612 0 120

We’ll need part of this data to train our model, part of it to test the accuracy
of the model we’ve trained, and part to tune meta-aspects of our model. These
are known as hyperparameters.

We take two parts of this data as holdout data that we don’t feed into the
model. The first part, the test set, we use to validate the final model on data
it’s never seen before. We use the second split, called the validation set, to
check our hyperparameters during the model training phase. In the case of
linear regression, there are no true hyperparameters, but we’ll need to keep in
mind that we will need to tune the model’s metadata for more complicated
models.

Let’s assume we have 100 of these values. A usual accepted split is to use
80% of data for training and 20% for testing. The reasoning is we want our
model to have access to as much data as possible so it learns a more accurate
representation.

In general, our goal is to feed our input into the model, through a function
that we pick, and get some predicted output, f (X) → y.

Figure 16: How inputs map to outputs in ML functions [34]

For our simple dataset, we can use the linear regression equation:

y = x1β1 + x2β2 + ε (3)

This tells us that the output, y, can be predicted by two input variables, x1

(bird posts) and x2 (bird likes) with their given weights, β1 and β2, plus an
error term ε, or the distance between each data point and the regression line
generated by the equation. Our task is to find the smallest sum of squared
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differences between each point and the line, in other words to minimize the
error, because it will mean that, at each point, our predicted y is as close to our
actual y as we can get it, given the other points.

y = x1β1 + x2β2 + ε (4)

The heart of machine learning is this training phase, which is the process of
finding a combination of model instructions and data that accurately represent
our real data, which, in supervised learning, we can validate by checking the
correct "answers" from the test set.

Figure 17: The cycle of machine learning model development

As the first round of training starts, we have our data. We train — or
build — our model by initializing it with a set of inputs, X. These are from the
training data. β1 and β2 are either initialized by setting to zero or initialized
randomly (depending on the model, different approaches work best), and we
calculate ŷ, our predicted value for the model. ϵ is derived from the data and
the estimated coefficients once we get an output.

y = 2β1 + 5β2 + ε (5)

How do we know our model is good? We initialize it with some set of
values, weights, and we iterate on those weights, usually by minimizing a cost
function. The cost function is a function that models the difference between
our model’s predicted value and the actual output for the training data. The
first output may not be the most optimal, so we iterate over the model space
many times, optimizing for the specific metric that will make the model as
representative of reality as possible and minimize the difference between the
actual and predicted values. So in our case, we compare ŷ to y. The average
squared difference between an observation’s actual and predicted values is
the cost, otherwise known as MSE - mean squared error.

MSE =
1
N

n

∑
i=1

(yi − (mxi + b))2 (6)

We’d like to minimize this cost, and we do so with gradient descent. When
we say that the model learns, we mean that we can learn what the correct
inputs into a model are through an of iterative process where we feed the
model data, evaluate the output, and to see if the predictions it generates
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improve through the process of gradient descent. We’ll know because our loss
should incrementally decrease in every training iteration.

We have finally trained our model. Now, we test the model’s predictions
on the 20 values that we’ve used as a hold-out set; i.e. the model has not seen
these before and we can confidently assume that they won’t influence the
training data. We compare how many elements of the hold-out set the model
was able to predict correctly to see what the model’s accuracy was.

2.4.1 The Task of Recommendations

We just saw a simple example of machine learning as it relates to predicting
continuous response variables. When our business question is, "What would
be good content to show our users," we are facing the machine learning task for
recommendation. Recommender systems are systems set up for information
retrieval, a field closely related to NLP that’s focused on finding relevant in-
formation in large collections of documents. The goal of information retrieval
is to synthesize large collections of unstructured text documents. Within infor-
mation retrieval, there are two complementary solutions in how we can offer
users the correct content in our app: search, and recommendations.

Search is the problem of directed [17] information seeking, i.e. the user
offers the system a specific query and would like a set of refined results.
Search engines at this point are a well-established traditional solution in
the space.

Recommendation is a problem where "man is the query." [58] Here,
we don’t know what the person is looking for exactly, but we would like
to infer what they like, and recommend items based on their learned tastes
and preferences.

The first industrial recommender systems were created to filter messages
in email and newsgroups [22] at the Xerox Palo Alto Research Center based
on a growing need to filter incoming information from the web. The most
common recommender systems today are those at Netflix, YouTube, and other
large-scale platforms that need a way to surface relevant content to users.

The goal of recommender systems is surface items that are relevant to the
user. Within the framework of machine learning approaches for recommenda-
tion, the main machine learning task is to determine which items to show to a
user in a given situation. [5]. There are several common ways to approach the
recommendation problem.

• Collaborative filtering - The most common approach for creating
recommendations is to formulate our data as a problem of finding
missing user-item interactions in a given set of user-item interaction
history. We start by collecting either explicit (ratings) data or implicit
user interaction data like clicks, pageviews, or time spent on items,
and compute. The simplest form of interactions are neighborhood
models, where ratings are predicted initially by finding users similar
to our given target user. We use similarity functions to compute the
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closeness of users. Another common approach is using methods
such matrix factorization, the process of representing users and
items in a feature matrix made up of low-dimensional factor vectors,
which in our case, are also known as embeddings, and learning those
feature vectors through the process of minimizing a cost function.
This process can be thought of as similar to Word2Vec [43], a deep
learning model which we’ll discuss in depth in this document. There
are many different approaches to collaborative filtering, including
matrix factorization and factorization machines.

• Content filtering - This approach uses metadata available about our
items (for example in movies or music, the title, year released, genre,
and so on) as initial or additional features input into models and
work well when we don’t have much information about user activ-
ity, although they are often used in combination with collaborative
filtering approaches. Many embeddings architectures fall into this
category since they help us model the textual features for our items.

• Learn to Rank - Learn to rank methods focus on ranking items in
relation to each other based on a known set of preferred rankings
and the error is the number of cases when pairs or lists of items
are ranked incorrectly. Here, the problem is not presenting a single
item, but a set of items and how they interplay. This step normally
takes place after candidate generation, in a filtering step, because it’s
computationally expensive to rank extremely large lists.

• Neural Recommendations - The process of using neural networks to
capture the same relationships that matrix factorization does without
explicitly having to create a user/item matrix and based on the shape
of the input data. This is where deep learning networks, and recently,
large language models, come into play. Examples of deep learning
architectures used for recommendation include Word2Vec and BERT,
which we’ll cover in this document, and convolutional and recurrent
neural networks for sequential recommendation (such as is found
in music playlists, for example). Deep learning allows us to better
model content-based recommendations and give us representations
of our items in an embedding space. [73]

Recommender systems have evolved their own unique architectures12,
and they usually include constructing a four-stage recommender system that’s
made up of several machine learning models, each of which perform a differ-
ent machine learning task.

Figure 18: Recommender systems as a machine learning problem

12For a good survey on the similarities and difference between search and recommendations,
read this great post on system design
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• Candidate Generation - First, we ingest data from the web app. This
data goes into the initial piece, which hosts our first-pass model
generating candidate recommendations. This is where collaborative
filtering takes place, and we whittle our list of potential candidates
down from millions to thousands or hundreds.

• Ranking - Finally, we need a way to order the filtered list of recom-
mendations based on what we think the user will prefer the most, so
the next stage is ranking, and then we serve them out in the timeline
or the ML product interface we’re working with.

• Filtering - Once we have a generated list of candidates, we want to
continue to filter them, using business logic (i.e. we don’t want to
see NSFW content, or items that are not on sale, for example.). This
is generally a heavily heuristic-based step.

• Retrieval - This is the piece where the web application usually hits
a model endpoint to get the final list of items served to the user
through the product UI.

Databases have become the fundamental tool in building backend in-
frastructure that performs data lookups. Embeddings have become similar
building blocks in the creation of many modern search and recommendation
product architectures. Embeddings are a type of machine learning feature —
or model input data — that we use first as input into the feature engineering
stage, and the first set of results that come from our candidate generation
stage, that are then incorporated into downstream processing steps of ranking
and retrieval to produce the final items the user sees.

2.4.2 Machine learning features

Now that we have a high-level conceptual view of how machine learning and
recommender systems work, let’s build towards a candidate generation model
that will offer relevant flits.

Let’s start by modeling a traditional machine learning problem and con-
trast it with our NLP problem. For example, let’s say that one of our business
problems is predicting whether a bird is likely to continue to stay on Flutter or
to churn13 — disengage and leave the platform.

When we predict churn, we have a given set of machine learning feature
inputs for each user and a final binary output of 1 or 0 from the model, 1 if the
bird is likely to churn, or 0 if the user is likely to stay on the platform.

We might have the following inputs:

• How many posts the bird has clicked through in the past month (we’ll
call this bird_posts in our input data)

• The geographical location of the bird from the browser headers
(bird_geo)

• How many posts the bird has liked over the past month (bird_likes)

13An extremely common business problem to solve in almost every industry where either
customer population or subscription based on revenues is important
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Table 2: Tabular Input Data for Flutter Users

bird_id bird_posts bird_geo bird_likes
012 2 US 5
013 0 UK 4
056 57 NZ 70
612 0 UK 120

We start by selecting our model features and arranging them in tabular
format. We can formulate this data as a table (which, if we look closely, is also
a matrix) based on rows of the bird id and our bird features.

Tabular data is any structured data. For example, for a given Flutter user
we have their user id, how many posts they’ve liked, how old the account
is, and so on. This approach works well for what we consider traditional
machine learning approaches which deal with tabular data. As a general rule,
the creation of the correct formulation of input data is perhaps the heart of
machine learning. I.e. if we have bad input, we will get bad output. So in
all cases, we want to spend our time putting together our input dataset and
engineering features very carefully.

These are all discrete features that we can feed into our model and learn
weights from, and is fairly easy as long as we have numerical features. But,
something important to note here is that, in our bird interaction data, we have
both numerical and textual features (bird geography). So what do we do with
these textual features? How do we compare "US" to "UK"?

The process of formatting data correctly to feed into a model is called fea-
ture engineering. When we have a single continuous, numerical feature, like
“the age of the flit in days”, it’s easy to feed these features into a model. But,
when we have textual data, we need to turn it into numerical representations
so that we can compare these representations.

2.5 Numerical Feature Vectors

Within the context of working with text in machine learning, we represent
features as numerical vectors. We can think of each row in our tabular feature
data as a vector. And a collection of features, or our tabular representation,
is a matrix. For example, in the vector for our first user, [012, 2, 'US', 5],
we can see that this particular value is represented by four features. When
we create vectors, we can run mathematical computations over them and use
them as inputs into ML models in the numerical form we require.

Mathematically, vectors are collections of coordinates that tell us where
a given point is in space among many dimensions. For example, in two
dimensions, we have a point [2, 5], representing bird_posts and bird_likes.

In three dimensions, with three features including the bird id, we would
have a vector [

12 2 5
]

(7)

which tells us where that user falls on all three axes.
But how do we represent "US" or "UK" in this space? Because modern

models converge by performing operations on matrices [39], we need to
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Figure 19: Projecting a vector into the 3d space

encode geography as some sort of numerical value so that the model can
calculate them as inputs14. So, once we have a combination of vectors, we can
compare it to other points. So in our case, each row of data tells us where to
position each bird in relation to any other given bird based on the combination
of features. And that’s really what our numerical features allow us to do.

2.6 From Words to Vectors in Three Easy Pieces

In "Operating Systems: Three Easy Pieces", the authors write, "Like any system
built by humans, good ideas accumulated in operating systems over time,
as engineers learned what was important in their design." [3] Today’s large
language models were likewise built on hundreds of foundational ideas over
the course of decades. There are, similarly, several fundamental concepts that
make up the work of transforming words to numerical representations.

These show up over and over again, in every deep learning architecture
and every NLP-related task15:

• Encoding - We need to represent our non-numerical, multimodal
data as numbers so we can create models out of them. There are
many different ways of doing this.

• Vectors - we need a way to store the data we have encoded and
have the ability to perform mathematical functions in an optimized
way on them. We store encodings as vectors, usually floating-point
representations.

• Lookup matrices - Often times, the end-result we are looking for
from encoding and embedding approaches is to give some approxi-
mation about the shape and format of our text, and we need to be
able to quickly go from numerical to word representations across
large chunks of text. So we use lookup tables, also known as hash

14There are some models, specifically decision trees, where you don’t need to do text encoding
because the tree learns the categorical variables out of the box, however implementations differ,
for example the two most popular implementations, scikit-learn and XGBoost [1], can’t.

15When we talk about tasks in NLP-based machine learning, we mean very specifically, what
the machine learning problem is formulated to do. For example, we have the task of ranking,
recommendation, translation, text summarization, and so on.

24



tables, also known as attention, to help us map between the words
and the numbers.

As we go through the historical context of embeddings, we’ll build our
intuition from encoding to BERT and beyond16. What we’ll find as we go
further into the document is that the explanations for each concept get succes-
sively shorter, because we’ve already done the hard work of understanding
the building blocks at the beginning.

