

Fourth Edition

CMOS VLSI Design
A Circuits and Systems Perspective

This page intentionally left blank

Fourth Edition

Neil H. E. Weste
Macquarie University and
The University of Adelaide

David Money Harris
Harvey Mudd College

CMOS VLSI Design
A Circuits and Systems Perspective

Addison-Wesley
Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editor in Chief: Michael Hirsch
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Chelsea Bell
Managing Editor: Jeffrey Holcomb
Senior Production Project Manager: Marilyn Lloyd
Media Producer: Katelyn Boller
Director of Marketing: Margaret Waples
Marketing Coordinator: Kathryn Ferranti
Senior Manufacturing Buyer: Carol Melville
Senior Media Buyer: Ginny Michaud
Text Designer: Susan Raymond
Art Director, Cover: Linda Knowles
Cover Designer: Joyce Cosentino Wells/J Wells Design
Cover Image: Cover photograph courtesy of Nick Knupffer—Intel Corporation.

Copyright © 2009 Intel Corporation. All rights reserved.
Full Service Vendor: Gillian Hall/The Aardvark Group Publishing Service
Copyeditor: Kathleen Cantwell, C4 Technologies
Proofreader: Holly McLean-Aldis
Indexer: Jack Lewis
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix Color/Hagerstown

Credits and acknowledgments borrowed from other sources and reproduced with permission in this
textbook appear on appropriate page within text or on page 838.

The interior of this book was set in Adobe Caslon and Trade Gothic.

Copyright © 2011, 2005, 1993, 1985 Pearson Education, Inc., publishing as Addison-Wesley. All
rights reserved. Manufactured in the United States of America. This publication is protected by
Copyright, and permission should be obtained from the publisher prior to any prohibited reproduc-
tion, storage in a retrieval system, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. To obtain permission(s) to use material from this work,
please submit a written request to Pearson Education, Inc., Permissions Department, 501 Boylston
Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed in initial caps or all caps.

Cataloging-in-Publication Data is
on file with the Library of Congress.

10 9 8 7 6 5 4 3 2 1—EB—14 13 12 11 10
ISBN 10: 0-321-54774-8
ISBN 13: 978-0-321-54774-3

Addison-Wesley
is an imprint of

To Avril, Melissa, Tamara, Nicky, Jocelyn,
Makayla, Emily, Danika, Dan and Simon

N. W.

To Jennifer, Samuel, and Abraham
D. M. H.

This page intentionally left blank

vii

Preface xxv

Chapter 1 Introduction
1.1 A Brief History . 1

1.2 Preview . 6

1.3 MOS Transistors . 6

1.4 CMOS Logic . 9
1.4.1 The Inverter 9
1.4.2 The NAND Gate 9
1.4.3 CMOS Logic Gates 9
1.4.4 The NOR Gate 11
1.4.5 Compound Gates 11
1.4.6 Pass Transistors and Transmission Gates 12
1.4.7 Tristates 14
1.4.8 Multiplexers 15
1.4.9 Sequential Circuits 16

1.5 CMOS Fabrication and Layout . 19
1.5.1 Inverter Cross-Section 19
1.5.2 Fabrication Process 20
1.5.3 Layout Design Rules 24
1.5.4 Gate Layouts 27
1.5.5 Stick Diagrams 28

1.6 Design Partitioning . 29
1.6.1 Design Abstractions 30
1.6.2 Structured Design 31
1.6.3 Behavioral, Structural, and Physical Domains 31

1.7 Example: A Simple MIPS Microprocessor . 33
1.7.1 MIPS Architecture 33
1.7.2 Multicycle MIPS Microarchitecture 34

1.8 Logic Design . 38
1.8.1 Top-Level Interfaces 38
1.8.2 Block Diagrams 38
1.8.3 Hierarchy 40
1.8.4 Hardware Description Languages 40

1.9 Circuit Design . 42

Contents

Contentsviii

1.10 Physical Design . 45
1.10.1 Floorplanning 45
1.10.2 Standard Cells 48
1.10.3 Pitch Matching 50
1.10.4 Slice Plans 50
1.10.5 Arrays 51
1.10.6 Area Estimation 51

1.11 Design Verification . 53

1.12 Fabrication, Packaging, and Testing . 54

Summary and a Look Ahead 55

Exercises 57

Chapter 2 MOS Transistor Theory
2.1 Introduction . 61

2.2 Long-Channel I-V Characteristics . 64

2.3 C-V Characteristics . 68
2.3.1 Simple MOS Capacitance Models 68
2.3.2 Detailed MOS Gate Capacitance Model 70
2.3.3 Detailed MOS Diffusion Capacitance Model 72

2.4 Nonideal I-V Effects . 74
2.4.1 Mobility Degradation and Velocity Saturation 75
2.4.2 Channel Length Modulation 78
2.4.3 Threshold Voltage Effects 79
2.4.4 Leakage 80
2.4.5 Temperature Dependence 85
2.4.6 Geometry Dependence 86
2.4.7 Summary 86

2.5 DC Transfer Characteristics . 87
2.5.1 Static CMOS Inverter DC Characteristics 88
2.5.2 Beta Ratio Effects 90
2.5.3 Noise Margin 91
2.5.4 Pass Transistor DC Characteristics 92

2.6 Pitfalls and Fallacies . 93

Summary 94

Exercises 95

Chapter 3 CMOS Processing Technology
3.1 Introduction . 99

3.2 CMOS Technologies . 100
3.2.1 Wafer Formation 100
3.2.2 Photolithography 101

Contents ix

3.2.3 Well and Channel Formation 103
3.2.4 Silicon Dioxide (SiO2) 105
3.2.5 Isolation 106
3.2.6 Gate Oxide 107
3.2.7 Gate and Source/Drain Formations 108
3.2.8 Contacts and Metallization 110
3.2.9 Passivation 112
3.2.10 Metrology 112

3.3 Layout Design Rules . 113
3.3.1 Design Rule Background 113
3.3.2 Scribe Line and Other Structures 116
3.3.3 MOSIS Scalable CMOS Design Rules 117
3.3.4 Micron Design Rules 118

3.4 CMOS Process Enhancements . 119
3.4.1 Transistors 119
3.4.2 Interconnect 122
3.4.3 Circuit Elements 124
3.4.4 Beyond Conventional CMOS 129

3.5 Technology-Related CAD Issues . 130
3.5.1 Design Rule Checking (DRC) 131
3.5.2 Circuit Extraction 132

3.6 Manufacturing Issues . 133
3.6.1 Antenna Rules 133
3.6.2 Layer Density Rules 134
3.6.3 Resolution Enhancement Rules 134
3.6.4 Metal Slotting Rules 135
3.6.5 Yield Enhancement Guidelines 135

3.7 Pitfalls and Fallacies . 136

3.8 Historical Perspective . 137

Summary 139

Exercises 139

Chapter 4 Delay
4.1 Introduction . 141

4.1.1 Definitions 141
4.1.2 Timing Optimization 142

4.2 Transient Response . 143

4.3 RC Delay Model . 146
4.3.1 Effective Resistance 146
4.3.2 Gate and Diffusion Capacitance 147
4.3.3 Equivalent RC Circuits 147
4.3.4 Transient Response 148
4.3.5 Elmore Delay 150

Contentsx

4.3.6 Layout Dependence of Capacitance 153
4.3.7 Determining Effective Resistance 154

4.4 Linear Delay Model . 155
4.4.1 Logical Effort 156
4.4.2 Parasitic Delay 156
4.4.3 Delay in a Logic Gate 158
4.4.4 Drive 159
4.4.5 Extracting Logical Effort from Datasheets 159
4.4.6 Limitations to the Linear Delay Model 160

4.5 Logical Effort of Paths . 163
4.5.1 Delay in Multistage Logic Networks 163
4.5.2 Choosing the Best Number of Stages 166
4.5.3 Example 168
4.5.4 Summary and Observations 169
4.5.5 Limitations of Logical Effort 171
4.5.6 Iterative Solutions for Sizing 171

4.6 Timing Analysis Delay Models . 173
4.6.1 Slope-Based Linear Model 173
4.6.2 Nonlinear Delay Model 174
4.6.3 Current Source Model 174

4.7 Pitfalls and Fallacies . 174

4.8 Historical Perspective . 175

Summary 176

Exercises 176

Chapter 5 Power
5.1 Introduction . 181

5.1.1 Definitions 182
5.1.2 Examples 182
5.1.3 Sources of Power Dissipation 184

5.2 Dynamic Power . 185
5.2.1 Activity Factor 186
5.2.2 Capacitance 188
5.2.3 Voltage 190
5.2.4 Frequency 192
5.2.5 Short-Circuit Current 193
5.2.6 Resonant Circuits 193

5.3 Static Power . 194
5.3.1 Static Power Sources 194
5.3.2 Power Gating 197
5.3.3 Multiple Threshold Voltages and Oxide Thicknesses 199

Contents xi

5.3.4 Variable Threshold Voltages 199
5.3.5 Input Vector Control 200

5.4 Energy-Delay Optimization . 200
5.4.1 Minimum Energy 200
5.4.2 Minimum Energy-Delay Product 203
5.4.3 Minimum Energy Under a Delay Constraint 203

5.5 Low Power Architectures . 204
5.5.1 Microarchitecture 204
5.5.2 Parallelism and Pipelining 204
5.5.3 Power Management Modes 205

5.6 Pitfalls and Fallacies . 206

5.7 Historical Perspective . 207

Summary 209

Exercises 209

Chapter 6 Interconnect
6.1 Introduction . 211

6.1.1 Wire Geometry 211
6.1.2 Example: Intel Metal Stacks 212

6.2 Interconnect Modeling . 213
6.2.1 Resistance 214
6.2.2 Capacitance 215
6.2.3 Inductance 218
6.2.4 Skin Effect 219
6.2.5 Temperature Dependence 220

6.3 Interconnect Impact . 220
6.3.1 Delay 220
6.3.2 Energy 222
6.3.3 Crosstalk 222
6.3.4 Inductive Effects 224
6.3.5 An Aside on Effective Resistance and Elmore Delay 227

6.4 Interconnect Engineering . 229
6.4.1 Width, Spacing, and Layer 229
6.4.2 Repeaters 230
6.4.3 Crosstalk Control 232
6.4.4 Low-Swing Signaling 234
6.4.5 Regenerators 236

6.5 Logical Effort with Wires . 236

6.6 Pitfalls and Fallacies . 237

Summary 238

Exercises 238

Contentsxii

Chapter 7 Robustness
7.1 Introduction . 241

7.2 Variability . 241
7.2.1 Supply Voltage 242
7.2.2 Temperature 242
7.2.3 Process Variation 243
7.2.4 Design Corners 244

7.3 Reliability . 246
7.3.1 Reliability Terminology 246
7.3.2 Oxide Wearout 247
7.3.3 Interconnect Wearout 249
7.3.4 Soft Errors 251
7.3.5 Overvoltage Failure 252
7.3.6 Latchup 253

7.4 Scaling . 254
7.4.1 Transistor Scaling 255
7.4.2 Interconnect Scaling 257
7.4.3 International Technology Roadmap for Semiconductors 258
7.4.4 Impacts on Design 259

7.5 Statistical Analysis of Variability . 263
7.5.1 Properties of Random Variables 263
7.5.2 Variation Sources 266
7.5.3 Variation Impacts 269

7.6 Variation-Tolerant Design . 274
7.6.1 Adaptive Control 275
7.6.2 Fault Tolerance 275

7.7 Pitfalls and Fallacies . 277

7.8 Historical Perspective . 278

Summary 284

Exercises 284

Chapter 8 Circuit Simulation
8.1 Introduction . 287

8.2 A SPICE Tutorial . 288
8.2.1 Sources and Passive Components 288
8.2.2 Transistor DC Analysis 292
8.2.3 Inverter Transient Analysis 292
8.2.4 Subcircuits and Measurement 294
8.2.5 Optimization 296
8.2.6 Other HSPICE Commands 298

Contents xiii

8.3 Device Models . 298
8.3.1 Level 1 Models 299
8.3.2 Level 2 and 3 Models 300
8.3.3 BSIM Models 300
8.3.4 Diffusion Capacitance Models 300
8.3.5 Design Corners 302

8.4 Device Characterization . 303
8.4.1 I-V Characteristics 303
8.4.2 Threshold Voltage 306
8.4.3 Gate Capacitance 308
8.4.4 Parasitic Capacitance 308
8.4.5 Effective Resistance 310
8.4.6 Comparison of Processes 311
8.4.7 Process and Environmental Sensitivity 313

8.5 Circuit Characterization . 313
8.5.1 Path Simulations 313
8.5.2 DC Transfer Characteristics 315
8.5.3 Logical Effort 315
8.5.4 Power and Energy 318
8.5.5 Simulating Mismatches 319
8.5.6 Monte Carlo Simulation 319

8.6 Interconnect Simulation . 319

8.7 Pitfalls and Fallacies . 322

Summary 324

Exercises 324

Chapter 9 Combinational Circuit Design
9.1 Introduction . 327

9.2 Circuit Families . 328
9.2.1 Static CMOS 329
9.2.2 Ratioed Circuits 334
9.2.3 Cascode Voltage Switch Logic 339
9.2.4 Dynamic Circuits 339
9.2.5 Pass-Transistor Circuits 349

9.3 Circuit Pitfalls . 354
9.3.1 Threshold Drops 355
9.3.2 Ratio Failures 355
9.3.3 Leakage 356
9.3.4 Charge Sharing 356
9.3.5 Power Supply Noise 356
9.3.6 Hot Spots 357

Contentsxiv

9.3.7 Minority Carrier Injection 357
9.3.8 Back-Gate Coupling 358
9.3.9 Diffusion Input Noise Sensitivity 358
9.3.10 Process Sensitivity 358
9.3.11 Example: Domino Noise Budgets 359

9.4 More Circuit Families . 360

9.5 Silicon-On-Insulator Circuit Design . 360
9.5.1 Floating Body Voltage 361
9.5.2 SOI Advantages 362
9.5.3 SOI Disadvantages 362
9.5.4 Implications for Circuit Styles 363
9.5.5 Summary 364

9.6 Subthreshold Circuit Design . 364
9.6.1 Sizing 365
9.6.2 Gate Selection 365

9.7 Pitfalls and Fallacies . 366

9.8 Historical Perspective . 367

Summary 369

Exercises 370

Chapter 10 Sequential Circuit Design
10.1 Introduction . 375

10.2 Sequencing Static Circuits . 376
10.2.1 Sequencing Methods 376
10.2.2 Max-Delay Constraints 379
10.2.3 Min-Delay Constraints 383
10.2.4 Time Borrowing 386
10.2.5 Clock Skew 389

10.3 Circuit Design of Latches and Flip-Flops . 391
10.3.1 Conventional CMOS Latches 392
10.3.2 Conventional CMOS Flip-Flops 393
10.3.3 Pulsed Latches 395
10.3.4 Resettable Latches and Flip-Flops 396
10.3.5 Enabled Latches and Flip-Flops 397
10.3.6 Incorporating Logic into Latches 398
10.3.7 Klass Semidynamic Flip-Flop (SDFF) 399
10.3.8 Differential Flip-Flops 399
10.3.9 Dual Edge-Triggered Flip-Flops 400
10.3.10 Radiation-Hardened Flip-Flops 401
10.3.11 True Single-Phase-Clock (TSPC) Latches and Flip-Flops 402

10.4 Static Sequencing Element Methodology . 402
10.4.1 Choice of Elements 403
10.4.2 Characterizing Sequencing Element Delays 405

WEB
ENHANCED

WEB
ENHANCED

Contents xv

10.4.3 State Retention Registers 408
10.4.4 Level-Converter Flip-Flops 408
10.4.5 Design Margin and Adaptive Sequential Elements 409
10.4.6 Two-Phase Timing Types 411

10.5 Sequencing Dynamic Circuits . 411

10.6 Synchronizers . 411
10.6.1 Metastability 412
10.6.2 A Simple Synchronizer 415
10.6.3 Communicating Between Asynchronous Clock Domains 416
10.6.4 Common Synchronizer Mistakes 417
10.6.5 Arbiters 419
10.6.6 Degrees of Synchrony 419

10.7 Wave Pipelining . 420

10.8 Pitfalls and Fallacies . 422

10.9 Case Study: Pentium 4 and Itanium 2 Sequencing Methodologies 423

Summary 423

Exercises 425

Chapter 11 Datapath Subsystems
11.1 Introduction . 429

11.2 Addition/Subtraction . 429
11.2.1 Single-Bit Addition 430
11.2.2 Carry-Propagate Addition 434
11.2.3 Subtraction 458
11.2.4 Multiple-Input Addition 458
11.2.5 Flagged Prefix Adders 459

11.3 One/Zero Detectors . 461

11.4 Comparators . 462
11.4.1 Magnitude Comparator 462
11.4.2 Equality Comparator 462
11.4.3 K = A + B Comparator 463

11.5 Counters . 463
11.5.1 Binary Counters 464
11.5.2 Fast Binary Counters 465
11.5.3 Ring and Johnson Counters 466
11.5.4 Linear-Feedback Shift Registers 466

11.6 Boolean Logical Operations . 468

11.7 Coding . 468
11.7.1 Parity 468
11.7.2 Error-Correcting Codes 468
11.7.3 Gray Codes 470
11.7.4 XOR/XNOR Circuit Forms 471

WEB
ENHANCED

WEB
ENHANCED

WEB
ENHANCED

Contentsxvi

11.8 Shifters . 472
11.8.1 Funnel Shifter 473
11.8.2 Barrel Shifter 475
11.8.3 Alternative Shift Functions 476

11.9 Multiplication . 476
11.9.1 Unsigned Array Multiplication 478
11.9.2 Two’s Complement Array Multiplication 479
11.9.3 Booth Encoding 480
11.9.4 Column Addition 485
11.9.5 Final Addition 489
11.9.6 Fused Multiply-Add 490
11.9.7 Serial Multiplication 490
11.9.8 Summary 490

11.10 Parallel-Prefix Computations . 491

11.11 Pitfalls and Fallacies . 493

Summary 494

Exercises 494

Chapter 12 Array Subsystems
12.1 Introduction . 497

12.2 SRAM . 498
12.2.1 SRAM Cells 499
12.2.2 Row Circuitry 506
12.2.3 Column Circuitry 510
12.2.4 Multi-Ported SRAM and Register Files 514
12.2.5 Large SRAMs 515
12.2.6 Low-Power SRAMs 517
12.2.7 Area, Delay, and Power of RAMs and Register Files 520

12.3 DRAM . 522
12.3.1 Subarray Architectures 523
12.3.2 Column Circuitry 525
12.3.3 Embedded DRAM 526

12.4 Read-Only Memory . 527
12.4.1 Programmable ROMs 529
12.4.2 NAND ROMs 530
12.4.3 Flash 531

12.5 Serial Access Memories . 533
12.5.1 Shift Registers 533
12.5.2 Queues (FIFO, LIFO) 533

12.6 Content-Addressable Memory . 535

12.7 Programmable Logic Arrays . 537

WEB
ENHANCED

Contents xvii

12.8 Robust Memory Design . 541
12.8.1 Redundancy 541
12.8.2 Error Correcting Codes (ECC) 543
12.8.3 Radiation Hardening 543

12.9 Historical Perspective . 544

Summary 545

Exercises 546

Chapter 13 Special-Purpose Subsystems
13.1 Introduction . 549

13.2 Packaging and Cooling . 549
13.2.1 Package Options 549
13.2.2 Chip-to-Package Connections 551
13.2.3 Package Parasitics 552
13.2.4 Heat Dissipation 552
13.2.5 Temperature Sensors 553

13.3 Power Distribution . 555
13.3.1 On-Chip Power Distribution Network 556
13.3.2 IR Drops 557
13.3.3 L di/dt Noise 558
13.3.4 On-Chip Bypass Capacitance 559
13.3.5 Power Network Modeling 560
13.3.6 Power Supply Filtering 564
13.3.7 Charge Pumps 564
13.3.8 Substrate Noise 565
13.3.9 Energy Scavenging 565

13.4 Clocks . 566
13.4.1 Definitions 566
13.4.2 Clock System Architecture 568
13.4.3 Global Clock Generation 569
13.4.4 Global Clock Distribution 571
13.4.5 Local Clock Gaters 575
13.4.6 Clock Skew Budgets 577
13.4.7 Adaptive Deskewing 579

13.5 PLLs and DLLs . 580
13.5.1 PLLs 580
13.5.2 DLLs 587
13.5.3 Pitfalls 589

13.6 I/0 . 590
13.6.1 Basic I/O Pad Circuits 591
13.6.2 Electrostatic Discharge Protection 593
13.6.3 Example: MOSIS I/O Pads 594
13.6.4 Mixed-Voltage I/O 596

Contentsxviii

13.7 High-Speed Links . 597
13.7.1 High-Speed I/O Channels 597
13.7.2 Channel Noise and Interference 600
13.7.3 High-Speed Transmitters and Receivers 601
13.7.4 Synchronous Data Transmission 606
13.7.5 Clock Recovery in Source-Synchronous Systems 606
13.7.6 Clock Recovery in Mesochronous Systems 608
13.7.7 Clock Recovery in Pleisochronous Systems 610

13.8 Random Circuits . 610
13.8.1 True Random Number Generators 610
13.8.2 Chip Identification 611

13.9 Pitfalls and Fallacies . 612

Summary 613

Exercises 614

Chapter 14 Design Methodology and Tools
14.1 Introduction . 615

14.2 Structured Design Strategies . 617
14.2.1 A Software Radio—A System Example 618
14.2.2 Hierarchy 620
14.2.3 Regularity 623
14.2.4 Modularity 625
14.2.5 Locality 626
14.2.6 Summary 627

14.3 Design Methods . 627
14.3.1 Microprocessor/DSP 627
14.3.2 Programmable Logic 628
14.3.3 Gate Array and Sea of Gates Design 631
14.3.4 Cell-Based Design 632
14.3.5 Full Custom Design 634
14.3.6 Platform-Based Design—System on a Chip 635
14.3.7 Summary 636

14.4 Design Flows . 636
14.4.1 Behavioral Synthesis Design Flow (ASIC Design Flow) 637
14.4.2 Automated Layout Generation 641
14.4.3 Mixed-Signal or Custom-Design Flow 645

14.5 Design Economics . 646
14.5.1 Non-Recurring Engineering Costs (NREs) 647
14.5.2 Recurring Costs 649
14.5.3 Fixed Costs 650
14.5.4 Schedule 651
14.5.5 Personpower 653
14.5.6 Project Management 653
14.5.7 Design Reuse 654

Contents xix

14.6 Data Sheets and Documentation . 655
14.6.1 The Summary 655
14.6.2 Pinout 655
14.6.3 Description of Operation 655
14.6.4 DC Specifications 655
14.6.5 AC Specifications 656
14.6.6 Package Diagram 656
14.6.7 Principles of Operation Manual 656
14.6.8 User Manual 656

14.7 CMOS Physical Design Styles . 656

14.8 Pitfalls and Fallacies . 657

Exercises 657

Chapter 15 Testing, Debugging, and Verification
15.1 Introduction . 659

15.1.1 Logic Verification 660
15.1.2 Debugging 662
15.1.3 Manufacturing Tests 664

15.2 Testers, Test Fixtures, and Test Programs . 666
15.2.1 Testers and Test Fixtures 666
15.2.2 Test Programs 668
15.2.3 Handlers 669

15.3 Logic Verification Principles . 670
15.3.1 Test Vectors 670
15.3.2 Testbenches and Harnesses 671
15.3.3 Regression Testing 671
15.3.4 Version Control 672
15.3.5 Bug Tracking 673

15.4 Silicon Debug Principles . 673

15.5 Manufacturing Test Principles . 676
15.5.1 Fault Models 677
15.5.2 Observability 679
15.5.3 Controllability 679
15.5.4 Repeatability 679
15.5.5 Survivability 679
15.5.6 Fault Coverage 680
15.5.7 Automatic Test Pattern Generation (ATPG) 680
15.5.8 Delay Fault Testing 680

15.6 Design for Testability . 681
15.6.1 Ad Hoc Testing 681
15.6.2 Scan Design 682
15.6.3 Built-In Self-Test (BIST) 684
15.6.4 IDDQ Testing 687
15.6.5 Design for Manufacturability 687

WEB
ENHANCED

Contentsxx

15.7 Boundary Scan . 688

15.8 Testing in a University Environment . 689

15.9 Pitfalls and Fallacies . 690

Summary 697

Exercises 697

Appendix A Hardware Description Languages
A.1 Introduction . 699

A.1.1 Modules 700
A.1.2 Simulation and Synthesis 701

A.2 Combinational Logic . 702
A.2.1 Bitwise Operators 702
A.2.2 Comments and White Space 703
A.2.3 Reduction Operators 703
A.2.4 Conditional Assignment 704
A.2.5 Internal Variables 706
A.2.6 Precedence and Other Operators 708
A.2.7 Numbers 708
A.2.8 Zs and Xs 709
A.2.9 Bit Swizzling 711
A.2.10 Delays 712

A.3 Structural Modeling . 713

A.4 Sequential Logic . 717
A.4.1 Registers 717
A.4.2 Resettable Registers 718
A.4.3 Enabled Registers 719
A.4.4 Multiple Registers 720
A.4.5 Latches 721
A.4.6 Counters 722
A.4.7 Shift Registers 724

A.5 Combinational Logic with Always / Process Statements 724
A.5.1 Case Statements 726
A.5.2 If Statements 729
A.5.3 SystemVerilog Casez 731
A.5.4 Blocking and Nonblocking Assignments 731

A.6 Finite State Machines . 735
A.6.1 FSM Example 735
A.6.2 State Enumeration 736
A.6.3 FSM with Inputs 738

A.7 Type Idiosyncracies . 740

WEB
ENHANCED

Contents xxi

A.8 Parameterized Modules . 742

A.9 Memory . 745
A.9.1 RAM 745
A.9.2 Multiported Register Files 747
A.9.3 ROM 748

A.10 Testbenches . 749

A.11 SystemVerilog Netlists . 754

A.12 Example: MIPS Processor . 755
A.12.1 Testbench 756
A.12.2 SystemVerilog 757
A.12.3 VHDL 766

Exercises 776

References 785

Index 817

Credits 838

This page intentionally left blank

xxiii

In the two-and-a-half decades since the first edition of this book was published, CMOS
technology has claimed the preeminent position in modern electrical system design. It has
enabled the widespread use of wireless communication, the Internet, and personal com-
puters. No other human invention has seen such rapid growth for such a sustained period.
The transistor counts and clock frequencies of state-of-the-art chips have grown by orders
of magnitude.

This edition has been heavily revised to reflect the rapid changes in integrated circuit
design over the past six years. While the basic principles are largely the same, power con-
sumption and variability have become primary factors for chip design. The book has been
reorganized to emphasize the key factors: delay, power, interconnect, and robustness.
Other chapters have been reordered to reflect the order in which we teach the material.

How to Use This Book
This book intentionally covers more breadth and depth than any course would cover in a
semester. It is accessible for a first undergraduate course in VLSI, yet detailed enough for
advanced graduate courses and is useful as a reference to the practicing engineer. You are
encouraged to pick and choose topics according to your interest. Chapter 1 previews the
entire field, while subsequent chapters elaborate on specific topics. Sections are marked
with the “Optional” icon (shown here in the margin) if they are not needed to understand
subsequent sections. You may skip them on a first reading and return when they are rele-
vant to you.

We have endeavored to include figures whenever possible (“a picture is worth a thou-
sand words”) to trigger your thinking. As you encounter examples throughout the text, we
urge you to think about them before reading the solutions. We have also provided exten-
sive references for those who need to delve deeper into topics introduced in this text. We

1st Edition 2nd Edition 3rd Edition 4th Edition
Year 1985 1993 2004 2010

Transistor Counts 105–106 106–107 108–109 109–1010

Clock Frequencies 107 108 109 109

Worldwide Market $25B $60B $170B $250B

Preface

xxiv

have emphasized the best practices that are used in industry and warned of pitfalls and fal-
lacies. Our judgments about the merits of circuits may become incorrect as technology and
applications change, but we believe it is the responsibility of a writer to attempt to call out
the most relevant information.

Supplements
Numerous supplements are available on the Companion Web site for the book,
www.cmosvlsi.com. Supplements to help students with the course include:

� A lab manual with laboratory exercises involving the design of an 8-bit micropro-
cessor covered in Chapter 1.

� A collection of links to VLSI resources including open-source CAD tools and pro-
cess parameters.

� A student solutions manual that includes answers to odd-numbered problems.

� Certain sections of the book moved online to shorten the page count. These sec-
tions are indicated by the “Web Enhanced” icon (shown here in the margin).

Supplements to help instructors with the course include:

� A sample syllabus.

� Lecture slides for an introductory VLSI course.

� An instructor’s manual with solutions.

These materials have been prepared exclusively for professors using the book in a
course. Please send email to computing@aw.com for information on how to access them.

Acknowledgments
We are indebted to many people for their reviews, suggestions, and technical discussions.
These people include: Bharadwaj “Birdy” Amrutur, Mark Anders, Adnan Aziz, Jacob
Baker, Kaustav Banerjee, Steve Bibyk, David Blaauw, Erik Brunvand, Neil Burgess,
Wayne Burleson, Robert Drost, Jo Ebergen, Sarah Harris, Jacob Herbold, Ron Ho, David
Hopkins, Mark Horowitz, Steven Hsu, Tanay Karnik, Omid Kaveh, Matthew Keeter,
Ben Keller, Ali Keshavarzi, Brucek Khailany, Jaeha Kim, Volkan Kursun, Simon Knowles,
Ram Krishnamurthy, Austin Lee, Ana Sonia Leon, Shih-Lien Lu, Sanu Mathew, Alek-
sandar Milenkovic, Sam Naffziger, Braden Phillips, Stefan Rusu, Justin Schauer, James
Stine, Jason Stinson, Aaron Stratton, Ivan Sutherland, Jim Tschanz, Alice Wang, Gu-
Yeon Wei, and Peiyi Zhao. We apologize in advance to anyone we overlooked.

MOSIS and IBM kindly provided permission to use nanometer SPICE models for
many examples. Nathaniel Pinckney spent a summer revising the laboratory exercises and
updating simulations. Jaeha Kim contributed new sections on phase-locked loops and
high-speed I/O for Chapter 13. David would like to thank Bharadwaj Amrutur of the
Indian Institute of Science and Braden Phillips of the University of Adelaide for hosting
him during two productive summers of writing.

Preface

WEB
ENHANCED

xxv

Addison-Wesley has done an admirable job with the grueling editorial and produc-
tion process. We would particularly like to thank our editor, Matt Goldstein, and our
compositor, Gillian Hall.

Sally Harris has been editing family books since David was an infant on her lap. She
read the page proofs with amazing attention to detail and unearthed hundreds of errors.

This book would not have existed without the support of our families. David would
particularly like to thank his wife Jennifer and sons Abraham and Samuel for enduring
two summers of absence while writing, and to our extended family for their tremendous
assistance.

We have become painfully aware of the ease with which mistakes creep into a book.
Scores of 3rd edition readers have reported bugs that are now corrected. Despite our best
efforts at validation, we are confident that we have introduced a similar number of new
errors. Please check the errata sheet at www.cmosvlsi.com/errata.pdf to see if the
bug has already been reported. Send your reports to bugs@cmosvlsi.com.

N. W.
D. M. H.

January 2010

Preface

This page intentionally left blank

1

1

Introduction

1.1 A Brief History
In 1958, Jack Kilby built the first integrated circuit flip-flop with two transistors at Texas
Instruments. In 2008, Intel’s Itanium microprocessor contained more than 2 billion tran-
sistors and a 16 Gb Flash memory contained more than 4 billion transistors. This corre-
sponds to a compound annual growth rate of 53% over 50 years. No other technology in
history has sustained such a high growth rate lasting for so long.

This incredible growth has come from steady miniaturization of transistors and
improvements in manufacturing processes. Most other fields of engineering involve trade-
offs between performance, power, and price. However, as transistors become smaller, they
also become faster, dissipate less power, and are cheaper to manufacture. This synergy has
not only revolutionized electronics, but also society at large.

The processing performance once dedicated to secret government supercomputers is
now available in disposable cellular telephones. The memory once needed for an entire
company’s accounting system is now carried by a teenager in her iPod. Improvements in
integrated circuits have enabled space exploration, made automobiles safer and more fuel-
efficient, revolutionized the nature of warfare, brought much of mankind’s knowledge to
our Web browsers, and made the world a flatter place.

Figure 1.1 shows annual sales in the worldwide semiconductor market. Integrated cir-
cuits became a $100 billion/year business in 1994. In 2007, the industry manufactured
approximately 6 quintillion (6 × 1018) transistors, or nearly a billion for every human being
on the planet. Thousands of engineers have made their fortunes in the field. New fortunes
lie ahead for those with innovative ideas and the talent to bring those ideas to reality.

During the first half of the twentieth century, electronic circuits used large, expensive,
power-hungry, and unreliable vacuum tubes. In 1947, John Bardeen and Walter Brattain
built the first functioning point contact transistor at Bell Laboratories, shown in Figure
1.2(a) [Riordan97]. It was nearly classified as a military secret, but Bell Labs publicly
introduced the device the following year.

We have called it the Transistor, T-R-A-N-S-I-S-T-O-R, because it is a resistor or
semiconductor device which can amplify electrical signals as they are transferred
through it from input to output terminals. It is, if you will, the electrical equivalent
of a vacuum tube amplifier. But there the similarity ceases. It has no vacuum, no
filament, no glass tube. It is composed entirely of cold, solid substances.

mikiah
高亮

Chapter 1 Introduction2

Ten years later, Jack Kilby at Texas Instruments realized the potential for miniaturiza-
tion if multiple transistors could be built on one piece of silicon. Figure 1.2(b) shows his
first prototype of an integrated circuit, constructed from a germanium slice and gold wires.

The invention of the transistor earned the Nobel Prize in Physics in 1956 for
Bardeen, Brattain, and their supervisor William Shockley. Kilby received the Nobel Prize
in Physics in 2000 for the invention of the integrated circuit.

Transistors can be viewed as electrically controlled switches with a control terminal
and two other terminals that are connected or disconnected depending on the voltage or
current applied to the control. Soon after inventing the point contact transistor, Bell Labs
developed the bipolar junction transistor. Bipolar transistors were more reliable, less noisy,
and more power-efficient. Early integrated circuits primarily used bipolar transistors.
Bipolar transistors require a small current into the control (base) terminal to switch much
larger currents between the other two (emitter and collector) terminals. The quiescent
power dissipated by these base currents, drawn even when the circuit is not switching,

FIGURE 1.1 Size of worldwide semiconductor market (Courtesy of Semiconductor Industry Association.)

FIGURE 1.2 (a) First transistor (Property of AT&T Archives. Reprinted with permission of AT&T.) and (b)
first integrated circuit (Courtesy of Texas Instruments.)

0

50

100

150

200

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

Year

2004 2006 2008

250

G
lo

ba
l S

em
ic

on
du

ct
or

 B
ill

in
gs

(B
ill

io
ns

 o
f U

S
$)

)b()a(

1.1 A Brief History 3

limits the maximum number of transistors that can be integrated onto a single die. By the
1960s, Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) began to enter
production. MOSFETs offer the compelling advantage that they draw almost zero control
current while idle. They come in two flavors: nMOS and pMOS, using n-type and p-type
silicon, respectively. The original idea of field effect transistors dated back to the German
scientist Julius Lilienfield in 1925 [US patent 1,745,175] and a structure closely resem-
bling the MOSFET was proposed in 1935 by Oskar Heil [British patent 439,457], but
materials problems foiled early attempts to make functioning devices.

In 1963, Frank Wanlass at Fairchild described the first logic gates using MOSFETs
[Wanlass63]. Fairchild’s gates used both nMOS and pMOS transistors, earning the name
Complementary Metal Oxide Semiconductor, or CMOS. The circuits used discrete tran-
sistors but consumed only nanowatts of power, six orders of magnitude less than their
bipolar counterparts. With the development of the silicon planar process, MOS integrated
circuits became attractive for their low cost because each transistor occupied less area and
the fabrication process was simpler [Vadasz69]. Early commercial processes used only
pMOS transistors and suffered from poor performance, yield, and reliability. Processes
using nMOS transistors became common in the 1970s [Mead80]. Intel pioneered nMOS
technology with its 1101 256-bit static random access memory and 4004 4-bit micropro-
cessor, as shown in Figure 1.3. While the nMOS process was less expensive than CMOS,
nMOS logic gates still consumed power while idle. Power consumption became a major
issue in the 1980s as hundreds of thousands of transistors were integrated onto a single
die. CMOS processes were widely adopted and have essentially replaced nMOS and bipo-
lar processes for nearly all digital logic applications.

In 1965, Gordon Moore observed that plotting the number of transistors that can be
most economically manufactured on a chip gives a straight line on a semilogarithmic scale
[Moore65]. At the time, he found transistor count doubling every 18 months. This obser-
vation has been called Moore’s Law and has become a self-fulfilling prophecy. Figure 1.4
shows that the number of transistors in Intel microprocessors has doubled every 26
months since the invention of the 4004. Moore’s Law is driven primarily by scaling down
the size of transistors and, to a minor extent, by building larger chips. The level of integra-
tion of chips has been classified as small-scale, medium-scale, large-scale, and very large-
scale. Small-scale integration (SSI) circuits, such as the 7404 inverter, have fewer than 10

FIGURE 1.3 (a) Intel 1101 SRAM (© IEEE 1969 [Vadasz69]) and (b) 4004 microprocessor (Reprinted with
permission of Intel Corporation.)

)b()a(

Chapter 1 Introduction4

gates, with roughly half a dozen transistors per gate. Medium-scale integration (MSI) cir-
cuits, such as the 74161 counter, have up to 1000 gates. Large-scale integration (LSI)
circuits, such as simple 8-bit microprocessors, have up to 10,000 gates. It soon became
apparent that new names would have to be created every five years if this naming trend
continued and thus the term very large-scale integration (VLSI) is used to describe most
integrated circuits from the 1980s onward. A corollary of Moore’s law is Dennard’s Scaling
Law [Dennard74]: as transistors shrink, they become faster, consume less power, and are
cheaper to manufacture. Figure 1.5 shows that Intel microprocessor clock frequencies have
doubled roughly every 34 months.This frequency scaling hit the power wall around 2004,
and clock frequencies have leveled off around 3 GHz. Computer performance, measured
in time to run an application, has advanced even more than raw clock speed. Presently, the
performance is driven by the number of cores on a chip rather than by the clock. Even
though an individual CMOS transistor uses very little energy each time it switches, the
enormous number of transistors switching at very high rates of speed have made power
consumption a major design consideration again. Moreover, as transistors have become so
small, they cease to turn completely OFF. Small amounts of current leaking through each
transistor now lead to significant power consumption when multiplied by millions or bil-
lions of transistors on a chip.

The feature size of a CMOS manufacturing process refers to the minimum dimension
of a transistor that can be reliably built. The 4004 had a feature size of 10 m in 1971. The
Core 2 Duo had a feature size of 45 nm in 2008. Manufacturers introduce a new process
generation (also called a technology node) every 2–3 years with a 30% smaller feature size to
pack twice as many transistors in the same area. Figure 1.6 shows the progression of process
generations. Feature sizes down to 0.25 m are generally specified in microns (10–6 m), while
smaller feature sizes are expressed in nanometers (10–9 m). Effects that were relatively minor
in micron processes, such as transistor leakage, variations in characteristics of adjacent tran-
sistors, and wire resistance, are of great significance in nanometer processes.

Moore’s Law has become a self-fulfilling prophecy because each company must keep
up with its competitors. Obviously, this scaling cannot go on forever because transistors
cannot be smaller than atoms. Dennard scaling has already begun to slow. By the 45 nm

FIGURE 1.4 Transistors in Intel microprocessors [Intel10]

Year

4004

8008 8080

8086

80286
Intel386

Intel486
Pentium

Pentium Pro
Pentium II

Pentium III

Pentium 4

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Pentium M
Core 2 Duo

Core 2 Quad

T
ra

ns
is

to
rs

1.1 A Brief History 5

FIGURE 1.5 Clock frequencies of Intel microprocessors

FIGURE 1.6 Process generations. Future predictions from [SIA2007].

Year

1

10

100

1,000

10,000

1970 1975 1980 1985 1990 1995 2000 2005

4004

8008

8080

8086

80286

Intel386

Intel486

Pentium

Pentium Pro/II/III

Pentium 4

2010

Pentium M

Core 2 Duo

C
oc

k
S

pe
ed

 (
M

H
z)

0

1

10

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

F
ea

tu
re

 S
iz

e
(μ

m
)

0.1

0.01

10 μm

6 μm

3 μm

1.5 μm
1 μm

0.8 μm
0.6 μm

0.35 μm
0.25 μm

180 nm
130 nm

90 nm
65 nm

45 nm
32 nm

22 nm

Chapter 1 Introduction6

generation, designers are having to make trade-offs between improving power and
improving delay. Although the cost of printing each transistor goes down, the one-time
design costs are increasing exponentially, relegating state-of-the-art processes to chips that
will sell in huge quantities or that have cutting-edge performance requirements. However,
many predictions of fundamental limits to scaling have already proven wrong. Creative
engineers and material scientists have billions of dollars to gain by getting ahead of their
competitors. In the early 1990s, experts agreed that scaling would continue for at least a
decade but that beyond that point the future was murky. In 2009, we still believe that
Moore’s Law will continue for at least another decade. The future is yours to invent.

1.2 Preview
As the number of transistors on a chip has grown exponentially, designers have come to
rely on increasing levels of automation to seek corresponding productivity gains. Many
designers spend much of their effort specifying functions with hardware description lan-
guages and seldom look at actual transistors. Nevertheless, chip design is not software
engineering. Addressing the harder problems requires a fundamental understanding of cir-
cuit and physical design. Therefore, this book focuses on building an understanding of
integrated circuits from the bottom up.

In this chapter, we will take a simplified view of CMOS transistors as switches. With
this model we will develop CMOS logic gates and latches. CMOS transistors are mass-
produced on silicon wafers using lithographic steps much like a printing press process. We
will explore how to lay out transistors by specifying rectangles indicating where dopants
should be diffused, polysilicon should be grown, metal wires should be deposited, and
contacts should be etched to connect all the layers. By the middle of this chapter, you will
understand all the principles required to design and lay out your own simple CMOS chip.
The chapter concludes with an extended example demonstrating the design of a simple 8-
bit MIPS microprocessor chip. The processor raises many of the design issues that will be
developed in more depth throughout the book. The best way to learn VLSI design is by
doing it. A set of laboratory exercises are available at www.cmosvlsi.com to guide you
through the design of your own microprocessor chip.

1.3 MOS Transistors
Silicon (Si), a semiconductor, forms the basic starting material for most integrated circuits
[Tsividis99]. Pure silicon consists of a three-dimensional lattice of atoms. Silicon is a
Group IV element, so it forms covalent bonds with four adjacent atoms, as shown in Fig-
ure 1.7(a). The lattice is shown in the plane for ease of drawing, but it actually forms a
cubic crystal. As all of its valence electrons are involved in chemical bonds, pure silicon is a
poor conductor. The conductivity can be raised by introducing small amounts of impuri-
ties, called dopants, into the silicon lattice. A dopant from Group V of the periodic table,
such as arsenic, has five valence electrons. It replaces a silicon atom in the lattice and still
bonds to four neighbors, so the fifth valence electron is loosely bound to the arsenic atom,
as shown in Figure 1.7(b). Thermal vibration of the lattice at room temperature is enough
to set the electron free to move, leaving a positively charged As+ ion and a free electron.
The free electron can carry current so the conductivity is higher. We call this an n-type

1.3 MOS Transistors 7

semiconductor because the free carriers are negatively charged electrons. Similarly, a
Group III dopant, such as boron, has three valence electrons, as shown in Figure 1.7(c).
The dopant atom can borrow an electron from a neighboring silicon atom, which in turn
becomes short by one electron. That atom in turn can borrow an electron, and so forth, so
the missing electron, or hole, can propagate about the lattice. The hole acts as a positive
carrier so we call this a p-type semiconductor.

A junction between p-type and n-type silicon is called a diode, as shown in Figure 1.8.
When the voltage on the p-type semiconductor, called the anode, is raised above the n-
type cathode, the diode is forward biased and current flows. When the anode voltage is less
than or equal to the cathode voltage, the diode is reverse biased and very little current flows.

A Metal-Oxide-Semiconductor (MOS) structure is created by superimposing several
layers of conducting and insulating materials to form a sandwich-like structure. These
structures are manufactured using a series of chemical processing steps involving oxidation
of the silicon, selective introduction of dopants, and deposition and etching of metal wires
and contacts. Transistors are built on nearly flawless single crystals of silicon, which are
available as thin flat circular wafers of 15–30 cm in diameter. CMOS technology provides
two types of transistors (also called devices): an n-type transistor (nMOS) and a p-type
transistor (pMOS). Transistor operation is controlled by electric fields so the devices are
also called Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) or simply
FETs. Cross-sections and symbols of these transistors are shown in Figure 1.9. The n+
and p+ regions indicate heavily doped n- or p-type silicon.

FIGURE 1.7 Silicon lattice and dopant atoms

FIGURE 1.9 nMOS transistor (a) and pMOS transistor (b)

Si SiSi

Si SiSi

Si SiSi

(a)

As SiSi

Si SiSi

Si SiSi

(b)

B SiSi

Si SiSi

Si SiSi

(c)

+

+-

-

n+

p

GateSource Drain

bulk Si

SiO2

n

GateSource Drain

bulk Si

(a) (b)

Polysilicon

n+ p+ p+

FIGURE 1.8
p-n junction diode
structure and symbol

p-type n-type

Anode Cathode

Chapter 1 Introduction8

Each transistor consists of a stack of the conducting gate, an insulating layer of silicon
dioxide (SiO2, better known as glass), and the silicon wafer, also called the substrate, body,
or bulk. Gates of early transistors were built from metal, so the stack was called metal-
oxide-semiconductor, or MOS. Since the 1970s, the gate has been formed from polycrys-
talline silicon (polysilicon), but the name stuck. (Interestingly, metal gates reemerged in
2007 to solve materials problems in advanced manufacturing processes.) An nMOS tran-
sistor is built with a p-type body and has regions of n-type semiconductor adjacent to the
gate called the source and drain. They are physically equivalent and for now we will regard
them as interchangeable. The body is typically grounded. A pMOS transistor is just the
opposite, consisting of p-type source and drain regions with an n-type body. In a CMOS
technology with both flavors of transistors, the substrate is either n-type or p-type. The
other flavor of transistor must be built in a special well in which dopant atoms have been
added to form the body of the opposite type.

The gate is a control input: It affects the flow of electrical current between the source
and drain. Consider an nMOS transistor. The body is generally grounded so the p–n junc-
tions of the source and drain to body are reverse-biased. If the gate is also grounded, no
current flows through the reverse-biased junctions. Hence, we say the transistor is OFF. If
the gate voltage is raised, it creates an electric field that starts to attract free electrons to
the underside of the Si–SiO2 interface. If the voltage is raised enough, the electrons out-
number the holes and a thin region under the gate called the channel is inverted to act as
an n-type semiconductor. Hence, a conducting path of electron carriers is formed from
source to drain and current can flow. We say the transistor is ON.

For a pMOS transistor, the situation is again reversed. The body is held at a positive
voltage. When the gate is also at a positive voltage, the source and drain junctions are
reverse-biased and no current flows, so the transistor is OFF. When the gate voltage is low-
ered, positive charges are attracted to the underside of the Si–SiO2 interface. A sufficiently
low gate voltage inverts the channel and a conducting path of positive carriers is formed from
source to drain, so the transistor is ON. Notice that the symbol for the pMOS transistor has
a bubble on the gate, indicating that the transistor behavior is the opposite of the nMOS.

The positive voltage is usually called VDD or POWER and represents a logic 1 value
in digital circuits. In popular logic families of the 1970s and 1980s, VDD was set to 5 volts.
Smaller, more recent transistors are unable to withstand such high voltages and have used
supplies of 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, and so forth. The low voltage is called
GROUND (GND) or VSS and represents a logic 0. It is normally 0 volts.

In summary, the gate of an MOS transistor controls the flow of current between the
source and drain. Simplifying this to the extreme allows the MOS transistors to be viewed as

simple ON/OFF switches. When the gate of an
nMOS transistor is 1, the transistor is ON and there
is a conducting path from source to drain. When the
gate is low, the nMOS transistor is OFF and almost
zero current flows from source to drain. A pMOS
transistor is just the opposite, being ON when the
gate is low and OFF when the gate is high. This
switch model is illustrated in Figure 1.10, where g, s,
and d indicate gate, source, and drain. This model
will be our most common one when discussing cir-
cuit behavior.

FIGURE 1.10 Transistor symbols and switch-level models

g

s

d

g = 0

s

d

g = 1

s

d

g

s

d

s

d

s

d

nMOS

pMOS

OFF ON

ON OFF

1.4 CMOS Logic 9

1.4 CMOS Logic

1.4.1 The Inverter
Figure 1.11 shows the schematic and symbol for a CMOS inverter or NOT gate using one
nMOS transistor and one pMOS transistor. The bar at the top indicates VDD and the trian-
gle at the bottom indicates GND. When the input A is 0, the nMOS transistor is OFF and
the pMOS transistor is ON. Thus, the output Y is pulled up to 1 because it is connected to
VDD but not to GND. Conversely, when A is 1, the nMOS is ON, the pMOS is OFF, and Y
is pulled down to ‘0.’ This is summarized in Table 1.1.

1.4.2 The NAND Gate
Figure 1.12(a) shows a 2-input CMOS NAND gate. It consists of two series nMOS tran-
sistors between Y and GND and two parallel pMOS transistors between Y and VDD. If
either input A or B is 0, at least one of the nMOS transistors will be OFF, breaking the
path from Y to GND. But at least one of the pMOS transistors will be ON, creating a
path from Y to VDD. Hence, the output Y will be 1. If both inputs are 1, both of the nMOS
transistors will be ON and both of the pMOS transistors will be OFF. Hence, the output
will be 0. The truth table is given in Table 1.2 and the symbol is shown in Figure 1.12(b).
Note that by DeMorgan’s Law, the inversion bubble may be placed on either side of the
gate. In the figures in this book, two lines intersecting at a T-junction are connected. Two
lines crossing are connected if and only if a dot is shown.

k-input NAND gates are constructed using k series nMOS transistors and k parallel
pMOS transistors. For example, a 3-input NAND gate is shown in Figure 1.13. When any
of the inputs are 0, the output is pulled high through the parallel pMOS transistors. When
all of the inputs are 1, the output is pulled low through the series nMOS transistors.

1.4.3 CMOS Logic Gates
The inverter and NAND gates are examples of static CMOS logic gates, also called comple-
mentary CMOS gates. In general, a static CMOS gate has an nMOS pull-down network to
connect the output to 0 (GND) and pMOS pull-up network to connect the output to 1
(VDD), as shown in Figure 1.14. The networks are arranged such that one is ON and the
other OFF for any input pattern.

TABLE 1.1 Inverter truth table

A Y

0 1
1 0

TABLE 1.2 NAND gate truth table

A B Pull-Down Network Pull-Up Network Y

0 0 OFF ON 1
0 1 OFF ON 1
1 0 OFF ON 1
1 1 ON OFF 0

FIGURE 1.11
Inverter schematic
(a) and symbol
(b) Y = A

FIGURE 1.12 2-input NAND
gate schematic (a) and symbol
(b) Y = A · B

FIGURE 1.13 3-input NAND
gate schematic Y = A · B · C

(a)

(b)

VDD

A Y

A Y

GND

A

B

Y

(a)

(b)

A

B

Y

C

Chapter 1 Introduction10

The pull-up and pull-down networks in the inverter each consist of a single
transistor. The NAND gate uses a series pull-down network and a parallel pull-
up network. More elaborate networks are used for more complex gates. Two or
more transistors in series are ON only if all of the series transistors are ON.
Two or more transistors in parallel are ON if any of the parallel transistors are
ON. This is illustrated in Figure 1.15 for nMOS and pMOS transistor pairs.
By using combinations of these constructions, CMOS combinational gates
can be constructed. Although such static CMOS gates are most widely used,
Chapter 9 explores alternate ways of building gates with transistors.

In general, when we join a pull-up network to a pull-down network to
form a logic gate as shown in Figure 1.14, they both will attempt to exert a logic
level at the output. The possible levels at the output are shown in Table 1.3.
From this table it can be seen that the output of a CMOS logic gate can be in
four states. The 1 and 0 levels have been encountered with the inverter and
NAND gates, where either the pull-up or pull-down is OFF and the other
structure is ON. When both pull-up and pull-down are OFF, the high-

impedance or floating Z output state results. This is of importance in multiplexers, memory
elements, and tristate bus drivers. The crowbarred (or contention) X level exists when both
pull-up and pull-down are simultaneously turned ON. Contention between the two net-
works results in an indeterminate output level and dissipates static power. It is usually an
unwanted condition.

FIGURE 1.15 Connection and behavior of series and parallel transistors

a

b

0

1

a

b

1

0

OFF OFF

0

1

1

0

OFF OFF

a a

b

(a)

a

b

a

b

g1

g2

0

0

a

b

1

1

OFF ON

(b)

a

b

a

b

g1

g2

0

0

a

b

1

1

ON OFF

(c)

a

b

a

b

g1 g2 0 0

OFF ON ON ON

(d) ON ON ON OFF

a

b

0

a

b

1

a

b

11 0 1

a

b

0 0

a

b

0

a

b

1

a

b

11 0 1

a

b

g1 g2

FIGURE 1.14 General logic gate using
pull-up and pull-down networks

Output

Inputs

pMOS
pull-up
network

nMOS
pull-down
network

1.4 CMOS Logic 11

1.4.4 The NOR Gate
A 2-input NOR gate is shown in Figure 1.16. The nMOS transistors are in parallel to pull
the output low when either input is high. The pMOS transistors are in series to pull the
output high when both inputs are low, as indicated in Table 1.4. The output is never crow-
barred or left floating.

Example 1.1

Sketch a 3-input CMOS NOR gate.

SOLUTION: Figure 1.17 shows such a gate. If any input is high, the output is pulled low
through the parallel nMOS transistors. If all inputs are low, the output is pulled high
through the series pMOS transistors.

1.4.5 Compound Gates
A compound gate performing a more complex logic function in a single stage of logic is
formed by using a combination of series and parallel switch structures. For example, the
derivation of the circuit for the function Y = (A · B) + (C · D) is shown in Figure 1.18.
This function is sometimes called AND-OR-INVERT-22, or AOI22 because it per-
forms the NOR of a pair of 2-input ANDs. For the nMOS pull-down network, take the
uninverted expression ((A · B) + (C · D)) indicating when the output should be pulled to
‘0.’ The AND expressions (A · B) and (C · D) may be implemented by series connections
of switches, as shown in Figure 1.18(a). Now ORing the result requires the parallel con-
nection of these two structures, which is shown in Figure 1.18(b). For the pMOS pull-up
network, we must compute the complementary expression using switches that turn on
with inverted polarity. By DeMorgan’s Law, this is equivalent to interchanging AND and
OR operations. Hence, transistors that appear in series in the pull-down network must
appear in parallel in the pull-up network. Transistors that appear in parallel in the pull-
down network must appear in series in the pull-up network. This principle is called con-
duction complements and has already been used in the design of the NAND and NOR
gates. In the pull-up network, the parallel combination of A and B is placed in series with
the parallel combination of C and D. This progression is evident in Figure 1.18(c) and
Figure 1.18(d). Putting the networks together yields the full schematic (Figure 1.18(e)).
The symbol is shown in Figure 1.18(f).

TABLE 1.3 Output states of CMOS logic gates

pull-up OFF pull-up ON
pull-down OFF Z 1
pull-down ON 0 crowbarred (X)

TABLE 1.4 NOR gate truth table

A B Y

0 0 1
0 1 0
1 0 0
1 1 0 FIGURE 1.16 2-input NOR

gate schematic (a) and symbol
(b) Y = A + B

FIGURE 1.17 3-input NOR
gate schematic Y = A + B + C

A

B
Y

(a)

(b)

A

B

Y
C

Chapter 1 Introduction12

This AOI22 gate can be used as a 2-input inverting multiplexer by connecting C = A
as a select signal. Then, Y = B if C is 0, while Y = D if C is 1. Section 1.4.8 shows a way to
improve this multiplexer design.

Example 1.2

Sketch a static CMOS gate computing Y = (A + B + C) · D.

SOLUTION: Figure 1.19 shows such an OR-AND-INVERT-3-1 (OAI31) gate. The
nMOS pull-down network pulls the output low if D is 1 and either A or B or C are 1,
so D is in series with the parallel combination of A, B, and C. The pMOS pull-up net-
work is the conduction complement, so D must be in parallel with the series combina-
tion of A, B, and C.

1.4.6 Pass Transistors and Transmission Gates
The strength of a signal is measured by how closely it approximates an ideal voltage source.
In general, the stronger a signal, the more current it can source or sink. The power sup-
plies, or rails, (VDD and GND) are the source of the strongest 1s and 0s.

An nMOS transistor is an almost perfect switch when passing a 0 and thus we say it
passes a strong 0. However, the nMOS transistor is imperfect at passing a 1. The high
voltage level is somewhat less than VDD, as will be explained in Section 2.5.4. We say it
passes a degraded or weak 1. A pMOS transistor again has the opposite behavior, passing
strong 1s but degraded 0s. The transistor symbols and behaviors are summarized in Figure
1.20 with g, s, and d indicating gate, source, and drain.

When an nMOS or pMOS is used alone as an imperfect switch, we sometimes call it
a pass transistor. By combining an nMOS and a pMOS transistor in parallel (Figure
1.21(a)), we obtain a switch that turns on when a 1 is applied to g (Figure 1.21(b)) in
which 0s and 1s are both passed in an acceptable fashion (Figure 1.21(c)). We term this a
transmission gate or pass gate. In a circuit where only a 0 or a 1 has to be passed, the appro-
priate transistor (n or p) can be deleted, reverting to a single nMOS or pMOS device.

FIGURE 1.18 CMOS compound gate for function Y = (A · B) + (C · D)

A

B

C

D

A B C D
A B

C D

A

B

C

D

A

C
B

D

Y

(a)

(c)

(e)

(b)

(d)

(f)

A

B

C

D

B

D

Y
A

C

FIGURE 1.19
CMOS compound gate
for function
Y = (A + B + C) · D

A B

Y

C

D

DC

B

A

1.4 CMOS Logic 13

Note that both the control input and its complement are required by the transmission
gate. This is called double rail logic. Some circuit symbols for the transmission gate are
shown in Figure 1.21(d).1 None are easier to draw than the simple schematic, so we will
use the schematic version to represent a transmission gate in this book.

In all of our examples so far, the inputs drive the gate terminals of nMOS transistors
in the pull-down network and pMOS transistors in the complementary pull-up network,
as was shown in Figure 1.14. Thus, the nMOS transistors only need to pass 0s and the
pMOS only pass 1s, so the output is always strongly driven and the levels are never
degraded. This is called a fully restored logic gate and simplifies circuit design considerably.
In contrast to other forms of logic, where the pull-up and pull-down switch networks have
to be ratioed in some manner, static CMOS gates operate correctly independently of the
physical sizes of the transistors. Moreover, there is never a path through ‘ON’ transistors
from the 1 to the 0 supplies for any combination of inputs (in contrast to single-channel
MOS, GaAs technologies, or bipolar). As we will find in subsequent chapters, this is the
basis for the low static power dissipation in CMOS.

FIGURE 1.20 Pass transistor strong and degraded outputs

1We call the left and right terminals a and b because each is technically the source of one of the transistors
and the drain of the other.

FIGURE 1.21 Transmission gate

g

s d

g = 0

s d

g = 1

s d

0 strong 0

Input Output

1 degraded 1

(a) (b) (c)

g

s d

g = 0

s d

g = 1

s d

0 degraded 0

Input Output

1 strong 1

(d) (e) (f)

nMOS

pMOS

g = 1

g = 1

g = 0

g = 0

g = 0, gb = 1

a b

g = 1, gb = 0

a b

0 strong 0

Input Output

1 strong 1

(c)(a) (b)

g

gb

a b

(d)

a b

g

gb

a b

g

gb

a b

g

gb

g = 1, gb = 0

g = 1, gb = 0

Chapter 1 Introduction14

A consequence of the design of static CMOS gates is that they must be inverting.
The nMOS pull-down network turns ON when inputs are 1, leading to 0 at the output.
We might be tempted to turn the transistors upside down to build a noninverting gate. For
example, Figure 1.22 shows a noninverting buffer. Unfortunately, now both the nMOS
and pMOS transistors produce degraded outputs, so the technique should be avoided.
Instead, we can build noninverting functions from multiple stages of inverting gates. Fig-
ure 1.23 shows several ways to build a 4-input AND gate from two levels of inverting
static CMOS gates. Each design has different speed, size, and power trade-offs.

Similarly, the compound gate of Figure 1.18 could be built with two AND gates, an
OR gate, and an inverter. The AND and OR gates in turn could be constructed from
NAND/NOR gates and inverters, as shown in Figure 1.24, using a total of 20 transistors,
as compared to eight in Figure 1.18. Good CMOS logic designers exploit the efficiencies
of compound gates rather than using large numbers of AND/OR gates.

FIGURE 1.22
Bad noninverting buffer

VDD

BAD

A Y

A Y

GND

FIGURE 1.23 Various implementations
of a CMOS 4-input AND gate

FIGURE 1.24 Inefficient discrete gate implementation of AOI22
with transistor counts indicated

A

2

4

4

2

4 2

AND

OR

2
B

C
D

Y

FIGURE 1.25
Tristate buffer
symbol

A Y

EN

A Y

EN

EN

1.4.7 Tristates
Figure 1.25 shows symbols for a tristate buffer. When the enable input EN is 1, the output
Y equals the input A, just as in an ordinary buffer. When the enable is 0, Y is left floating (a
‘Z’ value). This is summarized in Table 1.5. Sometimes both true and complementary
enable signals EN and EN are drawn explicitly, while sometimes only EN is shown.

The transmission gate in Figure 1.26 has the same truth table as a tristate buffer. It
only requires two transistors but it is a nonrestoring circuit. If the input is noisy or other-
wise degraded, the output will receive the same noise. We will see in Section 4.4.2 that the
delay of a series of nonrestoring gates increases rapidly with the number of gates.

TABLE 1.5 Truth table for tristate

EN / EN A Y

0 / 1 0 Z
0 / 1 1 Z
1 / 0 0 0
1 / 0 1 1

FIGURE 1.26
Transmission gate

A Y

EN

EN

1.4 CMOS Logic 15

Figure 1.27(a) shows a tristate inverter. The output is
actively driven from VDD or GND, so it is a restoring logic
gate. Unlike any of the gates considered so far, the tristate
inverter does not obey the conduction complements rule
because it allows the output to float under certain input com-
binations. When EN is 0 (Figure 1.27(b)), both enable tran-
sistors are OFF, leaving the output floating. When EN is 1
(Figure 1.27(c)), both enable transistors are ON. They are
conceptually removed from the circuit, leaving a simple
inverter. Figure 1.27(d) shows symbols for the tristate
inverter. The complementary enable signal can be generated
internally or can be routed to the cell explicitly. A tristate
buffer can be built as an ordinary inverter followed by a
tristate inverter.

Tristates were once commonly used to allow multiple units to drive a common bus, as
long as exactly one unit is enabled at a time. If multiple units drive the bus, contention
occurs and power is wasted. If no units drive the bus, it can float to an invalid logic level
that causes the receivers to waste power. Moreover, it can be difficult to switch enable sig-
nals at exactly the same time when they are distributed across a large chip. Delay between
different enables switching can cause contention. Given these problems, multiplexers are
now preferred over tristate busses.

1.4.8 Multiplexers
Multiplexers are key components in CMOS memory elements and data manipulation
structures. A multiplexer chooses the output from among several inputs based on a select
signal. A 2-input, or 2:1 multiplexer, chooses input D0 when the select is 0 and input D1
when the select is 1. The truth table is given in Table 1.6; the logic function is
Y = S · D0 + S · D1.

Two transmission gates can be tied together to form a compact 2-input multiplexer, as
shown in Figure 1.28(a). The select and its complement enable exactly one of the two
transmission gates at any given time. The complementary select S is often not drawn in
the symbol, as shown in Figure 1.28(b).

Again, the transmission gates produce a nonrestoring multiplexer. We could build a
restoring, inverting multiplexer out of gates in several ways. One is the compound gate of
Figure 1.18(e), connected as shown in Figure 1.29(a). Another is to gang together two
tristate inverters, as shown in Figure 1.29(b). Notice that the schematics of these two
approaches are nearly identical, save that the pull-up network has been slightly simplified
and permuted in Figure 1.29(b). This is possible because the select and its complement are
mutually exclusive. The tristate approach is slightly more compact and faster because it

TABLE 1.6 Multiplexer truth table

S / S D1 D 0 Y

0 / 1 X 0 0
0 / 1 X 1 1
1 / 0 0 X 0
1 / 0 1 X 1

FIGURE 1.27 Tristate Inverter

(a) (b) (c) (d)

A

Y
EN

EN

A

Y

EN = 0
Y = 'Z'

Y

EN = 1
Y = A

A

FIGURE 1.28 Transmission
gate multiplexer

(a)

S

S

D0

D1

Y

0

1

(b)

S

D0

D1
Y

S

Chapter 1 Introduction16

requires less internal wire. Again, if the complementary select is generated within the cell,
it is omitted from the symbol (Figure 1.29(c)).

Larger multiplexers can be built from multiple 2-input multiplexers or by directly
ganging together several tristates. The latter approach requires decoded enable signals for
each tristate; the enables should switch simultaneously to prevent contention. 4-input
(4:1) multiplexers using each of these approaches are shown in Figure 1.30. In practice,
both inverting and noninverting multiplexers are simply called multiplexers or muxes.

1.4.9 Sequential Circuits
So far, we have considered combinational circuits, whose outputs depend only on the cur-
rent inputs. Sequential circuits have memory: their outputs depend on both current and
previous inputs. Using the combinational circuits developed so far, we can now build
sequential circuits such as latches and flip-flops. These elements receive a clock, CLK, and
a data input, D, and produce an output, Q. A D latch is transparent when CLK = 1, mean-
ing that Q follows D. It becomes opaque when CLK = 0, meaning Q retains its previous
value and ignores changes in D. An edge-triggered flip-flop copies D to Q on the rising edge
of CLK and remembers its old value at other times.

FIGURE 1.29 Inverting multiplexer

FIGURE 1.30 4:1 multiplexer

(c)(b)(a)

Y
D0

D1

S

S

S

D0

S

D1

S

D0 D1

Y
SS

S
S

D0

D1
Y

0

1

S0

D0

D1

0

1

0

1

0

1
Y

S1

D2

D3

D0

D1

D2

D3

Y

S1S0 S1S0 S1S0 S1S0

(a) (b)

1.4 CMOS Logic 17

1.4.9.1 Latches A D latch built from a 2-input multiplexer and two inverters is shown in
Figure 1.31(a). The multiplexer can be built from a pair of transmission gates, shown in
Figure 1.31(b), because the inverters are restoring. This latch also produces a complemen-
tary output, Q. When CLK = 1, the latch is transparent and D flows through to Q (Figure
1.31(c)). When CLK falls to 0, the latch becomes opaque. A feedback path around the
inverter pair is established (Figure 1.31(d)) to hold the current state of Q indefinitely.

The D latch is also known as a level-sensitive latch because the state of the output is
dependent on the level of the clock signal, as shown in Figure 1.31(e). The latch shown is
a positive-level-sensitive latch, represented by the symbol in Figure 1.31(f). By inverting
the control connections to the multiplexer, the latch becomes negative-level-sensitive.

1.4.9.2 Flip-Flops By combining two level-sensitive latches, one negative-sensitive and
one positive-sensitive, we construct the edge-triggered flip-flop shown in Figure 1.32(a–
b). The first latch stage is called the master and the second is called the slave.

While CLK is low, the master negative-level-sensitive latch output (QM) follows the
D input while the slave positive-level-sensitive latch holds the previous value (Figure
1.32(c)). When the clock transitions from 0 to 1, the master latch becomes opaque and
holds the D value at the time of the clock transition. The slave latch becomes transparent,
passing the stored master value (QM) to the output of the slave latch (Q). The D input is
blocked from affecting the output because the master is disconnected from the D input
(Figure 1.32(d)). When the clock transitions from 1 to 0, the slave latch holds its value
and the master starts sampling the input again.

While we have shown a transmission gate multiplexer as the input stage, good design
practice would buffer the input and output with inverters, as shown in Figure 1.32(e), to

FIGURE 1.31 CMOS positive-level-sensitive D latch

1

0

D

CLK

Q

(a)

CLK

CLKCLK

CLK

DQ Q

Q

(b)

CLK = 1

D Q

Q

(c)

CLK = 0

D Q

Q

(d)

CLK

D

La
tc

h

Q

(e)

D

CLK

Q
(f)

Chapter 1 Introduction18

preserve what we call “modularity.” Modularity is explained further in Section 1.6.2 and
robust latches and registers are discussed further in Section 10.3.

In summary, this flip-flop copies D to Q on the rising edge of the clock, as shown in
Figure 1.32(f). Thus, this device is called a positive-edge triggered flip-flop (also called a
D flip-flop, D register, or master–slave flip-flop). Figure 1.32(g) shows the circuit symbol for
the flip-flop. By reversing the latch polarities, a negative-edge triggered flip-flop may be

FIGURE 1.32 CMOS positive-edge-triggered D flip-flop

(b)

CLK = 1

D

(c)

CLK = 0

(d)

QM

Q

D

QM

QM

CLK

CLKCLK

CLK

Q

CLK

CLK

CLK

CLK

D

Q

(g)

F
lo

p

CLK

D Q

D Q
QM

CLK

CLK

(a)

(f)

D

CLK

Q

QM

CLK

CLKCLK

CLK

Q

CLK

CLK

CLK

CLK

D

(e)

La
tc

h

La
tc

h

1.5 CMOS Fabrication and Layout 19

constructed. A collection of D flip-flops sharing a common clock input is called a register.
A register is often drawn as a flip-flop with multi-bit D and Q busses.

In Section 10.2.5 we will see that flip-flops may experience hold-time failures if the
system has too much clock skew, i.e., if one flip-flop triggers early and another triggers late
because of variations in clock arrival times. In industrial designs, a great deal of effort is
devoted to timing simulations to catch hold-time problems. When design time is more
important (e.g., in class projects), hold-time problems can be avoided altogether by dis-
tributing a two-phase nonoverlapping clock. Figure 1.33 shows the flip-flop clocked with
two nonoverlapping phases. As long as the phases never overlap, at least one latch will be
opaque at any given time and hold-time problems cannot occur.

1.5 CMOS Fabrication and Layout
Now that we can design logic gates and registers from transistors, let us consider how the
transistors are built. Designers need to understand the physical implementation of circuits
because it has a major impact on performance, power, and cost.

Transistors are fabricated on thin silicon wafers that serve as both a mechanical sup-
port and an electrical common point called the substrate. We can examine the physical lay-
out of transistors from two perspectives. One is the top view, obtained by looking down on
a wafer. The other is the cross-section, obtained by slicing the wafer through the middle of
a transistor and looking at it edgewise. We begin by looking at the cross-section of a com-
plete CMOS inverter. We then look at the top view of the same inverter and define a set
of masks used to manufacture the different parts of the inverter. The size of the transistors
and wires is set by the mask dimensions and is limited by the resolution of the manufac-
turing process. Continual advancements in this resolution have fueled the exponential
growth of the semiconductor industry.

1.5.1 Inverter Cross-Section
Figure 1.34 shows a cross-section and corresponding schematic of an inverter. (See the
inside front cover for a color cross-section.) In this diagram, the inverter is built on a
p-type substrate. The pMOS transistor requires an n-type body region, so an n-well is dif-
fused into the substrate in its vicinity. As described in Section 1.3, the nMOS transistor

FIGURE 1.33 CMOS flip-flop with two-phase nonoverlapping clocks

φ2

QM
QD

φ1

φ2
φ2

φ2

φ2 φ1

φ1
φ1

φ1

Chapter 1 Introduction20

has heavily doped n-type source and drain regions and a polysilicon gate over a thin layer
of silicon dioxide (SiO2, also called gate oxide). n+ and p+ diffusion regions indicate heavily
doped n-type and p-type silicon. The pMOS transistor is a similar structure with p-type
source and drain regions. The polysilicon gates of the two transistors are tied together
somewhere off the page and form the input A. The source of the nMOS transistor is con-
nected to a metal ground line and the source of the pMOS transistor is connected to a
metal VDD line. The drains of the two transistors are connected with metal to form the
output Y. A thick layer of SiO2 called field oxide prevents metal from shorting to other
layers except where contacts are explicitly etched.

A junction between metal and a lightly doped semiconductor forms a Schottky diode that
only carries current in one direction. When the semiconductor is doped more heavily, it
forms a good ohmic contact with metal that provides low resistance for bidirectional current
flow. The substrate must be tied to a low potential to avoid forward-biasing the p-n junction
between the p-type substrate and the n+ nMOS source or drain. Likewise, the n-well must
be tied to a high potential. This is done by adding heavily doped substrate and well contacts,
or taps, to connect GND and VDD to the substrate and n-well, respectively.

1.5.2 Fabrication Process
For all their complexity, chips are amazingly inexpensive because all the transistors and wires
can be printed in much the same way as books. The fabrication sequence consists of a series
of steps in which layers of the chip are defined through a process called photolithography.
Because a whole wafer full of chips is processed in each step, the cost of the chip is propor-
tional to the chip area, rather than the number of transistors. As manufacturing advances
allow engineers to build smaller transistors and thus fit more in the same area, each transis-
tor gets cheaper. Smaller transistors are also faster because electrons don’t have to travel as
far to get from the source to the drain, and they consume less energy because fewer elec-
trons are needed to charge up the gates! This explains the remarkable trend for computers
and electronics to become cheaper and more capable with each generation.

The inverter could be defined by a hypothetical set of six masks: n-well, polysilicon,
n+ diffusion, p+ diffusion, contacts, and metal (for fabrication reasons discussed in Chap-
ter 3, the actual mask set tends to be more elaborate). Masks specify where the compo-
nents will be manufactured on the chip. Figure 1.35(a) shows a top view of the six masks.
(See also the inside front cover for a color picture.) The cross-section of the inverter from
Figure 1.34 was taken along the dashed line. Take some time to convince yourself how the
top view and cross-section relate; this is critical to understanding chip layout.

FIGURE 1.34 Inverter cross-section with well and substrate contacts. Color version on inside front cover.

n+n+

p substrate

p+

n well

A

p+
Substrate Tap Well Tap

n+ p+

SiO2

n+ diffusion

p+ diffusion

polysilicon

metal1

nMOS Transistor pMOS Transistor

VDD

A

Y
GND

Source Drain Drain Source

Gate Gate

GND Y VDD

1.5 CMOS Fabrication and Layout 21

Consider a simple fabrication process to illustrate the concept. The process begins with
the creation of an n-well on a bare p-type silicon wafer. Figure 1.36 shows cross-sections of
the wafer after each processing step involved in forming the n-well; Figure 1.36(a) illus-
trates the bare substrate before processing. Forming the n-well requires adding enough
Group V dopants into the silicon substrate to change the substrate from p-type to n-type in
the region of the well. To define what regions receive n-wells, we grow a protective layer of

FIGURE 1.35 Inverter mask set. Color version on inside front cover.

(a)

(b)

(c)

(d)

(e)

(f)

Metal

Polysilicon

Contact

n+ Diffusion

p+ Diffusion

n-well

Substrate Tap Well Tap
nMOS Transistor pMOS Transistor

(g)

VDDGND

Y

Chapter 1 Introduction22

oxide over the entire wafer, then remove it where we want the wells. We then add the n-
type dopants; the dopants are blocked by the oxide, but enter the substrate and form the
wells where there is no oxide. The next paragraph describes these steps in detail.

The wafer is first oxidized in a high-temperature (typically 900–1200 °C) furnace that
causes Si and O2 to react and become SiO2 on the wafer surface (Figure 1.36(b)). The
oxide must be patterned to define the n-well. An organic photoresist2 that softens where

FIGURE 1.36 Cross-sections while manufacturing the n-well

p substrate

p substrate

p substrate

p substrate

p substrate

n well

p substrate

n well

SiO2

SiO2

Photoresist

SiO2

Photoresist

SiO2

SiO2

(a)

(b)

(c)

(d)

(e)

(f)

(g)

p substrate

SiO2

Photoresist

(h)

2Engineers have experimented with many organic polymers for photoresists. In 1958, Brumford and
Walker reported that Jello™ could be used for masking. They did extensive testing, observing that “various
Jellos™ were evaluated with lemon giving the best result.”

1.5 CMOS Fabrication and Layout 23

exposed to light is spun onto the wafer (Figure 1.36(c)). The photoresist is exposed
through the n-well mask (Figure 1.35(b)) that allows light to pass through only where the
well should be. The softened photoresist is removed to expose the oxide (Figure 1.36(d)).
The oxide is etched with hydrofluoric acid (HF) where it is not protected by the photore-
sist (Figure 1.36(e)), then the remaining photoresist is stripped away using a mixture of
acids called piranha etch (Figure 1.36(f)). The well is formed where the substrate is not
covered with oxide. Two ways to add dopants are diffusion and ion implantation. In the
diffusion process, the wafer is placed in a furnace with a gas containing the dopants. When
heated, dopant atoms diffuse into the substrate. Notice how the well is wider than the hole
in the oxide on account of lateral diffusion (Figure 1.36(g)). With ion implantation, dopant
ions are accelerated through an electric field and blasted into the substrate. In either
method, the oxide layer prevents dopant atoms from entering the substrate where no well
is intended. Finally, the remaining oxide is stripped with HF to leave the bare wafer with
wells in the appropriate places.

The transistor gates are formed next. These consist of polycrystalline silicon, generally
called polysilicon, over a thin layer of oxide. The thin oxide is grown in a furnace. Then the
wafer is placed in a reactor with silane gas (SiH4) and heated again to grow the polysilicon
layer through a process called chemical vapor deposition. The polysilicon is heavily doped to
form a reasonably good conductor. The resulting cross-section is shown in Figure 1.37(a).
As before, the wafer is patterned with photoresist and the polysilicon mask (Figure
1.35(c)), leaving the polysilicon gates atop the thin gate oxide (Figure 1.37(b)).

The n+ regions are introduced for the transistor active area and the well contact. As
with the well, a protective layer of oxide is formed (Figure 1.37(c)) and patterned with the
n-diffusion mask (Figure 1.35(d)) to expose the areas where the dopants are needed (Fig-
ure 1.37(d)). Although the n+ regions in Figure 1.37(e) are typically formed with ion
implantation, they were historically diffused and thus still are often called n-diffusion.
Notice that the polysilicon gate over the nMOS transistor blocks the diffusion so the
source and drain are separated by a channel under the gate. This is called a self-aligned pro-
cess because the source and drain of the transistor are automatically formed adjacent to the
gate without the need to precisely align the masks. Finally, the protective oxide is stripped
(Figure 1.37(f)).

The process is repeated for the p-diffusion mask (Figure 1.35(e)) to give the structure
of Figure 1.38(a). Oxide is used for masking in the same way, and thus is not shown. The
field oxide is grown to insulate the wafer from metal and patterned with the contact mask
(Figure 1.35(f)) to leave contact cuts where metal should attach to diffusion or polysilicon
(Figure 1.38(b)). Finally, aluminum is sputtered over the entire wafer, filling the contact
cuts as well. Sputtering involves blasting aluminum into a vapor that evenly coats the
wafer. The metal is patterned with the metal mask (Figure 1.35(g)) and plasma etched to
remove metal everywhere except where wires should remain (Figure 1.38(c)). This com-
pletes the simple fabrication process.

 Modern fabrication sequences are more elaborate because they must create complex
doping profiles around the channel of the transistor and print features that are smaller
than the wavelength of the light being used in lithography. However, masks for these elab-
orations can be automatically generated from the simple set of masks we have just exam-
ined. Modern processes also have 5–10+ layers of metal, so the metal and contact steps
must be repeated for each layer. Chip manufacturing has become a commodity, and many
different foundries will build designs from a basic set of masks.

Chapter 1 Introduction24

1.5.3 Layout Design Rules
Layout design rules describe how small features can be and how closely they can be reli-
ably packed in a particular manufacturing process. Industrial design rules are usually spec-
ified in microns. This makes migrating from one process to a more advanced process or a
different foundry’s process difficult because not all rules scale in the same way.

Universities sometimes simplify design by using scalable design rules that are conser-
vative enough to apply to many manufacturing processes. Mead and Conway [Mead80]
popularized scalable design rules based on a single parameter, , that characterizes the res-
olution of the process. is generally half of the minimum drawn transistor channel length.
This length is the distance between the source and drain of a transistor and is set by the
minimum width of a polysilicon wire. For example, a 180 nm process has a minimum
polysilicon width (and hence transistor length) of 0.18 m and uses design rules with

FIGURE 1.37 Cross-sections while manufacturing polysilicon and n-diffusion

n well

n well

p substrate

p substrate

p substrate

p substrate

n+n+ n+

p substrate

n+n+ n+

Thin gate oxide

(a)

(b)

(c)

(d)

(e)

(f)

Polysilicon

p substrate

n well

Thin gate oxide
Polysilicon

n well

n well

n well

1.5 CMOS Fabrication and Layout 25

= 0.09 m.3 Lambda-based rules are necessarily conservative because they round up
dimensions to an integer multiple of . However, they make scaling layout trivial; the
same layout can be moved to a new process simply by specifying a new value of . This
chapter will present design rules in terms of . The potential density advantage of micron
rules is sacrificed for simplicity and easy scalability of lambda rules. Designers often
describe a process by its feature size. Feature size refers to minimum transistor length, so
is half the feature size.

Unfortunately, below 180 nm, design rules have become so complex and process-
specific that scalable design rules are difficult to apply. However, the intuition gained from
a simple set of scalable rules is still a valuable foundation for understanding the more com-
plex rules. Chapter 3 will examine some of these process-specific rules in more detail.

The MOSIS service [Piña02] is a low-cost prototyping service that collects designs
from academic, commercial, and government customers and aggregates them onto one
mask set to share overhead costs and generate production volumes sufficient to interest
fabrication companies. MOSIS has developed a set of scalable lambda-based design rules
that covers a wide range of manufacturing processes. The rules describe the minimum
width to avoid breaks in a line, minimum spacing to avoid shorts between lines, and mini-
mum overlap to ensure that two layers completely overlap.

A conservative but easy-to-use set of design rules for layouts with two metal layers in
an n-well process is as follows:

� Metal and diffusion have minimum width and spacing of 4 .

� Contacts are 2 × 2 and must be surrounded by 1 on the layers above and
below.

� Polysilicon uses a width of 2 .

FIGURE 1.38 Cross-sections while manufacturing p-diffusion, contacts, and metal

p substrate

p substrate

p substrate

(a)

(b)

(c)

Thick field oxide

Metal

Thick field oxide

n well

n+n+ n+p+p+p+

n well

n+n+ n+p+p+p+

n well

n+n+ n+p+p+p+

3Some 180 nm lambda-based rules actually set = 0.10 m, then shrink the gate by 20 nm while generating
masks. This keeps 180 nm gate lengths but makes all other features slightly larger.

Chapter 1 Introduction26

� Polysilicon overlaps diffusion by 2 where a transistor is desired and has a spacing
of 1 away where no transistor is desired.

� Polysilicon and contacts have a spacing of 3 from other polysilicon or contacts.

� N-well surrounds pMOS transistors by 6 and avoids nMOS transistors by 6 .

Figure 1.39 shows the basic MOSIS design rules for a process with two metal layers.
Section 3.3 elaborates on these rules and compares them with industrial design rules.

In a three-level metal process, the width of the third layer is typically 6 and the
spacing 4 . In general, processes with more layers often provide thicker and wider top-
level metal that has a lower resistance.

Transistor dimensions are often specified by their Width/Length (W/L) ratio. For
example, the nMOS transistor in Figure 1.39 formed where polysilicon crosses n-diffusion
has a W/L of 4/2. In a 0.6 m process, this corresponds to an actual width of 1.2 m and a
length of 0.6 m. Such a minimum-width contacted transistor is often called a unit transis-
tor.4 pMOS transistors are often wider than nMOS transistors because holes move more
slowly than electrons so the transistor has to be wider to deliver the same current. Figure
1.40(a) shows a unit inverter layout with a unit nMOS transistor and a double-sized
pMOS transistor. Figure 1.40(b) shows a schematic for the inverter annotated with Width/
Length for each transistor. In digital systems, transistors are typically chosen to have the
minimum possible length because short-channel transistors are faster, smaller, and consume
less power. Figure 1.40(c) shows a shorthand we will often use, specifying multiples of unit
width and assuming minimum length.

FIGURE 1.39 Simplified -based design rules

4

Metal1 Metal2 Diffusion Polysilicon

Metal1
Diffusion
Contact

Metal1
Polysilicon
Contact

Metal1
Metal2
Vias

n well

4 4 4

3

2

3

2

6

6
1 2

4 4

widthspacing

4Such small transistors in modern processes often behave slightly differently than their wider counterparts.
Moreover, the transistor will not operate if either contact is damaged. Industrial designers often use a tran-
sistor wide enough for two contacts (9) as the unit transistor to avoid these problems.

1.5 CMOS Fabrication and Layout 27

1.5.4 Gate Layouts
A good deal of ingenuity can be exercised and a vast amount of
time wasted exploring layout topologies to minimize the size of
a gate or other cell such as an adder or memory element. For
many applications, a straightforward layout is good enough and
can be automatically generated or rapidly built by hand. This
section presents a simple layout style based on a “line of diffu-
sion” rule that is commonly used for standard cells in automated
layout systems. This style consists of four horizontal strips:
metal ground at the bottom of the cell, n-diffusion, p-diffusion,
and metal power at the top. The power and ground lines are
often called supply rails. Polysilicon lines run vertically to form
transistor gates. Metal wires within the cell connect the transis-
tors appropriately.

Figure 1.41(a) shows such a layout for an inverter. The
input A can be connected from the top, bottom, or left in
polysilicon. The output Y is available at the right side of the
cell in metal. Recall that the p-substrate and n-well must be tied to ground and power,
respectively. Figure 1.41(b) shows the same inverter with well and substrate taps placed
under the power and ground rails, respectively. Figure 1.42 shows a 3-input NAND gate.
Notice how the nMOS transistors are connected in series while the pMOS transistors are
connected in parallel. Power and ground extend 2 on each side so if two gates were abut-
ted the contents would be separated by 4 , satisfying design rules. The height of the cell is
36 , or 40 if the 4 space between the cell and another wire above it is counted. All
these examples use transistors of width 4 . Choice of transistor width is addressed further
in Chapters 4–5 and cell layout styles are discussed in Section 14.7.

These cells were designed such that the gate connections are made from the top or
bottom in polysilicon. In contemporary standard cells, polysilicon is generally not used as
a routing layer so the cell must allow metal2 to metal1 and metal1 to polysilicon contacts

FIGURE 1.41 Inverter cell layout

(a) (b)

A Y

Well Tap

Substrate Tap

VDD

GNDGND

VDD

A Y

FIGURE 1.40 Inverter with dimensions labeled

8/2

4/2

2

1

(a) (b) (c)

VDD

A Y

GND

FIGURE 1.42 3-input NAND standard
cell gate layouts

A

Y

B C 40 λ

32 λ

4 λ

VDD

GND

Chapter 1 Introduction28

to each gate. While this increases the size of the cell, it allows free access to all terminals
on metal routing layers.

1.5.5 Stick Diagrams
Because layout is time-consuming, designers need fast ways
to plan cells and estimate area before committing to a full
layout. Stick diagrams are easy to draw because they do not
need to be drawn to scale. Figure 1.43 and the inside front
cover show stick diagrams for an inverter and a 3-input
NAND gate. While this book uses stipple patterns, layout
designers use dry-erase markers or colored pencils.

With practice, it is easy to estimate the area of a layout
from the corresponding stick diagram even though the dia-
gram is not to scale. Although schematics focus on transis-
tors, layout area is usually determined by the metal wires.
Transistors are merely widgets that fit under the wires. We
define a routing track as enough space to place a wire and the
required spacing to the next wire. If our wires have a width
of 4 and a spacing of 4 to the next wire, the track pitch is
8 , as shown in Figure 1.44(a). This pitch also leaves room
for a transistor to be placed between the wires (Figure
1.44(b)). Therefore, it is reasonable to estimate the height
and width of a cell by counting the number of metal tracks
and multiplying by 8 . A slight complication is the required
spacing of 12 between nMOS and pMOS transistors set
by the well, as shown in Figure 1.45(a). This space can be
occupied by an additional track of wire, shown in Figure
1.45(b). Therefore, an extra track must be allocated between
nMOS and pMOS transistors regardless of whether wire is
actually used in that track. Figure 1.46 shows how to count
tracks to estimate the size of a 3-input NAND. There are
four vertical wire tracks, multiplied by 8 per track to give a
cell width of 32 . There are five horizontal tracks, giving a
cell height of 40 . Even though the horizontal tracks are
not drawn to scale, they are still easy to count. Figure 1.42

FIGURE 1.43 Stick diagrams of inverter and 3-input NAND gate. Color version on inside front cover.

(a) (b)

VDD
A

Y

GND GND

VDD

Y

A B C
Contact

Metal1

pdiff

ndiff

Polysilicon

FIGURE 1.44 Pitch of routing tracks

FIGURE 1.45 Spacing between nMOS and pMOS transistors

4

(a)

(b)

4

4

4

4

4

(a) (b)

4

12 12

4

4

1.6 Design Partitioning 29

shows that the actual NAND gate layout matches the
dimensions predicted by the stick diagram. If transis-
tors are wider than 4 , the extra width must be fac-
tored into the area estimate. Of course, these estimates
are oversimplifications of the complete design rules and
a trial layout should be performed for truly critical cells.

Example 1.3

Sketch a stick diagram for a CMOS gate computing
Y = (A + B + C) · D (see Figure 1.18) and estimate
the cell width and height.

SOLUTION: Figure 1.47 shows a stick diagram.
Counting horizontal and vertical pitches gives an
estimated cell size of 40 by 48 .

1.6 Design Partitioning
By this point, you know that MOS transistors behave as voltage-controlled switches. You
know how to build logic gates out of transistors. And you know how transistors are fabri-
cated and how to draw a layout that specifies how transistors should be placed and con-
nected together. You know enough to start building your own simple chips.

The greatest challenge in modern VLSI design is not in designing the individual
transistors but rather in managing system complexity. Modern System-On-Chip (SOC)
designs combine memories, processors, high-speed I/O interfaces, and dedicated
application-specific logic on a single chip. They use hundreds of millions or billions of
transistors and cost tens of millions of dollars (or more) to design. The implementation

FIGURE 1.47 CMOS compound gate for function Y = (A + B + C) · D

5 tracks = 40

6 tracks = 48
Y

GND

VDD

A B C D

FIGURE 1.46 3-input NAND gate area estimation

40

32

Chapter 1 Introduction30

must be divided among large teams of engineers and each engineer must be highly pro-
ductive. If the implementation is too rigidly partitioned, each block can be optimized
without regard to its neighbors, leading to poor system results. Conversely, if every task is
interdependent with every other task, design will progress too slowly. Design managers
face the challenge of choosing a suitable trade-off between these extremes. There is no
substitute for practical experience in making these choices, and talented engineers who
have experience with multiple designs are very important to the success of a large project.
Design proceeds through multiple levels of abstraction, hiding details until they become
necessary. The practice of structured design, which is also used in large software projects,
uses the principles of hierarchy, regularity, modularity, and locality to manage the com-
plexity.

1.6.1 Design Abstractions
Digital VLSI design is often partitioned into five levels of abstractions: architecture design,
microarchitecture design, logic design, circuit design, and physical design. Architecture
describes the functions of the system. For example, the x86 microprocessor architecture
specifies the instruction set, register set, and memory model. Microarchitecture describes
how the architecture is partitioned into registers and functional units. The 80386, 80486,
Pentium, Pentium II, Pentium III, Pentium 4, Core, Core 2, Atom, Cyrix MII, AMD
Athlon, and Phenom are all microarchitectures offering different performance / transistor
count / power trade-offs for the x86 architecture. Logic describes how functional units are
constructed. For example, various logic designs for a 32-bit adder in the x86 integer unit
include ripple carry, carry lookahead, and carry select. Circuit design describes how transis-
tors are used to implement the logic. For example, a carry lookahead adder can use static
CMOS circuits, domino circuits, or pass transistors. The circuits can be tailored to empha-
size high performance or low power. Physical design describes the layout of the chip. Analog
and RF VLSI design involves the same steps but with different layers of abstraction.

These elements are inherently interdependent and all influence each of the design
objectives. For example, choices of microarchitecture and logic are strongly dependent on
the number of transistors that can be placed on the chip, which depends on the physical
design and process technology. Similarly, innovative circuit design that reduces a cache
access from two cycles to one can influence which microarchitecture is most desirable. The
choice of clock frequency depends on a complex interplay of microarchitecture and logic,
circuit design, and physical design. Deeper pipelines allow higher frequencies but consume
more power and lead to greater performance penalties when operations early in the pipe-
line are dependent on those late in the pipeline. Many functions have various logic and
circuit designs trading speed for area, power, and design effort. Custom physical design
allows more compact, faster circuits and lower manufacturing costs, but involves an enor-
mous labor cost. Automatic layout with CAD systems reduces the labor and achieves
faster times to market.

To deal with these interdependencies, microarchitecture, logic, circuit, and physical
design must occur, at least in part, in parallel. Microarchitects depend on circuit and phys-
ical design studies to understand the cost of proposed microarchitectural features. Engi-
neers are sometimes categorized as “short and fat” or “tall and skinny” (nothing personal,
we assure you!). Tall, skinny engineers understand something about a broad range of top-
ics. Short, fat engineers understand a large amount about a narrow field. Digital VLSI
design favors the tall, skinny engineer who can evaluate how choices in one part of the sys-
tem impact other parts of the system.

1.6 Design Partitioning 31

1.6.2 Structured Design
Hierarchy is a critical tool for managing complex designs. A large system can be parti-
tioned hierarchically into multiple cores. Each core is built from various units. Each unit in
turn is composed of multiple functional blocks.5 These blocks in turn are built from cells,
which ultimately are constructed from transistors. The system can be more easily under-
stood at the top level by viewing components as black boxes with well-defined interfaces
and functions rather than looking at each individual transistor. Logic, circuit, and physical
views of the design should share the same hierarchy for ease of verification. A design hier-
archy can be viewed as a tree structure with the overall chip as the root and the primitive
cells as leafs.

Regularity aids the management of design complexity by designing the minimum
number of different blocks. Once a block is designed and verified, it can be reused in many
places. Modularity requires that the blocks have well-defined interfaces to avoid unantici-
pated interactions. Locality involves keeping information where it is used, physically and
temporally. Structured design is discussed further in Section 14.2.

1.6.3 Behavioral, Structural, and Physical Domains
An alternative way of viewing design partitioning is shown with the Y-chart shown in Fig-
ure 1.48 [Gajski83, Kang03]. The radial lines on the Y-chart represent three distinct
design domains: behavioral, structural, and physical. These domains can be used to
describe the design of almost any artifact and thus form a general taxonomy for describing

FIGURE 1.48 Y Diagram (Reproduced from [Kang03] with permission of The McGraw-Hill
Companies.)

Structural Behavioral

Geometrical/Physical

Processor

Register ALU

Leaf Cell

Transistor

Mask

Cell

Module

Chip

Boolean

Module

Finite

Algorithm

Placement

Placement

Equation

Description

State Machine

Floorplan

Domain

Domain

Domain

5Some designers refer to both units and functional blocks as modules.

Chapter 1 Introduction32

the design process. Within each domain there are a number of levels of design abstraction
that start at a very high level and descend eventually to the individual elements that need
to be aggregated to yield the top level function (i.e., transistors in the case of chip design).

The behavioral domain describes what a particular system does. For instance, at the
highest level we might specify a telephone touch-tone generator. This behavior can be suc-
cessively refined to more precisely describe what needs to be done in order to build the
tone generator (i.e., the frequencies desired, output levels, distortion allowed, etc.).

At each abstraction level, a corresponding structural description can be developed.
The structural domain describes the interconnection of modules necessary to achieve a
particular behavior. For instance, at the highest level, the touch-tone generator might con-
sist of a keypad, a tone generator chip, an audio amplifier, a battery, and a speaker. Eventu-
ally at lower levels of abstraction, the individual gate and then transistor connections
required to build the tone generator are described.

For each level of abstraction, the physical domain description explains how to physi-
cally construct that level of abstraction. At high levels, this might consist of an engineer-
ing drawing showing how to put together the keypad, tone generator chip, battery, and
speaker in the associated housing. At the top chip level, this might consist of a floorplan,
and at lower levels, the actual geometry of individual transistors.

The design process can be viewed as making transformations from one domain to
another while maintaining the equivalency of the domains. Behavioral descriptions are
transformed to structural descriptions, which in turn are transformed to physical descrip-
tions. These transformations can be manual or automatic. In either case, it is normal
design practice to verify the transformation of one domain to the other. This ensures that
the design intent is carried across the domain boundaries. Hierarchically specifying each
domain at successively detailed levels of abstraction allows us to design very large systems.

The reason for strictly describing the domains and levels of abstraction is to define a
precise design process in which the final function of the system can be traced all the way
back to the initial behavioral description. In an ideal flow, there should be no opportunity
to produce an incorrect design. If anomalies arise, the design process is corrected so that
those anomalies will not reoccur in the future. A designer should acquire a rigid discipline
with respect to the design process, and be aware of each transformation and how and why
it is failproof. Normally, these steps are fully automated in a modern design process, but it
is important to be aware of the basis for these steps in order to debug them if they go
astray.

The Y diagram can be used to illustrate each domain and the transformations
between domains at varying levels of design abstraction. As the design process winds its
way from the outer to inner rings, it proceeds from higher to lower levels of abstraction
and hierarchy.

Most of the remainder of this chapter is a case study in the design of a simple micro-
processor to illustrate the various aspects of VLSI design applied to a nontrivial system.
We begin by describing the architecture and microarchitecture of the processor. We then
consider logic design and discuss hardware description languages. The processor is built
with static CMOS circuits, which we examined in Section 1.4; transistor-level design and
netlist formats are discussed. We continue exploring the physical design of the processor
including floorplanning and area estimation. Design verification is critically important
and happens at each level of the hierarchy for each element of the design. Finally, the lay-
out is converted into masks so the chip can be manufactured, packaged, and tested.

1.7 Example: A Simple MIPS Microprocessor 33

1.7 Example: A Simple MIPS Microprocessor
We consider an 8-bit subset of the MIPS microprocessor architecture [Patterson04,
Harris07] because it is widely studied and is relatively simple, yet still large enough to
illustrate hierarchical design. This section describes the architecture and the multicycle
microarchitecture we will be implementing. If you are not familiar with computer archi-
tecture, you can regard the MIPS processor as a black box and skip to Section 1.8.

A set of laboratory exercises is available at www.cmosvlsi.com in which you can
learn VLSI design by building the microprocessor yourself using a free open-source CAD
tool called Electric or with commercial design tools from Cadence and Synopsys.

1.7.1 MIPS Architecture
The MIPS32 architecture is a simple 32-bit RISC architecture with relatively few idiosyn-
crasies. Our subset of the architecture uses 32-bit instruction encodings but only eight
8-bit general-purpose registers named $0–$7. We also use an 8-bit program counter
(PC). Register $0 is hardwired to contain the number 0. The instructions are ADD, SUB,
AND, OR, SLT, ADDI, BEQ, J, LB, and SB.

The function and encoding of each instruction is given in Table 1.7. Each instruction
is encoded using one of three templates: R, I, and J. R-type instructions (register-based)
are used for arithmetic and specify two source registers and a destination register. I-type
instructions are used when a 16-bit constant (also known as an immediate) and two regis-
ters must be specified. J-type instructions (jumps) dedicate most of the instruction word to
a 26-bit jump destination. The format of each encoding is defined in Figure 1.49. The six
most significant bits of all formats are the operation code (op). R-type instructions all
share op = 000000 and use six more funct bits to differentiate the functions.

TABLE 1.7 MIPS instruction set (subset supported)

Instruction Function Encoding op funct

add $1, $2, $3 addition: $1 <- $2 + $3 R 000000 100000

sub $1, $2, $3 subtraction: $1 <- $2 – $3 R 000000 100010

and $1, $2, $3 bitwise and: $1 <- $2 and $3 R 000000 100100

or $1, $2, $3 bitwise or: $1 <- $2 or $3 R 000000 100101

slt $1, $2, $3 set less than: $1 <- 1 if $2 < $3
$1 <- 0 otherwise

R 000000 101010

addi $1, $2, imm add immediate: $1 <- $2 + imm I 001000 n/a
beq $1, $2, imm branch if equal: PC <- PC + imm × 4a

a.Technically, MIPS addresses specify bytes. Instructions require a 4-byte word and must begin at addresses that are a mul-
tiple of four. To most effectively use instruction bits in the full 32-bit MIPS architecture, branch and jump constants are
specified in words and must be multiplied by four (shifted left 2 bits) to be converted to byte addresses.

I 000100 n/a

j destination jump: PC <- destinationa J 000010 n/a
lb $1, imm($2) load byte: $1 <- mem[$2 + imm] I 100000 n/a
sb $1, imm($2) store byte: mem[$2 + imm] <- $1 I 101000 n/a

Chapter 1 Introduction34

We can write programs for the MIPS processor in assembly language, where each line
of the program contains one instruction such as ADD or BEQ. However, the MIPS hard-
ware ultimately must read the program as a series of 32-bit numbers called machine lan-
guage. An assembler automates the tedious process of translating from assembly language
to machine language using the encodings defined in Table 1.7 and Figure 1.49. Writing
nontrivial programs in assembly language is also tedious, so programmers usually work in
a high-level language such as C or Java. A compiler translates a program from high-level
language source code into the appropriate machine language object code.

Example 1.4

Figure 1.50 shows a simple C program that computes the nth Fibonacci number fn
defined recursively for n > 0 as fn = fn–1 + fn–2, f–1 = –1, f0 = 1. Translate the program
into MIPS assembly language and machine language.

SOLUTION: Figure 1.51 gives a commented assembly language program. Figure 1.52
translates the assembly language to machine language.

1.7.2 Multicycle MIPS Microarchitecture
We will implement the multicycle MIPS microarchitecture given in Chapter 5 of
[Patterson04] and Chapter 7 of [Harris07] modified to process 8-bit data. The micro-
architecture is illustrated in Figure 1.53. Light lines indicate individual signals while heavy

FIGURE 1.49 Instruction encoding formats

int fib(void)
{
 int n = 8; /* compute nth Fibonacci number */
 int f1 = 1, f2 = -1; /* last two Fibonacci numbers */

 while (n != 0) { /* count down to n = 0 */
 f1 = f1 + f2;
 f2 = f1 - f2;
 n = n - 1;
 }
 return f1;

FIGURE 1.50 C Code for Fibonacci program

Format Example Encoding

R

I

J

0 ra rb rd 0 funct

op

op

ra rb imm

6

6

6

65 5 5 5

5 5 16

26

add $rd, $ra, $rb

beq $ra, $rb, imm

j dest dest

1.7 Example: A Simple MIPS Microprocessor 35

fib.asm
Register usage: $3: n $4: f1 $5: f2
return value written to address 255
fib: addi $3, $0, 8 # initialize n=8
 addi $4, $0, 1 # initialize f1 = 1
 addi $5, $0, -1 # initialize f2 = -1
loop: beq $3, $0, end # Done with loop if n = 0
 add $4, $4, $5 # f1 = f1 + f2
 sub $5, $4, $5 # f2 = f1 - f2
 addi $3, $3, -1 # n = n - 1
 j loop # repeat until done
end: sb $4, 255($0) # store result in address 255

FIGURE 1.51 Assembly language code for Fibonacci program

Hexadecimal
Instruction Binary Encoding Encoding
addi $3, $0, 8 001000 00000 00011 0000000000001000 20030008
addi $4, $0, 1 001000 00000 00100 0000000000000001 20040001
addi $5, $0, -1 001000 00000 00101 1111111111111111 2005ffff
beq $3, $0, end 000100 00011 00000 0000000000000100 10600004
add $4, $4, $5 000000 00100 00101 00100 00000 100000 00852020
sub $5, $4, $5 000000 00100 00101 00101 00000 100010 00852822
addi $3, $3, -1 001000 00011 00011 1111111111111111 2063ffff
j loop 000010 0000000000000000000000000011 08000003
sb $4, 255($0) 101000 00000 00100 0000000011111111 a00400ff

FIGURE 1.52 Machine language code for Fibonacci program

FIGURE 1.53 Multicycle MIPS microarchitecture. Adapted from [Patterson04] and [Harris07] with permission from Elsevier.

Imm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

0
1PC 0

1

PCNext

Instr
25 21

20 16

7 0

5 0

SrcB20 16

15 11

<<2

ALUResult

SrcA

ALUOut

31 26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA

RegWrite
Op

Funct

Control
Unit

Zero

CLK

CLK

ALUControl2 0

A
LU

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

00
01

10

11

1

CLK

ENEN

ALUSrcB1 0IRWrite3 0

IorD

PCWrite
PCEn

PCSrc1 0

00
01

10

ImmX4

W
riteD

ata

M
em

D
ata

Chapter 1 Introduction36

lines indicate busses. The control logic and signals are highlighted in blue while the data-
path is shown in black. Control signals generally drive multiplexer select signals and regis-
ter enables to tell the datapath how to execute an instruction.

Instruction execution generally flows from left to right. The program counter (PC)
specifies the address of the instruction. The instruction is loaded 1 byte at a time over four
cycles from an off-chip memory into the 32-bit instruction register (IR). The Op field (bits
31:26 of the instruction) is sent to the controller, which sequences the datapath through
the correct operations to execute the instruction. For example, in an ADD instruction, the
two source registers are read from the register file into temporary registers A and B. On
the next cycle, the aludec unit commands the Arithmetic/Logic Unit (ALU) to add the
inputs. The result is captured in the ALUOut register. On the third cycle, the result is writ-
ten back to the appropriate destination register in the register file.

The controller contains a finite state machine (FSM) that generates multiplexer select
signals and register enables to sequence the datapath. A state transition diagram for the
FSM is shown in Figure 1.54. As discussed, the first four states fetch the instruction from

FIGURE 1.54 Multicycle MIPS control FSM (Adapted from [Patterson04] and [Harris07] with permission from Elsevier.)

Instruction decode/
register fetch

R type completion

7

0

4

121195

1086

Reset

1 2 3

ALUSrcA = 0
IorD = 0
IRWrite0

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
IorD = 0
IRWrite1

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
IorD = 0
IRWrite2

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
IorD = 0
IRWrite3

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

Instruction fetch

Memory address
computation

(Op = 'LB') or (Op = 'SB') (Op = R-type)

(O
p

=
'B

EQ
')

Execution

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
Branch = 1
PCSrc = 01

PCWrite
PCSrc = 10

Branch
completion

Jump
completion(O

p
=

 'J
')

(O
p

=
 'L

B
')

(O
p = 'SB')

Memory
access

Memory
access

IorD = 1 MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

Write back step

RegDst = 0
RegWrite

MemtoReg = 1

1.7 Example: A Simple MIPS Microprocessor 37

memory. The FSM then is dispatched based on Op to execute the particular instruction.
The FSM states for ADDI are missing and left as an exercise for the reader.

Observe that the FSM produces a 2-bit ALUOp output. The ALU decoder unit in
the controller uses combinational logic to compute a 3-bit ALUControl signal from
the ALUOp and Funct fields, as specified in Table 1.8. ALUControl drives multiplexers in
the ALU to select the appropriate computation.

Example 1.5

Referring to Figures 1.53 and 1.54, explain how the MIPS processor fetches and exe-
cutes the SUB instruction.

SOLUTION: The first step is to fetch the 32-bit instruction. This takes four cycles
because the instruction must come over an 8-bit memory interface. On each cycle, we
want to fetch a byte from the address in memory specified by the program counter, then
increment the program counter by one to point to the next byte.

The fetch is performed by states 0–3 of the FSM in Figure 1.54. Let us start with
state 0. The program counter (PC) contains the address of the first byte of the instruc-
tion. The controller must select IorD = 0 so that the multiplexer sends this address to
the memory. MemRead must also be asserted so the memory reads the byte onto the
MemData bus. Finally, IRWrite0 should be asserted to enable writing memdata into
the least significant byte of the instruction register (IR).

Meanwhile, we need to increment the program counter. We can do this with the
ALU by specifying PC as one input, 1 as the other input, and ADD as the operation. To
select PC as the first input, ALUSrcA = 0. To select 1 as the other input, ALUSrcB = 01.
To perform an addition, ALUOp = 00, according to Table 1.8. To write this result back
into the program counter at the end of the cycle, PCSrc = 00 and PCEn = 1 (done by
setting PCWrite = 1).

All of these control signals are indicated in state 0 of Figure 1.54. The other regis-
ter enables are assumed to be 0 if not explicitly asserted and the other multiplexer
selects are don’t cares. The next three states are identical except that they write bytes 1,
2, and 3 of the IR, respectively.

The next step is to read the source registers, done in state 4. The two source registers
are specified in bits 25:21 and 20:16 of the IR. The register file reads these registers and
puts the values into the A and B registers. No control signals are necessary for SUB
(although state 4 performs a branch address computation in case the instruction is BEQ).

TABLE 1.8 ALUControl determination

ALUOp Funct ALUControl Meaning

00 x 010 ADD

01 x 110 SUB

10 100000 010 ADD

10 100010 110 SUB

10 100100 000 AND

10 100101 001 OR

10 101010 111 SLT

11 x x undefined

Chapter 1 Introduction38

The next step is to perform the subtraction. Based on the Op field (IR bits 31:26),
the FSM jumps to state 9 because SUB is an R-type instruction. The two source regis-
ters are selected as input to the ALU by setting ALUSrcA = 1 and ALUSrcB = 00.
Choosing ALUOp = 10 directs the ALU Control decoder to select the ALUControl sig-
nal as 110, subtraction. Other R-type instructions are executed identically except that
the decoder receives a different Funct code (IR bits 5:0) and thus generates a different
ALUControl signal. The result is placed in the ALUOut register.

Finally, the result must be written back to the register file in state 10. The data
comes from the ALUOut register so MemtoReg = 0. The destination register is speci-
fied in bits 15:11 of the instruction so RegDst = 1. RegWrite must be asserted to per-
form the write. Then, the control FSM returns to state 0 to fetch the next instruction.

1.8 Logic Design
We begin the logic design by defining the top-level chip interface and block diagram. We
then hierarchically decompose the units until we reach leaf cells. We specify the logic with
a Hardware Description Language (HDL), which provides a higher level of abstraction
than schematics or layout. This code is often called the Register Transfer Level (RTL)
description.

1.8.1 Top-Level Interfaces
The top-level inputs and outputs are listed in Table 1.9. This example uses a two-phase
clocking system to avoid hold-time problems. Reset initializes the PC to 0 and the con-
trol FSM to the start state.

The remainder of the signals are used for an 8-bit memory interface (assuming the mem-
ory is located off chip). The processor sends an 8-bit address Adr and optionally asserts
MemWrite. On a read cycle, the memory returns a value on the MemData lines while on a
write cycle, the memory accepts input from WriteData. In many systems, MemData and
WriteData can be combined onto a single bidirectional bus, but for this example we pre-
serve the interface of Figure 1.53. Figure 1.55 shows a simple computer system built from
the MIPS processor, external memory, reset switch, and clock generator.

1.8.2 Block Diagrams
The chip is partitioned into two top-level units: the controller and datapath, as shown in
the block diagram in Figure 1.56. The controller comprises the control FSM, the ALU
decoder, and the two gates used to compute PCEn. The ALU decoder consists of combina-

TABLE 1.9 Top-level inputs and outputs

Inputs Outputs

ph1 MemWrite

ph2 Adr[7:0]

reset WriteData[7:0]

MemData[7:0]

1.8 Logic Design 39

tional logic to determine ALUControl. The 8-bit datapath contains the remainder of the
chip. It can be viewed as a collection of wordslices or bitslices. A wordslice is a column con-
taining an 8-bit flip-flop, adder, multiplexer, or other element. For example, Figure 1.57
shows a wordslice for an 8-bit 2:1 multiplexer. It contains eight individual 2:1 multiplex-
ers, along with a zipper containing a buffer and inverter to drive the true and complemen-
tary select signals to all eight multiplexers.6 Factoring these drivers out into the zipper
saves space as compared to putting inverters in each multiplexer. Alternatively, the
datapath can be viewed as eight rows of bitslices. Each bitslice has one bit of each compo-
nent, along with the horizontal wires connecting the bits together.

The chip partitioning is influenced by the intended physical design. The datapath
contains most of the transistors and is very regular in structure. We can achieve high den-
sity with moderate design effort by handcrafting each wordslice or bitslice and tiling the

FIGURE 1.55 MIPS computer system

FIGURE 1.56 Top-level MIPS block diagram

reset

ph1

ph2

crystal
oscillator MIPS

processor Adr

WriteData

MemData

external
memory

MemWrite

8

8

8

2-phase
clock
generator

datapath

controller

ph1

ph2

reset

memdata[7:0]

writedata[7:0]

adr[7:0]

memwrite

op[5:0]

zero

irw
rite[3:0]

regw
rite

iord

regdst

m
em

toreg

pcsource[1:0]

pcen

alusrcb[1:0]

alusrca

alucontrol[2:0]

funct[5:0]
aludec

aluop[1:0]

6In this example, the zipper is shown at the top of the wordslice. In wider datapaths, the zipper is sometimes
placed in the middle of the wordslice so that it drives shorter wires. The name comes from the way the
layout resembles a plaid sweatshirt with a zipper down the middle.

FIGURE 1.57 8-bit 2:1
multiplexer wordslice

0D1[7]

1

0

1

0

1

s s

sel

zipper

D0[7]

D1[6]

D0[6]

D1[0]

D0[0]

Y[7]

Y[6]

Y[0]

Chapter 1 Introduction40

circuits together. Building datapaths using wordslices is usually easier because certain
structures, such as the zero detection circuit in the ALU, are not identical in each bitslice.
However, thinking about bitslices is a valuable way to plan the wiring across the datapath.
The controller has much less structure. It is tedious to translate an FSM into gates by
hand, and in a new design, the controller is the most likely portion to have bugs and last-
minute changes. Therefore, we will specify the controller more abstractly with a hardware
description language and automatically generate it using synthesis and place & route tools
or a programmable logic array (PLA).

1.8.3 Hierarchy
The best way to design complex systems is to decompose them into simpler pieces. Figure
1.58 shows part of the design hierarchy for the MIPS processor. The controller contains
the controller_pla and aludec, which in turn is built from a library of standard cells such as
NANDs, NORs, and inverters. The datapath is composed of 8-bit wordslices, each of
which also is typically built from standard cells such as adders, register file bits, multiplex-
ers, and flip-flops. Some of these cells are reused in multiple places.

The design hierarchy does not necessarily have to be identical in the logic, circuit, and
physical designs. For example, in the logic view, a memory may be best treated as a black
box, while in the circuit implementation, it may have a decoder, cell array, column multi-
plexers, and so forth. Different hierarchies complicate verification, however, because they
must be flattened until the point that they agree. As a matter of practice, it is best to make
logic, circuit, and physical design hierarchies agree as far as possible.

1.8.4 Hardware Description Languages
Designers need rapid feedback on whether a logic design is reasonable. Translating block
diagrams and FSM state transition diagrams into circuit schematics is time-consuming
and prone to error; before going through this entire process it is wise to know if the top-
level design has major bugs that will require complete redesign. HDLs provide a way to
specify the design at a higher level of abstraction to raise designer productivity. They were
originally intended for documentation and simulation, but are now used to synthesize
gates directly from the HDL.

FIGURE 1.58 MIPS design hierarchy

mips

controller datapath

alu

fulladder

nand2 nor2inv

controller_pla aludec

and2_8 adder_8or2_8

regramarray

mux4_8flop_8

a2o1

mux4invbuf and2 or2flop

zerodetect

1.8 Logic Design 41

The two most popular HDLs are Verilog and VHDL. Verilog was developed by
Advanced Integrated Design Systems (later renamed Gateway Design Automation) in
1984 and became a de facto industry open standard by 1991. In 2005, the SystemVerilog
extensions were standardized, and some of these features are used in this book. VHDL,
which stands for VHSIC Hardware Description Language, where VHSIC in turn was a
Department of Defense project on Very High Speed Integrated Circuits, was developed
by committee under government sponsorship. As one might expect from their pedigrees,
Verilog is less verbose and closer in syntax to C, while VHDL supports some abstractions
useful for large team projects. Many Silicon Valley companies use Verilog while defense
and telecommunications companies often use VHDL. Neither language offers a decisive
advantage over the other so the industry is saddled with supporting both. Appendix A
offers side-by-side tutorials on Verilog and VHDL. Examples in this book are given in
Verilog for the sake of brevity.

When coding in an HDL, it is important to remember that you are specifying hard-
ware that operates in parallel rather than software that executes in sequence. There are two
general coding styles. Structural HDL specifies how a cell is composed of other cells or
primitive gates and transistors. Behavioral HDL specifies what a cell does.

A logic simulator simulates HDL code; it can report whether results match expecta-
tions, and can display waveforms to help debug discrepancies. A logic synthesis tool is simi-
lar to a compiler for hardware: it maps HDL code onto a library of gates called standard
cells to minimize area while meeting some timing constraints. Only a subset of HDL con-
structs are synthesizable; this subset is emphasized in the appendix. For example, file I/O
commands used in testbenches are obviously not synthesizable. Logic synthesis generally
produces circuits that are neither as dense nor as fast as those handcrafted by a skilled
designer. Nevertheless, integrated circuit processes are now so advanced that synthesized
circuits are good enough for the great majority of application-specific integrated circuits
(ASICs) built today. Layout may be automatically generated using place & route tools.

Verilog and VHDL models for the MIPS processor are listed in Appendix A.12. In
Verilog, each cell is called a module. The inputs and outputs are declared much as in a C
program and bit widths are given for busses. Internal signals must also be declared in a way
analogous to local variables. The processor is described hierarchically using structural Ver-
ilog at the upper levels and behavioral Verilog for the leaf cells. For example, the controller
module shows how a finite state machine is specified in behavioral Verilog and the aludec
module shows how complex combinational logic is specified. The datapath is specified
structurally in terms of wordslices, which are in turn described behaviorally.

For the sake of illustration, the 8-bit adder wordslice could be described structurally
as a ripple carry adder composed of eight cascaded full adders.
The full adder could be expressed structurally as a sum and a
carry subcircuit. In turn, the sum and carry subcircuits could
be expressed behaviorally. The full adder block is shown in
Figure 1.59 while the carry subcircuit is explored further in
Section 1.9.

module adder(input logic [7:0] a, b,
 input logic c,
 output logic [7:0] s,

output logic cout);

wire [6:0] carry;
FIGURE 1.59 Full adder

a b

c

s

cout carry

s

a b c

cout

fulladder

sum

Chapter 1 Introduction42

 fulladder fa0(a[0], b[0], c, s[0], carry[0]);
 fulladder fa1(a[1], b[1], carry[0], s[1], carry[1]);
 fulladder fa2(a[2], b[2], carry[1], s[2], carry[2]);
 ...
 fulladder fa7(a[7], b[7], carry[6], s[7], cout);
endmodule

module fulladder(input logic a, b, c,
 output logic s, cout);

 sum s1(a, b, c, s);
 carry c1(a, b, c, cout);
endmodule

module carry(input logic a, b, c,
 output logic cout);

assign cout = (a&b) | (a&c) | (b&c);
endmodule

1.9 Circuit Design
Circuit design is concerned with arranging transistors to perform a particular logic func-
tion. Given a circuit design, we can estimate the delay and power. The circuit can be repre-
sented as a schematic, or in textual form as a netlist. Common transistor level netlist
formats include Verilog and SPICE. Verilog netlists are used for functional verification,
while SPICE netlists have more detail necessary for delay and power simulations.

Because a transistor gate is a good insulator, it can be modeled as a capacitor, C.
When the transistor is ON, some current I flows between source and drain. Both the cur-
rent and capacitance are proportional to the transistor width.

The delay of a logic gate is determined by the current that it can deliver and the
capacitance that it is driving, as shown in Figure 1.60 for one inverter driving another
inverter. The capacitance is charged or discharged according to the constitutive equation

If an average current I is applied, the time t to switch between 0 and VDD is

Hence, the delay increases with the load capacitance and decreases with the drive current.
To make these calculations, we will have to delve below the switch-level model of a tran-
sistor. Chapter 2 develops more detailed models of transistors accounting for the current
and capacitance. One of the goals of circuit design is to choose transistor widths to meet
delay requirements. Methods for doing so are discussed in Chapter 4.

I C
dV
dt

=

t
C
I

VDD=
FIGURE 1.60 Circuit delay
and power: (a) inverter pair,
(b) transistor-level model
showing capacitance and
current during switching, (c)
static leakage current during
quiescent operation

VDD

VDD

X

Y

GND

X

Y

I C

(a)

(b)

1

GND

ON

OFF
Istatic0

(c)

1.9 Circuit Design 43

 Energy is required to charge and discharge the load capacitance. This is called
dynamic power because it is consumed when the circuit is actively switching. The dynamic
power consumed when a capacitor is charged and discharged at a frequency f is

Even when the gate is not switching, it draws some static power. Because an OFF transis-
tor is leaky, a small amount of current Istatic flows between power and ground, resulting in
a static power dissipation of

Chapter 5 examines power in more detail.
A particular logic function can be implemented in many ways.

Should the function be built with ANDs, ORs, NANDs, or NORs?
What should be the fan-in and fan-out of each gate? How wide should
the transistors be on each gate? Each of these choices influences the
capacitance and current and hence the speed and power of the circuit, as
well as the area and cost.

As mentioned earlier, in many design methodologies, logic synthe-
sis tools automatically make these choices, searching through the stan-
dard cells for the best implementation. For many applications, synthesis
is good enough. When a system has critical requirements of high speed
or low power or will be manufactured in large enough volume to justify
the extra engineering, custom circuit design becomes important for criti-
cal portions of the chip.

Circuit designers often draw schematics at the transistor and/or gate
level. For example, Figure 1.61 shows two alternative circuit designs for
the carry circuit in a full adder. The gate-level design in Figure 1.61(a)
requires 26 transistors and four stages of gate delays (recall that ANDs
and ORs are built from NANDs and NORs followed by inverters). The
transistor-level design in Figure 1.61(b) requires only 12 transistors and
two stages of gate delays, illustrating the benefits of optimizing circuit
designs to take advantage of CMOS technology.

These schematics are then netlisted for simulation and verification.
One common netlist format is structural Verilog HDL. The gate-level
design can be netlisted as follows:

module carry(input logic a, b, c,
 output logic cout);

logic x, y, z;

and g1(x, a, b);
and g2(y, a, c);
and g3(z, b, c);

 or g4(cout, x, y, z);
endmodule

P CV fDDdynamic = 2

P I VDDstatic static=

FIGURE 1.61 Carry subcircuit

a
b

a
c

b
c

cout

x

y

z

g1

g2

g3

g4

(a)

a b

c

c

a b

b

a

a

b

coutcn

n1 n2

n3

n4

n5 n6

p6p5

p4

p3

p2p1

(b)

i1

i3

i2

i4

Chapter 1 Introduction44

This is a technology-independent structural description, because generic gates have
been used and the actual gate implementations have not been specified. The transistor-
level netlist follows:

module carry(input logic a, b, c,
 output tri cout);

tri i1, i2, i3, i4, cn;
supply0 gnd;
supply1 vdd;

tranif1 n1(i1, gnd, a);
 tranif1 n2(i1, gnd, b);
 tranif1 n3(cn, i1, c);
 tranif1 n4(i2, gnd, b);
 tranif1 n5(cn, i2, a);
 tranif0 p1(i3, vdd, a);
 tranif0 p2(i3, vdd, b);

tranif0 p3(cn, i3, c);
 tranif0 p4(i4, vdd, b);
 tranif0 p5(cn, i4, a);
 tranif1 n6(cout, gnd, cn);
 tranif0 p6(cout, vdd, cn);
endmodule

Transistors are expressed as

Transistor-type name(drain, source, gate);

tranif1 corresponds to nMOS transistors that turn ON when the gate is 1 while
tranif0 corresponds to pMOS transistors that turn ON when the gate is 0. Appendix
A.11 covers Verilog netlists in more detail.

With the description generated so far, we still do not have the information required to
determine the speed or power consumption of the gate. We need to specify the size of the
transistors and the stray capacitance. Because Verilog was designed as a switch-level and
gate-level language, it is poorly suited to structural descriptions at this level of detail.
Hence, we turn to another common structural language used by the circuit simulator
SPICE. The specification of the transistor-level carry subcircuit at the circuit level might
be represented as follows:

.SUBCKT CARRY A B C COUT VDD GND
MN1 I1 A GND GND NMOS W=2U L=0.6U AD=1.8P AS=3P
MN2 I1 B GND GND NMOS W=2U L=0.6U AD=1.8P AS=3P
MN3 CN C I1 GND NMOS W=2U L=0.6U AD=3P AS=3P
MN4 I2 B GND GND NMOS W=2U L=0.6U AD=0.9P AS=3P
MN5 CN A I2 GND NMOS W=2U L=0.6U AD=3P AS=0.9P
MP1 I3 A VDD VDD PMOS W=4U L=0.6U AD=3.6P AS=6P
MP2 I3 B VDD VDD PMOS W=4U L=0.6U AD=3.6P AS=6P
MP3 CN C I3 VDD PMOS W=4U L=0.6U AD=6P AS=6P

1.10 Physical Design 45

MP4 I4 B VDD VDD PMOS W=4U L=0.6U AD=1.8P AS=6P
MP5 CN A I4 VDD PMOS W=4U L=0.6U AD=6P AS=1.8P
MN6 COUT CN GND GND NMOS W=4U L=0.6U AD=6P AS=6P
MP6 COUT CN VDD VDD PMOS W=8U L=0.6U AD=12P AS=12P
CI1 I1 GND 6FF
CI3 I3 GND 9FF
CA A GND 12FF
CB B GND 12FF
CC C GND 6FF
CCN CN GND 12FF
CCOUT COUT GND 6FF
.ENDS

Transistors are specified by lines beginning with an M as follows:

Mname drain gate source body type W=width L=length
 AD=drain area AS=source area

Although MOS switches have been masquerading as three terminal devices (gate,
source, and drain) until this point, they are in fact four terminal devices with the substrate
or well forming the body terminal. The body connection was not listed in Verilog but is
required for SPICE. The type specifies whether the transistor is a p-device or n-device.
The width, length, and area parameters specify physical dimensions of the actual transis-
tors. Units include U (micro, 10–6), P (pico, 10–12), and F (femto, 10–15). Capacitors are
specified by lines beginning with C as follows:

Cname node1 node2 value

In this description, the MOS model in SPICE calculates the parasitic capacitances inher-
ent in the MOS transistor using the device dimensions specified. The extra capacitance
statements in the above description designate additional routing capacitance not inherent
to the device structure. This depends on the physical design of the gate. Long wires also
contribute resistance, which increases delay. At the circuit level of structural specification,
all connections are given that are necessary to fully characterize the carry gate in terms of
speed, power, and connectivity. Chapter 8 describes SPICE models in more detail.

1.10 Physical Design

1.10.1 Floorplanning
Physical design begins with a floorplan. The floorplan estimates the area of major units in
the chip and defines their relative placements. The floorplan is essential to determine
whether a proposed design will fit in the chip area budgeted and to estimate wiring lengths
and wiring congestion. An initial floorplan should be prepared as soon as the logic is
loosely defined. As usual, this process involves feedback. The floorplan will often suggest
changes to the logic (and microarchitecture), which in turn changes the floorplan. For
example, suppose microarchitects assume that a cache requires a 2-cycle access latency. If
the floorplan shows that the data cache can be placed adjacent to the execution units in the

Chapter 1 Introduction46

datapath, the cache access time might reduce to a single cycle. This could allow the
microarchitects to reduce the cache capacity while providing the same performance. Once
the cache shrinks, the floorplan must be reconsidered to take advantage of the newly avail-
able space near the datapath. As a complex design begins to stabilize, the floorplan is often
hierarchically subdivided to describe the functional blocks within the units.

The challenge of floorplanning is estimating the size of each unit without proceeding
through a detailed design of the chip (which would depend on the floorplan and wire
lengths). This section assumes that good estimates have been made and describes what a
floorplan looks like. The next sections describe each of the types of components that
might be in a floorplan and suggests ways to estimate the component sizes.

Figure 1.62 shows the chip floorplan for the MIPS processor including the pad frame.
The top-level blocks are the controller and datapath. A wiring channel is located between the
two blocks to provide room to route control signals to the datapath. The datapath is further
partitioned into wordslices. The pad frame includes 40 I/O pads, which are wired to the pins
on the chip package. There are 29 pads used for signals; the remainder are VDD and GND.

The floorplan is drawn to scale and annotated with dimensions. The chip is designed in
a 0.6 m process on a 1.5 × 1.5 mm die so the die is 5000 on a side. Each pad is 750 ×

FIGURE 1.62 MIPS floorplan

2550 λ

wiring channel: 25 tracks = 200λ

3500 λ

5000 λ

10 I/O pads

10 I/O pads

8 bitslices + 1 zipper row + 3 decoder rows =
12 rows x 110 λ / row = 1320 λ height
width determined from slice plan

height determined from
PLA size width matches
datapath

mips
(4.8 Mλ2)

control
2550λ x 380λ

(1.0 Mλ2)

datapath
2550λ x 1320λ

(3.4 Mλ2)

1900 λ
3500 λ

5000 λ

10 I/O
 pads

10 I/O
 pads

1.10 Physical Design 47

350 , so the maximum possible core area inside the pad frame is 3500 × 3500 = 12.25
M 2. Due to the wiring channel, the actual core area of 4.8 M 2 is larger than the sum of
the block areas. This design is said to be pad-limited because the I/O pads set the chip area.
Most commercial chips are core-limited because the chip area is set by the logic excluding the
pads. In general, blocks in a floorplan should be rectangular because it is difficult for a
designer to stuff logic into an odd-shaped region (although some CAD tools do so just fine).

Figure 1.63 shows the actual chip layout. Notice the 40 I/O pads around the periph-
ery. Just inside the pad frame are metal2 VDD and GND rings, marked with + and –.

FIGURE 1.63 MIPS layout

Chapter 1 Introduction48

On-chip structures can be categorized as random logic, datapaths, arrays, analog, and
input/output (I/O). Random logic, like the aludecoder, has little structure. Datapaths oper-
ate on multi-bit data words and perform roughly the same function on each bit so they
consist of multiple N-bit wordslices. Arrays, like RAMs, ROMs, and PLAs, consist of
identical cells repeated in two dimensions. Productivity is highest if layout can be reused
or automatically generated. Datapaths and arrays are good VLSI building blocks because a
single carefully crafted cell is reused in one or two dimensions. Automatic layout genera-
tors exist for memory arrays and random logic but are not as mature for datapaths. There-
fore, many design methodologies ignore the potential structure of datapaths and instead
lay them out with random logic tools except when performance or area are vital. Analog
circuits still require careful design and simulation but tend to involve only small amounts
of layout because they have relatively few transistors. I/O cells are also highly tuned to
each fabrication process and are often supplied by the process vendor.

Random logic and datapaths are typically built from standard cells such as inverters,
NAND gates, and flip-flops. Standard cells increase productivity because each cell only
needs to be drawn and verified once. Often, a standard cell library is purchased from a
third party vendor.

Another important decision during floorplanning is to choose the metal orientation.
The MIPS floorplan uses horizontal metal1 wires, vertical metal2 wires, and horizontal
metal3 wires. Alternating directions between each layer makes it easy to cross wires on dif-
ferent layers.

1.10.2 Standard Cells
A simple standard cell library is shown on the inside front cover. Power and ground run
horizontally in metal1. These supply rails are 8 wide (to carry more current) and are sep-
arated by 90 center-to-center. The nMOS transistors are placed in the bottom 40 of
the cell and the pMOS transistors are placed in the top 50 . Thus, cells can be connected
by abutment with the supply rails and n-well matching up. Substrate and well contacts are
placed under the supply rails. Inputs and outputs are provided in metal2, which runs verti-
cally. Each cell is a multiple of 8 in width so that it offers an integer number of metal2
tracks. Within the cell, poly is run vertically to form gates and diffusion and metal1 are
run horizontally, though metal1 can also be run vertically to save space when it does not
interfere with other connections.

Cells are tiled in rows. Each row is separated vertically by at least 110 from the base
of the previous row. In a 2-level metal process, horizontal metal1 wires are placed in rout-
ing channels between the rows. The number of wires that must be routed sets the height of
the routing channels. Layout is often generated with automatic place & route tools. Figure
1.64 shows the controller layout generated by such a tool. Note that in this and subsequent
layouts, the n-well around the pMOS transistors will usually not be shown.

When more layers of metal are available, routing takes place over the cells and routing
channels may become unnecessary. For example, in a 3-level metal process, metal3 is
run horizontally on a 10 pitch. Thus, 11 horizontal tracks can run over each cell. If this
is sufficient to accommodate all of the horizontal wires, the routing channels can be
eliminated.

Automatic synthesis and place & route tools have become good enough to map entire
designs onto standard cells. Figure 1.65 shows the entire 8-bit MIPS processor synthesized
from the VHDL model given in Appendix A.12 onto a cell library in a 130 nm process with

1.10 Physical Design 49

seven metal layers. Compared to Figure 1.63, the synthesized design shows little discernible
structure except that 26 rows of standard cells can be identified beneath the wires. The area is
approximately 4 M 2. Synthesized designs tend to be somewhat slower than a good custom
design, but they also take an order of magnitude less design effort.

FIGURE 1.64 MIPS controller layout (synthesized)

FIGURE 1.65 Synthesized MIPS processor

Chapter 1 Introduction50

1.10.3 Pitch Matching
The area of the controller in Figure 1.64 is dominated by the routing channels. When the
logic is more regular, layout density can be improved by including the wires in cells that
“snap together.” Snap-together cells require more design and layout effort but lead to
smaller area and shorter (i.e., faster) wires. The key issue in designing snap-together cells
is pitch-matching. Cells that connect must have the same size along the connecting edge.
Figure 1.66 shows several pitch-matched cells. Reducing the size of cell D does not help
the layout area. On the other hand, increasing the size of cell D also affects the area of B
and/or C.

Figure 1.67 shows the MIPS datapath in more detail. The eight horizontal bitslices
are clearly visible. The zipper at the top of the layout includes three rows for the decoder
that is pitch-matched to the register file in the datapath. Vertical metal2 wires are used for
control, including clocks, multiplexer selects, and register enables. Horizontal metal3
wires run over the tops of cells to carry data along a bitslice.

The width of the transistors in the cells and the number of wires that must run over
the datapath determines the minimum height of the datapath cells. 60–100 are typical
heights for relatively simple datapaths. The width of the cell depends on the cell contents.

1.10.4 Slice Plans
Figure 1.68 shows a slice plan of the datapath. The diagram illustrates the ordering of
wordslices and the allocation of wiring tracks within each bitslice. Dots indicate that a bus
passes over a cell and is also used in that cell. Each cell is annotated with its type and
width (in number of tracks). For example, the program counter (pc) is an output of the
PC flop and is also used as an input to the srcA and address multiplexers. The slice plan

FIGURE 1.67 MIPS datapath layout

FIGURE 1.66 Pitch-matching
of snap-together cells

A A A A

A A A A

A A A A

A A A A

B

B

B

B

C C D

1.10 Physical Design 51

makes it easy to calculate wire lengths and evaluate wiring congestion before laying out the
datapath. In this case, it is evident that the greatest congestion takes place over the register
file, where seven wiring tracks are required.

The slice plan is also critical for estimating area of datapaths. Each wordslice is anno-
tated with its width, measured in tracks. This information can be obtained by looking at the
cell library layouts. By adding up the widths of each element in the slice plan, we see that the
datapath is 319 tracks wide, or 2552 wide. There are eight bitslices in the 8-bit datapath.
In addition, there is one more row for the zipper and three more for the three register file
address decoders, giving a total of 12 rows. At a pitch of 110 / row, the datapath is 1320
tall. The address decoders only occupy a small fraction of their rows, leaving wasted empty
space. In a denser design, the controller could share some of the unused area.

1.10.5 Arrays
Figure 1.69 shows a programmable logic array (PLA) used for the control FSM next state
and output logic. A PLA can compute any function expressed in sum of products form.
The structure on the left is called the AND plane and the structure on the right is the OR
plane. PLAs are discussed further in Section 12.7.

This PLA layout uses 2 vertical tracks for each input and 3 for each output plus about
6 for overhead. It uses 1.5 horizontal tracks for each product or minterm, plus about 14 for
overhead. Hence, the size of a PLA is easy to calculate. The total PLA area is 500 × 350

, plus another 336 × 220 for the four external flip-flops needed in the control FSM.
The height of the controller is dictated by the height of the PLA plus a few wiring tracks
to route inputs and outputs. In comparison, the synthesized controller from Figure 1.64
has a size of 1500 × 400 because the wiring tracks waste so much space.

1.10.6 Area Estimation
A good floorplan depends on reasonable area estimates, which may be difficult to make
before logic is finalized. An experienced designer may be able to estimate block area by

FIGURE 1.68 Datapath slice plan

m
ux2

flopen

flopen

flopen

flop

m
ux2

regram
0

regram

regram

regram

regram

flop

m
ux4

flop

m
ux2

flop

m
ux3

flop

zerodetect

inv

m
ux2

and2

or2

fulladder

m
ux4

register file
ramslices

ALU

adrm
ux

flopen

M
D

R

IR3...0

w
ritem

ux

srcB srcA

aluout

PC

adr

aluresult

srcB
srcA

rd1

6 17 17 17 17 13 6 9 9 9 9 9 13 13 13 13 66 213 10 135 4 4 16

memdata
writedata

pc
aluout

immediate

regram

regram

regram

9 9 97 6 3 6

(w
iring)

(w
iring)

(w
iring)

(w
iring)

op[6:0] funct[6:0]register
adrs

rd2

Chapter 1 Introduction52

comparison to the area of a comparable block drawn in the past. In the absence of data for
such comparison, Table 1.10 lists some typical numbers. Be certain to account for large
wiring channels at a pitch of 8 / track. Larger transistors clearly occupy a greater area, so
this may be factored into the area estimates as a function of W and L (width and length).
For memories, don’t forget about the decoders and other periphery circuits, which often
take as much area as the memory bits themselves. Your mileage may vary, but datapaths
and arrays typically achieve higher densities than standard cells.

 Given enough time, it is nearly always possible to shave a few lambda here or there
from a design. However, such efforts are seldom a good investment unless an element is
repeated so often that it accounts for a major fraction of the chip area or if floorplan errors
have led to too little space for a block and the block must be shrunk before the chip can be
completed. It is wise to make conservative area estimates in floorplans, especially if there is
risk that more functionality may be added to a block.

FIGURE 1.69 PLA for control FSM

TABLE 1.10 Typical layout densities

Element Area

random logic (2-level metal process) 1000 – 1500 2 / transistor

datapath 250 – 750 2 / transistor or
6 WL + 360 2 / transistor

SRAM 1000 2 / bit

DRAM (in a DRAM process) 100 2 / bit

ROM 100 2 / bit

1.11 Design Verification 53

Some cell library vendors specify typical routed standard cell layout densities in
kgates / mm2.7 Commonly, a gate is defined as a 3-input static CMOS NAND or NOR
with six transistors. A 65 nm process (0.03 m) with eight metal layers may achieve a
density of 160–500 kgates / mm2 for random logic. This corresponds to about
370–1160 2 / transistor. Processes with many metal layers obtain high density because
routing channels are not needed.

1.11 Design Verification
Integrated circuits are complicated enough that if anything can go wrong, it probably will.
Design verification is essential to catching the errors before manufacturing and commonly
accounts for half or more of the effort devoted to a chip.

As design representations become more detailed, verification time increases. It is not
practical to simulate an entire chip in a circuit-level simulator such as SPICE for a large
number of cycles to prove that the layout is correct. Instead, the design is usually tested for
functionality at the architectural level with a model in a language such
as C and at the logic level by simulating the HDL description. Then,
the circuits are checked to ensure that they are a faithful representation
of the logic and the layout is checked to ensure it is a faithful represen-
tation of the circuits, as shown in Figure 1.70. Circuits and layout must
meet timing and power specifications as well.

A testbench is used to verify that the logic is correct. The testbench
instantiates the logic under test. It reads a file of inputs and expected
outputs called test vectors, applies them to the module under test, and
logs mismatches. Appendix A.12 provides an example of a testbench for
verifying the MIPS processor logic.

A number of techniques are available for circuit verification. If the
logic is synthesized onto a cell library, the postsynthesis gate-level
netlist can be expressed in an HDL again and simulated using the same
test vectors. Alternatively, a transistor-level netlist can be simulated
against the test vector, although this can result in tricky race conditions
for sequential circuits. Powerful formal verification tools are also avail-
able to check that a circuit performs the same Boolean function as the
associated logic. Exotic circuits should be simulated thoroughly to
ensure that they perform the intended logic function and have adequate
noise margins; circuit pitfalls are discussed throughout this book.

Layout vs. Schematic tools (LVS) check that transistors in a layout
are connected in the same way as in the circuit schematic. Design rule
checkers (DRC) verify that the layout satisfies design rules. Electrical rule
checkers (ERC) scan for other potential problems such as noise or pre-
mature wearout; such problems will also be discussed later in the book. FIGURE 1.70 Design and verification sequence

Specification

Architecture
Design

Logic
Design

Circuit
Design

Physical
Design

=

=

=

=

Function

Function

Function

Function
Timing
Power

71 kgate = 1000 gates.

Chapter 1 Introduction54

1.12 Fabrication, Packaging, and Testing
Once a chip design is complete, it is taped out for manufacturing. Tapeout gets its name
from the old practice of writing a specification of masks to magnetic tape; today, the mask
descriptions are usually sent to the manufacturer electronically. Two common formats for
mask descriptions are the Caltech Interchange Format (CIF) [Mead80] (mainly used in
academia) and the Calma GDS II Stream Format (GDS) [Calma84] (used in industry).

Masks are made by etching a pattern of chrome on glass with an electron beam. A set
of masks for a nanometer process can be very expensive. For example, masks for a large
chip in a 180 nm process may cost on the order of a quarter of a million dollars. In a 65 nm
process, the mask set costs about $3 million. The MOSIS service in the United States and
its EUROPRACTICE and VDEC counterparts in Europe and Japan make a single set of
masks covering multiple small designs from academia and industry to amortize the cost
across many customers. With a university discount, the cost for a run of 40 small chips on
a multi-project wafer can run about $10,000 in a 130 nm process down to $2000 in a
0.6 m process. MOSIS offers certain grants to cover fabrication of class project chips.

Integrated circuit fabrication plants (fabs) now cost billions of dollars and become
obsolete in a few years. Some large companies still own their own fabs, but an increasing
number of fabless semiconductor companies contract out manufacturing to foundries such
as TSMC, UMC, and IBM.

Multiple chips are manufactured simultaneously on a single silicon wafer, typically
150–300 mm (6�–12�) in diameter. Fabrication requires many deposition, masking, etch-
ing, and implant steps. Most fabrication plants are optimized for wafer throughput rather
than latency, leading to turnaround times of up to 10 weeks. Figure 1.71 shows an engi-
neer in a clean room holding a completed 300 mm wafer. Clean rooms are filtered to elimi-
nate most dust and other particles that could damage a partially processed wafer. The
engineer is wearing a “bunny suit” to avoid contaminating the clean room. Figure 1.72 is a

FIGURE 1.71 Engineer holding processed
12-inch wafer (Photograph courtesy of the Intel
Corporation.)

FIGURE 1.72 MIPS processor photomicrograph (only part of pad frame shown)

 Summary and a Look Ahead 55

photomicrograph (a photograph taken under a microscope) of the 8-bit MIPS processor.
Processed wafers are sliced into dice (chips) and packaged. Figure 1.73 shows the 1.5 ×

1.5 mm chip in a 40-pin dual-inline package (DIP). This wire-bonded package uses thin gold
wires to connect the pads on the die to the lead frame in the center cavity of the package.
These wires are visible on the pads in Figure 1.72. More advanced packages offer different
trade-offs between cost, pin count, pin bandwidth, power handling, and reliability, as will be
discussed in Section 13.2. Flip-chip technology places small solder balls directly onto the
die, eliminating the bond wire inductance and allowing contacts over the entire chip area
rather than just at the periphery.

Even tiny defects in a wafer or dust particles can cause a chip to fail. Chips are tested
before being sold. Testers capable of handling high-speed chips cost millions of dollars, so
many chips use built-in self-test features to reduce the tester time required. Chapter 15 is
devoted to design verification and testing.

Summary and a Look Ahead
“If the automobile had followed the same development cycle as the computer, a Rolls-
Royce would today cost $100, get one million miles to the gallon, and explode once a
year . . .”

—Robert X. Cringely

CMOS technology, driven by Moore’s Law, has come to dominate the semiconductor
industry. This chapter examined the principles of designing a simple CMOS integrated
circuit. MOS transistors can be viewed as electrically controlled switches. Static CMOS
gates are built from pull-down networks of nMOS transistors and pull-up networks of
pMOS transistors. Transistors and wires are fabricated on silicon wafers using a series of
deposition, lithography, and etch steps. These steps are defined by a set of masks drawn as
a chip layout. Design rules specify minimum width and spacing between elements in the
layout. The chip design process can be divided into architecture, logic, circuit, and physical
design. The performance, area, and power of the chip are influenced by interrelated deci-
sions made at each level. Design verification plays an important role in constructing such
complex systems; the reliability requirements for hardware are much greater than those
typically imposed on software.

Primary design objectives include reliability, performance, power, and cost. Any chip
should, with high probability, operate reliably for its intended lifetime. For example, the
chip must be designed so that it does not overheat or break down from excessive voltage.
Performance is influenced by many factors including clock speed and parallelism. CMOS
transistors dissipate power every time they switch, so the dynamic power consumption is
related to the number and size of transistors and the rate at which they switch. At feature

FIGURE 1.73 Chip in a 40-pin dual-inline package

Chapter 1 Introduction56

sizes below 180 nm, transistors also leak a significant amount of current even when they
should be OFF. Thus, chips now draw static power even when they are idle. One of the
central challenges of VLSI design is making good trade-offs between performance and
power for a particular application. The cost of a chip includes nonrecurring engineering
(NRE) expenses for the design and masks, along with per-chip manufacturing costs
related to the size of the chip. In processes with smaller feature sizes, the per-unit cost
goes down because more transistors can be packed into a given area, but the NRE
increases. The latest manufacturing processes are only cost-effective for chips that will sell
in huge volumes. Nevertheless, plenty of interesting markets exist for chips in mature,
inexpensive manufacturing processes.

To quantify how a chip meets these objectives, we must develop and analyze more
complete models. The remainder of this book will expand on the material introduced in
this chapter. Of course, transistors are not simply switches. Chapter 2 examines the cur-
rent and capacitance of transistors, which are essential for estimating delay and power. A
more detailed description of CMOS processing technology and layout rules is presented
in Chapter 3. The next four chapters address the fundamental concerns of circuit design-
ers. The models from Chapter 2 are too detailed to apply by hand to large systems, yet not
detailed enough to fully capture the complexity of modern transistors. Chapter 4 develops
simplified models to estimate the delay of circuits. If modern chips were designed to
squeeze out the ultimate possible performance without regard to power, they would burn
up. Thus, it is essential to estimate and trade off the power consumption against perfor-
mance. Moreover, low power consumption is crucial to mobile battery-operated systems.
Power is considered in Chapter 5. Wires are as important as transistors in their contribu-
tion to overall performance and power, and are discussed in Chapter 6. Chapter 7
addresses design of robust circuits with a high yield and low failure rate.

Simulation is discussed in Chapter 8 and is used to obtain more accurate performance
and power predictions as well as to verify the correctness of circuits and logic. Chapter 9
considers combinational circuit design. A whole kit of circuit families are available with
different trade-offs in speed, power, complexity, and robustness. Chapter 10 continues
with sequential circuit design, including clocking and latching techniques.

The next three chapters delve into CMOS subsystems. Chapter 11 catalogs designs
for a host of datapath subsystems including adders, shifters, multipliers, and counters.
Chapter 12 similarly describes memory subsystems including SRAMs, DRAMs, CAMs,
ROMs, and PLAs. Chapter 13 addresses special-purpose subsystems including power dis-
tribution, clocking, and I/O.

The final chapters address practicalities of CMOS system design. Chapter 14 focuses
on a range of current design methods, identifying the issues peculiar to CMOS. Testing,
design-for-test, and debugging techniques are discussed in Chapter 15. Hardware
description languages (HDLs) are used in the design of nearly all digital integrated cir-
cuits today. Appendix A provides side-by-side tutorials for Verilog and VHDL, the two
dominant HDLs.

A number of sections are marked with an “optional” icon. These sections describe par-
ticular subjects in greater detail. You may skip over these sections on a first reading and
return to them when they are of practical relevance. To keep the length of this book under
control, some optional topics have been published on the Internet rather than in print.
These sections can be found at www.cmosvlsi.com and are labeled with a “Web
Enhanced” icon. A companion text, Digital VLSI Chip Design with Cadence and Synopsys
CAD Tools [Brunvand09], covers practical details of using the leading industrial CAD
tools to build chips.

 Exercises 57

Exercises
1.1 Extrapolating the data from Figure 1.4, predict the transistor count of a micropro-

cessor in 2016.