Figure 20: Pyramid of fundamental concepts building to BERT

3 Historical Encoding Approaches

Compressing content into lower dimensions for compact numerical repre-
sentations and calculations is not a new idea. For as long as humans have
been overwhelmed by information, we’ve been trying to synthesize it so that
we can make decisions based on it. Early approaches have included one-hot
encoding, TF-IDF, bag-of-words, LSA, and LDA.

The earlier approaches were count-based methods. They focused on count-
ing how many times a word appeared relative to other words and generating
encodings based on that. LDA and LSA can be considered statistical ap-
proaches, but they are still concerned with inferring the properties of a dataset
through heuristics rather than modeling. Prediction-based approaches came
later and instead learned the properties of a given text through models such
as support vector machines, Word2Vec, BERT, and the GPT series of models,
all of which use learned embeddings instead.

16Original diagram from this excellent guide on BERT
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Figure 21: Embedding Method Solution Space

A Note on the Code In looking at these approaches programmatically,
we’ll start by using scikit-learn, the de-facto standard machine learning
library for smaller datasets, with some implementations in native Python
for clarity in understanding functionality that scikit-learn wraps. As we
move into deep learning, we’ll move to PyTorch, a deep learning library
that’s quickly becoming industry-standard for deep learning implemen-
tation. There are many different ways of implementing the concepts we
discuss here, these are just the easiest to illustrate using Python’s ML
lingua franca libraries.

3.1 Early Approaches

The first approaches to generating textual features were count-based, relying
on simple counts or high-level understanding of statistical properties: they
were descriptive instead of models, which are predictive and attempt to guess
a value based on a set of input values. The first methods were encoding
methods, a precursor to embedding. Encoding is often a process that still
happens as the first stage of data preparation for input into more complex
modeling approaches. There are several methods to create text features using
a process known as encoding so that we can map the geography feature into
the vector space:

• Ordinal encoding
• Indicator encoding
• One-Hot encoding

In all these cases, what we are doing is creating a new feature that maps
to the text feature column but is a numerical representation of the variable so
that we can project it into that space for modeling purposes. We’ll motivate
these examples with simple code snippets from scikit-learn, the most common
library for demonstrating basic ML concepts. We’ll start with count-based
approaches.

3.2 Encoding

Ordinal encoding Let’s again come back to our dataset of flits. We encode our
data using sequential numbers. For example, "1" is "finch", "2" is "bluejay" and
so on. We can use this method only if the variables have a natural ordered
relationship to each other. For example, in this case "bluejay" is not "more"
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than "finch" and so would be incorrectly represented in our model. The case is
the same, if, in our flit data, we encode "US" as 1 and "UK" as 2.

Table 3: Bird Geographical Location Encoding

bird_id bird_posts bird_geo bird_likes enc_bird_geo
012 2 US 5 2
013 0 UK 4 1
056 57 NZ 70 0
612 0 UK 120 1

1 from sklearn.preprocessing import OrdinalEncoder
2

3 data = [['US'], ['UK'], ['NZ']]
4 >>> print(data)
5 [['US']
6 ['UK']
7 ['NZ']]
8

9 # our label features
10 encoder = OrdinalEncoder()
11 result = encoder.fit_transform(data)
12 >>> print(result)
13 [[2.]
14 [1.]
15 [0.]]

Figure 22: Ordinal Encoding in Scikit-Learn source

3.2.1 Indicator and one-hot encoding

Indicator encoding, given n categories (i.e. "US", "UK", and "NZ"), encodes
the variables into n − 1 categories, creating a new feature for each category.
So, if we have three variables, indicator encoding encodes into two indicator
variables. Why would we do this? If the categories are mutually exclusive,
as they usually are in point-in-time geolocation estimates, if someone is in
the US, we know for sure they’re not in the UK and not in NZ, so it reduces
computational overhead.

If we instead use all the variables and they are very closely correlated,
there is a chance we’ll fall into something known as the indicator variable
trap. We can predict one variable from the others, which means we no longer
have feature independence. This generally isn’t a risk for geolocation since
there are more than 2 or 3 and if you’re not in the US, it’s not guaranteed that
you’re in the UK. So, if we have US = 1, UK = 2, and NZ = 3, and prefer more
compact representations, we can use indicator encoding. However, many
modern ML approaches don’t require linear feature independence and use L1
regularization17 to prune feature inputs that don’t minimize the error, and as

17Regularization is a way to prevent our model from overfitting. Overfitting means our
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such only use one-hot encoding.
One-hot encoding is the most commonly-used of the count-based methods.

This process creates a new variable for each feature that we have. Everywhere
the element is present in the sentence, we place a “1” in the vector. We are
creating a mapping of all the elements in the feature space, where 0 indicates a
non-match and 1 indicates a match, and comparing how similar those vectors
are.

1 from sklearn.preprocessing import OneHotEncoder
2 import numpy as np
3

4 enc = OneHotEncoder(handle_unknown='ignore')
5 data = np.asarray([['US'], ['UK'], ['NZ']])
6 enc.fit(data)
7 enc.categories_
8 >>> [array(['NZ', 'UK', 'US'], dtype='<U2')]
9 onehotlabels = enc.transform(data).toarray()

10 onehotlabels
11 >>>
12 array([[0., 0., 1.],
13 [0., 1., 0.],
14 [1., 0., 0.]])

Figure 23: One-Hot Encoding in scikit-learnsource

Table 4: Our one-hot encoded data with labels

bird_id US UK NZ
012 1 0 0
013 0 1 0
056 0 0 1

Now that we’ve encoded our textual features as vectors, we can feed them
into the model we’re developing to predict churn. The function we’ve been
learning will minimize the loss of the model, or the distance between the
model’s prediction and the actual value, by predicting correct parameters for
each of these features. The learned model will then return a value from 1
to 0 that is a probability that the event, either churn or no-churn, has taken
place, given the input features of our particular bird. Since this is a supervised
model, we then evaluate this model for accuracy by feeding our test data
into the model and comparing the model’s prediction against the actual data,
which tells us whether the bird has churned or not.

What we’ve built is a standard logistic regression model. Generally these
days the machine learning community has converged on using gradient-
boosted decision tree methods for dealing with tabular data, but we’ll see

model can exactly predict outcomes based on the training data, but it can’t learn new inputs
that we show it, which means it can’t generalize
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that neural networks build on simple linear and logistic regression models to
generate their output, so it’s a good starting point.

Embeddings as larger feature inputs

Once we have encoded our feature data, we can use this input for any type
of model that accepts tabular features. In our machine learning task, we
were looking for output that indicated whether a bird was likely to leave the
platform based on their location and some usage data. Now, we’d like to focus
specifically on surfacing flits that are similar to other flits the user has already
interacted with so we’ll need feature representations of either/or our users or
our content.

Let’s go back to the original business question we posed at the beginning
of this document: how do we recommend interesting new content for Flutter
users given that we know that past content they consumed (i.e. liked and
shared)?

In the traditional collaborative filtering approach to recommendations,
we start by constructing a user-item matrix based on our input data that, when
factored, gives us the latent properties of each flit and allows us to recommend
similar ones.

In our case, we have Flutter users who might have liked a given flit. What
other flits would we recommend given the textual properties of that one?

Here’s an example. We have a flit that our bird users liked.

"Hold fast to dreams, for if dreams die, life is a broken-winged bird that
cannot fly."

We also have other flits we may or may not want to surface in our bird’s
feed.

"No bird soars too high if he soars with his own wings."

“A bird does not sing because it has an answer, it sings because it has a
song.”

How would we turn this into a machine learning problem that takes
features as input and a prediction as an output, knowing what we know about
how to do this already? First, in order to build this matrix, we need to turn
each word into a feature that’s a column value and each user remains a row
value.

The best way to think of the difference between tabular and free-form
representations as model inputs is that a row of tabular data looks like
this, [012,2,"US", 5], and a "row" or document of text data looks like this,
["No bird soars too high if he soars with his own wings."] In both
cases, each of these are vectors, or a list of values that represents a single bird.
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In traditional machine learning, rows are our user data about a single bird
and columns are features about the bird. In recommendation systems, our
rows are the individual data about each user, and our column data represents
the given data about each flit. If we can factor this matrix, that is decompose it
into two matrices (Q and PT) that, when multiplied, the product is our original
matrix (R), we can learn the "latent factors" or features that allow us to group
similar users and items together to recommend them.

Another way to think about this is that in traditional ML, we have to
actively engineer features, but they are then available to us as matrices. In
text and deep-learning approaches, we don’t need to do feature engineering,
but need to perform the extra step of generating valuable numeric features
anyway.

1 3 5 5 4
5 4 4 2 1 3

2 4 1 2 3 4 3 5
2 4 5 4 2
4 3 4 2 2 5

1 3 3 2 4

R

us
er

s

words

≈
us

er
s
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×
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The factorization of our feature matrix into these two matrices, where the
rows in Q are actually embeddings [43] for users and the rows in matrix P
are embeddings for flits, allows us to fill in values for flits that Flutter users
have not explicitly liked, and then perform a search across the matrix to find
other words they might be interested in. The end-result is our generated
recommendation candidates, which we then filter downstream and surface to
the user because the core of the recommendation problem is to recommend
items to the user.

In this base-case scenario, each column could be a single word in the entire
vocabulary of every flit we have and the vector we create, shown in the matrix
frequency table, would be an insanely large, sparse vector that has a 0 of
occurrence of words in our vocabulary. The way we can build toward this
representation is to start with a structure known as a bag of words, or simply
the frequency of appearance of text in a given document (in our case, each flit
is a document.) This matrix is the input data structure for many of the early
approaches to embedding.

In scikit-learn, we can create an initial matrix of our inputs across docu-
ments using ‘CountVectorizer‘.
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1 from sklearn.feature_extraction.text import CountVectorizer
2 import pandas as pd
3

4 vect = CountVectorizer(binary=True)
5 vects = vect.fit_transform(flits)
6

7 responses = ["Hold fast to dreams, for if dreams die, life is a broken-winged
bird that cannot fly.", "No bird soars too high if he soars with his own
wings.", "A bird does not sing because it has an answer, it sings because
it has a song."]

↪→

↪→

↪→

8

9 doc = pd.DataFrame(list(zip(responses)))
10

11 td = pd.DataFrame(vects.todense()).iloc[:5]
12 td.columns = vect.get_feature_names_out()
13 term_document_matrix = td.T
14 term_document_matrix.columns = ['flit '+str(i) for i in range(1, 4)]
15 term_document_matrix['total_count'] = term_document_matrix.sum(axis=1)
16

17 print(term_document_matrix.drop(columns=['total_count']).head(10))
18

19 flit_1 flit_2 flit_3
20 an 0 0 1
21 answer 0 0 1
22 because 0 0 1
23 bird 1 1 1
24 broken 1 0 0
25 cannot 1 0 0
26 die 1 0 0
27 does 0 0 1
28 dreams 1 0 0
29 fast 1 0 0
30

31

Figure 24: Creating a matrix frequency table to create a user-item matrix source

3.2.2 TF-IDF

One-hot encoding just deals with presence and absence of a single term in
a single document. However, when we have large amounts of data, we’d
like to consider the weights of each term in relation to all the other terms in a
collection of documents.

To address the limitations of one-hot encoding, TF-IDF, or term frequency-
inverse document frequency was developed. TF-IDF was introduced in the
1970s18 as a way to create a vector representation of a document by averaging
all the document’s word weights. It worked really well for a long time and

18By Karen Spärck Jones, whose paper, "Synonymy and semantic classification is fundamental
to the field of NLP
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still does in many cases. For example, one of the most-used search functions,
BM25, uses TF-IDF as a baseline [56] as a default search strategy in Elastic-
search/Opensearch 19. It extends TF-IDF to develop a probability associated
with the probability of relevance for each pair of words in a document and it
is still being applied in neural search today [65].

TF-IDF will tell you how important a single word is in a corpus by assign-
ing it a weight and, at the same time, down-weight common words like, "a",
"and", and "the". This calculated weight gives us a feature for a single word
TF-IDF, and also the relevance of the features across the vocabulary.

We take all of our input data that’s structured in sentences and break it up
into individual words, and perform counts on its values, generating the bag
of words. TF is term frequency, or the number of times a term appears in a
document relative to the other terms in the document.

tf(t, d) =
ft,d

∑t′∈d ft′,d
(8)

And IDF is the inverse frequency of the term across all documents in our
vocabulary.

idf(t, D) = log
N

|{d ∈ D : t ∈ d}| (9)

Let’s take a look at how to implement it from scratch:

19You can read about how Elasticsearch implements BM25 here
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1

2 import math
3

4 # Process documents into individual words
5 documentA = ['Hold','fast','to','dreams','for','if','dreams','die,'

,'life','is','a','broken-winged','bird','that','cannot','fly']↪→

6 documentB = ['No','bird','soars','too','high','if',
'he','soars','with','his','own','wings']↪→

7

8 def tf(doc_dict: dict, doc_elements: list[str]) -> dict:
9 """Term frequency of a word in a document over total words in

document"""↪→

10 tf_dict = {}
11 corpus_count = len(doc_elements)
12 for word, count in doc_dict.items():
13 tf_dict[word] = count / float(corpus_count)
14 return tf_dict
15

16 def idf(doc_list: list[str]) -> dict:
17 """The number of documents in which the term appears per term"""
18 idf_dict = {}
19 N = len(doc_list)
20 idf_dict = dict.fromkeys(doc_list[0].keys(), 0)
21 for word, val in idf_dict.items():
22 idf_dict[word] = math.log10(N / (float(val) + 1))
23 return idf_dict
24

25 # inverse document frequencies for all words
26 # dicts are frequency counts of words per doc e.g. dict.fromkeys(corpus, 0)
27 idfs = idf([dict_a, dict_b])
28

29 def tfidf(doc_elements: list[str], idfs)-> dict:
30 """TF * IDF per word given a word and number of docs the term appears

in"""↪→

31 tfidf_dict = {}
32 for word, val in doc_elements.items():
33 tfidf_dict[word] = val * idfs[word]
34 return tfidf_dict
35

36 # Calculate the term frequency for each document individually
37 tf_a = tf(dict_a, document_a)
38 tf_b = tf(dict_b, document_b)
39

40 # Calculate the inverse document frequency given each term frequency
41 tfidf_a = tfidf(tf_a, idfs)
42 tfidf_b = tfidf(tf_b, idfs)
43

44 # Return weight of each word in each document wrt to the total corpus
45 document_tfidf = pd.DataFrame([tfidf_a, tfidf_b])
46 document_tfidf.T
47 # doc 0 doc 1
48 a 0.018814 0.000000
49 dreams 0.037629 0.000000
50 No 0.000000 0.025086

Figure 25: Truncated implementation of TF-IDF, see full source
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Once we understand the underlying fundamental concept, we can use the
scikit-learn implementation which does the same thing, and also surfaces the
TF-IDF of each word in the vocabulary.

1 from sklearn.feature_extraction.text import TfidfVectorizer
2 import pandas as pd
3

4 corpus = [
5 "Hold fast to dreams, for if dreams die, life is a broken-winged bird

that cannot fly.",↪→

6 "No bird soars too high if he soars with his own wings.",
7 ]
8

9 # langston hughes and william blake
10 text_titles = ["quote_lh", "quote_wb"]
11

12 vectorizer = TfidfVectorizer()
13 vector = vectorizer.fit_transform(corpus)
14 dict(zip(vectorizer.get_feature_names_out(), vector.toarray()[0]))
15

16 tfidf_df = pd.DataFrame(vector.toarray(), index=text_titles,
columns=vectorizer.get_feature_names_out())↪→

17

18 tfidf_df.loc['doc_freq'] = (tfidf_df > 0).sum()
19 tfidf_df.T
20

21 # How common or unique a word is in a given document wrt to the vocabulary
22 quote_lh quote_wb doc_freq
23 bird 0.172503 0.197242 2.0
24 broken 0.242447 0.000000 1.0
25 cannot 0.242447 0.000000 1.0
26 die 0.242447 0.000000 1.0

Figure 26: Implementation of TF-IDF in scikit-learn source

Given that inverse document frequency is a measure of whether the word
is common or not across the documents, we can see that "dreams" is important
because they are rare across the documents and therefore interesting to us
more so than "bird." We see that the tf-idf for a given word, "dreams", is slightly
different for each of these implementations, and that’s because Scikit-learn
normalizes the denominator and uses a slightly different formula. You’ll also
note that in the first implementation we separate the corpus words ourselves,
don’t remove any stop words, and don’t lowercase everything. Many of these
steps are done automatically in scikit-learn or can be set as parameters into
the processing pipeline. We’ll see later that these are critical NLP steps that
we perform each time we work with text.

TF-IDF enforces several important ordering rules on our text corpus:

• Uprank term frequency when it occurs many times in a small number of
documents
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• Downrank term frequency when it occurs many times in many docu-
ments, aka is not relevant

• Really downrank the term when it appears across your entire document
base [56].

There are numerous ways to calculate and create weights for individual
words in TF-IDF. In each case, we calculate a score for each word that tells
us how important that word is in relation to each other word in our corpus,
which gives it a weight. Once we figure out how common each word is in
the set of all possible flits and get a weighted score for the entire sentence in
relation to other sentences.

Generally, when we work with textual representations, we’re trying to
understand which words, phrases, or concepts are similar to each other. Within
our specific recommendations task, we are trying to understand which pieces
of content are similar to each other, so that we can recommend content that
users will like based on either their item history or the user history of users
similar to them.

So, when we perform embedding in the context of recommender systems,
we are looking to create neighborhoods from items and users, based on the
activity of those users on our platform. This is the initial solution to the
problem of “how do we recommend flits that are similar to flit that the user
has liked.” This is the process of collaborative filtering.

There are many approaches to collaborative filtering including a
neighborhood-based approach, which looks at weighted averages of user
ratings and computes cosine similarity, between users. It then finds groups,
or neighborhoods of users which are similar to each other.

A key problem that makes up the fundamental problem in collaborative
filtering and in recommendation systems in general is the ability to find similar
sets of items among very large collections [42].

Mathematically, we can do this by looking at the distance metric between
any two given sets of items, and there are a number of different approaches,
including Euclidean distance, edit distance (more specifically, Levenshtein
distance and Hamming distance), cosine distance, and more advanced com-
pression approaches like minhashing.

The most commonly used approach in most models where we’re trying
to ascertain the semantic closeness of two items is cosine similarity, which is
the cosine of the angle between two objects represented as vectors, bounded
between -1 and 1. -1 means the two items are completely "opposite" of each
other and 1 means they are completely the same item, assuming unit length.
Zero means that you should probably use a distance measure other than cosine
similarity because the vectors are completely orthogonal to each other. One
point of clarification here is that cosine distance is the actual distance measure
and is calculated as 1 − similarity(⃗a, b⃗).

similarity(⃗a, b⃗) =
a⃗ · b⃗
|⃗a||⃗b|

=

n
∑

i=1
aibi√

n
∑

i=1
a2

i

√
n
∑

i=1
b2

i

(10)
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We use cosine similarity over other measures like Euclidean distance for
large text corpuses, for example, because in very large, sparse spaces, the
direction of the vectors is just as, and even more important, than the actual
values.

The higher the cosine similarity is for two words or documents, the better.
We can use TF-IDF as a way to look at cosine similarity. Once we’ve given
each of our words a tf-idf score, we can also assign a vector to each word in
our sentence, and create a vector out of each quote to assess how similar they
are.

x

y

bird

wings

θ
θϕ

Figure 27: Illustration of cosine similarity between bird and wings vectors.

Let’s take a look at the actual equation for cosine similarity. We start with
the dot product between two vectors, which is just the sum of each value
multiplied by the corresponding value in our second vector, and then we
divide by the normalized dot product.

1 v1 = [0,3,4,5,6]
2 v2 = [4,5,6,7,8]
3

4 def dot(v1, v2):
5 dot_product = sum((a * b) for a,b in zip(v1,v2))
6 return dot_product
7

8 def cosine_similarity(v1, v2):
9 '''

10 (v1 dot v2)/||v1|| *||v2||)
11 '''
12 products = dot(v1,v2)
13 denominator = ( (dot(v1,v1) **.5) * (dot(v2,v2) ** .5) )
14 similarity = products / denominator
15 return similarity
16

17 print(cosine_similarity(v1, v2))
18 # 0.9544074144996451

Figure 28: Implementation of cosine similarity from scratch source

Or, once again, in scikit-learn, as a pairwise metric:
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1 from sklearn.metrics import pairwise
2

3 v1 = [0,3,4,5,6]
4 v2 = [4,5,6,7,8]
5

6 # need to be in numpy data format
7 pairwise.cosine_similarity([v1],[v2])
8 # array([[0.95440741]])
9

Figure 29: Implementation of cosine similarity in scikitsource

Other commonly-used distance measures in semantic similarity and rec-
ommendations include:

• Euclidean distance - calculates the straight-line distance between two
points

• Manhattan Distance - Measures the distance between two points by
summing the absolute differences of their coordinates

• Jaccard Distance - Computes the dissimilarity between two sets by
dividing the size of their intersection by the size of their union.

• Hamming Distance - Measures the dissimilarity between two strings
by counting the positions in which they differ

3.2.3 SVD and PCA

There is a problem with the vectors we created in one-hot encoding and TF-
IDF: they are sparse. A sparse vector is one that is mostly populated by zeroes.
They are sparse because most sentences don’t contain all the same words as
other sentences. For example, in our flit, we might encounter the word "bird"
in two sentences simultaneously, but the rest of the words will be completely
different.

1 sparse_vector = [1,0,0,0,0,0,0,0,0,0]
2 dense_vector = [1,2,2,3,0,4,5,8,8,5]

Figure 30: Two types of vectors in text processing

Sparse vectors result in a number of problems, among these cold start—the
idea that we don’t know to recommend items that haven’t been interacted with,
or for users who are new. What we’d like, instead, is to create dense vectors,
which will give us more information about the data, the most important of
which is accounting for the weight of a given word in proportion to other
words. This is where we leave one-hot encodings and TD-IDF to move into
approaches that are meant to solve for this sparsity. Dense vectors are just
vectors that have mostly non-zero values. We call these dense representations
dynamic representations [68].
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Several other related early approaches were used in lieu of TF-IDF for
creating compact representations of items: principal components analysis
(PCA) and singular value decomposition (SVD).

SVD and PCA are both dimensionality reduction techniques that, applied
through matrix transformations to our original text input data, show us the
latent relationship between two items by breaking items down into latent
components through matrix transformations.

SVD is a type of matrix factorization that represents a given input feature
matrix as the product of three matrices. It then uses the component matrices
to create linear combinations of features that are the largest differences from
each other and which are directionally different based on the variance of the
clusters of points from a given line. Those clusters represent the “feature
clusters” of the compressed features.

In the process of performing SVD and decomposing these matrices, we
generate a matrix representation that includes the eigenvectors and eigenvalue
pairs or the sample covariance pairs.

PCA uses the same initial input feature matrix, but whereas one-hot en-
coding simply converts the text features into numerical features that we can
work with, PCA also performs compression and projects our items into a
two-dimensional feature space. The first principal component is the scaled
eigenvector of the data, the weights of the variables that describe your data
best, and the second is the weights of the next set of variables that describe
your data best.

The resulting model is a projection of all the words, clustered into a single
space based on these dimensions. While we can’t get individual meanings
of all these components, it’s clear that the clusters of words, aka features, are
semantically similar, that is they are close to each other in meaning20.

The difference between the two is often confusing (people admitted as
much in the 80s [21] when these approaches were still being worked out),
and for the purposes of this survey paper we’ll say that PCA can often be
implemented using SVD 21.

3.3 LDA and LSA

Because PCA performs computation on each combination of features to gen-
erate the two dimensions, it becomes immensely computationally expensive
as the number of features grows. Many of these early methods, like PCA,
worked well for smaller datasets, like many of the ones used in traditional
NLP research, but as datasets continued to grow, they didn’t quite scale.

Other approaches grew out of TF-IDF and PCA to address their limitations,
including latent semantic analysis (LSA) and latent Dirichlet allocation
(LDA) [12]. Both of these approaches start with the input document matrix
that we built in the last section. The underlying principle behind both of

20There are many definitions of semantic similarity - what does it mean for "king" and
"queen" to be close to each other? - but a high-level approach involves using original sources
like thesauri and dictionaries to create a structured knowledge base and offer a structured
representation of terms and concepts based on nodes and edges, aka how often they appear
near each other. [6]

21This is how it’s implemented in the scikit-learn package
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these models is that words that occur close together more frequently have
more important relationships. LSA uses the same word weighting that we
used for TF-IDF and looks to combine that matrix into a lower rank matrix,
a cosine similarity matrix. In the matrix, the values for the cells range from
[-1,1], where -1 represents documents that are complete opposites and 1 means
the documents are identical. LSA then runs over the matrix and groups items
together.

LDA takes a slightly different approach. Although it uses the same matrix
for input, it instead outputs a matrix where the rows are words and columns
are documents. The distance measure, instead of cosine similarity, is the
numerical value for the topic that the intersection of the word and document
provide. The assumption is that any sentence we input will contain a collection
of topics, based on proportions of representation in relation to the input
corpus, and that there are a number of topics that we can use to classify
a given sentence. We initialize the algorithm by assuming that there is a
non-zero probability that each word could appear in a topic. LDA initially
assigns words to topics at random, and then iterates until it converges to a
point where it maximizes the probability for assigning a current word to a
current topic. In order to do the word-to-topic mapping, LDA generates an
embedding that creates a space of clusters of words or sentences that work
together semantically.

3.4 Limitations of traditional approaches

All of these traditional methods look to address the problem of generating
relationships between items in our corpus in various ways in the latent space -
the relationships between words that are not explicitly stated but that we can
tease out based on how we model the data.