1.2 Search the Web for transistor counts of Intel’s more recent microprocessors. Make a
graph of transistor count vs. year of introduction from the Pentium Processor in
1993 to the present on a semilogarithmic scale. How many months pass between
doubling of transistor counts?

1.3 As the cost of a transistor drops from a microbuck ($10-6) toward a nanobuck, what
opportunities can you imagine to change the world with integrated circuits?

1.4 Read a biography or history about a major event in the development of integrated
circuits. For example, see Crystal Fire by Lillian Hoddesonor, Microchip by Jeffrey
Zygmont, or The Pentium Chronicles by Robert Colwell. Pick a team or individual
that made a major contribution to the field. In your opinion, what were the charac-
teristics that led to success? What traits of the team management would you seek to
emulate or avoid in your own professional life?

1.5 Sketch a transistor-level schematic for a CMOS 4-input NOR gate.

1.6 Sketch a transistor-level schematic for a compound CMOS logic gate for each of
the following functions:

a) Y = ABC + D

b) Y = (AB + C) · D

c) Y = AB + C · (A + B)

1.7 Use a combination of CMOS gates (represented by their symbols) to generate the
following functions from A, B, and C.

a) Y = A (buffer)

b) Y = AB + AB (XOR)

c) Y = A B+ AB (XNOR)

d) Y = AB + BC + AC (majority)

1.8 Sketch a transistor-level schematic of a CMOS 3-input XOR gate. You may assume
you have both true and complementary versions of the inputs available.

1.9 Sketch transistor-level schematics for the following logic functions. You may assume
you have both true and complementary versions of the inputs available.

a) A 2:4 decoder defined by

Y0 = A0 · A1
Y1 = A0 · A1
Y2 = A0 · A1
Y3 = A0 · A1

b) A 3:2 priority encoder defined by

Y0 = A0 · (A1 + A2)
Y1 = A0 · A1

Chapter 1 Introduction58

1.10 Sketch a stick diagram for a CMOS 4-input NOR gate from Exercise 1.5.

1.11 Estimate the area of your 4-input NOR gate from Exercise 1.10.

1.12 Using a CAD tool of your choice, layout a 4-input NOR gate. How does its size
compare to the prediction from Exercise 1.11?

1.13 Figure 1.74 shows a stick diagram of a 2-input NAND gate. Sketch a side view
(cross-section) of the gate from X to X .

1.14 Figure 1.75 gives a stick diagram for a level-sensitive latch. Estimate the area of the
latch.

1.15 Draw a transistor-level schematic for the latch of Figure 1.75. How does the sche-
matic differ from Figure 1.31(b)?

1.16 Consider the design of a CMOS compound OR-AND-INVERT (OAI21) gate
computing F = (A + B) · C.

a) sketch a transistor-level schematic

b) sketch a stick diagram

c) estimate the area from the stick diagram

d) layout your gate with a CAD tool using unit-sized transistors

e) compare the layout size to the estimated area

FIGURE 1.74 2-input NAND gate stick diagram

A B

Y

X

X'

VDD

GND

FIGURE 1.75 Level-sensitive latch stick diagram

VDD

CLK

CLK

GND

YD

 Exercises 59

1.17 Consider the design of a CMOS compound OR-OR-AND-INVERT (OAI22)
gate computing F = (A + B) · (C + D).

a) sketch a transistor-level schematic

b) sketch a stick diagram

c) estimate the area from the stick diagram

d) layout your gate with a CAD tool using unit-sized transistors

e) compare the layout size to the estimated area

1.18 A 3-input majority gate returns a true output if at least two of the inputs are true. A
minority gate is its complement. Design a 3-input CMOS minority gate using a
single stage of logic.

a) sketch a transistor-level schematic

b) sketch a stick diagram

c) estimate the area from the stick diagram

1.19 Design a 3-input minority gate using CMOS NANDs, NORs, and inverters. How
many transistors are required? How does this compare to a design from Exercise
1.18(a)?

1.20 A carry lookahead adder computes G = G3 + P3(G2 + P2(G1 + P1G0)). Consider
designing a compound gate to compute G.

a) sketch a transistor-level schematic

b) sketch a stick diagram

c) estimate the area from the stick diagram

1.21 www.cmosvlsi.com has a series of four labs in which you can learn VLSI design
by completing the multicycle MIPS processor described in this chapter. The labs use
the open-source Electric CAD tool or commercial tools from Cadence and Synop-
sys. They cover the following:

a) leaf cells: schematic entry, layout, icons, simulation, DRC, ERC, LVS;
hierarchical design

b) datapath design: wordslices, ALU assembly, datapath routing

c) control design: random logic or PLAs

d) chip assembly, pad frame, global routing, full-chip verification, tapeout

This page intentionally left blank

2

61

MOS Transistor
Theory

2.1 Introduction
In Chapter 1, the Metal-Oxide-Semiconductor (MOS) transistor was introduced in terms
of its operation as an ideal switch. As we saw in Section 1.9, the performance and power of
a chip depend on the current and capacitance of the transistors and wires. In this chapter,
we will examine the characteristics of MOS transistors in more detail; Chapter 6 addresses
wires.

Figure 2.1 shows some of the symbols that are commonly used for MOS transistors.
The three-terminal symbols in Figure 2.1(a) are used in the great majority of schematics.
If the body (substrate or well) connection needs to be shown, the four-terminal symbols in
Figure 2.1(b) will be used. Figure 2.1(c) shows an example of other symbols that may be
encountered in the literature.

The MOS transistor is a majority-carrier device in which the current in a conducting
channel between the source and drain is controlled by a voltage applied to the gate. In an
nMOS transistor, the majority carriers are electrons; in a pMOS transistor, the majority
carriers are holes. The behavior of MOS transistors can be understood by first examining
an isolated MOS structure with a gate and body but no source or drain. Figure 2.2 shows
a simple MOS structure. The top layer of the structure is a good conductor called the gate.
Early transistors used metal gates. Transistor gates soon changed to use polysilicon, i.e.,
silicon formed from many small crystals, although metal gates are making a resurgence at
65 nm and beyond, as will be seen in Section 3.4.1.3. The middle layer is a very thin insu-
lating film of SiO2 called the gate oxide. The bottom layer is the doped silicon body. The
figure shows a p-type body in which the carriers are holes. The body is grounded and a
voltage is applied to the gate. The gate oxide is a good insulator so almost zero current
flows from the gate to the body.1

In Figure 2.2(a) , a negative voltage is applied to the gate, so there is negative charge
on the gate. The mobile positively charged holes are attracted to the region beneath the
gate. This is called the accumulation mode. In Figure 2.2(b), a small positive voltage is
applied to the gate, resulting in some positive charge on the gate. The holes in the body are
repelled from the region directly beneath the gate, resulting in a depletion region forming
below the gate. In Figure 2.2(c), a higher positive potential exceeding a critical threshold
voltage Vt is applied, attracting more positive charge to the gate. The holes are repelled fur-
ther and some free electrons in the body are attracted to the region beneath the gate. This
conductive layer of electrons in the p-type body is called the inversion layer. The threshold

1Gate oxides are now only a handful of atomic layers thick and carriers sometimes tunnel through the oxide,
creating a current through the gate. This effect is explored in Section 2.4.4.2.

FIGURE 2.1
MOS transistor symbols

(a) (b) (c)

Chapter 2 MOS Transistor Theory62

voltage depends on the number of dopants in the body and the thickness tox of the oxide. It
is usually positive, as shown in this example, but can be engineered to be negative.

Figure 2.3 shows an nMOS transistor. The transistor consists of the MOS stack
between two n-type regions called the source and drain. In Figure 2.3(a), the gate-to-source
voltage Vgs is less than the threshold voltage. The source and drain have free electrons. The
body has free holes but no free electrons. Suppose the source is grounded. The junctions
between the body and the source or drain are zero-biased or reverse-biased, so little or no
current flows. We say the transistor is OFF, and this mode of operation is called cutoff. It is
often convenient to approximate the current through an OFF transistor as zero, especially in
comparison to the current through an ON transistor. Remember, however, that small
amounts of current leaking through OFF transistors can become significant, especially when
multiplied by millions or billions of transistors on a chip. In Figure 2.3(b), the gate voltage is
greater than the threshold voltage. Now an inversion region of electrons (majority carriers)
called the channel connects the source and drain, creating a conductive path and turning the
transistor ON. The number of carriers and the conductivity increases with the gate voltage.
The potential difference between drain and source is Vds = Vgs Vgd . If Vds = 0 (i.e., Vgs = Vgd),
there is no electric field tending to push current from drain to source.

When a small positive potential Vds is applied to the drain (Figure 2.3(c)), current Ids
flows through the channel from drain to source.2 This mode of operation is termed linear,

FIGURE 2.2 MOS structure demonstrating (a) accumulation, (b) depletion, and
(c) inversion

2The terminology of source and drain might initially seem backward. Recall that the current in an nMOS
transistor is carried by moving electrons with a negative charge. Therefore, positive current from drain to
source corresponds to electrons flowing from their source to their drain.

Polysilicon Gate

(a)

p-type Body
+
–

Vg < 0

0 < Vg < Vt

Vg > Vt

(b)

+
–

Depletion Region

(c)

+
–

Inversion Region
Depletion Region

Silicon Dioxide Insulator

2.1 Introduction 63

resistive, triode, nonsaturated, or unsaturated; the current increases with both the drain volt-
age and gate voltage. If Vds becomes sufficiently large that Vgd < Vt , the channel is no
longer inverted near the drain and becomes pinched off (Figure 2.3(d)). However, conduc-
tion is still brought about by the drift of electrons under the influence of the positive drain
voltage. As electrons reach the end of the channel, they are injected into the depletion
region near the drain and accelerated toward the drain. Above this drain voltage the cur-
rent Ids is controlled only by the gate voltage and ceases to be influenced by the drain. This
mode is called saturation.

FIGURE 2.3 nMOS transistor demonstrating cutoff, linear, and saturation regions of operation

(a)

Vgs = 0

(b)

(c)

n+ n+

Vgd

Vgs > Vt

n+ n+

Vgd = Vgs

Vgs > Vt

n+ n+

Vgs > Vgd > Vt

Vgs > Vt

n+ n+

Vgd < Vt

(d)

Vds = 0

0 < Vds < Vgs Vt

Vds > Vgs Vt

p type body

p type body

p type body

p type body

b

g

s d

b

g

s d

b

g

s d

b

g

s d

Cutoff:
No Channel
Ids = 0

Linear:
Channel Formed
Ids Increases with Vds

Saturation:
Channel Pinched Off
Ids Independent of Vds

Ids

Ids

+ +

+ +

+ +

+ +

Chapter 2 MOS Transistor Theory64

In summary, the nMOS transistor has three modes of operation. If
Vgs < Vt , the transistor is cutoff (OFF). If Vgs > Vt , the transistor turns ON. If Vds
is small, the transistor acts as a linear resistor in which the current flow is pro-
portional to Vds. If Vgs > Vt and Vds is large, the transistor acts as a current source
in which the current flow becomes independent of Vds .

The pMOS transistor in Figure 2.4 operates in just the opposite fashion.
The n-type body is tied to a high potential so the junctions with the p-type
source and drain are normally reverse-biased. When the gate is also at a high
potential, no current flows between drain and source. When the gate voltage is
lowered by a threshold Vt , holes are attracted to form a p-type channel imme-
diately beneath the gate, allowing current to flow between drain and source.

The threshold voltages of the two types of transistors are not necessarily equal, so we use
the terms Vtn and Vtp to distinguish the nMOS and pMOS thresholds.

Although MOS transistors are symmetrical, by convention we say that majority carri-
ers flow from their source to their drain. Because electrons are negatively charged, the
source of an nMOS transistor is the more negative of the two terminals. Holes are posi-
tively charged so the source of a pMOS transistor is the more positive of the two termi-
nals. In static CMOS gates, the source is the terminal closer to the supply rail and the
drain is the terminal closer to the output.

We begin in Section 2.2 by deriving an ideal model relating current and voltage (I-V)
for a transistor. The delay of MOS circuits is determined by the time required for this cur-
rent to charge or discharge the capacitance of the circuits. Section 2.3 investigates transis-
tor capacitances. The gate of an MOS transistor is inherently a good capacitor with a thin
dielectric; indeed, its capacitance is responsible for attracting carriers to the channel and
thus for the operation of the device. The p–n junctions from source or drain to the body
contribute additional parasitic capacitance. The capacitance of wires interconnecting the
transistors is also important and will be explored in Section 6.2.2.

This idealized I-V model provides a general qualitative understanding of transistor
behavior but is of limited quantitative value. On the one hand, it neglects too many effects
that are important in transistors with short channel lengths L. Therefore, the model is not
sufficient to calculate current accurately. Circuit simulators based on SPICE [Nagel75]
use models such as BSIM that capture transistor behavior quite thoroughly but require
entire books to fully describe [Cheng99]. Chapter 8 discusses simulation with SPICE.
The most important effects seen in these simulations that impact digital circuit designers
are examined in Section 2.4. On the other hand, the idealized I-V model is still too com-
plicated to use in back-of-the-envelope calculations tuning the performance of large cir-
cuits. Therefore, we will develop even simpler models for performance estimation in
Chapter 4.

Section 2.5 wraps up this chapter by applying the I-V models to understand the DC
transfer characteristics of CMOS gates and pass transistors.

2.2 Long-Channel I-V Characteristics
As stated previously, MOS transistors have three regions of operation:

� Cutoff or subthreshold region

� Linear region

� Saturation region

FIGURE 2.4 pMOS transistor

p+ p+

n-type Body

Source

Gate

Drain

Body (usually VDD)

2.2 Long-Channel I-V Characteristics 65

Let us derive a model [Shockley52, Cobbold70, Sah64] relating the current and volt-
age (I-V) for an nMOS transistor in each of these regions. The model assumes that the
channel length is long enough that the lateral electric field (the field between source and
drain) is relatively low, which is no longer the case in nanometer devices. This model is
variously known as the long-channel, ideal, first-order, or Shockley model. Subsequent sec-
tions will refine the model to reflect high fields, leakage, and other nonidealities.

The long-channel model assumes that the current through an OFF transistor is 0.
When a transistor turns ON (Vgs > Vt), the gate attracts carriers (electrons) to form a chan-
nel. The electrons drift from source to drain at a rate proportional to the
electric field between these regions. Thus, we can compute currents if we
know the amount of charge in the channel and the rate at which it moves.
We know that the charge on each plate of a capacitor is Q = CV. Thus, the
charge in the channel Qchannel is

(2.1)

where Cg is the capacitance of the gate to the channel and Vgc Vt is the
amount of voltage attracting charge to the channel beyond the minimum
required to invert from p to n. The gate voltage is referenced to the chan-
nel, which is not grounded. If the source is at Vs and the drain is at Vd , the
average is Vc = (Vs + Vd)/2 = Vs + Vds /2. Therefore, the mean difference
between the gate and channel potentials Vgc is Vg – Vc = Vgs – Vds /2, as
shown in Figure 2.5.

We can model the gate as a parallel plate capacitor with capacitance proportional to
area over thickness. If the gate has length L and width W and the oxide thickness is tox, as
shown in Figure 2.6, the capacitance is

 (2.2)

where 0 is the permittivity of free space, 8.85 × 10–14 F/cm, and the permittivity of SiO2
is kox = 3.9 times as great. Often, the ox/tox term is called Cox, the capacitance per unit
area of the gate oxide.

FIGURE 2.6 Transistor dimensions

Q C V Vg gc tchannel = ()

C k
WL
t

WL
t

C WLg = = =ox
ox

ox
ox

0 ox

n+ n+

p type Body

W

L

tox

SiO2 Gate Oxide
(insulator, ox = 3.9 0)

FIGURE 2.5 Average gate to channel voltage

n+ n+

p-type Body

+

Vgd

–

Vgs

–

Vds

Average gate to channel potential:

Vgc = (Vgs + Vgd)/2 = Vgs – Vds/2

channel–Vs Vd

Cg

+ +
VgSource

Gate

Drain

Chapter 2 MOS Transistor Theory66

Some nanometer processes use a different gate dielectric with a higher dielectric con-
stant. In these processes, we call tox the equivalent oxide thickness (EOT), the thickness of a
layer of SiO2 that has the same Cox. In this case, tox is thinner than the actual dielectric.

Each carrier in the channel is accelerated to an average velocity, v, proportional to the
lateral electric field, i.e., the field between source and drain. The constant of proportional-
ity is called the mobility.

 (2.3)

A typical value of for electrons in an nMOS transistor with low electric fields is
500–700 cm2/V· s. However, most transistors today operate at far higher fields where the
mobility is severely curtailed (see Section 2.4.1).

The electric field E is the voltage difference between drain and source Vds divided by
the channel length

 (2.4)

The time required for carriers to cross the channel is the channel length divided by
the carrier velocity: L/v. Therefore, the current between source and drain is the total
amount of charge in the channel divided by the time required to cross

 (2.5)

where

 (2.6)

The term Vgs – Vt arises so often that it is convenient to abbreviate it as VGT .
EQ (2.5) describes the linear region of operation, for Vgs > Vt , but Vds relatively small. It is
called linear or resistive because when Vds << VGT , Ids increases almost linearly with Vds,
just like an ideal resistor. The geometry and technology-dependent parameters are some-
times merged into a single factor . Do not confuse this use of with the same symbol
used for the ratio of collector-to-base current in a bipolar transistor. Some texts [Gray01]
lump the technology-dependent parameters alone into a constant called “k prime.”3

 (2.7)

If Vds > Vdsat VGT, the channel is no longer inverted in the vicinity of the drain; we
say it is pinched off. Beyond this point, called the drain saturation voltage, increasing the
drain voltage has no further effect on current. Substituting Vds = Vdsat at this point of max-
imum current into EQ (2.5), we find an expression for the saturation current that is inde-
pendent of Vds.

 (2.8)

3Other sources (e.g., MOSIS) define ; check the definition before using quoted data.

v E=

E
V
L
ds=

I
Q

L v

C
W
L

V V V V

V V

ds

gs t ds ds

GT ds

=

= ()
=

channel

ox 2

2()Vds

= =C
W
L

V V VGT gs tox ;

=k
Cox

2

=k Cox

I Vds GT=
2

2

2.2 Long-Channel I-V Characteristics 67

This expression is valid for Vgs > Vt and Vds > Vdsat . Thus, long-channel MOS transistors
are said to exhibit square-law behavior in saturation.

Two key figures of merit for a transistor are Ion and Ioff. Ion (also called Idsat) is the
ON current, Ids, when Vgs = Vds = VDD. Ioff is the OFF current when Vgs = 0 and Vds = VDD.
According to the long-channel model, Ioff = 0 and

 (2.9)

EQ (2.10) summarizes the current in the three regions:

 (2.10)

Example 2.1

Consider an nMOS transistor in a 65 nm process with a minimum drawn channel
length of 50 nm (= 25 nm). Let W/L = 4/2 (i.e., 0.1/0.05 m). In this process, the
gate oxide thickness is 10.5 Å. Estimate the high-field mobility of electrons to be 80
cm2/V· s at 70 ºC. The threshold voltage is 0.3 V. Plot Ids vs. Vds for Vgs = 0, 0.2, 0.4,
0.6, 0.8, and 1.0 V using the long-channel model.

SOLUTION: We first calculate .

 (2.11)

Figure 2.7(a) shows the I-V characteristics for the transistor. According to the first-order
model, the current is zero for gate voltages below Vt. For higher gate voltages, current
increases linearly with Vds for small Vds . As Vds reaches the saturation point Vdsat = VGT,
current rolls off and eventually becomes independent of Vds when the transistor is satu-
rated. We will later see that the Shockley model overestimates current at high voltage
because it does not account for mobility degradation and velocity saturation caused by the
high electric fields.

pMOS transistors behave in the same way, but with the signs of all voltages and cur-
rents reversed. The I-V characteristics are in the third quadrant, as shown in Figure 2.7(b).
To keep notation simple in this text, we will disregard the signs and just remember that
the current flows from source to drain in a pMOS transistor. The mobility of holes in sili-
con is typically lower than that of electrons. This means that pMOS transistors provide
less current than nMOS transistors of comparable size and hence are slower. The symbols

n and p are used to distinguish mobility of electrons and of holes in nMOS and pMOS
transistors, respectively. The mobility ratio n / p is typically 2–3; we will generally use 2
for examples in this book. The pMOS transistor has the same geometry as the nMOS in
Figure 2.7(a), but with p = 40 cm2/V· s and Vtp = – 0.3 V. Similarly, n, p, k n, and k p are
sometimes used to distinguish nMOS and pMOS I-V characteristics.

I V VDD ton = ()
2

I

V V

V V V V Vds

gs t

GT ds ds ds=

<

() <

0

2

Cutoff

Lineardsat

22
2V V VGT ds > dsat Saturation

= =
× ×

×
C

W
Lox

F
cmcm

V s
80

3 9 8 85 10

10 5 10

2 14. .

.
=

8 2
262

cm

A

V

W
L

W

L

Chapter 2 MOS Transistor Theory68

2.3 C-V Characteristics
Each terminal of an MOS transistor has capacitance to the other terminals. In general,
these capacitances are nonlinear and voltage dependent (C-V); however, they can be
approximated as simple capacitors when their behavior is averaged across the switching
voltages of a logic gate. This section first presents simple models of each capacitance suit-
able for estimating delay and power consumption of transistors. It then explores more
detailed models used for circuit simulation. The more detailed models may be skipped on
a first reading.

2.3.1 Simple MOS Capacitance Models
The gate of an MOS transistor is a good capacitor. Indeed, its capacitance is necessary to
attract charge to invert the channel, so high gate capacitance is required to obtain high Ids.
As seen in Section 2.2, the gate capacitor can be viewed as a parallel plate capacitor with
the gate on top and channel on bottom with the thin oxide dielectric between. Therefore,
the capacitance is

 (2.12)

The bottom plate of the capacitor is the channel, which is not one of the transistor’s
terminals. When the transistor is on, the channel extends from the source (and reaches the
drain if the transistor is unsaturated, or stops short in saturation). Thus, we often approxi-
mate the gate capacitance as terminating at the source and call the capacitance Cgs.

Most transistors used in logic are of minimum manufacturable length because this
results in greatest speed and lowest dynamic power consumption.4 Thus, taking this mini-

FIGURE 2.7 I-V characteristics of ideal 4/2 (a) nMOS and (b) pMOS transistors

4Some designs use slightly longer than minimum transistors that have higher thresholds because of the
short-channel effect (see Sections 2.4.3.3 and 5.3.3). This avoids the cost of an extra mask step for high-
Vt transistors. The change in channel length is small (~5–10%), so the change in gate capacitance is minor.

(a) (b)

Vds

Ids(μA)

50

100

150

0
0 0.2 0.4 0.6 0.8 1

−0.2−0.4−0.6−0.8−1 0

−50

−100

−150

0

Vgs = 1.0
Vgs = −0.4

Vgs = −0.6

Vgs = −0.8

Vgs = −1.0
Vgs = 0.8

Vgs = 0.6

Vgs = 0.4
Vds Ids(μA)

C C WLg = ox

2.3 C-V Characteristics 69

mum L as a constant for a particular process, we can define

 (2.13)

where

 (2.14)

Notice that if we develop a more advanced manufacturing process in which both the
channel length and oxide thickness are reduced by the same factor, Cpermicron remains
unchanged. This relationship is handy for quick calculations but not exact; Cpermicron has
fallen from about 2 fF/ m in old processes to about 1 fF/ m at the 90 and 65 nm
nodes. Table 8.5 lists gate capacitance for a variety of processes.

In addition to the gate, the source and drain also have capacitances. These capaci-
tances are not fundamental to operation of the devices, but do impact circuit performance
and hence are called parasitic capacitors. The source and drain capacitances arise from the
p–n junctions between the source or drain diffusion and the body and hence are also called
diffusion5 capacitance Csb and Cdb . A depletion region with no free carriers forms along the
junction. The depletion region acts as an insulator between the conducting p- and n-type
regions, creating capacitance across the junction. The capacitance of these junctions
depends on the area and perimeter of the source and drain diffusion, the depth of the dif-
fusion, the doping levels, and the voltage. As diffusion has both high capacitance and high
resistance, it is generally made as small as possible in the layout. Three types of diffusion
regions are frequently seen, illustrated by the two series transistors in Figure 2.8. In Figure

5Device engineers more properly call this depletion capacitance, but the term diffusion capacitance is widely
used by circuit designers.

FIGURE 2.8 Diffusion region geometries

C C Wg = ×permicron

C C L t Lpermicron ox
ox

ox
= =

3λ
6λ5λ

5λ 5λ

(a) (b) (c)

W W W

5λ

Drain2

Gate2

Source2

Drain1

Gate1

Source1

Isolated
Diffusion

Shared
Diffusion Merged

Diffusion

Chapter 2 MOS Transistor Theory70

2.8(a), each source and drain has its own isolated region of contacted diffusion. In Figure
2.8(b), the drain of the bottom transistor and source of the top transistor form a shared
contacted diffusion region. In Figure 2.8(c), the source and drain are merged into an
uncontacted region. The average capacitance of each of these types of regions can be cal-
culated or measured from simulation as a transistor switches between VDD and GND.
Table 8.5 also lists the capacitance for each scenario for a variety of processes.

For the purposes of hand estimation, you can observe that the diffusion capacitance
Csb and Cdb of contacted source and drain regions is comparable to the gate capacitance
(e.g., 1–2 fF/ m of gate width). The diffusion capacitance of the uncontacted source or
drain is somewhat less because the area is smaller but the difference is usually unimportant
for hand calculations. These values of Cg = Csb = Cdb 1fF/ m will be used in examples
throughout the text, but you should obtain the appropriate data for your process using
methods to be discussed in Section 8.4.

2.3.2 Detailed MOS Gate Capacitance Model
The MOS gate sits above the channel and may partially overlap the source and drain dif-
fusion areas. Therefore, the gate capacitance has two components: the intrinsic capaci-
tance Cgc (over the channel) and the overlap capacitances Cgol (to the source and drain).

The intrinsic capacitance was approximated as a simple parallel plate in EQ (2.12)
with capacitance C0 = WLCox. However, the bottom plate of the capacitor depends on the
mode of operation of the transistor. The intrinsic capacitance has three components repre-
senting the different terminals connected to the bottom plate: Cgb (gate-to-body), Cgs
(gate-to-source), and Cgd (gate-to-drain). Figure 2.9(a) plots capacitance vs. Vgs in the cut-
off region and for small Vds, while 2.9(b) plots capacitance vs. Vds in the linear and satura-
tion regions [Dally98].

1. Cutoff. When the transistor is OFF (Vgs < Vt), the channel is not inverted and charge
on the gate is matched with opposite charge from the body. This is called Cgb, the
gate-to-body capacitance. For negative Vgs, the transistor is in accumulation and Cgb =
C0. As Vgs increases but remains below a threshold, a depletion region forms at the
surface. This effectively moves the bottom plate downward from the oxide, reducing
the capacitance, as shown in Figure 2.9(a).

2. Linear. When Vgs > Vt, the channel inverts and again serves as a good conductive bot-
tom plate. However, the channel is connected to the source and drain, rather than the
body, so Cgb drops to 0. At low values of Vds, the channel charge is roughly shared
between source and drain, so Cgs = Cgd = C0/2. As Vds increases, the region near the
drain becomes less inverted, so a greater fraction of the capacitance is attributed to the
source and a smaller fraction to the drain, as shown in Figure 2.9(b).

3. Saturation. At Vds > Vdsat, the transistor saturates and the channel pinches off. At this
point, all the intrinsic capacitance is to the source, as shown in Figure 2.9(b). Because
of pinchoff, the capacitance in saturation reduces to Cgs = 2/3 C0 for an ideal transis-
tor [Gray01].

The behavior in these three regions can be approximated as shown in Table 2.1.

FIGURE 2.9 Intrinsic gate capac-
itance Cgc = Cgs + Cgd + Cgb as a
function of (a) Vgs and (b) Vds

Vgs
0 Vt

C0

1 1

C0

2

Cgb

Cgs,
Cgd

Cgc

C0

0 1

C0

2

Cgs

Cgc

(a)

(b)

Vds
Vdsat

3
2

C0

0

0

Cgd

2.3 C-V Characteristics 71

The gate overlaps the source and drain in a real device and also has fring-
ing fields terminating on the source and drain. This leads to additional overlap
capacitances, as shown in Figure 2.10. These capacitances are proportional to
the width of the transistor. Typical values are Cgsol = Cgdol = 0.2 – 0.4 fF/ m.
They should be added to the intrinsic gate capacitance to find the total.

 (2.15)

It is convenient to view the gate capacitance as a single-terminal capacitor attached to
the gate (with the other side not switching). Because the source and drain actually form
second terminals, the effective gate capacitance varies with the switching activity of the
source and drain. Figure 2.11 shows the effective gate capacitance in a 0.35 m process for
seven different combinations of source and drain behavior [Bailey98].

More accurate modeling of the gate capacitance may be achieved by using a charge-
based model [Cheng99]. For the purpose of delay calculation of digital circuits, we usually
approximate Cg = Cgs + Cgd + Cgb C0 + 2CgolW or use an effective capacitance extracted

TABLE 2.1 Approximation for intrinsic MOS gate capacitance

Parameter Cutoff Linear Saturation

Cgb C0 0 0

Cgs 0 C0/2 2/3 C0

Cgd 0 C0/2 0

Cg = Cgs + Cgd + Cgb C0 C0 2/3 C0

FIGURE 2.11 Data-dependent gate capacitance

C C W

C C W
gsol gsol

gdol gdol

()

()

overlap

overlap

=

=

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

0

0

0

1

0

1

1

1

Cg/C0

1.3

1.1
1.0

.80

.42

.31

.13

Case 1

Case 2
Case 3

Case 4

Case 5
Case 6

Case 7

FIGURE 2.10 Overlap capacitance

n+

p

GateSource Drain

n+

CgdolCgsol

Chapter 2 MOS Transistor Theory72

from simulation [Nose00b]. It is important to remember that this model significantly
overestimates the capacitance of transistors operating just below threshold.

2.3.3 Detailed MOS Diffusion Capacitance Model
As mentioned in Section 2.3.1, the p–n junction between the source diffusion and the
body contributes parasitic capacitance across the depletion region. The capacitance
depends on both the area AS and sidewall perimeter PS of the source diffusion region. The
geometry is illustrated in Figure 2.12. The area is AS = WD. The perimeter is PS = 2W +
2D. Of this perimeter, W abuts the channel and the remaining W + 2D does not.

The total source parasitic capacitance is

 (2.16)

where Cjbs (the capacitance of the junction between the body and the bottom of the
source) has units of capacitance/area and Cjbssw (the capacitance of the junction
between the body and the side walls of the source) has units of capacitance/length.

Because the depletion region thickness depends on the bias conditions, these
parasitics are nonlinear. The area junction capacitance term is [Gray01]

 (2.17)

CJ is the junction capacitance at zero bias and is highly process-dependent. MJ is the junc-
tion grading coefficient, typically in the range of 0.5 to 0.33 depending on the abruptness of
the diffusion junction. is the built-in potential that depends on doping levels.

 (2.18)

vT is the thermal voltage from thermodynamics, not to be confused with the threshold
voltage Vt . It has a value equal to kT/q (26 mV at room temperature), where k = 1.380 ×
10–23 J/K is Boltzmann’s constant, T is absolute temperature (300 K at room temperature),
and q = 1.602 × 10–19 C is the charge of an electron. NA and ND are the doping levels of
the body and source diffusion region. ni is the intrinsic carrier concentration in undoped
silicon and has a value of 1.45 × 1010 cm–3 at 300 K.

The sidewall capacitance term is of a similar form but uses different coefficients.

 (2.19)

In processes below about 0.35 m that employ shallow trench isolation surrounding tran-
sistors with an SiO2 insulator (see Section 3.2.6), the sidewall capacitance along the non-
conductive trench tends to be minimal, while the sidewall facing the channel is more
significant. In some SPICE models, the capacitance of this sidewall abutting the gate and
channel is specified with another set of parameters:

 (2.20)

C AS C PS Csb jbs jbssw= × + ×

C C
V

jbs J
sb

M J

= +1
0

0

0 2
= v

N N

nT
A D

i

ln

C C
V

jbssw JSW
sb

SW

M JSW

= +1

C C
V

jbsswg JSW
sb

SWG

M JSWG

= +1

FIGURE 2.12 Diffusion region geometry

L D

W

SourceGateDrain

2.3 C-V Characteristics 73

Section 8.3.4 discusses SPICE perimeter capacitance models further.
The drain diffusion has a similar parasitic capacitance dependent on AD, PD, and

Vdb. Equivalent relationships hold for pMOS transistors, but doping levels differ. As the
capacitances are voltage-dependent, the most useful information to digital designers is the
value averaged across a switching transition. This is the Csb or Cdb value that was presented
in Section 2.3.1.

Example 2.2

Calculate the diffusion parasitic Cdb of the drain of a unit-sized contacted nMOS tran-
sistor in a 65 nm process when the drain is at 0 V and again at VDD = 1.0 V. Assume the
substrate is grounded. The diffusion region conforms to the design rules from Figure
2.8 with = 25 nm. The transistor characteristics are CJ = 1.2 fF/ m2, MJ = 0.33,
CJSW = 0.1 fF/ m, CJSWG = 0.36 fF/ m, MJSW = MJSWG = 0.10, and 0 = 0.7 V
at room temperature.

SOLUTION: From Figure 2.8, we find a unit-size diffusion contact is 4 × 5 , or 0.1 ×
0.125 m. The area is 0.0125 m2 and perimeter is 0.35 m plus 0.1 m along the
channel. At zero bias, Cjbd = 1.2 fF/ m2, Cjbdsw = 0.1 fF/ m, and Cjbdswg = 0.36 fF/

m. Hence, the total capacitance is

 (2.21)

At a drain voltage of VDD, the capacitance reduces to

 (2.22)

For the purpose of manual performance estimation, this nonlinear capacitance is too
much effort. An effective capacitance averaged over the switching range is quite satis-
factory for digital applications. In this example, the effective drain capacitance would
be approximated as the average of the two extremes, 0.081 fF.

Diffusion regions were historically used for short wires called runners in processes
with only one or two metal levels. Diffusion capacitance and resistance are large
enough that such practice is now discouraged; diffusion regions should be kept as
small as possible on nodes that switch.

In summary, an MOS transistor can be viewed as a four-terminal device with
capacitances between each terminal pair, as shown in Figure 2.13. The gate capaci-
tance includes an intrinsic component (to the body, source and drain, or source alone,
depending on operating regime) and overlap terms with the source and drain. The
source and drain have parasitic diffusion capacitance to the body.

Cdb 0 0 0125 1 2

0 35 0 1

2
2

V m
fF

m

m
fF

() = () +

()

. .

. .
m

m
fF

m
fF+ () =0 1 0 36 0 086. . .

Cdb 1 0 0125 1 2 1
1 0
0 7

2
2

V m
fF

m
() = () +. .

.

.
+

() + ()

0 33

0 35 0 1 0 1 0 36

.

. . . .m
fF

m
m

fF

m
+ =1

0 7
0 076

0 10
1.0

fF
.

.
.

FIGURE 2.13 Capacitance of an
MOS transistor

Gate

Source Drain

Body

Cgs Cgd

CdbCsb

Cgb

Chapter 2 MOS Transistor Theory74

2.4 Nonideal I-V Effects
The long-channel I-V model of EQ (2.10) neglects many effects that are important to
devices with channel lengths below 1 micron. This section summarizes the effects of
greatest significance to designers, then models each one in more depth.

Figure 2.14 compares the simulated I-V characteristics of a 1-micron wide nMOS
transistor in a 65 nm process to the ideal characteristics computed in Section 2.2. The sat-
uration current increases less than quadratically with increasing Vgs . This is caused by two
effects: velocity saturation and mobility degradation. At high lateral field strengths
(Vds /L), carrier velocity ceases to increase linearly with field strength. This is called velocity
saturation and results in lower Ids than expected at high Vds . At high vertical field strengths
(Vgs /tox), the carriers scatter off the oxide interface more often, slowing their progess.
This mobility degradation effect also leads to less current than expected at high Vgs . The
saturation current of the nonideal transistor increases somewhat with Vds . This is caused
by channel length modulation, in which higher Vds increases the size of the depletion region
around the drain and thus effectively shortens the channel.

The threshold voltage indicates the gate voltage necessary to invert the channel and is
primarily determined by the oxide thickness and channel doping levels. However, other
fields in the transistor have some effect on the channel, effectively modifying the threshold
voltage. Increasing the potential between the source and body raises the threshold through
the body effect. Increasing the drain voltage lowers the threshold through drain-induced
barrier lowering. Increasing the channel length raises the threshold through the short chan-
nel effect.

Several sources of leakage result in current flow in nominally OFF transistors. When
Vgs < Vt , the current drops off exponentially rather than abruptly becoming zero. This is
called subthreshold conduction. The current into the gate Ig is ideally 0. However, as the

FIGURE 2.14 Simulated and ideal I-V characteristics

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

Vds

Ids(A)

Vgs = 1.0

Vgs = 0.8

Vgs = 0.6

Vgs = 0.4

Vgs = 1.0

Vgs = 0.8

Vgs = 0.6

Channel length modulation:
Saturation current increases
with Vds

Ion = 747 mA @
Vgs = Vds = VDD

Simulated

Ideal (based on example in Section 2.2)

Velocity saturation and mobility degradation:
Saturation current increases less than
quadratically with Vgs

Velocity saturation and mobility degradation:
Ion lower than ideal model predicts

2.4 Nonideal I-V Effects 75

thickness of gate oxides reduces to only a small number of atomic layers, electrons tunnel
through the gate, causing some gate leakage current. The source and drain diffusions are
typically reverse-biased diodes and also experience junction leakage into the substrate or
well.

Both mobility and threshold voltage decrease with rising temperature. The mobility
effect tends to dominate for strongly ON transistors, resulting in lower Ids at high temper-
ature. The threshold effect is most important for OFF transistors, resulting in higher leak-
age current at high temperature. In summary, MOS characteristics degrade with
temperature.

It is useful to have a qualitative understanding of nonideal effects to predict their
impact on circuit behavior and to be able to anticipate how devices will change in future
process generations. However, the effects lead to complicated I-V characteristics that are
hard to directly apply in hand calculations. Instead, the effects are built into good transis-
tor models and simulated with SPICE or similar software.

2.4.1 Mobility Degradation and Velocity Saturation
Recall from EQ (2.3) that carrier drift velocity, and hence current, is proportional to the
lateral electric field Elat = Vds /L between source and drain. The constant of proportionality
is called the carrier mobility, . The long-channel model assumed that carrier mobility is
independent of the applied fields. This is a good approximation for low fields, but breaks
down when strong lateral or vertical fields are applied.

As an analogy, imagine that you have been working all night in the VLSI lab and
decide to run down and across the courtyard to the coffee cart.6 The number of hours you
have been up is analogous to the lateral electric field. The longer you have been up, the
faster you want to reach coffee: Your speed equals your fatigue times your mobility. There
is a strong wind blowing in the courtyard, analogous to the vertical electric field. This
wind buffets you against the wall, slowing your progress. In the same way, a high voltage at
the gate of the transistor attracts the carriers to the edge of the channel, causing collisions
with the oxide interface that slow the carriers. This is called mobility degradation. More-
over, freshman physics is just letting out of the lecture hall. Occasionally, you bounce off a
confused freshman, fall down, and have to get up and start running again. This is analo-
gous to carriers scattering off the silicon lattice (technically called collisions with optical
phonons). The faster you try to go, the more often you collide. Beyond a certain level of
fatigue, you reach a maximum average speed. In the same way, carriers approach a maxi-
mum velocity vsat when high fields are applied. This phenomenon is called velocity satura-
tion.7

Mobility degradation can be modeled by replacing with a smaller eff that is a func-
tion of Vgs. A universal model [Chen96, Chen97] that matches experimental data from
multiple processes reasonably well is

(2.23)

6This practice has been observed empirically, but is not recommended. Productivity decreases with fatigue.
Beyond a certain point of exhaustion, the net work accomplished per hour becomes negative because so
many mistakes are made.

7Do not confuse the saturation region of transistor operation (where Vds > Vgs – Vt) with velocity saturation
(where Elat = Vds /L approaches Ec). In this text, the word “saturation” alone refers to the operating region
while “velocity saturation” refers to the limiting of carrier velocity at high field.

eff

ox

cm
V s

V
nm

=

+
+

n

gs tV V

t

540

1
0 54

2

1 85
·

.

. eeff

ox

cm
V s

V
nm

=

+
+

p

gs tV V

t

185

1
1 5

0 338

2

·

.

.

Chapter 2 MOS Transistor Theory76

Example 2.3

Compute the effective mobilities for nMOS and pMOS transistors when they are fully
ON. Use the physical parameters from Example 2.1.

SOLUTION: Use Vgs = 1.0 for ON transistors, remembering that we are treating voltages
as positive in a pMOS transistor. Substituting Vt = 0.3 V and tox = 1.05 nm into EQ
(2.23) gives:

eff-n(Vgs = 1.0) = 96 cm2/V, eff-p(Vgs = 1.0) = 36 cm2/V

Figure 2.15 shows measured data for carrier velocity as a function of the electric field,
E, between the drain and source. At low fields, the velocity increases linearly with the
field. The slope is the mobility, eff. At fields above a critical level, Ec , the velocity levels
out at vsat, which is approximately 107 cm/s for electrons and 8 × 106 cm/s for holes
[Muller03]. As shown in the figure, the velocity can be approximated reasonably well with
the following expression [Toh88, Takeuchi94]:

(2.24)

where, by continuity, the critical electric field is

(2.25)

The critical voltage Vc is the drain-source voltage at which the critical effective field is
reached: Vc = Ec L.

Example 2.4

Find the critical voltage for fully ON nMOS and pMOS transistors using the effective
mobilities from Example 2.3.

SOLUTION: Using EQ (2.25)

The nMOS transistor is velocity saturated in normal operation because Vc-n is compa-
rable to VDD. The pMOS transistor has lower mobility and thus is not as badly velocity
saturated.

Using a derivation similar to that of Section 2.2 with the new carrier velocity expres-
sion in EQ (2.24) gives modified equations for linear and saturation currents [Sodini84].

v

E
E
E

E E

v E E
c

c

c

= +
<eff

sat

1

E
v

c =
2 sat

eff

V

V

c n

c p

=
()

×() =

=
×

2 10

96
5 10 1 04

2 8 1

7
6

2

cm
s

cm
V s

cm V

·

.

00

36
5 10 2 22

6
6

2

cm
s

cm
V s

cm V
()

×() =
·

.

FIGURE 2.15 Carrier velocity vs.
electric field at 300 K, adapted
from [Jacoboni77]. Velocity
saturates at high fields.

103

106

107

104 105

E (V/cm)

v (cm/s)

Electrons

Holes

Measured
Curve Fit

vsat-n

vsat-p

μp

μn

2.4 Nonideal I-V Effects 77

 (2.26)

Note that eff is a decreasing function of Vgs because of mobility degradation. Observe that
the current in the linear regime is the same as in EQ (2.5) except that the mobility term is
reduced by a factor related to Vds. At sufficiently high lateral fields, the current saturates at
some value dependent on the maximum carrier velocity. Equating the two parts of EQ
(2.26) at Vds = Vdsat lets us solve for the saturation voltage

 (2.27)

Noting that EQ (2.27) is in the same form as a parallel resistor equation, we see that Vdsat
is less than the smaller of VGT and Vc . Finally, substituting EQ (2.27) into EQ (2.26) gives
a simplified expression for saturation current accounting for velocity saturations:

 (2.28)

If VGT << Vc , velocity saturation effects are negligible and EQ (2.28) reduces to the square-
law model. This is also called the long-channel regime. But if VGT >> Vc , EQ (2.28)
approaches the velocity-saturated limit

(2.29)

Observe that the drain current is quadratically dependent on voltage in the long-
channel regime and linearly dependent when fully velocity saturated. For moderate supply
voltages, transistors operate in a region where the velocity neither increases linearly with
field, nor is completely saturated. The -power law model given in EQ (2.30) provides a
simple approximation to capture this behavior [Sakurai90]. is called the velocity satura-
tion index and is determined by curve fitting measured I-V data. Transistors with long
channels or low VDD display quadratic I-V characteristics in saturation and are modeled
with = 2. As transistors become more velocity saturated, increasing Vgs has less effect on
current and decreases, reaching 1 for transistors that are completely velocity saturated.
For simplicity, the model uses a straight line in the linear region. Overall, the model is
based on three parameters that can be determined empirically from a curve fit of I-V char-
acteristics: , Pc , and Pv.

 (2.30)

where

 (2.31)

I
V
V

C
W
L

V V V V V

ds
ds

c

GT ds ds ds

= +
() <eff

ox dsat Linea

1
2 rr

Saturationox dsat sat dsatC W V V v V VGT ds() >

V
V V

V V
GT c

GT c
dsat = +

I WC v
V

V V
V VGT

GT c
dsdsat ox sat dsat=

+
>

2

I WC v V V VGT ds cdsat ox sat >

I

V V

I
V

V
V V

I

ds

gs t

ds
ds=

<

<

0 Cutoff

Lineardsat
dsat

dsat

dssat dsat SaturationV Vds >

I P V

V P V

c GT

v GT

dsat

dsat

=

=
2

2

Chapter 2 MOS Transistor Theory78

Figure 2.16 compares the -power law model against simulated
results, using = 1.3. The fit is poor at low Vds , but the current at
Vds = VDD matches simulation fairly well across the full range of Vgs.

The low-field mobility of holes is much lower than that of elec-
trons, so pMOS transistors experience less velocity saturation than
nMOS for a given VDD. This shows up as a larger value of for pMOS
than for nMOS transistors.

These models become too complicated to give much insight for
hand calculations. A simpler approach is to observe, in velocity-
saturated transistors, Ids grows linearly rather than quadratically with
Vgs when the transistor is strongly ON. Figure 2.17 plots Ids vs. Vgs
(holding Vds = Vgs). This is equivalent to plotting Ion vs. VDD. For Vgs sig-
nificantly above Vt, Ids fits a straight line quite well. Thus, we can
approximate the ON current as

 (2.32)

where Vt* is the x-intercept.

2.4.2 Channel Length Modulation
Ideally, Ids is independent of Vds for a transistor in saturation, making
the transistor a perfect current source. As discussed in Section 2.3.3, the
p–n junction between the drain and body forms a depletion region with
a width Ld that increases with Vdb , as shown in Figure 2.18. The deple-
tion region effectively shortens the channel length to

 (2.33)

To avoid introducing the body voltage into our calculations,
assume the source voltage is close to the body voltage so Vdb Vds.
Hence, increasing Vds decreases the effective channel length. Shorter
channel length results in higher current; thus, Ids increases with Vds in
saturation, as shown in Figure 2.18. This can be crudely modeled by
multiplying EQ (2.10) by a factor of (1 + Vds / VA), where VA is called
the Early voltage [Gray01]. In the saturation region, we find

 (2.34)

As channel length gets shorter, the effect of the channel length
modulation becomes relatively more important. Hence, VA is propor-
tional to channel length. This channel length modulation model is a
gross oversimplification of nonlinear behavior and is more useful for
conceptual understanding than for accurate device modeling.

Channel length modulation is very important to analog designers
because it reduces the gain of amplifiers. It is generally unimportant for
qualitatively understanding the behavior of digital circuits.

I k V Vds gs t= ()*

L L Ldeff =

I V
V
Vds

ds

A

= +
2

12
GT

FIGURE 2.16 Comparison of -power law model with
simulated transistor behavior

0 0.40.2 0.6 0.8 1
0

200

400

600

800

Vds

Ids(A)
Vgs = 1.0

Vgs = 0.8

Vgs = 0.6

Vgs = 0.4

Simulated

power law

800

600

400

200

0

Ids (μA)

Vgs = Vds

V*
t

k

0 0.2 0.4 0.6 0.8 1.0

FIGURE 2.17 Ids vs. Vgs in saturation,
showing good linear fit at high Vgs

n+ n+

p-type body

b

g

s d

Vgs

Vdb

L
Leff

Ld

Depletion
region

FIGURE 2.18 Depletion region shortens effective
channel length

2.4 Nonideal I-V Effects 79

2.4.3 Threshold Voltage Effects
So far, we have treated the threshold voltage as a constant. However, Vt increases with the
source voltage, decreases with the body voltage, decreases with the drain voltage, and
increases with channel length [Roy03]. This section models each of these effects.

2.4.3.1 Body Effect Until now, we have considered a transistor to be a three-terminal
device with gate, source, and drain. However, the body is an implicit fourth terminal.
When a voltage Vsb is applied between the source and body, it increases the amount of
charge required to invert the channel, hence, it increases the threshold voltage. The
threshold voltage can be modeled as

 (2.35)

where Vt 0 is the threshold voltage when the source is at the body potential, s is the surface
potential at threshold (see a device physics text such as [Tsividis99] for further discussion
of surface potential), and is the body effect coefficient, typically in the range 0.4 to 1 V1/2.
In turn, these depend on the doping level in the channel, NA. The body effect further
degrades the performance of pass transistors trying to pass the weak value (e.g., nMOS
transistors passing a ‘1’), as we will examine in Section 2.5.4. Section 5.3.4 will describe
how a body bias can intentionally be applied to alter the threshold voltage, permitting
trade-offs between performance and subthreshold leakage current.

 (2.36)

 (2.37)

For small voltages applied to the source or body, EQ (2.35) can be linearized to

(2.38)

where

(2.39)

Example 2.5

Consider the nMOS transistor in a 65 nm process with a nominal threshold voltage of
0.3 V and a doping level of 8 × 1017 cm–3. The body is tied to ground with a substrate
contact. How much does the threshold change at room temperature if the source is at
0.6 V instead of 0?

SOLUTION: At room temperature, the thermal voltage vT = kT/q = 26 mV and ni = 1.45
× 1010 cm–3. The threshold increases by 0.04 V.

V V Vt t s sb s= + +()0

s T
A

i

v
N
n

= 2 ln

= =
t

N
N

CA
Aox

ox
si

si

ox

q
q

2
2

V V k Vt t sb= +0

k

N

v

C
s

A

T
N
n

A

i= =
2 2

q si

ox

ln

Chapter 2 MOS Transistor Theory80

 (2.40)

2.4.3.2 Drain-Induced Barrier Lowering The drain voltage Vds creates an electric field that
affects the threshold voltage. This drain-induced barrier lowering (DIBL) effect is espe-
cially pronounced in short-channel transistors. It can be modeled as

 (2.41)

where is the DIBL coefficient, typically on the order of 0.1 (often expressed as 100 mV/V).
Drain-induced barrier lowering causes Ids to increase with Vds in saturation, in much

the same way as channel length modulation does. This effect can be lumped into a smaller
Early voltage VA used in EQ (2.34). Again, this is a bane for analog design but insignifi-
cant for most digital circuits. More significantly, DIBL increases subthreshold leakage at
high Vds, as we will discuss in Section 2.4.4.

2.4.3.3 Short Channel Effect The threshold voltage typically increases with channel
length. This phenomenon is especially pronounced for small L where the source and drain
depletion regions extend into a significant portion of the channel, and hence is called the
short channel effect8 or Vt rolloff [Tsividis99, Cheng99]. In some processes, a reverse short
channel effect causes Vt to decrease with length.

There is also a narrow channel effect in which Vt varies with channel width; this effect
tends to be less significant because the minimum width is greater than the minimum
length.

2.4.4 Leakage
Even when transistors are nominally OFF, they leak small amounts of current. Leakage
mechanisms include subthreshold conduction between source and drain, gate leakage
from the gate to body, and junction leakage from source to body and drain to body, as
illustrated in Figure 2.19 [Roy03, Narendra06]. Subthreshold conduction is caused by
thermal emission of carriers over the potential barrier set by the threshold. Gate leakage is
a quantum-mechanical effect caused by tunneling through the extremely thin gate dielec-
tric. Junction leakage is caused by current through the p-n junction between the
source/drain diffusions and the body.

8The term short-channel effect is overused in the CMOS literature. Sometimes, it refers to any behavior out-
side the long-channel models. Other times, it refers to a range of behaviors including DIBL that are most
significant for very short channel lengths [Muller03]. In this text, we restrict the term to describe the sen-
sitivity of threshold voltage to channel length.

s = () ×
×

=2 0 026
8 10

1 45 10
0 93

10

17 3

10 3
. ln

.
.V

cm

cm
V

=
..

. .
. . .

5 10

3 9 8 85 10
2 1 6 10 11 7 8

8

14
19×

× ×
×() ×cm

C
F
cm

885 10 8 10 0 16

0 3 0 6

14 17 3×() ×() =
= + +

F
cm cm

V

.

. .Vt s s() = 0 34. V

V V Vt t ds= 0

FIGURE 2.19
Leakage current paths

n+

GateSource Drain

bulk Si

n+

Body

Isub
Ijunct

Igate

2.4 Nonideal I-V Effects 81

In processes with feature sizes above 180 nm, leakage was typically insignificant
except in very low power applications. In 90 and 65 nm processes, threshold voltage has
reduced to the point that subthreshold leakage reaches levels of 1s to 10s of nA per tran-
sistor, which is significant when multiplied by millions or billions of transistors on a chip.
In 45 nm processes, oxide thickness reduces to the point that gate leakage becomes com-
parable to subthreshold leakage unless high-k gate dielectrics are employed. Overall, leak-
age has become an important design consideration in nanometer processes.

2.4.4.1 Subthreshold Leakage The long-channel transistor I-V model assumes current
only flows from source to drain when Vgs > Vt. In real transistors, current does not abruptly
cut off below threshold, but rather drops off exponentially, as seen in Figure 2.20. When
the gate voltage is high, the transistor is strongly ON. When the gate falls below Vt , the
exponential decline in current appears as a straight line on the logarithmic scale. This
regime of Vgs < Vt is called weak inversion. The subthreshold leakage current increases signifi-
cantly with Vds because of drain-induced barrier lowering (see Section 2.4.3.2). There is a
lower limit on Ids set by drain junction leakage that is exacerbated by the negative gate
voltage (see Section 2.4.4.3).

 Subthreshold leakage current is described by EQ (2.42). Ids0 is the current at thresh-
old and is dependent on process and device geometry. It is typically extracted from simula-
tion but can also be calculated from EQ (2.43); the e1.8 term was found empirically
[Sheu87]. n is a process-dependent term affected by the depletion region characteristics
and is typically in the range of 1.3–1.7 for CMOS processes. The final term indicates that
leakage is 0 if Vds = 0, but increases to its full value when Vds is a few multiples of the ther-
mal voltage vT (e.g., when Vds > 50 mV). More significantly, drain-induced barrier lower-
ing effectively reduces the threshold voltage, as indicated by the Vds term. This can
increase leakage by an order of magnitude for Vds = VDD as compared to small Vds. The
body effect also modulates Vt when Vsb 0.

(2.42)

Ids
(A/μm)

100p

10n

1u

100u

10m

1p

10p

1n

100n

10u

1m

Vgs

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0Vt

Vds = 0.1

Vds = 1.0

Ioff = 27 nA/μm Subthreshold Slope
S = 100 mV/decade

Saturation
Region

Subthreshold
Region

2.0 nA/μm
DIBL

GIDL

FIGURE 2.20 I-V characteristics of a 65 nm nMOS transistor
at 70 �C on a log scale

I Ids ds

Vgs Vt Vds k Vsb
nv

Vds
vT T=

+

0

0
1e e

Chapter 2 MOS Transistor Theory82

 (2.43)

Subthreshold conduction is used to advantage in very low-power circuits, as will be
explored in Section 9.6. It afflicts dynamic circuits and DRAMs, which depend on the
storage of charge on a capacitor. Conduction through an OFF transistor discharges the
capacitor unless it is periodically refreshed or a trickle of current is available to counter
the leakage. Leakage also contributes to power dissipation in idle circuits. Subthreshold
leakage increases exponentially as Vt decreases or as temperature rises, so it is a major
problem for chips using low supply and threshold voltages and for chips operating at
high temperature.

As shown in Figure 2.20, subthreshold current fits a straight line on a semilog plot.
The inverse of the slope of this line is called the subthreshold slope, S

(2.44)

The subthreshold slope indicates how much the gate voltage must drop to decrease the
leakage current by an order of magnitude. A typical value is 100 mV/decade at room
temperature. EQ (2.42) can be rewritten using the subthreshold slope as

(2.45)

where Ioff is the subthreshold current at Vgs = 0 and Vds = VDD.

Example 2.6

What is the minimum threshold voltage for which the leakage current through an
OFF transistor (Vgs = 0) is 103 times less than that of a transistor that is barely ON
(Vgs = Vt) at room temperature if n = 1.5? One of the advantages of silicon-on-
insulator (SOI) processes is that they have smaller n (see Section 9.5). What thresh-
old is required for SOI if n = 1.3?

SOLUTION: vT = 26 mV at room temperature. Assume Vds >> vT so leakage is signifi-
cant. We solve

 (2.46)

In the CMOS process, leakage rolls off by a factor of 10 for every 90 mV Vgs falls
below threshold. This is often quoted as a subthreshold slope of S = 90 mV/decade.
In the SOI process, the subthreshold slope S is 78 mV/decade, so a threshold of only
234 mV is required.

2.4.4.2 Gate Leakage According to quantum mechanics, the electron cloud surround-
ing an atom has a probabilistic spatial distribution. For gate oxides thinner than 15–20 Å,

I vds T0
2 1 8= e .

S
d I

dV
nvds

gs
T=

()
=

log
ln10

1

10

I Ids

Vgs Vds Vdd k Vsb
S

Vds
vT=

+

off e10 1

I V I I

V nv

ds gs ds ds

Vt
nvT

t T

=() = =

= =

0 10

10 27

3
0 0

3

e

ln 00mV

2.4 Nonideal I-V Effects 83

there is a nonzero probability that an electron in the gate will find itself on the wrong
side of the oxide, where it will get whisked away through the channel. This effect of car-
riers crossing a thin barrier is called tunneling, and results in leakage current through
the gate.

Two physical mechanisms for gate tunneling are called Fowler-Nordheim (FN) tunnel-
ing and direct tunneling. FN tunneling is most important at high voltage and moderate
oxide thickness and is used to program EEPROM memories (see Section 12.4). Direct
tunneling is most important at lower voltage with thin oxides and is the dominant leakage
component.

The direct gate tunneling current can be estimated as [Chandrakasan01]

(2.47)

where A and B are technology constants.
Transistors need high Cox to deliver good ON current, driving the decrease in oxide

thickness. Tunneling current drops exponentially with the oxide thickness and has only
recently become significant. Figure 2.21 plots gate leakage current density (current/area)
JG against voltage for various oxide thicknesses. Gate leakage increases by a factor of 2.7
or more per angstrom reduction in thickness [Rohrer05]. Large tunneling currents
impact not only dynamic nodes but also quiescent power consumption and thus limits
equivalent oxide thicknesses tox to at least 10.5 Å to keep gate leakage below 100 A/cm2.
To keep these dimensions in perspective, recall that each atomic layer of SiO2 is about 3
Å, so such gate oxides are a handful of atomic layers thick. Section 3.4.1.3 describes
innovations in gate insulators with higher dielectric constants that offer good Cox while
reducing tunneling.

Tunneling current can be an order of magnitude higher for nMOS than pMOS tran-
sistors with SiO2 gate dielectrics because the electrons tunnel from the conduction band
while the holes tunnel from the valence band and see a higher barrier [Hamzaoglu02].
Different dielectrics may have different tunneling properties.

I WA
V
t
DD

t
VDD

B

gate
ox

ox

e=
2

VDD

0 0.3 0.6 0.9 1.2 1.5 1.8

J G
(A

/c
m

2)

10–9

10–6

10–3

100

103

106

109
tox

6 Å
8 Å

10 Å
12 Å

15 Å

19 Å

VDDtrend

FIGURE 2.21 Gate leakage current from [Song01]

Chapter 2 MOS Transistor Theory84

2.4.4.3 Junction Leakage The p–n junctions between diffusion and the substrate or well
form diodes, as shown in Figure 2.22. The well-to-substrate junction is another diode.
The substrate and well are tied to GND or VDD to ensure these diodes do not become for-
ward biased in normal operation. However, reverse-biased diodes still conduct a small
amount of current ID. 9

 (2.48)

where IS depends on doping levels and on the area and perimeter of the diffusion region
and VD is the diode voltage (e.g., –Vsb or –Vdb). When a junction is reverse biased by sig-
nificantly more than the thermal voltage, the leakage is just –IS, generally in the 0.1–0.01
fA/ m2 range, which is negligible compared to other leakage mechanisms.

More significantly, heavily doped drains are subject to band-to-band tunneling
(BTBT) and gate-induced drain leakage (GIDL).

BTBT occurs across the junction between the source or drain and the body when the
junction is reverse-biased. It is a function of the reverse bias and the doping levels. High
halo doping used to increase Vt to alleviate subthreshold leakage instead causes BTBT to
grow. The leakage is exacerbated by trap-assisted tunneling (TAT) when defects in the sili-
con lattice called traps reduce the distance that a carrier must tunnel. Most of the leakage
occurs along the sidewall closest to the channel where the doping is highest. It can be
modeled as

(2.49)

where Xj is the junction depth of the diffusion, Eg is the bandgap voltage, and A and B are
technology constants [Mukhopadhyay05]. The electric field along the junction at a reverse
bias of VDD is

(2.50)

GIDL occurs where the gate partially overlaps the drain. This effect is most pro-
nounced when the drain is at a high voltage and the gate is at a low voltage. GIDL current
is proportional to gate-drain overlap area and hence to transistor width. It is a strong func-
tion of the electric field and hence increases rapidly with the drain-to-gate voltage. How-

9Beware that ID and IS stand for the diode current and diode reverse-biased saturation currents, respective-
ly. The D and S are not related to drain or source.

I ID S

DV
vT= e 1

n-well

n+n+ n+p+p+p+

p-substrate

FIGURE 2.22 Substrate to diffusion diodes in CMOS circuits

I WX A
E

E
VBTBT j

j

g
dd

Eg
Ej

B
=

0 5

1 5

.

.

e

E
N N

N N
V v

N N

nj
halo sd

halo sd
DD T

halo sd

i

=
+() +

2
2

q
ln

2.4 Nonideal I-V Effects 85

ever, it is normally insignificant at |Vgd| VDD [Mukhopadhyay05], only coming into play
when the gate is driven outside the rails in an attempt to cut off subthreshold leakage.

2.4.5 Temperature Dependence
Transistor characteristics are influenced by temperature [Cobbold66, Vadasz66,
Tsividis99, Gutierrez01]. Carrier mobility decreases with temperature. An approximate
relation is

 (2.51)

where T is the absolute temperature, Tr is room temperature, and k is a fitting parameter
with a typical value of about 1.5. vsat also decreases with temperature, dropping by about
20% from 300 to 400 K.

The magnitude of the threshold voltage decreases nearly linearly with temperature
and may be approximated by

 (2.52)

where kvt is typically about 1–2 mV/K.
Ion at high VDD decreases with temperature. Subthreshold leakage increases exponen-

tially with temperature. BTBT increases slowly with temperature, and gate leakage is
almost independent of temperature.

The combined temperature effects are shown in Figure 2.23. At high Vgs, the current
has a negative temperature coefficient; i.e., it decreases with temperature. At low Vgs, the cur-
rent has a positive temperature coefficient. Thus, OFF current increases with temperature.
ON current Idsat normally decreases with temperature, as shown in Figure 2.24, so circuit
performance is worst at high temperature. However, for systems operating at low VDD
(typically < 0.7 – 1.1 V), Idsat increases with temperature [Kumar06].

T T
T
Tr

r

k

() = ()

V T V T k T Tt t r vt r() () ()=

Vgs

Increasing
Temperature

Ids

FIGURE 2.23 I–V characteristics of nMOS transistor in
saturation at various temperatures

Ion(μA)

720

740

760

780

800

0 20 40 60 80 100 120

Temperature (C)

FIGURE 2.24 Idsat vs. temperature

Chapter 2 MOS Transistor Theory86

Conversely, circuit performance can be improved by cooling. Most systems use natu-
ral convection or fans in conjunction with heat sinks, but water cooling, thin-film refriger-
ators, or even liquid nitrogen can increase performance if the expense is justified. There are
many advantages of operating at low temperature [Keyes70, Sun87]. Subthreshold leakage
is exponentially dependent on temperature, so lower threshold voltages can be used.
Velocity saturation occurs at higher fields, providing more current. As mobility is also
higher, these fields are reached at a lower power supply, saving power. Depletion regions
become wider, resulting in less junction capacitance.

Two popular lab tools for determining temperature dependence in circuits are a can of
freeze spray and a heat gun. The former can be used to momentarily “freeze” a chip to see
whether performance alters and the other, of course, can be used to heat up a chip. Often,
these tests are done to quickly determine whether a chip is prone to temperature effects. Be
careful—sometimes the sudden temperature change can fracture chips or their packages.

2.4.6 Geometry Dependence
The layout designer draws transistors with width and length Wdrawn and Ldrawn. The
actual gate dimensions may differ by some factors XW and XL. For example, the manufac-
turer may create masks with narrower polysilicon or may overetch the polysilicon to pro-
vide shorter channels (negative XL) without changing the overall design rules or metal
pitch. Moreover, the source and drain tend to diffuse laterally under the gate by LD, pro-
ducing a shorter effective channel length that the carriers must traverse between source
and drain. Similarly, WD accounts for other effects that shrink the transistor width. Put-
ting these factors together, we can compute effective transistor lengths and widths that
should be used in place of L and W in the current and capacitance equations given else-
where in the book. The factors of two come from lateral diffusion on both sides of the
channel.

 (2.53)

Therefore, a transistor drawn twice as long may have an effective length that is more than
twice as great. Similarly, two transistors differing in drawn widths by a factor of two may
differ in saturation current by more than a factor of two. Threshold voltages also vary with
transistor dimensions because of the short and narrow channel effects.

Combining threshold changes, effective channel lengths, channel length modulation,
and velocity saturation effects, Idsat does not scale exactly as 1/L. In general, when currents
must be precisely matched (e.g., in sense amplifiers or A/D converters), it is best to use the
same width and length for each device. Current ratios can be produced by tying several
identical transistors in parallel.

In processes below 0.25 m, the effective length of the transistor also depends signifi-
cantly on the orientation of the transistor. Moreover, the amount of nearby polysilicon also
affects etch rates during manufacturing and thus channel length. Transistors that must
match well should have the same orientation. Dummy polysilicon wires can be placed
nearby to improve etch uniformity.

2.4.7 Summary
Although the physics of nanometer-scale devices is complicated, the impact of nonideal
I-V behavior is fairly easy to understand from the designer’s viewpoint.

L L X L

W W X W
L D

W D

eff drawn

eff drawn

= +
= +

2

2

2.5 DC Transfer Characteristics 87

Threshold drops Pass transistors suffer a threshold drop when passing the wrong value:
nMOS transistors only pull up to VDD – Vtn, while pMOS transistors only pull down to
|Vtp|. The magnitude of the threshold drop is increased by the body effect. Therefore, pass
transistors do not operate very well in nanometer processes where the threshold voltage is
a significant fraction of the supply voltage. Fully complementary transmission gates should
be used where both 0s and 1s must be passed well.

Leakage current Ideally, static CMOS gates draw zero current and dissipate zero power
when idle. Real gates draw some leakage current. The most important source at this time
is subthreshold leakage between source and drain of a transistor that should be cut off. The
subthreshold current of an OFF transistor decreases by an order of magnitude for every
60–100 mV that Vgs is below Vt . Threshold voltages have been decreasing, so subthreshold
leakage has been increasing dramatically. Some processes offer multiple choices of Vt : low-
Vt devices are used for high performance in critical circuits, while high-Vt devices are used
for low leakage elsewhere.

The transistor gate is a good insulator. However, significant tunneling current flows
through very thin gates. This has limited the scaling of gate oxide and led to new high-k
gate dielectrics.

Leakage current causes CMOS gates to consume power when idle. It also limits the
amount of time that data is retained in dynamic logic, latches, and memory cells. In
nanometer processes, dynamic logic and latches require some sort of feedback to prevent
data loss from leakage. Leakage increases at high temperature.

VDD Velocity saturation and mobility degradation result in less current than expected at
high voltage. This means that there is no point in trying to use a high VDD to achieve fast
transistors, so VDD has been decreasing with process generation to reduce power consump-
tion. Moreover, the very short channels and thin gate oxides would be damaged by high
VDD.

Delay Transistors in series drop part of the voltage across each transistor and thus experi-
ence smaller fields and less velocity saturation than single transistors. Therefore, series
transistors tend to be a bit faster than a simple model would predict. For example, two
nMOS transistors in series deliver more than half the current of a single nMOS transistor
of the same width. This effect is more pronounced for nMOS transistors than pMOS
transistors because nMOS transistors have higher mobility to begin with and thus are
more velocity saturated.

Matching If two transistors should behave identically, both should have the same dimen-
sions and orientation and be interdigitated if possible.

2.5 DC Transfer Characteristics
Digital circuits are merely analog circuits used over a special portion of their range. The
DC transfer characteristics of a circuit relate the output voltage to the input voltage,
assuming the input changes slowly enough that capacitances have plenty of time to charge
or discharge. Specific ranges of input and output voltages are defined as valid 0 and 1 logic
levels. This section explores the DC transfer characteristics of CMOS gates and pass tran-
sistors.

Chapter 2 MOS Transistor Theory88

2.5.1 Static CMOS Inverter DC Characteristics
Let us derive the DC transfer function (Vout vs. Vin) for the static CMOS inverter shown
in Figure 2.25. We begin with Table 2.2, which outlines various regions of operation for
the n- and p-transistors. In this table, Vtn is the threshold voltage of the n-channel device,
and Vtp is the threshold voltage of the p-channel device. Note that Vtp is negative. The
equations are given both in terms of Vgs /Vds and Vin /Vout. As the source of the nMOS
transistor is grounded, Vgsn = Vin and Vdsn = Vout. As the source of the pMOS transistor is
tied to VDD, Vgsp = Vin – VDD and Vdsp = Vout – VDD.

The objective is to find the variation in output voltage (Vout) as a function of the input
voltage (Vin). This may be done graphically, analytically (see Exercise 2.16), or through
simulation [Carr72]. Given Vin, we must find Vout subject to the constraint that Idsn =
|Idsp|. For simplicity, we assume Vtp = –Vtn and that the pMOS transistor is 2–3 times
as wide as the nMOS transistor so n = p. We relax this assumption in Section 2.5.2.

We commence with the graphical representation of the simple algebraic equations
described by EQ (2.10) for the two transistors shown in Figure 2.26(a). The plot shows
Idsn and Idsp in terms of Vdsn and Vdsp for various values of Vgsn and Vgsp. Figure 2.26(b)
shows the same plot of Idsn and |Idsp| now in terms of Vout for various values of Vin. The
possible operating points of the inverter, marked with dots, are the values of Vout where
Idsn = |Idsp| for a given value of Vin. These operating points are plotted on Vout vs. Vin axes
in Figure 2.26(c) to show the inverter DC transfer characteristics. The supply current IDD
= Idsn = |Idsp| is also plotted against Vin in Figure 2.26(d) showing that both transistors
are momentarily ON as Vin passes through voltages between GND and VDD, resulting in
a pulse of current drawn from the power supply.

The operation of the CMOS inverter can be divided into five regions indicated on Fig-
ure 2.26(c). The state of each transistor in each region is shown in Table 2.3. In region A, the
nMOS transistor is OFF so the pMOS transistor pulls the output to VDD. In region B, the
nMOS transistor starts to turn ON, pulling the output down. In region C, both transistors
are in saturation. Notice that ideal transistors are only in region C for Vin = VDD/2 and that
the slope of the transfer curve in this example is – in this region, corresponding to infi-
nite gain. Real transistors have finite output resistances on account of channel length
modulation, described in Section 2.4.2, and thus have finite slopes over a broader region
C. In region D, the pMOS transistor is partially ON and in region E, it is completely

TABLE 2.2 Relationships between voltages for the three regions of operation of a CMOS inverter

Cutoff Linear Saturated

nMOS Vgsn < Vtn Vgsn > Vtn Vgsn > Vtn

Vin < Vtn Vin > Vtn Vin > Vtn

Vdsn < Vgsn – Vtn Vdsn > Vgsn – Vtn

Vout < Vin – Vtn Vout > Vin – Vtn

pMOS Vgsp > Vtp Vgsp < Vtp Vgsp < Vtp

Vin > Vtp + VDD Vin < Vtp + VDD Vin < Vtp + VDD

Vdsp > Vgsp – Vtp Vdsp < Vgsp – Vtp

Vout > Vin – Vtp Vout < Vin – Vtp

Idsn

Idsp
Vout

VDD

Vin

FIGURE 2.25
A CMOS inverter

2.5 DC Transfer Characteristics 89

OFF, leaving the nMOS transistor to pull the output down to GND. Also notice that the
inverter’s current consumption is ideally zero, neglecting leakage, when the input is within
a threshold voltage of the VDD or GND rails. This feature is important for low-power
operation.

Figure 2.27 shows simulation results of an inverter from a 65 nm process. The
pMOS transistor is twice as wide as the nMOS transistor to achieve approximately
equal betas. Simulation matches the simple models reasonably well, although the tran-
sition is not quite as steep because transistors are not ideal current sources in saturation.

The crossover point where Vinv = Vin = Vout is called the input threshold. Because
both mobility and the magnitude of the threshold voltage decrease with temperature
for nMOS and pMOS transistors, the input threshold of the gate is only weakly
sensitive to temperature.

TABLE 2.3 Summary of CMOS inverter operation

Region Condition p-device n-device Output

A 0 Vin < Vtn linear cutoff Vout = VDD

B Vtn Vin < VDD/2 linear saturated Vout > VDD /2

C Vin = VDD/2 saturated saturated Vout drops sharply

D VDD /2 < Vin VDD – |Vtp| saturated linear Vout < VDD/2

E Vin > VDD – |Vtp| cutoff linear Vout = 0

C

Vgsn5

Vgsn4

Vgsn3

Vgsn2
Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

–VDD

Vdsn

–Vdsp

–Idsp

Idsn

0

Vin5

Vin4

Vin3

Vin2
Vin1

Vin0

Vin1

Vin2

Vin3
Vin4

Idsn, |I |dsp

Vout

VDD

Vout

0 Vin

VDD

(a)

(b)

(c)

(d)

IDD

0

Vin

VDD

A B

D
E

0

VDDVtn

VDD–|Vtp|

VDD/2

FIGURE 2.26 Graphical derivation of CMOS inverter DC characteristic

0.2

0.4

0.6

1.0

0.0

0.8

0.0 0.2 0.4 0.6 0.8 1.0
Vin

Vout

FIGURE 2.27 Simulated CMOS
inverter DC characteristic

Chapter 2 MOS Transistor Theory90

2.5.2 Beta Ratio Effects
We have seen that for p = n, the inverter threshold voltage Vinv is VDD/2. This may be
desirable because it maximizes noise margins (see Section 2.5.3) and allows a capacitive
load to charge and discharge in equal times by providing equal current source and sink
capabilities (see Section 4.2). Inverters with different beta ratios r = p / n are called

skewed inverters [Sutherland99]. If r > 1, the inverter is HI-skewed. If r < 1,
the inverter is LO-skewed. If r = 1, the inverter has normal skew or is
unskewed.

A HI-skew inverter has a stronger pMOS transistor. Therefore, if the
input is VDD /2, we would expect the output will be greater than VDD /2. In
other words, the input threshold must be higher than for an unskewed
inverter. Similarly, a LO-skew inverter has a weaker pMOS transistor and
thus a lower switching threshold.

Figure 2.28 explores the impact of skewing the beta ratio on the DC
transfer characteristics. As the beta ratio is changed, the switching thresh-
old moves. However, the output voltage transition remains sharp. Gates are
usually skewed by adjusting the widths of transistors while maintaining
minimum length for speed.

The inverter threshold can also be computed analytically. If the long-
channel models of EQ (2.10) for saturated transistors are valid:

(2.54)

By setting the currents to be equal and opposite, we can solve for Vinv as a function of r :

(2.55)

In the limit that the transistors are fully velocity saturated, EQ (2.29) shows

(2.56)

Redefining r = Wpvsat-p / Wnvsat-n, we can again find the inverter threshold

(2.57)

In either case, if Vtn = –Vtp and r = 1, Vinv = VDD /2 as expected. However, velocity sat-
urated inverters are more sensitive to skewing because their DC transfer characteristics are
not as sharp.

DC transfer characteristics of other static CMOS gates can be understood by collaps-
ing the gates into an equivalent inverter. Series transistors can be viewed as a single tran-
sistor of greater length. If only one of several parallel transistors is ON, the other

I V V

I V V V

dn
n

tn

dp
p

DD tp

= ()

= ()
2

2

2

2

inv

inv

V
V V V

r

r

DD tp tn

inv =
+ +

+

1

1
1

I W C v V V

I W C v V V
dn n n tn

dp p p

=
=

ox sat inv

ox sat inv

()

(DD tpV)

V
V V V

r

r

DD tp tn

inv =
+ +

+

1

1
1

Vout

0

Vin

VDD

VDD

0.5
1
2

p

n
= 10

p

n
= 0.1

FIGURE 2.28 Transfer characteristics of
skewed inverters

2.5 DC Transfer Characteristics 91

transistors can be ignored. If several parallel transistors are ON, the collection can be
viewed as a single transistor of greater width.

2.5.3 Noise Margin
Noise margin is closely related to the DC voltage characteristics [Wakerly00]. This param-
eter allows you to determine the allowable noise voltage on the input of a gate so that the
output will not be corrupted. The specification most commonly used to describe noise
margin (or noise immunity) uses two parameters: the LOW noise margin, NML, and the
HIGH noise margin, NMH. With reference to Figure 2.29, NML is defined as the differ-
ence in maximum LOW input voltage recognized by the receiving gate and the maximum
LOW output voltage produced by the driving gate.

 (2.58)

The value of NMH is the difference between the minimum HIGH output voltage of
the driving gate and the minimum HIGH input voltage recognized by the receiving gate.
Thus,

 (2.59)

where
VIH = minimum HIGH input voltage
VIL = maximum LOW input voltage
VOH= minimum HIGH output voltage
VOL = maximum LOW output voltage

Inputs between VIL and VIH are said to be in the indeterminate region or forbidden zone
and do not represent legal digital logic levels. Therefore, it is generally desirable to have
VIH as close as possible to VIL and for this value to be midway in the “logic swing,” VOL to
VOH. This implies that the transfer characteristic should switch abruptly; that is, there
should be high gain in the transition region. For the purpose of calculating noise margins,
the transfer characteristic of the inverter and the definition of voltage levels VIL, VOL, VIH,
and VOH are shown in Figure 2.30. Logic levels are defined at the unity gain point where

NM V VL IL OL=

NM V VH OH IH=

Indeterminate
Region

NML

NMH

Input CharacteristicsOutput Characteristics

VOH

VDD

VOL

GND

VIH

VIL

Logical High
Input Range

Logical Low
Input Range

Logical High
Output Range

Logical Low
Output Range

FIGURE 2.29 Noise margin definitions

Chapter 2 MOS Transistor Theory92

the slope is –1. This gives a conservative bound on the worst case
static noise margin [Hill68, Lohstroh83, Shepard99]. For the
inverter shown, the NML is 0.46 VDD while the NMH is 0.13 VDD.
Note that the output is slightly degraded when the input is at its
worst legal value; this is called noise feedthrough or propagated noise.
The exercises at the end of the chapter examine graphical and ana-
lytical approaches of finding the logic levels and noise margins.

If either NML or NMH for a gate are too small, the gate may be
disturbed by noise that occurs on the inputs. An unskewed gate has
equal noise margins, which maximizes immunity to arbitrary noise
sources. If a gate sees more noise in the high or low input state, the
gate can be skewed to improve that noise margin at the expense of
the other. Note that if |Vtp| = Vtn , then NMH and NML increase as
threshold voltages are increased.

Quite often, noise margins are compromised to improve speed.
Circuit examples in Chapter 9 will illustrate this trade-off. Noise
sources tend to scale with the supply voltage, so noise margins are best
given as a fraction of the supply voltage. A noise margin of 0.4 V is
quite comfortable in a 1.8 V process, but marginal in a 5 V process.

DC analysis gives us the static noise margins specifying the level
of noise that a gate may see for an indefinite duration. Larger noise
pulses may be acceptable if they are brief; these are described by
dynamic noise margins specified by a maximum amplitude as a func-
tion of the duration [Lohstroh79, Somasekhar00]. Unfortunately,
there is no simple amplitude-duration product that conveniently
specifies dynamic noise margins.

2.5.4 Pass Transistor DC Characteristics
Recall from Section 1.4.6 that nMOS transistors pass ‘0’s well but 1s
poorly. We are now ready to better define “poorly.” Figure 2.31(a)
shows an nMOS transistor with the gate and drain tied to VDD.
Imagine that the source is initially at Vs = 0. Vgs > Vtn, so the transis-
tor is ON and current flows. If the voltage on the source rises to Vs =
VDD – Vtn, Vgs falls to Vtn and the transistor cuts itself OFF. There-
fore, nMOS transistors attempting to pass a 1 never pull the source
above VDD – Vtn.10 This loss is sometimes called a threshold drop.

Moreover, when the source of the nMOS transistor rises, Vsb
becomes nonzero. As described in Section 2.4.3.1, this nonzero
source to body potential introduces the body effect that increases the
threshold voltage. Using the data from the example in that section, a
pass transistor driven with VDD = 1 V would produce an output of
only 0.65 V, potentially violating the noise margins of the next stage.

Similarly, pMOS transistors pass 1s well but 0s poorly. If the
pMOS source drops below |Vtp|, the transistor cuts off. Hence,
pMOS transistors only pull down to within a threshold above GND,
as shown in Figure 2.31(b).

10Technically, the output can rise higher very slowly by means of subthreshold leakage.

Vin

Vout

VOH

VDD

VOL

VIL VIHVtn

Unity Gain Points
Slope = −1

VDD – VDD
|Vtp|

βp/βn > 1

Vin Vout

0

FIGURE 2.30 CMOS inverter noise margins

VDD

VDD Vs = VDD – Vtn

VDD – VtnVDD – Vtn VDD – Vtn

VDD – Vtn

VDD – 2Vtn

(a)

(b)

(d)

GND

Vs = |Vtp|

VDD

(c)

VDD

VDD
VDD

VDD

VDD VDD

FIGURE 2.31 Pass transistor
threshold drops

2.6 Pitfalls and Fallacies 93

As the source can rise to within a threshold voltage of the gate, the output of several
transistors in series is no more degraded than that of a single transistor (Figure 2.31(c)).
However, if a degraded output drives the gate of another transistor, the second transistor
can produce an even further degraded output (Figure 2.31(d)).

If we attempt to use a transistor as a switch, the threshold drop degrades the output
voltage. In old processes where the power supply voltage was high and Vt was a small frac-
tion of VDD, the drop was tolerable. In modern processes where Vt is closer to 1/3 of VDD,
the threshold drop can produce an invalid or marginal logic level at the output. To solve
this problem, CMOS switches are generally built using transmission gates.

Recall from Section 1.4.6 that a transmission gate consists of an nMOS transistor and
a pMOS transistor in parallel with gates controlled by complementary signals. When the
transmission gate is ON, at least one of the two transistors is ON for any output voltage
and hence, the transmission gate passes both 0s and 1s well. The transmission gate is a
fundamental and ubiquitous component in MOS logic. It finds use as a multiplexing ele-
ment, a logic structure, a latch element, and an analog switch. The transmission gate acts
as a voltage-controlled switch connecting the input and the output.

2.6 Pitfalls and Fallacies
This section lists a number of pitfalls and fallacies that can deceive the novice (or experienced)

designer.

Blindly trusting one’s models
Models should be viewed as only approximations to reality, not reality itself, and used within

their limitations. In particular, simple models like the Shockley or RC models aren’t even close

to accurate fits for the I-V characteristics of a modern transistor. They are valuable for the

insight they give on trends (i.e., making a transistor wider increases its gate capacitance and

decreases its ON resistance), not for the absolute values they predict. Cutting-edge projects

often target processes that are still under development, so these models should only be

viewed as speculative. Finally, processes may not be fully characterized over all operating re-

gimes; for example, don’t assume that your models are accurate in the subthreshold region

unless your vendor tells you so. Having said this, modern SPICE models do an extremely good

job of predicting performance well into the GHz range for well-characterized processes and

models when using proper design practices (such as accounting for temperature, voltage, and

process variation).

Using excessively complicated models for manual calculations
Because models cannot be perfectly accurate, there is little value in using excessively compli-

cated models, particularly for hand calculations. Simpler models give more insight on key

trade-offs and more rapid feedback during design. Moreover, RC models calibrated against

simulated data for a fabrication process can estimate delay just as accurately as elaborate

models based on a large number of physical parameters but not calibrated to the process.

Assuming a transistor with twice the drawn length has exactly half the current
To first order, current is proportional to W/L. In modern transistors, the effective transistor

length is usually shorter than the drawn length, so doubling the drawn length reduces current

by more than a factor of two. Moreover, the threshold voltage tends to increase for longer

transistors, resulting in less current. Therefore, it is a poor strategy to try to ratio currents by

ratioing transistor lengths.

Chapter 2 MOS Transistor Theory94

Assuming two transistors in series deliver exactly half the current of a single transistor
To first order, this would be true. However, each series transistor sees a smaller electric field

across the channel and hence are each less velocity saturated. Therefore, two series transistors

in a nanometer process will deliver more than half the current of a single transistor. This is

more pronounced for nMOS than pMOS transistors because of the higher mobility and the

higher degree of velocity saturation of electrons than holes at a given field. Hence, NAND gates

perform better than first order estimates might predict.

Ignoring leakage
In contemporary processes, subthreshold and gate leakage can be quite significant. Leakage is

exacerbated by high temperature and by random process variations. Undriven nodes will not

retain their state for long; they will leak to some new voltage. Leakage power can account for

a large fraction of total power, especially in battery-operated devices that are idle most of the

time.

Using nMOS pass transistors
nMOS pass transistors only pull up to

V

DD

 – V

t

. This voltage may fall below

V

IH

 of a receiver,

especially as

V

DD decreases. For example, one author worked with a scan latch containing an

nMOS pass transistor that operated correctly in a 250 nm process at 2.5 V. When the latch was

ported to a 180 nm process at 1.8 V, the scan chain stopped working. The problem was traced

to the pass transistor and the scan chain was made operational in the lab by raising

V

DD to 2

V. A better solution is to use transmission gates in place of pass transistors.

Summary
In summary, we have seen that MOS transistors are four-terminal devices with a gate,
source, drain, and body. In normal operation, the body is tied to GND or VDD so the tran-
sistor can be modeled as a three-terminal device. The transistor behaves as a voltage-
controlled switch. An nMOS switch is OFF (no path from source to drain) when the gate
voltage is below some threshold Vt . The switch turns ON, forming a channel connecting
source to drain, when the gate voltage rises above Vt . This chapter has developed more
elaborate models to predict the amount of current that flows when the transistor is ON.
The transistor operates in three modes depending on the terminal voltages:

� Vgs < Vt Cutoff Ids 0

� Vgs > Vt, Vds < Vdsat Linear Ids increases with Vds (like a resistor)

� Vgs > Vt, Vds > Vdsat Saturation Ids constant (like a current source)

In a long-channel transistor, the saturation current depends on . pMOS transis-
tors are similar to nMOS transistors, but have the signs reversed and deliver about half the
current because of lower mobility.

In a real transistor, the I-V characteristics are more complicated. Modern transistors are
extraordinarily small and thus experience enormous electric fields even at low voltage. The
high fields cause velocity saturation and mobility degradation that lead to less current than
you might otherwise expect. This can be modeled as a saturation current dependent on ,
where the velocity saturation index is less than 2. Moreover, the saturation current does
increase slightly with Vds because of channel length modulation. Although simple hand cal-
culations are no longer accurate, the general shape does not change very much and the trans-
fer characteristics can still be derived using graphical or simulation methods.

VGT
2

VGT

 Exercises 95

Even when the gate voltage is low, the transistor is not completely OFF. Subthreshold
current through the channel drops off exponentially for Vgs < Vt , but is nonnegligible
for transistors with low thresholds. Junction leakage currents flow through the reverse-biased
p–n junctions. Tunneling current flows through the insulating gate when the oxide becomes
thin enough.

We can derive the DC transfer characteristics and noise margins of logic gates using
either analytical expressions or a graphical load line analysis or simulation. Static CMOS
gates have excellent noise margins.

Unlike ideal switches, MOS transistors pass some voltage levels better than others.
An nMOS transistor passes 0s well, but only pulls up to VDD – Vtn when passing 1s. The
pMOS passes 1s well, but only pulls down to |Vtp| when passing 0s. This threshold drop is
exacerbated by the body effect, which increases the threshold voltage when the source is at
a different potential than the body.

 There are too many parameters in a modern BSIM model for a designer to deal with
intuitively. Instead, CMOS transistors are usually characterized by the following basic fig-
ures of merit:

� VDD Target supply voltage
� Lgate / Lpoly Effective channel length (< feature size)
� tox Effective oxide thickness (a.k.a. EOT)
� Idsat Ids @ Vgs = Vds = VDD

� Ioff Ids @ Vgs = 0, Vds = VDD

� Ig Gate leakage @ Vgs = VDD

[Muller03] and [Tsividis99] offer comprehensive treatments of device physics at a
more advanced level. [Gray01] describes MOSFET models in more detail from the ana-
log designer’s point of view.

Exercises
2.1 Consider an nMOS transistor in a 0.6 m process with W/L = 4/2 (i.e., 1.2/0.6

m). In this process, the gate oxide thickness is 100 Å and the mobility of electrons
is 350 cm2/V· s. The threshold voltage is 0.7 V. Plot Ids vs. Vds for Vgs = 0, 1, 2, 3, 4,
and 5 V.

2.2 Show that the current through two transistors in series is equal to the current through
a single transistor of twice the length if the transistors are well described by the Shock-
ley model. Specifically, show that IDS1 =
IDS2 in Figure 2.32 when the transistors are
in their linear region: VDS < VDD – Vt , VDD
> Vt (this is also true in saturation). Hint:
Express the currents of the series transis-
tors in terms of V1 and solve for V1.

2.3 In Exercise 2.2, the body effect was
ignored. If the body effect is considered,
will IDS2 be equal to, greater than, or less
than IDS1? Explain.

VDD VDS

IDS1

(a)

VDD VDS

IDS2

(b)

V1

W/2L

W/L

W/L

FIGURE 2.32 Current in series transistors

Chapter 2 MOS Transistor Theory96

2.4 A 90 nm long transistor has a gate oxide thickness of 16 Å. What is its gate capaci-
tance per micron of width?

2.5 Calculate the diffusion parasitic Cdb of the drain of a unit-sized contacted nMOS
transistor in a 0.6 m process when the drain is at 0 and at VDD = 5 V. Assume the
substrate is grounded. The transistor characteristics are CJ = 0.42 fF/ m2, MJ =
0.44, CJSW = 0.33 fF/ m, MJSW = 0.12, and 0 = 0.98 V at room temperature.

2.6 Prove EQ (2.27).

2.7 Consider the nMOS transistor in a 0.6 m process with gate oxide thickness of 100
Å. The doping level is NA = 2 × 1017 cm–3 and the nominal threshold voltage is 0.7
V. The body is tied to ground with a substrate contact. How much does the thresh-
old change at room temperature if the source is at 4 V instead of 0?

2.8 Does the body effect of a process limit the number of transistors that can be placed
in series in a CMOS gate at low frequencies?

2.9 Sometimes the substrate is connected to a voltage called the substrate bias to alter
the threshold of the nMOS transistors. If the threshold of an nMOS transistor is to
be raised, should a positive or negative substrate bias be used?

2.10 An nMOS transistor has a threshold voltage of 0.4 V and a supply voltage of VDD =
1.2 V. A circuit designer is evaluating a proposal to reduce Vt by 100 mV to obtain
faster transistors.

a) By what factor would the saturation current increase (at Vgs = Vds = VDD) if the
transistor were ideal?

b) By what factor would the subthreshold leakage current increase at room tempera-
ture at Vgs = 0? Assume n = 1.4.

c) By what factor would the subthreshold leakage current increase at 120 °C?
Assume the threshold voltage is independent of temperature.

2.11 Find the subthreshold leakage current of an inverter at room temperature if the
input A = 0. Let n = 2 p = 1 mA/V2, n = 1.0, and |Vt| = 0.4 V. Assume the body
effect and DIBL coefficients are = = 0.

2.12 Repeat Exercise 2.11 for a NAND gate built from unit transistors with inputs A = B
= 0. Show that the subthreshold leakage current through the series transistors is half
that of the inverter if n = 1.

2.13 Repeat Exercises 2.11 and 2.12 when = 0.04 and VDD = 1.8 V, as in the case of a
more realistic transistor. has a secondary effect, so assume that it is 0. Did the
leakage currents go up or down in each case? Is the leakage through the series tran-
sistors more than half, exactly half, or less than half of that through the inverter?

2.14 Peter Pitfall is offering to license to you his patented noninverting buffer circuit
shown in Figure 2.33. Graphically derive the transfer characteristics for this buffer.
Assume n = p = and Vtn = |Vtp| = Vt . Why is it a bad circuit idea?

A Y

FIGURE 2.33
Noninverting buffer

 Exercises 97

2.15 A novel inverter has the transfer characteristics shown in Figure 2.34. What
are the values of VIL, VIH, VOL, and VOH that give best noise margins? What are
these high and low noise margins?

2.16 Section 2.5.1 graphically determined the transfer characteristics of a static
CMOS inverter. Derive analytic expressions for Vout as a function of Vin for
regions B and D of the transfer function. Let |Vtp| = Vtn and p = n.

2.17 Using the results from Exercise 2.16, calculate the noise margin for a CMOS
inverter operating at 1.0 V with Vtn = |Vtp| = 0.35 V, p = n.

2.18 Repeat Exercise 2.16 if the thresholds and betas of the two transistors are not
necessarily equal. Also solve for the value of Vin for region C where both tran-
sistors are saturated.

2.19 Using the results from Exercise 2.18, calculate the noise margin for a CMOS
inverter operating at 1.0 V with Vtn = |Vtp| = 0.35 V, p = 0.5 n.

2.20 Give an expression for the output voltage for the pass transistor networks
shown in Figure 2.35. Neglect the body effect.

2.21 Suppose VDD = 1.2 V and Vt = 0.4 V. Determine Vout in Figure 2.36 for the
following. Neglect the body effect.

a) Vin = 0 V

b) Vin = 0.6 V

c) Vin = 0.9 V

d) Vin = 1.2 V.

(a)

(c) (d)

(b)

FIGURE 2.35 Pass transistor networks

Vin

Vout

0

0.3

0.6

0.9

1.2

1.20.90.60.30

FIGURE 2.34
Transfer characteristics

VDD

Vin Vout

FIGURE 2.36
Single pass transistor

This page intentionally left blank

3

99

CMOS Processing
Technology

3.1 Introduction
Chapter 1 summarized the steps in a basic CMOS process. These steps are expanded
upon in this chapter. Where possible, the processing details are related to the way CMOS
circuits and systems are designed. Modern CMOS processing is complex, and while cov-
erage of every nuance is not within the scope of this book, we focus on the fundamental
concepts that impact design.

A fair question from a designer would be “Why do I care how transistors are made?”
In many cases, if designers understand the physical process, they will comprehend the rea-
son for the underlying design rules and in turn use this knowledge to create a better
design. Understanding the manufacturing steps is also important when debugging some
difficult chip failures and improving yield.

Fabrication plants, or fabs, are enormously expensive to develop and operate. In the
early days of the semiconductor industry, a few bright physicists and engineers could bring
up a fabrication facility in an industrial building at a modest cost and most companies did
their own manufacturing. Now, a fab processing 300 mm wafers in a 45 nm process costs
about $3 billion. The research and development underlying the technology costs another
$2.4 billion. Only a handful of companies in the world have the sales volumes to justify
such a large investment. Even these companies are forming consortia to share the costs of
technology development with their market rivals. Some companies, such as TSMC,
UMC, Chartered, and IBM operate on a foundry model, selling space on their fab line to
fabless semiconductor firms. Figure 3.1 shows workers and machinery in the cavernous
clean room at IBM’s East Fishkill 300 mm fab.

Recall that silicon in its pure or intrinsic state is a semiconductor, having bulk electri-
cal resistance somewhere between that of a conductor and an insulator. The conductivity
of silicon can be raised by several orders of magnitude by introducing impurity atoms into
the silicon crystal lattice. These dopants can supply either free electrons or holes. Group
III impurity elements such as boron that use up electrons are referred to as acceptors
because they accept some of the electrons already in the silicon, leaving holes. Similarly,
Group V donor elements such as arsenic and phosphorous provide electrons. Silicon that
contains a majority of donors is known as n-type, while silicon that contains a majority of
acceptors is known as p-type. When n-type and p-type materials are brought together, the
region where the silicon changes from n-type to p-type is called a junction. By arranging
junctions in certain physical structures and combining them with wires and insulators, var-
ious semiconductor devices can be constructed. Over the years, silicon semiconductor pro-
cessing has evolved sophisticated techniques for building these junctions and other
insulating and conducting structures.

Chapter 3 CMOS Processing Technology100

The chapter begins with the steps of a generic process characteristic of commercial 65
nm manufacturing. It also surveys a variety of process enhancements that benefit certain
applications. The chapter examines layout design rules in more detail and discusses layout
CAD issues such as design rule checking.

3.2 CMOS Technologies
CMOS processing steps can be broadly divided into two parts. Transistors are formed in
the Front-End-of-Line (FEOL) phase, while wires are built in the Back-End-of-Line
(BEOL) phase. This section examines the steps used through both phases of the manufac-
turing process.

3.2.1 Wafer Formation
The basic raw material used in CMOS fabs is a wafer or disk of silicon, roughly 75 mm to
300 mm (12

�––a dinner plate!) in diameter and less than 1 mm thick. Wafers are cut from
boules, cylindrical ingots of single-crystal silicon, that have been pulled from a crucible of
pure molten silicon. This is known as the Czochralski method and is currently the most
common method for producing single-crystal material. Controlled amounts of impurities
are added to the melt to provide the crystal with the required electrical properties. A seed
crystal is dipped into the melt to initiate crystal growth. The silicon ingot takes on the
same crystal orientation as the seed. A graphite radiator heated by radio-frequency induc-
tion surrounds the quartz crucible and maintains the temperature a few degrees above the
melting point of silicon (1425 °C). The atmosphere is typically helium or argon to prevent
the silicon from oxidizing.

The seed is gradually withdrawn vertically from the melt while simultaneously being
rotated, as shown in Figure 3.2. The molten silicon attaches itself to the seed and recrys-
tallizes as it is withdrawn. The seed withdrawal and rotation rates determine the diameter
of the ingot. Growth rates vary from 30 to 180 mm/hour.

FIGURE 3.1 IBM, East Fishkill, NY fab (Courtesy of International
Business Machines Corporation. Unauthorized use not permitted.)

13

Si Boule

Molten Si

Crucible

Heating
Coil

4

Pulling
Member

14 Seed
Holder

Surface

3 8

7

10

FIGURE 3.2 Czochralski
system for growing Si boules
(Adapted from [Schulmann98].)

3.2 CMOS Technologies 101

3.2.2 Photolithography
Recall that regions of dopants, polysilicon, metal, and contacts are defined using masks.
For instance, in places covered by the mask, ion implantation might not occur or the
dielectric or metal layer might be left intact. In areas where the mask is absent, the
implantation can occur, or dielectric or metal could be etched away. The patterning is
achieved by a process called photolithography, from the Greek photo (light), lithos (stone),
and graphe (picture), which literally means “carving pictures in stone using light.” The pri-
mary method for defining areas of interest (i.e., where we want material to be present or
absent) on a wafer is by the use of photoresists. The wafer is coated with the photoresist and
subjected to selective illumination through the photomask. After the initial patterning of
photoresist, other barrier layers such as polycrystalline silicon, silicon dioxide, or silicon
nitride can be used as physical masks on the chip. This distinction will become more
apparent as this chapter progresses.

A photomask is constructed with chromium (chrome) covered quartz glass. A UV
light source is used to expose the photoresist. Figure 3.3 illustrates the lithography process.
The photomask has chrome where light should be blocked. The UV light floods the mask
from the backside and passes through the clear sections of the mask to expose the organic
photoresist (PR) that has been coated on the wafer. A developer solvent is then used to dis-
solve the soluble unexposed photoresist, leaving islands of insoluble exposed photoresist.
This is termed a negative photoresist. A positive resist is initially insoluble, and when
exposed to UV becomes soluble. Positive resists provide for higher resolution than negative
resists, but are less sensitive to light. As feature sizes become smaller, the photoresist layers
have to be made thinner. In turn, this makes them less robust and more subject to failure
which can impact the overall yield of a process and the cost to produce the chip.

The photomask is commonly called a reticle and is usually smaller than the wafer, e.g.,
2 cm on a side. A stepper moves the reticle to successive locations to completely expose the
wafer. Projection printing is normally used, in which lenses between the reticle and wafer
focus the pattern on the wafer surface. Older techniques include contact printing, where
the mask and wafer are in contact, and proximity printing, where the mask and wafer are
close but not touching. The reticle can be the same size as the area to be patterned (1×) or
larger. For instance, 2.5× and 5× steppers with optical reduction have been used in the
industry.

Quartz Glass

Chrome Pattern

Photomask

Photoresist

Wafer

Gaps in
chrome allow
UV through.

Photoresist is exposed
where UV illuminates it.

UV light floods backside of mask.

Unexposed
photoresist is

eventually
removed by an

appropriate
solvent leaving
the islands of

exposed
photoresist.

FIGURE 3.3 Photomasking with a negative resist (lens system between mask and wafer
omitted to improve clarity and avoid diffracting the reader)

Chapter 3 CMOS Processing Technology102

The wavelength of the light source influences the minimum feature size that can be
printed. Define the minimum pitch (width + spacing) of a process to be 2b. The resolution
of a lens depends on the wavelength of the light and the numerical aperture NA of the
lens:

(3.1)

The numerical aperture is

(3.2)

where n is the refractive index of the medium (1 for air, 1.33 for water, and up to 1.5 for
oil), and is the angle of acceptance of the lens. Increasing requires larger optics.
Lenses used in the 1970s had a numerical aperture of 0.2. Intel uses a numerical aperture
of 0.92 for their 45 nm process [Mistry07]. Nikon and ASML broke the 1.0 barrier by
introducing immersion lithography that takes advantage of water’s higher refractive index
[Geppert04], and in 2008, NA = 1.35 had been reached. All of these advances have come
at the expense of multimillion dollar optics systems. k1 depends on the coherence of the
light, antireflective coatings, photoresist parameters, and resolution enhancement tech-
niques. Presently, 0.8 is considered easy, while 0.5 is very hard.

The depth of focus is

(3.3)

where k2 ranges from 0.5 to 1. Advanced lithography systems with short wavelengths and
large numerical apertures have a very shallow depth of focus, requiring that the surface of
the wafer be maintained extremely flat.

In the 1980s, mercury lamps with 436 nm or 365 nm wavelengths were used. At the
0.25 m process generation, excimer lasers with 248 nm (deep ultraviolet) were adopted
and have been used down to the 180 nm node. Currently, 193 nm argon-fluoride lasers are
used for the critical layers down to the 45 nm node and beyond. The critical layers are those
that define the device behavior. An example would be the gate (polysilicon), source/drain
(diffusion), first metal, and contact masks. With such a laser, a numerical aperture of 1.35,
and k1 = 0.5, the best achievable pitch is 2b = 72 nm, corresponding to a polysilicon half-
pitch of 36 nm. It is amazing that we can print features so much smaller than the wave-
length of the light, but even so, lithography is becoming a serious problem at the 45 nm
node and below.

Efforts to develop 157 nm deep UV lithography systems were unsuccessful and have
been abandoned by the industry. In the future, 13.5 nm extreme ultraviolet (EUV) light
sources may be used, but presently, these sources require prohibitively expensive reflective
optics and vacuum processing and are not strong enough for production purposes. Some
predict that EUV will be ready by 2011 or 2012, while others are skeptical [Mack08].

Wavelengths comparable to or greater than the feature size cause distortion in the
patterns exposed on the photoresist. Resolution enhancement techniques (RETs) precompen-
sate for this distortion so the desired patterns are obtained [Schellenberg03]. These tech-
niques involve modifying the amplitude, phase, or direction of the incoming light. The

2 1b k=
NA

NA = nsin

DOF
NA

=
k2

2

3.2 CMOS Technologies 103

ends of a line in a layout receive less light than the center, causing nonuniform
exposure. Optical proximity correction (OPC) makes small changes to the pat-
terns on the masks to compensate for these local distortions. Figure 3.4 shows
an example of printing with and without optical proximity correction. OPC
predistorts the corners to reduce undesired rounding. Phase shift masks (PSM)
takes advantage of the diffraction grating effect of parallel lines on a mask,
varying the thickness of the mask to change the phase such that light from
adjacent lines are out of phase and cancel where no light is desired. Off-axis
illumination can also improve contrast for certain types of dense, repetitive
patterns. Double-patterning is a sequence of two precisely aligned exposure
steps with different masks for the same photoresist layer [Mack08]. OPC
became necessary at the 180 nm node and all of these techniques are in heavy
use by the 45 nm node.

Each successive UV stepper is more expensive and the throughput of the
stepper may decrease. This is just another contributory issue to the spiraling
cost of chip manufacturing. The cost of masks is also skyrocketing, forcing chip
designers to amortize design and mask expenses across the largest volume pos-
sible. This theme will be reinforced in Section 14.3.

3.2.3 Well and Channel Formation
The following are main CMOS technologies:

� n-well process

� p-well process

� twin-well process

� triple-well process

Silicon-on-insulator processes are also available through some manufacturers (see Section
3.4.1.2).

Chapter 1 outlined an n-well process. Historically, p-well processes preceded n-well
processes. In a p-well process, the nMOS transistors are built in a p-well and the pMOS
transistor is placed in the n-type substrate. p-well processes were used to optimize the
pMOS transistor performance. Improved techniques allowed good pMOS transistors to
be fabricated in an n-well and excellent nMOS transistors to be fabricated in the p-type
substrate of an n-well process. In the n-well process, each group of pMOS transistors in an
n-well shares the same body node but is isolated from the bodies of pMOS transistors in
different wells. However, all the nMOS transistors on the chip share the same body, which
is the substrate. Noise injected into the substrate by digital circuits can disturb sensitive
analog or memory circuits. Twin-well processes accompanied the emergence of n-well
processes. A twin-well process allows the optimization of each transistor type. A third well
can be added to create a triple-well process. The triple-well process has emerged to provide
good isolation between analog and digital blocks in mixed-signal chips; it is also used to
isolate high-density dynamic memory from logic. Most fabrication lines provide a baseline
twin-well process that can be upgraded to a triple-well process with the addition of a sin-
gle mask level.

Wells and other features require regions of doped silicon. Varying proportions of
donor and acceptor dopants can be achieved using epitaxy, deposition, or implantation.

Mask Mask overlaid
with micrograph

N
O

 O
P

C
O

P
C

FIGURE 3.4 Subwavelength features
printed with and without OPC. Predistortion
of corners in OPC reduces undesired
rounding. (Adapted from [Schellenberg98]
with permission of SPIE.)

Chapter 3 CMOS Processing Technology104

Epitaxy involves growing a single-crystal film on the silicon surface (which is already a
single crystal) by subjecting the silicon wafer surface to an elevated temperature and a
source of dopant material.

Epitaxy can be used to produce a layer of silicon with fewer defects than the native
wafer surface and also can help prevent latchup (see Section 7.3.6). Foundries may provide
a choice of epi (with epitaxial layer) or non-epi wafers. Microprocessor designers usually
prefer to use epi wafers for uniformity of device performance.

Deposition involves placing dopant material onto the silicon surface and then driving
it into the bulk using a thermal diffusion step. This can be used to build deep junctions. A
step called chemical vapor deposition (CVD) can be used for the deposition. As its name
suggests, CVD occurs when heated gases react in the vicinity of the wafer and produce a
product that is deposited on the silicon surface. CVD is also used to lay down thin films of
material later in the CMOS process.

Ion implantation involves bombarding the silicon substrate with highly energized
donor or acceptor atoms. When these atoms impinge on the silicon surface, they travel
below the surface of the silicon, forming regions with varying doping concentrations. At
elevated temperature (>800 °C) diffusion occurs between silicon regions having different
densities of impurities, with impurities tending to diffuse from areas of high concentration
to areas of low concentration. Therefore, it is important to keep the remaining process
steps at as low a temperature as possible once the doped areas have been put into place.
However, a high-temperature annealing step is often performed after ion implantation to
redistribute dopants more uniformly. Ion implantation is the standard well and
source/drain implant method used today. The placement of ions is a random process, so
doping levels cannot be perfectly controlled, especially in tiny structures with relatively
small numbers of dopant atoms. Statistical dopant fluctuations lead to variations in the
threshold voltage that will be discussed in Section 7.5.2.2.

The first step in most CMOS processes is to define the well regions. In a triple-well
process, a deep n-well is first driven into the p-type substrate, usually using high-energy
Mega electron volt levels (MeV) ion implantation as opposed to a thermally diffused
operation. This avoids the thermal cycling (i.e., the wafers do not have to be raised signif-
icantly in temperature), which improves throughput and reliability. A 2–3 MeV implanta-
tion can yield a 2.5–3.5 m deep n-well. Such a well has a peak dopant concentration just
under the surface and for this reason is called a retrograde well. This can enhance device
performance by providing improved latchup characteristics and reduced susceptibility to
vertical punch-through (see Section 7.3.5). A thick (3.5–5.5 m) resist has to be used to
block the high energy implantation where no well should be formed. Thick resists and
deep implants necessarily lead to fairly coarse feature dimensions for wells, compared to
the minimum feature size. Shallower n-well and p-well regions are then implanted. After
the wells have been formed, the doping levels can be adjusted (using a threshold implant) to
set the desired threshold voltages for both nMOS and pMOS transistors. With multiple
threshold implant masks, multiple Vt options can be provided on the same chip. For a
given gate and substrate material, the threshold voltage depends on the doping level in the
substrate (NA), the oxide thickness (tox), and the surface state charge (Qfc). The implant
can affect both NA and Qfc and hence Vt . Figure 3.5 shows a typical triple-well structure.
As discussed, the nMOS transistor is situated in the p-well located in the deep n-well.
Other nMOS transistors could be built in different p-wells so that they do not share the
same body node. Transistors in a p-well in a triple-well process will have different charac-
teristics than transistors in the substrate because of the different doping levels. The pMOS

3.2 CMOS Technologies 105

transistors are located in the shallow (normal) n-well. The figure shows the cross-section
of an inverter.

Wells are defined by separate masks. In the case of a twin-well process, only one mask
need be defined because the other well by definition is its complement. Triple-well pro-
cesses have to define at least two masks, one for the deep well and the other for either
n-well or p-well.

Transistors near the edge of a retrograde well (e.g., within about 1 m) may have dif-
ferent threshold voltages than those far from the edge because ions scatter off the photo-
resist mask into the edge of the well, as shown in Figure 3.6 [Hook03]. This is called the
well-edge proximity effect.

3.2.4 Silicon Dioxide (SiO2)
Many of the structures and manufacturing techniques used to make silicon integrated cir-
cuits rely on the properties of SiO2. Therefore, reliable manufacture of SiO2 is extremely
important. In fact, unlike competing materials, silicon has dominated the industry because
it has an easily processable oxide (i.e., it can be grown and etched). Various thicknesses of
SiO2 may be required, depending on the particular process. Thin oxides are required for
transistor gates; thicker oxides might be required for higher voltage devices, while even
thicker oxide layers might be required to ensure that transistors are not formed uninten-
tionally in the silicon beneath polysilicon wires (see the next section).

n+

p substrate

p+

n well

n+p+ n+ p+

p well

Deep n well

nMOS Transistor pMOS Transistor

FIGURE 3.5 Well structure in triple-well process

Substrate Well

Resist

Scattering
Well Implant

FIGURE 3.6 Well-edge proximity effect, in which dopants scattering
off photoresist increase the doping level near the edge of a well
(© IEEE 2003.)

Chapter 3 CMOS Processing Technology106

Oxidation of silicon is achieved by heating silicon wafers in an oxidizing atmosphere.
The following are some common approaches:

� Wet oxidation––when the oxidizing atmosphere contains water vapor. The temper-
ature is usually between 900 °C and 1000 °C. This is also called pyrogenic oxidation
when a 2:1 mixture of hydrogen and oxygen is used. Wet oxidation is a rapid
process.

� Dry oxidation––when the oxidizing atmosphere is pure oxygen. Temperatures are
in the region of 1200 °C to achieve an acceptable growth rate. Dry oxidation forms
a better quality oxide than wet oxidation. It is used to form thin, highly controlled
gate oxides, while wet oxidation may be used to form thick field oxides.

� Atomic layer deposition (ALD)––when a thin chemical layer (material A) is attached
to a surface and then a chemical (material B) is introduced to produce a thin layer
of the required layer (i.e., SiO2––this can also be used for other various dielectrics
and metals). The process is then repeated and the required layer is built up layer by
layer. [George96, Klaus98].

The oxidation process normally consumes part of the silicon wafer (deposition and
ALD do not). Since SiO2 has approximately twice the volume of silicon, the SiO2 layer
grows almost equally in both vertical directions. Thus, after processing, the SiO2 projects
above and below the original unoxidized silicon surface.

3.2.5 Isolation
Individual devices in a CMOS process need to be isolated from one another so that they
do not have unexpected interactions. In particular, channels should only be inverted
beneath transistor gates over the active area; wires running elsewhere shouldn’t create par-
asitic MOS channels. Moreover, the source/drain diffusions of unrelated transistors
should not interfere with each other.

The process flow in Section 1.5 was historically used to provide this isolation. The
transistor gate consists of a thin gate oxide layer. Elsewhere, a thicker layer of field oxide
separates polysilicon and metal wires from the substrate. The MOS sandwich formed by
the wire, thick oxide, and substrate behaves as an unwanted parasitic transistor. However,
the thick oxide effectively sets a threshold voltage greater than VDD that prevents the tran-
sistor from turning ON during normal operation. Actually, these field devices can be used
for I/O protection and are discussed in Section 13.6.2. The source and drain of the tran-
sistors form reverse-biased p–n junctions with the substrate or well, isolating them from
their neighbors.

The thick oxide used to be formed by a process called Local Oxidation of Silicon
(LOCOS). A problem with LOCOS-based processes is the transition between thick and
thin oxide, which extended some distance laterally to form a so-called bird’s beak. The lat-
eral distance is proportional to the oxide thickness, which limits the packing density of
transistors.

Starting around the 0.35 m node, shallow trench isolation (STI) was introduced to
avoid the problems with LOCOS. STI forms insulating trenches of SiO2 surrounding the
transistors (everywhere except the active area). The trench width is independent of its
depth, so transistors can be packed as closely as the lithography permits. The trenches iso-
late the wires from the substrate, preventing unwanted channel formation. They also
reduce the sidewall capacitance and junction leakage current of the source and drain.

3.2 CMOS Technologies 107

STI starts with a pad oxide and a silicon nitride layer, which act as the masking layers,
as shown in Figure 3.7. Openings in the pad oxide are then used to etch into the well or
substrate region (this process can also be used for source/drain diffusion). A liner oxide is
then grown to cover the exposed silicon (Figure 3.7(b)). The trenches are filled with SiO2
or other fillers using CVD that does not consume the underlying silicon (Figure 3.7(c)).
The pad oxide and nitride are removed and a Chemical Mechanical Polishing (CMP) step is
used to planarize the structure (Figure 3.7(d)). CMP, as its name suggests, combines a
mechanical grinding action in which the rotating wafer is contacted by a stationary polish-
ing head while an abrasive mixture is applied. The mixture also reacts chemically with the
surface to aid in the polishing action. CMP is used to achieve flat surfaces, which are of
central importance in modern processes with many layers.

From the designer’s perspective, the presence of a deep n-well and/or trench isolation
makes it easier to isolate noise-sensitive (analog or memory) portions of a chip from digi-
tal sections. Trench isolation also permits nMOS and pMOS transistors to be placed
closer together because the isolation provides a higher source/drain breakdown voltage––
the voltage at which a source or drain diode starts to conduct in the reverse-biased condi-
tion. The breakdown voltage must exceed the supply voltage (so junctions do not break
down during normal operation) and is determined by the junction dimensions and doping
levels of the junction formed. Deeper trenches increase the breakdown voltage.

3.2.6 Gate Oxide
The next step in the process is to form the gate oxide for the transistors. As mentioned,
this is most commonly in the form of silicon dioxide (SiO2).

In the case of STI-defined source/drain regions, the gate oxide is grown on top of the
planarized structure that occurs at the stage shown in Figure 3.7(d). This is shown in

Silicon Nitride

Well or Active

Substrate or Buried Oxide

(a) Trench Etch (b) Liner Oxidation

(c) Fill Trench with Dielectric (d) CMP for Planarization

Pad OxideTrench

Substrate

p well n welln well

n well n wellp well

Trench Oxide

FIGURE 3.7 Shallow trench isolation

Chapter 3 CMOS Processing Technology108

Figure 3.8. The oxide structure is called the gate stack. This
term arises because current processes seldom use a pure
SiO2 gate oxide, but prefer to produce a stack that consists
of a few atomic layers, each 3–4 Å thick, of SiO2 for reli-
ability, overlaid with a few layers of an oxynitrided oxide
(one with nitrogen added). The presence of the nitrogen
increases the dielectric constant, which decreases the effec-
tive oxide thickness (EOT); this means that for a given oxide
thickness, it performs like a thinner oxide. Being able to use
a thicker oxide improves the robustness of the process. This
concept is revisited in Section 3.4.1.3.

Many processes in the 180 nm generation and beyond
provide at least two oxide thicknesses, as will be discussed in Section 3.4.1.1 (thin for logic
transistors and thick for I/O transistors that must withstand higher voltages). At the 65 nm
node, the effective thickness of the thin gate oxide is only 10.5–15 Å.

3.2.7 Gate and Source/Drain Formations
When silicon is deposited on SiO2 or other surfaces without crystal orientation, it forms
polycrystalline silicon, commonly called polysilicon or simply poly. An annealing process is
used to control the size of the single crystal domains and to improve the quality of the poly-
silicon. Undoped polysilicon has high resistivity. The resistance can be reduced by
implanting it with dopants and/or combining it with a refractory metal. The polysilicon
gate serves as a mask to allow precise alignment of the source and drain on either side of
the gate. This process is called a self-aligned polysilicon gate process. Aluminum could not
be used because it would melt during formation of the source and drain.

As a historical note, early metal-gate processes first diffused source and drain regions,
and then formed a metal gate. If the gate was misaligned, it could fail to cover the entire
channel and lead to a transistor that never turned ON. To prevent this, the metal gate had
to overhang the source and drain by more than the alignment tolerance of the process.
This created large parasitic gate-to-source and gate-to-drain overlap capacitances that
degraded switching speeds.

The steps to define the gate, source, and drain in a self-aligned polysilicon gate are as
follows:

� Grow gate oxide wherever transistors are required (area = source + drain + gate)––
elsewhere there will be thick oxide or trench isolation (Figure 3.9(a))

� Deposit polysilicon on chip (Figure 3.9(b))
� Pattern polysilicon (both gates and interconnect) (Figure 3.9(c))
� Etch exposed gate oxide—i.e., the area of gate oxide where transistors are required

that was not covered by polysilicon; at this stage, the chip has windows down to
the well or substrate wherever a source/drain diffusion is required (Figure 3.9(d))

� Implant pMOS and nMOS source/drain regions (Figure 3.9(e))

The source/drain implant density is relatively low, typically in the range 1018–1020

cm–3 of impurity atoms. Such a lightly doped drain (LDD) structure reduces the electric
field at the drain junction (the junction with the highest voltage), which improves the
immunity of the device to hot electron damage (see Section 7.3.6) and suppresses short-
channel effects. The LDD implants are shallow and lightly doped, so they exhibit low

Gate Oxide

p-welln-well n-well

Substrate

FIGURE 3.8 Gate oxide formation

3.2 CMOS Technologies 109

capacitance but high resistance. This reduces device performance somewhat because of the
resistance in series with the transistor. Consequently, deeper, more heavily doped source/
drain implants are needed in conjunction with the LDD implants to provide devices that
combine hot electron suppression with low source/drain resistance. A silicon nitride
(Si3N4) spacer along the edge of the gate serves as a mask to define the deeper diffusion
regions, as shown in Figure 3.10(a). For in-depth coverage of various LDD structures, see
[Ziegler02].

As mentioned, the polysilicon gate and source/drain diffusion have high resistance
due to the resistivity of silicon and their extremely small dimensions. Modern processes
form a surface layer of a refractory metal on the silicon to reduce the resistance. A refrac-
tory metal is one with a high melting point that will not be damaged during subsequent
processing. Tantalum, nickel, molybdenum, titanium, or cobalt are commonly used. The
metal is deposited on the silicon (specifically on the gate polysilicon and/or source/drain
regions). A layer of silicide is formed when the two substances react at elevated tempera-
tures. In a polycide process, only the gate polysilicon is silicided. In a silicide process (usu-
ally implemented as a self-aligned silicidization––from whence comes the synonymous

Gate Oxide

Poly Gate

Shallow n Source/Drain

p well

(a) (b)

(c) (d)

p wellp well

p well

(e)

p well

Polysilicon

Implantation

Substrate

Shallow n Source/Drain

FIGURE 3.9 Gate and shallow source/drain definition

Chapter 3 CMOS Processing Technology110

term salicide) both gate polysilicon and source/drain regions are silicided. This process
lowers the resistance of the polysilicon interconnect and the source and drain diffusion.

Figure 3.10(b) shows the resultant structure with gate and source/drain regions sili-
cided. In addition, SiO2 or an alternative dielectric has been used to cover all areas prior to
the next processing steps. The figure shows a resulting structure with some vertical topol-
ogy typical of older processes. The rapid transitions in surface height can lead to breaks in
subsequent layers that fail to conform, or can entail a plethora of design rules that relate to
metal edges. To avoid these problems, a CMP step is used to planarize the dielectric, leav-
ing a flat surface for metallization as shown in Figure 3.10(c).

Nanometer processes involve another implantation step called halo doping that
increases the doping of the substrate or well near the ends of the channels. The halo dop-
ing alleviates DIBL, short channel effects, and punchthrough but increases GIDL and
BTBT leakage at the junction between the diffusion and channel [Roy03].

3.2.8 Contacts and Metallization
Contact cuts are made to source, drain, and gate according to the contact mask. These are
holes etched in the dielectric after the source/drain step discussed in the previous section.
Older processes commonly use aluminum (Al) for wires, although newer ones offer copper
(Cu) for lower resistance. Tungsten (W) can be used as a plug to fill the contact holes (to
alleviate problems of aluminum not conforming to small contacts). In some processes, the
tungsten can also be used as a local interconnect layer.

Metallization is the process of building wires to connect the devices. As mentioned
previously, conventional metallization uses aluminum. Aluminum can be deposited either

SiN Spacer

Deep Source/
Drain Diffusion

(a)

(c)

Polished Dielectric

p wellp well

p well

n+

Dielectric

Silicide

n+

LDD

(b)

FIGURE 3.10 Transistor with LDD and deep diffusion, salicide, and planarized dielectric

3.2 CMOS Technologies 111

by evaporation or sputtering. Evaporation is performed by passing
a high electrical current through a thick aluminum wire in a vac-
uum chamber. Some of the aluminum atoms are vaporized and
deposited on the wafer. An improved form of evaporation that
suffers less from contamination focuses an electron beam at a
container of aluminum to evaporate the metal. Sputtering is
achieved by generating a gas plasma by ionizing an inert gas
using an RF or DC electric field. The ions are focused on an alu-
minum target and the plasma dislodges metal atoms, which are
then deposited on the wafer.

Wet or dry etching can be used to remove unwanted metal.
Piranha solution is a 3:1 to 5:1 mix of sulfuric acid and hydrogen
peroxide that is used to clean wafers of organic and metal con-
taminants or photoresist after metal patterning. Plasma etching
is a dry etch process with fluorine or chlorine gas used for met-
allization steps. The plasma charges the etch gas ions, which are
attracted to the appropriately charged silicon surface. Very sharp etch profiles can be
achieved using plasma etching. The result of the contact and metallization patterning
steps is shown in Figure 3.11.

Subsequent intermetal vias and metallization are then applied. Some processes offer
uniform metal dimensions for levels 2 to n–1, where n is the top level of metal. The top
level is normally a thicker layer for use in power distribution and as such has relaxed width
and spacing constraints. Other processes use successively thicker and wider metal for the
upper layers, as will be explored in Section 6.1.2.

Polysilicon over diffusion normally forms a transistor gate, so a short metal1 wire is
necessary to connect a diffusion output node to a polysilicon input. Some processes add
tungsten (W) layer above polysilicon and below metal1; this layer is called local intercon-
nect and can be drawn on a finer pitch than metal1. Local interconnect offers denser cell
layouts, especially in static RAMs. Figure 3.12 shows a scanning electron micrograph of a
partially completed SRAM array. The oxide has been removed to show the diffusion,
polysilicon, local interconnect, and metal1. Local interconnect is used to connect the
nMOS and pMOS transistors without rising up to metal1. SRAM cells are discussed fur-
ther in Section 12.2.

metal1
V

Contact Stud

DD

Polysilicon
Wordline

Local interconnect
between n and p
diffusion

n diffusion

Unit Cell

FIGURE 3.12 Partially completed 6-transistor SRAM array using local interconnect
(Courtesy of International Business Machines Corporation. Unauthorized use not
permitted.)

p-well

metal1

Contact

S G D

n+n+

FIGURE 3.11 Aluminum metallization

Chapter 3 CMOS Processing Technology112

Contemporary logic processes use copper interconnects and low-k dielectrics to
reduce wire resistance and capacitance. These enhancements are discussed in Section
3.4.2.

Figure 3.13 shows a cross-section of an IBM microprocessor showing the 11 layers of
metal in a 90 nm process. The bottom level is tungsten local interconnect. The next five
layers are on a 1× width and thickness (0.12 m width and spacing). Metal 6–8 are on a 2×
width, spacing, and thickness and metal 9–10 are 4×. These ten layers use copper wires
with low-k dielectrics. The top level is aluminum and is primarily used for I/O pads. The
local interconnect and metal1 are used in both directions, while the upper layers are used
in alternating preferred directions. A pair of vias between metal 9 and 10 are visible. The
interfaces between dielectric levels after each step of CMP are also visible.

Figure 3.14 shows a micrograph in which the oxide between metal layers has been
stripped away to reveal the complex three-dimensional structure of chip wiring.

3.2.9 Passivation
The final processing step is to add a protective glass layer called passivation or overglass
that prevents the ingress of contaminants. Openings in the passivation layer, called over-
glass cuts, allow connection to I/O pads and test probe points if needed. After passivation,
further steps can be performed such as bumping, which allows the chip to be directly con-
nected to a circuit board using plated solder bumps in the pad openings.

3.2.10 Metrology
Metrology is the science of measuring. Everything that is built in a semiconductor process
has to be measured to give feedback to the manufacturing process. This ranges from sim-
ple optical measurements of line widths to advanced techniques to measure thin films and
defects such as voids in copper interconnect. A natural requirement exists for in situ

FIGURE 3.13 Cross-section showing 11 levels of
metallization (Courtesy of International Business Machines
Corporation. Unauthorized use not permitted.)

FIGURE 3.14 Micrograph of metallization in
six-layer copper process (Courtesy of Interna-
tional Business Machines Corporation.
Unauthorized use not permitted.)

3.3 Layout Design Rules 113

real-time measurements so that the manufacturing process can be controlled in a direct
feedback manner.

 Optical microscopes are used to observe large structures and defects, but are no
longer adequate for structures smaller than the wavelength of visible light (~0.5 m).
Scanning electron microscopy (SEM) is used to observe very small features. An SEM ras-
ter scans a structure under observation and observes secondary electron emission to pro-
duce an image of the surface of the structure. Energy Dispersive Spectroscopy (EDX)
bombards a circuit with electrons causing x-ray emission. This can be used for imaging as
well. A Transmission Electron Microscope (TEM), which observes the results of passing
electrons through a sample (rather than bouncing them off the sample), is sometimes also
used to measure structures.

3.3 Layout Design Rules
Layout rules, also referred to as design rules, were introduced in Chapter 1 and can be con-
sidered a prescription for preparing the photomasks that are used in the fabrication of
integrated circuits. The rules are defined in terms of feature sizes (widths), separations, and
overlaps. The main objective of the layout rules is to build reliably functional circuits in as
small an area as possible. In general, design rules represent a compromise between perfor-
mance and yield. The more conservative the rules are, the more likely it is that the circuit
will function. However, the more aggressive the rules are, the greater the opportunity for
improvements in circuit performance and size.

Design rules specify to the designer certain geometric constraints on the layout art-
work so that the patterns on the processed wafer will preserve the topology and geometry
of the designs. It is important to note that design rules do not represent some hard bound-
ary between correct and incorrect fabrication. Rather, they represent a tolerance that
ensures high probability of correct fabrication and subsequent operation. For example, you
may find that a layout that violates design rules can still function correctly and vice versa.
Nevertheless, any significant or frequent departure (design rule waiver) from design rules
will seriously prejudice the success of a design.

Chapter 1 described a version of design rules based on the MOSIS CMOS scalable
rules. The MOSIS rules are expressed in terms of . These rules allow some degree of
scaling between processes, as in principle, you only need to reduce the value of and the
designs will be valid in the next process down in size. Unfortunately, history has shown
that processes rarely shrink uniformly. Thus, industry usually uses the actual micron
design rules for layouts. At this time, custom layout is usually constrained to a number of
often-used standard cells or memories, where the effort expended is amortized over many
instances. Only for extremely high-volume chips is the cost savings of a smaller full-
custom layout worth the labor cost of that layout.

3.3.1 Design Rule Background
We begin by examining the reasons for the most important design rules.

3.3.1.1 Well Rules The n-well is usually a deeper implant (especially a deep n-well) than
the transistor source/drain implants, and therefore, it is necessary to provide sufficient
clearance between the n-well edges and the adjacent n+ diffusions. The clearance between
the well edge and an enclosed diffusion is determined by the transition of the field oxide

Chapter 3 CMOS Processing Technology114

across the well boundary. Processes that use STI may permit zero inside clearance. In
older LOCOS processes, problems such as the bird’s beak effect usually force substantial
clearances. Being able to place nMOS and pMOS transistors closer together can signifi-
cantly reduce the size of SRAM cells.

Because the n-well sheet resistance can be several k per square, it is necessary to
ground the well thoroughly by providing a sufficient number of well taps. This will prevent
excessive voltage drops due to well currents. Guidelines on well and substrate taps are
given in Section 7.3.6. Where wells are connected to different potentials (say in analog
circuits), the spacing rules may differ from equipotential wells (all wells at the same volt-
age––the normal case in digital logic).

Mask Summary: The masks encountered for well specification may include n-well,
p-well, and deep n-well. These are used to specify where the various wells are to be placed.
Often only one well is specified in a twin-well process (i.e., n-well) and by default the
p-well is in areas where the n-well isn’t (i.e., p-well equals the logical NOT of the n-well).

3.3.1.2 Transistor Rules CMOS transistors are generally defined by at least four physical
masks. These are active (also called diffusion, diff, thinox, OD, or RX), n-select (also called
n-implant, nimp, or nplus), p-select (also called p-implant, pimp, or pplus) and polysilicon
(also called poly, polyg, PO, or PC). The active mask defines all areas where either n- or p-
type diffusion is to be placed or where the gates of transistors are to be placed. The gates of
transistors are defined by the logical AND of the polysilicon mask and the active mask, i.e.,
where polysilicon crosses diffusion. The select layers define what type of diffusion is
required. n-select surrounds active regions where n-type diffusion is required. p-select sur-
rounds areas where p-type diffusion is required. n-diffusion areas inside p-well regions
define nMOS transistors (or n-diffusion wires). n-diffusion areas inside n-well regions
define n-well contacts. Likewise, p-diffusion areas inside n-wells define pMOS transistors
(or p-diffusion wires). p-diffusion areas inside p-wells define substrate contacts (or p-well
contacts). Frequently, design systems will define only n-diffusion (ndiff) and p-diffusion
(pdiff) to reduce the complexity of the process. The appropriate selects are generated auto-
matically. That is, ndiff will be converted automatically into active with an overlapping
rectangle or polygon of n-select.

It is essential for the poly to cross active completely; otherwise the transistor that has
been created will be shorted by a diffusion path between source and drain. Hence, poly is
required to extend beyond the edges of the active area. This is often termed the gate exten-
sion. Active must extend beyond the poly gate so that diffused source and drain regions exist
to carry charge into and out of the channel. Poly and active regions that should not form a
transistor must be kept separated; this results in a spacing rule from active to polysilicon.

Figure 3.15(a) shows the mask construction for the final structures that appear in
Figure 3.15(b).

Mask Summary: The basic masks (in addition to well masks) used to define transistors,
diffusion interconnect (possibly resistors), and gate interconnect are active, n-select, p-select,
and polysilicon. These may be called different names in some processes. Sometimes
n-diffusion (ndiff) and p-diffusion (pdiff) masks are used in place of active to alleviate
designer confusion.

3.3.1.3 Contact Rules There are several generally available contacts:

� Metal to p-active (p-diffusion)
� Metal to n-active (n-diffusion)

3.3 Layout Design Rules 115

� Metal to polysilicon
� Metal to well or substrate

Depending on the process, other contacts such as buried polysilicon-active contacts
may be allowed for local interconnect.

Because the substrate is divided into well regions, each isolated well must be tied to the
appropriate supply voltage; i.e., the n-well must be tied to VDD and the substrate or p-well
must be tied to GND with well or substrate contacts. As mentioned in Section 1.5.1, metal
makes a poor connection to the lightly doped substrate or well. Hence, a heavily doped
active region is placed beneath the contact, as shown at the source of the nMOS transistor
in Figure 3.16.

Whenever possible, use more than one contact at each connection. This significantly
improves yield in many processes because the connection is still made even if
one of the contacts is malformed.

Mask Summary: The only mask involved with contacts to active or poly
is the contact mask, commonly called CONT or CA. Contacts are normally of
uniform size to allow for consistent etching of very small features.

3.3.1.4 Metal Rules Metal spacing may vary with the width of the metal line
(so called fat-metal rules). That is, above some metal wire width, the mini-
mum spacing may be increased. This is due to etch characteristics of small ver-
sus large metal wires. There may also be maximum metal width rules. That is,
single metal wires cannot be greater than a certain width. If wider wires are
desired, they are constructed by paralleling a number of smaller wires and

n well

n select

p select

Active

Poly

Poly

n well

p diffusion

n diffusion

p transistor Well Contactn transistorSubstrate Contact Gate Extension

(a)

(b)

FIGURE 3.15 CMOS n-well process transistor and well/substrate contact construction

n+

Substrate Contact

n+
p+

FIGURE 3.16 Substrate contact

Chapter 3 CMOS Processing Technology116

adding checkerboard links to tie the wires together. Additionally, there may be spacing
rules that are applied to long, closely spaced parallel metal lines.

Older nonplanarized processes required greater width and spacing on upper-level metal
wires (e.g., metal3) to prevent breaks or shorts between adjoining wires caused by the vertical
topology of the underlying layers. This is no longer a consideration for modern planarized
processes. Nevertheless, width and spacing are still greater for thicker metal layers.

Mask Summary: Metal rules may be complicated by varying spacing dependent on
width: As the width increases, the spacing increases. Metal overlap over contact might be
zero or nonzero. Guidelines will also exist for electromigration, as discussed in Section
7.3.3.1.

3.3.1.5 Via Rules Processes may vary in whether they allow stacked vias to be placed over
polysilicon and diffusion regions. Some processes allow vias to be placed within these
areas, but do not allow the vias to straddle the boundary of polysilicon or diffusion. This
results from the sudden vertical topology variations that occur at sublayer boundaries.
Modern planarized processes permit stacked vias, which reduces the area required to pass
from a lower-level metal to a high-level metal.

Mask Summary: Vias are normally of uniform size within a layer. They may increase
in size toward the top of a metal stack. For instance, large vias required on power busses
are constructed from an array of uniformly sized vias.

3.3.1.6 Other Rules The passivation or overglass layer is a protective layer of SiO2 (glass)
that covers the final chip. Appropriately sized openings are required at pads and any inter-
nal test points.

Some additional rules that might be present in some processes are as follows:

� Extension of polysilicon or metal beyond a contact or via
� Differing gate poly extensions depending on the device length
� Maximum width of a feature
� Minimum area of a feature (small pieces of photoresist can peel off and float away)
� Minimum notch sizes (small notches are rarely beneficial and can interfere with

resolution enhancement techniques)

3.3.1.7 Summary Whereas earlier processes tended to be process driven and frequently
had long and involved design rules, processes have become increasingly “designer friendly”
or, more specifically, computer friendly (most of the mask geometries for designs are algo-
rithmically produced). Companies sometimes create “generic” rules that span a number of
different CMOS foundries that they might use. Some processes have design guidelines
that feature structures to be avoided to ensure good yields. Traditionally, engineers fol-
lowed yield-improvement cycles to determine the causes of defective chips and modify the
layout to avoid the most common systematic failures. Time to market and product life
cycles are now so short that yield improvement is only done for the highest volume parts.
It is often better to reimplement a successful product in a new, smaller technology rather
than to worry about improving the yield on the older, larger process.

3.3.2 Scribe Line and Other Structures
 The scribe line surrounds the completed chip where it is cut with a diamond saw. The con-
struction of the scribe line varies from manufacturer to manufacturer. It is designed to

3.3 Layout Design Rules 117

prevent the ingress of contaminants from the side of the chip (as opposed to the top of the
chip, which is protected by the overglass).

Several other structures are included on a mask including the alignment mark, critical
dimension structures, vernier structures, and process check structures [Hess94]. The mask
alignment mark is usually placed by the foundry to align one mask to the next. Critical
dimension test structures can be measured after processing to check proper etching of nar-
row polysilicon or metal lines. Vernier structures are used to judge the alignment between
layers. A vernier is a set of closely spaced parallel lines on two layers. Misalignment
between the two layers can be judged by the alignment of the two verniers. Test structures
such as chains of contacts and vias, test transistors, and ring oscillators are used to evaluate
contact resistance and transistor parameters. Often these structures can be placed along
the scribe line so they do not consume useful wafer area.

3.3.3 MOSIS Scalable CMOS Design Rules
Class project designs often use the -based scalable CMOS design rules from MOSIS
because they are simple and freely available. MOSIS once offered a wide variety of pro-
cesses, from 2 m to 180 nm, compatible with the scalable CMOS rules. Indeed, MOSIS
also supports three variants of these rules: SCMOS, SUBM, and DEEP, which are pro-
gressively more conservative to support feature sizes down to 180 nm. Chips designed in
the conservative DEEP rules could be fabricated on any of the MOSIS processes.

As time has passed, the older processes became obsolete and the newer processes have
too many nuances to be compatible with scalable design rules. The MOSIS processes
most commonly used today are the ON Semiconductor (formerly AMI) 0.5 m process
and the IBM 130, 90, 65, and 45 nm processes.

The 0.5 m process is popular for university class projects because MOSIS Educa-
tional Program offers generous grants to cover fabrication costs for 1.5 mm × 1.5 mm
“TinyChips.” The best design rules for this process are the scalable SUBM rules1 using

= 0.3 m. Thus, a TinyChip is 5000 × 5000 . Polysilicon is drawn at 2 = 0.6 m,
then biased by MOSIS by 0.1 m prior to mask generation to give a true 0.5 m gate
length. When simulating circuits, be sure to use the biased channel lengths to model the
transistor behavior accurately. In SPICE, the XL parameter is added to the specified tran-
sistor length to find the actual length. Thus, a SPICE deck could specify a drawn channel
length of L = 0.6 m for each transistor and include XL = 0.1 m in the model file to
indicate a biased length of 0.5 m. There is a tutorial at www.cmosvlsi.com on design-
ing in this process with the Electric CAD tool suite. [Brunvand09] explains how to design
in this process with the Cadence and Synopsys tool suites; this flow has a steeper learning
curve but better mirrors industry practices.

Credible research chips need more advanced processes to reflect contemporary design
challenges. The IBM processes are presently discounted for universities, and MOSIS
offers certain research grants as well. The best way to design in these processes is with
the Cadence and Synopsys tools using IBM’s proprietary micron-based design rules. The
design flow is presently poorly documented by MOSIS and ranges from difficult at
the 130 nm node to worse at deeper nodes. Unfortunately, this presently limits access to
these processes to highly sophisticated research groups.

1Technically, MOSIS has two sets of contact rules [MOSIS09]. The standard rules require polysilicon and
active to overlap contacts by 1.5 . Half-lambda rules reduce productivity because they force the designer
off a grid. The “alternate contact rules” are preferable because they require overlap by 1 , at the expense
of more conservative spacing rules; these alternate rules are used in the examples in this text.

Chapter 3 CMOS Processing Technology118

Section 1.5.3 introduced the SCMOS design rules. More extensive rules are illus-
trated and summarized on the inside back cover. Layouts consist of a set of rectangles on
various layers such as polysilicon or metal. Width is the minimum width of a rectangle on a
particular layer. Spacing is the minimum spacing between two rectangles on the same or
different layers. Overlap specifies how much a rectangle must surround another on another
layer. Dimensions are all specified in except for overglass cuts that do not scale well
because they must contact large bond wires or probe tips. Select layers are often generated
automatically and thus are not shown in the layout. If the active layer satisfies design rules,
the select will too.

Contacts and vias must be exactly 2 × 2 . Larger connections are made from arrays of
small vias to prevent current crowding at the periphery. The spacing rules of polysilicon or
diffusion to arrays of multiple contacts is slightly larger than that to a single contact.

Section 1.5.5 estimated the pitch of lower-level metal to be 8 : 4 for the width and
4 for spacing. Technically, the minimum width and spacing are 3 , but the minimum
metal contact size is 2 × 2 plus 1 surround on each side, for a width of 4 . Thus, the
pitch for contacted metal lines can be reduced to 7 . Moreover, if the lines are drawn at
3 and the contacts are staggered so two adjacent lines never have adjacent contacts, the
pitch reduces to 6.5 . Nevertheless, using a pitch of 8 for planning purposes is good
practice and leaves a bit of “wiggle room” to solve difficult layout problems.

3.3.4 Micron Design Rules
Table 3.1 lists a set of micron design rules for a hypothetical 65 nm process representing
an amalgamation of several real processes. Rule numbers reference the diagram on the
inside back cover. Observe that the rules differ slightly but not immensely from lambda-
based rules with = 0.035 m. A complete set of micron design rules in this generation
fills hundreds of pages. Note that upper level metal rules are highly variable depending on
the metal thickness; thicker wires require greater widths and spacings and bigger vias.

TABLE 3.1 Micron design rules for 65 nm process

Layer Rule Description 65 nm Rule
(m)

Well 1.1 Width 0.5
1.2 Spacing to well at different potential 0.7
1.3 Spacing to well at same potential 0.7

Active
(diffusion)

2.1 Width 0.10
2.2 Spacing to active 0.12
2.3 Source/drain surround by well 0.15
2.4 Substrate/well contact surround by well 0.15
2.5 Spacing to active of opposite type 0.25

Poly 3.1 Width 0.065
3.2 Spacing to poly over field oxide 0.10
3.2a Spacing to poly over active 0.10
3.3 Gate extension beyond active 0.10
3.4 Active extension beyond poly 0.10
3.5 Spacing of poly to active 0.07

3.4 CMOS Process Enhancements 119

3.4 CMOS Process Enhancements

3.4.1 Transistors

3.4.1.1 Multiple Threshold Voltages and Oxide Thicknesses Some processes offer multi-
ple threshold voltages and/or oxide thicknesses. Low-threshold transistors deliver more
ON current, but also have greater subthreshold leakage. Providing two or more thresholds
permits the designer to use low-Vt devices on critical paths and higher-Vt devices elsewhere
to limit leakage power. Multiple masks and implantation steps are used to set the various
thresholds. Alternatively, transistors with slightly longer channels can be used; these tran-
sistors naturally have higher thresholds because of the short channel effect (see Section
2.4.3.3) [Rohrer05].

Thin gate oxides also permit more ON current. However, they break down when
exposed to the high voltages needed in I/O circuits. Oxides thinner than about 15 Å also

Layer Rule Description 65 nm Rule
(m)

Select 4.1 Spacing from substrate/well contact to gate 0.15
4.2 Overlap of active 0.12
4.3 Overlap of substrate/well contact 0.12
4.4 Spacing to select 0.20

Contact
(to poly
or active)

5.1, 6.1 Width (exact) 0.08
5.2b, 6.2b Overlap by poly or active 0.01
5.3, 6.3 Spacing to contact 0.10
5.4 Spacing to gate 0.07

Metal1 7.1 Width 0.09
7.2 Spacing to well metal1 0.09
7.3, 8.3 Overlap of contact or via 0.01
7.4 Spacing to metal for lines wider than 0.5 m 0.30

Via1–Via6 8.1, 14.1, … Width (exact) 0.10
8.2, 14.2, … Spacing to via on same layer 0.10

Metal2–
Metal7

9.1, … Width 0.10
9.2, … Spacing to same layer metal 0.10
9.3, … Overlap of via 0.01
9.4, … Spacing to metal for lines wider than 0.5 m 0.30

Via7–8 Width 0.20
Spacing 0.20

Metal8–9 Width 0.40
Spacing to same layer metal 0.40
Overlap of via 0.10
Spacing to metal for lines wider than 1.0 m 0.50

TABLE 3.1 Micron design rules for 65 nm process (continued)

Chapter 3 CMOS Processing Technology120

contribute to large gate leakage currents. Many processes offer a second,
thicker oxide for the I/O transistors (see Section 13.6). For example, 3.3 V
I/O circuits commonly use 0.35 m channel lengths and 7 nm gate oxides.
When gate leakage is a problem and high-k dielectrics are unavailable, an
intermediate oxide thickness may also be provided to reduce leakage. Again,
multiple masks are used to define the different oxides.

3.4.1.2 Silicon on Insulator A variant of CMOS that has been available for
many years is Silicon on Insulator (SOI). As the name suggests, this is a pro-
cess where the transistors are fabricated on an insulator. SOI stands in con-
trast to conventional bulk processes in which the transistors are fabricated on
a conductive substrate. Two main insulators are used: SiO2 and sapphire. One
major advantage of an insulating substrate is the elimination of the capaci-
tance between the source/drain regions and body, leading to higher-speed
devices. Another major advantage is lower subthreshold leakage due to
steeper subthreshold slope resulting from a smaller n in EQ (2.44). The draw-
backs are time-dependent threshold variations caused by the floating body.

Figure 3.17 shows two common types of SOI. Figure 3.17(a) illustrates
a sapphire substrate. In this technology (for example, Peregrine Semicon-
ductor’s UltraCMOS), a thin layer of silicon is formed on the sapphire sur-
face. The thin layer of silicon is selectively doped to define different
threshold transistors. Gate oxide is grown on top of this and then polysilicon

gates are defined. Following this, the nMOS and pMOS transistors are formed by implan-
tation. Figure 3.17(b) shows a silicon-based SOI process. Here, a silicon substrate is used
and a buried oxide (BOX) is grown on top of the silicon substrate. A thin silicon layer is
then grown on top of the buried oxide and this is selectively implanted to form nMOS and
pMOS transistor regions. Gate, source, and drain regions are then defined in a similar
fashion to a bulk process. Sapphire is optically and RF transparent. As such, it can be of
use in optoelectronic areas when merged with III-V based light emitters.

SOI devices and circuits are discussed further in Section 9.5.

3.4.1.3 High-k Gate Dielectrics MOS transistors need high gate capacitance to attract
charge to the channel. This leads to very thin SiO2 gate dielectrics (e.g., 10.5–12 Å,
merely four atomic layers, in a 65 nm process). Gate leakage increases unacceptably below
these thicknesses, which brings an end to classical scaling [Bai04]. Simple SiO2 has a
dielectric constant of k = 3.9. As shown in EQ (2.2), gates could use thicker dielectrics and
hence leak less if a material with a higher dielectric constant were available.

A first step in this direction was the introduction of nitrogen to form oxynitride gate
dielectrics, called SiON, around the 130 nm generation, providing k of about 4.1–4.2.
High-k dielectrics entered commercial manufacturing in 2007, first with a hafnium-based
material in Intel’s 45 nm process [Auth08]. Hafnium oxide (HfO2) has k = 20.

A depletion region forms at the interface of polysilicon and the gate dielectric. This
effectively increases tox, which is undesirable for performance. Moreover, polysilicon gates
can be incompatible with high-k dielectrics because of effects such as threshold voltage pin-
ning and phonon scattering, which make it difficult to obtain low thresholds and reduce the
mobility. The Intel 45 nm process returned to metal gates to solve these problems and also
to reduce gate resistance, as shown in Figure 3.18 [Mistry07]. Thus, the term MOS is

Sapphire

Substrate

Buried Silicon Oxide (BOX)

n transistor p transistor

n+ n+ np p+ p+

n+ n+ np p+ p+

n transistor p transistor

(a)

(b)

FIGURE 3.17 SOI types

3.4 CMOS Process Enhancements 121

technically accurate again! nMOS and pMOS transistors use different types of
metal with different work functions (energy required to free an electron from a
solid) to set the threshold voltages. A second lower-resistance metal layer plays a
role similar to a silicide.

One of the challenges with metal gates is that they melt if exposed to the
high temperature source/drain formation steps. But if the gate were formed after
the source and drain, the self-alignment advantage would be lost. Intel sidesteps
this conundrum by first building the transistor with a high-k dielectric and a
standard polysilicon gate. After the transistor is complete and the interlayer
dielectric is formed, the wafer is polished to expose the polysilicon gates and
etched to remove the undesired poly. A thin metal gate is deposited in the trench.
Different metals with different workfunctions are required for the nMOS and
pMOS transistors. Finally, the trench is filled with a thicker layer of Al for low gate resis-
tance, and the wafer is planarized again.