However, in all these cases, as our corpus starts to grow, we start to run
into two problems: the curse of dimensionality and compute scale.

3.4.1 The curse of dimensionality

As we one-hot encode more features, our tabular data set grows. Going
back to our churn model, what happens once we have 181 instead of two
or three countries? We’ll have to encode each of them into their own vector
representations. What happens if we have millions of vocabulary words, for
example thousands of birds posting millions of messages every day? Our
sparse matrix for tf-idf becomes computationally intensive to factor.

Whereas our input vectors for tabular machine learning and naive text
approaches is only three entries because we only use three features, multi-
modal data effectively has a dimensionality of the number of written words
in existence and image data has a dimensionality of height times width in
pixels, for each given image. Video and audio data have similar exponential
properties. We can profile the performance of any code we write using Big
O notation, which will classify an algorithm’s runtime. There are programs
that perform worse and those that perform better based on the number of
elements the program processes. This means that one-hot encodings, in terms
of computing performance, are O(n) in the worst case complexity. So, if our
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text is a corpus of a million unique words, we’ll get to a million columns, or
vectors, each of which will be sparse, since most sentences will not contain the
words of other sentences.

Let’s take a more concrete case. Even in our simple case of our initial
bird quote, we have 28 features, one for each word in the sentence, assuming
we don’t remove and process the most common stop words — extremely
common words like "the", "who", and "is" that appear in most texts but don’t
add semantic meaning. How can we create a model that has 28 features?
That’s fairly simple if tedious - we encode each word as a numerical value.

Table 5: One-hot encoding and the growing curse of dimensionality for our flit

flit_id bird_id hold fast dreams die life bird
9823420 012 1 1 1 1 1 1
9823421 013 1 0 0 0 0 1

Not only will it be hard to run computations over a linearly increasing
set, once we start generating a large number of features (columns), we start
running into the curse of dimensionality, which means that, the more features
we accumulate, the more data we need in order to accurately statistically
confidently say anything about them, which results in models that may not
accurately represent our data [29] if we have extremely sparse features, which
is generally the case in user/item interactions in recommendations.

3.4.2 Computational complexity

In production machine learning systems, the statistical properties of our al-
gorithm are important. But just as critical is how quickly our model returns
data, or the system’s efficiency. System efficiency can be measured in many
ways, and it is critical in any well-performing system to find the performance
bottleneck that leads to latency, or the time spent waiting before an operation
is performed [26]. If you have a recommendation system in production, you
cannot risk showing the user an empty feed or a feed that takes more than
a few milliseconds to render. If you have a search system, you cannot risk
the results taking more than a few milliseconds to return, particularly in e-
commerce settings [2]. From the holistic systems perspective then, we can also
have latency in how long it takes to generate data for a model, read in data,
and train the model.

The two big drivers of latency are:

• I/O processing - We can only send as many items over the network as
our network speed allows

• CPU processing - We can only process as many items as we have memory
available to us in any given system22

Generally, TF-IDF performs well in terms of identifying key terms in the
document. However, since the algorithm processes all the elements in a

22there has been discussion over the past few years on whether IO or CPU are really the
bottleneck in any modern data-intensive application.
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given corpus, the time complexity grows for both the numerator and the
denominator in the equation and overall, the time-complexity of computing
the TF-IDF weights for all the terms in all the documents is O(Nd), where N
is the total number of terms in the corpus and d is the number of documents
in the corpus. Additionally, because TF-IDF creates a matrix as output, what
we end up doing is processing enormous state matrices. For example, if you
have 100k documents and need to store frequency counts and features for the
top five thousand words appearing in those documents, we get a matrix of
size 100000 ∗ 5000. This complexity only grows.

This linear time complexity growth becomes an issue when we’re trying
to process millions or hundreds of millions of tokens – usually a synonym
for words but can also be sub-words such as syllables. This is a problem that
became especially prevalent as, over time in industry, storage became cheap.

From newsgroups to emails, and finally, to public internet text, we began
to generate a lot of digital exhaust and companies collected it in the form of
append-only logs [36], a sequence of records ordered by time, that’s configured
to continuously append records.23 .

Companies started emitting, keeping, and using these endless log streams
for data analysis and machine learning. All of a sudden, the algorithms that
had worked well on a collection of less than a million documents struggled to
keep up.

Capturing log data at scale began the rise of the Big Data era, which
resulted in a great deal of variety, velocity, and volume of data movement.
The rise in data volumes coincided with data storage becoming much cheaper,
enabling companies to store everything they collected on racks of commodity
hardware.

Companies were already retaining analytical data needed to run critical
business operations in relational databases, but access to that data was struc-
tured and processed in batch increments on a daily or weekly basis. This new
logfile data moved quickly, and with a level of variety absent from traditional
databases.

The resulting corpuses for NLP, search, and recommendation problems
also exploded in size, leading people to look for more performant solutions.

3.5 Support Vector Machines

The first modeling approaches were shallow models — models that perform
machine learning tasks using only one layer of weights and biases [9]. Support
vector machines (SVM), developed at Bell Laboratories in the mid-1990s,
were used in high-dimensional spaces for NLP tasks like text categorization
[32]. SVMs separate data clusters into points that are linearly separable by a
hyperplane, a decision boundary that separates elements into separate classes.
In a two-dimensional vector space, the hyperplane is a line, in a three or more
dimensional space, the separator also comes in many dimensions.

The goal of the SVM is to find the optimal hyperplane such that the dis-
tance between new projections of objects (words in our case) into the space

23Jay Kreps’ canonical posts on how logging works are a must-read
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maximizes the distance between the plane and the elements so there’s less
chance of mis-classifying them.

w · x + b > 1
w · x + b = 0

w · x + b < −1

M
argin

Figure 31: Example of points in the vector space in an SVM separated by a hyperplane

Examples of supervised machine learning tasks performed with SVMs
included next word prediction, predicting the missing word in a given se-
quence, and predicting words that occur in a window. As an example, the
classical word embedding inference task is autocorrect when we’re typing on
our phones. We type a word, and it’s the job of the autocorrect to predict the
correct word based on both the word itself and the surrounding context in the
sentence. It therefore needs to learn a vocabulary of embeddings that will give
it probabilities that it is selecting the correct word.

However, as in other cases, when we reach high dimensions, SVMs com-
pletely fail to work with sparse data because they rely on computing distances
between points to determine the decision boundaries. Because in our sparse
vector representations of elements most of the distances are zero, the hyper-
plane will fail to cleanly separate the boundaries and classify words incorrectly.

3.6 Word2Vec

To get around the limitations of earlier textual approaches and keep up with
growing size of text corpuses, in 2013, researchers at Google came up with an
elegant solution to this problem using neural networks, called Word2Vec [47].

So far, we’ve moved from simple heuristics like one-hot encoding, to
machine learning approaches like LSA and LDA that look to learn a dataset’s
modeled features. Previously, like our original one-hot encodings, all the
approaches to embedding focused on generating sparse vectors that can give
an indication that two words are related, but not that there is a semantic
relationship between them. For example, “The dog chased the cat” and “the
cat chased the dog” would have the same distance in the vector space, even
though they’re two completely different sentences.

Word2Vec is a family of models that has several implementations, each
of which focus on transforming the entire input dataset into vector represen-
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tations and, more importantly, focusing not only on the inherent labels of
individual words, but on the relationship between those representations.

There are two modeling approaches to Word2Vec - continuous bag of
words (CBOW) and skipgrams, both of which generate dense vectors of
embeddings but model the problem slightly differently. The end-goal of the
Word2Vec model in either case is to learn the parameters that maximize that
probability of a given word or group of words being an accurate prediction
[23].

In training skipgrams, we take a word from the initial input corpus and
predict the probability that a given set of words surround it. In the case of
our initial flit quote, "Hold fast to dreams for if dreams die, life is a broken-
winged bird that cannot fly", the model’s intermediate steps generate a set of
embeddings that’s the distance between all the words in the dataset and fill
in the next several probabilities for the entire phrase, using the word "fast" as
input.

Figure 32: Word2Vec Architecture

In training CBOW, we do the opposite: we remove a word from the middle
of a phrase known as the context window and train a model to predict the
probability that a given word fills the blank, shown in the equation below
where we attempt to maximize.

arg max
θ

∏
w∈Text

[
∏

c∈C(w)

p(c|w; θ)

]
(11)

If we optimize these parameters - theta - and maximize the probability that

43



the word belongs in the sentences, we’ll learn good embeddings for our input
corpus.

Let’s focus on a detailed implementation of CBOW to better understand
how this works. This time, for the code portion, we’ll move on from scikit-
learn, which works great for smaller data, to PyTorch for neural net operations.

At a high level, we have a list of input words that are processed through a
second layer, the embedding layer, and then through the output layer, which
is just a linear model that returns probabilities.

Word #1

Word #2

Word #3

Word #4

Output Probability

Embeddings
Input

Corpus
Linear

Regression

Figure 33: Word2Vec CBOW Neural Network architecture

We’ll run this implementation in PyTorch, the popular library for building
neural network models. The best way to implement Word2Vec, especially if
you’re dealing with smaller datasets, is using Gensim, but Gensim abstracts
away the layers into inner classes, which makes for a fantastic user experi-
ence. But, since we’re just learning about them, we’d like to see a bit more
explicitly how they work, and PyTorch, although it does not have a native
implementation of Word2Vec, lets us see the inner workings a bit more clearly.

To model our problem in PyTorch, we’ll use the same approach as with
any problem in machine learning:

• Inspect and clean our input data.
• Build the layers of our model. (For traditional ML, we’ll have only

one)
• Feed the input data into the model and track the loss curve
• Retrieve the trained model artifact and use it to make predictions on

new items that we analyze
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Figure 34: Steps for creating Word2Vec model

Let’s start from our input data. In this case, our corpus is all of the flits
we’ve collected. We first need to process them as input into our model.

1 responses = ["Hold fast to dreams, for if dreams die, life is a broken-winged
bird that cannot fly.", "No bird soars too high if he soars with his own
wings.", "A bird does not sing because it has an answer, it sings because
it has a song."]

↪→

↪→

↪→

Figure 35: Our Word2Vec input dataset

Let’s start with our input training data, which is our list of flits. To prepare
input data for PyTorch, we can use the DataLoader or Vocab classes, which
splits our text into tokens and tokenizes — or creates smaller, word-level
representations of each sentence — for processing. For each line in the file, we
generate tokens by splitting each line into single words, removing whitespace
and punctuation, and lowercasing each individual word.

This kind of processing pipeline is extremely common in NLP and spend-
ing time to get this step right is extremely critical so that we get clean, correct
input data. It typically includes [48]:

• Tokenization - transforming a sentence or a word into its component
character by splitting it

• Removing noise - Including URLs, punctuation, and anything else in
the text that is not relevant to the task at hand

• Word segmentation - Splitting our sentences into individual words
• Correcting spelling mistakes
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1 class TextPreProcessor:
2 def __init__(self) -> None:
3 self.input_file = input_file
4

5 def generate_tokens(self):
6 with open(self.input_file, encoding="utf-8") as f:
7 for line in f:
8 line = line.replace("\\", "")
9 yield line.strip().split()

10

11 def build_vocab(self) -> Vocab:
12 vocab = build_vocab_from_iterator(
13 self.generate_tokens(), specials=["<unk>"], min_freq=100
14 )
15 return vocab

Figure 36: Processing our input vocabulary and building a Vocabulary object from our
dataset in PyTorch source

Now that we have an input vocabulary object we can work with, the next
step is to create one-hot encodings of each word to a numerical position, and
each position back to a word, so that we can easily reference both our words
and vectors. The goal is to be able to map back and forth when we do lookups
and retrieval.

This occurs in the Embedding layer. Within the Embedding layer of Py-
Torch, we initialize an Embedding matrix based on the size we specify and
size of our vocabulary, and the layer indexes the vocabulary into a dictionary
for retrieval. The embedding layer is a lookup table24 that matches a word to
the corresponding word vector on an index by index basis. Initially, we create
our one-hot encoded word to term dictionary. Then, we create a mapping of
each word to a dictionary entry and a dictionary entry to each word. This
is known as bijection. In this way, the Embedding layer is like a one-hot
encoded matrix, and allows us to perform lookups. The lookup values in this
layer are initialized to a set of random weights, which we next pass onto the
linear layer.

Embeddings resemble hash maps and also have their performance char-
acteristics (O(1) retrieval and insert time), which is why they can scale easily
when other approaches cannot. In the embedding layer, Word2Vec where each
value in the vector represents the word on a specific dimension, and more
importantly, unlike many of the other methods, the value of each vector is in
direct relationship to the other words in the input dataset.

24Embedding Layer PyTorch documents
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1 class CBOW(torch.nn.Module):
2 def __init__(self): # we pass in vocab_size and embedding_dim as hyperparams
3 super(CBOW, self).__init__()
4 self.num_epochs = 3
5 self.context_size = 2 # 2 words to the left, 2 words to the right
6 self.embedding_dim = 100 # Size of your embedding vector
7 self.learning_rate = 0.001
8 self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
9

10 self.vocab = TextPreProcessor().build_vocab()
11 self.word_to_ix = self.vocab.get_stoi()
12 self.ix_to_word = self.vocab.get_itos()
13 self.vocab_list = list(self.vocab.get_stoi().keys())
14 self.vocab_size = len(self.vocab)
15

16 self.model = None
17

18 # out: 1 x embedding_dim
19 self.embeddings = nn.Embedding(
20 self.vocab_size, self.embedding_dim
21 ) # initialize an Embedding matrix based on our inputs
22 self.linear1 = nn.Linear(self.embedding_dim, 128)
23 self.activation_function1 = nn.ReLU()
24

25 # out: 1 x vocab_size
26 self.linear2 = nn.Linear(128, self.vocab_size)
27 self.activation_function2 = nn.LogSoftmax(dim=-1)

Figure 37: Word2Vec CBOW implementation in Pytorch. source

Once we have our lookup values, we can process all our words. For CBOW,
we take a single word and we pick a sliding window, in our case, two words
before, and two words after, and try to infer what the actual word is. This is
called the context vector, and in other cases, we’ll see that it’s called attention.
For example, if we have the phrase "No bird [blank] too high", we’re trying to
predict that the answer is "soars" with a given softmax probability, aka ranked
against other words. Once we have the context vector, we look at the loss —
the difference between the true word and the predicted word as ranked by
probability — and then we continue.

The way we train this model is through context windows. For each given
word in the model, we create a sliding window that includes that word and 2
words before it, and 2 words after it.

We activate the linear layer with a ReLu activation function, which decides
whether a given weight is important or not. In this case, ReLu squashes all the
negative values we initialize our embeddings layer with down to zero since
we can’t have inverse word relationships, and we perform linear regression
by learning the weights of the model of the relationship of the words. Then,
for each batch we examine the loss, the difference between the real word and
the word that we predicted should be there given the context window - and
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we minimize it.
At the end of each epoch, or pass through the model, we pass the weights,

or backpropagate them, back to the linear layer, and then again, update the
weights of each word, based on the probability. The probability is calculated
through a softmax function, which converts a vector of real numbers into a
probability distribution - that is, each number in the vector, i.e. the value of the
probability of each words, is in the interval between 0 and 1 and all of the word
numbers add up to one. The distance, as backpropagated to the embeddings
table, should converge or shrink depending on the model understanding how
close specific words are.
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1

2 def make_context_vector(self, context, word_to_ix) -> torch.LongTensor:
3 """
4 For each word in the vocab, find sliding windows of [-2,1,0,1,2] indexes
5 relative to the position of the word
6 :param vocab: list of words in the vocab
7 :return: torch.LongTensor
8 """
9 idxs = [word_to_ix[w] for w in context]

10 tensor = torch.LongTensor(idxs)
11

12

13 def train_model(self):
14

15 # Loss and optimizer
16 self.model = CBOW().to(self.device)
17 optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate)
18 loss_function = nn.NLLLoss()
19

20 logging.warning('Building training data')
21 data = self.build_training_data()
22

23 logging.warning('Starting forward pass')
24 for epoch in tqdm(range(self.num_epochs)):
25 # we start tracking how accurate our initial words are
26 total_loss = 0
27

28 # for the x, y in the training data:
29 for context, target in data:
30 context_vector = self.make_context_vector(context, self.word_to_ix)
31

32 # we look at loss
33 log_probs = self.model(context_vector)
34

35 # compare loss
36 total_loss += loss_function(
37 log_probs, torch.tensor([self.word_to_ix[target]])
38 )
39

40 # optimize at the end of each epoch
41 optimizer.zero_grad()
42 total_loss.backward()
43 optimizer.step()
44

45 # Log out some metrics to see if loss decreases
46 logging.warning("end of epoch {} | loss {:2.3f}".format(epoch, total_loss))
47

48 torch.save(self.model.state_dict(), self.model_path)
49 logging.warning(f'Save model to {self.model_path}')

Figure 38: W
ord2Vec CBOW implementation in PyTorch
see full implementation here
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Once we’ve completed our iteration through our training set, we have
learned a model that retrieves both the probability of a given word being the
correct word, and the entire embedding space for our vocabulary.

4 Modern Embeddings Approaches

Word2Vec became one of the first neural network architectures to use the con-
cept of embedding to create a fixed feature vocabulary. But neural networks
as a whole were gaining popularity for natural language modeling because
of several key factors. First, in the 1980s, researchers made advancements in
using the technique of backpropagation for training neural networks learning
[53]. Backpropagation is how a model learns to converge by calculating the
gradient of the loss function with respect to the weights of the neural network,
using the chain rule, a concept from calculus which allows us to calculate
the derivative of a function made up of multiple functions. This mechanism
allows the model to understand when it’s reached a global minimum for loss
and picks the correct weights for the model parameters, but training models
through gradient descent. Earlier approaches, such as the perceptron learning
rule, tried to do this, but had limitations, such as being able to work only
on simple layer architectures, took a long time to converge, and experienced
vanishing gradients, which made it hard to effectively update the model’s
weights.

These advances gave rise to the first kinds of multi-level neural networks,
feed-forward neural networks. In 1998, a paper used backpropagation over
multilayer perceptrons to correctly perform the task of recognizing handwrit-
ten digit images [40], demonstrating a practical use-case practitioners and
researchers could apply. This MNIST dataset is now one of the canonical
"Hello World" examples of deep learning.

Second, in the 2000s, the rise of petabytes of aggregated log data resulted
in the creation of large databases of multimodal input data scraped from the
internet. This made it possible to conduct wide-ranging experiments to prove
that neural networks work on large amounts of data. For example, ImageNet
was developed by researchers at Stanford who wanted to focus on improving
model performance by creating a gold set of neural network input data, the
first step in processing. FeiFei Li assembled a team of students and paid
gig workers from Amazon Turk to correctly label a set of 3.2 million images
scraped from the internet and organized based on categories according to
WordNet, a taxonomy put together by researchers in the 1970s [55].

Researchers saw the power of using standard datasets. In 2015, Alex
Krizhevsky, in collaboration with Ilya Sutskever, who now works at OpenAI
as one of the leading researchers behind the GPT series of models that form the
basis of the current generative AI wave, submitted an entry to the ImageNet
competition called AlexNet. This model was a convolutional neural network
that outperformed many other methods. There were two things that were
significant about AlexNet. The first was that it had eight stacked layers of
weights and biases, which was unusual at the time. Today, 12-layer neural.
networks like BERT and other transformers are completely normal, but at the
time, more than two layers was revolutionary. The second was that it ran on
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GPUs, a new architectural concept at the time, since GPUs were used mostly
for gaming.

Neural networks started to become popular as ways to generate represen-
tations of vocabularies. In particular, neural network architectures, such as
and recurrent neural networks (RNNs) and later long short-term memory
networks (LSTMs) also emerged as ways to deal with textual data for all kinds
of machine learning tasks from NLP to computer vision.

4.1 Neural Networks

Neural networks are extensions on traditional machine learning models, but
they have a few critical special properties. Let’s think back to our definition
of a model when we formalized a machine learning problem. A model is a
function with a set of learnable input parameters that takes some set of inputs
and one set of tabular input features, and gives us an output. In traditional
machine learning approaches, there is one set, or layer, of learnable parameters
and one model. If our data doesn’t have complex interactions, our model can
learn the feature space fairly easily and make accurate predictions.

However, when we start dealing with extremely large, implicit feature
spaces, such as are present in text, audio, or video, we will not be able to derive
specific features that wouldn’t be obvious if we were manually creating them.
A neural network, by stacking neurons, each of which represent some aspect
of the model, can tease out these latent representations. Neural networks
are extremely good at learning representations of data, with each level of the
network transforming a learned representation of the level to a higher level
until we get a clear picture of our data [41].

4.1.1 Neural Network architectures

We’ve already encountered our first neural network, Word2Vec, which seeks to
understand relationships between words in our text that the words themselves
would not tell us. Within the neural network space, there are several popular
architectures:

• Feed-forward networks that extract meaning from fixed-length in-
puts. Results of these model are not fed back into the model for
iteration

• Convolutional neural nets (CNNs) - used mainly for image process-
ing, which involves a convolutional layer made up of a filter that
moves across an image to check for feature representations which
are then multiplied via dot product with the filter to pull out specific
features

• recurrent neural networks, which take a sequence of items and
produce a vector that summarizes the sentence

RNNs and CNNs are used mainly in feature extraction - they generally
do not represent the entire modeling flow, but are fed later into feed-forward
models that do the final work of classification, summarization, and more.
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Figure 39: Types of Neural Networks

Neural networks are complex to build and manage for a number of reasons.
First, they require extremely large corpuses of clean, well-labeled data to
be optimized. They also require special GPU architectures for processing,
and, as we’ll see in the production section, they have their own metadata
management and latency considerations. Finally, within the network itself,
we need to complete a large amount of passes we need to do over the model
object using batches of our training data to get it to converge. The number of
feature matrices that we need to run calculations over25, and, consequently,
the amount of data we have to keep in-memory through the lifecycle of the
model ends up accumulating and requires a great deal of performance tuning.

These features made developing and running neural networks pro-
hibitively expensive until the last fifteen years or so. First, the exponential
increase in storage space provided by the growing size of commodity hard-
ware both on-prem and in the cloud meant that we could now store that data
for computation, and the explosion of log data gave companies such as Google
a lot of training data to work with. Second, the rise of the GPU as a tool that
takes advantage of the neural network’s ability to perform embarrassingly
parallel computation — a characteristic of computation when it’s easy to sepa-
rate steps out into ones that can be performed in parallel, such as word count
for example. In a neural network, we can generally parallelize computation in
any given number of ways, including at the level of a single neuron.

25There is no good single resource for calculating the computational complexity of a neural
network given that there are many wide-ranging architectures but this post does a good job
laying out the case that it’s essentially O(n5)
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While GPUs were initially used for working with computer graphics, in the
early 2000s [49], researchers discovered the potential to use them for general
computation, and Nvidia made an enormous bet on this kind of computing by
introducing CUDA, an API layer on top of GPUs. This in turn allowed for the
creation and development of high-level popular deep learning frameworks
like PyTorch and Tensorflow.

Neural networks could now be trained and experimented with at scale. To
come back to a comparison to our previous approaches, when we calculate TF-
IDF, we need to loop over each individual word and perform our computations
over the entire dataset in sequence to arrive at a score in proportion to all other
words, which means that our computational complexity will be O(ND) [10].

However, with a neural network, we can either distribute the model train-
ing across different GPUs in a process known as model parallelism, or com-
pute batches — the size of the training data fed into the model and used in a
training loop before its hyperparameters are updated in parallel and update
at the end of each minibatch, which is known as data parallelism. [60].

4.2 Transformers

Word2Vec is a feed-forward network. The model weights and information only
flows from the encoding state, to the hidden embedding layer, to the output
probability layer. There is no feedback between the second and third layers,
which means that each given layer doesn’t know anything about the state of
the layers that follow it. It can’t make inference suggestions longer than the
context window. This works really well for machine learning problems where
we’re fine with a single, static vocabulary.

However, it doesn’t work well on long ranges of text that require under-
standing words in context of each other. For example, over the course of a
conversation, we might say, "I read that quote by Langston Hughes. I liked
it, but didn’t really read his later work," we understand that "it" refers to
the quote, context from the previous sentence, and "his" refers to "Langston
Hughes", mentioned two sentences ago.

One of the other limitations was that Word2Vec can’t handle out-of-
vocabulary words — words that the model has not been trained on and
needs to generalize to. This means that if our users search for a new trending
term or we want to recommend a flit that was written after our model was
trained, they won’t see any relevant results from our model. [14], unless the
model is retrained frequently.

Another problem is that Word2Vec encounters context collapse around
polysemy — the coexistence of many possible meanings for the same phrase:
for example, if you have "jail cell" and "cell phone" in the same sentence, it
won’t understand that the context of both words is different. Much of the
work of NLP based in deep learning has been in understanding and retaining
that context to propagate through the model and pull out semantic meaning.

Different approaches were proposed to overcome these limitations. Re-
searchers experimented with recurrent neural networks, RNNs. An RNN
builds on traditional feed-forward networks, with the difference being that
layers of the model give feedback to previous layers. This allows the model to
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keep memory of the context around words in a sentence.
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A problem with traditional RNNs was that because during backpropaga-
tion the weights had to be carried through to the previous layers of neurons,
they experienced the problem of vanishing gradients. This occurs when we
continuously take the derivative such that the partial derivative used in the
chain rule during backpropagation approaches zero. Once we approach zero,
the neural network assumes it has reached a local optimum and stops training,
before convergence.