3.4.1.4 Higher Mobility Increasing the mobility () of the semiconductor improves drive
current and transistor speed. One way to improve the mobility is to introduce mechanical
strain in the channel. This is called strained silicon.

Figure 3.19 shows strained nMOS and pMOS transistors in the Intel 65 nm process
that achieve 40% and 100% higher mobility than unstrained transistors, respectively
[Tyagi05, Thompson02, Thompson04]. The nMOS channel is under tensile stress created
by an insulating film of silicon nitride (SiN) capping the gate. The pMOS channel is under
compressive stress produced by etching a recess into the source and drain, then filling the
slot with an epitaxial layer of silicon germanium (SiGe). Germanium is another group IV
semiconductor with a larger atomic radius than silicon. When a small fraction of the silicon
atoms are replaced by germanium, the lattice retains its shape but undergoes mechanical
strain because of the larger atoms. Using separate strain mechanisms for the nMOS and
pMOS transistors improves mobility of both electrons and holes. An alternative approach is
to implant germanium atoms in the channel, introducing tensile stress that only improves
electron mobility. STI also introduces stress that affects mobility, so the diffusion layout can
impact performance [Topaloglu07].

(a) (b)

High-Stress Film

Poly
Gate

Silicide Silicide

Poly
Gate

Channel
source

drain
Channel

source
drain

Strain

n well

SiGe
SiGe

p substrate

n+

n+ p+
p+

Strain

FIGURE 3.19 Strained silicon transistor micrographs: (a) nMOS, (b) pMOS (© IEEE 2005.)

FIGURE 3.18 High-k gate stack TEM
(© IEEE 2007.)

Chapter 3 CMOS Processing Technology122

SiGe is also used in high-performance bipolar transistors, especially for radio-
frequency (RF) applications. SiGe bipolar devices can be combined with conventional
CMOS on the same substrate, which is valuable for low-cost system-on-chip applications
that require both digital and RF circuits [Hashimoto02, Harame01a, Harame01b].

3.4.1.5 Plastic Transistors MOS transistors can be fabricated with
organic chemicals. These transistors show promise in active matrix dis-
plays, flexible electronic paper, and radio-frequency ID tags because the
devices can be manufactured from an inexpensive chemical solution
[Huitema03, Myny09]. Figure 3.20 shows the structure of a plastic pMOS
transistor. The transistor is built “upside down” with the gold gates and
interconnect patterned first on the substrate. Then an organic insulator or
silicon nitride is laid down, followed by the gold source and drain connec-
tions. Finally, the organic semiconductor (pentacene) is laid down. The
mobility of the carriers in the plastic pMOS transistor is about
0.15 cm2/V · s. This is three orders of magnitude lower than that of a com-
parable silicon device, but is good enough for special applications. Typical
lengths and widths are 5 m and 400 m, respectively.

3.4.1.6 High-Voltage Transistors High-voltage MOSFETs can also be integrated onto
conventional CMOS processes for switching and high-power applications. Gate oxide
thickness and channel length have to be larger than usual to prevent breakdown. Special-
ized process steps are necessary to achieve very high breakdown voltages.

3.4.2 Interconnect
Interconnect has advanced rapidly. While two or three metal layers were once the norm,
CMP has enabled inexpensive processes to include seven or more layers. Copper metal
and low-k dielectrics are almost universal to reduce the resistance and capacitance of these
wires.

3.4.2.1 Copper Damascene Process While aluminum was long the interconnect metal
of choice, copper has largely superseded it in nanometer processes. This is primarily due to
the higher conductivity of copper compared to aluminum. Some challenges of adopting
copper include the following [Merchant01]:

� Copper atoms diffuse into the silicon and dielectrics, destroying transistors.
� The processing required to etch copper wires is tricky.
� Copper oxide forms readily and interferes with good contacts.
� Care has to be taken not to introduce copper into the environment as a pollutant.

Barrier layers have to be used to prevent the copper from entering the silicon surface.
A new metallization procedure called the damascene process was invented to form this bar-
rier. The process gets its name from the medieval metallurgists of Damascus who crafted
fine inlaid swords. In a conventional subtractive aluminum-based metallization step, as we
have seen, aluminum is layered on the silicon surface (where vias also have been etched)
and then a mask and resist are used to define which areas of metal are to be retained. The
unneeded metal is etched away. A dielectric (SiO2 or other) is then placed over the alumi-
num conductors and the process can be repeated.

Substrate (glass/plastic)

Semiconductor (Pentacene)

Insulator (Polymer Si/Nx)

Gold Terminals

Gate

Source Drain

FIGURE 3.20 Plastic transistors

3.4 CMOS Process Enhancements 123

A typical copper damascene process is shown in Figure 3.21, which is an adaptation
of a dual damascene process flow from Novellus. Figure 3.21(a) shows a barrier layer over
the prior metallization layer. This stops the copper from diffusing into the dielectric and
silicon. The via dielectric is then laid down (Figure 3.21(b)). A further barrier layer can
then be patterned, and the line dielectric is layered on top of the structure, as shown in
Figure 3.21(c). An anti-reflective layer (which helps in the photolithographic process) is
added to the top of the sandwich. The two dielectrics are then etched away where the lines
and vias are required. A barrier layer such as 10 nm thick Ta or TaN film is then deposited
to prevent the copper from diffusing into the dielectrics [Peng02]. As can be seen, a thin
layer of the barrier remains at the bottom of the via so the barrier must be conductive. A
copper seed layer is then coated over the barrier layer (Figure 3.21(g)). The resulting
structure is electroplated full of copper, and finally the structure is ground flat with CMP,
as shown in Figure 3.21(h).

3.4.2.2 Low-k Dielectrics SiO2 has a dielectric constant of k = 3.9–4.2. Low-k dielectrics
between wires are attractive because they decrease the wire capacitance [Brown03]. This
reduces wire delay, noise, and power consumption. Adding fluorine to the silicon dioxide
creates fluorosilicate glass (FSG or SiOF) with a dielectric constant of 3.6, widely used in
130 nm processes. Adding carbon to the oxide can reduce the dielectric constant to about
2.8–3; such SiCOH (also called carbon-doped oxide, CDO) is commonly used at the 90
and 65 nm generation. Alternatively, porous polymer-based dielectrics can deliver even
lower dielectric constants. For example, SiLK, from Dow Chemical, has k = 2.6 and may
scale to k = 1.6–2.2 by increasing the porosity. IBM has demonstrated air (or vacuum)

(a) Diffusion Barrier Etch Stop (b) Via Dielectric (c) Line Dielectric (d) Anti Reflective Layer

(e) Dielectric Etch (f) Ta Barrier (g) Cu Seed (h) Cu Fill (electroplate)
and CMP

FIGURE 3.21 Copper dual damascene interconnect processing steps

Chapter 3 CMOS Processing Technology124

gaps, which have k = 1 where the dielectric has been eliminated entirely, as
shown in Figure 3.22. Developing low-k dielectrics that can withstand the
high temperatures during processing and the forces applied during CMP is a
major challenge.

3.4.3 Circuit Elements
While CMOS transistors provide for almost complete digital functionality,
the use of CMOS technology as the mixed signal and RF process of choice
has driven the addition of special process options to enhance the performance
of circuit elements required for these purposes.

3.4.3.1 Capacitors In a conventional CMOS process, a capacitor can be con-
structed using the gate and source/drain of an MOS transistor, a diffusion area
(to ground or VDD), or a parallel metal plate capacitor (using stacked metal
layers). The MOS capacitor has good capacitance per area but is relatively

nonlinear if operated over large voltage ranges. The diffusion capacitor cannot be used for
a floating capacitor (where neither terminal is connected to ground). The metal parallel
plate capacitor has low capacitance per area. Normally, the aim in using a floating capaci-
tor is to have the highest ratio of desired capacitance value to stray capacitance (to ground
normally). The bottom metal plate contributes stray capacitance to ground.

Analog circuits frequently require capacitors in the range of 1 to 10 pF. The first
method for doing this was to add a second polysilicon layer so that a poly-insulator-poly
(PIP) capacitor could be constructed. A thin oxide was placed between the two polysilicon
layers to achieve capacitance of approximately 1 fF/ m2.

The most common capacitor used in CMOS processes today is a fringe capacitor,
which consists of interdigitated fingers of metal, as shown in Figure 3.23. Multiple layers
can be stacked to increase the capacitance per area.

3.4.3.2 Resistors In unaugmented processes, resistors can be built from any layer, with
the final resistance depending on the resistivity of the layer. Building large resistances in a
small area requires layers with high resistivity, particularly polysilicon, diffusion, and
n-wells. Diffusion has a large parasitic capacitance to ground, making it unsuitable for
high-frequency applications. Polysilicon gates are usually silicided to have low resistivity.
The fix for this is to allow for undoped high-resistivity polysilicon. This is specified with a
silicide block mask where high-value poly resistors are required. The resistivity can be tuned
to around 300–1000 /square, depending on doping levels. Another material used for
precision resistors is nichrome, although this requires a special processing step.

A typical resistor layout is shown in Figure 3.24. This geometry is sometimes called a
meander structure. A number of unit resistors have been used so that a variety of matched
resistor values can be constructed. For instance, if 20 k , and 15 k resistors were
required, a unit value of 5 k could be used. Then three resistors (as shown) would con-
struct a 15 k resistor. The two resistors at the ends are called dummy resistors or fingers.
They perform no circuit function, but replicate the proximity effects (such as etch and
implant) that the interior resistors see during processing. This helps ensure that all resis-
tors are matched.

The various resistor options have temperature and voltage coefficients. Foundry
design manuals normally include these values.

FIGURE 3.22 Micrograph showing air gap
insulation between copper wires (Courtesy
of International Business Machines Corpo-
ration. Unauthorized use not permitted.)

a

a

b

b

FIGURE 3.23
Fringe capacitor

3.4 CMOS Process Enhancements 125

3.4.3.3 Inductors The desire to integrate inductors on chips has increased radically with
the upsurge in interest in RF circuits. The most common monolithic inductor is the spiral
inductor, which is a spiral of upper-level metal. A typical inductor is shown in Figure
3.25(a). As the process is planar, an underpass connection has to be made to complete the
inductor. A typical equivalent model is shown in Figure 3.25(b). In addition to the
required inductance L, there are several parasitic components. Rs is the
series resistance of the metal (and contacts) used to form the inductor.
Cp is the parallel capacitance to ground due to the area of the metal
wires forming the inductor. Cs is the shunt capacitance of the under-
pass. Finally, Rp is an element that models the loss incurred in the resis-
tive substrate.

Usually, when considering an inductor, the parameters of interest
to a designer are its inductance, the Q of the inductor, and the self-
resonant frequency. High Qs are sought to create low phase-noise oscil-
lators, narrow filters, and low-loss circuits in general. Q values for typi-
cal planar inductors on a bulk process range from 5 to 10.

The number of turns n required to achieve some inductance L if
the wire pitch, in turns per meter, is P = 1/2(W + S), is [Lee98]

(3.4)

where 0 = 1.2 × 10–6 H/m is the permeability of free space. Figure 3.25
has n = 1.75 turns. Higher-quality inductors can also be manufactured
using bond wires between I/O pads. The inductance of a wire of length l
and radius r is approximately

 (3.5)

or about 1 nH/mm for standard 1 mil (25 m) bond wires.

a

a b

Dummy Finger Dummy Finger

b

FIGURE 3.24 Resistor layout

n
LP

0

3

L
l l

r
0

2
2

0 75ln .

CR

L

a b

a b

p p

Rs

Cs

CRp p

(a)

(b)

FIGURE 3.25 Typical spiral inductor and
equivalent circuit [Rotella02]

Chapter 3 CMOS Processing Technology126

Reduction in Q occurs because of the resistive loss in the conductors used to build the
inductor (Rs), and the eddy current loss in the resistive silicon substrate (Rp). In an effort
to increase Q, designers have resorted to removing the substrate below the inductor using
MEMS techniques [Yoon02]. The easiest way to improve the Q of monolithic inductors is
to increase the thickness of the top-level metal. The Q can also be improved by using a
patterned ground shield in polysilicon under the inductor to decrease substrate losses.

3.4.3.4 Transmission Lines A transmission line can be used on a chip to provide a known
impedance wire. Two basic kinds of transmission lines are commonly used: microstrips and
coplanar waveguides.

A microstrip transmission line, as shown in Figure 3.26(a), is composed of a wire of
width w and thickness t placed over a ground plane and separated by a dielectric of height
h and dielectric constant k. In the chip case, the wire might be the top level of metalliza-
tion and the ground plane the next metal layer down.

A coplanar waveguide does not require a sublayer ground plane and is shown in Fig-
ure 3.26(b). It consists of a wire of width w spaced s on each side from coplanar ground
wires. The reader is referred to [Wadell91] for detailed design equations.

3.4.3.5 Bipolar Transistors Bipolar transistors were mentioned previously in our discus-
sion of SiGe process options. Both npn and pnp bipolar transistors can be added to a
CMOS process, which is then called a BiCMOS process. These processes tend to be used
for specialized analog or high-voltage circuits. In a regular n-well process, a parasitic verti-
cal pnp transistor is present that can be used for circuits such as bandgap voltage refer-
ences. This transistor is shown in Figure 3.27 with the p-substrate collector, the n-well
base, and the p-diffusion emitter. Both process cross-section and layout are shown. This
transistor, in conjunction with a parasitic npn, is the cause of latchup (see Section 7.3.6).

3.4.3.6 Embedded DRAM Dynamic RAM (DRAM) uses a single transistor and a capaci-
tor to store a bit of information. It is about five times denser than static RAM (SRAM)
conventionally used on CMOS logic chips, so it can reduce the size of a chip containing
large amounts of memory. DRAM was conventionally manufactured on specialized pro-
cesses that produced low-performance logic transistors. DRAM requires specialized struc-
tures to build capacitors in a small area. One common structure is a trench, which is etched

w

h

t

t

(a)

(b)

s w

h

FIGURE 3.26 Microstrip and coplanar waveguide

3.4 CMOS Process Enhancements 127

down into the substrate. Some recent processes have introduced compact capacitor struc-
tures for building embedded DRAM alongside high-performance logic. Section 12.3 dis-
cusses DRAM in more depth.

3.4.3.7 Non-Volatile Memory Non-volatile memory (NVM) retains its state when the
power is removed from the circuit. The simplest NVM is a mask-programmed ROM cell
(see Section 12.4). This type of NVM is not reprogrammable or programmable after the
device is manufactured. A one-time programmable (OTP) memory can be implemented
using a fuse constructed of a thin piece of metal through which is passed a current that
vaporizes the metal by exceeding the current density in the wire. The first reprogrammable
memories used a stacked polysilicon gate structure and were programmed by applying a
high voltage to the device in a manner that caused Fowler-Nordheim tunneling to store a
charge on a floating gate. The whole memory could be erased by exposing it to UV light
that knocked the charge off the gate. These memories evolved to electrically erasable mem-
ories, which are today represented by Flash memory.

A typical Flash memory transistor is shown in Figure 3.28 [She02]. The source and
drain structures can vary considerably to allow for high-voltage operation, but the dual-
gate structure is fairly common. The gate structure is a stacked configuration commencing
with a thin tunnel oxide or nitride. A floating polysilicon gate sits on top of this oxide and
a conventional gate oxide is placed on top of the floating gate. Finally, a polysilicon control
gate is placed on top of the gate oxide. The operation of the cell is also shown in Figure

n well

p substrate p substratep+ substrate Contact

n well

p+ diode

n+ well
Contact

CollectorBaseEmitter

Cross Section Representative Layout

Collector

Emitter

Base

p+ diffusion n+ p+

FIGURE 3.27 Vertical pnp bipolar transistor

Control Gate

Floating Gate
Gate Oxide

Tunnel Oxide

p substrate
n well
p well

0 V 1.2 V

0 V

0 V

Normal
Operation

Floating 1.2 V

20 V

0 V

Program

Floating Floating

0 V

20 V

Deprogram

FIGURE 3.28 Flash memory construction and operation

Chapter 3 CMOS Processing Technology128

3.28. In normal operation, the floating gate determines whether or not the transistor is
conducting. To program the cell, the source is left floating and the control gate is raised to
approximately 20 V (using an on-chip voltage multiplier). This causes electrons to tunnel
into the floating gate, and thus program it. To deprogram a cell, the drain and source are
left floating and the substrate (or well) is connected to 20 V. The electrons stored on the
floating gate tunnel away, leaving the gate in an unprogrammed state.

3.4.3.8 Fuses and Antifuses During manufacturing, fuses can be blown with a high cur-
rent or zapped by a laser. In the latter case, an area is normally left in the passivation oxide
to allow the laser direct access to the metal link that is to be cut. Figure 3.29 shows the lay-
out of a metal fuse.

Laser-blown fuses are large and the blow process can damage adjacent devices. Elec-
tronic fuses are structures whose characteristics can be nondestructively altered by applying
a high current. For example, IBM eFUSEs are narrow polysilicon wires silicided with

cobalt. The resistance is initially about 200 . If a programming current of
10–15 mA is applied for 200 s, the cobalt will migrate to the anode, as shown
in Figure 3.30. This raises the resistance by an order of magnitude. Simple
sense circuits are used to detect the state of the eFUSE. IBM uses fuses for
chip serial numbers, thermal sensor calibration, and to reconfigure defective
components [Rohrer05, Rizzolo07].

An antifuse is a similar device that initially has a high resistivity but can
become low resistance when a programming voltage is applied. This device
requires special processing and is used in programmable logic devices (see Sec-
tion 12.7).

3.4.3.9 Microelectromechanical Systems (MEMS) Semiconductor processes
and especially CMOS processes have been used to construct tiny mechanical
systems monolithically. A typical device is the well-known air-bag sensor,
which is a small accelerometer consisting of an air bridge capacitor that can
detect sudden changes in acceleration when co-integrated with some condi-
tioning electronics. MEMS micromirrors on torsional hinges are used in inex-
pensive, high-resolution digital light projectors. Structures such as cantilevers,
mechanical resonators, and even micromotors have been built. A full discus-
sion of MEMS is beyond the scope of this book, but further material can be
found in texts such as [Maluf04].

3.4.3.10 Integrated Photonics Although silicon is opaque at visible wave-
lengths, it is transparent in the infrared range used in optical fibers. Semicon-
ductor photonic components are rapidly evolving. Components compatible
with a conventional CMOS process include waveguides, modulators, and
photodetectors [Salib04, Young10]. A key missing component is an optical
source, such as a laser. However, just as VDD is generated off-chip from a DC
power supply, light can be generated off-chip and brought onto the chip
through an optical fiber. Figure 3.31 shows a holographic lens used to couple
an optical fiber to an on-chip waveguide [Huang06]. Integrated photonics
shows particular promise for optical transceivers to replace copper wires in
high-speed networks.

Fuse

Metal Track

FIGURE 3.29
A typical metal fuse

Intact Blown

FIGURE 3.30 eFUSE (© IEEE 2005.)

FIGURE 3.31 Optical waveguide and holo-
graphic lens integrated with a 130 nm CMOS
process (© IEEE 2006.)

3.4 CMOS Process Enhancements 129

3.4.3.11 Three-Dimensional Integrated Circuits 3D ICs contain multiple layers of
devices. Stacking transistors in layers can reduce wire lengths, improving speed and power.
It also can permit heterogeneous technologies to be combined in one package; for exam-
ple, logic, memory, and analog/RF chips can be stacked into one package.

IBM has described a process in which 200 mm wafers are ground down to a remark-
able 20 m thickness after fabrication [Topol06]. They are aligned to 1 m tolerance, and
then one is bonded on top of another using oxide-fusion or copper bonding. Tall skinny
through-silicon vias (TSVs) between the wafers are etched and metallized;
the aspect ratio of the vias and the thickness of the wafers sets the density
of contacts between wafers. Densities of 104 TSVs/mm2 or more can pres-
ently be achieved. Some of the challenges in 3D integration include wafer
bowing, testing layers before they are bonded, and managing cooling and
power delivery. Figure 3.32 shows two wafers bonded together. The bottom
wafer has four levels of metal and the top wafer has two levels. The 8- m
wide landing pad on the top metal layer of the bottom wafer provides toler-
ances for misalignment with the 3D vias protruding from beneath the top
wafer.

3D ICs are starting to move from research into production [Emma08].
An initial application is to stack multiple memory chips to provide a higher
capacity in a standard form factor.

3.4.4 Beyond Conventional CMOS
A major problem with scaling bulk transistors is the subthreshold leakage from drain to
source caused by the inability of the gate to turn off the channel completely. This can be
improved by a gate structure where the gate is placed on two, three, or four sides of the
channel to gain better control over the charge in the channel. A promising structure solves
the problem by forming a vertical channel and constructing the gate in a pincer-like
arrangement around three sides. These devices have been given the generic name “finfets”
because the source/drain regions form fins on the silicon surface [Hisamoto98]. Figure
3.33(a) shows a 3D view of a finfet, while Figure 3.33(b) shows the cross-section and
Figure 3.33(c) shows the top view. The gate wraps around three sides of the vertical

Gate

Gate Oxide

Source
Drain

BOX

Source

Drain

Gate

Top View

Cross Section

(a) (b) (c)

L

Source

Drain

Gate Oxide

w

Gate

FIGURE 3.33 Finfet structure

FIGURE 3.32 Scanning electron micrograph
of 3-dimensional integration of two wafers
(Reprinted from [Koester08]. Courtesy of
International Business Machines Corporation.
Unauthorized use not permitted.)

Chapter 3 CMOS Processing Technology130

source/drain fins. The width of the device is defined by the height of the fin, so
wide devices are constructed by paralleling fins. Figure 3.34 shows a micrograph of
a prototype finfet that Intel calls a trigate transistor [Kavalleros06].

Compounds from groups III and V of the periodic table, such as GaAs, offer
electron mobilities up to 30 times higher than silicon. Such III-V materials have
been research topics for decades. GaAs was once used for very high frequency
applications, but has largely been replaced by advanced CMOS processes. How-
ever, III-V materials might be integrated into CMOS some day in the future.

Nanotechnology is presently a hot research area seeking alternative structures
to replace CMOS when conventional scaling finally runs out of steam. Little obvi-
ous progress in radical new device structures has been made since the previous edi-
tion of the book, but conventional sub-100 nm CMOS transistors are now being
called nanotechnology! Alternative technologies have a large hurdle to overcome
competing with the hundreds of billions of dollars that have been invested in
advancing CMOS over four decades.

Carbon nanotubes are one nanotechnology that have been used to demonstrate tran-
sistor behavior and build inverters [Liu01]. Nanotubes are cylinders with a diameter of a
few nanometers. They are of interest because the nanotube is smaller than the predicted
endpoint for CMOS gate lengths, and because the nanotubes offer high mobility. A theo-
retical nanotube transistor is shown in Figure 3.35 [Wong03]. Presently, the speeds are
quite slow and the manufacturing techniques are limited, but they may be of interest in the
future [Raychowdhury07, Patil09].

3.5 Technology-Related CAD Issues
The mask database is the interface between the semiconductor manufacturer and the chip
designer. Two basic checks have to be completed to ensure that this description can be
turned into a working chip. First, the specified geometric design rules must be obeyed.
Second, the interrelationship of the masks must, upon passing through the manufacturing

FIGURE 3.35 Carbon nanotube transistor (© IEEE 2003.)

FIGURE 3.34 Trigate transistor
(Reprinted with permission of Intel
Corporation.)

3.5 Technology-Related CAD Issues 131

process, produce the correct interconnected set of circuit elements. To check these two
requirements, two basic CAD tools are required: a Design Rule Check (DRC) program and
a mask circuit extraction program. The most common approach to implementing these
tools is a set of subprograms that perform general geometry operations. A particular set of
DRC rules or extraction rules for a given CMOS process (or any semiconductor process)
defines the operations that must be performed on each mask and the inter-mask checks
that must be completed. Accompanied by a written description, these run sets are usually
the defining specification for a process.

In this section, we will examine a hypothetical DRC and extraction system to illus-
trate the nature of these run sets.

3.5.1 Design Rule Checking (DRC)
Although we can design the physical layout in a certain set of mask layers, the actual
masks used in fabrication can be derived from the original specification. Similarly, when
we want a program to determine what we have designed by examining the interrelation-
ship of the various mask layers, it may be necessary to determine various logical combina-
tions between masks.

To examine these concepts, let us posit the existence of the following functions
(loosely based on the Cadence DRACULA DRC program), which we will apply to a geo-
metric database (i.e., rectangles, polygons, and paths):

AND layer1 layer2 -> layer3
ANDs layer1 and layer2 together to produce layer3
(i.e., the intersection of the two input mask descriptions)

OR layer1 layer2 -> layer3
ORs layer1 and layer2 together to produce layer3
(i.e., the union of the two input mask descriptions)

NOT layer1 layer2 -> layer3
Subtracts layer2 from layer1 to produce layer3
(i.e., the difference of the two input mask descriptions)

WIDTH layer > dimension -> layer3
Checks that all geometry on layer is larger than dimension
Any geometry that is not is placed in layer3

SPACE layer > dimension -> layer3
Checks that all geometry on layer is spaced further than dimension
Any geometry that is not is placed in layer3

The following layers will be assumed as input:

nwell
active
p-select
n-select
poly
poly-contact
active-contact
metal

Chapter 3 CMOS Processing Technology132

Typically, useful sublayers are generated initially. First, the four kinds of active area
are isolated. The rule set to accomplish this is as follows:

NOT all nwell -> substrate
AND nwell active -> nwell-active
NOT active nwell -> pwell-active
AND nwell-active p-select -> pdiff
AND nwell-active n-select -> vddn
AND pwell-active n-select -> ndiff
AND pwell-active p-select -> gndp

In the above specification, a number of new layers have been designated. For instance,
the first rule states that wherever nwell is absent, a layer called substrate exists. The second
rule states that all active areas within the nwell are nwell-active. A combination of nwell-
active and p-select or n-select yields pdiff (p diffusion) or vddn (well tap).

To find the transistors, the following rule set is used:

AND poly ndiff -> ngates
AND poly pdiff -> pgates

The first rule states that the combination of poly and ndiff yields the ngates region—
all of the n-transistor gates.

Typical design rule checks (DRC) might include the following:

WIDTH metal < 0.13 -> metal-width-error
SPACE metal < 0.13 -> metal-space-error

For instance, the first rule determines if any metal is narrower than 0.13 m and
places the errors in the metal-width-error layer. This layer might be interactively displayed
to highlight the errors.

3.5.2 Circuit Extraction
Now imagine that we want to determine the electrical connectivity of a mask database.
The following commands are required:

CONNECT layer1 layer2
Electrically connect layer1 and layer2.

MOS name drain-layer gate-layer source-layer substrate-layer
Define an MOS transistor in terms of the component terminal layers. (This is, admit-
tedly, a little bit of magic.)

The connections between layers can be specified as follows:

CONNECT active-contact pdiff
CONNECT active-contact ndiff
CONNECT active-contact vddn
CONNECT active-contact gndp
CONNECT active-contact metal
CONNECT gndp substrate
CONNECT vddn nwell
CONNECT poly-contact poly
CONNECT poly-contact metal

The connections between the diffusions and metal are specified by the first seven
statements. The last two statements specify how metal is connected to poly.

3.6 Manufacturing Issues 133

Finally, the active devices are specified in terms of the layers that we have derived:

MOS nmos ndiff ngates ndiff substrate
MOS pmos pdiff pgates pdiff nwell

An output statement might then be used to output the extracted transistors in some
netlist format (i.e., SPICE format). The extracted netlist is often used to compare the lay-
out against the intended schematic.

It is important to realize that the above run set is manually generated. The data you
extract from such a program is only as good as the input. For instance, if parasitic routing
capacitances are required, then each layer interaction must be coded. If parasitic resistance
is important in determining circuit performance, it also must be specifically included in
the extraction run set.

3.6 Manufacturing Issues
As processes have evolved, various rules and guidelines have emerged that reflect the com-
plexity of the processing. These rules are often called Design for Manufacturability (DFM).

3.6.1 Antenna Rules
When a metal wire contacted to a transistor gate is plasma-etched, it can charge up to a
voltage sufficient to zap the thin gate oxides. This is called plasma-induced gate-oxide dam-
age, or simply the antenna effect. It can increase the gate leakage, change the threshold
voltage, and reduce the life expectancy of a transistor. Longer wires accumulate more
charge and are more likely to damage the gates.

During the high-temperature plasma etch process, the diodes formed by source and
drain diffusions can conduct significant amounts of current. These diodes bleed off charge
from wires before gate oxide is damaged.

Antenna rules specify the maximum area of metal that can be connected to a gate
without a source or drain to act as a discharge element. Larger gates can withstand more
charge buildup. The design rules normally define the maximum ratio of metal area to gate
area such that charge on the metal will not damage the gate. The ratios can vary from
100:1 to 5000:1 depending on the thickness of the gate oxide (and hence breakdown volt-
age) of the transistor in question. Higher ratios apply to thicker gate oxide transistors
(i.e., 3.3 V I/O transistors).

Figure 3.36 shows an antenna rule violation and two ways to fix it. In Figure 3.36(a),
a long metal1 line is connected to a transistor gate. It has no connection to diffusion until
metal2 is formed, so the gate may be damaged during the metal1 plasma etch. In Figure
3.36(b), the metal1 line is interrupted with a jumper to metal2. This reduces the amount
of charge that could zap the gate during the metal1 etch and solves the problem. In Figure
3.36(c), an antenna diode is added, providing a discharge path during the etch. The diode
is reverse-biased during normal operation and thus does not disturb circuit function
(except for the area and capacitance that it contributes). Note that the problem could also
have been solved by making the gate wider.

Chapter 3 CMOS Processing Technology134

For circuits requiring good matching, such as analog and memory cells, transistor
gates should connect directly to diffusion with a short segment of metal1 to avoid gate
damage that could introduce mismatches.

3.6.2 Layer Density Rules
Another set of rules that pertain to advanced processes are layer density rules, which spec-
ify a minimum and maximum density of a particular layer within a specified area. Etch
rates have some sensitivity to the amount of material that must be removed. For example,
if polysilicon density were too high or too low, transistor gates might end up over- or
under-etched, resulting in channel-length variations. Similarly, the CMP process may
cause dishing (excessive removal) of copper when the density is not uniform.

To prevent these issues, a metal layer might be required to have 30% minimum and
70% maximum density within a 100 m by 100 m area. For digital circuits, these density
levels are normally reached with routine routing unless empty spaces exist. Analog and RF
circuits, on the other hand, are almost by definition sparse. Thus, diffusion, polysilicon,
and metal layers may have to be added manually or by a fill program after design has been
completed. The fill can be grounded or left floating. Floating fill contributes lower total
capacitance but more coupling capacitance to nearby wires. Grounded fill requires routing
the ground net to the fill structures. Clever fill patterns such as staggered rectangles, plus-
sign patterns, or diamonds result in lower and more predictable capacitance than do sim-
ple geometrical grids [Kahng08]. Designers must be aware of the fill so that it does not
introduce unexpected parasitic capacitance to nearby wires.

3.6.3 Resolution Enhancement Rules
Some resolution enhancement techniques impose further design rules. For example, polysil-
icon typically uses the narrowest lines and thus needs the most enhancement. This can be
simplest if polysilicon gates are only drawn in a single orientation (horizontal or vertical).
Using a single orientation also reduces systematic process variability. Avoid small jogs and
notches (those less than the minimum layer width), because such notches can interfere with
proper OPC analysis.

metal2 Long metal1 connected to gate can cause damage.

Add metal2 jumper to fix problem.

Add diode to fix problem.

metal1

metal2
metal1

metal2
metal1

Gatediffusion

Gatediffusion

(a)

(b)

(c)

FIGURE 3.36 Antenna rule violation and fixes

3.6 Manufacturing Issues 135

The design community is presently debating a move toward restrictive design rules to
facilitate RET and reduce manufacturing variability by limiting designers to a smaller set
of uniform layout features. These rules might come at the expense of greater area. For
example, Intel introduced restrictive design rules for polysilicon in the 45 nm process to
control variation and facilitate 193 nm double-patterning lithography [Webb08]. Under
these rules, polysilicon is limited to one pitch and direction in layout. This also simplified
contact and metal1 rules: the contact pitch is the same as the gate pitch, and metal1 paral-
lel to the gates also has the same pitch. Wide poly pads for contacts and orthogonal poly-
silicon routing were eliminated by introducing a trench contact suitable for local
interconnect. Intel found that the restrictive rules did not impact standard cell density and
that excellent yield is achieved.

3.6.4 Metal Slotting Rules
Some processes have special rules requiring that wide (e.g. > 10–40 m) metal wires have
slots. Slots are long slits, on the order of 3 m wide, in the wire running parallel to the
direction of current flow, as shown in Figure 3.37. They provide stress relief, help keep the
wire in place, and reduce the risk of electromigration failure (see Section 7.3.3.1). Design
rules vary widely between manufacturers.

3.6.5 Yield Enhancement Guidelines
To improve yield, some processes recommend increasing certain widths and spacings where
they do not impact area or performance. For example, increasing the polysilicon gate exten-
sion slightly reduces the risk of transistor failures from poly/diffusion mask misalignment.
Increasing space between metal lines where possible reduces the risk of shorts and also
reduces wire capacitance. Other good practices to improve yield include the following:

� Space out wires to reduce risk of short circuits and reduce capacitance.
� Use non-minimum-width wires to reduce risk of open circuits and to reduce

resistance.
� Use at least two vias for every connection to avoid open circuits if one via is

malformed, and to reduce electromigration wearout.
� Surround contacts and vias by landing pads with more than the minimum overlap

to reduce resistance variation and open circuits caused by misaligned contacts.
� Use wider-than-minimum transistors; minimum-width transistors are subject to

greater variability and tend not to perform as well.
� Avoid non-rectangular shapes such as 45-degree angles and circles. For specialized

circuits such as RAMs that strongly benefit from 45-degree angles, verify masks
after optical proximity correction analysis.

� Place dummy transistors or cells at the edge of arrays and sensitive circuits to
improve uniformity and matching.

� If it looks nice, it will work better.

50 m

FIGURE 3.37 Slots in
wide metal power bus

Chapter 3 CMOS Processing Technology136

3.7 Pitfalls and Fallacies
Targeting a bleeding-edge process
There is a fine balance when you are deciding whether or not to move to a new process for a

new design. On the one hand, you are tempted by increased density and speed. On the other

hand, support for the new process can initially be expensive (becoming familiar with process

rules, CAD tool scripts, porting analog and RF designs, locating logic libraries, etc.). In addition,

CMOS foundries frequently tune their processes in the first few months of production, and

often yield improvement steps can reflect back to design rule changes that impact designs late

in their tapeout schedule. For this reason, it is frequently prudent not to jump immediately

into a new process when it becomes available. On the other hand, if you are limited in speed

or some other attribute that is solved by the new process, then you don’t have much choice

but to bite the bullet.

Using lambda design rules on commercial designs
Lambda rules have been used in this text for ease of explanation and consistency. They are

usable for class designs. However, they are not very useful for production designs for deep sub-

micron processes. Of particular concern are the metal width and spacing rules, which are too

conservative for most production processes.

Failing to account for the parasitic effects of metal fill
With area density rules, particularly in metal, most design flows include an automatic fill step

to achieve the correct metal density. Particularly in analog and RF circuits, it is important to

either exclude the automatic fill operation from that area or check circuit performance after

the fill by completing a full parasitic extract and rerunning the verification simulation scripts.

Failing to include process calibration test structures
 In the discussion on scribe line structures, it was mentioned that test structures are frequently

inserted here by the silicon manufacturer. Documentation is often unavailable, so it is prudent

for designers (particularly in academic designs, which receive less support from a foundry) to

include their own test structures such as transistors or ring oscillators. This allows designers

to calibrate the silicon against simulation models.

Waiving design rules
Sometimes it is tempting to ignore a design rule when you are certain it does not apply. For

example, consider two wires separated by only 2 . This violates a design rule because the

wires might short together during manufacturing. If the wires are actually connected else-

where, one might ignore the rule because further shorting is harmless. However, it is possible

that the “antifeature” between the wires would produce a narrow strip of photoresist that

could break off and float around during manufacturing, damaging some other structure. More-

over, even if the rule violation is safe, keeping track of all the legitimate exceptions is too much

work, especially on a large design. It is better to simply fix the design rule error.

Placing cute logos on a chip
Designers have a tradition of hiding their initials on the chip or embedding cute logos in an un-

used corner of the die. Some automatic wafer inspection tools find that the logos look more

like a spec of dust than a legitimate chip structure and mark all of the chips as defective! Some

companies now ban the inclusion of layout that is not essential to the operation of the device.

Others require placing the logo in the corner of the chip and covering it with a special

pseudolayer called LOGO to tell RET and wafer inspection tools to ignore the logo.

Logos on the image sensor for
the Spirit Mars rover
(Reprinted from Molecular
Expressions Silicon Zoo,
micro.magnet.fsu.edu/
creatures, with permis-
sion of Michael Davidson.)

3.8 Historical Perspective 137

3.8 Historical Perspective
In the first days of integrated circuits, layout editors and design rule checkers were humans
with knives and magnifying lenses. [Volk01] tells a captivating story of design at Intel in
the early 1970s. Mask designers drew layout with sharp colored pencils on very large
sheets of Mylar graph paper, as shown in Figure 3.38(a). Engineers and technicians then
scrutinized the drawings to see if all of the design rules were satisfied and if the connec-
tions matched the schematic. Most chips at the time were probably manufactured with
minor design rule errors, but correct wiring was essential. For example, two engineers each
checked all 20,000 transistors on the 8086 in 1977 by hand. Both found 19 of the same 20
errors, giving confidence that the design was correct.

Technicians working at a light table then cut each level of layout onto sheets of ruby-
lith to make the masks, as shown in Figure 3.38(b). Rubylith is a two-layered material
with a base of heavy transparent Mylar and a thin film of red cellophane-like material. The
red film was then peeled away where transistors or wires should be formed. The designer
and technician spent days inspecting the rubylith for peeling errors and unintended cuts.
The sheets had to be handled with great care to avoid rubbing off pieces. Corrections were
performed with a surgical scalpel and metal ruler to add new wires, or with red tape to
remove objects. The final result was checked with a 7 times magnifying glass. Finally, the
rubylith sheets were sent to a mask vendor to be optically reduced to form the masks.
Despite all this care, the initial version of Intel’s first product, the 3101 64-bit RAM, was
actually a 63-bit RAM because of an error peeling the rubylith. Designers today still gripe
at their tools, but the industry has come a long way.

Advances in semiconductor devices are usually presented at the International Electron
Devices Meeting (IEDM). Table 3.2 summarizes key characteristics from Intel and IBM.

(a) (b)

FIGURE 3.38 Hand-drawn layout: (a) standard cell, (b) cutting patterns onto rubylith (Reprinted from [Volk01]
with permission of Intel Corporation.)

Chapter 3 CMOS Processing Technology138

Process development has become so expensive that IBM has formed the Common Plat-
form alliance with partners including Chartered Semiconductor, Samsung, Infineon, and
STMicro, to share the R&D costs. IBM offers both SOI and bulk processes; Table 3.2
focuses on their SOI devices that have better Idsat / Ioff ratios. All of the processes in this
table are considered high-performance processes that focus on a high Idsat. Many manufac-
turers also offer low-power processes with higher threshold voltages and thicker oxides to
reduce leakage, especially in battery-powered communications devices.

The transistor characteristics are listed for low-Vt transistors. Since the 130 nm gener-
ation, nearly all processes have offered a regular-Vt transistor offering an order of magni-
tude lower Ioff at the expense of a 15% reduction in Idsat. Some low-power processes
provide a high-Vt transistor to reduce leakage by another order of magnitude. Most manu-
facturers use a separate implant mask to specify the threshold voltage, but Intel reduces
manufacturing cost by using a slightly (~10%) longer channel length instead, which
increases Vt on account of the short-channel effect [Rusu07].

Reported subthreshold slopes range from 85–100 mV/decade. DIBL coefficients
range from 100–130 mV/V and tend to get larger with technology scaling.

TABLE 3.2 CMOS process characteristics

Manufacturer Intel IBM

Feature Size f nm 250 180 130 90 65 45 32 130 90 65 45

Reference [Bohr96] [Yang98] [Tyagi00] [Thompson02] [Bai04] [Mistry07] [Natarajan08] [Sleight01] [Khare02] [Lee05] [Narasimha06]

VDD V 1.8 1.5 1.3 1.2 1.2 1 1 1.2 1 1 1

Lgate nm 180 140 70 50 35 35 30 60 45 40 35

tox nm 4.1 3 1.5 1.2 1.2 1 0.9 2.3 1.85 1.05 1.15

Idsat-n A/ m 700 940 1170 1449 1460 1360 1550 915 1000 1137 1140

Idsat-p A/ m 320 420 600 725 880 1070 1210 520 480 700 800

Ioff nA/ m 1 3 100 400 100 100 100 100 200 200 200

Strain no no no yes yes yes yes no no yes yes

High-k Gates no no no no no yes yes no no no no

Gate Pitch nm 640 480 336 260 220 160 112.5 325 245 190

Metal1 Pitch nm 640 500 350 220 210 150 112.5 350 245 140

Metal Layers 5 6 6 7 8 9 9 8 10 10 10

Material Al Al Cu Cu Cu Cu Cu Cu Cu Cu Cu

Low-k Dielectric none FSG FSG CDO CDO CDO CDO SiLK SiLK CDO Porous

k 3.9 3.55 3.6 2.9 2.9 2.75 2.4

SRAM Cell Size m2 10.26 5.59 2.09 1 0.57 0.346 0.171 1.8 0.99 0.65 0.37

 139

Summary
CMOS process options and directions can greatly influence design decisions. Frequently,
the combination of performance and cost possibilities in a new process can provide new
product opportunities that were not available previously. Similarly, venerable processes can
offer good opportunities with the right product.

One issue that has to be kept in mind is the ever-increasing cost of having a CMOS
design fabricated in a leading-edge process. Mask cost for critical layers is in the vicinity of
$100K per mask. A full mask set for a 65 nm process can exceed $1M in cost, and the
price has been roughly doubling at each technology node. This in turn is reflected in the
types of design and approaches to design that are employed for CMOS chips of the future.
For instance, making a design programmable so that it can have a longer product life is a
good first start. Chapter 14 covers these approaches in depth.

For more advanced reading on silicon processing, consult textbooks such as [Wolf00].

Exercises
3.1 A 248 nm UV step and scan machine costs $10M and can produce 80 300 mm

diameter, 90 nm node wafers per hour. A 193 nm UV step and scan machine costs
$40M and can process 20 300 mm diameter, 50 nm node wafers per hour. If the
machines have a depreciation period of four years, what is the difference in the cost
per chip for a chip that occupies 50 square mm at 90 nm resolution if the stepper is
used 10 times per process run for the critical layers?

3.2 If the gate oxide thickness in a SiO2-based structure is 2 nm, what would be the
thickness of an HfO2-based dielectric providing the same capacitance?

3.3 Explain the difference between a polycide and a salicide CMOS process. Which
would be likely to have higher performance and why?

3.4 Draw the layout for a pMOS transistor in an n-well process that has active, p-select,
n-select, polysilicon, contact, and metal1 masks. Include the well contact to VDD.

3.5 What is the lowest resistance metal for interconnect? Why isn’t it used?

3.6 Calculate the minimum contacted pitch as shown in Figure 3.39 for metal1 in terms
of using the SUBM rules. Is there a wiring strategy that can reduce this pitch?

Contacted Pitch

FIGURE 3.39 Contacted metal pitch

Exercises

Chapter 3 CMOS Processing Technology140

3.7 Using the SUBM rules, calculate the minimum uncontacted and contacted transis-
tor pitch, as shown in Figure 3.40.

3.8 Using Figure 3.41 and the SUBM design rules, calculate the minimum n to p pitch
and the minimum inverter height with and without the poly contact to the gate (in). If
an SOI process has 2 spacing between n and p diffusion, to what are the two pitches
reduced?

3.9 Design a metal6 fuse ROM cell in a process where the minimum metal width is 0.5
m and the maximum current density is 2 mA/ m. A fuse current of less than 10

mA is desired.

Uncontacted Transistor Pitch

Contacted Transistor Pitch

FIGURE 3.40 Uncontacted and
contacted transistor pitch

M
n

m
um

n to p P
tch

Minimum
n transistor
Width

Minimum
p transistor
Width M

n
m

um
Inverter H

e
ght

outin

GND

VDD

FIGURE 3.41 Minimum inverter height

4

141

Delay

4.1 Introduction
In Chapter 1 we learned how to make chips that work. Now we move on to making chips
that work well. The two most common metrics for a good chip are speed and power, dis-
cussed in this chapter and Chapter 5, respectively. Delay and power are influenced as
much by the wires as by the transistors, so Chapter 6 delves into interconnect analysis and
design. A chip is of no value if it cannot reliably accomplish its function, so Chapter 7
examines how we achieve robustness in designs.

The most obvious way to characterize a circuit is through simulation, and that will be
the topic of Chapter 8. Unfortunately, simulations only inform us how a particular circuit
behaves, not how to change the circuit to make it better. There are far too many degrees of
freedom in chip design to explore each promising path through simulation (although some
may try). Moreover, if we don’t know approximately what the result of the simulation
should be, we are unlikely to catch the inevitable bugs in our simulation model. Mediocre
engineers rely entirely on computer tools, but outstanding engineers develop their physical
intuition to rapidly predict the behavior of circuits. In this chapter and the next two, we
are primarily concerned with the development of simple models that will assist us in
understanding system performance.

4.1.1 Definitions
We begin with a few definitions illustrated in Figure 4.1:

� Propagation delay time, tpd = maximum time from the
input crossing 50% to the output crossing 50%

� Contamination delay time, tcd = minimum time from the
input crossing 50% to the output crossing 50%

� Rise time, tr = time for a waveform to rise from 20% to
80% of its steady-state value

� Fall time, tf = time for a waveform to fall from 80% to
20% of its steady-state value

� Edge rate, trf = (tr + tf)/2

Intuitively, we know that when an input changes, the output will
retain its old value for at least the contamination delay and take
on its new value in at most the propagation delay. We sometimes

0.0

0.5

0.2

0.8
1.0

0.0

0.5

1.0

Vin

tpdf

tf tr
t

t
tpdr

Vout

FIGURE 4.1 Propagation delay and rise/fall times

Chapter 4 Delay142

differentiate between the delays for the output rising, tpdr /tcdr , and the output falling,
tpdf /tcdf . Rise/fall times are also sometimes called slopes or edge rates. Propagation and con-
tamination delay times are also called max-time and min-time, respectively. The gate that
charges or discharges a node is called the driver and the gates and wire being driven are
called the load. Propagation delay is usually the most relevant value of interest, and is often
simply called delay.

A timing analyzer computes the arrival times, i.e., the latest time at which each node
in a block of logic will switch. The nodes are classified as inputs, outputs, and internal
nodes. The user must specify the arrival time of inputs and the time data is required at the
outputs. The arrival time ai at internal node i depends on the propagation delay of the gate
driving i and the arrival times of the inputs to the gate:

(4.1)

The timing analyzer computes the arrival times at each node and checks that the outputs
arrive by their required time. The slack is the difference between the required and arrival
times. Positive slack means that the circuit meets timing. Negative slack means that the cir-
cuit is not fast enough. Figure 4.2 shows nodes annotated with arrival times. If the outputs
are all required at 200 ps, the circuit has 60 ps of slack.

A practical timing analyzer extends this arrival time model to account for a number of
effects. Arrival times and propagation delays are defined separately for rising and falling
transitions. The delay of a gate may be different from different inputs. Earliest arrival
times can also be computed based on contamination delays. Considering all of these fac-
tors gives a window over which the gate may switch and allows the timing analyzer to ver-
ify that setup and hold times are satisfied at each register.

4.1.2 Timing Optimization
In most designs there will be many logic paths that do not require any conscious effort
when it comes to speed. These paths are already fast enough for the timing goals of the
system. However, there will be a number of critical paths that limit the operating speed of
the system and require attention to timing details. The critical paths can be affected at four
main levels:

� The architectural/microarchitectural level

� The logic level

� The circuit level

� The layout level

a a ti j fanin i j pdi
= { } +()max

I0
a0 = 20 a7 = 60 a8 = 80

a9 = 110
O9

O12

a10 = 90

a11 = 60

a12 = 140

a1 = 30

a2 = 50

a3 = 20
a4 = 20
a5 = 20
a6 = 20

I1
I2

I3
I4
I5
I6

30 20 30

30

40

50

FIGURE 4.2 Arrival time example

4.2 Transient Response 143

The most leverage is achieved with a good microarchitecture. This requires a broad
knowledge of both the algorithms that implement the function and the technology being
targeted, such as how many gate delays fit in a clock cycle, how quickly addition occurs,
how fast memories are accessed, and how long signals take to propagate along a wire.
Trade-offs at the microarchitectural level include the number of pipeline stages, the num-
ber of execution units (parallelism), and the size of memories.

The next level of timing optimization comes at the logic level. Trade-offs include
types of functional blocks (e.g., ripple carry vs. lookahead adders), the number of stages of
gates in the clock cycle, and the fan-in and fan-out of the gates. The transformation from
function to gates and registers can be done by experience, by experimentation, or, most
often, by logic synthesis. Remember, however, that no amount of skillful logic design can
overcome a poor microarchitecture.

Once the logic has been selected, the delay can be tuned at the circuit level by choos-
ing transistor sizes or using other styles of CMOS logic. Finally, delay is dependent on the
layout. The floorplan (either manually or automatically generated) is of great importance
because it determines the wire lengths that can dominate delay. Good cell layouts can also
reduce parasitic capacitance.

Many RTL designers never venture below the microarchitectural level. A common
design practice is to write RTL code, synthesize it (allowing the synthesizer to do the timing
optimizations at the logic, circuit, and placement levels) and check if the results are fast
enough. If they are not, the designer recodes the RTL with more parallelism or pipelining, or
changes the algorithm and repeats until the timing constraints are satisfied. Timing analyzers
are used to check timing closure, i.e., whether the circuit meets all of the timing constraints.
Without an understanding of the lower levels of abstraction where the synthesizer is working,
a designer may have a difficult time achieving timing closure on a challenging system.

This chapter focuses on the logic and circuit optimizations of selecting the number of
stages of logic, the types of gates, and the transistor sizes. We begin by examining the
transient response of an inverter. Using the device models from Chapter 2, we can write
differential equations for voltage as a function of time to calculate delay. Unfortunately,
these equations are too complicated to give much insight, yet too simple to give accurate
results. This chapter focuses on developing simpler models that offer the designer more
intuition. The RC delay model approximates a switching transistor with an effective resis-
tance and provides a way to estimate delay using arithmetic rather than differential equa-
tions. The method of Logical Effort simplifies the model even further and is a powerful
way to evaluate delay in circuits. The chapter ends with a discussion of other delay models
used for timing analysis.

4.2 Transient Response
The most fundamental way to compute delay is to develop a physical model of the circuit
of interest, write a differential equation describing the output voltage as a function of
input voltage and time, and solve the equation. The solution of the differential equation is
called the transient response, and the delay is the time when the output reaches VDD /2.

The differential equation is based on charging or discharging of the capacitances in
the circuit. The circuit takes time to switch because the capacitance cannot change its volt-
age instantaneously. If capacitance C is charged with a current I, the voltage on the capac-
itor varies as:

 (4.2)I C
dV
dt

=

Chapter 4 Delay144

Every real circuit has some capacitance. In an integrated circuit, it typically
consists of the gate capacitance of the load along with the diffusion capacitance of
the driver’s own transistors, as discussed in Section 2.3. As will be explored further
in Section 6.2.2, wires that connect transistors together often contribute the
majority of the capacitance. The transistor current depends on the input (gate)
and output (source/drain) voltages. To illustrate these points, consider computing
the step response of an inverter.

Figure 4.3(a) shows an inverter X1 driving another inverter X2 at the end of a
wire. Suppose a voltage step from 0 to VDD is applied to node A and we wish to
compute the propagation delay, tpdf , through X1, i.e., the delay from the input
step until node B crosses VDD/2.

These capacitances are annotated on Figure 4.3(b). There are diffusion capac-
itances between the drain and body of each transistor and between the source and
body of each transistor: Cdb and Csb . The gate capacitance Cgs of the transistors in
X2 are part of the load. The wire capacitance is also part of the load. The gate
capacitance of the transistors in X1 and the diffusion capacitance of the transistors
in X2 do not matter because they do not connect to node B. The source-to-body
capacitors Csbn1 and Csbp1 have both terminals tied to constant voltages and thus
do not contribute to the switching capacitance. It is also irrelevant whether the
second terminal of each capacitor connects to ground or power because both are
constant supplies, so for the sake of simplicity, we can draw all of the capacitors as
if they are connected to ground. Figure 4.3(c) shows the equivalent circuit dia-
gram in which all the capacitances are lumped into a single Cout.

Before the voltage step is applied, A = 0. N1 is OFF, P1 is ON, and B = VDD.
After the step, A = 1. N1 turns ON and P1 turns OFF and B drops toward 0.

The rate of change of the voltage VB at node B depends on the output capacitance
and on the current through N1:

(4.3)

Suppose the transistors obey the long-channel models. The current depends on
whether N1 is in the linear or saturation regime. The gate is at VDD, the source is at 0, and
the drain is at VB. Thus, Vgs = VDD and Vds = VB. Initially, Vds = VDD > Vgs – Vt , so N1 is in
saturation. As VB falls below VDD – Vt , N 1 enters the linear regime. Substituting
EQ (2.10) and rearranging, we find the differential equation governing VB.

(4.4)

During saturation, the current is constant and VB drops linearly until it reaches
VDD Vt . Thereafter, the differential equation becomes nonlinear. The response can be
computed numerically. The rising output response is computed in an analogous fashion
and is symmetric with the falling response if p = n.

C
dV
dt

IB
dsnout = 1

dV
dt C

V V
V V V

V V
V

B

DD t
B DD t

DD t
B

=

()
>

out

2

2

2
V V V VB B DD t<

(a)

(b)

(c)

X1

P1

N1

X1

P1

P1

N1

X1

N1

N2

P2

X2

A B Ywire

A

Csbn1

Cdbn1

Cdbp1

Csbp1

Cwire

Cgsp2

Cgsn2

B
Cout = Cdbn1 + Cdbp1 +

Cwire +
Cgsn2 + Cgsp2

A

B

FIGURE 4.3 Capacitances for inverter

delay calculations

4.2 Transient Response 145

Example 4.1

Plot the response of the inverter to a step input and determine the
propagation delay. Assume that the nMOS transistor width is
1 m and the output capacitance is 20 fF. Use the following long-
channel model parameter values for a 65-nm process: L = 50 nm,
VDD = 1.0 V, Vt = 0.3 V, tox = 10.5 Å, = 80 cm2/V · s.

SOLUTION: The response is plotted in Figure 4.4. The input, A, rises
at 10 ps. The solid blue line indicates the step response predicted by
the long-channel model. The output, B, initially follows a straight
line, as the saturated nMOS transistor behaves as a constant current
source. B eventually curves as it approaches 0 and the nMOS tran-
sistor enters the linear regime. The propagation delay is 12.5 ps.
The solid black line indicates the step response predicted by
SPICE. The propagation delay is 15.8 ps, which is longer because
the mobility used in the long-channel model didn’t fully account for
velocity saturation and mobility degradation effects. SPICE shows
that B also initially rises momentarily before falling. This effect is called bootstrapping
and will be discussed in Section 4.4.6.6. The dashed black line shows an RC model that
approximates the nMOS transistor as a 1 k resistor when it is ON. The propagation
delay predicted by the RC model matches SPICE fairly well, although the fall time is
overestimated. RC models will be explored further in Section 4.3.

In a real circuit, the input comes from another gate with a nonzero rise/fall time. This
input can be approximated as a ramp with the same rise/fall time. Again, let us consider a
rising ramp and a falling output and examine how the nonzero rise time affects the propa-
gation delay.

Assuming Vtn + |Vtp| < VDD, the ramp response includes three phases, as shown in
Table 4.1. When A starts to rise, N1 remains OFF and B remains at VDD. When A reaches
Vtn , N1 turns ON. It fights P1 and starts to gradually pull B down toward an intermediate
value predicted by the DC circuit response examined in Section 2.5. When A gets close
enough to VDD, P1 turns OFF and B falls to 0 unopposed. Thus, we can write the differ-
ential equations for VB in each phase:

(4.5)

TABLE 4.1 Phases of inverter ramp response

Phase VA N1 P1 VB

1 0 < VA < Vtn OFF ON VDD

2 Vtn < VA < VDD |Vtp| ON ON Intermediate

3 VDD |Vtp| < VA < VDD ON OFF Falling toward 0

Phase 1

Phase 2

Phase

out

V V

dV
dt

I I

C

B DD

B dsp dsn

=

= 1 1

33
out

dV
dt

I
C

B dsn= 1

A

B
 (S

hockley)

B
 (S

P
IC

E
)

B (RC Model)

0.0

0.0

0.5

1.0
(V)

20p 40p 60p 80p
t(s)

FIGURE 4.4
Inverter step response

Chapter 4 Delay146

The currents could be estimated using the long-channel model again, but working out
the full model is tedious and offers little insight. The key observation is that the propagation
delay increases because N1 is not fully ON right away and because it must fight P1 in Phase
2. Section 4.4.6.1 develops a model for how propagation delay increases with rise time.

More complex gates such as NANDs or NORs have transistors in series. Each series
transistor sees a smaller Vds and delivers less current. The current through the transistors
can be found by solving the simultaneous nonlinear differential equations, which again is
best done numerically. If the transistors have the same dimensions and the load is the
same, the delay will increase with the number of series transistors.

This section has shown how to develop a physical model for a circuit, write the differ-
ential equation for the model, and solve the equation to compute delay. The physical mod-
eling shows that the delay increases with the output capacitance and decreases with the
driver current. The differential equations used the long-channel model for transistor cur-
rent, which is inaccurate in modern processes. The equations are also too nonlinear to
solve in closed form, so they have to be solved numerically and give little insight about
delay. Circuit simulators automate this process using more accurate delay equations and
give good predictions of delay, but offer even less insight. The rest of this chapter is
devoted to developing simpler delay models that offer more insight and tolerable accuracy.

4.3 RC Delay Model
RC delay models approximate the nonlinear transistor I-V and C-V characteristics with
an average resistance and capacitance over the switching range of the gate. This approxi-
mation works remarkably well for delay estimation despite its obvious limitations in pre-
dicting detailed analog behavior.

4.3.1 Effective Resistance
The RC delay model treats a transistor as a switch in series with a resistor. The effective
resistance is the ratio of Vds to Ids averaged across the switching interval of interest.

 A unit nMOS transistor is defined to have effective resistance R. The size of the unit
transistor is arbitrary but conventionally refers to a transistor with minimum length and
minimum contacted diffusion width (i.e., 4/2). Alternatively, it may refer to the width of
the nMOS transistor in a minimum-sized inverter in a standard cell library. An nMOS
transistor of k times unit width has resistance R/k because it delivers k times as much cur-
rent. A unit pMOS transistor has greater resistance, generally in the range of 2R–3R,
because of its lower mobility. Throughout this book we will use 2R for examples to keep
arithmetic simple. R is typically on the order of 10 k for a unit transistor. Sections 4.3.7
and 8.4.5 examine how to determine the effective resistance for transistors in a particular
process.

According to the long-channel model, current decreases linearly with channel length
and hence resistance is proportional to L. Moreover, the resistance of two transistors in
series is the sum of the resistances of each transistor (see Exercise 2.2). However, if a tran-
sistor is fully velocity-saturated, current and resistance become independent of channel
length. Real transistors operate somewhere between these two extremes. This also means
that the resistance of transistors in series is somewhat lower than the sum of the resis-
tances, because series transistors see smaller Vds and are less velocity-saturated. The effect
is more pronounced for nMOS transistors than pMOS because of the higher mobility and

4.3 RC Delay Model 147

greater degree of velocity saturation. The simplest approach is to neglect velocity-
saturation for hand calculations, but recognize that series transistors will be somewhat
faster than predicted.

4.3.2 Gate and Diffusion Capacitance
Each transistor also has gate and diffusion capacitance. We define C to be the gate capaci-
tance of a unit transistor of either flavor. A transistor of k times unit width has capacitance
kC. Diffusion capacitance depends on the size of the source/drain region. Using the
approximations from Section 2.3.1, we assume the contacted source or drain of a unit
transistor to also have capacitance of about C. Wider transistors have proportionally
greater diffusion capacitance. Increasing channel length increases gate capacitance propor-
tionally but does not affect diffusion capacitance.

Although capacitances have a nonlinear voltage dependence, we use a single average
value. As discussed in Section 2.3.1, we roughly estimate C for a minimum length transis-
tor to be 1 fF/ m of width. In a 65 nm process with a unit transistor being 0.1 m wide, C
is thus about 0.1 fF.

4.3.3 Equivalent RC Circuits
Figure 4.5 shows equivalent RC circuit models for nMOS and pMOS transis-
tors of width k with contacted diffusion on both source and drain. The pMOS
transistor has approximately twice the resistance of the nMOS transistor
because holes have lower mobility than electrons. The pMOS capacitors are
shown with VDD as their second terminal because the n-well is usually tied
high. However, the behavior of the capacitor from a delay perspective is inde-
pendent of the second terminal voltage so long as it is constant. Hence, we
sometimes draw the second terminal as ground for convenience.

The equivalent circuits for logic gates are assembled from the individual
transistors. Figure 4.6 shows the equivalent circuit for a fanout-of-1 inverter
with negligible wire capacitance. The unit inverters of Figure 4.6(a) are com-
posed from an nMOS transistor of unit size and a pMOS transistor of twice unit

kg

s

d

g

s

d

kC
kC

kC
R/k

kg

s

d

g

s

d

kC

kC

kC

2R/k

FIGURE 4.5
Equivalent circuits for transistors

C

C
R

2C

2C

R

2

1
A

Y

C

2C

6CR
Y

2

1

(a)

(b)

(c)

Y

Nonswitching
capacitances:
irrelevant

Output
capacitances

FIGURE 4.6 Equivalent circuit for an inverter

Chapter 4 Delay148

width to achieve equal rise and fall resistance. Figure 4.6(b) gives an equivalent
circuit, showing the first inverter driving the second inverter’s gate. If the input
A rises, the nMOS transistor will be ON and the pMOS OFF. Figure 4.6(c)
illustrates this case with the switches removed. The capacitors shorted between
two constant supplies are also removed because they are not charged or dis-
charged. The total capacitance on the output Y is 6C.

Example 4.2

Sketch a 3-input NAND gate with transistor widths chosen to achieve
effective rise and fall resistance equal to that of a unit inverter (R). Annotate
the gate with its gate and diffusion capacitances. Assume all diffusion nodes
are contacted. Then sketch equivalent circuits for the falling output transi-
tion and for the worst-case rising output transition.

SOLUTION: Figure 4.7(a) shows such a gate. The three nMOS transistors are
in series so the resistance is three times that of a single transistor. Therefore,
each must be three times unit width to compensate. In other words, each
transistor has resistance R/3 and the series combination has resistance R.
The two pMOS transistors are in parallel. In the worst case (with one of the
inputs low), only one of the pMOS transistors is ON. Therefore, each must
be twice unit width to have resistance R.

Figure 4.7(b) shows the capacitances. Each input presents five units of
gate capacitance to whatever circuit drives that input. Notice that the
capacitors on source diffusions attached to the rails have both terminals
shorted together so they are irrelevant to circuit operation. Figure 4.7(c)
redraws the gate with these capacitances deleted and the remaining capaci-
tances lumped to ground.

Figure 4.7(d) shows the equivalent circuit for the falling output transi-
tion. The output pulls down through the three series nMOS transistors.
Figure 4.7(e) shows the equivalent circuit for the rising output transition. In
the worst case, the upper two inputs are 1 and the bottom one falls to 0.
The output pulls up through a single pMOS transistor. The upper two
nMOS transistors are still on, so the diffusion capacitance between the
series nMOS transistors must also be discharged.

4.3.4 Transient Response
Now, consider applying the RC model to estimate the step response of the
first-order system shown in Figure 4.8. This system is a good model of an
inverter sized for equal rise and fall delays. The system has a transfer function

(4.6)

and a step response

(4.7)

H s
sRC

() =
+

1
1

V t VDD
t

out e() = /

9C

3C

3C3

3

3

222

(c)

5C

5C

5C

2 2 2

3

3

3
3C

3C

3C

3C

2C

2C

2C

2C

2C

2C

(b)

3C

3C

3C

2C 2C 2C

3

3

222

3

(a)

R/3

R/3

R/3

3C

3C

9C

(d)

R/3

R/3

3C

3C

9C

R

(e)

Y

Y

Y

Y Y

Falling Rising

FIGURE 4.7 Equivalent circuits
for a 3-input NAND gate

VDD

R

C

Vout

FIGURE 4.8
First-order RC system

4.3 RC Delay Model 149

where = RC. The propagation delay is the time at which Vout reaches VDD /2, as shown in
Figure 4.9.

tpd = RC ln 2 (4.8)

The factor of ln 2 = 0.69 is cumbersome. The effective resistance R is an empirical
parameter anyway, so it is preferable to incorporate the factor of ln 2 to define a new effec-
tive resistance R = R ln 2. Now the propagation delay is simply R C. For the sake of con-
venience, we usually drop the prime symbols and just write

tpd = RC (4.9)

where the effective resistance R is chosen to give the correct delay.
Figure 4.10 shows a second-order system. R1 and R2 might model the two series

nMOS transistors in a NAND gate or an inverter driving a long wire with non-negligible
resistance. The transfer function is

(4.10)

The function has two real poles and the step response is

(4.11)

with

(4.12)

EQ (4.12) is so complicated that it defeats the purpose of simplifying a CMOS cir-
cuit into an equivalent RC network. However, it can be further approximated as a first-
order system with a single time constant:

H s
s R C R R C s R C R C

() =
+ + +() +

1

1 1 1 1 2 2
2

1 1 2 2

V t VDD

t t

out

e e() = 1 2

1 2

1 2/ /

1 2
1 1 1 2 2

22
1 1

4

1 1
,

* *

* *
=

+ +()
±

+ +()
R C R R C R C

R C

= =R
R
R

C
C
C

* *;2

1

2

1

0 2 3 4
0

0.8

0.6

0.4

0.2

0.5

1

Vout
VDD

t
ln 2

FIGURE 4.9 First-order step response

VDD

R1
Vout

C1

R2

C2

n1

FIGURE 4.10 Second-order
RC system

Chapter 4 Delay150

(4.13)

This approximation works best when one time constant is significantly bigger than
the other [Horowitz84]. For example, if R1 = R2 = R and C1 = C2 = C, then 1 = 2.6 RC,

2 = 0.4 RC, = 3 RC and the second-order response and its first-order approximation are
shown in Figure 4.11. The error in estimated propagation delay from the first-order
approximation is less than 7%. Even in the worst case, where the two time constants are
equal, the error is less than 15%. The single time constant is a bad description of the
behavior of intermediate nodes. For example, the response at n1 cannot be described well
by a single time constant. However, CMOS designers are primarily interested in the delay
to the output of a gate, where the approximation works well. In the next section, we will
see how to find a simple single time constant approximation for general RC tree circuits
using the Elmore delay model.

= + = + +()1 2 1 1 1 2 2R C R R C

t0

1

Second order
Response

First order
Approximation0.2

0.4
0.5
0.6

0.8

Vout
VDD

0 2 3 4

FIGURE 4.11 Comparison of second-order response to first-order
approximation

4.3.5 Elmore Delay
In general, most circuits of interest can be represented as an RC tree, i.e., an RC circuit
with no loops. The root of the tree is the voltage source and the leaves are the capacitors at
the ends of the branches. The Elmore delay model [Elmore48] estimates the delay from a
source switching to one of the leaf nodes changing as the sum over each node i of the
capacitance Ci on the node, multiplied by the effective resistance Ris on the shared path
from the source to the node and the leaf. Application of Elmore delay is best illustrated
through examples.

 (4.14)

Example 4.3

Compute the Elmore delay for Vout in the 2nd order RC system from Figure 4.10.

SOLUTION: The circuit has a source and two nodes. At node n1, the capacitance is C1 and
the resistance to the source is R1. At node Vout, the capacitance is C2 and the resistance
to the source is (R1 + R2). Hence, the Elmore delay is tpd = R1C1 + (R1 + R2)C2, just as
the single time constant predicted in EQ (4.13). Note that the effective resistances
should account for the factor of ln 2.

t R Cpd is i
i

=

4.3 RC Delay Model 151

Example 4.4

Estimate tpd for a unit inverter driving m identical unit inverters.

SOLUTION: Figure 4.12 shows an equivalent circuit for the falling transition. Each load
inverter presents 3C units of gate capacitance, for a total of 3mC. The output node also
sees a capacitance of 3C from the drain diffusions of the driving inverter. This capaci-
tance is called parasitic because it is an undesired side-effect of the need to make the
drain large enough to contact. The parasitic capacitance is independent of the load that
the inverter is driving. Hence, the total capacitance is (3 + 3m)C. The resistance is R, so
the Elmore delay is tpd = (3 + 3m)RC. The equivalent circuit for the rising transition
gives the same results.

 Example 4.5

Repeat Example 4.4 if the driver is w times unit size.

SOLUTION: Figure 4.13 shows the equivalent circuit. The driver transistors are w times as
wide, so the effective resistance decreases by a factor of w . The diffusion capacitance
increases by a factor of w. The Elmore delay is tpd = ((3w + 3m)C)(R/w) = (3 + 3m/w)RC.

Define the fanout of the gate, h, to be the ratio of the load capacitance to the input
capacitance. (Diffusion capacitance is not counted in the fanout.) The load capacitance
is 3mC. The input capacitance is 3wC. Thus, the inverter has a fanout of h = m/w and
the delay can be written as (3 + 3h)RC.

Example 4.6

If a unit transistor has R = 10 k and C = 0.1 fF in a 65 nm process, compute the delay,
in picoseconds, of the inverter in Figure 4.14 with a fanout of h = 4.

SOLUTION: The RC product in the 65 nm process is (10 k)(0.1 fF) = 1 ps. For h = 4,
the delay is (3 + 3h)(1 ps) = 15 ps. This is called the fanout-of-4 (FO4) inverter delay
and is representative of gate delays in a typical circuit. Remember that a picosecond is a
trillionth of a second. The inverter can switch about 66 billion times per second. This
stunning speed partially explains the fantastic capabilities of integrated circuits.

It is often helpful to express delay in a process-independent form so that circuits can
be compared based on topology rather than speed of the manufacturing process. More-
over, with a process-independent measure for delay, knowledge of circuit speeds gained
while working in one process can be carried over to a new process. Observe that the delay
of an ideal fanout-of-1 inverter with no parasitic capacitance is = 3RC 1 [Sutherland99].
We denote the normalized delay d relative to this inverter delay:

(4.15)

1Do not confuse this definition of = 3RC, the delay of a parasitic-free fanout-of-1 inverter, with Mead
and Conway’s definition [Mead80] = RC, the delay of an nMOS transistor driving its own gate, or with
the use of as an arbitrary time constant. For the remainder of this text, = 3RC.

d
tpd=

3mCR
Y

3C

Diffusion/
Parasitic
Cap

Load
Cap

3mCR/w
Y

3wC

Diffusion
Cap

Load
Cap

tpd

FIGURE 4.12 Equivalent

circuit for inverter

FIGURE 4.13 Equivalent
circuit for wider inverter

FIGURE 4.14 Fanout-of-4
(FO4) inverter

Chapter 4 Delay152

Hence, the delay of a fanout-of-h inverter can be written in normalized form as d = h + 1,
assuming that diffusion capacitance approximately equals gate capacitance. An FO4
inverter has a delay of 5 . If diffusion capacitance were slightly higher or lower, the FO4
delay would change by only a small amount. Thus, circuit delay measured in FO4 delays is
nearly constant from one process to another.2

Example 4.7

Estimate tpdf and tpdr for the 3-input NAND gate from Example 4.2 if
the output is loaded with h identical NAND gates.

SOLUTION: Each NAND gate load presents 5 units of capacitance on a
given input. Figure 4.15(a) shows the equivalent circuit including the load
for the falling transition. Node n1 has capacitance 3C and resistance of
R/3 to ground. Node n2 has capacitance 3C and resistance (R/3 + R/3) to
ground. Node Y has capacitance (9 + 5h)C and resistance (R/3 + R/3 +
R/3) to ground. The Elmore delay for the falling output is the sum of
these RC products, tpdf = (3C)(R/3) + (3C)(R/3 + R/3) + ((9 + 5h)C)(R/3
+ R/3 + R/3) = (12 + 5h)RC.

Figure 4.15(b) shows the equivalent circuit for the falling transition. In
the worst case, the two inner inputs are 1 and the outer input falls. Y is pulled up to VDD
through a single pMOS transistor. The ON nMOS transistors contribute parasitic
capacitance that slows the transiton. Node Y has capacitance (9 + 5h)C and resistance R
to the VDD supply. Node n2 has capacitance 3C. The relevant resistance is only R, not
(R + R/3), because the output is being charged only through R. This is what is meant
by the resistance on the shared path from the source (VDD) to the node (n2) and the leaf
(Y). Similarly, node n1 has capacitance 3C and resistance R. Hence, the Elmore delay
for the rising output is tpdr = (15 + 5h)RC. The R/3 resistances do not contribute to this
delay. Indeed, they shield the diffusion capacitances, which don’t have to charge all the
way up before Y rises. Hence, the Elmore delay is conservative and the actual delay is
somewhat faster.

Although the gate has equal resistance pulling up and down, the delays are not quite
equal because of the capacitances on the internal nodes.

Example 4.8

Estimate the contamination delays tcdf and tcdr for the 3-input NAND
gate from Example 4.2 if the output is loaded with h identical NAND
gates.

SOLUTION: The contamination delay is the fastest that the gate might
switch. For the falling transition, the best case is that the bottom two
nMOS transistors are already ON when the top one turns ON. In
such a case, the diffusion capacitances on n1 and n2 have already been
discharged and do not contribute to the delay. Figure 4.16(a) shows
the equivalent circuit and the delay is tcdf = (9 + 5h)RC.

2This assumes that the circuit is dominated by gate delay. The RC delay of long wires does not track well
with the gate delay, as will be explored in Chapter 6.

R/3

R/3

R/3

3C

3C

(9 + 5h)C

(a)

R/3

R/3

3C

3C

R

(b)

Y
Y

(9 + 5h)C

n1

n2

n1

n2

FIGURE 4.15 Equivalent circuits
for loaded gate

R/3

R/3

R/3 (9 + 5h)C

(a)

R

(b)

Y

Y

(9 + 5h)C

n1

n2

RR

FIGURE 4.16 Equivalent circuits
for contamination delay

4.3 RC Delay Model 153

For the rising transition, the best case is that all three pMOS transistors turn on
simultaneously. The nMOS transistors turn OFF, so n1 and n2 are not connected to the
output and do not contribute to delay. The parallel transistors deliver three times as
much current, as shown in Figure 4.16(b), so the delay is tcdr = (3 + (5/3)h)RC.