A very popular variation of an RNN that worked around this problem
was the long-short term memory network (LSTM), developed initially by
Schmidhuber26 and brought to popularity for use in text applications speech
recognition and image captioning [33]. Whereas our previous model takes only
a vector at a time as input, RNNs operate on sequences of vectors using GRUs,
which allows the network to control how much information is passed in for
analysis. While LSTMs worked fairly well, they had their own limitations.
Because they were architecturally complicated, they took much longer to
train, and at a higher computational cost, because they couldn’t be trained in
parallel.

4.2.1 Encoders/Decoders and Attention

Two concepts allowed researchers to overcome computationally expensive
issues with remembering long vectors for a larger context window than
what was available in RNNs and Word2Vec before it: the encoder/decoder
architecture, and the attention mechanism.

The encoder/decoder architecture is a neural network architecture com-
prised of two neural networks, an encoder that takes the input vectors from
our data and creates an embedding of a fixed length, and a decoder, also a
neural network, which takes the embeddings encoded as input and generates

26If you read Schmidhuber, you will come to the understanding that everything in deep
learning was developed initially by Schmidhuber

54

https://people.idsia.ch/~juergen/deep-learning-miraculous-year-1990-1991.html


a static set of outputs such as translated text or a text summary. In between
the two types of layers is the attention mechanism, a way to hold the state
of the entire input by continuously performing weighted matrix multiplica-
tions that highlight the relevance of specific terms in relation to each other
in the vocabulary. We can think of attention as a very large, complex hash
table that keeps track of the words in the text and how they map to different
representations both in the input and the output.

-0.2
-0.1
0.1
0.4

-0.3
1.1

DecoderEncoder Decoder
Translated

text
Input
text

Figure 41: The encoder/decoder architecture

55



1 class EncoderDecoder(nn.Module):
2 """
3 Defining the encoder/decoder steps
4 """
5 def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
6 super(EncoderDecoder, self).__init__()
7 self.encoder = encoder
8 self.decoder = decoder
9 self.src_embed = src_embed

10 self.tgt_embed = tgt_embed
11 self.generator = generator
12

13 def forward(self, src, tgt, src_mask, tgt_mask):
14 "Take in and process masked src and target sequences."
15 return self.decode(self.encode(src, src_mask), src_mask,
16 tgt, tgt_mask)
17

18 def encode(self, src, src_mask):
19 return self.encoder(self.src_embed(src), src_mask)
20

21 def decode(self, memory, src_mask, tgt, tgt_mask):
22 return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
23

24 class Generator(nn.Module):
25 "Define standard linear + softmax generation step."
26 def __init__(self, d_model, vocab):
27 super(Generator, self).__init__()
28 self.proj = nn.Linear(d_model, vocab)
29

30 def forward(self, x):
31 return F.log_softmax(self.proj(x), dim=-1)
32

Figure 42: A typical encoder/decoder architecture From the Annotated Transformer

"Attention is All You Need" [66], released in 2017, combined both of these
concepts into a single architecture. The paper immediately saw a great deal
of success, and today Transformers are one of the de-facto models used for
natural language tasks.

Based on the success of the original model, a great deal of variations on
Transformer architectures have been released, followed by GPT and BERT in
2018, Distilbert, a smaller and more compact version of BERT in 2019, and
GPT-3 in 202027.

27For a complete visual transformer timeline, check out this link
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Figure 43: Timeline of Transformer Models

Transformer architectures themselves are not new, but they contain all
the concepts we’ve discussed so far: vectors, encodings, and hash maps.
The goal of a transformer model is to take a piece of multimodal content,
and learn the latent relationships by creating multiple views of groups of
words in the input corpus (multiple context windows). The self-attention
mechanism, implemented as scaled dot-product attention in the Transformer
paper, creates different context windows of the data a number of times through
the six encoder and six decoder layers. The output is the result of the specific
machine learning task — a translated sentence, a summarized paragraph –
and the next-to-last layer is the model’s embeddings, which we can use for
downstream work.

Figure 44: View into transformer layers, inspired by multiple sources including this diagram

The transformer model described in the paper takes a corpus of text as
input28. We first transform our text to token embeddings by tokenizing and
mapping every word or subword to an index. This is the same process as in
Word2Vec: we simply assign each word to an element in a matrix. However,
these alone will not help us with context, so, on top of this, we also learn
a positional embeddings with the help of a sine or cosine function that is
mapped and compressed into a matrix considering the position of all the other
word in the vocabulary. The final output of this process is the positional vector

28In theory you can use any modality for transformers without modifying the input other
than to label the data with the given modality [71], but the early work, such as machine
translation, focuses on text, so we will as well
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or the word encoding.
Next, these positional vectors are passed in parallel to the model. Within

the Transformer paper, the model consists of six layers that perform encod-
ing and six that perform decoding. We start with the encoder layer, which
consists of two sub-layers: the self-attention layer, and a feed-forward neural
network. The self-attention layer is the key piece, which performs the process
of learning the relationship of each term in relation to the other through scaled
dot-product attention. We can think of self-attention in several ways: as a
differentiable lookup table, or as a large lookup dictionary that contains both
the terms and their positions, with the weights of each term in relationship to
the other obtained from previous layers.

The scaled dot-product attention is the product of three matrices: key,
query, and value. These are initially all the same values that are outputs of
previous layers - in the first pass through the model, they are initially all the
same, initialized at random and adjusted at each step by gradient descent.
For each embedding, we generate a weighted average value based on these
learned attention weights. We calculate the dot product between query and
key, and finally normalize the weights via softmax. Multi-head attention
means that we perform the process of calculating the scaled dot product
attention multiple times in parallel and concatenate the outcome into one
vector.

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (12)

What’s great about scaled dot-product attention (and about all of the layers
of the encoder) is that the work can be done in parallel across all the tokens in
our codebase: we don’t need to wait for one word to finish processing as we
do in Word2Vec in order to process the next one, so the number of input steps
remains the same, regardless of how big our vocabulary is.

The decoder piece differs slightly from the encoder. It starts with a different
input dataset: in the transformer paper, it’s the target language dataset we’d
like to translate the text into. So for example if we were translating our Flit
from English to Italian, we’d expect to train on the Italian corpus. Otherwise,
we perform all the same actions: we create indexed embeddings that we then
convert into positional embeddings. We then feed the positional embeddings
for the target text into a layer that has three parts: masked multi-headed
attention, multiheaded attention, and a feed-forward neural network. The
masked multi-headed attention component is just like self-attention, with one
extra piece: the mask matrix introduced in this step acts as a filter to prevent
the attention head from looking at future tokens, since the input vocabulary
for the decoder are our "answers", I.e. what the translated text should be.
The output from the masked multi-head self attention layer is passed to the
encoder-decoder attention portion, which accepts the final input from the
initial six encoder layers for the key and value, and uses the input from the
previous decoder layer as the query, and then performs scaled dot-product
over this. Each output is then fed into the feed forward layer, to a finalized set
of embeddings.

Once we have the hidden state for each token, we can then attach the task
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head. In our case, this is prediction of what a word should be. At each step of
the process, the decoder looks at the previous steps and generates based on
those steps so we form a complete sentence [54]. We then get the predicted
word, just like in Word2Vec.

Transformers were revolutionary for a number of reasons, because they
solved several problems people had been working on:

• Parallelization - Each step in the model is parallelizable, meaning we
don’t need to wait to know the positional embedding of one word in
order to work on another, since each embedding lookup matrix focuses
attention on a specific word, with a lookup table of all other words in
relationship to that word - each matrix for each word carries the context
window of the entire input text.

• Vanishing gradients - Previous models like RNNs can suffer from van-
ishing or exploding gradients, which means that the model reaches a
local minimum before it’s fully-trained, making it challenging to cap-
ture long-term dependencies. Transformers mitigate this problem by
allowing direct connections between any two positions in the sequence,
enabling information to flow more effectively during both forward and
backward propagation.

• Self-attention - The attention mechanism allows us to learn the context
of an entire text that’s longer than a 2 or 3-word sliding context window,
allowing us to learn different words in different contexts and predict
answers with more accuracy

4.3 BERT

Figure 45: Encoder-only architecture

After the explosive success of "Attention is All you Need", a variety of trans-
former architectures arose, research and implementation in this architecture
exploded in deep learning. The next transformer architecture to be considered
a significant step forward was BERT. BERT stands for Bi-Directional Encoder
and was released 2018 [13], based on a paper written by Google as a way
to solve common natural language tasks like sentiment analysis, question-
answering, and text summarization. BERT is a transformer model, also based
on the attention mechanism, but its architecture is such that it only includes
the encoder piece. Its most prominent usage is in Google Search, where it’s
the algorithm powering surfacing relevant search results. In the blog post
they released on including BERT in search ranking in 2019, Google specifi-
cally discussed adding context to queries as a replacement for keyword-based
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methods as a reason they did this.29

BERT works as a masked language model. Masking is simply what we
did when we implemented Word2Vec by removing words and building our
context window. When we created our representations with Word2Vec, we
only looked at sliding windows moving forward. The B in Bert is for bi-
directional, which means it pays attention to words in both ways through
scaled dot-product attention. BERT has 12 transformer layers. It starts by
using WordPiece, an algorithm that segments words into subwords, into
tokens. To train BERT, the goal is to predict a token given its context.

The output of BERT is latent representations of words and their context —
a set of embeddings. BERT is, essentially, an enormous parallelized Word2Vec
that remembers longer context windows. Given how flexible BERT is, it
can be used for a number of tasks, from translation, to summarization, to
autocomplete. Because it doesn’t have a decoder component, it can’t generate
text, which paved the way for GPT models to pick up where BERT left off.

4.4 GPT

Around the same time that BERT was being developed, another transformer
architecture, the GPT series, was being developed at OpenAI. GPT differs
from BERT in that it encodes as well as decodes text from embeddings and
therefore can be used for probabilistic inference.

The original, first GPT model was trained as a 12-layer, 12-headed trans-
former with only a decoder piece, based on data from Book Corpus. Sub-
sequent versions built on this foundation to try and improve context under-
standing. The largest breakthrough was in GPT-4, which was trained with
reinforcement learning from Human Feedback, a property which allows it
to make inferences from text that feels much closer to what a human would
write.

We’ve now reached the forefront of what’s possible with embeddings
in this paper. With the rise of generative methods and methods based on
Reinforcement Learning with Human Feedback like OpenAI’s ChatGPT, as
well as the nascent open-source Llama, Alpaca, and other models, anything
written in this paper would already be impossibly out of date by the time it
was published30.

5 Embeddings in Production

With the advent of Transformer models, and more importantly, BERT, gen-
erating representations of large, multimodal objects for use in all sorts of
machine learning tasks suddenly became much easier, the representations
became more accurate, and if the company had GPUs available, computations
could now be computed with speed-up in parallel. Now that we understand
what embeddings are, what should we do with them? After all, we’re not

29BERT search announcement
30There are already some studies about possible uses of LLMs for recommendations, includ-

ing conversational recommender systems, but it’s still very early days. For more information
check out this post
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doing this just as a math exercise. If there is one thing to take away from this
entire text, it is this:

The final goal of all industrial machine learning (ML) projects is to develop
ML products and rapidly bring them into production. [37]

The model that is deployed is always better and more accurate than the
model that is only ever a prototype. We’ve gone through the process of
training embeddings end to end here, but there are several modalities for
working with embeddings. We can:

• Train our own embeddings model - We can train BERT or some variation
of BERT from scratch. BERT uses an enormous amount of training
data, so this is not really advantageous to us, unless we want to better
understand the internals and have access to a lot of GPUs.

• Use pretrained embeddings and fine-tune - There are many variations
on BERT models and they all Variations of BERT have been used to
generate embeddings to use as downstream input into many recom-
mender and information retrieval systems. One of the largest gifts that
the transformer architecture gives us is the ability to perform transfer
learning.
Before, when we learned embeddings in pre-transformer architectures,
our representation of whatever dataset we had at hand was fixed — we
couldn’t change the weights of the words in TF-IDF without regenerating
an entire dataset.

Now, we have the ability to treat the output of the layers of BERT as input
into the next neural network layer of our own, custom model. In addition to
transfer learning, there are also numerous more compact models for BERT,
such as Distilbert and RoBERTA and for many of the larger models in places
like the HuggingFace Model Hub31.

Armed with this knowledge, we can think of several use cases of embed-
dings, given their flexibility as a data structure.

• Feeding them into another model - For example, we can now per-
form collaborative filtering using both user and item embeddings
that were learned from our data instead of coding the users and items
themselves.

• Using them directly - We can use item embeddings directly for
content filtering - finding items that are closest to other items, a task
recommendation shares with search. There are a host of algorithms
used to perform vector similarity lookups by projecting items into our
embedding space and performing similarity search using algorithms
like faiss and HNSW.