In all of the Examples, the delay consists of two components. The parasitic delay is the
time for a gate to drive its own internal diffusion capacitance. Boosting the width of the
transistors decreases the resistance but increases the capacitance so the parasitic delay is
ideally independent of the gate size.3 The effort delay depends on the ratio h of external
load capacitance to input capacitance and thus changes with transistor widths. It also
depends on the complexity of the gate. The capacitance ratio is called the fanout or elec-
trical effort and the term indicating gate complexity is called the logical effort. For exam-
ple, an inverter has a delay of d = h + 1, so the parasitic delay is 1 and the logical effort is
also 1. The NAND3 has a worst case delay of d = (5/3)h + 5. Thus, it has a parasitic delay
of 5 and a logical effort of 5/3. These delay components will be explored further in Sec-
tion 4.4.

4.3.6 Layout Dependence of Capacitance
In a good layout, diffusion nodes are shared wherever possible to reduce the diffusion
capacitance. Moreover, the uncontacted diffusion nodes between series transistors are usu-
ally smaller than those that must be contacted. Such uncon-
tacted nodes have less capacitance (see Sections 2.3.3 and
8.4.4), although we will neglect the difference for hand calcu-
lations. A conservative method of estimating capacitances
before layout is to assume uncontacted diffusion between series
transistors and contacted diffusion on all other nodes. How-
ever, a more accurate estimate can be made once the layout is
known.

Example 4.9

Figure 4.17(a) shows a layout of the 3-input NAND gate.
A single drain diffusion region is shared between two of the
pMOS transistors. Estimate the actual diffusion capaci-
tance from the layout.

SOLUTION: Figure 4.17(b) redraws the schematic with these
capacitances lumped to ground. The output node has the
following diffusion capacitances: 3C from the nMOS tran-
sistor drain, 2C from the isolated pMOS transistor drain,
and 2C from a pair of pMOS drains that share a contact.
Thus, the actual diffusion capacitance on the output is 7C,
rather than 9C predicted in Figure 4.15.

3Gates with wider transistors may use layout tricks so the diffusion capacitance increases less than linearly
with width, slightly decreasing the parasitic delay of large gates as discussed in Section 4.3.6.

(a)

Shared
Contacted
Diffusion

Merged
Uncontacted
Diffusion

Isolated
Contacted
Diffusion

7C

3C

3C3

3

3

222

(b)

VDD

GND

FIGURE 4.17 3-input NAND annotated with diffusion
capacitances extracted from the layout

Chapter 4 Delay154

The diffusion capacitance can also be decreased by folding wide transistors.
Figure 4.18(a) shows a conventional layout of a 24/12 inverter. Because a unit (4

) transistor has diffusion capacitance C, the inverter has a total diffusion capaci-
tance of 9C. The folded layout in Figure 4.18(b) constructs each transistor from
two parallel devices of half the width. Observe that the diffusion area has shrunk by
a factor of two, reducing the diffusion capacitance to 4.5C. In general, folded lay-
outs offer lower parasitic delay than unfolded layouts. The folded layout may also fit
better in a standard cell of limited height, and the shorter polysilicon lines have
lower resistance. For these reasons, wide transistors are folded whenever possible.

In some nanometer processes (generally 45 nm and below), transistor gates
are restricted to a limited choice of pitches to improve manufacturability and
reduce variability. For example, the spacing between polysilicon for gates may
always be the contacted transistor pitch, even if no contact is required. Moreover,
using a single standard transistor width may reduce variability.

4.3.7 Determining Effective Resistance
The effective resistance can be determined through simulation or analysis. Sec-
tion 8.4.5 explains the simulation technique, which is most accurate. This sec-
tion, however, offers an analysis that provides more insight into the relationship
of resistance to other parameters.

Recall that the effective resistance is the average value of Vds / Ids of a transis-
tor during a switching event. As mentioned in Section 4.3.4, the resistance is
scaled by a factor of ln 2 so that propagation delay can be written as an RC prod-
uct. For the step response of a rising input, we are interested in the time for the
output to discharge from VDD to VDD / 2 through an nMOS transistor. If the
transistor is sufficiently velocity-saturated that Vdsat < VDD / 2, then the transis-
tor will remain in the saturation region throughout this transition and the cur-
rent is roughly constant at Idsat. In such a case, the effective resistance is

(4.16)

Channel length modulation and DIBL cause the current to decrease
somewhat with Vds in a real transistor, slightly increasing the effective
resistance.

More importantly, the input has a nonzero rise time and we are
interested in the time from when the input rises through VDD / 2
until the output falls through VDD / 2. Assume that the input and
output slopes are equal and that the output starts to fall when the
input passes through VDD / 2. Then, the output will reach VDD / 2
when the input reaches VDD, as shown in Figure 4.19.

Define the transistor current to be IL at the start of the transi-
tion (when Vgs = VDD / 2, Vds = VDD) and IH at the end of the transi-
tion (when Vgs = VDD, Vds = VDD / 2), as shown in Figure 4.20. Then,
the transistor can be approximated during the switching event as a cur-
rent source Ieff that is the average of these two extremes [Na02]:

(4.17)

R
V

V
I

dV
V
I

V

DD V

V
DD

DD

DD

step
dsat dsat

= =ln
/

ln

/

2
2

3 2
4

2

DD

I2 dsat

I
I IH L

eff =
+
2

(a) (b)

A

A
Y

Y

Vin

Vout

tpd

VDD

VDD/2

0

FIGURE 4.18 Layout styles:
(a) conventional, (b) folded

FIGURE 4.19 Propagation delay
with input and output approximated
as ramps

Vin = 1.0

Vin = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

Vout

Ids(μA)

0.0

200

400

600

800

IH

IL

FIGURE 4.20 Approximate switching trajectory

4.4 Linear Delay Model 155

The time for the output to discharge to VDD / 2 is thus:

(4.18)

Equating this to tpd = RC gives

(4.19)

4.4 Linear Delay Model
The RC delay model showed that delay is a linear function of the fanout of a gate. Based
on this observation, designers further simplify delay analysis by characterizing a gate by
the slope and y-intercept of this function. In general, the normalized delay of a gate can be
expressed in units of as

d = f + p (4.20)

p is the parasitic delay inherent to the gate when no load is attached. f is the effort delay or
stage effort that depends on the complexity and fanout of the gate:

f = gh (4.21)

The complexity is represented by the logical effort, g [Sutherland99]. An
inverter is defined to have a logical effort of 1. More complex gates have greater
logical efforts, indicating that they take longer to drive a given fanout. For
example, the logical effort of the 3-input NAND gate from the previous exam-
ple is 5/3. A gate driving h identical copies of itself is said to have a fanout or
electrical effort of h. If the load does not contain identical copies of the gate, the
electrical effort can be computed as

 (4.22)

where Cout is the capacitance of the external load being driven and Cin is the
input capacitance of the gate.4

Figure 4.21 plots normalized delay vs. electrical effort for an idealized
inverter and 3-input NAND gate. The y-intercepts indicate the parasitic delay,
i.e., the delay when the gate drives no load. The slope of the lines is the logical
effort. The inverter has a slope of 1 by definition. The NAND has a slope of 5/3.

The remainder of this section explores how to estimate the logical effort
and parasitic delay and how to use the linear delay model.

4Some board-level designers say a device has a fanout of h when it drives h other devices, even if the other
devices have different capacitances. This definition would not be useful for calculating delay and is best
avoided in VLSI design. The term electrical effort avoids this potential confusion and emphasizes the par-
allels with logical effort.

t
CV

Ipd
DD=

2 eff

R
V

I
V

I I
DD DD

H L

= =
+2 eff

h
C
C

= out

in

Electrical Effort:
h = Cout/Cin

N
or

m
al

iz
ed

 D
el

ay
: d Inverter

3-input
NAND

g = 1
p = 1
d = h + 1

g = 5/3
p = 3
d = (5/3)h + 3

Effort Delay: f

Parasitic Delay: p

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

FIGURE 4.21
Normalized delay vs. fanout

Chapter 4 Delay156

4.4.1 Logical Effort
Logical effort of a gate is defined as the ratio of the input capacitance of the gate to the input
capacitance of an inverter that can deliver the same output current. Equivalently, logical effort
indicates how much worse a gate is at producing output current as compared to an
inverter, given that each input of the gate may only present as much input capacitance as
the inverter.

Logical effort can be measured in simulation from delay vs. fanout plots as the ratio of
the slope of the delay of the gate to the slope of the delay of an inverter, as will be dis-
cussed in Section 8.5.3. Alternatively, it can be estimated by sketching gates. Figure 4.22
shows inverter, 3-input NAND, and 3-input NOR gates with transistor widths chosen to
achieve unit resistance, assuming pMOS transistors have twice the resistance of nMOS
transistors.5 The inverter presents three units of input capacitance. The NAND presents
five units of capacitance on each input, so the logical effort is 5/3. Similarly, the NOR pre-
sents seven units of capacitance, so the logical effort is 7/3. This matches our expectation
that NANDs are better than NORs because NORs have slow pMOS transistors in series.

Table 4.2 lists the logical effort of common gates. The effort tends to increase with
the number of inputs. NAND gates are better than NOR gates because the series transis-
tors are nMOS rather than pMOS. Exclusive-OR gates are particularly costly and have
different logical efforts for different inputs. An interesting case is that multiplexers built
from ganged tristates, as shown in Figure 1.29(b), have a logical effort of 2 independent of
the number of inputs. This might at first seem to imply that very large multiplexers are just
as fast as small ones. However, the parasitic delay does increase with multiplexer size;
hence, it is generally fastest to construct large multiplexers out of trees of 4-input multi-
plexers [Sutherland99].

4.4.2 Parasitic Delay
The parasitic delay of a gate is the delay of the gate when it drives zero load. It can be esti-
mated with RC delay models. A crude method good for hand calculations is to count only
diffusion capacitance on the output node. For example, consider the gates in Figure 4.22,
assuming each transistor on the output node has its own drain diffusion contact. Transis-
tor widths were chosen to give a resistance of R in each gate. The inverter has three units
of diffusion capacitance on the output, so the parasitic delay is 3RC = . In other words,

5This assumption is made throughout the book. Exercises 4.19–4.20 explore the effects of different relative
resistances (see also [Sutherland99]). The overall conclusions do not change very much, so the simple
model is good enough for most hand estimates. A simulator or static timing analyzer should be used when
more accurate results are required.

TABLE 4.2 Logical effort of common gates

Gate Type Number of Inputs

1 2 3 4 n

inverter 1

NAND 4/3 5/3 6/3 (n + 2)/3

NOR 5/3 7/3 9/3 (2n + 1)/3

tristate, multiplexer 2 2 2 2 2

XOR, XNOR 4, 4 6, 12, 6 8, 16, 16, 8

FIGURE 4.22 Logic gates

sized for unit resistance

(a)

(b)

(c)

A Y

A

B

Y

B

C
Y

1

2

1 1

2 2

3

3

6

6

Cin = 3
g = 3/3

Cin = 5
g = 5/3

Cin = 7
g = 7/3

2

3C

6

1

A

4.4 Linear Delay Model 157

the normalized parasitic delay is 1. In general, we will call the normalized parasitic delay
pinv . pinv is the ratio of diffusion capacitance to gate capacitance in a particular process. It
is usually close to 1 and will be considered to be 1 in many examples for simplicity. The
3-input NAND and NOR each have 9 units of diffusion capacitance on the output, so the
parasitic delay is three times as great (3pinv, or simply 3). Table 4.3 estimates the parasitic
delay of common gates. Increasing transistor sizes reduces resistance but increases capaci-
tance correspondingly, so parasitic delay is, on first order, independent of gate size. How-
ever, wider transistors can be folded and often see less than linear increases in internal
wiring parasitic capacitance, so in practice, larger gates tend to have slightly lower parasitic
delay.

This method of estimating parasitic delay is obviously crude. More refined estimates
use the Elmore delay counting internal parasitics, as in Example 4.7, or extract the delays
from simulation. The parasitic delay also depends on the ratio of diffusion capacitance to
gate capacitance. For example, in a silicon-on-insulator process in which diffusion capaci-
tance is much less, the parasitic delays will be lower. While knowing the parasitic delay is
important for accurately estimating gate delay, we will see in Section 4.5 that the best
transistor sizes for a particular circuit are only weakly dependent on parasitic delay. Hence,
crude estimates tend to be sufficient to reach a good circuit design.

Nevertheless, it is important to realize that parasitic delay grows more than linearly
with the number of inputs in a real NAND or NOR circuit. For example, Figure 4.23
shows a model of an n-input NAND gate in which the upper inputs were all 1 and the
bottom input rises. The gate must discharge the diffusion capacitances of all of the inter-
nal nodes as well as the output. The Elmore delay is

 (4.23)

TABLE 4.3 Parasitic delay of common gates

Gate Type Number of Inputs

1 2 3 4 n

inverter 1

NAND 2 3 4 n

NOR 2 3 4 n

tristate, multiplexer 2 4 6 8 2n

t R nC
iR
n

nC
n

n RCpd
i

n

= + = +
=

() ()()3
2

5
21

1 2

n

n

n

n

R/n R/n R/n R/n

nC 3nC

222

3nC

nC

nC

nC
nCnC

FIGURE 4.23 n-input NAND gate parasitic delay

Chapter 4 Delay158

This delay grows quadratically with the number of series transistors n, indicating that
beyond a certain point it is faster to split a large gate into a cascade of two smaller gates.
We will see in Section 4.4.6.5 that the coefficient of the n2 term tends to be even larger in
real circuits than in this simple model because of gate-source capacitance. In practice, it is
rarely advisable to construct a gate with more than four or possibly five series transistors.
When building large fan-in gates, trees of NAND gates are better than NOR gates
because the NANDs have lower logical effort.

4.4.3 Delay in a Logic Gate
Consider two examples of applying the linear delay model to logic gates.

Example 4.10

Use the linear delay model to estimate the delay of the fanout-of-4 (FO4) inverter from
Example 4.6. Assume the inverter is constructed in a 65 nm process with = 3 ps.

SOLUTION: The logical effort of the inverter is g = 1, by definition. The electrical effort is
4 because the load is four gates of equal size. The parasitic delay of an inverter is
pinv 1. The total delay is d = gh + p = 1 × 4 + 1 = 5 in normalized terms, or tpd = 15 ps
in absolute terms.

Often path delays are expressed in terms of FO4 inverter delays. While not all
designers are familiar with the notation, most experienced designers do know the
delay of a fanout-of-4 inverter in the process in which they are working. can be esti-
mated as 0.2 FO4 inverter delays. Even if the ratio of diffusion capacitance to gate
capacitance changes so pinv = 0.8 or 1.2 rather than 1, the FO4 inverter delay only var-
ies from 4.8 to 5.2. Hence, the delay of a gate-dominated logic block expressed in terms
of FO4 inverters remains relatively constant from one process to another even if the
diffusion capacitance does not.

As a rough rule of thumb, the FO4 delay for a process (in picoseconds) is 1/3 to 1/2 of
the drawn channel length (in nanometers). For example, a 65 nm process with a 50 nm
channel length may have an FO4 delay of 16–25 ps. Delay is highly sensitive to process,
voltage, and temperature variations, as will be examined in Section 7.2. The FO4 delay is
usually quoted assuming typical process parameters and worst-case environment (low
power supply voltage and high temperature).

Example 4.11

A ring oscillator is constructed from an odd number of inverters, as shown in Figure
4.24. Estimate the frequency of an N-stage ring oscillator.

SOLUTION: The logical effort of the inverter is g = 1, by definition. The electrical effort
of each inverter is also 1 because it drives a single identical load. The parasitic delay is
also 1. The delay of each stage is d = gh + p = 1 × 1 + 1 = 2. An N-stage ring oscillator

FIGURE 4.24 Ring oscillator

4.4 Linear Delay Model 159

has a period of 2N stage delays because a value must propagate twice around the ring to
regain the original polarity. Therefore, the period is T = 2 × 2N. The frequency is the
reciprocal of the period, 1/4N.

A 31-stage ring oscillator in a 65 nm process has a frequency of 1/(4 × 31 × 3 ps) =
2.7 GHz.

Note that ring oscillators are often used as process monitors to judge if a particular
chip is faster or slower than nominally expected. One of the inverters should be
replaced with a NAND gate to turn the ring off when not in use. The output can be
routed to an external pad, possibly through a test multiplexer. The oscillation frequency
should be low enough (e.g., 100 MHz) that the path to the outside world does not
attenuate the signal too badly.

4.4.4 Drive
A good standard cell library contains multiple sizes of each common gate. The sizes are
typically labeled with their drive. For example, a unit inverter may be called inv_1x. An
inverter of eight times unit size is called inv_8x. A 2-input NAND that delivers the same
current as the inverter is called nand2_1x.

It is often more intuitive to characterize gates by their drive, x, rather than their input
capacitance. If we redefine a unit inverter to have one unit of input capacitance, then the
drive of an arbitrary gate is

(4.24)

Delay can be expressed in terms of drive as

 (4.25)

4.4.5 Extracting Logical Effort from Datasheets
When using a standard cell library, you can often extract logical effort of gates directly
from the datasheets. For example, Figure 4.25 shows the INV and NAND2 datasheets
from the Artisan Components library for the TSMC 180 nm process. The gates in the
library come in various drive strengths. INVX1 is the unit inverter; INVX2 has twice the
drive. INVXL has the same area as the unit inverter but uses smaller transistors to reduce
power consumption on noncritical paths. The X12–X20 inverters are built from three
stages of smaller inverters to give high drive strength and low input capacitance at the
expense of greater parasitic delay.

From the datasheet, we see the unit inverter has an input capacitance of 3.6 fF. The
rising and falling delays are specified separately. We will develop a notation for different
delays in Section 9.2.1.5, but will use the average delay for now. The average intrinsic or
parasitic delay is (25.3 + 14.6)/2 = 20.0 ps. The slope of the delay vs. load capacitance
curve is the average of the rising and falling Kload values. An inverter driving a fanout of h
will thus have a delay of

(4.26)

x
C

g
= in

d
C

x
p= +out

t hpd = + +
20 0 3 6

4 53 2 37
2

. . ()
. .

ps
fF
gate

gates
ns

pF
ps= +(. .)20 0 12 4h

Chapter 4 Delay160

Figure 4.25 Artisan Components cell library datasheets. Reprinted with permission.

The slope of the delay vs. fanout curve indicates = 12.4 ps and the y-intercept indi-
cates pinv = 20.0 ps, or (20.0/12.4) = 1.61 in normalized terms. This is larger than the delay
of 1 estimated earlier, probably because it includes capacitance of internal wires.

By a similar calculation, we find the X1 2-input NAND gate has an average delay
from the inner (A) input of

 (4.27)

Thus, the parasitic delay is (25.4/12.4) = 2.05 and the logical effort is (15.5/12.4) = 1.25.
The logical effort is slighly better than the theoretical 4/3 value, for reasons to be explored in
Section 4.4.6.3. The parasitic delay from the outer (B) input is slightly higher, as expected.
The parasitic delay and logical effort of the X2 and X4 gates are similar, confirming our
model that logical effort should be independent of gate size for gates of reasonable sizes.

4.4.6 Limitations to the Linear Delay Model
The linear delay model works remarkably well even in advanced technologies; for example,
Figure 8.30 shows subpicosecond agreement in a 65 nm process assuming that input and
output slopes are matched. Nevertheless, it also has limitations that should be understood
when more accuracy is needed.

t hpd = + +31 3 19 5
2

4 2
. .

. ()ps
fF

gate
gates

4 53 2 84
2

25 4 15 5
. .

(. .)
+ = +ns

pF
psh

4.4 Linear Delay Model 161

4.4.6.1 Input and Output Slope The largest source of error in the lin-
ear delay model is the input slope effect. Figure 4.26(a) shows a
fanout-of-4 inverter driven by ramps with different slopes. Recall that
the ON current increases with the gate voltage for an nMOS transis-
tor. We say the transistor is OFF for Vgs < Vt , fully ON for Vgs = VDD,
and partially ON for intermediate gate voltages. As the rise time of
the input increases, the delay also increases because the active transis-
tor is not turned fully ON at once. Figure 4.26(b) plots average
inverter propagation delay vs. input rise time. Notice that the delay vs.
rise time data fits a straight line quite well [Hedenstierna87].

Accounting for slopes is important for accurate timing analysis
(see Section 4.6), but is generally more complex than is worthwhile
for hand calculations. Fortunately, we will see in Section 4.5 that cir-
cuits are fastest when each gate has the same effort delay and when
that delay is roughly 4 . Because slopes are related to edge rate, fast
circuits tend to have relatively consistent slopes. If a cell library is
characterized with these slopes, it will tend to be used in the regime
in which it most accurately models delay.

4.4.6.2 Input Arrival Times Another source of error in the linear delay
model is the assumption that one input of a multiple-input gate
switches while the others are completely stable. When two inputs to a
series stack turn ON simultaneously, the delay will be slightly longer
than predicted because both transistors are only partially ON during
the initial part of the transition. When two inputs to a parallel stack
turn ON simultaneously, the delay will be shorter than predicted
because both transistors deliver current to the output. The delays are
also slightly different depending on which input arrives first, as will be
explored in Section 8.5.3.

4.4.6.3 Velocity Saturation The estimated logical efforts assume
that N transistors in series must be N times as wide to give equal cur-
rent. However, as discussed in Section 4.3.1, series transistors see less
velocity saturation and hence have lower resistance than we estimated
[Sakurai91].

To make a better estimate, observe that N transistors in series are equivalent to one
transistor with N times the channel length. Substituting L and NL into EQ (2.28) shows
that the ratio of Idsat for two series transistors to that of a single transistor is

(4.28)

In the limit that the transistors are not at all velocity saturated (Vc >> VDD Vt), the
current ratio reduces to 1/N as predicted. In the limit that the transistors are completely
velocity saturated, the current is independent of the number of series transistors.

Example 4.12

Determine the relative saturation current of 2- and 3-transistor nMOS and pMOS
stacks in a 65 nm process. VDD = 1.0 V and Vt = 0.3 V. Use Vc = Ec L = 1.04 V for
nMOS devices and 2.22 V for pMOS devices.

I
I

V V V

V V NV
N DD t c

DD t c

dsat series

dsat

=
() +

() +

4x
tr

Vin Vout

0 10 20 30 40 50

tr

tpd

(a)

(b)

0

0.5

1.0

t (ps)
0 20 40 60 80 100

Vout

Vin

tr = 10 ps

tr = 30 ps

tr = 50 ps

20

16

12

8

4

0

FIGURE 4.26 SPICE simulation of slope effect on
CMOS inverter delay

Chapter 4 Delay162

SOLUTION: Applying EQ (4.28) gives a ratio of 0.63 for 2 nMOS transistors, 0.46 for 3
nMOS transistors, 0.57 for 2 pMOS transistors, and 0.40 for 3 pMOS transistors. The
pMOS are closer to the ideal result of 0.5 and 0.33 because they experience less velocity
saturation.

The transistors are scaled to deliver the same current as an inverter. Three series
nMOS transistors must be 1/0.46 = 2.18 times as wide, rather than three times as wide.
Three series pMOS transistors must be 2.5 times as wide. Figure 4.27 modifies Figure
4.22 to reflect velocity saturation. The logical efforts of the NAND and NOR are lower
than originally predicted, and agree with the results obtained by curve-fitting SPICE sim-
ulations in Section 8.5.3.

4.4.6.4 Voltage Dependence Designers often need to predict how delay will vary if the
supply or threshold voltage is changed. Recalling that delay is proportional to CVDD / I
and using the -power law model of EQ (2.30) for Idsat , we can estimate the scaling of
the RC time constant and of gate delay as

(4.29)

where k reflects process parameters.
Alternatively, using the straight line saturation current model from EQ (2.32) for

velocity-saturated transistors, we obtain an even simpler estimate:

(4.30)

This model predicts that the supply voltage can be reduced without changing the delay of
a velocity-saturated transistor so long as the threshold is reduced in proportion.

When VDD < Vt , delay instead depends on the subthreshold current of EQ (2.45):

(4.31)

4.4.6.5 Gate-Source Capacitance The examples in Section 4.3 assumed that gate capac-
itance terminates on a fixed supply rail. As discussed in Section 2.3.2, the bottom terminal
of the gate oxide capacitor is the channel, which is primarily connected to the source when
the transistor is ON. This means that as the source of a transistor changes value, charge is
required to change the voltage on Cgs, adding to the delay for series stacks.

4.4.6.6 Bootstrapping Transistors also have some capacitance from gate to drain. This
capacitance couples the input and output in an effect known as bootstrapping, which can be
understood by examining Figure 4.28(a). Our models so far have only considered Cin
(Cgs). This figure also considers Cgd, the gate to drain capacitance. In the case that the
input is rising (the output starts high), the effective input capacitance is Cgs + Cgd. When
the output starts to fall, the voltage across Cgd changes, requiring the input to supply addi-
tional current to charge Cgd. In other words, the impact of Cgd on gate capacitance is effec-
tively doubled.

=
()

k
CV

V V
DD

DD t

= () =k
CV

V V

kC

V
V

DD

DD t t

DD

* *

1

= k
CV

I

DD
V

S
DD

off 10

(a)

(b)

(c)

A Y

A

B

Y

B

C
Y

1

2

1 1

2 2

2.18

5

5

Cin = 3
g = 3/3

Cin = 4.18
g = 1.40

Cin = 6
g = 2

2

C

5

1

A

2.18

2.18

FIGURE 4.27 Logical effort
estimates accounting for
velocity saturation

4.5 Logical Effort of Paths 163

To illustrate the effect of the bootstrap capacitance on a circuit, Figure
4.28(b) shows two inverter pairs. The top pair has an extra bit of capacitance
between the input and output of the second inverter. The bottom pair has the
same amount of extra capacitance from input to ground. When x falls, nodes
a and c begin to rise (Figure 4.28(c)). At first, both nodes see approximately
the same capacitance, consisting of the two transistors and the extra 3 fF. As
node a rises, it initially bumps up b or “lifts b by its own bootstraps.” Eventu-
ally the nMOS transistors turn ON, pulling down b and d. As b falls, it tugs
on a through the capacitor, leading to the slow final transition visible on node
a. Also observe that b falls later than d because of the extra charge that must
be supplied to discharge the bootstrap capacitor. In summary, the extra capac-
itance has a greater effect when connected between input and output as com-
pared to when it is connected between input and ground.

Because Cgd is fairly small, bootstrapping is only a mild annoyance in
digital circuits. However, if the inverter is biased in its linear region near
VDD /2, the Cgd is multiplied by the large gain of the inverter. This is known
as the Miller effect and is of major importance in analog circuits.

4.5 Logical Effort of Paths
Designers often need to choose the fastest circuit topology and gate sizes for a
particular logic function and to estimate the delay of the design. As has been
stated, simulation or timing analysis are poor tools for this task because they
only determine how fast a particular implementation will operate, not
whether the implementation can be modified for better results and if so, what
to change. Inexperienced designers often end up in the “simulate and tweak”
loop involving minor changes and many fruitless simulations. The method of
Logical Effort [Sutherland99] provides a simple method “on the back of an
envelope” to choose the best topology and number of stages of logic for a
function. Based on the linear delay model, it allows the designer to quickly
estimate the best number of stages for a path, the minimum possible delay for
the given topology, and the gate sizes that achieve this delay. The techniques
of Logical Effort will be revisited throughout this text to understand the delay
of many types of circuits.

4.5.1 Delay in Multistage Logic Networks
Figure 4.29 shows the logical and electrical efforts of each stage in a multistage path as a
function of the sizes of each stage. The path of interest (the only path in this case) is
marked with the dashed blue line. Observe that logical effort is independent of size, while
electrical effort depends on sizes. This section develops some metrics for the path as a
whole that are independent of sizing decisions.

(a)

(b)

(c)

Vout

Cgs

Cgd

Vin

16/2

32/2

16/2

32/2

16/2

32/2

16/2

32/2

3 fF

3 fF

x

a b

c d

x

c
a

b

d

FIGURE 4.28 The effect of bootstrapping
on inverter delay and waveform shape

FIGURE 4.29 Multistage logic network

10
x y z

20
g1 = 1
h1 = x/10

g2 = 5/3
h2 = y/x

g3 = 4/3
h3 = z/y

g4 = 1
h4 = 20/z

Chapter 4 Delay164

The path logical effort G can be expressed as the products of the logical efforts of each
stage along the path.

(4.32)

The path electrical effort H can be given as the ratio of the output capacitance the path
must drive divided by the input capacitance presented by the path. This is more conve-
nient than defining path electrical effort as the product of stage electrical efforts because
we do not know the individual stage electrical efforts until gate sizes are selected.

(4.33)

The path effort F is the product of the stage efforts of each stage. Recall that the stage
effort of a single stage is f = gh. Can we by analogy state F = GH for a path?

 (4.34)

In paths that branch, . This is illustrated in Figure 4.30, a circuit with a two-
way branch. Consider a path from the primary input to one of the outputs. The path logi-
cal effort is G = 1 × 1 = 1. The path electrical effort is H = 90/5 = 18. Thus, GH = 18. But
F = f1 f2 = g1 h1 g2h2 = 1 × 6 × 1 × 6 = 36. In other words, F = 2GH in this path on account
of the two-way branch.

We must introduce a new kind of effort to account for branching between stages of a
path. This branching effort b is the ratio of the total capacitance seen by a stage to the
capacitance on the path; in Figure 4.30 it is (15 + 15)/15 = 2.

(4.35)

The path branching effort B is the product of the branching efforts between stages.

(4.36)

Now we can define the path effort F as the product of the logical, electrical, and branching
efforts of the path. Note that the product of the electrical efforts of the stages is actually
BH, not just H.

F = GBH (4.37)

We can now compute the delay of a multistage network. The path delay D is the sum
of the delays of each stage. It can also be written as the sum of the path effort delay DF and
path parasitic delay P :

(4.38)

The product of the stage efforts is F, independent of gate sizes. The path effort delay
is the sum of the stage efforts. The sum of a set of numbers whose product is constant is

G gi=

H
C

C
= out(path)

in(path)

F f g hi i i= =

F GH

b
C C

C
=

+onpath offpath

onpath

B bi=

D d D P

D f

P p

i F

F i

i

= = +

=

=

5

15

15
90

90

FIGURE 4.30 Circuit with
two-way branch

4.5 Logical Effort of Paths 165

minimized by choosing all the numbers to be equal. In other words, the path delay is min-
imized when each stage bears the same effort. If a path has N stages and each bears the
same effort, that effort must be

(4.39)

Thus, the minimum possible delay of an N-stage path with path effort F and path para-
sitic delay P is

(4.40)

This is a key result of Logical Effort. It shows that the minimum delay of the path can be
estimated knowing only the number of stages, path effort, and parasitic delays without the
need to assign transistor sizes. This is superior to simulation, in which delay depends on sizes
and you never achieve certainty that the sizes selected are those that offer minimum delay.

It is also straightforward to select gate sizes to achieve this least delay. Combining
EQs (4.21) and (4.22) gives us the capacitance transformation formula to find the best input
capacitance for a gate given the output capacitance it drives.

(4.41)

Starting with the load at the end of the path, work backward applying the capacitance
transformation to determine the size of each stage. Check the arithmetic by verifying that
the size of the initial stage matches the specification.

Example 4.13

Estimate the minimum delay of the path from A to B in Figure 4.31
and choose transistor sizes to achieve this delay. The initial NAND2
gate may present a load of 8 of transistor width on the input and
the output load is equivalent to 45 of transistor width.

SOLUTION: The path logical effort is G = (4/3) × (5/3) × (5/3) = 100/
27. The path electrical effort is H = 45/8. The path branching effort
is B = 3 × 2 = 6. The path effort is F = GBH = 125. As there are
three stages, the best stage effort is . The path para-
sitic delay is P = 2 + 3 + 2 = 7. Hence, the minimum path delay is
D = 3 × 5 + 7 = 22 in units of , or 4.4 FO4 inverter delays. The
gate sizes are computed with the capacitance transformation from
EQ (4.41) working backward along the path: y = 45 × (5/3)/5 = 15.
x = (15 + 15) × (5/3)/5 = 10. We verify that the initial 2-input
NAND gate has the specified size of (10 + 10 + 10) × (4/3)/5 = 8.
The transistor sizes in Figure 4.32 are chosen to give the desired
amount of input capacitance while achieving equal rise and fall
delays. For example, a 2-input NOR gate should have a 4:1 P/N
ratio. If the total input capacitance is 15, the pMOS width must be
12 and the nMOS width must be 3 to achieve that ratio.

We can also check that our delay was achieved. The NAND2 gate
delay is d1 = g1h1 + p1 = (4/3) × (10 + 10 + 10)/8 + 2 = 7. The NAND3

ˆ /f g h Fi i
N= = 1

D NF PN= +1/

C
C g

fi

i i
in

out
=

×
ˆ

f̂ = =125 53

8 x

x

x

y

y

45

45

A

B

FIGURE 4.31 Example path

P: 4
N: 4

45

45

A

B
P: 4
N: 6

P: 12

N: 3

FIGURE 4.32 Example path annotated with
transistor sizes

Chapter 4 Delay166

gate delay is d2 = g2h2 + p2 = (5/3) × (15 + 15)/10 + 3 = 8. The NOR2 gate delay is d3 =
g3h3 + p3 = (5/3) × 45/15 + 2 = 7. Hence, the path delay is 22, as predicted.

Recall that delay is expressed in units of . In a 65 nm process with = 3 ps, the delay
is 66 ps. Alternatively, a fanout-of-4 inverter delay is 5 , so the path delay is 4.4 FO4s.

Many inexperienced designers know that wider transistors offer more current and
thus try to make circuits faster by using bigger gates. Increasing the size of any of the gates
except the first one only makes the circuit slower. For example, increasing the size of the
NAND3 makes the NAND3 faster but makes the NAND2 slower, resulting in a net
speed loss. Increasing the size of the initial NAND2 gate does speed up the circuit under
consideration. However, it presents a larger load on the path that computes input A, mak-
ing that path slower. Hence, it is crucial to have a specification of not only the load the
path must drive but also the maximum input capacitance the path may present.

4.5.2 Choosing the Best Number of Stages
Given a specific circuit topology, we now know how to estimate delay and choose gate
sizes. However, there are many different topologies that implement a particular logic func-
tion. Logical Effort tells us that NANDs are better than NORs and that gates with few

inputs are better than gates with many. In this section, we will also use Logical
Effort to predict the best number of stages to use.

Logic designers sometimes estimate delay by counting the number of stages of
logic, assuming each stage has a constant “gate delay.” This is potentially misleading
because it implies that the fastest circuits are those that use the fewest stages of logic.
Of course, the gate delay actually depends on the electrical effort, so sometimes
using fewer stages results in more delay. The following example illustrates this point.

Example 4.14

A control unit generates a signal from a unit-sized inverter. The signal must drive
unit-sized loads in each bitslice of a 64-bit datapath. The designer can add invert-
ers to buffer the signal to drive the large load. Assuming polarity of the signal
does not matter, what is the best number of inverters to add and what delay can
be achieved?

SOLUTION: Figure 4.33 shows the cases of adding 0, 1, 2, or 3 inverters. The path
electrical effort is H = 64. The path logical effort is G = 1, independent of the
number of inverters. Thus, the path effort is F = 64. The inverter sizes are chosen
to achieve equal stage effort. The total delay is .

The 3-stage design is fastest and far superior to a single stage. If an even num-
ber of inversions were required, the two- or four-stage designs are promising. The
four-stage design is slightly faster, but the two-stage design requires significantly
less area and power.

In general, you can always add inverters to the end of a path
without changing its function (save possibly for polarity). Let us
compute how many should be added for least delay. The logic block
shown in Figure 4.34 has n1 stages and a path effort of F. Consider
adding N – n1 inverters to the end to bring the path to N stages. The
extra inverters do not change the path logical effort but do add

D N NN= +64

1 1 1 1

8 4

16 8

2.8

23

64 64 64 64

Initial Drivers

Datapath Loads

N:
f:
D:

1
64
65

2
8
18

3
4
15

4
2.8
15.3

Fastest

FIGURE 4.33 Comparison of different
number of stages of buffers

N – n1 Extra Inverters
Logic Block
n1 Stages

Path Effort F

FIGURE 4.34 Logic block with additional inverters

4.5 Logical Effort of Paths 167

parasitic delay. The delay of the new path is

 (4.42)

Differentiating with respect to N and setting to 0 allows us to solve for the best number of
stages, which we will call . The result can be expressed more compactly by defining

to be the best stage effort.

(4.43)

EQ (4.43) has no closed form solution. Neglecting parasitics (i.e., assuming pinv = 0),
we find the classic result that the stage effort = 2.71828 (e) [Mead80]. In practice, the
parasitic delays mean each inverter is somewhat more costly to add. As a result, it is better
to use fewer stages, or equivalently a higher stage effort than e. Solving numerically, when
pinv = 1, we find = 3.59.

A path achieves least delay by using stages. It is important to understand
not only the best stage effort and number of stages but also the sensitivity to using a differ-
ent number of stages. Figure 4.35 plots the delay increase using a particular number of
stages against the total number of stages, for pinv = 1. The x-axis plots the ratio of the
actual number of stages to the ideal number. The y-axis plots the ratio of the actual delay
to the best achievable. The curve is flat around the optimum. The delay is within 15% of
the best achievable if the number of stages is within 2/3 to 3/2 times the theoretical best
number (i.e., is in the range of 2.4 to 6).

Using a stage effort of 4 is a convenient choice and simplifies mentally choosing the
best number of stages. This effort gives delays within 2% of minimum for pinv in the range
of 0.7 to 2.5. This further explains why a fanout-of-4 inverter has a “representative” logic
gate delay.

D NF p N n pN
i

i

n

= + + ()
=

1

1
1

1

/
inv

N̂

= F N1/ ˆ

= + + =

+ () =

D
N

F F F p

p

N N N1 1 1 0

1 0

/ / /ln

ln
inv

inv

ˆ logN F=

1.0

1.2

1.4

1.6

1.0 2.00.5 1.40.7

1.15

1.26

1.51

(ρ = 6) (ρ = 2.4)

0.0

D
(N

)/
D

(N
)

N/N

FIGURE 4.35 Sensitivity of delay to number of stages

Chapter 4 Delay168

4.5.3 Example
Consider a larger example to illustrate the application of Logical Effort. Our esteemed
colleague Ben Bitdiddle is designing a decoder for a register file in the Motoroil 68W86,
an embedded processor for automotive applications. The decoder has the following speci-
fications:

� 16-word register file
� 32-bit words
� Each register bit presents a load of three unit-sized transistors on the word line

(two unit-sized access transistors plus some wire capacitance)
� True and complementary versions of the address bits A[3:0] are available
� Each address input can drive 10 unit-sized transistors

As we will see further in Section 12.2.2, a 2N-word decoder consists of 2N N-input
AND gates. Therefore, the problem is reduced to designing a suitable 4-input AND gate.
Let us help Ben determine how many stages to use, how large each gate should be, and
how fast the decoder can operate.

The output load on a word line is 32 bits with three units of capacitance each, or 96
units. Therefore, the path electrical effort is H = 96/10 = 9.6. Each address is used to com-
pute half of the 16 word lines; its complement is used for the other half. Therefore, a B =
8-way branch is required somewhere in the path. Now we are faced with a chicken-and-
egg dilemma. We need to know the path logical effort to calculate the path effort and best
number of stages. However, without knowing the best number of stages, we cannot sketch
a path and determine the logical effort for that path. There are two ways to resolve the
dilemma. One is to sketch a path with a random number of stages, determine the path
logical effort, and then use that to compute the path effort and the actual number of
stages. The path can be redesigned with this number of stages, refining the path logical
effort. If the logical effort changes significantly, the process can be repeated. Alternatively,
we know that the logic of a decoder is rather simple, so we can ignore the logical effort
(assume G = 1). Then we can proceed with our design, remembering that the best number
of stages is likely slightly higher than predicted because we neglected logical effort.

Taking the second approach, we estimate the path effort is F = GBH = (1)(8)(9.6) =
76.8. Targeting a best stage effort of = 4, we find the best number of stages is N = log4
76.8 = 3.1. Let us select a 3-stage design, recalling that a 4-stage design might be a good
choice too when logical effort is considered. Figure 4.36 shows a possible 3-stage design
(INV-NAND4-INV).

The path has a logical effort of G = 1 × (6/3) × 1 = 2, so the actual path effort is F =
(2)(8)(9.6) = 154. The stage effort is . This is in the reasonable range of
2.4 to 6, so we expect our design to be acceptable. Applying the capacitance transforma-
tion, we find gate sizes z = 96 × 1/5.36 = 18 and y = 18 × 2 /5.36 = 6.7. The delay is 3 ×
5.36 + 1 + 4 + 1 = 22.1.

Logical Effort also allows us to rapidly compare alternative designs using a spread-
sheet rather than a schematic editor and a large number of simulations. Table 4.4 com-
pares a number of alternative designs. We find a 4-stage design is somewhat faster, as we
suspected. The 4-stage NAND2-INV-NAND2-INV design not only has the theoretical
best number of stages, but also uses simpler 2-input gates to reduce the logical effort and
parasitic delay to obtain a 12% speedup over the original design. However, the 3-stage
design has a smaller total gate area and dissipates less power.

ˆ ./f = =154 5 361 3

4.5 Logical Effort of Paths 169

4.5.4 Summary and Observations
Logical Effort provides an easy way to compare and select circuit topologies, choose the
best number of stages for a path, and estimate path delay. The notation takes some time to
become natural, but this author has poured through all the letters in the English and
Greek alphabets without finding better notation. It may help to remember d for “delay,” p
for “parasitic,” b for “branching,” f for “effort,” g for “logical effort” (or perhaps gain), and
h as the next letter after “f ” and “g.” The notation is summarized in Table 4.5 for both
stages and paths.

The method of Logical Effort is applied with the following steps:

1. Compute the path effort: F = GBH

2. Estimate the best number of stages:

3. Sketch a path using: stages

4. Estimate the minimum delay:

5. Determine the best stage effort:

6. Starting at the end, work backward to find sizes:

TABLE 4.4 Spreadsheet comparing decoder designs

Design Stages N G P D

NAND4-INV 2 2 5 29.8
NAND2-NOR2 2 20/9 4 30.1
INV-NAND4-INV 3 2 6 22.1
NAND4-INV-INV-INV 4 2 7 21.1
NAND2-NOR2-INV-INV 4 20/9 6 20.5
NAND2-INV-NAND2-INV 4 16/9 6 19.7
INV-NAND2-INV-NAND2-INV 5 16/9 7 20.4
NAND2-INV-NAND2-INV-INV-INV 6 16/9 8 21.6

A[3] A[3] A[2] A[2] A[1] A[1] A[0] A[0]

word[0]

word[15]

96 Units of Wordline Capacitance

10 10 10 10 10 10 10 10

y z

y z

FIGURE 4.36 3-stage decoder design

ˆ logN F= 4

N̂

D NF PN= +ˆ / ˆ1

ˆ / ˆ
f F N= 1

C
C g

fi

i i
in

out
=

×
ˆ

Chapter 4 Delay170

CAD tools are very fast and accurate at evaluating complex delay models, so Logical
Effort should not be used as a replacement for such tools. Rather, its value arises from
“quick and dirty” hand calculations and from the insights it lends to circuit design. Some
of the key insights include:

� The idea of a numeric “logical effort” that characterizes the complexity of a logic
gate or path allows you to compare alternative circuit topologies and show that
some topologies are better than others.

� NAND structures are faster than NOR structures in static CMOS circuits.
� Paths are fastest when the effort delays of each stage are about the same and when

these delays are close to four.
� Path delay is insensitive to modest deviations from the optimum. Stage efforts of

2.4–6 give designs within 15% of minimum delay. There is no need to make calcu-
lations to more than 1–2 significant figures, so many estimations can be made in
your head. There is no need to choose transistor sizes exactly according to theory
and there is little benefit in tweaking transistor sizes if the design is reasonable.

� Using stage efforts somewhat greater than 4 reduces area and power consumption
at a slight cost in speed. Using efforts greater than 6–8 comes at a significant cost
in speed.

� Using fewer stages for “less gate delays” does not make a circuit faster. Making
gates larger also does not make a circuit faster; it only increases the area and power
consumption.

� The delay of a well-designed path is about log4 F fanout-of-4 (FO4) inverter
delays. Each quadrupling of the load adds about one FO4 inverter delay to the
path. Control signals fanning out to a 64-bit datapath therefore incur an amplifica-
tion delay of about three FO4 inverters.

TABLE 4.5 Summary of Logical Effort notation

Term Stage Expression Path Expression

number of stages 1 N

logical effort g (see Table 4.2)

electrical effort

branching effort

effort f = gh F = GBH

effort delay f

parasitic delay p (see Table 4.3)

delay d = f + p

G gi=

h
C
C

= out

in
H

C

C
= out(path)

in(path)

b
C C

C
=

+onpath offpath

onpath

B bi=

D fF i=

P pi=

D d D Pi F= = +

4.5 Logical Effort of Paths 171

� The logical effort of each input of a gate increases through no fault of its own as
the number of inputs grows. Considering both logical effort and parasitic delay, we
find a practical limit of about four series transistors in logic gates and about four
inputs to multiplexers. Beyond this fan-in, it is faster to split gates into multiple
stages of skinnier gates.

� Inverters or 2-input NAND gates with low logical efforts are best for driving
nodes with a large branching effort. Use small gates after the branches to minimize
load on the driving gate.

� When a path forks and one leg is more critical than the others, buffer the noncrit-
ical legs to reduce the branching effort on the critical path.

4.5.5 Limitations of Logical Effort
Logical Effort is based on the linear delay model and the simple premise that making the
effort delays of each stage equal minimizes path delay. This simplicity is the method’s
greatest strength, but also results in a number of limitations:

� Logical Effort does not account for interconnect. The effects of nonnegligible wire
capacitance and RC delay will be revisited in Chapter 6. Logical Effort is most
applicable to high-speed circuits with regular layouts where routing delay does not
dominate. Such structures include adders, multipliers, memories, and other data-
paths and arrays.

� Logical Effort explains how to design a critical path for maximum speed, but not
how to design an entire circuit for minimum area or power given a fixed speed con-
straint. This problem is addressed in Section 5.2.2.1.

� Paths with nonuniform branching or reconvergent fanout are difficult to analyze
by hand.

� The linear delay model fails to capture the effect of input slope. Fortunately, edge
rates tend to be about equal in well-designed circuits with equal effort delay per
stage.

4.5.6 Iterative Solutions for Sizing
To address the limitations in the previous section, we can write the delay equations for
each gate in the system and minimize the latest arrival time. No closed-form solutions
exist, but the equations are easy to solve iteratively on a computer and the formulation still
gives some insight for the designer. This section examines sizing for minimum delay, while
Section 5.2.2.1 examines sizing for minimum energy subject to a delay constraint.

The ith gate is characterized by its logical effort, gi , parasitic delay, pi , and drive,
xi .Formally, our goal is to find a nonnegative vector of drives x that minimizes the arrival
time of the latest output. This can be done using a commercial optimizer such as MOSEK
or, for smaller problems, Microsoft Excel’s solver. The arrival time equations are classified
as convex, which has the pleasant property of having a single optimum; there is no risk of
finding a wrong answer. Moreover, they are of a special class of functions called posynomi-
als, which allows an especially efficient technique called geometric programming to be
applied [Fishburn85].

Chapter 4 Delay172

Example 4.15

The circuit in Figure 4.37 has nonuniform branching, reconvergent fanout, and a wire
load in the middle of the path, all of which stymie back-of-the-envelope application of
Logical Effort. The wire load is given in the same units as the gate capacitances (i.e.,
multiples of the capacitance of a unit inverter). Assume the inputs arrive at time 0.
Write an expression for the arrival time of the output as a function of the gate drives.
Determine the sizes to achieve minimum delay.

SOLUTION: The delay equations for each gate are obtained using EQ (4.25). Note that x
indicates drive, not size. According to EQ (4.24), the input capacitance of a gate with
logical effort g and drive x is Cin = gx.

(4.44)

Write the arrival times using the definitions from EQ (4.1).

(4.45)

Use a solver to choose the drives to minimize the latest arrival time. Table 4.6 sum-
marizes the results. The minimum delay is 23.44.

 The example leads to several interesting observations:

� In paths that branch, each fork should contribute equal delay. If one fork were
faster than the other, it could be downsized to reduce the capacitance it presents to
the stage before the branch.

d x x

d
x
x

d
x
x

d
x
x

1
4
3 2

5
3 3

2
7
3

4

2

3
7
3

4

3

4
5

4

1

2

2

3
1

= + +

= +

= +

= + + 00

1
12

4

5 5

x

d x= +

a d

a a d

a a d

a a a d

a a d d

1 1

2 1 2

3 1 3

4 2 3 4

5 4 5

=
= +
= +

= { }+
= + =

max ,

1 2 3 4 5+ { }+ +max ,d d d d

1 x2

x3 x4 x5

c4 = 10 c5 = 12

FIGURE 4.37 Example path

4.6 Timing Analysis Delay Models 173

� The stage efforts, f, are equal for each gate in paths with no fixed capacitive loads,
but may change after a load.

� To minimize delay, upsize gates on nodes with large fixed capacitances to reduce
the effort borne by the gate, while only slightly increasing the effort borne by the
predecessor.

A standard cell library offers a discrete set of sizes. Gate drives must be rounded to
the nearest available size. For example, the circuit might use inv_1x, nand2_2x, nor2_2x,
nor3_3x, and inv_6x. The delay increases to 23.83, less than a 2% penalty. In general,
libraries with a granularity of between successive drives are nearly as good as those
with continuous sizes, so long as large inverters are available to drive big loads. Even using
a granularity of 2 between drives (1x, 2x, 4x, 8x) is sufficient to obtain good results.

Although this section used a linear delay model to build on the insights of Logical
Effort, it is also possible to use more elaborate models taking into account sensitivity to
edge rate, VDD, and Vt [Patil07]; the extra complexity is not a problem for a numerical
solver and the model allows for optimizing supply and threshold voltages as well as sizes.
Timing models are discussed further in Section 4.6.

4.6 Timing Analysis Delay Models
To handle a chip with millions of gates, the delay model for a timing analyzer must be easy
enough to compute that timing analysis is fast, yet accurate enough to give confidence. This
section reviews several delay models for timing analysis that are much faster than SPICE
simulations, yet more accurate than the simple linear delay model. Timing (and area, power,
and noise) models for each gate in a standard cell library are stored in a .lib file. These mod-
els are part of the Liberty standard documented at www.opensourceliberty.org. Logi-
cal effort parameters for standard cells can be obtained by fitting a straight line to the timing
models, assuming equal delays and rise/fall times for the previous stage.

4.6.1 Slope-Based Linear Model
A simple approach is to extend the linear delay model by adding a term reflecting the
input slope. Assuming the slope of the input is proportional to the delay of the previous
stage, the delays for rising and falling outputs can be expressed as:

delay_rise =intrinsic_rise + rise_resistance × capacitance +
slope_rise × delay_previous

delay_fall =intrinsic_fall + fall_resistance × capacitance +
slope_fall × delay_previous

TABLE 4.6 Path design for minimum delays

Stage (i) xi fi cin di ai

1: INV 1 4.85 1 5.85 5.85
2: NAND2 1.62 4.85 2.16 6.85 12.70
3: NOR2 1.62 4.85 2.70 6.85 12.70
4: NOR3 3.37 4.85 7.86 7.85 20.55
5: INV 6.35 1.89 6.35 2.89 23.44

2

Chapter 4 Delay174

Linear delay models are not accurate enough to handle the wide range of slopes and
loads found in synthesized circuits, so they have largely been superseded by nonlinear
delay models.

4.6.2 Nonlinear Delay Model
A nonlinear delay model looks up the delay from a table based on the load capacitance and
the input slope. Separate tables are used to lookup rising and falling delays and output
slopes. Table 4.7 shows an example of a nonlinear delay model for the falling delay of an
inverter. The timing analyzer uses interpolation when a specific load capacitance or slope
is not in the table.

Nonlinear delay models are widely used at the time of this writing. However, they do
not contain enough information to characterize the delay of a gate driving a complex RC
interconnect network with the accuracy desired by some users. They also lack the accuracy
to fully characterize noise events. A different model must be created for each voltage and
temperature at which the chip might be characterized.

4.6.3 Current Source Model
The limitations of nonlinear delay models have motivated the development of current
source models. A current source model theoretically should express the output DC current
as a nonlinear function of the input and output voltages of the cell. A timing analyzer
numerically integrates the output current to find the voltage as a function of time into an
arbitrary RC network and to solve for the propagation delay.

The Liberty Composite Current Source Model (CCSM) instead stores output current as
a function of time for a given input slew rate and output capacitance. The competing
Effective Current Source Model (ECSM) stores output voltage as a function of time. The
two representations are equivalent, and can be synthesized into a true current source
model [Chopra06].

4.7 Pitfalls and Fallacies
Defining gate delay for an unloaded gate
When marketing a process, it is common to report gate delay based on an inverter in a ring

oscillator (2), or even the RC time constant of a transistor charging its own gate capacitance

(1/3). Remember that the delay of a real gate on the critical path should be closer to 5–6 .

TABLE 4.7 Nonlinear Delay Model for inverter tpdf (ps)

Rise Time (ps)

Cout (fF) 10 20 40 80 160

1 11.5 13.3 17.0 21.2 25.3

2 18.4 20.2 24.1 30.9 38.5

4 32.0 33.8 37.6 43.4 58.5

8 59.2 60.9 65.7 72.3 87.8

4.8 Historical Perspective 175

When in doubt, ask how “gate delay” is defined or ask for the FO4 inverter delay.

Trying to increase speed by increasing the size of transistors in a path
Most designers know that increasing the size of a transistor decreases its resistance and thus

makes it faster at driving a constant load. Novice designers sometimes forget that increasing

the size increases input capacitance and makes the previous stage slower, especially when

that previous stage belongs to somebody else’s timing budget. The authors have seen this lead

to lack of convergence in full-chip timing analysis on a large microprocessor because individ-

ual engineers boost the size of their own gates until their path meets timing. Only after the

weekly full-chip timing roll-up do they discover that their inputs now arrive later because of

the greater load on the previous stage. The solution is to include in the specification of each

block not only the arrival time but also the resistance of the driver in the previous block.

Trying to increase speed by using as few stages of logic as possible
Logic designers often count “gate delays” in a path. This is a convenient simplification when

used properly. In the hands of an inexperienced engineer who believes each gate contributes

a gate delay, it suggests that the delay of a path is minimized by using as few stages of logic as

possible, which is clearly untrue.

4.8 Historical Perspective
Figure 1.5 illustrated the exponential increase in microprocessor frequencies over nearly
four decades. While much of the improvement comes from the natural improvements in
gate delay with feature size, a significant portion is due to better microarchitecture and cir-
cuit design with fewer gate delays per cycle. From a circuit perspective, the cycle time is
best expressed in FO4 inverter delays.

Figure 4.38 illustrates the historical trends in microprocessor cycle time based on
chips reported at the International Solid-State Circuits Conference. Early processors
operated at close to 100 FO4 delays per cycle. The Alpha line of microprocessors from
Digital Equipment Corporation shocked the staid world of circuit design in the early
1990s by proving that cycle times below 20 FO4 delays were possible. This kicked off a
race for higher clock frequencies. By the late 1990s, Intel and AMD marketed processors
primarily on frequency. The Pentium II and III reached about 20–24 FO4 delays/cycle.
The Pentium 4 drove cycle times down to about 10 FO4 at the expense of a very long

0

10

20

30

40

50

60

70

80

1994 1996 1998 2000 2002 2004 2006 2008

x86

PA RISC

Power/
PowerPC

Sparc

Alpha

Year

C
yc

e
T

m
e

 (
F

O
4s

)

FIGURE 4.38 Microprocessor cylcle time trends. Data has some uncertainty based on estimating FO4
delay as a function of feature size.

Chapter 4 Delay176

pipeline and enormous power consumption. Microarchitects predicted that performance
would be maximized at a cycle time of only 8 FO4 delays/cycle [Hrishikesh02].

The short cycle times came at the expense of vast numbers (20–30) of pipeline stages
and enormous power consumption (nearly 100 W). As will be seen in the next chapter,
power became as important as performance specifications. The number of gates per cycle
rebounded to a more power-efficient point. [Srinivasan02] observed that 19–24 FO4
delays per cycle provides a better trade-off between performance and power.

Application-specific integrated circuits have generally operated at much lower fre-
quencies (e.g., 200–400 MHz in nanometer processes) so that they can be designed more
easily. Typical ASIC cycle times are 40–100 FO4 delays per cycle [Mai05, Chinnery02],
although performance-critical designs sometimes are as fast as 25 FO4s.

Summary
The VLSI designer’s challenge is to engineer a system that meets speed requirements
while consuming little power or area, operating reliably, and taking little time to design.
Circuit simulation is an important tool for calculating delay and will be discussed in depth
in Chapter 5, but it takes too long to simulate every possible design; is prone to garbage-
in, garbage-out mistakes; and doesn’t give insight into why a circuit has a particular delay
or how the circuit should be changed to improve delay. The designer must also have simple
models to quickly estimate performance by hand and explain why some circuits are better
than others.

Although transistors are complicated devices with nonlinear current-voltage and
capacitance-voltage relationships, for the purpose of delay estimation in digital circuits,
they can be approximated quite well as having constant capacitance and an effective resis-
tance R when ON. Logic gates are thus modeled as RC networks. The Elmore delay
model estimates the delay of the network as the sum of each capacitance times the resis-
tance through which it must be charged or discharged. Therefore, the gate delay consists
of a parasitic delay (accounting for the gate driving its own internal parasitic capacitance)
plus an effort delay (accounting for the gate driving an external load). The effort delay
depends on the electrical effort (the ratio of load capacitance to input capacitance, also
called fanout) and the logical effort (which characterizes the current driving capability of
the gate relative to an inverter with equal input capacitance). Even in advanced fabrication
processes, the delay vs. electrical effort curve fits a straight line very well. The method of
Logical Effort builds on this linear delay model to help us quickly estimate the delay of
entire paths based on the effort and parasitic delay of the path. We will use Logical Effort
in subsequent chapters to explain what makes circuits fast.

Exercises
 4.1 Sketch a 2-input NOR gate with transistor widths chosen to achieve effective rise

and fall resistances equal to a unit inverter. Compute the rising and falling propaga-
tion delays of the NOR gate driving h identical NOR gates using the Elmore delay
model. Assume that every source or drain has fully contacted diffusion when making
your estimate of capacitance.

 4.2 Sketch a stick diagram for the 2-input NOR. Repeat Exercise 4.1 with better capac-
itance estimates. In particular, if a diffusion node is shared between two parallel

 Exercises 177

transistors, only budget its capacitance once. If a diffusion node is between two
series transistors and requires no contacts, only budget half the capacitance because
of the smaller diffusion area.

 4.3 Find the rising and falling propagation delays of an unloaded AND-OR-INVERT
gate using the Elmore delay model. Estimate the diffusion capacitance based on a
stick diagram of the layout.

 4.4 Find the worst-case Elmore parasitic delay of an n-input NOR gate.

 4.5 Sketch a delay vs. electrical effort graph like that of Figure 4.21 for a 2-input NOR
gate using the logical effort and parasitic delay estimated in Section 4.4.2. How does
the slope of your graph compare to that of a 2-input NAND? How does the
y-intercept compare?

 4.6 Let a 4x inverter have transistors four times as wide as those of a unit inverter. If a
unit inverter has three units of input capacitance and parasitic delay of pinv, what is
the input capacitance of a 4x inverter? What is the logical effort? What is the para-
sitic delay?

 4.7 A 3-stage logic path is designed so that the effort borne by each stage is 12, 6, and 9
delay units, respectively. Can this design be improved? Why? What is the best num-
ber of stages for this path? What changes do you recommend to the existing design?

 4.8 Suppose a unit inverter with three units of input capacitance has unit drive.

a) What is the drive of a 4x inverter?

b) What is the drive of a 2-input NAND gate with three units of input capacitance?

 4.9 Sketch a 4-input NAND gate with transistor widths chosen to achieve equal rise
and fall resistance as a unit inverter. Show why the logical effort is 6/3.

4.10 Consider the two designs of a 2-input AND gate shown in Figure 4.39. Give an
intuitive argument about which will be faster. Back up your argument with a calcu-
lation of the path effort, delay, and input capacitances x and y to achieve this delay.

4.11 Consider four designs of a 6-input AND gate shown in Figure 4.40. Develop an
expression for the delay of each path if the path electrical effort is H. What design is
fastest for H = 1? For H = 5? For H = 20? Explain your conclusions intuitively.

C
6C

x
C

C
y

6C

(a) (b)

FIGURE 4.39 2-input AND gate

(a) (b) (c) (d)

FIGURE 4.40 6-input AND gate

Chapter 4 Delay178

4.12 Repeat the decoder design example from Section 4.5.3 for a 32-word register file
with 64-bit registers. Determine the fastest decoder design and estimate the delay of
the decoder and the transistor widths to achieve this delay.

4.13 Design a circuit at the gate level to compute the following function:

if (a == b) y = a;
else y = 0;

Let a, b, and y be 16-bit busses. Assume the input and output capacitances are each
10 units. Your goal is to make the circuit as fast as possible. Estimate the delay in
FO4 inverter delays using Logical Effort if the best gate sizes were used. What sizes
do you need to use to achieve this delay?

4.14 Plot the average delay from input A of an FO3 NAND2 gate from the datasheet in
Figure 4.25. Why is the delay larger for the XL drive strength than for the other
drive strengths?

4.15 Figure 4.41 shows a datasheet for a 2-input NOR gate in the Artisan Components
standard cell library for the TSMC 180 nm process. Find the average parasitic delay
and logical effort of the X1 NOR gate A input. Use the value of from Section 4.4.5.

FIGURE 4.41 2-input NOR datasheet (Courtesy of Artisan
Components.)

 Exercises 179

4.16 Find the parasitic delay and logical effort of the X2 and X4 NOR gate A input using
Figure 4.41. By what percentage do they differ from that of the X1 gate? What does
this imply about our model that parasitic delay and logical effort depend only on
gate type and not on transistor sizes?

4.17 What are the parasitic delay and logical effort of the X1 NOR gate B input in Fig-
ure 4.41? How and why do they differ from the A input?

4.18 Parasitic delay estimates in Section 4.4.2 are made assuming contacted diffusion on
each transistor on the output node and ignoring internal diffusion. Would parasitic
delay increase or decrease if you took into account that some parallel transistors on
the output node share a single diffusion contact? If you counted internal diffusion
capacitance between series transistors? If you counted wire capacitance within the
cell?

4.19 Consider a process in which pMOS transistors have three times the effective resis-
tance as nMOS transistors. A unit inverter with equal rising and falling delays in
this process is shown in Figure 4.42. Calculate the logical efforts of a 2-input
NAND gate and a 2-input NOR gate if they are designed with equal rising and fall-
ing delays.

4.20 Generalize Exercise 4.19 if the pMOS transistors have times the effective resis-
tance of nMOS transistors. Find a general expression for the logical efforts of a k-
input NAND gate and a k-input NOR gate. As increases, comment on the relative
desirability of NANDs vs. NORs.

4.21 Some designers define a “gate delay” to be a fanout-of-3 2-input NAND gate rather
than a fanout-of-4 inverter. Using Logical Effort, estimate the delay of a fanout-of-
3 2-input NAND gate. Express your result both in and in FO4 inverter delays,
assuming pinv = 1.

4.22 Repeat Exercise 4.21 in a process with a lower ratio of diffusion to gate capacitance
in which pinv = 0.75. By what percentage does this change the NAND gate delay, as
measured in FO4 inverter delays? What if pinv = 1.25?

4.23 The 64-bit Naffziger adder [Naffziger96] has a delay of 930 ps in a fast 0.5- m
Hewlett-Packard process with an FO4 inverter delay of about 140 ps. Estimate its
delay in a 65 nm process with an FO4 inverter delay of 20 ps.

4.24 An output pad contains a chain of successively larger inverters to drive the (rela-
tively) enormous off-chip capacitance. If the first inverter in the chain has an input
capacitance of 20 fF and the off-chip load is 10 pF, how many inverters should be
used to drive the load with least delay? Estimate this delay, expressed in FO4
inverter delays.

4.25 The clock buffer in Figure 4.43 can present a maximum input capacitance of 100 fF.
Both true and complementary outputs must drive loads of 300 fF. Compute the
input capacitance of each inverter to minimize the worst-case delay from input to
either output. What is this delay, in ? Assume the inverter parasitic delay is 1.

4.26 The clock buffer from Exercise 4.25 is an example of a 1–2 fork. In general, if a 1–2
fork has a maximum input capacitance of C1 and each of the two legs drives a load of
C2, what should the capacitance of each inverter be and how fast will the circuit
operate? Express your answer in terms of pinv.

gclk
clk

clk

FIGURE 4.43 Clock buffer

A Y
1

3

FIGURE 4.42
Unit inverter

This page intentionally left blank

5

181

Power

5.1 Introduction
On Earth, apart from nuclear sources, all energy is or has been stockpiled from the sun. In
essence, Earth is a huge battery that has been charged up over billions of years via the
energy of sunlight in the form of plant growth, which in turn has been turned to carbon
and then to oil, gas, coal or other carbon-based fuels. Additionally, in these times, we can
harvest energy directly from the sun (solar power), or indirectly from the wind, tides, pre-
cipitation (hydro) or geothermal. Energy undergoes transformations. Sunlight to plant
growth. Plants to carbon. Carbon to heat. Heat to electricity. Electricity to chemical (bat-
tery charging). Chemical to electricity (battery discharging). Electricity to audio (playing
an MP3). In the last conversion, some energy is transformed into sound that dissipates
into the universe. The rest is turned to heat as the tunes are decoded and played. It is also
lost to the universe (perhaps warming our hands slightly on a cold night). So pervasive are
energy transformations in everyday life, we are often not at all aware of them. Most times
they occur quietly and unnoticed.

Today, we are interested in power from a number of points of view. In portable applica-
tions, products normally run off batteries. While battery technology has improved mark-
edly over the years, it remains that a battery of a certain weight and size has a certain energy
capacity. For example, a pair of rechargeable AA batteries has an energy capacity of about 7
W-hr, and a good lithium-ion laptop battery has an energy density of about 80 W-hr/lb.
Inevitably, the battery runs down and needs recharging or replacement. Product designers
are interested in extending the lifetime of the battery while simultaneously adding features
and reducing size, so creating low-power IC designs is key. In applications that are perma-
nently connected to a power cord, the ever-present need to reduce dependence on fossil
fuels and reduce greenhouse emissions leads us to look for low power solutions to all prob-
lems involving electronics. High-performance chips are limited to about 150 W before liq-
uid cooling or other costly heat sinks become necessary. In 2006, data centers and servers in
the United States consumed 61 billion kWh of electricity [EPA07]. This represents the
output of 15 power plants, costs about $4.5 billion, and amounts to 1.5% of total U.S.
energy consumption—more than that consumed by all the television sets in the country.
While chip functionality was once limited by area, it is now often constrained by power.
High-performance design and energy-efficient design have become synonymous.

In this chapter, we will examine the fundamental theory behind the various sources of
power dissipation in a CMOS chip. Next, we will look at methods of estimating and mini-
mizing these sources. Then, some architectural ideas for achieving low power are discussed.

Chapter 5 Power182

While we concentrate mainly on the methods available as an IC designer to reduce
power, it should be remembered that it is the application and architectural level where the
major impact on power dissipation can be made. Quite simply stated, the less time you
have a circuit turned on, the less power it will dissipate. It is a simple maxim, but drives all
of the work on extremely low power circuits. To state this again, you must optimize power
in a top-down manner, from the problem definition downward. Do not optimize from the
bottom up, i.e., the circuit level; you will be doomed to fail.

5.1.1 Definitions
We have thrown some terms about already including power and energy. It is informative
to go back to basics and examine what we mean by these terms and why we are even inter-
ested in them.

The instantaneous power P (t) consumed or supplied by a circuit element is the product
of the current through the element and the voltage across the element

(5.1)

The energy consumed or supplied over some time interval T is the integral of the instanta-
neous power

(5.2)

The average power over this interval is

(5.3)

Power is expressed in units of Watts (W). Energy in circuits is usually expressed in
Joules (J), where 1 W = 1 J/s. Energy in batteries is often given in W-hr, where 1 W-hr =
(1 J/s)(3600 s/hr)(1 hr) = 3600 J.

5.1.2 Examples
Figure 5.1 shows a resistor. The voltage and current are related by Ohm’s Law, V = IR, so
the instantaneous power dissipated in the resistor is

(5.4)

This power is converted from electricity to heat.
Figure 5.2 shows a voltage source VDD. It supplies power proportional to its current

(5.5)

Figure 5.3 shows a capacitor. When the capacitor is charged from 0 to VC, it stores
energy EC

(5.6)

The capacitor releases this energy when it discharges back to 0.

P t I t V t() = () ()

E P t dt
T

= ()
0

P
E
T T

P t dt
T

avg = = ()1

0

P t
V t

R
I t RR

R
R() = ()

= ()
2

2

P t I t VVDD DD DD() = ()

E I t V t dt C
dV
dt

V t dt C V t dV CC

VC

= () () = () = () =
0 0 0

1
2 VVC

2

VR

+

−
IR

FIGURE 5.1
Resistor

+
VC
−

IC = C dV/dtC

FIGURE 5.3
Capacitor

VDD

+

−
IDD

FIGURE 5.2
Voltage source

5.1 Introduction 183

Figure 5.4 shows a CMOS inverter driving a load capacitance. When the input
switches from 1 to 0, the pMOS transistor turns ON and charges the load to VDD.
According to EQ (5.6), the energy stored in the capacitor is

(5.7)

The energy delivered from the power supply is

(5.8)

Observe that only half of the energy from the power supply is stored in the capacitor. The
other half is dissipated (converted to heat) in the pMOS transistor because the transistor
has a voltage across it at the same time a current flows through it. The power dissipated
depends only on the load capacitance, not on the size of the transistor or the speed at
which the gate switches. Figure 5.5 shows the energy and power of the supply and capaci-
tor as the gate switches.

When the input switches from 0 back to 1, the pMOS transistor turns OFF and the
nMOS transistor turns ON, discharging the capacitor. The energy stored in the capacitor
is dissipated in the nMOS transistor. No energy is drawn from the power supply during
this transition. The same analysis applies for any static CMOS gate driving a capacitive
load.

Figure 5.5 shows the waveforms as the inverter drives a 150 fF capacitor at 1 GHz.
When Vin begins to fall, the pMOS transistor starts to turn ON. It is initially saturated,
and the current Ip ramps up and eventually levels out at Idsat as Vin falls. Eventually, Vout
rises to the point that the pMOS shifts to the linear regime. Ip tapers off exponentially, as

E C VC L DD= 1
2

2

E I t V dt C
dV
dt

V dt CV dV CVC DD DD DD

V

DD

DD

= () = = =
0 0 0

2

VDD

CL
Vin

Vout
Ip

In Ic

FIGURE 5.4
CMOS inverter

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

V
in p

(V) (mA) S
aturation

Linear Short
Circuit
Current

Pp Ip(VDD Vout)

Pn InVout

Ic Ip In Pc IcVout

0 0.2 0.4 0.6 0.8 1
0

0.5

1

P
p

(mW)

0.2 0.4 0.6
t(ns)

0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

V
ou

t

n

0 0.2 0.4 0.6 0.8 1
0

0.5

1

P
n

(fJ)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0 0.2 0.4 0.6 0.8 1
1 1

0.50.5

0

0.5

1

c P
c

0 0.2 0.4 0.6 0.8 1
0

75

150

E
C

Vout lcdt
1

C

EC Pc dt

Evdd Pvdd dt

Pvdd IpVDD

0 0.2 0.4 0.6 0.8 1
0

0.5

1

P
vd

d

0 0.2 0.4 0.6 0.8 1
0

75

150

E
vd

d

FIGURE 5.5 Inverter switching voltage,
current, power, and energy

Chapter 5 Power184

one would expect charging a capacitor through a linear resistor. When Vin rises, the
pMOS starts to turn OFF. However, there is a small blip of current while the partially ON
pMOS fights against the nMOS. This is called short-circuit current. The inverter draws
power from VDD as Vout rises. Half of the power is dissipated in the pMOS transistor and
the other half is delivered to the capacitor. VDD supplies a total of 150 fJ of energy, of
which half is stored on the capacitor. The inverter is sized for equal rise/fall times so the
falling transition is symmetric. The energy on the capacitor is dumped to GND. The
short-circuit current consumes an almost imperceptibly small 2.7 fJ of additional energy
from VDD during this transition.

Suppose that the gate switches at some average frequency fsw. Over some interval T,
the load will be charged and discharged Tfsw times. Then, according to EQ (5.3), the
average power dissipation is

(5.9)

This is called the dynamic power because it arises from the switching of the load. Because
most gates do not switch every clock cycle, it is often more convenient to express switch-
ing frequency fsw as an activity factor times the clock frequency f. Now, the dynamic
power dissipation may be rewritten as

(5.10)

The activity factor is the probability that the circuit node transitions from 0 to 1, because
that is the only time the circuit consumes power. A clock has an activity factor of = 1
because it rises and falls every cycle. Most data has a maximum activity factor of 0.5
because it transitions only once each cycle. Truly random data has an activity factor of 0.25
because it transitions every other cycle. Static CMOS logic has been empirically deter-
mined to have activity factors closer to 0.1 because some gates maintain one output state
more often than another and because real data inputs to some portions of a system often
remain constant from one cycle to the next.

5.1.3 Sources of Power Dissipation
Power dissipation in CMOS circuits comes from two components:

� Dynamic dissipation due to

○ charging and discharging load capacitances as gates switch

○ “short-circuit” current while both pMOS and nMOS stacks are partially ON

� Static dissipation due to

○ subthreshold leakage through OFF transistors

○ gate leakage through gate dielectric

○ junction leakage from source/drain diffusions

○ contention current in ratioed circuits (see Section 9.2.2)

Putting this together gives the total power of a circuit

(5.11)

P
E
T

Tf CV
T

CV fDD
DDswitching

sw
sw= = =

2
2

P CV fDDswitching =
2

P P Pdynamic switching short circuit= +

5.2 Dynamic Power 185

(5.12)

(5.13)

Power can also be considered in active, standby, and sleep modes. Active power is the
power consumed while the chip is doing useful work. It is usually dominated by Pswitching.
Standby power is the power consumed while the chip is idle. If clocks are stopped and
ratioed circuits are disabled, the standby power is set by leakage. In sleep mode, the sup-
plies to unneeded circuits are turned off to eliminate leakage. This drastically reduces the
sleep power required, but the chip requires time and energy to wake up so sleeping is only
viable if the chip will idle for long enough.