31For a great writeup on the development of open-source machine learning deep learning,
see "A Call to Build Models Like We Build Open-Source Software"
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5.1 Embeddings in Practice

Many companies are working with embeddings in all of these contexts today,
across areas that span all aspects of information retrieval. Embeddings gen-
erated with deep learning models are being generated for use in wide and
deep models for App Store recommendations at Google Play [73], dual em-
beddings for product complementary content recommendations at Overstock
[38], personalization of search results at Airbnb via real-time ranking [25], us-
ing embeddings for content understanding at Netflix [16], for understanding
visual styles at Shutterstock [24], and many other examples.

5.1.1 Pinterest

One notable example is Pinterest. Pinterest as an application has a wide variety
of content that needs to be personalized and classified for recommendation to
users across multiple surfaces, particularly the Homefeed and shopping tab.
The scale of generated content - 350 million monthly users and 2 billion items
- Pins — or cards with an image described by text — necessitates a strong
filtering and ranking policy.

To represent a user’s interest and surface interesting content, Pinterest
developed PinnerSage [50], which represents user interests through multiple
256-dimension embeddings that are clustered based on similarity and repre-
sented by medioids — an item that is a representative of a center of a given
interest cluster.

The foundation of this system is a set of embeddings developed through an
algorithm called PinSage [72]. Pinsage generates embeddings using a Graph
Convolutional neural network, which is a neural net that takes into account the
graph structure of relationships between nodes in the network. The algorithm
looks at the nearest neighbors of a pin and samples from nearby pins based
on related neighborhood visits. The input is embeddings of a Pin: the image
embeddings, and the text embeddings, and finds the nearest neighbors.

Pinsage embeddings are then passed to Pinnersage, which takes the pins
the user has acted on for the past 90 days and clusters them. It computes the
medioid and takes the top 3 medioids based on importance, and, given a user
query that is a medioid, performs an approximate nearest neighbors search
using HNSW to find the pins closest to the query in the embedding space.
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Figure 46: Pinnersage and Pinsage embeddings-based similarity retrieval

5.1.2 YouTube and Google Play Store

YouTube

YouTube was one of the first large companies to publicly share their work on
embeddings used in the context of a production recommender system with
"Deep Neural Networks for YouTube Recommendations."

YouTube has over 800 million pieces of content (videos) and 2.6 billion
active users that they’d like to recommend those videos to. The application
needs to recommend existing content to users, while also generalizing to new
content, which is uploaded frequently. They need to be able to serve these
recommendations at inference time — when the user loads a new page —
with low latency.

In this paper [11], YouTube shares how they created a two-stage recom-
mender system for videos based on two deep learning models. The machine
learning task is to predict the correct next video to show the user at a given
time in YouTube recommendations so that they click. The final output is
formulated as a classification problem: given a user’s input features and the
input features of a video, can we predict a class for the user that includes the
predicted watch time for the user for a specific video with a specific probability.

Figure 47: YouTube’s end-to-end video recommender system, including a candidate generator
and ranker [11]
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We set this task given a user, U and context C32

Given the size of the input corpus, we need to formulate the problem as
a two-stage recommender: the first is the candidate generator that reduces
the candidate video set to hundreds of items and a second model, similar in
size and shape, called a ranker that ranks these hundreds of videos by the
probability that the user will click on them and watch.

The candidate generator is a softmax deep learning model with several
layers, all activated with ReLU activation functions – rectified linear unit
activation that outputs the input directly if positive; otherwise, it’s zero. The
uses both embedded and tabular learning features, all of which are combined
and

To build the model, we use two sets of embeddings as input data: one
that’s the user plus context as features, and a set of video items. The model
has several hundreds of features, both tabular and embeddings-based. For the
embeddings-based features, we include elements like:

• User watch history - represented by a vector of sparse video ID elements
mapped into a dense vector representation

• User’s search history - Maps search term to video clicked from the search
term, also in a sparse vector mapped into the same space as the user
watch history

• User’s geography, age, and gender - mapped as tabular features
• The number of previous impressions a video had, normalized per user

over time

These are all combined into a single item embedding, and in the case of
the user, a single embedding that’s a blended map of all the user embedding
features, and fed into the models’ softmax layers, which compare the distance
between the output of the softmax layer, i.e. the probability that the user will
click on an item, and a set of ground truth items, i.e. a set of items that the user
has already interacted with. The log probability of an item is the dot product
of two n-dimensional vectors, i.e. the query and item embeddings.

We consider this an example of Implicit feedback - feedback the user did
not explicitly give, such as a rating, but that we can capture in our log data.
Each class response, of which there are approximately a million, is given a
probability as output.

The DNN is a generalization of the matrix factorization model we dis-
cussed earlier.

32In recommender systems, we often think of four relevant items to formulate our recom-
mender problem - user, item, context, and query. The context is usually the environment, for
example the time of day or the geography of the user at inference time
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Figure 48: YouTube’s multi-step neural network model for video recommendations using
input embeddings [11]

Google Play App Store

Similar work, although with a different architecture, was done in the App
Store in Google Play in "Wide and Deep Learning for Recommender Systems"
[7]. This one crosses the search and recommendation space because it returns
correct ranked and personalized app recommendations as the result of a search
query. The input is clickstream data collected when a user visits the app store.

Figure 49: Wide and deep [7]

The recommendations problem is formulated here as two jointly-trained
models. The weights are shared and cross-propagated between the two models
between epochs.

There are two problems when we try to build models that recommend
items: memorization - the model needs to learn patterns by learning how
items occur together given the historical data, and generalization - the model
needs to be able to give new recommendations the user has not seen before that
are still relevant to the user, improving recommendation diversity. Generally,
one model alone cannot encompass both of these tradeoffs.

Wide and deep is made up of two models that look to complement each
other:
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• A wide model which uses traditional tabular features to improve the
model’s memorization. This is a general linear model trained on
sparse, one-hot encoded features like user_installed_app=netflix
across thousands of apps. Memorization works here by creat-
ing binary features that are combinations of features, such as
AND(user_installed_app=netflix, impression_app_pandora, allow-
ing us to see different combinations of co-occurrence in relationship
to the target, i.e. likelihood to install app Y. However, this model cannot
generalize if it gets a new value outside of the training data.

• A deep model that supports generalization across items that the model
has not seen before, using a feed-forward neural network made up
of categorical features that are translated to embeddings, such as user
language, device class, and whether a given app has an impression.
Each of these embeddings range from 0-100 in dimensionality. They
are combined jointly into a concatenated embedding space with dense
vectors in 1200 dimensions. and initialized randomly. The embedding
values are trained to minimize loss of the final function, which is a
logistic loss function common to the deep and wide model.

Figure 50: The deep part of the wide and deep model [7]

The model is trained on 500 billion examples, and evaluated offline using
AUC and online using app acquisition rate, the rate at which people download
the app. Based on the paper, using this approach improved the app acquisition
rate on the main landing page of the app store by 3.9 % relative to the control
group.

5.1.3 Twitter

At Twitter, pre-computed embeddings were a critical part recommendations
for many app surface areas including user onboarding topic interest predic-
tion, recommended Tweets, home timeline construction, users to follow, and
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recommended ads.
Twitter had a number of embeddings-based models but we’ll cover two

projects here: Twice [44], content embeddings for Tweets, which looks to find
rich representations of Tweets that include both text and visual data for use in
surfacing Tweets in the home timeline, Notifications and Topics. Twitter also
developed TwHIN [18], Twitter Heterogeneous Information Network, a set
of graph-based embeddings [18], developed for tasks like personalized ads
rankings, account follow-recommendation, offensive content detection, and
search ranking, based on nodes (such as users and advertisers) and edges that
represent entity interactions.

Figure 51: Twitter’s Twice Embeddings, a trained BERT model [44]

Twice is a BERT model trained from scratch on an input corpus of 200
million Tweets that users engaged with sampled over 90 days and also includes
associations to the users themselves. The objective of the model is to optimize
on several tasks: topic prediction (aka the topic associated with a Tweet, of
which there could be multiple), engagement prediction (the likelihood a user
is to engage with a Tweet), and language prediction to cluster Tweets of the
same language to be clustered closer together.

TwHIN, rather than just focusing on Tweet content, considers all entities in
Twitter’s environment (Tweets, users, advertiser entities) as belong together
in a joint embedding space graph.

Joint embedding is performed by using data from user-Tweet engagement,
advertising, and following data, to create multi-model embeddings. TWHin
is used for candidate generation. The candidate generator finds users to
follow or Tweets to engage with an HNSW or Faiss to retrieve candidate items.
TWHin embeddings are then used to query candidate items and increase
diversity in the candidate pool.
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Figure 52: Twitter’s model of the app’s heterogeneous information network [18]

Embeddings at Flutter

Once we synthesize enough of these architectures, we see some patterns
start to emerge that we can think about adapting for developing our relevant
recommendation system at Flutter.

First, we need a great deal of input data to make accurate predictions
from, and that data should have information about either explicit, or, more
likely, implicit data like user clicks and purchases so that we can construct our
model of user preferences. The reason we need a lot of data is two-fold. First,
neural networks are data-hungry and require a large amount of training data
to correctly infer relationships in comparison to traditional models. Second,
large data requires a large pipeline.

If we don’t have a lot of data, a simpler model will work well-enough,
so we need to make sure we are actually at the scale where embeddings
and neural networks help our business problem. It’s likely the case that we
can start much simpler. And in fact, a recent paper by one of the original
researchers who developed factorization machines, an important approach
in recommendations, argues that simple dot products found as the result of
matrix factorization outperform neural networks [52]. Second, in order to get
good embeddings, we will need to spend a great deal of time cleaning and
processing data and creating features, as we did in the YouTube paper, so the
outcome has to be worth the time spent.

Second, we need to be able to understand the latent relationship between
users and items they’ve interacted with. In traditional recommenders, we
could use TF-IDF to find the weighted word features as part of a particular flit
and compare across documents, as long as our corpus doesn’t grow too large.
In more advanced recommendation systems, we could perform this same task
by looking at either naive association rules, or framing recommendation as
an interaction-based collaborative filtering problem not unlike Word2Vec to
generate latent features, aka embeddings, of our users and items. In fact, this
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is exactly what Levy and Goldberg argued in "Neural Word Embedding as Im-
plicit Matrix Factorization" [43]. They looked at the skipgram implementation
of Word2Vec and found that implicitly it factors a word-context matrix.

We could alternatively still use tabular features as input into our collabo-
rative filtering problem but use a neural network [28] instead of simple dot
product to converge on the correct relationships and the downstream ranking
for the model.

Given our new knowledge about how embeddings and recommender sys-
tems work, we can now incorporate embeddings into the recommendations
we serve for flits at Flutter. If we want to recommend relevant content, we
might do it in a number of different ways, depending on our business require-
ments. In our corpus, we have hundreds of millions of messages that we need
to filter down to hundreds to show the user. So we can start with a baseline of
Word2Vec or similar and move on to any of the BERT or other neural network
approaches to developing model input features, vector similarity search, and
ranking, through the power of embeddings.

Embeddings are endlessly flexible and endlessly useful, and can empower
and improve the performance of our multimodal machine learning workflows.
However, as we just saw, there are some things to keep in mind if we do
decide to use them.

5.2 Embeddings as an Engineering Problem

In general, machine learning workflows add an enormous amount of com-
plexity and overhead to our engineering systems, for a number of reasons
[57]. First, they blend data that then needs to be monitored for drift down-
stream. Second, they are non-deterministic in their outputs, which means they
need to be tracked extremely carefully as artifacts, since we generally don’t
version-control data. Third, they result in processing pipeline jungles.

As a special case of glue code, pipeline jungles often appear in
data preparation. These can evolve organically, as new signals are
identified and new information sources added. Without care, the
resulting system for preparing data in an ML-friendly format may
become a jungle of scrapes, joins, and sampling steps, often with
intermediate files output.

As we can see from several system diagrams, including PinnerSage and
the Wide and Deep Model, recommender systems in production utilizing
embeddings have many moving components.
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Figure 53: PinnerSage model archi-
tecture [50]

Figure 54: Wide and Deep model
architecture [7]

You may recall that we discussed the simple stages of a recommender
system in this diagram.

Figure 55: Generic system processing embeddings in context

Given all of our production-level requirements for a successful recom-
mendation system, our actual production system generally looks more like
this:

• Generating embeddings
• Storing embeddings
• Embedding feature engineering and iteration
• Artifact retrieval
• updating embeddings
• versioning embeddings and data drift
• Inference and latency
• Online (A/B test) and offline (metric sweep) model evaluation

Given all of our concern space, the diagram of any given production
system would look more like this
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Figure 56: Recommender systems as a machine learning problem

5.2.1 Embeddings Generation

We’ve already seen that embeddings are usually generated as a byproduct of
training neural network models, most often the penultimate layer that’s used
before a layer to classify or regress is added as the final output. We have two
ways to build them. We can train our own models, as YouTube, Pinterest, and
Twitter have done. In the LLM space, there is also growing interest in being
able to train large language models in-house.