[Gonzalez96] found that roughly one-third of microprocessor power is spent on the
clock, another third on memories, and the remaining third on logic and wires. In nano-
meter technologies, nearly one-third of the power is leakage. High-speed I/O contributes
a growing component too. For example, Figure 5.6 shows the active power consumption
of Sun’s 8-core 84 W Niagra2 processor [Nawathe08]. The cores and other components
collectively account for clock, logic, and wires.

The next sections investigate how to estimate and minimize each of these compo-
nents of power. Many tools are available to assist with power estimation; these are dis-
cussed further in Sections 8.5.4 and 14.4.1.6.

5.2 Dynamic Power
Dynamic power consists mostly of the switching power, given in EQ (5.10). The supply
voltage VDD and frequency f are readily known by the designer. To estimate this power, one
can consider each node of the circuit. The capacitance of the node is the sum of the gate,
diffusion, and wire capacitances on the node. The activity factor can be estimated using
techniques described in Section 5.2.1 or measured from logic simulations. The effective
capacitance of the node is its true capacitance multiplied by the activity factor. The switch-
ing power depends on the sum of the effective capacitances of all the nodes.

Activity factors can be heavily dependent on the particular task being executed. For
example, a processor in a cell phone will use more power while running video games than
while displaying a calendar. CAD tools do a fine job of power estimation when given a
realistic workload. Low power design involves considering and reducing each of the terms
in switching power.

As VDD is a quadratic term, it is good to select the minimum VDD that can support the
required frequency of operation. Likewise, we choose the lowest frequency of operation
that achieves the desired end performance. The activity factor is mainly reduced by putting
unused blocks to sleep. Finally, the circuit may be optimized to reduce the overall load
capacitance of each section.

Example 5.1

A digital system-on-chip in a 1 V 65 nm process (with 50 nm drawn channel lengths
and = 25 nm) has 1 billion transistors, of which 50 million are in logic gates and the
remainder in memory arrays. The average logic transistor width is 12 and the average
memory transistor width is 4 . The memory arrays are divided into banks and only the

P I I I I VDDstatic sub gate junct contention= + + +()
P P Ptotal dynamic static= +

Cores
32%

Memory
20%

I/O
13%

Leakage
21%

Other
14%

FIGURE 5.6 Power in Niagra2

Chapter 5 Power186

necessary bank is activated so the memory activity factor is 0.02. The static CMOS
logic gates have an average activity factor of 0.1. Assume each transistor contributes 1
fF/ m of gate capacitance and 0.8 fF/ m of diffusion capacitance. Neglect wire capaci-
tance for now (though it could account for a large fraction of total power). Estimate the
switching power when operating at 1 GHz.

SOLUTION: There are (50 � 106 logic transistors)(12)(0.025 m/)((1 + 0.8) fF/ m) =
27 nF of logic transistors and (950 � 106 memory transistors)(4)(0.025 m/)((1 +
0.8) fF/ m) = 171 nF of memory transistors. The switching power consumption is
[(0.1)(27 � 10–9) + (0.02)(171 � 10–9)](1.0 V)2(109 Hz) = 6.1 W.

Dynamic power also includes a short-circuit power component caused by power rush-
ing from VDD to GND when both the pullup and pulldown networks are partially ON
while a transistor switches. This is normally less than 10% of the whole, so it can be con-
servatively estimated by adding 10% to the switching power.

Switching power is consumed by delivering energy to charge a load capacitance, then
dumping this energy to GND. Intuitively, one might expect that power could be saved by
shuffling the energy around to where it is needed rather than just dumping it. Resonant
circuits, and adiabatic charge-recovering circuits [Maksimovic00, Sathe07] seek to achieve
such a goal. Unfortunately, all of these techniques add complexity that detracts from the
potential energy savings, and none have found more than niche applications.

5.2.1 Activity Factor
The activity factor is a powerful and easy-to-use lever for reducing power. If a circuit can
be turned off entirely, the activity factor and dynamic power go to zero. Blocks are typi-
cally turned off by stopping the clock; this is called clock gating. When a block is on, the
activity factor is 1 for clocks and substantially lower for nodes in logic circuits. The activity
factor of a logic gate can be estimated by calculating the switching probability. Glitches
can increase the activity factor.

5.2.1.1 Clock Gating Clock gating ANDs a clock signal with an enable to turn off the
clock to idle blocks. It is highly effective because the clock has such a high activity factor,
and because gating the clock to the input registers of a block prevents the registers from
switching and thus stops all the activity in the downstream combinational logic.

Clock gating can be employed on any enabled register. Section 10.3.5 discusses
enabled register design. Sometimes the logic to compute the enable signal is easy; for
example, a floating-point unit can be turned off when no floating-point instructions are
being issued. Often, however, clock gating signals are some of the most critical paths of

the chip.
The clock enable must be stable while the clock is active (i.e., 1 for systems

using positive edge-triggered flip-flops). Figure 5.7 shows how an enable latch
can be used to ensure the enable does not change before the clock falls.

When a large block of logic is turned off, the clock can be gated early in the
clock distribution network, turning off not only the registers but also a portion of
the global network. The clock network has an activity factor of 1 and a high
capacitance, so this saves significant power.

clk

Enable
Logic

Enable
Latch

Clock
Gater

Registers

FIGURE 5.7 Clock gating

5.2 Dynamic Power 187

5.2.1.2 Switching Probability Recall that the activity factor of a node is the probability
that it switches from 0 to 1. This probability depends on the logic function. By analyzing
the probability that each node is 1, we can estimate the activity factors. Although design-
ers don’t manually estimate activity factors very often, the exercise is worth doing here to
gain some intuition about switching activity.

Define Pi to be the probability that node i is 1. Pi = 1 – Pi is the probability that node
i is 0. i , the activity factor of node i, is the probability that the node is 0 on one cycle and
1 on the next. If the probability is uncorrelated from cycle to cycle,

(5.14)

Completely random data has P = 0.5 and thus = 0.25. Structured data may have
different probabilities. For example, the upper bits of a 64-bit unsigned integer represent-
ing a physical quantity such as the intensity of a sound or the amount of money in your
bank account are 0 most of the time. The activity factor is lower than 0.25 for such data.

Table 5.1 lists the output probabilities of various gates as a function of their input prob-
abilities, assuming the inputs are uncorrelated. According to EQ (5.14), the activity factor of
the output is PYPY.

Example 5.2

Figure 5.8 shows a 4-input AND gate built using a tree (a) and a chain (b) of gates.
Determine the activity factors at each node in the circuit assuming the input probabili-
ties PA = PB = PC = PD = 0.5.

SOLUTION: Figure 5.9 labels the signal probabilities and the activity factors at each node
based on Table 5.1 and EQ (5.14). The chain has a lower activity factor at the interme-
diate nodes.

TABLE 5.1 Switching probabilities

Gate PY

AND2 PAPB

AND3 PAPBPC

OR2 1 – PAPB

NAND2 1 – PAPB

NOR2 PAPB

XOR2 PAPB + PAPB

i i iP P=

P =
 = P =

 =

P =
 =

P =
 = P =

 =
P =

 = P =
 =

P =
 =

A

C

B

D

A

C
B

D

n1
n2

n3 n4
n5 n6

n7

Y
Z

P =
 =

(a) (b)

FIGURE 5.8 4-input AND circuits

Chapter 5 Power188

When paths contain reconvergent fanouts, signals become correlated and conditional
probabilities become required. Power analysis tools are the most convenient way to handle
large complex circuits.

Preliminary power estimation requires guessing an activity factor before RTL code is
written and workloads are known. = 0.1 is a reasonable choice in the absence of better data.

5.2.1.3 Glitches The switching probabilities computed in the previous section are only
valid if the gates have zero propagation delay. In reality, gates sometimes make spurious
transitions called glitches when inputs do not arrive simultaneously. For example, in Fig-
ure 5.8(b), suppose ABCD changes from 1101 to 0111. Node n4 was 1 and falls to 0.
However, nodes n5, n6, n7, and Z may glitch before n4 changes, as shown in Figure 5.10.
The glitches cause extra power dissipation. Chains of gates are particularly prone to this
problem. Glitching can raise the activity factor of a gate above 1 and can account for the
majority of power in certain circuits such as ripple carry adders and array multipliers (see
Chapter 11). Glitching power can be accurately assessed through simulations accounting
for timing.

5.2.2 Capacitance
Switching capacitance comes from the wires and transistors in a circuit. Wire capacitance
is minimized through good floorplanning and placement (the locality aspect of structured
design). Units that exchange a large amount of data should be placed close to each other to
reduce wire lengths.

Device-switching capacitance is reduced by choosing fewer stages of logic and smaller
transistors. Minimum-sized gates can be used on non-critical paths. Although Logical
Effort finds that the best stage effort is about 4, using a larger stage effort increases delay
only slightly and greatly reduces transistor sizes. Therefore, gates that are large or have a
high activity factor and thus dominate the power can be downsized with only a small per-
formance impact. For example, buffers driving I/O pads or long wires may use a stage
effort of 8–12 to reduce the buffer size. Similarly, registers should use small clocked tran-
sistors because their activity factor is an order of magnitude greater than transistors in
combinational logic. In Chapter 6, we will see that wire capacitance dominates many cir-
cuits. The most energy-efficient way to drive long wires is with inverters or buffers rather
than with more complex gates that have higher logical efforts [Stan99].

Figure 5.11 shows an example of transistor sizing in a 64-bit Kogge-Stone adder (see
Section 11.2.2.8) [Markovic 04]. In Figure 5.11(a), the gates are sized to achieve mini-
mum possible delay. The high spikes in the middle correspond to large gates driving the
long wires. In Figure 5.11(b), the circuit is reoptimized for 10% greater delay. The energy
is reduced by 55%. In general, large energy savings can be made by relaxing a circuit a
small amount from the minimum delay point.

Unfortunately, there are no closed-form methods to determine gate sizes that mini-
mize energy under a delay constraint, even for circuits as simple as an inverter chain

P = 3/4
α = 3/16

P = 3/4
α = 3/16 P = 1/16

α = 15/256

P = 3/4
α = 3/16 P = 1/4

α = 3/16
P = 7/8
α = 7/64 P = 1/8

α = 7/64
P = 15/16
α = 15/256 P = 1/16

α = 15/256

A

C

B

D

A

C
B

D

n1 n3 n4
n5 n6

n7

n2
Y

Z

FIGURE 5.9 Signal probabilities and activity factors

A

C

B

n3

n4

n6

n5

n7

D

Z

Glitches

FIGURE 5.10
Glitching in a chain of gates

FIGURE 5.11 Adder gate sizing
under a delay constraint
(Adapted from [Markovic 04].
© IEEE 2004.)

5.2 Dynamic Power 189

[Ma94]. However, it is straightforward to solve the problem numerically, as will be formu-
lated in the next section.

5.2.2.1 Gate Sizing Under a Delay Constraint In Chapter 4, Logical Effort showed us
how to minimize delay. In many cases, we are willing to increase delay to save energy. We
can extend the iterative technique from Section 4.5.6 to size a circuit for minimum
switching energy under a delay constraint.

First, consider a model to compute the energy of a circuit. If a unit inverter has gate
capacitance 3C, then a gate with logical effort g, parasitic delay p, and drive x has gx times
as much gate capacitance and px times as much diffusion capacitance. The switching
energy of each gate depends on its activity factor, the diffusion capacitance of the gate, the
wire capacitance Cwire, and the gate capacitance of all the stages it drives. The energy of
the entire circuit is the sum of the energies of each gate.

(5.15)

If wire capacitance is expressed in multiples of the capacitance of a unit inverter as
c = Cwire /3C and we normalize energy for the capacitance and voltage of the process,
EQ (5.15) becomes the sum of the effective capacitances of the nodes.

(5.16)

Now, we seek to minimize E such that the worst-case arrival time is less than some
delay D. The problem is still a posynomial and has a unique solution that can be found
quickly by a good optimizer.

Example 5.3

Generate an energy-delay trade-off curve for the circuit from Figure 4.37 as delay var-
ies from the minimum possible (Dmin = 23.44) to 50 . Assume that the input proba-
bilities are 0.5.

SOLUTION: Figure 5.12 shows the activity factors of each node. Hence, the energy of this
circuit is

(5.17)

Energy
wire

fanout

= + +3
3

2CV
C

C
p x g xDD i i i j j

j i

i

()i nodes

E c p x g xi i i i j j
j ii

i= + + =
fanoutnodes ()

x di i
i nodes

E x x x x x x= + +() + +() + +()
+

1
4

4
3 2

5
3 3

3
16 2

7
3 4

3
16 3

7
3 4

8

1 2 2

77
1024 4 5

87
1024 510 3 12+ +() + +()x x x

1 x2

x3 x4 x5

p1 = 1/2
α1 = 1/4 p1 = 3/4

α1 = 3/16

p4 = 3/32

c4 = 10 c5 = 12

α4 = 87/1024

p3 = 1/4
α3 = 3/16

p5 = 29/32
α5 = 87/1024

FIGURE 5.12 Activity factors

Chapter 5 Power190

Figure 5.13 shows the energy-delay trade-off curve obtained by repeatedly solving for
minimum energy under a delay constraint. The curve is steep near Dmin, indicating that a
large amount of energy can be saved for a small increase in delay. The delay cannot be
reduced below Dmin for any amount of energy unless the size of the input inverter is
increased (which would increase the delay of the previous circuit).

5.2.3 Voltage
Voltage has a quadratic effect on dynamic power. Therefore, choosing a lower power sup-
ply significantly reduces power consumption. As many transistors are operating in a
velocity-saturated regime, the lower power supply may not reduce performance as much as
long-channel models predict. The chip may be divided into multiple voltage domains,
where each domain is optimized for the needs of certain circuits. For example, a system-
on-chip might use a high supply voltage for memories to ensure cell stability, a medium
voltage for a processor, and a low voltage for I/O peripherals running at lower speeds. In
Section 5.3.2, we will examine how voltage domains can be turned off entirely to save
leakage power during sleep mode.

 Voltage also can be adjusted based on operating mode; for example, a laptop proces-
sor may operate at high voltage and high speed when plugged into an AC adapter, but at
lower voltage and speed when on battery power. If the frequency and voltage scale down in
proportion, a cubic reduction in power is achieved. For example, the laptop processor may
scale back to 2/3 frequency and voltage to save 70% in power when unplugged.

5.2.3.1 Voltage Domains Some of the challenges in using voltage domains include con-
verting voltage levels for signals that cross domains, selecting which circuits belong in
which domain, and routing power supplies to multiple domains.

Figure 5.14 shows direct connection of inverters in two domains using high and low
supplies, VDDH and VDDL, respectively. A gate in the VDDH domain can directly drive a
gate in the VDDL domain. However, the gate in the VDDL domain will switch faster than it
would if driven by another VDDL gate. The timing analyzer must consider this when com-
puting the contamination delay, lest a hold time be violated. Unfortunately, the gate in
the VDDL domain cannot directly drive a gate in the VDDH domain. When n2 is at VDDL,
the pMOS transistor in the VDDH domain has Vgs = VDDH – VDDL. If this exceeds Vt, the
pMOS will turn ON and burn contention current. Even if the difference is less than Vt ,
the pMOS will suffer substantially increased leakage. This problem may be alleviated by
using a high-Vt pMOS device in the receiver if the voltage difference between domains is
small enough [Tawfik09].

The standard method to handle voltage domain crossings is a level converter, shown in
Figure 5.15. When A = 0, N1 is OFF and N2 is ON. N2 pulls Y down to 0, which turns
on P1, pulling X up to VDDH and ensuring that P2 turns OFF. When A = 1, N1 is ON
and N2 is OFF. N1 pulls X down to 0, which turns on P2, pulling Y up to VDDH. In either
case, the level converter behaves as a buffer and properly drives Y between 0 and VDDH
without risk of transistors remaining partially ON. Unfortunately, the level converter costs
delay (about 2 FO4) and power at each domain crossing. [Kulkarni04] and [Ishihara04]
survey a variety of other level converters. The cost can be partially alleviated by building
the converter into a register and only crossing voltage domains on clock cycle boundaries.
Such level-converter flops are described in Section 10.4.4.

The easiest way to use voltage domains is to associate each domain with a large area of
the floorplan. Thus, each domain receives its own power grid. Note that level converters

0
1
2
3
4
5
6
7
8
9

0 10 20 30 40 50
D

E

Dmin

FIGURE 5.13
Energy-delay trade-off curve

VDDH VDDL

VDDL VDDH

n1

(a)

n2

(b)

BAD

FIGURE 5.14
Voltage domain crossing

VDDL

X Y

VDDH

A
N1

N2

P2P1

FIGURE 5.15 Level converter

5.2 Dynamic Power 191

require two power supplies, so they should be placed near the periphery of the domain
where necessary for domain crossings.

An alterative approach is called clustered voltage scaling (CVS) [Usami95], in which
two supply voltages can be used in a single block. Figure 5.16 shows an example of clus-
tered voltage scaling. Gates early in the path use VDDH. Noncritical gates later in the path
use VDDL. Voltages are assigned such that a path never crosses from a VDDL gate to a VDDH
gate within a block of combinational logic, so level converters are only required at the reg-
isters. CVS requires that two power supplies be distributed across the entire block. This
can be done by using two power rails. A cell library can have high- and low-voltage ver-
sions of each cell, differentiated only by the rail to which the pMOS transistors are con-
nected, so that the flavor of gate can be interchanged. Note that many processes require a
large spacing between n-wells at different potentials, which limits the proximity of the
VDDH and VDDL gates.

LC

A

B

C

D

E

LC

LC

W

X

Y

Z
VDDL Cluster

VDDH Cluster

FIGURE 5.16 Clustered voltage scaling

5.2.3.2 Dynamic Voltage Scaling (DVS) Many systems have time-
varying performance requirements. For example, a video decoder requires
more computation for rapidly moving scenes than for static scenes. A
workstation requires more performance when running SPICE than when
running Solitaire. Such systems can save large amounts of energy by
reducing the clock frequency to the minimum sufficient to complete the
task on schedule, then reducing the supply voltage to the minimum nec-
essary to operate at that frequency. This is called dynamic voltage scaling
(DVS) or dynamic voltage/frequency scaling (DVFS) [Burd00]. Figure
5.17 shows a block diagram for a basic DVS system. The DVS controller
takes information from the system about the workload and/or the die
temperature. It determines the supply voltage and clock frequency suffi-
cient to complete the workload on schedule or to maximize performance without over-
heating. A switching voltage regulator efficiently steps down Vin from a high value to the
necessary VDD. The core logic contains a phase-locked loop or other clock synthesizer to
generate the specified clock frequency.

The DVS controller determines the operating frequency, then chooses the lowest sup-
ply voltage suitable for that frequency. One method of choosing voltage is with a prechar-
acterized table of voltage vs. frequency. This is inherently conservative because the voltage

Switching
Voltage

Regulator

VDD

Vin

Core LogicDVS
Controller

Freq Control

Voltage Control

Workload

Temperature

FIGURE 5.17 DVS system

Chapter 5 Power192

should be high enough to suffice for even worst-case parts (see Chapter 7 about variabil-
ity). The quad-core Itanium processor contains a fuse-programmable table that can be tai-
lored to each chip during production [Stackhouse09]. Another method is to use a replica
circuit such as a ring oscillator that tracks the performance of the system, as discussed in
Section 7.5.3.4.

Consider how the energy for a system varies with the work-
load. Define the rate to be the fraction of maximum performance
required to complete the workload in a specified amount of time.
Figure 5.18 plots energy against rate. If the rate is less than 1, the
clock frequency can be adjusted down accordingly, or the system
can run at full frequency until the work is done, then stop the clock
and go to sleep; this may be simpler than building a continuously
adjustable clock. Without DVS, the energy varies linearly with the
rate. With ideal DVS, the voltage could also be reduced at lower
rates. Assuming a linear relationship between voltage and fre-
quency, the energy is proportional to the rate cubed, giving much
greater savings at lower rates. Operating at half the maximum rate
costs only one-eighth of the energy.

Such scaling assumes a continuously adjustable supply volt-
age, which is more expensive than a supply with discrete levels.
Characterizing a circuit across a continuous range of voltages and
frequencies is also difficult. If the supply voltage is limited to

three levels, e.g., 1.0, 0.75, and 0.5 V, and the frequencies limited to three settings as well,
much of the benefit of DVS still can be achieved. Better yet, a system can dither between
these voltages to save even more energy [Gutnik97]. For example, if a rate of 0.6 is
required, the system could operate at a rate of 0.75 for 40% of the computation, then
switch to a rate of 0.5 for the remaining 60%. Hence, by dithering between three levels,
the system can achieve almost as low energy as by using an arbitrary supply voltage.
Indeed, dithering between only two supply voltages selected for full and half-rate opera-
tion is sufficient to get more than 80% of the benefit of DVS [Aisaka02].

Section 5.3.2 discusses power gating to turn off power to a block during sleep mode.
The same mechanism can be used to select from one of several supply voltages for each
block during active mode. This allows local voltage dithering so that each block can operate
at a preferred voltage.

DVS normally operates over a range from the maximum VDD down to about half that
value. It can be extended further into the subthreshold regime [Zhai05a, Calhoun06a];
this is sometimes called ultra-dynamic voltage scaling (UDVS). It can be challenging to
build a replica circuit that tracks the worst case delay on the chip across a very wide range
of voltages. DVS is now widely used in systems ranging from consumer electronics to
high-performance microprocessors [Keating07, Stackhouse09].

Subthreshold and gate leakage are strongly sensitive to the supply voltage, so DVS
also is effective at reducing leakage during periods of low activity.

Operating at varied VDD voltages implies an adjustable voltage regulator that reduces
the voltage from a higher supply. Be careful to use a switching type regulator; otherwise,
the power will just be dissipated in the regulator.

5.2.4 Frequency
Dynamic power is directly proportional to frequency, so a chip obviously should not run
faster than necessary. As mentioned earlier, reducing the frequency also allows downsizing

0 0.2 0.4 0.6

Rate

0.8 1
0

N
or

m
a

ze
d

E
ne

rg
y

Fixed
Supply

Arbitrary
Supply

Three Levels,
Undithered

Three Levels,
Dithered

0.2

0.4

0.6

0.8

1

FIGURE 5.18 Energy reduction from DVS

5.2 Dynamic Power 193

transistors or using a lower supply voltage, which has an even greater impact on power.
The performance can be recouped through parallelism (see Section 5.5.2), especially if
area is not as important as power.

Even if multiple voltage supplies are not available, a chip may still use multiple fre-
quency domains so that certain portions can run more slowly than others. For example, a
microprocessor bus interface usually runs much slower than the core. Low frequency
domains can also save energy by using smaller transistors.

Frequency domain crossings are easiest if the frequencies are related by integer multi-
ples and the clocks are synchronized between domains. Section 10.6 discusses synchroni-
zation further.

5.2.5 Short-Circuit Current
Short-circuit power dissipation occurs as both pullup and pulldown networks are partially
ON while the input switches, as was illustrated in Figure 5.5. It increases as the input edge
rates become slower because both networks are ON for more time [Veendrick84]. How-
ever, it decreases as load capacitance increases because with large loads the output only
switches a small amount during the input transition, leading to a small Vds across the tran-
sistor that is causing the short-circuit current. Unless the input edge rate is much slower
than the output edge rate, short-circuit current is a small fraction (< 10%) of current to the
load and can be ignored in hand calculations. It is good to use relatively crisp edge rates at
the inputs to gates with wide transistors to minimize their short-circuit current. This is
achieved by keeping the stage effort of the previous stage reasonable, e.g., 4 or less. In gen-
eral, gates with balanced input and output edge rates have low short-circuit power.

Short-circuit power is strongly sensitive to the ratio v = Vt / VDD. In the limit that
v > 0.5, short-circuit current is eliminated entirely because the pullup and pulldown net-
works are never simultaneously ON. For v = 0.3 or 0.2, short-circuit power is typically
about 2% or 10% of switching power, respectively, assuming clean edges [Nose00a]. In
nanometer processes, Vt can scarcely fall below 0.3 V without excessive leakage, and VDD is
on the order of 1 V, so short-circuit current has become almost negligible.

5.2.6 Resonant Circuits
Resonant circuits seek to reduce switching power consumption by letting energy slosh
back and forth between storage elements such as capacitors and inductors rather than
dumping the energy to ground. The technique is best suited to applications such as clocks
that operate at a constant frequency.

Figure 5.19 shows a model of a resonant clock network [Chan05]. Cclock is the
capacitance of the clock network. In an ordinary clock circuit, it is driven between
VDD and GND by a strong clock buffer. The resonant clock network adds the
inductor L1 and the capacitor C2, which is approximately 10Cclock. Rclock and Rind
represent losses in the clock wires and in the inductor that lower the quality of the
resonator. In the resonant clock circuit, energy moves back and forth between L1
and Cclock, causing a sinusoidal oscillation at the resonant frequency f. The driver
pumps in just enough energy to compensate for the resistive losses. C2 must be large
enough to store excess energy and not interfere with the resonance of the clock
capacitance.

(5.18)f
L C

1

2 1 clock

clkclk

Cclock

Rclock

L1

C2

Rind

FIGURE 5.19
Resonant clock network

Chapter 5 Power194

In a mechanical analogy, inductors represent springs and capacitors represent mass.
The clock itself has high capacitance and little inductance, representing a rigid mass sus-
pended on a set of springs corresponding to the inductor L1. The mass oscillates up and
down. The clock driver gives the mass a kick to get it started and compensate for damping
in the springs, but little energy is required because the springs do most of the work storing
energy on the way down and delivering it back to the mass on the way up.

IBM has demonstrated a resonant global clock distribution system for the Cell pro-
cessor [Chan09]. At an operating frequency of 4–5 GHz, the system could reduce chip
power by 10%. Some of the drawbacks of resonant clocking include the limited range of
operating frequencies, the sinusoidal clock output, and the difficulty of building a high-
quality inductor in a CMOS process.

5.3 Static Power
Static power is consumed even when a chip is not switching. CMOS has replaced nMOS
processes because contention current inherent to nMOS logic limited the number of tran-
sistors that could be integrated on one chip. Static CMOS gates have no contention cur-
rent. Prior to the 90 nm node, leakage power was of concern primarily during sleep mode
because it was negligible compared to dynamic power. In nanometer processes with low
threshold voltages and thin gate oxides, leakage can account for as much as a third of total
active power. Section 2.4.4 introduced leakage current mechanisms. This section briefly
reviews each source of static power. It then discusses power gating, which is a key tech-
nique to reduce power in sleep mode. Because subthreshold leakage is usually the domi-
nant source of static power, other techniques for leakage reduction are explored, including
multiple threshold voltages, variable threshold voltages, and stack forcing.

5.3.1 Static Power Sources
As given in EQ (5.12), static power arises from subthreshold, gate, and junction leakage
currents and contention current. Entire books have been written about leakage
[Narendra06], but this section summarizes the key effects.

5.3.1.1 Subthreshold Leakage Subthreshold leakage current flows when a transistor is
supposed to be OFF. It is given by EQ (2.45). For Vds exceeding a few multiples of the
thermal voltage (e.g., Vds > 50 mV), it can be simplified to

(5.19)

where Ioff is the subthreshold current at Vgs = 0 and Vds = VDD, and S is the subthreshold
slope given by EQ (2.44) (about 100 mV/decade). Ioff is a key process parameter defining
the leakage of a single OFF transistor. It ranges from about 100 nA/ m for typical low-Vt
devices to below 1 nA/ m for high-Vt devices. is the DIBL coefficient, typically around
100 mV/V for a 65 nm transistor, and trending upward because the drain exerts an increas-
ing influence on the channel as the geometry shrinks. If Vds is small, Isub may decrease by
roughly an order of magnitude from Ioff. k is the body effect coefficient, which describes
how the body effect modulates the threshold voltage. Raising the source voltage or applying
a negative body voltage can further decrease leakage.

I I

V V V k V

S
gs ds DD sb

sub off=
+ ()

10

5.3 Static Power 195

Ioff is usually specified at 25 °C and increases exponentially with temperature because
Vt decreases with temperature and S is directly proportional to temperature. Ioff typically
increases by one to two orders of magnitude at 125 °C, so limiting die temperature is
essential to controlling leakage.

The leakage through two or more series transistors is dramatically reduced on account
of the stack effect [Ye98, Narendra01]. Figure 5.20 shows two series OFF transistors with
gates at 0 volts. The drain of N2 is at VDD, so the stack will leak. However, the middle
node voltage Vx settles to a point that each transistor has the same current. If Vx is small,
N1 will see a much smaller DIBL effect and will leak less. As Vx rises, Vgs for N2 becomes
negative, reducing its leakage. Hence, we would expect that the series transistors leak less.
This can be demonstrated mathematically by solving for Vx and Isub, assuming that
Vx > 50 mV.

(5.20)

(5.21)

(5.22)

Using the typical values above and VDD = 1.0 V, we find that the stack effect
reduces subthreshold leakage by a factor of about 10. Stacks with three or more
OFF transistors have even lower leakage.

Subthreshold leakage cannot be reduced without consideration of other forms
of leakage [Mukhopadhyay05]. Raising the halo doping level to raise Vt by control-
ling DIBL and short-channel effects causes BTBT to increase. Applying a reverse
body bias to increase Vt also causes BTBT to increase. Applying a negative gate
voltage to turn the transistor OFF more strongly causes GIDL to increase. Figure
5.21 shows how subthreshold leakage dominates in a 50 nm process at low Vt , but
how the other sources take over at higher Vt [Agarwal07].

Silicon on Insulator (SOI) circuits are attractive for low-leakage designs because they
have a sharper subthreshold current rolloff (smaller n in EQ (2.42)). SOI circuit design
will be discussed further in Section 9.5.

5.3.1.2 Gate Leakage Gate leakage occurs when carriers tunnel through a thin gate
dielectric when a voltage is applied across the gate (e.g., when the gate is ON). A process
usually specifies IG in nA/ m for a minimum-length gate or in A/mm2 of transistor gate.
Gate leakage is an extremely strong function of the dielectric thickness. It is normally lim-
ited to acceptable levels in the process by selection of the dielectric thickness. pMOS gate
leakage is an order of magnitude smaller in ordinary SiO2 gates and can often be ignored,
but it can be significant for other gate dielectrics.

Gate leakage also depends on the voltage across the gate. For example, Figure 5.22
shows two series transistors. If N1 is ON and N2 is OFF, N1 has Vgs = VDD and experi-
ences full gate leakage. On the other hand, if N1 is OFF and N2 is on, N2 has Vgs = Vt and

I I I
V V

S

V V Vx

N

xDD DD

sub off off= =

+()
10 10

2

η η x x

N

V k V

S
DD()() γ

1

V
V

kx
DD=

+ +1 2

I I I

V
k
k

S

DD

sub off off=

+ +

+ +

10 10

1
1 2 VV

S
DD

0

0
Vx

VDD

N1

N2

FIGURE 5.20
Series OFF transistors
demonstrating the stack
effect

FIGURE 5.21
Leakage as a function of Vt
(© IEEE 2007.)

1

0
Vx = 0

VDD

VDD

N1

N2

Vx = VDD Vt
N1

N2

(a)

(b)

0

1

FIGURE 5.22
Gate leakage in series stack

Chapter 5 Power196

experiences negligible gate leakage [Lee03, Mukhopadhyay03]. In both cases, the OFF
transistor has no gate leakage. Thus, gate leakage can be alleviated by stacking transistors
such that the OFF transistor is closer to the rail.

Table 5.2 summarizes the combined effects of gate and subthreshold leakage on the
3-input NAND gate shown in Figure 5.23 using data from [Lee03] for a process with 15
Å oxides and 60 nm channel length. The gate leakage through an ON nMOS transistor is
6.3 nA. pMOS gate leakage is negligible. The subthreshold leakage through an nMOS
transistor with Vds = VDD is 5.63 nA and the subthreshold leakage through a pMOS tran-
sistor with |Vds| = VDD is 9.3 nA.

The NAND3 benefits from the stack effect to reduce subthreshold leakage. In the
000 case, all three nMOS transistors are OFF and the triple stack effect cuts leakage by a
factor of 10. Both intermediate nodes drift up to somewhere around 100–200 mV set by
the stack effect. In the 001 and 100 cases, two nMOS transistors are OFF and the double
stack effect cuts leakage by a factor of 5. In the 110 case, the nMOS stack experiences full
subthreshold leakage because only one transistor is OFF and it sees Vds = VDD. In the 011
and 101 cases, the single OFF nMOS transistor sees Vds = VDD – Vt , so the leakage is par-
tially reduced. In the 111 case, all three parallel pMOS transistors leak.

The NAND3 also sees pattern-dependent gate leakage. In the 000 case, all three
nMOS transistors are off, so no gate current flows. In the 001 and 011 cases, the ON tran-
sistors see Vgs = Vt and thus have little leakage. In the 010 case, gate leakage through N2
charges Vx and Vz up to an intermediate voltage until the increase in source/drain voltage
reduces the gate current. This raises the source voltage of N3, effectively eliminating its
subthreshold leakage. In the 101 case, N 1 sees full gate leakage, while N 3 has little
because Vz is at a high voltage. In the 110 case, N1 and N2 both see gate leakage, and in
the 111 case, all three nMOS transistors leak.

5.3.1.3 Junction Leakage Junction leakage occurs when a source or drain diffusion
region is at a different potential from the substrate. Although the ordinary leakage of
reverse-biased diodes is usually negligible, BTBT and GIDL can result in leakage cur-
rents that approach subthreshold leakage levels in high-Vt transistors. BTBT is maximum
when a strong reverse bias is applied between the drain and body (e.g., Vdb = VDD for an
nMOS transistor). GIDL is maximum when the transistor is OFF and a strong bias is
applied to the drain (e.g., Vgd = –VDD for an nMOS transistor). Junction leakage is often

TABLE 5.2 Gate and subthreshold leakage in NAND3 (nA)

Input State (ABC) Isub Igate Itotal Vx Vz

000 0.4 0 0.4 stack effect stack effect

001 0.7 0 0.7 stack effect VDD – Vt

010 0 1.3 1.3 intermediate intermediate

011 3.8 0 10.1 VDD – Vt VDD – Vt

100 0.7 6.3 7.0 0 stack effect

101 3.8 6.3 10.1 0 VDD – Vt

110 5.6 12.6 18.2 0 0

111 28 18.9 46.9 0 0

N1

N2

A

Vz
B

C

Vx

Y
N3

FIGURE 5.23 NAND gate
demonstrating pattern
dependence of gate and
subthreshold leakage

5.3 Static Power 197

minor in comparison to the other leakages, but can be expressed in nA/ m of transistor
width when it needs to be considered.

5.3.1.4 Contention Current Static CMOS circuits have no contention current. However,
certain alternative circuits inherently draw current even while quiescent. For example,
pseudo-nMOS gates discussed in Section 9.2.2 experience contention between the nMOS
pulldowns and the always-on pMOS pullups when the output is 0. Current-mode logic
and many analog circuits also draw static current. Such circuits should be turned OFF in
sleep mode by disabling the pullups or current source.

5.3.1.5 Static Power Estimation Static current estimation is a matter of estimating the
total width of transistors that are leaking, multiplying by the leakage current per width,
and multiplying by the fraction of transistors that are in their leaky state (usually one-
half). Add the contention current if applicable. The static power is the supply voltage
times the static current.

Example 5.4

Consider the system-on-chip from Example 5.1. Subthreshold leakage for OFF
devices is 100 nA/ m for low-threshold devices and 10 nA/ m for high-threshold
devices. Gate leakage is 5 nA/ m. Junction leakage is negligible. Memories use low-
leakage devices everywhere. Logic uses low-leakage devices in all but 5% of the paths
that are most critical for performance. Estimate the static power consumption.

SOLUTION: There are (50 � 106 logic transistors)(0.05)(12)(0.025 m/) = 0.75 � 106

m of low-threshold devices and [(50 � 106 logic transistors)(0.95)(12) + (950 � 106

memory transistors)(4)](0.025 m/) = 109.25 � 106 m of high-threshold devices.
Neglecting the benefits of series stacks, half the transistors are OFF and contribute
subthreshold leakage. Half the transistors are ON and contribute gate leakage. Isub =
[(0.75 � 106 m)(100 nA/ m) + (109.25 � 106 m)(10 nA/ m)]/2 = 584 mA. Igate =
((0.75 + 109.25) � 106 m)(5 nA/ m)/2 = 275 mA. Pstatic = (584 mA + 275 mA)(1 V)
= 859 mW. This is 15% of the switching power and is enough to deplete the battery of
a hand-held device rapidly.

5.3.2 Power Gating
The easiest way to reduce static current during sleep mode is to turn off the
power supply to the sleeping blocks. This technique is called power gating and is
shown in Figure 5.24. The logic block receives its power from a virtual VDD rail,
VDDV. When the block is active, the header switch transistors are ON, connect-
ing VDDV to VDD. When the block goes to sleep, the header switch turns OFF,
allowing VDDV to float and gradually sink toward 0. As this occurs, the outputs
of the block may take on voltage levels in the forbidden zone. The output isola-
tion gates force the outputs to a valid level during sleep so that they do not
cause problems in downstream logic.

Power gating introduces a number of design issues. The header switch
requires careful sizing. It should add minimal delay to the circuit during active
operation, and should have low leakage during sleep. The transition between
active and sleep modes takes some time and energy, so power gating is only
effective when a block is turned off long enough. When a block is gated, the

VDD

VDDV

Sleep
Sleep

Inputs

O
utputs

Power
Gated
Block

Output
Isolation

Header Switch
Transistors

FIGURE 5.24 Power gating

Chapter 5 Power198

state must either be saved or reset upon power-up. Section 10.4.3 discusses state retention
registers that use a second power supply to maintain the state. Alternatively, the important
registers can be saved to memory so the entire block can be power-gated. The registers
must then be reloaded from memory when power is restored. [Keating07] addresses at
length how to use power gating in a standard CAD flow. If power switches are fast
enough, they can be used to save leakage power during active mode by powering down
clock-gated blocks [Tschanz03, Min06]. If saving or losing the state costs too much
overhead, turning the power supply down to the minimum level necessary to retain state
(about 300 mV) using DVS is sufficient to eliminate gate leakage and reduce subthresh-
old leakage energy by more than an order of magnitude [Calhoun04].

Power gating was originally proposed as Multiple Threshold CMOS (MTCMOS)
[Mutoh95] because it used low-Vt transistors for logic and high-Vt header and footer
switches. However, the name is somewhat confusing because a system may use multiple
threshold voltages without power gating. Moreover, it is unnecessary to switch both VDD
and GND.

5.3.2.1 Power Gate Design Power gating can be done externally with a disable input to a
voltage regulator or internally with high-Vt header or footer switches. External power
gating completely eliminates leakage during sleep, but it takes a long time and significant
energy because the power network may have 100s of nF of decoupling capacitance to
discharge.

On-chip power gating can use pMOS header switch transistors or nMOS footer
switch transistors. nMOS transistors deliver more current per unit width so they can be
smaller. On the other hand, if both internal and external power gating are used, it is more
consistent for both methods to cut off VDD. pMOS power gating also is simpler when
multiple power supplies are employed. As a practical matter, ensuring that GND is always
constant reduces confusion among designers and CAD tools; this alone is enough for
many projects to choose pMOS power gating.

 Theoretically, it is possible to use fine-grained power gating applied to individual logic
gates, but placing a switch in every cell has enormous area overhead. Practical designs use
coarse-grained power gating where the switch is shared across an entire block. The switch
has an effective resistance that inevitably causes some voltage droop on VDDV and increases
the delay of the block. The switch is commonly sized to keep this delay to 5–10%. One
way to achieve this is to calculate or simulate how much voltage droop can occur on VDDV
while maintaining acceptable delay. Then the average current of the block is determined
through power analysis. The switch width is chosen so that the voltage droop is small
enough when the average current flows through the switch. If the block is large enough
that switching events are spread over time and has enough capacitance on VDDV to smooth
out ripples, this average current method [Mutoh99] is satisfactory. Wider switches reduce
the droop but have more leakage when OFF and take more energy. For example, 45 nm
Core processors use 1.5 meters of low-leakage pMOS power gate transistor per core to
turn off the idle cores [Kumar09].

Example 5.5

A cache in a 65 nm process consumes an average power of 2 W. Estimate how wide
should the pMOS header switch be if delay should not increase by more than 5%?

SOLUTION: The 65 nm process operates at 1 V, so the average current is 2 W / 1 V = 2 A.
The pMOS transistor has an ON resistance of R = 2 k · m. A 5% delay increase

5.3 Static Power 199

corresponds to a droop on VDDV of about 5% (check this using EQ (4.29). Thus, Rswitch
= 0.05 × 1 V / 2 A = 25 m . So the transistor width must be k · m/25 m = 8 × 104

m. The ON resistance at low Vds is lower than R. Circuit simulation shows that a
width of 3.7 × 104 m suffices to keep droop to 5%.

The power switch is generally made of many transistors in parallel. The length and
width of the transistors should be selected to maximize the Ion / Ioff ratio; this is highly
process-dependent and generally requires SPICE simulations sweeping L and W. A
reverse body bias may be applied to the power switch transistors during sleep mode to
improve their Ion / Ioff ratio (see Section 5.3.4). Alternatively, the switch can be overdriven
positively or negatively to turn it ON or OFF more effectively so long as the gate oxide is
not overstressed [Min06].

When the power switch is turned ON, the sudden inrush of current can cause IR and
L di/dt drop noise (see Section 13.3) and electromigration of the power bus (see Section
7.3.3.1). To alleviate these problems, the switch can be turned on gradually by controlling
how many parallel transistors are ON.

5.3.3 Multiple Threshold Voltages and Oxide Thicknesses
Selective application of multiple threshold voltages can maintain performance on criti-
cal paths with low-Vt transistors while reducing leakage on other paths with high-Vt
transistors.

A multiple-threshold cell library should contain cells that are physically identical save
for their thresholds, facilitating easy swapping of thresholds. Good design practice starts
with high-Vt devices everywhere and selectively introduces low-Vt devices where necessary.

Using multiple thresholds requires additional implant masks that add to the cost of a
CMOS process. Alternatively, designers can increase the channel length, which tends to
raise the threshold voltage via the short channel effect. For example, in Intel’s 65 nm pro-
cess, drawing transistors 10% longer reduces Ion by 10% but reduces Ioff by a factor of 3
[Rusu07]. The dual-core Xeon processor uses longer transistors almost exclusively in the
caches and in 54% of the core gates.

Most nanometer processes offer a thin oxide for logic transistors and a much thicker
oxide for I/O transistors that can withstand higher voltages. The oxide thickness is con-
trolled by another mask step. Gate leakage is negligible in the thick oxide devices, but
their performance is inadequate for high speed logic applications. Some processes offer
another intermediate oxide thickness to reduce gate leakage.

[Anis03] provides an extensive survey of the applications of multiple thresholds.

5.3.4 Variable Threshold Voltages
Recall from EQ (2.38) that Vsb modulates the threshold voltage through the body effect.
Another method to achieve high Ion in active mode and low Ioff in sleep mode is to
dynamically adjust the threshold voltage of the transistor by applying a body bias. This
technique is sometimes called variable threshold CMOS (VTCMOS).

For example, low-Vt devices can be used and a reverse body bias (RBB) can be applied
during sleep mode to reduce leakage [Kuroda96]. Alternatively, higher-Vt devices can be
used, and then a forward body bias (FBB) can be applied during active mode to increase
performance [Narendra03]. Body bias can be applied to the power gating transistors to
turn them off more effectively during sleep.

Chapter 5 Power200

Too much reverse body bias (e.g., < –1.2 V) leads to greater junction leakage through
BTBT [Keshavarzi01], while too much forward body bias (> 0.4 V) leads to substantial
current through the body to source diodes. According to EQ (2.39), the body effect weak-
ens as tox becomes thinner, so body biasing offers diminishing returns at 90 nm and below
[von Arnim05].

Applying a body bias requires additional power supply rails to distribute the substrate
and well voltages. For example, an RBB scheme for a 1.0 V n-well process could bias the
p-type substrate at VBBn = – 0.4 V and the n-well at VBBp = 1.4 V. Figure 5.25 shows a
schematic and cross-section of an inverter using body bias. In an n-well process, all nMOS
transistors share the same p substrate and must use the same VBBn. In a triple-well process,
groups of transistors can use different p-wells isolated from the substrate and thus can use
different body biases. The well and substrate carry little current, so the bias voltages are
relatively easy to generate using a charge pump (see Section 13.3.8).

(a)

A Y

VDD

GND

VBBp

VBBn

(b)

n+n+

p substrate

p+

n well

A

Y
GND

p+

Substrate Tap Well Tap

n+ p+

VDD VBBp
VBBn

FIGURE 5.25 Body bias

5.3.5 Input Vector Control
As was illustrated in Table 5.2, the stack effect and input ordering cause subthreshold and
gate leakage to vary by up to two orders of magnitude between best and worst cases.
Therefore, the leakage of a block of logic depends on gate inputs, which in turn depend on
the inputs to the block of logic. The idea of input vector control is to apply the input pattern
that minimizes block leakage when the block is placed in sleep mode [Narendra06,
Abdollahi04]. The vector can be applied via set/reset inputs on the registers or via a scan
chain. It is hard to control all the gates in a block of logic using only the block inputs, but
the best input vectors may save 25–50% of leakage as compared to random vectors. Apply-
ing the input vector causes some switching activity, so a block may need to remain in sleep
for thousands of cycles to recoup the energy spent entering the sleep state.

5.4 Energy-Delay Optimization
At this point, a natural question is: what is the best choice of VDD and Vt ? The answer, of
course, depends on the objective. Minimum power by itself is not an interesting objective
because it is achieved as the delay for a computation approaches infinity and nothing is
accomplished. The time for a computation must be factored into the analysis. Better met-
rics include minimizing the energy, minimizing the energy-delay product, and minimizing
energy under a delay constraint.

5.4.1 Minimum Energy
According to EQ (5.3), the product of the power of an operation and the time for the opera-
tion to complete is the energy consumed. Hence, the power-delay product (PDP) is simply the

5.4 Energy-Delay Optimization 201

energy. The minimum energy point is the least energy that an operation could consume if
delay were unimportant. It occurs in subthreshold operation where VDD < Vt . The minimum
energy point typically consumes an order of magnitude less energy than the conventional
operating point, but runs at least three orders of magnitude more slowly [Wang06].

John von Neumann first asserted (without justification) that the “thermodynamic
minimum of energy per elementary act of information” was kT ln2 [von Neumann66].
[Meindl00] proved this result for CMOS by considering the minimum allowable voltage
at which an inverter could operate. To achieve nonzero noise margins, an inverter must
have a slope steeper than –1 at the switching point, Vinv. For an ideal inverter with n = 1 in
the subthreshold characteristics, this occurs at a minimum operating voltage of

(5.23)

The energy stored on the gate capacitance of a single MOSFET is E = QVDD/2,
where Q is the charge. The minimum possible charge is one electron, q. Substituting Vmin
for VDD gives Emin = kT ln 2 = 2.9 × 10–21 J. In contrast, a unit inverter in a 0.5 m 5 V
process draws about 1.5 × 10–13 J from the supply when switching, and the same inverter
in a 65 nm 1 V process draws 3 × 10–16 J.

Inverters have been demonstrated operating with power supplies under 100 mV, but
these do not actually minimize energy in a real CMOS process. Although they have
extremely low switching energy, they run so slowly that the leakage energy dominates. The
true minimum energy point is at a higher voltage that balances switching and leakage energy.

In subthreshold operation, the current drops exponentially as VDD – Vt decreases and
thus the delay increases exponentially. The switching energy improves quadratically with
VDD. Leakage current improves slowly with VDD because of DIBL, but the leakage energy
increases exponentially because the slower gate leaks for a longer time. To achieve mini-
mum energy operation, all transistors should be minimum width. This reduces both
switching capacitance and leakage. Gate and junction leakage and short-circuit power are
negligible in subthreshold operation, so the total energy is the sum of the switching and
leakage energy, which is minimized near the point they crossover, as shown in Figure 5.26.

V vTmin ln= =2 2 36 mV@ 300 K

VDD(V)

N
or

m
al

iz
ed

 E
/C

yc
le

0
10 6

0.5 1 1.5 2

Analytical Solution

10 5

10 4

10 3

10 2

10 1

100

ET

EL

EDYN

VDD(V)

TD

ILEAK

0
10 6

0.5 1 1.5 2

10 5

10 4

10 3

10 2

10 1

100

FIGURE 5.26 Minimum energy point (Reprinted from [Calhoun05]. ©
2005 IEEE.)

Chapter 5 Power202

To compute the energy, assume that a circuit has N gates on the critical path, a total
effective capacitance Ceff, and a total effective width Weff of leaking transistor. The delay
of a gate operating subthreshold with a load Cg is given by EQ (4.31). The cycle time is
thus

(5.24)

The energy consumed in one cycle is

(5.25)

It is possible to differentiate EQ (5.25) with respect to VDD to find the minimum energy
point [Calhoun05], but the results are rather messy.

A more intuitive approach is to look at the minimum energy point graphically. Figure
5.27(a) plots the energy and delay contours as a function of VDD and Vt for a ring oscillator
in a 180 nm process designed to reflect the behavior of a microprocessor pipeline
[Wang02]. As VDD increases or Vt decreases, the operating frequency increases exponen-
tially assuming the circuit is operating at or near threshold. At VDD = Vt , the circuit oper-
ates at about 10 MHz. The energy contours are normalized to the minimum energy point.
This point, marked with a cross, occurs at VDD = 0.13 V and Vt = 0.37 V. The energy is
about 10 times lower than at a typical operating point, but the delay is three to four orders
of magnitude greater.

The shape of the curve is only a weak function of process parameters, so it remains
valid for nanometer processes. However, the result does depend strongly on the relative
switching and leakage energies. Figure 5.27(b) plots the results when the activity factor
drops to 0.1, reducing Ceff. Switching energy is less important, so the circuit can run at a
higher supply voltage. The threshold then increases to cut leakage. The total energy is

D
NkC V

I

g DD
VDD

=
off 10

E C V

E I V D W NkC

DD

DD g
VD

switching eff

leak sub eff

=

= =

2

10 DD V

E E E V C W NkC

DD

DD g

2

2
total switching leak eff eff= + = + 110()VDD

VDD

Vt

(a) (b)

1.05
1.1
1.251.4

1.75
2

0

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

VDD

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.1 0.2

10
0

M
Hz

10
0

M
Hz

10
 M

Hz
1

M
Hz

10
0

kH
z

10
 k

Hz

10
 M

Hz

1
M

Hz
10

0
kH

z

10
 k

Hz

0.3 0.4 0.5 0.6

Vt

0 0.1 0.2 0.3 0.4 0.5 0.6

2.5
3

5

10

1.1
1.25

1.75
2

2.5
3

5
10

1.4

1.05

V DD
 =

 V t

+

FIGURE 5.27 Contours of energy and delay for ring oscillators with (a) � = 1, (b) � = 0.1 (Adapted from [Wang02].
© IEEE 2002.)

5.4 Energy-Delay Optimization 203

greatly reduced. The result also depends on temperature: at high temperature, circuits leak
more so a higher threshold voltage should be used. Process variation also pushes the best
operating point toward higher voltage and energy.

5.4.2 Minimum Energy-Delay Product
The energy-delay product (EDP) is a popular metric that balances the importance of energy
and delay [Gonzalez97, Stan99, Nose00c]. Neglecting leakage, we can elegantly solve for
the supply voltage that minimizes EDP. Considering leakage, the best supply voltage is
slightly higher.

First, consider the EDP when leakage is negligible. The energy to charge a load
capacitance Ceff is given by EQ (5.7). The delay, using an -power law model, is given by
EQ (4.29). Thus, the EDP is

(5.26)

Differentiating with respect to VDD and setting the result to 0 gives the voltage at which
the EDP is minimized

(5.27)

Recall that is between 1 (completely velocity satu-
rated) and 2 (no velocity saturation). For a typical value
of , we come to the interesting conclusion that
VDD-opt 2Vt , which is substantially lower than most
systems presently run.

EQ (5.26) suggests that the EDP improves as Vt
approaches 0, which is obviously not true because leak-
age power would dominate. When a leakage term is
incorporated into EQ (5.27), the results become too
messy to reprint here. Figure 5.28 shows contours of
EDP and delay as a function of VDD and Vt . EDP is
normalized to the best achievable. For typical process
parameters, the best Vt is about 100–150 mV and the
EDP is about four times better than at a typical operat-
ing point of VDD = 1.0 V and Vt = 0.3 V. At the opti-
mum, leakage energy is about half of dynamic energy.
The dashed lines indicate contours of equal speed, nor-
malized to the speed at the best EDP point. To operate at higher speed requires increasing
the EDP. Section 7.5.3.2 will revisit this analysis considering process variation and show
that the minimum EDP point occurs at a higher voltage and threshold when variations are
accounted for.

5.4.3 Minimum Energy Under a Delay Constraint
In practice, designers generally face the problem of achieving minimum energy under a
delay constraint. Equivalently, the power consumption of the system is limited by battery
or cooling considerations and the designer seeks to achieve minimum delay under an

EDP eff=
()

k
C V

V V

DD

DD t

2 3

V VDD t=opt

3
3

VDD

Vt

2.5
3

5

10

2.7

2.0

1.0

0.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.1 0.2 0.3 0.4 0.5 0.6

2
1.25

1.75

+

FIGURE 5.28 Contours of energy-delay product (Adapted from
[Gonzalez97]. © IEEE 1997.)

Chapter 5 Power204

energy constraint. Figure 5.27(a) showed contours of delay and energy. The best supply
voltage and threshold for operation at a given delay is where the delay and energy contours
are tangent.

For a given supply voltage and threshold voltage, the designer can make logic and siz-
ing choices that affect delay and energy. Figure 5.13 showed an example of an energy-
delay trade-off curve. Such curves can be generated using a logic synthesizer or sizing tool
constrained to various delays. The curve becomes steep near the point of minimum delay,
so energy-efficient designs should aim to operate at a longer delay.

Energy under a delay constraint is also minimized when leakage is about half of
dynamic power [Markovic 04]. However, the curve is fairly flat around this point, so many
designs operate at lower leakage to facilitate power saving during sleep mode.

5.5 Low Power Architectures
VLSI design used to be constrained by the number of transistors that could fit on a chip.
Extracting maximum speed from each transistor maximized overall performance. Now
that billions of nanometer-scale transistors fit on a chip, many designs have become power
constrained and the most energy-efficient design is the highest performer. This is one of
the factors that has driven the industry’s abrupt shift to multicore processors.

5.5.1 Microarchitecture
Energy-efficient architectures take advantage of the structured design principles of modu-
larity and locality [Horowitz04, Naffziger0b]. [Pollack99] observed that processor perfor-
mance grows with the square root of the number of transistors. Building complex,
sprawling processors to extract the last bit of instruction-level parallelism from a problem
is a highly inefficient use of energy. Microarchitectures are moving toward larger numbers
of simpler cores seeking to handle task and data-level parallelism. Smaller cores also have
shorter wires and faster memory access.

Memories have a much lower power density than logic because their activity factors
are miniscule and their regularity simplifies leakage control. If a task can be accelerated
using either a faster processor or a larger memory, the memory is often preferable. Memo-
ries now comprise more than half the area of many chips.

Special-purpose functional units can offer an order of magnitude better energy effi-
ciency than general-purpose processors. Accelerators for compute-intensive applications
such as graphics, networking, and cryptography offload these tasks from the processor.
Such heterogeneous architectures, combining regular cores, specialized accelerators, and
large amounts of memory, are of growing importance.

Commercial software has historically lagged at least a decade behind hardware
advances such as virtual memory, memory protection, 32- and 64-bit datapaths, and
robust power-management. Presently, programmers have trouble taking advantage of
many cores. Time will tell whether programming practices and tools catch up or whether
microarchitectures will have to yield to the needs of programmers.

5.5.2 Parallelism and Pipelining
In the past, parallelism and pipelining have been effective ways to reduce power consump-
tion, as shown in Figure 5.29 [Chandrakasan92].

5.5 Low Power Architectures 205

Replacing a single functional unit with N parallel units allows each
to operate at 1/N the frequency. A multiplexer selects between the
results. The voltage can be scaled down accordingly, offering quadratic
savings in energy at the expense of doubling the area. Replacing a single
functional unit with an N-stage pipelined unit also reduces the amount
of logic in a clock cycle at the expense of more registers. Again, the volt-
age can be scaled down. The two techniques can be combined for even
better energy efficiency.

When leakage is unimportant, parallelism offers a slight edge
because the multiplexer has less overhead than the pipeline registers.
Also, perfectly balancing logic across pipeline stages can be difficult.
Now that leakage is a substantial fraction of total power, pipelining
becomes preferable because the parallel hardware has N times as much
leakage [Markovic 04].

Now that VDD is closer to the best energy-delay point, the potential
supply reduction and energy savings are diminishing. Nevertheless, par-
allelism and pipelining remain primary tools to extract performance
from the vast transistor budgets now available.

5.5.3 Power Management Modes
As your parents taught you to turn off the lights when you leave a room, chip designers
have now learned they must turn off portions of the chip when they are not active by
applying clock and power gating. Many chips now employ a variety of power management
modes giving a trade-off between power savings and wake-up time.

For example, the Intel Atom processor [Gerosa09] operates at a peak frequency of
2 GHz at 1 V, consuming 2 W. The power management modes are shown in Figure 5.30.
In the low frequency mode, the clock drops as slow as 600 MHz while the power supply

(a)

A B

f f

(b)

A B

f/2

f

A B

(c)

A B

f ff

FIGURE 5.29 Functional units: (a) normal,
(b) parallel, (c) pipelined

active active

Partial Flush OFF

FlushedFlushed OFF

OFF

OFF

OFF

OFFOFF

C0 HFM C0 LFM

Core Voltage

Core Clock

PLL

L1 Caches

L2 Caches

Wake Up Time

Power

C1/C2 C4 C6

< 1 s < 30 s < 100 s

FIGURE 5.30 Atom power management modes (© 2009 IEEE.)

Chapter 5 Power206

reduces to 0.75 V. In sleep mode C1, the core clock is turned off and the level 1 cache is
flushed and power-gated to reduce leakage, but the processor can return to active state in 1
microsecond. In sleep mode C4, the PLL is also turned OFF. In sleep mode C6, the core
and caches are all power-gated to reduce power to less than 80 mW, but wake-up time
rises to 100 microseconds. For a typical workload, the processor can spend 80–90% of its
time in C6 sleep mode, reducing average power to 220 mW.

The worst-case power that a chip may consume can be a factor of two or more greater
than the normal power. Code triggering maximal power consumption is sometimes called
a thermal virus [Naffziger06] because it seeks to burn out the chip. To avoid having to
design for this worst case, chips can employ adaptive features, throttling back activity if
the issue rate or die temperature becomes too high. Section 13.2.5 discusses temperature
sensors further.

Power management results in substantially lower power consumption during idle
mode than active mode. The transition between idle and active may require multiple cycles
to avoid sudden current spikes that excite power supply resonances and cause excessive
supply noise.

5.6 Pitfalls and Fallacies
Oversizing gates
Designers seeking timing closure tend to crank up the size of gates. Doubling the size of all the

gates on a gate-dominated path does not improve delay, but doubles the power consumption.

Designing for speed without regard to power
Nanometer processes have reached a point where it is no longer possible to design a large chip

for speed without regard to power: the chip will be impossible to cool. Designs must be power

efficient. Systems tuned exclusively for speed tend to use large gates and speculative logic that

consumes a great deal of power. If a core or processing element can be simplified to offer 80%

of the performance at 50% of the power, then two cores in parallel can offer 160% of the

throughput at the same power.

Reporting power at a given frequency instead of energy per operation
Sometimes a module is described by its power at an arbitrary frequency (e.g., 10 mW @ 1 GHz).

This is equivalent to reporting energy because E = P/f (e.g., 10 pJ). Reporting energy is arguably

cleaner because it is a single number.

Reporting Power-Delay Product when Energy-Delay Product is meant
Extending the previous point, sometimes a system is described by its PDP at a given frequency,

where the frequency is slower than the reciprocal of the delay. This metric is really a variation

of the EDP, because the power at a low enough frequency is equivalent to energy. Reporting the

EDP is definitely cleaner because it doesn’t involve an arbitrary choice of frequency.

Failing to account for leakage
Many designers are accustomed to focusing on dynamic power. Leakage in all its forms has be-

come extremely important in nanometer processes. Ignoring it not only underestimates power

consumption but also can cause functional failures in sensitive circuits.

5.7 Historical Perspective 207

5.7 Historical Perspective
The history of electronics has been a relentless quest to reduce power so that more capabil-
ities can be provided in a smaller volume.

The Colossus, brought online in 1944, was one of the world’s first fully electronic
computers. The secret machine was built from 2400 vacuum tubes and consumed 15 kW
as it worked day and night decrypting secret German communications. The machine was
destroyed after the war, but a functional replica shown in Figure 5.31 was rebuilt in 2007.

Vacuum tube machines filled entire rooms and failed frequently. Imagine the problem
of keeping 2400 light bulbs burning simultaneously. By the 1960s, vacuum tubes were sur-
passed by solid-state transistors that were far smaller and consumed milliwatts rather than
watts. Gordon Moore soon issued his famous prophecy about the exponential growth in
the number of transistors per chip.

MOSFETs entered the scene commercially around 1970. For more than a decade,
nMOS technology predominated because it could pack transistors more densely (and
hence cheaply) than CMOS. nMOS circuits used depletion load (negative-Vt) nMOS pull-
ups as resistive loads, so each gate with an output of 0 dissipated contention power. For
example, Figure 5.32 shows an nMOS 2-input NOR gate.

CMOS circuits made their debut in watch circuits (pioneered by none other than the
Swiss, of course!), where their key ability to draw almost zero power while not switching
was critical [Vittoz72]. This use succeeded despite very low circuit densities and low cir-
cuit speed of the CMOS technologies of the day. It was not until the mid 1980s that the
ever-increasing power dissipation of mainstream circuits such as microprocessors forced a
move from nMOS to CMOS technology, again despite density arguments.

FIGURE 5.31 Reconstructed Colossus Mark 2 (Photograph by Tony Sale.
Reprinted with permission.)

A B
Y

Depletion Mode
nMOS Load

FIGURE 5.32
nMOS NOR gate

Chapter 5 Power208

As engineers became capable of integrating
millions (and now billions) of CMOS transistors
onto a single chip, power consumption became a
concern for CMOS as well. In the 1990s, designers
facing the power wall abandoned the long-
cherished 5 V standard and began scaling power
supplies to reduce dynamic power. Eventually, this
forced threshold voltages to decrease until sub-
threshold leakage has become an issue. As gate
dielectrics have scaled down to a few atoms in
thickness, quantum mechanical effects have made
gate leakage problematic as well. With supplies at
1 V, there is limited room for further power scal-
ing: we are stuck between a rock and a hot place.

On February 5, 2001, Intel Vice President
Patrick Gelsinger gave a keynote speech at the
International Solid State Circuits Conference

[Gelsinger01]. He showed that microprocessor power consumption has been increasing
exponentially (see Figure 5.33) and was forecast to grow even faster in the coming decade.
He predicted that “business as usual will not work in the future,” and that if scaling con-
tinued at this pace, by 2005, high-speed processors would have the power density of a
nuclear reactor, by 2010, a rocket nozzle, and by 2015, the surface of the sun! Obviously,
business did not proceed as usual and power consumption has leveled out at under 150 W
for high-performance processors and much lower for battery-powered systems.

Clock gating was the first widely applied technique for power reduction because it is
relatively straightforward. Power gating was initially applied to low-power battery-
operated systems to increase the standby lifetime, but is now required for leakage control
even in high-performance microprocessors [Rusu10]. Voltage domains are also widely
used. Initially, separate supplies were provided for the core and I/O to provide compatibil-
ity with legacy I/O standards. The next step was to separate the supplies for the memories
from the core logic. Memories arrays often use a constant relatively high supply voltage (as
high as the process allows) for reliability. Logic dissipates the bulk of the dynamic power,
so it operates at a lower, possibly variable voltage. Sometimes phase-locked loops or sensi-
tive analog circuitry use yet another filtered domain. Dynamic voltage scaling is commonly
used to support a range of power/performance trade-offs [Clark01]. For example, laptop
processors commonly run at a higher voltage when the system is plugged into wall power.

Body bias has been used for leakage control in applications such as the Intel XScale
microprocessor [Clark02], the Transmeta Efficeon microprocessor, and a Toshiba
MPEG4 video codec [Takahashi98]. Clustered voltage scaling was also used in the video
codec. Both of these techniques introduce overhead routing the bias or voltage lines
through a block and controlling noise on these lines. They have not achieved the wide-
spread popularity of other techniques, and the effectiveness of body bias becomes limited
below 130 nm because the body effect coefficient decreases along with oxide thickness.

The move to CMOS technology was really the last major movement in mass-market
semiconductor technologies. To date, no one has come up with better devices. The hun-
dreds of billions of dollars that have been invested in optimizing CMOS make it a formi-
dable technology to surpass. Rather than looking for a replacement, our best hope is to
continue learning to use energy as efficiently as we can.

1970

4004
8086

8080
8085

286
386

486

P6Hot Plate

Nuclear Reactor

Rocket Nozzle

Sun’s Surface

Pentium® proc

P
ow

er
 D

en
si

ty
 (

W
/c

m
2)

1

10

100

1000

10000

1980 1990

Year

2000 2010

8008

FIGURE 5.33 Microprocessor power density trends as predicted in 2001
(Reprinted with permission of Intel Corporation.)

 209

Summary
The power consumption of a circuit has both dynamic and static components. The
dynamic power comes from charging and discharging the load capacitances and depends
on the frequency, voltage, capacitance, and activity factor. The static power comes from
leakage and from circuits that have an intentional path from VDD to GND. CMOS cir-
cuits have historically consumed relatively low power because complementary CMOS
gates dissipate almost zero static power when operated at high Vt . However, leakage is
increasing as feature size decreases, making static power consumption as great a concern as
dynamic power. The best way to control power is to turn off a circuit when it is not in use.
The most important techniques are clock gating, which turns off the clock when a unit is
idle, and power gating, which turns off the power supply when a unit is in sleep mode.

Exercises
5.1 You are synthesizing a chip composed of random logic with an average activity fac-

tor of 0.1. You are using a standard cell process with an average switching capaci-
tance of 450 pF/mm2. Estimate the dynamic power consumption of your chip if it
has an area of 70 mm2 and runs at 450 MHz at VDD = 0.9 V.

5.2 You are considering lowering VDD to try to save power in a static CMOS gate. You
will also scale Vt proportionally to maintain performance. Will dynamic power con-
sumption go up or down? Will static power consumption go up or down?

5.3 The stack effect causes the current through two series OFF transistors to be an order
of magnitude less than Ioff when DIBL is significant. Show that the current is Ioff/2
when DIBL is insignificant (e.g., = 0). Assume = 0, n = 1.

5.4 Determine the activity factor for the signal shown in Figure 5.34. The clock rate is 1
GHz.

FIGURE 5.34 Signal for Exercise 5.4

0 1 2 3 4 5 6 7 8 9 10
t (ns)

5.5 Consider the buffer design problem from Example 4.14. If the delay constraint is 20
, how many stages will give the lowest energy, and how should the stages be sized?

5.6 Repeat Exercise 5.5 if the load is 500 rather than 64 and the delay constraint is 30 .

5.7 Derive the switching probabilities in Table 5.1.

5.8 Design an 8-input OR gate with a delay of under 4 FO4 inverters. Each input may
present at most 1 unit of capacitance. The load capacitance is 16 units. If the input
probabilities are 0.5, compute the switching probability at each node and size the
circuit for minimum switching energy.

 5.9 Construct a table similar to Table 5.2 for a 2-input NOR gate.

Exercises

Chapter 5 Power210

5.10 Design a header switch for a power gating circuit in a 65 nm process. Suppose the
pMOS transistor has an ON resistance of about 2.5 k� · m. The block being gated
has an ON current of 100 mA. How wide must the header transistor be to cause less
than a 2% increase in delay?

6

211

Interconnect

6.1 Introduction
The wires linking transistors together are called interconnect and play a major role in the
performance of modern systems. In the early days of VLSI, transistors were relatively slow.
Wires were wide and thick and thus had low resistance. Under those circumstances, wires
could be treated as ideal equipotential nodes with lumped capacitance. In modern VLSI
processes, transistors switch much faster. Meanwhile, wires have become narrower, driving
up their resistance to the point, that in many signal paths, the wire RC delay exceeds gate
delay. Moreover, the wires are packed very closely together and thus a large fraction of
their capacitance is to their neighbors. When one wire switches, it tends to affect its
neighbor through capacitive coupling; this effect is called crosstalk. Wires also account for
a large portion of the switching energy of a chip. On-chip interconnect inductance had
been negligible but is now becoming a factor for systems with fast edge rates and closely
packed busses. Considering all of these factors, circuit design is now as much about engi-
neering the wires as the transistors that sit underneath.

The remainder of this section defines the dimensions used to describe interconnect
and gives a practical example of wire stacks in nanometer processes. Section 6.2 explores
how to model the resistance, capacitance, and inductance of wires. Section 6.3 examines
the impact of wires on delay, energy, and noise. Section 6.4 considers the tools at a
designer’s disposal for improving performance and controlling noise. Section 6.5 extends
the method of Logical Effort to give insights about designing paths with interconnect.

6.1.1 Wire Geometry
Figure 6.1 shows a pair of adjacent wires. The wires have width w, length l,
thickness t, and spacing of s from their neighbors and have a dielectric of
height h between them and the conducting layer below. The sum of width and
spacing is called the wire pitch. The thickness to width ratio t/w is called the
aspect ratio.

Early CMOS processes had a single metal layer and until the early 1990s
only two or three layers were available, but with advances in chemical-
mechanical polishing it became far more practical to manufacture many metal
layers. As discussed in Section 3.4.2, aluminum (Al) wires used in older processes gave
way to copper (Cu) around the 180 or 130 nm node to reduce resistance. Soon after, man-
ufacturers began replacing the SiO2 insulator between wires with a succession of materials
with lower dielectric constants (low-k) to reduce capacitance. A 65 nm process typically

w s

t

h

l

FIGURE 6.1 Interconnect geometry

Chapter 6 Interconnect212

has 8–10 metal layers and the layer count has been increasing at a rate of about one layer
every process generation or two.

6.1.2 Example: Intel Metal Stacks
Figure 6.2 shows cross-sections of the metal stacks in the Intel 90 and 45 nm processes,
shown to scale [Thompson02, Moon08]. The 90 nm process has six metal layers, while
the 45 nm process shows the bottom eight metal layers. The transistors are tiny gizmos
beneath the vast labyrinth of wire. Metal1 is on the tightest pitch, roughly that of a con-
tacted transistor, to provide dense routing within cells. The upper levels are progressively
thicker and on a greater pitch to offer lower-resistance interconnections over progressively
longer distances. The wires have a maximum aspect ratio of about 1.8.

M1

M2

M3

M3

M1

M6

M5

M4

M2

M4

M5

M6

M7

M8

1 m

(b)(a)
Transistors

Transistors

FIGURE 6.2 SEM image of wire cross-sections in Intel’s (a) 90 nm and (b) 45 nm processes ((a) From [Thompson02] © 2002
IEEE. (b) From [Moon08] with permission of Intel Corporation.)

The top-level metal is usually used for power and clock distri-
bution because it has the lowest resistance. Intel’s 45 nm process
introduced an unusual extra-thick ninth Cu metal layer used to dis-
tribute power to different power-gated domains across the die (see
Section 5.3.2). Figure 6.3 shows a full cross-section including this
MT9 layer, a Cu bump for connecting to the power or ground net-
work in the package (see Section 13.2.2), and a VA9 via between
MT9 and the bump. The lower levels of metal and transistors are
scarcely visible beneath these fat top layers. Table 6.1 lists the thick-
ness and minimum pitch for each metal layer.

FIGURE 6.3 SEM image of complete cross-section of
Intel’s 45 nm process including M9 and I/O bump
(From [Moon08] with permission of Intel Corporation.)

6.2 Interconnect Modeling 213

6.2 Interconnect Modeling
A pipe makes a good mechanical analogy for a wire, as shown
in Figure 6.4 [Ho07]. The resistance relates to the wire’s
cross-sectional area. A narrow pipe impedes the flow of cur-
rent. The capacitance relates to a trough underneath the leaky
pipe that must fill up before current passes out the end of the
pipe. And the inductance relates to a paddle wheel along the
wire with inertia that opposes changes in the rate of flow. Each
of these elements is discussed further in this section.

A wire is a distributed circuit with a resistance and capac-
itance per unit length. Its behavior can be approximated with a
number of lumped elements. Three standard approximations
are the L-model, -model, and T-model, so-named because of
their shapes. Figure 6.5 shows how a distributed RC circuit is
equivalent to N distributed RC segments of proportionally
smaller resistance and capacitance, and how these segments
can be modeled with lumped elements. As the number of seg-
ments approaches infinity, the lumped approximation will con-
verge with the true distributed circuit. The L-model is a poor
choice because a large number of segments are required for
accurate results. The -model is much better; three segments
are sufficient to give results accurate to 3% [Sakurai83]. The
T-model is comparable to the -model, but produces a circuit
with one more node that is slower to solve by hand or with a
circuit simulator. Therefore, it is common practice to model
long wires with a 3–5 segment -model for simulation. If
inductance is considered, it is placed in series with each resis-
tor. The remainder of this section considers how to compute
the resistance, capacitance, and inductance.

TABLE 6.1 Intel 45 nm metal stack

Layer t (nm) w (nm) s (nm) pitch (nm)

M9 7 m 17.5 m 13 m 30.5 m
M8 720 400 410 810
M7 504 280 280 560
M6 324 180 180 360
M5 252 140 140 280
M4 216 120 120 240
M3 144 80 80 160
M2 144 80 80 160
M1 144 80 80 160

Pipe: Resistance

Trough: Capacitance

Water Wheel: Inductance

FIGURE 6.4 Pipe analogy for wire

C C/2 C/2

L model model T model

N Segments

R

R R R/2 R/2

C C/N C/N C/N

C

C/N

R/N R/N R/N R/N

FIGURE 6.5 Lumped approximation to distributed RC circuit

Chapter 6 Interconnect214

6.2.1 Resistance
The resistance of a uniform slab of conducting material can be expressed as

(6.1)

where is the resistivity.1 This expression can be rewritten as

(6.2)

where R = /t is the sheet resistance and has units of /square. Note that a
square is a dimensionless quantity corresponding to a slab of equal length
and width. This is convenient because resistivity and thickness are charac-
teristics of the process outside the control of the circuit designer and can
be abstracted away into the single sheet resistance parameter.

To obtain the resistance of a conductor on a layer, multiply the sheet
resistance by the ratio of length to width of the conductor. For example,
the resistances of the two shapes in Figure 6.6 are equal because the
length-to-width ratio is the same even though the sizes are different.
Nonrectangular shapes can be decomposed into simpler regions for which
the resistance is calculated [Horowitz83].

Table 6.2 shows bulk electrical resistivities of pure metals at room
temperature [Bakoglu90]. The resistivity of thin metal films used in wires
tends to be higher because of scattering off the surfaces and grain bound-
aries, e.g., 2.2–2.6 · cm for Cu and 3.6–4.0 · cm for Al [Kapur02].