However, one of the large benefits of deep learning models is that we
can also use pre-trained model. A pretrained model is any model that’s like
the one we’re considering for our task that has already been trained on an
enormous corpus of training data, and can be used for downstream tasks.
BERT is an example of a model that has already been pre-trained and can
be used for any number of machine learning tasks through the process of
fine-tuning. In fine-tuning, we take a model that’s already been pre-trained
on a generic dataset. For example, BERT was trained on BookCorpus, a set of
11k books with 800 million words and English Wikipedia, 2.5 billion words.

An aside on training data

Training data is the most important part of any given model. Where does it
come from for pre-trained large language models? Usually scraping large
parts of the internet. In the interest of competitive advantage, how these
training datasets are put together is usually not revealed, and there is a
fair amount of reverse-engineering and speculation. For example, "What’s
in my AI" goes into the training data behind the GPT series of models
and finds that GPT-3 was trained on Books1 and Books2. Books1 is likely
bookcorpus and books2 is likely libgen. GPT also includes the Common
Crawl, a large open-source dataset of indexed websites, WebText2, and
Wikipedia. This information is important because when we pick a model
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we need to at least understand at a high level what it was trained on to
be a general-purpose model so we can explain what changes when we
fine-tune it.

In fine-tuning a model, we perform all the same steps as we do for training
from scratch. We have training data, we have a model, and we minimize a
loss function. However, there are several differences. When we create our
new model, we copy the existing, pre-trained model with the exception of
the final output layer, which we initialize from scratch based on our new task.
When we train the model, we initialize these parameters at random and only
continue to adjust the parameters of the previous layers so that they focus on
this task rather than starting to train from scratch. In this way, if we have a
model like BERT that’s trained to generalize across the whole internet, but our
corpus for Flutter is very sensitive to trending topics and needs to be updated
on a daily basis, we can refocus the model without having to train a new one
with as few as 10k samples instead of our original hundreds of millions [74].

There are, likewise, BERT embeddings available that we can fine-tune.
There are other generalized corpuses available, such as GloVE, Word2Vec, and
FastText (also trained with CBOW). We need to make a decision whether to
use these, train a model from scratch, or a third option, to query embeddings
available from an API as is the case for OpenAI embeddings, although doing
so can potentially come at a higher cost, relative to training or fine-tuning our
own. Of course, all of this is subject to our particular use-case and is important
to evaluate when we start a project.

5.2.2 Storage and Retrieval

Once we’ve trained our model, we’ll need to extract the embeddings from
the trained object. Generally, when a model is trained, the resulting output is
a data structure that contains all the parameters of the model, including the
model’s weights, biases, layers and learning rate. The embeddings are part of
this model object as a layer, and they initially live in-memory. When we write
the model to disk, we propagate them as a model object, which is serialized
onto memory and loaded at re-training or inference time.

The simplest form of embedding store can be an in-memory numpy ar-
ray33.

But if we are iterating on building a model with embeddings, we want to
be able to do a number of things with them:

• Access them in batch and one-by-one at inference time
• Perform offline analysis on the quality of the embeddings
• Embedding feature engineering
• Update embeddings with new models
• Version embeddings
• Encode new embeddings for new documents

33From a Tweet by Andrej Karpathy in response to how he stores vector embeddings for a
small movie recommendations side project in 2023,"np.array people keep reaching for much
fancier things way too fast these days. Tweet
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The most complex and customizable software that handles many of these
use-cases is a vector database, and somewhere in-between vector databases
and in-memory storage are vector search plugins for existing stores like Post-
gres and SQLite, and caches like Redis.

The most important operation we’d like to perform with embeddings is
vector search, which allows us to find embeddings that are similar to a given
embedding so we can return item similarity. If we want to search embeddings,
we need a mechanism that is optimized to search through our matrix data
structures and perform nearest-neighbor comparisons in the same way that
a traditional relational database is optimized to search row-based relations.
Relational databases use a b-tree structure to optimize reads by sorting items
in ascending order within a hierarchy of nodes, built on top of an indexed
column in the database. We can’t perform columnar lookups on our vectors
efficiently, so we need to create different structures for them. For example,
many vector stores are based on inverted indices.

A general-form embeddings store contains the embeddings themselves, an
index to map them back from the latent space into words, pictures, or text, and
a way to do similarity comparisons between different types of embeddings
using various nearest neighbors algorithms. We talked before about cosine
similarity as a staple of comparing latent space representations. This can be-
come computationally expensive over millions of sets of vectors, because we’d
need to do a pairwise comparison over every pair. To solve this, approximate
nearest neighbors (ANN) algorithms were developed to, as in recommender
systems, create neighborhoods out of elements of vectors and find a vector’s
k-nearest neighbors. The most frequently-used algorithms include HNSW
(hierarchical navigable small worlds) and Faiss, both of which are standalone
libraries and also implemented as part of many existing vector stores.

The trade-off between full and nearest neighbor search is that the latter is
less precise, but it’s much faster. When we switch between precision and recall
in evaluation, we need to be aware of the tradeoffs and think about what our
requirements are with respect to how accurate our embeddings are and their
inference latency.

Here’s an example of the embeddings storage system that Twitter built for
exactly this use case, long before vector databases came into the picture. [62].

Figure 57: Twitter’s embeddings pipeline [62]
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Given that Twitter uses embeddings in multiple sources as described in
the previous section, Twitter made embeddings "first class citizens" by creat-
ing a centralized platform that reprocesses data and generates embeddings
downstream into the feature registry.

5.2.3 Drift Detection, Versioning, and Interpretability

Once we’ve trained embeddings, we might think we’re done. But embeddings,
like any machine learning pipeline, need to be refreshed because we might
run into concept drift. Concept drift occurs when the data underlying our
model changes. For example, let’s say that our model includes, as a binary
feature, people who have landlines or not. In 2023, this would no longer be as
relevant of a feature in most of the world as most people have switched to cell
phones as their primary telephones, so the model would lose accuracy.

This phenomenon is even more prevalent with embeddings that are used
for classification. For example, let’s say we use embeddings for trending topic
detection. The model has to generalize, as in the wide and deep model, to
detect new classes, but if our classes change quickly, it may not be able to, so
we need to retrain your embeddings frequently. Or, for example, if we model
embeddings in a graph, as Pinterest does, and the relationships between nodes
in the graph change, we may have to update them [69]. We could also have an
influx of spam or corrupted content which changes the relationship in your
embeddings, in which case we’ll need to retrain.

Embeddings can be hard to understand (so hard that some people have
even written entire papers about them) and harder to interpret. What does it
mean for a king to be close to queen but far away from the knight? What does
it mean for two flits to be close to each other in a projected embedding space?

We have two ways we can think about this, intrinsic and extrinsic evalua-
tion. For the embeddings themselves (extrinsic evaluation), we can visualize
them through either UMAP—Uniform Manifold Approximation and Projec-
tion for Dimension Reduction or t-sne — t-distributed stochastic neighbor
embedding, algorithms that allow us to visualize highly-dimensional data in
two or three dimensions, much like PCA. Or we can fit embeddings into our
downstream task (for example, summarization, or classification), and analyze
the same way we would with offline metrics. There are many different ap-
proaches [67] but the summary is that embeddings can be objectively hard to
evaluate and we’ll need to factor the time to perform this evaluation into our
modeling time.

Once we retrain our initial baseline model, we now have a secondary issue:
how do we compare the first set of embeddings to the second; that is, how do
we evaluate whether they are good representations of our data, given the case
that embeddings are often unsupervised; i.e. — how do we know whether
"king" should be close to "queen"? On their own, as a first-pass, embeddings
can be hard to interpret, because in a multidimensional space it’s hard to
understand which dimension of a vector corresponds to a decision to place
items next to each other [63]. When compared to other sets of embeddings,
we might use the offline metrics of the final model task, precision and recall,
or we could measure the distance of the distribution of the embeddings in the
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latent space by comparing the statistical distance between the two probability
distributions using a metric known as Kullback–Leibler divergence.

Finally, now let’s say that we have two sets of embeddings, you need to
version them and keep both sets so that, in case your new model doesn’t work
as well, you can fall back to the old one. This goes hand-in-hand with the
problem of model versioning in ML operations, except in this case we need to
both version the model and the output data.

There are numerous different approaches to model and data versioning
that involve building a system that tracks both the metadata and the location
of the assets that are kept in a secondary data store. Another thing to keep in
mind is that embedding layers, particularly for large vocabularies, can balloon
in size, so now we have to consider storage costs, as well.

5.2.4 Inference and Latency

When working with embeddings, we are operating not only in a theoretical,
but practical engineering environment. The most critical engineering part of
any machine learning system that works in production is inference time —
how quickly does it take to query the model asset and return a result to an
end-user.

For this, we care about latency, which we can roughly define as any time
spent waiting and is a critical performance metric in any production system
[26]. Generally speaking, it’s the time of any operation to complete – appli-
cation request, database query, and so on. Latency at the level of the web
service is generally measured in milliseconds, and every effort is made to
reduce this as close to zero as realistically possible. For use-cases like search
and loading a feed of content, the experience needs to be instantaneous or the
user experience will degrade and we could even lose revenue. In a study from
a while back, Amazon found that every 100ms increase in latency cuts profits
by 1% [19].

Given this, we need to think about how to reduce the footprint of our
model and all the layers in serving it so that the response to the user is
instantaneous. We do this by creating observability throughout our machine
learning system, starting with the hardware the system is running on, to
CPU and GPU utilization, the performance of our model architecture, and
how that model interacts with other components. For example, when we are
performing nearest neighbor lookup, the way we perform that lookup and the
algorithm we use, the programming language we use to write that algorithm,
all compound latency concerns.

As an example, in the wide and deep paper, the recommender ranking
model scores over 10 million apps per second. The application was initially
single-threaded, with all candidates taking 31 milliseconds. By implementing
multithreading, they were able to reduce client-side latency to 14 milliseconds
[7].

Operations of machine learning systems is an entirely other art and craft
of study and one that’s best left for another paper [37].
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5.2.5 Online and Offline Model Evaluation

We’ve barely scratched the surface of one of the most critical parts of a model:
how it performs in offline and online testing. When we talk about offline tests,
we mean analyzing the statistical properties of a model to learn whether the
model is a valid model - i.e. does our loss function converge? Does the model
overfit or underfit? What is the precision and recall? Do we experience any
drift? If it’s a recommendation ranker model, are we using metrics like NDCG
—normalized discounted cumulative gain— to understand whether our new
model ranks items better than the previous iteration?

Then, there is online evaluation, aka how successful the model actually
is in the production context. Usually, this is evaluated through A/B testing
where one set of users gets the old model or system and a holdout set of users
gets the new system, and looking at the statistical significance of metrics like
click-through rate, items served, and time spent on a given area of the site.

5.2.6 What makes embeddings projects successful

Finally, once we have all our algorithmic and engineering concerns lined up,
there is the final matter to consider of what will make our project successful
from a business perspective. We should acknowledge that we might not
always need embeddings for our machine learning problem, or that we might
not need machine learning at all, initially, if our project is based entirely on a
handful of heuristic rules that can be determined and analyzed by humans
[76].

If we conclude that we are operating in a data-rich space where automati-
cally inferring semantic relationships between entities is correct, we need to
ask ourselves if we’re willing to put in a great deal of effort into producing
clean datasets, the baseline of any good machine learning model, even in cases
of large language models. In fact, clean, domain data is so important that
many of the companies discussed here ended up training their own embed-
dings models, and, recently companies like Bloomberg [70] and Replit [59] are
even training their own large language models to improve accuracy for their
specific business domain.

Critically, to get to a stage where we have a machine learning system
dealing with embeddings, we need a team that has multilevel alignment
around the work that needs to be done. In larger companies, the size of this
team will be larger, but most specifically work with embeddings requires
someone who can speak to the use case specifically, someone who advocates
for the use case and gets it prioritized, and a technical person who can do the
work [46].

If all of these components come together, we now have an embeddings-
based recommender system in production.

6 Conclusion

We have now walked through an end-to-end example of what embeddings
are. We started with a high-level overview of how embeddings fit into the
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context of a machine learning application. We then did a deep dive on early
approaches to encoding, built up intuition of embeddings in Word2Vec and
then moving on to transformers and BERT. Although reducing dimensionality
as a concept has always been important in machine learning systems to de-
crease computational and storage complexity, compression has become even
more important in the modern explosion of multimodal representations of
data that comes from application log files, images, video, and audio, and the
explosion of Transformer, generative, and diffusion models, combined with
the cheap storage and explosion of data, has amended itself to architectures
where embeddings are used more and more.

We’ve understood the engineering context of why we might include ma-
chine learning models in our application, how they work, how to incorporate
them, and where embeddings —dense representations of deep learning model
input and output data – can be best leveraged. Embeddings are a powerful
tool in any machine learning system, but one that comes at a cost of mainte-
nance and interpretability. Generating embeddings using the correct method,
with the correct metrics and hardware and software, is a project that takes con-
siderable thought. We now hopefully have a solid grasp of the fundamentals
of embedding and can either leverage them – or explain why not to –in our
next project. Good luck navigating embeddings, see you in the latent space!
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