As shown in Figure 6.7, copper must be surrounded by a lower-conductivity diffusion
barrier that effectively reduces the wire cross-sectional area and hence raises the resistance.
Moreover, the polishing step can cause dishing that thins the metal. Even a 10 nm barrier
is quite significant when the wire width is only tens of nanometers. If the average barrier
thickness is tbarrier and the height is reduced by tdish, the resistance becomes

(6.3)

1 is used to indicate both resistivity and best stage effort. The meaning should be clear from context.

TABLE 6.2 Bulk resistivity of pure metals at 22 °C

Metal Resistivity (

m

W · cm)

Silver (Ag) 1.6
Copper (Cu) 1.7
Gold (Au) 2.2

Aluminum (Al) 2.8
Tungsten (W) 5.3

Molybdenum (Mo) 5.3
Titanium (Ti) 43.0

R
t

l
w

=

R R
l
w

=

R
t t t

l

w t
=
() ()dish barrier barrier2

l

w

t

1 Block
R = R (l /w)

4 Blocks
R = R (2l /2w)

= R (l /w)

t

l

w w

l

FIGURE 6.6
Two conductors with equal resistance

t

w

tbarrier

tdish

Cu

FIGURE 6.7 Copper barrier
layer and dishing

6.2 Interconnect Modeling 215

Example 6.1

Compute the sheet resistance of a 0.22 m thick Cu wire in a 65 nm process. Find the
total resistance if the wire is 0.125 m wide and 1 mm long. Ignore the barrier layer and
dishing.

SOLUTION: The sheet resistance is

(6.4)

The total resistance is

(6.5)

The resistivity of polysilicon, diffusion, and wells is significantly influenced by the
doping levels. Polysilicon and diffusion typically have sheet resistances under 10 /square
when silicided and up to several hundred /square when unsilicided. Wells have lower
doping and thus even higher sheet resistance. These numbers are highly process-
dependent. Large resistors are often made from wells or
unsilicided polysilicon.

Contacts and vias also have a resistance, which is
dependent on the contacted materials and size of the con-
tact. Typical values are 2–20 . Multiple contacts should
be used to form low-resistance connections, as shown in
Figure 6.8. When current turns at a right angle or reverses,
a square array of contacts is generally required, while fewer
contacts can be used when the flow is in the same direction.

6.2.2 Capacitance
An isolated wire over the substrate can be modeled as a conductor over a ground
plane. The wire capacitance has two major components: the parallel plate capac-
itance of the bottom of the wire to ground and the fringing capacitance arising
from fringing fields along the edge of a conductor with finite thickness. In addi-
tion, a wire adjacent to a second wire on the same layer can exhibit capacitance
to that neighbor. These effects are illustrated in Figure 6.9. The classic parallel
plate capacitance formula is

(6.6)

Note that oxides are often doped with phosphorous to trap ions before they
damage transistors; this oxide has ox k 0, with k = 4.1 as compared to 3.9 for
an ideal oxide or lower for low-k dielectrics.

The fringing capacitance is more complicated to compute and requires a
numerical field solver for exact results. A number of authors have proposed
approximations to this calculation [Barke88, Ruehli73, Yuan82]. One intuitively

R =
×

×
=

2 2 10

0 22 10
0 10

8

6

.

.
.

m

m
/

R = () =0 10
1000
0 125

800.
.

/
m

m

C
h

wl= ox

FIGURE 6.8 Multiple vias for low-resistance connections

t

h

w s

FIGURE 6.9 Effect of fringing fields
on capacitance

Chapter 6 Interconnect216

appealing approximation treats a lone conductor above a ground plane as a rectangu-
lar middle section with two hemispherical end caps, as shown in Figure 6.10
[Yuan82]. The total capacitance is assumed to be the sum of a parallel plate capacitor
of width w – t/2 and a cylindrical capacitor of radius t/2. This results in an expression
for the capacitance that is accurate within 10% for aspect ratios less than 2 and t h.

(6.7)

An empirical formula that is computationally efficient and relatively accurate is
[Meijs84, Barke88]

(6.8)

which is good to 6% for aspect ratios less than 3.3.
These formulae do not account for neighbors on the same layer or higher layers. Capac-

itance interactions between layers can become quite complex in modern multilayer CMOS
processes. A conservative upper bound on capacitance can be obtained assuming parallel
neighbors on the same layer at minimum spacing and that the layers above and below the
conductor of interest are solid ground planes. Similarly, a lower bound can be obtained
assuming there are no other conductors in the system except the substrate. The upper bound
can be used for propagation delay and power estimation while the lower bound can be used
for contamination delay calculations before layout information is available.

A cross-section of the model used for capacitance upper bound calculations is shown
in Figure 6.11. The total capacitance of the conductor of interest is the sum of its capaci-
tance to the layer above, the layer below, and the two adjacent conductors. If the layers
above and below are not switching,2 they can be modeled as ground planes and this com-
ponent of capacitance is called Cgnd. Wires do have some capacitance to further neigh-
bors, but this capacitance is generally negligible because most electric fields terminate on
the nearest conductors. The dielectrics used between adjacent wires have the lowest possi-
ble dielectric constant khoriz to minimize capacitance. The dielectric between layers must
provide greater mechanical stability and may have a larger kvert. EQ (6.9) gives a simple
and physically intuitive estimate of wire capacitance [Bohr95]. The constant Cfringe term
accounts for fringing capacitance and gives a better fit for w and s up to several times min-
imum [Ho01].

(6.9)

2Or at least consist of a large number of orthogonal conductors that on average cancel each other’s switch-
ing activities.

C l
w

t

h h
t

h
t

h
t

= +

+ + +

ox
2 2

1
2 2 2

2ln

C l
w
h

w
h

t
h

= + + +ox 0 77 1 06 1 06
0 25 0 5

. . .
. .

C C C C

l k
w
h

k
t
s

total top bot adj

vert horiz

= + +

+

2

2 20 +Cfringe

t

h

w

Parallel Plate

Half Cylinders

FIGURE 6.10 Yuan & Trick
capacitance model including
fringing fields

6.2 Interconnect Modeling 217

The capacitances can be computed by generating a lookup table of
data with a field solver such as FastCap [Nabors92] or HSPICE. The
table may contain data for different widths and spacings for each metal
layer, assuming the layers above and below are occupied or unoccupied.
The table should list both Cadj and Cgnd, because coupling to adjacent
lines is of great importance. Figure 6.12 shows representative data for a
metal2 wire in a 180 nm process with wire and oxide thicknesses of 0.7

m. The width and spacing are given in multiples of the 0.32 m min-
imum. For an isolated wire above the substrate, the capacitance is
strongly influenced by spacing between conductors. For a wire sand-
wiched between metal1 and metal3 planes, the capacitance is higher
and is more sensitive to the width (determining parallel plate capaci-
tance) but less sensitive to spacing once the spacing is significantly greater than the wire
thickness. In either case, the y-intercept is greater than zero so doubling the width of a
wire results in less than double the total capacitance. The data fits EQ (6.9) with Cfringe =
0.05 fF/ m. Tight-pitch metal lines have a capacitance of roughly 0.2 fF/ m.

In practice, the layers above and below the conductor of interest are neither solid
planes nor totally empty. One can extract capacitance more accurately by interpolating
between these two extremes based on the density of metal on each level. [Chern92] gives
formulae for this interpolation accurate to within 10%. However, if the wiring above and
below is fairly dense (e.g., a bus on minimum pitch), it is well-approximated as a plane.
Dense wire fill is added to many chips for mechanical stability and etch uniformity, mak-
ing this approximation even more appropriate.

0 500 1000 1500 2000

C
to

ta
l (

aF
/

m
)

w (nm)

Isolated

M1, M3 planes

s = 320

s = 480

s = 640

s =

s = 320

s = 480

s = 640

s =

400

350

300

250

200

150

100

50

0

FIGURE 6.12 Capacitance of metal2 line as a function of width and spacing

Layer n

Ctop

Layer n + 1

Layer n − 1

h2

h1

t

Cbot
Cadj

ws

FIGURE 6.11 Multilayer capacitance model

Chapter 6 Interconnect218

6.2.3 Inductance
Most design tools consider only interconnect resistance and capacitance. Inductance is dif-
ficult to extract and model, so engineers prefer to design in such a way that inductive
effects are negligible. Nevertheless, inductance needs to be considered in high-speed
designs for wide wires such as clocks and power busses.

Although we generally discuss current flowing from a gate output to charge or dis-
charge a load capacitance, current really flows in loops. The return path for a current loop
is usually the power or ground network; at the frequencies of interest, the power supply is
an “AC ground” because the bypass capacitance forms a low-impedance path between VDD
and GND. Currents flowing around a loop generate a magnetic field proportional to the
area of the loop and the amount of current. Changing the current requires supplying
energy to change the magnetic field. This means that changing currents induce a voltage
proportional to the rate of change. The constant of proportionality is called the induc-
tance, L.3

(6.10)

Inductance and capacitance also set the speed of light in a medium. Even if the resis-
tance of a wire is zero leading to zero RC delay, the speed of light flight-time along a wire
of length with inductance and capacitance per unit length of L and C is

(6.11)

If the current return paths are the same as the conductors on which electric field lines
terminate, the signal velocity v is

(6.12)

where 0 is the magnetic permeability of free space (4 × 10–7 H/m) and c is the speed of
light in free space (3 × 108 m/s). In other words, signals travel about half the speed of
light. Using low-k (< 3.9) dielectrics raises this velocity. However, many signals have elec-
tric fields terminating on nearby neighbors, but currents returning in more distant power
supply lines. This raises the inductance and reduces the signal velocity.

Changing magnetic fields in turn produce currents in other loops. Hence, signals on
one wire can inductively couple onto another; this is called inductive crosstalk.

The inductance of a conductor of length l and width w located a height h above a
ground plane is approximately

(6.13)

assuming w < h and thickness is negligible. Typical on-chip inductance values are in the
range of 0.15–1.5 pH/ m depending on the proximity of the power or ground lines.
(Wires near their return path have smaller current loops and lower inductance.)

3L is used to indicate both inductance and transistor channel length. The meaning should be clear from
context.

V L
dI
dt

=

t l LCpd =

v
LC

c
= = =

1 1

3 90ox .

L l
h

w
w
h

= +0

2
8

4
ln

6.2 Interconnect Modeling 219

Extracting inductance in general is a three-dimensional problem and is extremely
time-consuming for complex geometries. Inductance depends on the entire loop and
therefore cannot be simply decomposed into sections as with capacitance. It is therefore
impractical to extract the inductance from a chip layout. Instead, usually inductance is
extracted using tools such as FastHenry [Kamon94] for simple test structures intended to
capture the worst cases on the chip. This extraction is only possible when the power supply
network is highly regular. Power planes are ideal but require a large amount of metal
resources. Dense power grids are usually the preferred alternative. Gaps in the power grid
force current to flow around the gap, increasing the loop area and greatly increasing induc-
tance. Moreover, large loops couple magnetic fields through other loops formed by con-
ductors at a distance. Therefore, mutual inductive coupling can occur over a long distance,
especially when the return path is far from the conductor.

6.2.4 Skin Effect
Current flows along the path of lowest impedance Z = R + j L. At high frequency, ,
impedance becomes dominated by inductance. The inductance is minimized if the current
flows only near the surface of the conductor closest to the return path(s). This skin effect
can reduce the effective cross-sectional area of thick conductors and raise the effective
resistance at high frequency. The skin depth for a conductor is

(6.14)

where is the magnetic permeability of the dielectric (normally the same as in free space,
4 × 10–7 H/m). The frequency of importance is the highest frequency with significant
power in the Fourier transform of the signal. This is not the chip operating frequency, but
rather is associated with the faster edges. A sine wave with the same 20–80% rise/fall time
as the signal has a period of 8.65trf . Therefore, the frequency associated with the edge can
be approximated as

(6.15)

where trf is the average 20–80% rise/fall time.
In a chip with a good power grid, good current return paths are usually available on all

sides. Thus, it is a reasonable approximation to assume the current flows in a shell of
thickness along the four sides of the conductor, as shown in Figure 6.13. If min(w, t) >
2 , part of the conductor carries no current and the resistance increases.

Example 6.2

Determine the skin depth for a copper wire in a chip with 20 ps edge rates.

SOLUTION: According to EQ (6.15), the maximum frequency of interest is

(6.16)

=
2

=
2

8 65. trf

=
×

= × =
2

8 65 20
3 6 10 5 810

.
. .

ps
rad/s GHz

t

w

FIGURE 6.13 Current flow
in shell determined by skin
depth

Chapter 6 Interconnect220

According to EQ (6.14), the skin depth is thus

(6.17)

This exceeds half the thickness of typical metal layers, so the skin effect is rarely a fac-
tor in CMOS circuits.

6.2.5 Temperature Dependence
Interconnect capacitance is independent of temperature, but the resistance varies strongly.
The temperature coefficients of copper and aluminum are about 0.4%/°C over the normal
operating range of circuits; that is, a 100 °C increase in temperature leads to 40% higher
resistance. At liquid nitrogen temperature (77 K), the resistivity of copper drops to 0.22

· cm, an order-of-magnitude improvement. This suggests great advantages for RC-
dominated paths in cooled systems.

6.3 Interconnect Impact
Using the lumped models, this section examines the delay, energy, and noise impact of
wires.

6.3.1 Delay
Interconnect increases circuit delay for two reasons. First, the wire capacitance adds load-
ing to each gate. Second, long wires have significant resistance that contributes distributed
RC delay or flight time. It is straightforward to add wire capacitance to the Elmore delay
calculations of Section 4.3.5, so in this section we focus on the RC delay.

The Elmore delay of a single-segment L-model is RC. As the number of segments of
the L-model increases, the Elmore delay decreases toward RC/2. The Elmore delay of a

- or T-model is RC/2 no matter how many segments are used. Thus, a single-segment
-model is a good approximation for hand calculations.

Example 6.3

A 10x unit-sized inverter drives a 2x inverter at the end of the 1 mm wire from Exam-
ple 6.1. Suppose that wire capacitance is 0.2 fF/ m and that unit-sized nMOS transis-
tor has R = 10 k and C = 0.1 fF. Estimate the propagation delay using the Elmore
delay model; neglect diffusion capacitance.

SOLUTION: The driver has a resistance of 1 k .The receiver has a 2-unit nMOS transis-
tor and a 4-unit pMOS transistor, for a capacitance of 0.6 fF. The wire capacitance is
200 fF.

Figure 6.14 shows an equivalent circuit for the system using a single-segment
-model. The Elmore delay is tpd = (1000)(100 fF) + (1000 + 800)(100 fF +

0.6 fF) = 281 ps. The capacitance of the long wire dominates the delay; the capacitance
of the 2x inverter is negligible in comparison.

=
×()

×() ×()
=

2 2 2 10

3 6 10 4 10

8

10 7

.

.

m

rad/s H/m
0 99. m

6.3 Interconnect Impact 221

Because both wire resistance and wire capacitance increase with length,
wire delay grows quadratically with length. Using thicker and wider wires,
lower-resistance metals such as copper, and lower-dielectric constant insula-
tors helps, but long wires nevertheless often have unacceptable delay. Section
6.4.2 describes how repeaters can be used to break a long wire into multiple
segments such that the overall delay becomes a linear function of length.

Example 6.4

Find the RC flight time per mm2 for a wire using the parameters from Example 6.3.
Express the result in FO4/mm2, if the FO4 inverter delay is 15 ps. What is the flight
time to cross a 10 mm die?

SOLUTION: R = 800 /mm. C = 0.2 pF/mm. The flight time is RC/2 = 80 ps/mm2, or
5.3 FO4/mm2. The flight time across a 10 mm die is thus 530 FO4, which is dozens of
clock cycles.

Polysilicon and diffusion wires (sometimes called runners) have high resistance, even
if silicided. Diffusion also has very high capacitance. Do not use diffusion for routing. Use
polysilicon sparingly, usually in latches and flip-flops (i.e., do not use for other than intra-
cell routing).

Recall that the Elmore delay model only considers the resistance on the path from the
driver to a leaf. Capacitances on other branches are lumped as if they were at the branch
point. This gives a conservative result because they are really partially shielded by their
resistances.

Example 6.5

Figure 6.15 models a gate driving wires to two destinations. The gate is represented as
a voltage source with effective resistance R1. The two receivers are located at nodes 3
and 4. The wire to node 3 is long enough that it is represented with a pair of

-segments, while the wire to node 4 is represented with a single segment. Find the
Elmore delay from input x to each receiver.

SOLUTION: The Elmore delays are

(6.18)
T R C R R C R R R C R C

T R C R

D

D

3

4

1 1 1 2 2 1 2 3 3 1 4

1 1 1

= + +() + + +() +

= + C C R R C2 3 1 4 4+() + +()

800 Ω

100 f F 100 f F

Driver Wire

0.6 f F

Load

1000 Ω

FIGURE 6.14 Equivalent circuit for example

FIGURE 6.15 Interconnect modeling with RC tree

C4Node 4

Node 3

(a) (b)

Long Wire

Medium Wire

x

R4

R2R1

C1 C2 C3

R3

Chapter 6 Interconnect222

6.3.2 Energy
The switching energy of a wire is set by its capacitance. Long wires have significant capac-
itance and thus require substantial amounts of energy to switch.

Example 6.6

Estimate the energy per unit length to send a bit of information (one rising and one
falling transition) in a CMOS process.

SOLUTION: E = (0.2 pF/mm) (1.0 V)2 = 0.2 pJ/bit/mm. Sometimes energy in a commu-
nication link is expressed as power per gigabit per second: 0.2 mW/Gbps.

Example 6.7

Consider a microprocessor on a 20 mm × 20 mm die running at 3 GHz in the 65 nm
process. A layer of metal is routed on a 250 nm pitch. Half of the available wire tracks
are used. The wires have an average activity factor of 0.1. Determine the power con-
sumed by the layer of metal.

SOLUTION: There are (20 mm) / (250 nm) = 80,000 tracks of metal across the die, of
which 40,000 are occupied. The wire capacitance is (0.2 pF/mm)(20 mm)(40,000
tracks) = 160 nF. The power is (0.1)(160 nF)(1.0 V)2(3 GHz) = 48 W. This is clearly a
problem, especially considering that the chip has more than one layer of metal. The
activity factor needs to be much lower to keep power under control.

6.3.3 Crosstalk
As reviewed in Figure 6.16, wires have capacitance to their adjacent neighbors as well as to
ground. When wire A switches, it tends to bring its neighbor B along with it on account of
capacitive coupling, also called crosstalk. If B is supposed to switch simultaneously, this
may increase or decrease the switching delay. If B is not supposed to switch, crosstalk
causes noise on B. We will see that the impact of crosstalk depends on the ratio of Cadj to
the total capacitance. Note that the load capacitance is included in the total, so for short
wires and large loads, the load capacitance dominates and crosstalk is unimportant. Con-
versely, crosstalk is very important for long wires.

6.3.3.1 Crosstalk Delay Effects If both a wire and its neighbor are switching, the direc-
tion of the switching affects the amount of charge that must be delivered and the delay of
the switching. Table 6.3 summarizes this effect. The charge delivered to the coupling
capacitor is Q = Cadj V, where V is the change in voltage between A and B. If A switches
but B does not, V = VDD. The total capacitance effectively seen by A is just the capaci-
tance to ground and to B. If both A and B switch in the same direction, V = 0. Hence, no
charge is required and Cadj is effectively absent for delay purposes. If A and B switch in the
opposite direction, V = 2VDD. Twice as much charge is required. Equivalently, the capac-
itor can be treated as being effectively twice as large switching through VDD. This is analo-
gous to the Miller effect discussed in Section 4.4.6.6. The Miller Coupling Factor (MCF)
describes how the capacitance to adjacent wires is multiplied to find the effective capaci-
tance. Some designers use MCF = 1.5 as a statistical compromise when estimating propa-
gation delays before layout information is available.

A B

CgndCgnd
Cadj

FIGURE 6.16 Capacitances
to adjacent neighbor and to
ground

6.3 Interconnect Impact 223

A conservative design methodology assumes neighbors are switching when comput-
ing propagation and contamination delays (MCF = 2 and 0, respectively). This leads to a
wide variation in the delay of wires. A more aggressive methodology tracks the time win-
dow during which each signal can switch. Thus, switching neighbors must be accounted
for only if the potential switching windows overlap. Similarly, the direction of switching
can be considered. For example, dynamic gates described in Section 9.2.4 precharge high
and then fall low during evaluation. Thus, a dynamic bus will never see opposite switching
during evaluation.

Example 6.8

Each wire in a pair of 1 mm lines has capacitance of 0.08 fF/ m to ground and 0.12 fF/
m to its neighbor. Each line is driven by an inverter with a 1 k effective resistance.

Estimate the contamination and propagation delays of the path. Neglect parasitic
capacitance of the inverter and resistance of the wires.

SOLUTION: We find Cgnd = (0.08 fF/ m)(1000 m) = 80 fF and Cadj = 120 fF. The delay
is RCeff. The contamination delay is the minimum possible delay, which occurs when
both wires switch in the same direction. In that case, Ceff = Cgnd and the delay is tcd =
(1 k)(0.08 pF) = 80 ps. The propagation delay is the maximum possible delay, which
occurs when both wires switch in opposite directions. In this case, Ceff = Cgnd + 2Cadj
and the delay is tpd = (1 k)(0.32 pF) = 320 ps. This is a factor of four difference
between best and worst case.

6.3.3.2 Crosstalk Noise Effects Suppose wire A switches while B is
supposed to remain constant. This introduces noise as B partially
switches. We call A the aggressor or perpetrator and B the victim. If the
victim is floating, we can model the circuit as a capacitive voltage
divider to compute the victim noise, as shown in Figure 6.17.

Vaggressor is normally VDD.

(6.19)

If the victim is actively driven, the driver will supply current to
oppose and reduce the victim noise. We model the drivers as resistors,
as shown in Figure 6.18. The peak noise becomes dependent on the
time constant ratio k of the aggressor to the victim [Ho01]:

(6.20)

TABLE 6.3 Dependence of effective capacitance on switching direction

B DV Ceff(A) MCF

Constant VDD Cgnd + Cadj 1

Switching same direction as A 0 Cgnd 0

Switching opposite to A 2VDD Cgnd + 2Cadj 2

V
C

C C
V

v
victim

adj

gnd adj
aggressor=

+

V
C

C C k
V

v
victim

adj

gnd adj
aggressor=

+ +
1

1

Cadj

Cgnd-v

Aggressor

Victim

ΔVaggressor

ΔVvictim

Cadj

Cgnd-v

Aggressor

Victim

ΔVaggressor

ΔVvictim

Raggressor

Rvictim

Cgnd-a

FIGURE 6.17 Coupling to floating victim

FIGURE 6.18 Coupling to driven victim

Chapter 6 Interconnect224

where

(6.21)

Figure 6.19 shows simulations of coupling when the aggressor is driven with a unit
inverter; the victim is undriven or driven with an inverter of half, equal, or twice the size of
the aggressor; and Cadj = Cgnd. Observe that when the victim is floating, the noise remains
indefinitely. When the victim is driven, the driver restores the victim. Larger (faster) driv-
ers oppose the coupling sooner and result in noise that is a smaller percentage of the sup-
ply voltage. Note that during the noise event the victim transistor is in its linear region
while the aggressor is in saturation. For equal-sized drivers, this means Raggressor is two to
four times Rvictim, with greater ratios arising from more velocity saturation [Ho01]. In
general, EQ (6.20) is conservative, especially when wire resistance is included [Vittal99].
It is often used to flag nets where coupling can be a problem; then simulations can be per-
formed to calculate the exact coupling noise. Coupling noise is of greatest importance on
weakly driven nodes where k < 1.

We have only considered the case of a single neighbor switching. When both neighbors
switch, the noise will be twice as great. We have also modeled the layers above and below as
AC ground planes, but wires on these layers are likely to be switching. For a long line, you
can expect about as many lines switching up and switching down, giving no net contribution
to delay or noise. However, a short line running over a 64-bit bus in which all 64 bits are
simultaneously switching from 0 to 1 will be strongly influenced by this switching.

6.3.4 Inductive Effects
Inductance has always been important for integrated circuit packages where the physical
dimensions are large, as will be discussed in Section 13.2.3. On-chip inductance is impor-
tant for wires where the speed-of-light flight time is longer than either the rise times of
the circuits or the RC delay of the wire. Because speed-of-light flight time increases lin-

k
R C C

R

a
= =

+()aggressor

victim

aggressor gnd adj

victim gnd adjC Cv +()

Aggressor

Victim (Undriven): 50%

Victim (Half Size Driver): 16%
Victim (Equal Size Driver): 8%

Victim (Double Size Driver): 4%

t (ps)

0 40 80 120 160 200 240 280 320 360
0

0.2

0.5

1.0

V
vi

ct
im

400

FIGURE 6.19 Waveforms of coupling noise

6.3 Interconnect Impact 225

early according to EQ (6.11) and RC delay increases quadratically with length, we can
estimate the set of wire lengths for which inductance is relevant [Ismail99].

(6.22)

Example 6.9

Consider a metal2 signal line with a sheet resistance of 0.10 / and a width of 0.125
m. The capacitance is 0.2 fF/ m and inductance is 0.5 pH/ m. Compute the velocity

of signals on the line and plot the range of lengths over which inductance matters as a
function of the rise time.

SOLUTION: The velocity is

(6.23)

Note that this is 100 mm/ns or 1 mm/10 ps. The resistance is (0.1 /)(1 /0.125 m)
= 0.8 / m. Figure 6.20 plots the length of wires for which inductance is relevant
against rise times. Above the horizontal line, wires greater than 125 m are limited by
RC delay rather than LC delay. To the right of the diagonal line, rise times are greater
than the LC delay. Only in the region between these lines is inductance relevant to
delay calculations. This region has very fast edge rates, so inductance is not very impor-
tant to the delay of highly resistive signal lines.

As the example illustrated, inductance will only be important to
the delay of low-resistance signals such as wide clock lines. Induc-
tive crosstalk is also important for wide busses far away from their
current return paths. In power distribution networks, inductance
means that if one portion of the chip requires a rapidly increasing
amount of current, that charge must be delivered from nearby
decoupling capacitors or supply pins; portions of the chip further
away are unaware of the changing current needs until a speed-of-
light flight time has elapsed and hence will not supply current
immediately. Adding inductance to the power grid simulation gen-
erally reveals greater supply noise than would otherwise be pre-
dicted. Power networks will be discussed further in Section 13.3.

In wide, thick, upper-level metal lines, resistance and RC delay
may be small. This pushes the horizontal line in Figure 6.20
upward, increasing the range of edge rates for which inductance
matters. This is especially common for clock signals. Inductance
tends to increase the propagation delay and sharpen the edge rate.

To see the effects of inductance, consider a 5 mm-long clock line
above a ground plane driving a 2 pF clock load. If its width is 4.8 m
and thickness is 1.7 m, it has resistance of 4 /mm, capacitance of
0.4 pF/mm, and inductance of 0.12 nH/mm. Figure 6.21 presents models of the clock line
as a 5-stage -model without (a) and with (b) inductance. Figure 6.21(c) shows the

t

LC
l

R
L
C

r

2

2< <

v
LC

c= =
()()

= =1 1

0 5 0 2
10

1
3

8

. .pH/ m fF/ m
m/s

100 ps10 ps1 ps0.1 ps
tr

Wire Length

10 m

100 m

1mm

10mm

Inductance
Matters

RC Delay
Dominates

Rise Time
Dominates

Rise Time and
RC Dominate

FIGURE 6.20 Wire lengths and edge rates for which
inductance impacts delay

Chapter 6 Interconnect226

response of each model to an ideal voltage source with 80 ps rise time. The model includ-
ing inductance shows a greater delay until the clock begins to rise because of the speed-of-
light flight time. It also overshoots. However, the rising edge is sharper and the rise time is
shorter. In some circumstances when the driver impedance is matched to the characteristic
impedance of the wire, the sharper rising edge can actually result in a shorter propagation
delay measured at the 50% point.

To reduce the inductance and the impact of skin effect when no ground plane is avail-
able, it is good practice to split wide wires into thinner sections interdigitated with power
and ground lines to serve as return paths. For example, Figure 6.22 shows how a 16 m-
wide clock line can be split into four 4 m lines to reduce the inductance.

(a)

0.2 pF 0.4 pF 0.4 pF 0.4 pF 0.4 pF 0.2 pF

4 Ω4 Ω4 Ω4 Ω4 Ω

4 Ω 4 Ω 4 Ω 4 Ω 4 Ω

0.2 pF 0.4 pF 0.4 pF 0.4 pF 0.4 pF 0.2 pF

(b)

0 200 400 600
t (ps)

V

0

0.5

1.0

1.5

2.0

(c)

Vin

2 pF

2 pF

RC

RLC

RC

RLC

0.12 nH0.12 nH0.12 nH0.12 nH0.12 nH

FIGURE 6.21 Wide clock line modeled with and without inductance

GND VDD GND VDD GND

CLK CLK CLK CLK

16 m

4 m

(a)

(b)

CLK

FIGURE 6.22 Wide clock line interdigitated with power
and ground lines to reduce inductance

6.3 Interconnect Impact 227

A bus made of closely spaced wires far above
a ground plane is particularly susceptible to
crosstalk. Figure 6.23 shows the worst case
crosstalk scenario. The victim line is in the cen-
ter. The two adjacent neighbors rise, capacitively
coupling the victim upward. The other bus wires
fall. Each one creates a loop of current flowing
counterclockwise through the wire and back
along the ground plane. These loops induce a
magnetic field, which in turn induces a current
flowing in the other direction in the victim line.
This is called mutual inductive coupling and also
makes the victim rise. The noise from each
aggressor sums on to the victim in much the same way that multiple primary turns in a
transformer couple onto a single secondary turn. Computing the inductive crosstalk
requires extracting a mutual inductance matrix for the bus and simulating the system. As
this is not yet practical for large chips, designers instead either follow design rules that
keep the inductive effects small or ignore inductance and hope for the best. The design
rules may be of the form that one power or ground wire must be inserted between every N
signal lines on each layer. N is called the signal:return (SR) ratio [Morton99]. The returns
give an alternative path for current to flow, reducing the mutual inductance. The inductive
effects on noise and delay are generally small for N = 8 and negligible for N = 4 when nor-
mal wiring pitches are used [Linderman04]. N = 2 means each signal is shielded on one
side, also eliminating half the capacitive crosstalk. However, low SR ratios are expensive in
terms of metal resources.

In summary, on-chip inductance is difficult to extract. Mutual inductive coupling may
occur over a long range, so inductive coupling is difficult to simulate even if accurate values
are extracted. Instead, design rules are usually constructed so that inductive effects may be
neglected for most structures. The easiest way to do this is to provide a regular power grid
in which power and ground are systematically allocated track to keep the SR ratio low.
Inductance should be incorporated into simulations of the power and clock networks and
into the noise and delay calculations for busses with large SR ratios in high-speed designs.

6.3.5 An Aside on Effective Resistance and Elmore Delay
Recall from Section 4.3.4 that a factor of ln 2 was lumped into the effective resistance of a
transistor so that the Elmore delay model predicts propagation delay, yet we have not
accounted for the factor in wire resistance. This section examines the discrepancy.

According to the Elmore delay model, a gate with effective resistance R and capaci-
tance C has a propagation delay of RC. A wire with distributed resistance R and capaci-
tance C treated as a single -segment has propagation delay RC/2. Reviewing the
properties of RC circuits, we recall that the lumped RC circuit in Figure 6.24(a) has a unit
step response of

(6.24)

The propagation delay of this circuit is obtained by solving for tpd when Vout(tpd) = 1/2:

(6.25)

V t
t

R'C
out e() = 1

t R C R Cpd = =ln .2 0 69

V
C C

Current
Loops

Magnetic Field

Mutual Inductive Coupling

FIGURE 6.23 Inductive and capacitive crosstalk in a bus

Chapter 6 Interconnect228

The distributed RC circuit in Figure 6.24(b) has no closed form time domain
response. Because the capacitance is distributed along the circuit rather than all being at
the end, you would expect the capacitance to be charged on average through about half the
resistance and that the propagation delay should thus be about half as great. A numerical
analysis finds that the propagation delay is 0.38R C.

To reconcile the Elmore model with the true results for a logic gate, recall that logic
gates have complex nonlinear I-V characteristics and are approximated as having an effec-
tive resistance. If we characterize that effective resistance as R = R ln 2, the propagation
delay really becomes the product of the effective resistance and the capacitance: tpd = RC.

For distributed circuits, observe that

Therefore, the Elmore delay model describes distributed delay well if we use an effective
wire resistance scaled by ln 2 from that computed with EQ (6.2). This is somewhat incon-
venient. The effective resistance is further complicated by the effect of nonzero rise time
on propagation delay. Figure 6.25 shows that the propagation delay depends on the rise
time of the input and approaches RC for lumped systems and RC/2 for distributed systems
when the input is a slow ramp. This suggests that when the input is slow, the effective
resistance for delay calculations in a distributed RC circuit is equal to the true resistance.
Finally, we note that for many analyses such as repeater insertion calculations in Section
6.4.2, the results are only weakly sensitive to wire resistance, so using the true wire resis-
tance does not introduce great error.

In summary, it is a reasonable practice to estimate the flight time along a wire as
RC/2 where R is the true resistance of the wire. When more accurate results are needed, it
is important to use good transistor models and appropriate input slopes in simulation.

The Elmore delay can be viewed in terms of the first moment of the impulse response
of the circuit. CAD tools can obtain greater accuracy by approximating delay based on
higher moments using a technique called moment matching. Asymptotic Waveform Evalua-
tion (AWE) uses moment matching to estimate interconnect delay with better accuracy
than the Elmore delay model and faster run times than a full circuit simulation [Celik02].

0 38 21
2

1
2. ln =R C R C RC

FIGURE 6.24 Lumped and distributed RC circuit response

R'

CVin(t) Vout(t)

Vout(t)

Vout(t)

Vin(t)

R'

C

(a)

(b) (c)

tpd

0 0.5 1 1.5 2 2.5 3
0

0.5

1

t
R'C

Lumped

Distributed

6.4 Interconnect Engineering 229

6.4 Interconnect Engineering
As gate delays continue to improve while long wire delays remain constant or even get
slower, wire engineering has become a major part of integrated circuit design. It is neces-
sary to develop a floorplan early in the design cycle, identify the long wires, and plan for
them. While floorplanning in such a way that critical communicating units are close to
one another has the greatest impact on performance, it is inevitable that long wires will
still exist. Aspect ratios in old processes were below 1, but are close to 2 in nanometer pro-
cesses to help the resistance of such narrow lines. This comes at the expense of substan-
tially increased coupling capacitance. The designer has a number of techniques to engineer
wires for delay and coupling noise. The width, spacing, and layer usage are all under the
designer’s control. Shielding can be used to further reduce coupling on critical nets.
Repeaters inserted along long wires reduce the delay from a quadratic to a linear function
of length. Wire capacitance and resistance complicate the use of Logical Effort in select-
ing gate sizes.

6.4.1 Width, Spacing, and Layer
The designer selects the wire width, spacing, and layer usage to trade off delay, bandwidth,
energy, and noise. By default, minimum pitch wires are preferred for noncritical intercon-

FIGURE 6.25 Effect of rise time on lumped and distributed RC circuit delays

0 1 2 3 4

0 1 2 3 4

0

0.5

1

0

0.5

1

trise

RC

tpd

RC

t
R'C

V(t) Input

Lumped

Distributed

(a)

(b)

Distributed

Lumped

ln 2

0.38

Chapter 6 Interconnect230

nections for best density and bandwidth. When the load is dominated by wire capacitance,
the best way to reduce delay is to increase spacing, reducing the capacitance to nearby
neighbors. This also reduces energy and coupling noise. When the delay is dominated by
the gate capacitance and wire resistance, widening the wire reduces resistance and delay.
However, it increases the capacitance of the top and bottom plates. Widening wires also
increases the fraction of capacitance of the top and bottom plates, which somewhat
reduces coupling noise from adjacent wires. However, wider wires consume more energy.

The wire thickness depends on the choice of metal layer. The lower layers are thin and
optimized for a tight routing pitch. Middle layers are often slightly thicker for lower resis-
tance and better current-handling capability. Upper layers may be even thicker to provide
a low-resistance power grid and fast global interconnect. Wiring tracks are a precious
resource and are often allocated in the floorplan; the wise designer maintains a reserve of
wiring tracks for unanticipated changes late in the design process.

The power grid is usually distributed over multiple layers. Most of the current-
handling capability is provided in the upper two layers with lowest resistance. However,
the grid must extend down to metal1 or metal2 to provide easy connection to cells.

6.4.2 Repeaters
Both resistance and capacitance increase with wire length l, so the RC delay of a wire
increases with l 2 , as shown in Figure 6.26(a). The delay may be reduced by splitting the
wire into N segments and inserting an inverter or buffer called a repeater to actively drive
the wire [Glasser85], as shown in Figure 6.26(b). The new wire involves N segments with
RC flight time of (l/N)2 , for a total delay of l 2/N. If the number of segments is propor-
tional to the length, the overall delay increases only linearly with l.

Using inverters as repeaters gives best performance. Each repeater adds some
delay. If the distance is too great between repeaters, the delay will be dominated
by the long wires. If the distance is too small, the delay will be dominated by the
large number of inverters. As usual, the best distance between repeaters is a com-
promise between these extremes. Suppose a unit inverter has resistance R, gate
capacitance C,4 and diffusion capacitance Cpinv. A wire has resistance Rw and
capacitance Cw per unit length. Consider inserting repeaters of W times unit size.

4Note that C now refers to the capacitance of an entire inverter, not a single transistor, so = RC.

Wire Length: l

Driver Receiver

(a)

(b)

l /N

Driver

Segment

Repeater

l /N

Repeater

l /N

ReceiverRepeater

N Segments

FIGURE 6.26 Wire with and without repeaters

R
W CWpinv

Rw
l
N

Cw
2

l
N

Cw
2

l
N

CW

FIGURE 6.27 Equivalent circuit for
segment of repeated wire

6.4 Interconnect Engineering 231

Figure 6.27 shows a model of one segment. The Elmore delay of the repeated wire is

(6.26)

Differentiating EQ (6.26) with respect to N and W shows that the best length of wire
between repeaters is (see Exercise 6.5)

(6.27)

Recall from Example 4.10 that the delay of an FO4 inverter is 5RC. Assuming pinv 0.5
using folded transistors, EQ (6.27) simplifies to

(6.28)

The delay per unit length of a properly repeated wire is

(6.29)

To achieve this delay, the inverters should use an nMOS transistor width of

(6.30)

The energy per unit length to send a bit depends on the wire and repeater capacitances

(6.31)

In other words, repeaters sized for minimum delay add 87% to the energy of an unre-
peated wire.

Example 6.10

Compute the delay per mm of a repeated wire in a 65 nm process. Assume the wire is
on a middle routing layer and has 2x width, spacing, and height, so its resistance is 200

/mm and capacitance is 0.2 pF/mm. The FO4 inverter delay is 15 ps. Also find the
repeater spacing and driver size to achieve this delay and the energy per bit.

SOLUTION: Using EQ (6.29), the delay is

(6.32)

This delay is achieved using a spacing of 0.45 mm between repeaters and an nMOS
driver width of 18 m (180x unit size). The energy per bit is 0.4 pJ/mm.

t N
R

W
C

l
N

CW p R
l

N
C l

N
CWpd w w

w= + +() + +1
2inv

l
N

RC p

R Cw w

=
+()2 1 inv

l
N R Cw w

= 0 77.
FO4

t

l
p RCR C R C

pd
w w w w= + +()()2 2 1 1 67inv FO4.

W
RC
R C

w

w

=

E
l

C NWC p C
p

V C Vw w DD w= + +() = +
+

1 1
1

2
1 872

inv
inv . DD

2

t pd = ()()() =1 67 15 200 0 2 41. .ps /mm pF/mm ps/mm

Chapter 6 Interconnect232

As one might expect, the curve of delay vs. distance and driver size is relatively flat
near the minimum. Thus, substantial energy can be saved for a small increase in delay. At
the minimum EDP point, the segments become 1.7x longer and the drivers are only 0.6x
as large. The delay increases by 14% but the repeaters only add 30% to the energy of the
unrepeated line [Ho01]. For the parameters in Example 6.10, the minimum EDP can be
found numerically at a spacing of about 0.8 mm and a driver width of 11 m (110x unit
size), achieving an energy of 0.26 pJ/mm at a delay of 47 ps/mm. These longer segments
are more susceptible to noise.

Unfortunately, inverting repeaters complicate design because you must either ensure
an even number of repeaters on each wire or adapt the receiving logic to accept an inverted
input. Some designers use inverter pairs (buffers) rather than single inverters to avoid the
polarity problem. The pairs contribute more delay. However, the first inverter size W1 may
be smaller, presenting less load on the wire driving it. The second inverter may be larger,
driving the next wire more strongly. You can show that the best size of the second inverter
is W2 = kW1, where k = 2.25 if pinv = 0.5. The distance between repeaters increases to (see
Exercise 6.6)

(6.33)

The delay per unit length becomes

(6.34)

using transistor widths of

(6.35)

and the energy per bit per unit length is

(6.36)

This typically means that wires driven with noninverting repeaters are only about 8%
slower per unit length than those using inverting repeaters. Only about two-thirds as
many repeaters are required, simplifying floorplanning. Total repeater area and power
increases slightly.

The overall delay is a weak function of the distance between repeaters, so it is reason-
able to increase this distance to reduce the difficulty of finding places in the floorplan for
repeaters while only slightly increasing delay. Repeaters impose directionality on a wire.
Bidirectional busses and distributed tristate busses cannot use simple repeaters and hence
are slower; this favors point-to-point unidirectional communications.

6.4.3 Crosstalk Control
Recall from EQ (6.20) that the capacitive crosstalk is proportional to the ratio of coupling
capacitance to total capacitance. For modern wires with an aspect ratio (t/w) of 2 or

l
N

RC k
k

p

R C R Cw w w w

=
+ +2

1
2

1 22
inv FO4

.

t

l
R C

pd
w w= 1 81. FO4

W
W

k
W W k1 2= =,

E
l

C Vw DD2 2 2.

6.4 Interconnect Engineering 233

greater, the coupling capacitance can account for 2/3 to 3/4 of the total capacitance and
crosstalk can create large amounts of noise and huge data-dependent delay variations.
There are several approaches to controlling this crosstalk:

� Increase spacing to adjacent lines
� Shield wires
� Ensure neighbors switch at different times
� Crosstalk cancellation

The easiest approach to fix a minor crosstalk problem is to increase the spacing. If the
crosstalk is severe, the spacing may have to be increased by more than one full track. In
such a case, it is more efficient to shield critical signals with power or ground wires on one
or both sides to eliminate coupling. For example, clock wires are usually shielded so that
switching neighbors do not affect the delay of the clock wire and introduce clock jitter.
Sensitive analog wires passing near digital signals should also be shielded.

An alternative to shielding is to interleave busses that are guaranteed to switch at dif-
ferent times. For example, if bus A switches on the rising edge of the clock and bus B
switches on the falling edge of the clock, by interleaving the bits of the two busses you can
guarantee that both neighbors are constant during a switching event. This avoids the delay
impact of coupling; however, you must still ensure that coupling noise does not exceed
noise budgets. Figure 6.28 shows wires shielded (a) on one side, (b) on both sides, and (c)
interleaved. Critical signals such as clocks or analog voltages can be shielded above and
below as well.

Alternatively, wires can be arranged to cancel the effects of crosstalk. Three such
methods include staggered repeaters, charge compensation, and twisted differential signaling
[Ho03b]. Each technique seeks to cause equal amounts of positive and negative crosstalk
on the victim, effectively producing zero net crosstalk.

Figure 6.29(a) shows two wires with staggered repeaters. Each segment of the victim
sees half of a rising aggressor segment and half of a falling aggressor segment. Although
the cancellation is not perfect because of delays along the segments, staggering is a very
effective approach. Figure 6.29(b) shows charge compensation in which an inverter and
transistor are added between the aggressor and victim. The transistor is connected to
behave as a capacitor. When the aggressor rises and couples the victim upward, the
inverter falls and couples the victim downward. By choosing an appropriately sized com-
pensation transistor, most of the noise can be canceled at the expense of the extra circuitry.
Figure 6.29(c) shows twisted differential signaling in which each signal is routed differen-
tially. The signals are swapped or twisted such that the victim and its complement each see
equal coupling from the aggressor and its complement. This approach is expensive in wir-
ing resources, but it effectively eliminates crosstalk. It is widely used in memory designs
that are naturally differential, as explored in Section 12.2.3.3.

vdd a0 a1gnd a2vdd

(b)

b0 a1 a2 b2

(c)

vdd a0 a1 gnd a2 a3 vdd

(a)

gnd a0 b1

FIGURE 6.28 Wire shielding topologies

Chapter 6 Interconnect234

6.4.4 Low-Swing Signaling
Driving long wires is slow because of the RC delay, and expensive in power because of the
large capacitance to switch. Low-swing signaling improves performance by sensing when
a wire has swung through some small Vswing rather than waiting for a full swing. If the
driver is turned off after the output has swung sufficiently, the power can be reduced as
well. However, the improvements come at the expense of more complicated driver and
receiver circuits. Low-swing signaling may also require a twisted differential pair of wires
to eliminate common-mode noise that could corrupt the small signal.

The power consumption for low-swing signaling depends on both the driver voltage
Vdrive and the actual voltage swing Vswing. Each time the wire is charged and discharged, it
consumes Q = CVswing. If the effective switching frequency of the wire is f, the average
current is

(6.37)

Hence, the dynamic dissipation is

 (6.38)

In contrast, a rail-to-rail driver uses Vdrive = Vswing = VDD and thus consumes power
proportional to VDD

2. Vswing must be less than or equal to Vdrive. By making Vswing less than
Vdrive, we speed up the wire because we do not need to wait for a full swing. By making both
voltages significantly less than VDD, we can reduce the power by an order of magnitude.

I
T

i t f CV
T

avg drive swingdt= =1

0

()

P I V f CV Vdynamic avg drive swing drive= =

FIGURE 6.29 Crosstalk control schemes

Victim

Aggressor

Coupled
Noise
Cancels

Victim

Aggressor

(a)

(b)

(c)

v

v

a

a

Coupled
Noise
Cancels

6.4 Interconnect Engineering 235

Low-swing signaling involves numerous challenges. A low Vdrive must be provided to
the chip and distributed to low-swing drivers. The signal should be transmitted on differ-
ential pairs of wires that are twisted to cancel coupling from neighbors and equalized to
prevent interference from the previous data transmitted. The driver must turn on long
enough to produce Vswing at the far end of the line, then turn off to prevent unnecessary
power dissipation. This generally leads to a somewhat larger swing at the near end of the
line. The receiver must be clocked at the appropriate time to amplify the differential sig-
nal. Distributing a self-timed clock from driver to receiver is difficult because the distances
are long, so the time to transmit a full-swing clock exceeds the time for the data to com-
plete its small swing.

Figure 6.30 shows a synchronous low-swing signaling technique using the system
clock for both driver and receiver [Ho03a]. During the first half of the cycle, the driver is
OFF (high impedance) and the differential wires are equalized to the same voltage. Dur-
ing the second half of the cycle, the drivers turn ON. At the end of the cycle, the receiver
senses the differential voltage and amplifies it to full-swing levels. Figure 6.30(a) shows
the overall system architecture. Figure 6.30(b) shows the driver for one of the wires. The
gates use ordinary VDD while the drive transistors use Vdrive. Because Vdrive < VDD – Vt ,
nMOS transistors are used for both the pullup and pulldown to deliver low effective resis-
tance in their linear regime. A second driver using the complementary input drives the
complementary wire. Figure 6.30(c) shows the differential wires with twisting and equal-
izing. The end of the wire only swings part-way, reducing power consumption. Using
medium Vdrive and small Vswing is faster than using a smaller Vdrive and waiting for the
wire to swing all the way. Figure 6.30(d) shows the clocked sense amplifier based on the
SA-F/F that will be described further in Section 10.3.8. The sense amplifier uses pMOS
input transistors because the small-swing inputs are close to GND and below the thresh-
old of nMOS transistors. Note that the clock period must be long enough to transmit an
adequate voltage swing. If the clock period increases, the circuit will actually dissipate
more power because the voltage swing will increase to a maximum of Vdrive.

(a)

a y

clk clk

Low-
Swing
Driver

Sense
Amplifier

Twisted, Equalized
Differential Wires

a
clk

d

Vdrive

(b)

clk

d

d

f

f
clk clk clk clk

(c) (d)

VDD

ff

clk

SR Latch
R S

Q

y

d f

fd

Vdrive

FIGURE 6.30 Low-swing signaling system

Chapter 6 Interconnect236

6.4.5 Regenerators
Repeaters are placed in series with wires and thus are limited to unidirectional busses. An
alternative is to use regenerators (also called boosters) placed in parallel with wires at peri-
odic intervals, as shown in Figure 6.31. When the wire is initially ‘0,’ the regenerator
senses a rising transition and accelerates it. Conversely, when the wire is initially ‘1,’ the
regenerator accelerates the falling transition. Regenerators trade off up to 20% better delay
or energy for reduced noise margins.

Regenerators generally use skewed gates to sense a transition. As discussed in Section
9.2.1.5, a HI-skew gate favors the rising output by using a low switching point, and a LO-
skew gate does the reverse. Figure 6.32 shows a self-timed regenerator [Dobbalaere95].
When the wire begins to rise, the LO-skewed NAND gate detects the transition midway

and turns on the pMOS driver to assist. The normal-skew inverters eventu-
ally detect the transition and flip node x, turning off the pMOS driver.
When the wire begins to fall, the HI-skewed NOR gate turns on the nMOS
to assist. Other regenerator designs include [Nalamalpu02, Singh08].

6.5 Logical Effort with Wires
Interconnect complicates the application of Logical Effort because the wires
have a fixed capacitance. The branching effort at a wire with capacitance
Cwire driving a gate load of Cgate is (Cgate + Cwire) / Cgate. This branching
effort is not constant; it depends on the size of the gate being driven. The
simple rule that circuits are fastest when all stages bear equal effort is no
longer true when wire capacitance is introduced. If the wire is very short or
very long, approximations are possible, but when the wire and gate loads are
comparable, there is no simple method to determine the best stage effort.

Every circuit has some interconnect, but when the interconnect is short
(Cwire << Cgate), it can be ignored. Alternatively, you can compute the aver-
age ratio of wire capacitance to parasitic diffusion capacitance and add this as
extra parasitic capacitance when determining parasitic delay. For connections

between nearby gates, this generally leads to a best stage effort slightly greater than 4.
The path should use fewer stages because each stage contributes wire capacitance. To
reduce delay, the gates should be sized larger so that the wire capacitance is a smaller frac-
tion of the whole. However, this comes at the expense of increased energy.

Conversely, when the interconnect is long (Cwire >> Cgate), the gate at the end can be
ignored. The path can now be partitioned into two parts. The first part drives the wire
while the second receives its input from the wire. The first part is designed to drive the
load capacitance of the wire; the extra load of the receiver is negligible. To save energy, the
final stage driving the wire should have a low logical effort and a high electrical effort; an
inverter is preferred [Stan99]. The size of the receiver is chosen by practical consider-
ations: Larger receivers may be faster, but they also cost area and power. If the wire is long
enough that the RC flight time exceeds a few gate delays, it should be broken into seg-
ments driven by repeaters.

The most difficult problems occur when Cwire Cgate. These medium-length wires
introduce branching efforts that are a strong function of the size of the gates they drive.
Writing a delay equation as a function of the gate sizes along the path and the wire capac-
itance results in an expression that can be differentiated with respect to gate sizes to com-

Long Wire

Regenerator

FIGURE 6.31
Regenerator

Long Wire

L

H

Driver

n

p

x

Wire

x

p

n

Rising
Boost

Falling
Boost

FIGURE 6.32 Regenerator

6.6 Pitfalls and Fallacies 237

pute the best sizes. Alternatively, a convex optimizer can be used
to minimize delay or generate an energy-delay trade-off curve.

Figure 6.33 shows three stages along a path. By writing the
Elmore delay and differentiating with respect to the size of the
middle stage, we find the interesting result that the delay caused
by the capacitance of a stage should equal the delay caused by the
resistance of the stage [Morgenshtein09]:

(6.39)

Example 6.11

The path in Figure 6.34 contains a medium-length wire modeled as a lumped capaci-
tance. Write an equation for path delay in terms of x and y. How large should the x and
y inverters be for shortest path delay? What is the stage effort of each stage?

C R R R C Ci i w i i wi i++() = +()+1 11 1

Stage i − 1 Stage i + 1Stage i

Ri − 1, Ci − 1 Ri + 1, Ci + 1Ri, Ci
Rwi − 1

, Cwi − 1
Rwi

, Cwi
xixi − 1 xi + 1

FIGURE 6.33 Path with wires

10 fF x y

50 fF 100 fF

FIGURE 6.34 Path with medium-length wire

SOLUTION: From the Logical Effort delay model, we find the path delay is

(6.40)

Differentiating with respect to each size and setting the results to 0 allows us to solve
EQ (6.41) for x = 33 fF and y = 57 fF.

(6.41)

The stage efforts are (33/10) = 3.3, (57 + 50)/33 = 3.2, and (100/57) = 1.8. Notice
that the first two stage efforts are equal as usual, but the third stage effort is lower. As x
already drives a large wire capacitance, y may be rather large (and will bear a small stage
effort) before the incremental increase in delay of x driving y equals the incremental
decreases in delay of y driving the output.

6.6 Pitfalls and Fallacies
Designing a large chip without considering the floorplan
In the mid-1990s, designers became accustomed to synthesizing a chip from HDL and “tossing

the netlist over the wall” to the vendor who would place & route it and manufacture the chip.

Many designers were shielded from considering the physical implementation. Now flight

d
x y

x y
P= +

+
+ +

10
50 100

1
10

50
0 10 500

1 100
0 100

2
2

2
2

+
= = +

= =

y

x
x y

x y
y x

Chapter 6 Interconnect238

times across the chip are a large portion of the cycle time in slow systems and multiple cycles

in faster systems. If the chip is synthesized without a floorplan, some paths with long wires

will be discovered to be too slow after layout. This requires resynthesis with new timing con-

straints to shorten the wires. When the new layout is completed, the long wires simply show

up in different paths. The solution to this convergence problem is to make a floorplan early

and microarchitect around this floorplan, including budgets for wire flight time between

blocks. Algorithms termed timing directed placement have alleviated this problem, resulting in

place & route tools that converge in one or a few iterations.

Leaving gaps in the power grid
Current always flows in loops. Current flowing along a signal wire must return in the power/

ground network. The area of the loop sets the inductance of the signal. A discontinuity in the

power grid can force return current to find a path far from the signal wire, greatly increasing

the inductance, which increases delay and noise. Because signal inductance is usually not

modeled, the delay and noise will not be discovered until after fabrication.

Summary
As feature size decreases, transistors get faster but wires do not. Interconnect delays are
now very important. The delay is again estimated using the Elmore delay model based on
the resistance and capacitance of the wire and its driver and load. The wire delay grows
with the square of its length, so long wires are often broken into shorter segments driven
by repeaters. Vast numbers of wires are required to connect all the transistors, so processes
provide many layers of interconnect packed closely together. The capacitive coupling
between these tightly packed wires can be a major source of noise in a system. These chal-
lenges are managed by using many metal layers of various thicknesses to provide high
bandwidth for short thin wires and lower delay for longer fat wires. The microarchitecture
becomes inherently linked to the floorplan because the design must allocate one or more
cycles of pipeline delay for wires that cross the chip.

Exercises
6.1 Estimate the resistance per mm of a minimum pitch Cu wire for each layer in the

Intel 45 nm process described in Table 6.1. Assume a 10 nm high-resistance barrier
layer and negligible dishing.

6.2 Consider a 5 mm-long, 4 -wide metal2 wire in a 0.6 m process. The sheet resis-
tance is 0.08 / and the capacitance is 0.2 fF/ m. Construct a 3-segment
-model for the wire.

6.3 A 10x unit-sized inverter drives a 2x inverter at the end of the 5 mm wire from
Exercise 6.2. The gate capacitance is C = 2 fF/ m and the effective resistance is
R = 2.5 k · m for nMOS transistors. Estimate the propagation delay using the
Elmore delay model; neglect diffusion capacitance.

6.4 Find the best width and spacing to minimize the RC delay of a metal2 bus in the
180 nm process described in Figure 6.12 if the pitch cannot exceed 960 nm. Mini-
mum width and spacing are 320 nm. First, assume that neither adjacent bit is
switching. How does your answer change if the adjacent bits may be switching?

 Exercises 239

6.5 Derive EQ (6.27)–(6.30). Assume the initial driver and final receiver are of the same
size as the repeaters so the total delay is N times the delay of a segment.

6.6 Revisit Exercise 6.5 using a pair of inverters (a noninverting buffer) instead of a sin-
gle inverter. The first inverter in each pair is W1 times unit width. The second is a
factor of k larger than the first. Derive EQ (6.33)–(6.36).

6.7 Compute the characteristic velocity (delay per mm) of a repeated metal2 wire in the
180 nm process. A unit nMOS transistor has resistance of 2.5 k and capacitance of
0.7 fF, and the pMOS has twice the resistance. Use the data from Figure 6.12. Con-
sider both minimum pitch and double-pitch (twice minimum width and spacing)
wires. Assume solid metal above and below the wires and that the neighbors are not
switching.

6.8 Prove EQ (6.39).

This page intentionally left blank

7

241

Robustness

7.1 Introduction
A central challenge in building integrated circuits is to get millions or billions of transis-
tors to all function, not just once, but for a quintillion consecutive cycles. Transistors are so
small that printing errors below the wavelength of light and variations in the discrete
number of dopant atoms have major effects on their performance. Over the course of their
operating lives, chips may be subjected to temperatures ranging from freezing to boiling.
Intense electric fields gradually break down the gates. Unrelenting currents carry away the
atoms of the wires like termites slowly devouring a mansion. Cosmic rays zap the bits
stored in tiny memory cells.

Despite these daunting challenges, engineers routinely build robust integrated circuits
with lifetimes exceeding ten years of continuous operation. Conventional static CMOS
circuits are exceptionally well-suited to the task because they have great noise margins, are
minimally sensitive to variations in transistor parameters, and will eventually recover even
if a noise event occurs. Fairly simple guidelines on the maximum voltages and currents
suffice to ensure long operating life. Fault-tolerant and adaptive architectures can correct
for errors and adjust the chip to run at its best despite manufacturing variations and
changing operating conditions.

Section 7.2 begins by examining the sources of manufacturing and environmental varia-
tions and their effects on a chip. Section 7.3 then discusses reliability, including wearout, soft
errors, and catastrophic failures. A good design should work well not only in the current
manufacturing process, but also when ported to a more advanced process. Section 7.4
addresses scaling laws to predict how future processes will evolve. Section 7.5 revisits vari-
ability with a more mathematical treatment. Section 7.6 examines adaptive and fault-
tolerant design techniques to compensate for variations and transient errors.

7.2 Variability
So far, when considering the various aspects of determining a circuit’s behavior, we have
only alluded to the variations that might occur in this behavior given different operating
conditions. In general, there are three different sources of variation—two environmental
and one manufacturing:

� Process variation

� Supply voltage

� Operating temperature

Chapter 7 Robustness242

The variation sources are also known as Process, Voltage, and Temper-
ature (PVT). You must aim to design a circuit that will operate reliably
operate over all extremes of these three variables. Failure to do so causes
circuit problems, poor yield, and customer dissatisfaction.

Variations are usually modeled with uniform or normal (Gaussian)
statistical distributions, as shown in Figure 7.1. Uniform distributions
are specified with a half-range a. For good results, accept variations over
the entire half-range. For example, a uniform distribution for VDD

could be specified at 1.0 V ±10%. This distribution has a 100 mV half-
range. All parts should work at any voltage in the range. Normal distri-
butions are specified with a standard deviation . Processing variations
are usually modeled with normal distributions. Retaining parts with a
3 distribution will result in 0.26% of parts being rejected. A 2 reten-
tion results in 4.56% of parts being rejected, while 1 results in a
31.74% rejection rate. Obviously, rejecting parts outside 1 of nominal
would waste a large number of parts. A 3 or 2 limit is conventional
and a manufacturer with a commercially viable CMOS process should
be able to supply a set of device parameters describing this range. For
components such as memory cells that are replicated millions of times,
a 0.26% failure rate is far too high. Such circuits must tolerate 5, 6, or
even 7 of variation. Remember that if only the variations in one direc-
tion (e.g., too slow) matter, the reject rate is halved.

7.2.1 Supply Voltage
Systems are designed to operate at a nominal supply voltage, but this
voltage may vary for many reasons including tolerances of the voltage
regulator, IR drops along supply rails, and di/dt noise. The system
designer may trade-off power supply noise against resources devoted to
power supply regulation and distribution; typically the supply is speci-
fied at ±10% around nominal at each logic gate. The supply varies
across the chip as well as in time. For example, Figure 7.2 shows a volt-
age map indicating the worst case droop as a function of position on a
chip [Bernstein06, Su03].

Speed is roughly proportional to VDD, so to first order this leads to
±10% delay variations (check for your process and voltage when this is
critical). Power supply variations also appear in noise budgets.

7.2.2 Temperature
Section 2.4.5 showed that as temperature increases, drain current decreases. The junction
temperature of a transistor is the sum of the ambient temperature and the temperature rise
caused by power dissipation in the package. This rise is determined by the power con-
sumption and the package thermal resistance, as discussed in Section 13.2.4.

Table 7.1 lists the ambient temperature ranges for parts specified to commercial,
industrial, and military standards. Parts must function at the bottom end of the ambient
range unless they are allowed time to warm up before use. The junction temperature (the
temperature at the semiconductor junctions forming the transistors) may significantly
exceed the maximum ambient temperature. Commonly commercial parts are verified to
operate with junction temperatures up to 125 °C.

3 2 1 0 1 2 3

Accepting parts
within 1 would
exclude 31.7%

0 11

All parts lie within
the half range

Normal Distribution

Uniform Distribution

(a)

(b)

x

x
a

FIGURE 7.1
Uniform and normal distributions

FIGURE 7.2 Voltage droop map (Courtesy of
International Business Corporation. Unauthorized
use not permitted.)

7.2 Variability 243

Temperature varies across a die depending on which portions dissipate the most
power. The variation is gradual, so all circuits in a given 1 mm diameter see nearly the
same temperature. Temperature varies in time on a scale of milliseconds. Figure 7.3 shows
a simulated thermal map for the Itanium 2 microprocessor [Harris01b]. The execution
core has hot spots exceeding 100 °C, while the caches in the periphery are below 70 °C.

7.2.3 Process Variation
Devices and interconnect have variations in film thickness, lateral
dimensions, and doping concentrations [Bernstein99]. These variations
can be classified as inter-die (e.g., all the transistors on one die might be
shorter than normal because they were etched excessively) and intra-die
(e.g., one transistor might have a different threshold voltage than its
neighbor because of the random number of dopant atoms implanted).

For devices, the most important variations are channel length L and
threshold voltage Vt . Channel length variations are caused by photo-
lithography proximity effects, deviations in the optics, and plasma etch
dependencies. Threshold voltages vary because of different doping con-
centrations and annealing effects, mobile charge in the gate oxide, and
discrete dopant variations caused by the small number of dopant atoms
in tiny transistors. Threshold voltages gradually change as transistors
wear out; such time-dependent variation will be examined in Section 7.3.

For interconnect, the most important variations are line width and
spacing, metal and dielectric thickness, and contact resistance. Line width and spacing, like
channel length, depend on photolithography and etching proximity effects. Thickness may
be influenced by polishing. Contact resistance depends on contact dimensions and the etch
and clean steps.

Process variations can be classified as follows:

� Lot-to-lot (L2L)

� Wafer-to-wafer (W2W)

� Die-to-die (D2D), inter-die, or within-wafer (WIW)

� Within-die (WID) or intra-die

Wafers are processed in batches called lots. A lot processed after a furnace has been shut
down and cleaned may behave slightly differently than the lot processed earlier. One wafer
may be exposed to an ion implanter for a slightly different amount of time than another,
causing W2W threshold voltage variation. A die near the edge of the wafer may etch
slightly differently than a die in the center, causing D2D channel length variations. For
example, Figure 7.4 plots the operating frequency of ring oscillators as a function of their
position on the wafer, showing a 20% variation involving both a systematic radial compo-
nent and a smaller random component. Unless calibrations are made on a per-lot or per-
wafer basis, L2L and W2W variations are often lumped into the D2D variations. D2D
variations ultimately make one chip faster or slower than another. They can be handled by

TABLE 7.1 Ambient temperature ranges

Standard Minimum Maximum

Commercial 0 °C 70 °C
Industrial –40 °C 85 °C
Military –55 °C 125 °C

FIGURE 7.3 Thermal map of Itanium 2
(© IEEE 2001.)

Chapter 7 Robustness244

providing enough margin to cover 2 or 3 of variation and by rejecting the small number
of chips that fall outside this bound, as discussed in the next section.

WID variations were once small compared to D2D variations and were largely
ignored by digital designers but have become quite important in nanometer processes.
Some WID variations are spatially correlated; these are called process tilt. For example, an
ion implanter might deliver a greater dose near the center of a wafer than near the periph-
ery, causing threshold voltages to tilt radially across the wafer. In summary, transistors on
the same die match better than transistors on different dice and adjacent transistors match
better than widely separated ones. WID variations are more challenging to manage
because some of the millions or billions of transistors on a chip are likely to stray far from
typical parameters. Section 7.5 considers the statistics of WID variation.

7.2.4 Design Corners
From the designer’s point of view, the collective effects of process and environmental vari-
ation can be lumped into their effect on transistors: typical (also called nominal), fast, or
slow. In CMOS, there are two types of transistors with somewhat independent character-
istics, so the speed of each can be characterized. Moreover, interconnect speed may vary
independently of devices. When these processing variations are combined with the envi-
ronmental variations, we define design or process corners. The term corner refers to an imag-
inary box that surrounds the guaranteed performance of the circuits, as shown in Figure
7.5. The box is not square because some characteristics such as oxide thickness track
between devices, making it impossible to find a slow nMOS transistor with thick oxide
and a fast pMOS transistor with thin oxide simultaneously.

FIGURE 7.4 Wafer map of the frequency distribution of a ring oscillator circuit
in 90-nm CMOS technology. From M. Pelgrom, “Nanometer CMOS: An Analog
Design Challenge!” IEEE Distinguished Lecture, Denver 2006. (Figure courtesy
of B. Ljevar (NXP). Reprinted with permission.)

7.2 Variability 245

Table 7.2 lists a number of interesting design corners. The corners are specified with
five letters describing the nMOS, pMOS, interconnect, power supply, and temperature,
respectively. The letters are F, T, and S, for fast, typical, and slow. The environmental cor-
ners for a 1.8 V commercial process are shown in Table 7.3, illustrating that circuits are
fastest at high voltage and low temperature. Circuits are most likely to fail at the corners of
the design space, so nonstandard circuits should be simulated at all corners to ensure they
operate correctly in all cases. Often, integrated circuits are designed to meet a timing spec-
ification for typical processing. These parts may be binned; faster parts are rated for higher
frequency and sold for more money, while slower parts are rated for lower frequency. In
any event, the parts must still work in the slowest SSSSS environment. Other integrated
circuits are designed to obtain high yield at a relatively low frequency; these parts are sim-
ulated for timing in the slow process corner. The fast corner FFFFF has maximum speed.
Other corners are used to check for races and ratio problems where the relative strengths
and speeds of different transistors or interconnect are important. The FFFFS corner is
important for noise because the edge rates are fast, causing more coupling; the threshold
voltages are low; and the leakage is high [Shepard99].

Often, the corners are abbreviated to fewer letters. For example, two letters generally
refer to nMOS and pMOS. Three refer to nMOS, pMOS, and overall environment. Four
refer to nMOS, pMOS, voltage, and temperature.

It is important to know the design corner when interpreting delay specifications. For
example, the datasheet shown in Figure 4.25 is specified at the 25 °C TTTT corner. The
SS corner is 27% slower. The cells are derated at 71% per volt and 0.13%/°C, for addi-
tional penalties of 13% each in the low voltage and high temperature corners. These fac-
tors are multiplicative, giving SSSS delay of 1.62 times nominal.

TABLE 7.2 Design corner checks

Corner Purpose

nMOS pMOS Wire VDD Temp
T T T S S Timing specifications (binned parts)
S S S S S Timing specifications (conservative)
F F F F F Race conditions, hold time constraints, pulse collapse, noise
S S ? F S Dynamic power
F F F F S Subthreshold leakage noise and power, overall noise analysis
S S F S S Races of gates against wires
F F S F F Races of wires against gates
S F T F F Pseudo-nMOS and ratioed circuits noise margins, memory read/write,

race of pMOS against nMOS
F S T F F Ratioed circuits, memory read/write, race of nMOS against pMOS

TABLE 7.3 Environmental corners

Corner Voltage Temperature

F 1.98 0 °C
T 1.8 70 °C
S 1.62 125 °C

nMOS

pM
O

S

FastSlow

S
ow

F
as

t

TT

FF

SS
FS

SF

FIGURE 7.5 Design corners

Chapter 7 Robustness246

[Ho01] and [Chinnery02] find the FO4 inverter delay can be estimated from the
effective channel length Leff (also called Lgate) as follows:

� Leff × (0.36 ps/nm) in TTTT corner

� Leff × (0.50 ps/nm) in TTSS corner

� Leff × (0.60 ps/nm) in SSSS corner

Note that the effective channel length is aggressively scaled faster than the drawn channel
length to improve performance, as shown in Table 3.2. Typically, Leff = 0.5–0.7 Ldrawn.
For example, Intel’s 180 nm process was originally manufactured with Leff = 140 nm and
eventually pushed to Leff = 100 nm. This model predicts an FO4 inverter delay of about
50–70 ps in the TTSS corner where design usually takes place. Low-power processes with
higher threshold voltages will have longer FO4 delays.

In addition to working at the standard process corners, chips must function in a very
high temperature, high voltage burn-in corner (e.g., 125 to 140 °C externally, correspond-
ing to an even higher internal temperature, and 1.3–1.7× nominal VDD [Vollertsen99])
during test. While it does not have to run at full speed, it must operate correctly so that all
nodes can toggle. The burn-in corner has very high leakage and can dictate the size of
keepers and weak feedback on domino gates and static latches.

Processes with multiple threshold voltages and/or multiple oxide thicknesses can see
each flavor of transistor independently varying as fast, typical, or slow. This can easily lead
to more corners than anyone would care to simulate and raises challenges about identify-
ing what corners must be checked for different types of circuits.

7.3 Reliability
Designing reliable CMOS chips involves understanding and addressing the potential fail-
ure modes [Segura04]. This section addresses reliability problems (hard errors) that cause
integrated circuits to fail permanently, including the following:

� Oxide wearout
� Interconnect wearout
� Overvoltage failure
� Latchup

This section also considers transient failures (soft errors) triggered by radiation that cause
the system to crash or lose data. Circuit pitfalls and common design errors are discussed in
Section 9.3.

7.3.1 Reliability Terminology
A failure is a deviation from compliance with the system specification for a given period of
time. Failures are caused by faults, which are defined as failures of subsystems. Faults have
many causes, ranging from design bugs to manufacturing defects to wearout to external
disturbances to intentional abuse of a product. Not all faults lead to errors; some are
masked. For example, a bug in the multiprocessor interface logic does not cause an error in
a single-processor system. A defective via may go unnoticed if it is in parallel with a good
one. Studying the underlying faults gives insight into predicting and improving the failure
rate of the overall system.

7.3 Reliability 247

A number of acronyms are commonly used in describing reliability [Tobias95].
MTBF is the mean time between failures: (number of devices × hours of operation) / num-
ber of failures. FIT is the failures in time, the number of failures that would occur every
thousand hours per million devices, or equivalently, 109 × (failure rate/hour). 1000 FIT is
one failure in 106 hours = 114 years. This is good for a single chip. However, if a system
contains 100 chips each rated at 1000 FIT and a customer purchases 10 systems, the fail-
ure rate is 100 × 1000 × 10 = 106 FIT, or one failure every 1000 hours (42 days). Reliabil-
ity targets of less than 100 FIT are desirable.

Most systems exhibit the bathtub curve shown in Figure 7.6. Soon after birth, systems
with weak or marginal components tend to fail. This period is called infant mortality. Reli-
able systems then enter their useful operating life, in which the failure rate is low. Finally, the
failure rate increases at the end of life as the system wears
out. It is important to age systems past infant mortality
before shipping the products. Aging is accelerated by
stressing the part through burn-in at higher than normal
voltage and temperature, as discussed in Section 7.2.4.

Engineers typically desire product lifetimes exceed-
ing 10 years, but it is clearly impossible to test a product
for 10 years before selling it. Fortunately, most wearout
mechanisms have been observed to display an exponen-
tial relationship with voltage or temperature. Thus,
systems are subjected to accelerated life testing during
burn-in conditions to simulate the aging process and
evaluate the time to wearout. The results are extrapo-
lated to normal operating conditions to judge the actual
useful operating life. For example, Figure 7.7 shows the
measured lifetime of gate oxides in an IBM 32 nm pro-
cess at elevated voltages [Arnaud08]. The extrapolated
results show a lifetime exceeding 10 years at 10% above
the nominal 0.9 V VDD.

Life testing is time-consuming and comes right at
the end of the project when pressures to get to market
are greatest. Part of any high-volume chip design will
necessarily include designing a reliability assessment
program that consists of burn-in boards deliberately
stressing a number of chips over an extended period.
Designers have tried to develop reliability simulators to
predict lifetime [Hu92, Hsu92], but physical testing
remains important. For high-volume parts, the source of
failures is tracked and common points of failure can be
redesigned and rolled into manufacturing.

7.3.2 Oxide Wearout
As gate oxides are subjected to stress, they gradually wear out, causing the threshold volt-
age to shift and the gate leakage to increase. Eventually, the circuit fails because transistors
become too slow, mismatches become too large, or leakage currents become too great.
Processes generally specify a maximum operating voltage to ensure oxide wearout effects

Time

F
ai

lu
re

 R
a

te

Infant
Mortality

Useful
Operating
Life

Wearout

FIGURE 7.6 Reliability bathtub curve

FIGURE 7.7 Accelerated life testing of gate oxides in IBM 32 nm
process (© IEEE 2008.)

Chapter 7 Robustness248

are limited during the lifetime of a chip. The primary mechanisms for oxide wearout
include the following:

� Hot carriers
� Negative bias temperature instability (NBTI)
� Time-dependent dielectric breakdown (TDDB)

7.3.2.1 Hot Carriers As transistors switch, high-energy (“hot”) carriers are occasionally
injected into the gate oxide and become trapped there. Electrons have higher mobility and
account for most of the hot carriers. The damaged oxide changes the I-V characteristics of
the device, reducing current in nMOS transistors and increasing current in pMOS transis-
tors. Damage is maximized when the substrate current Isub is large, which typically occurs
when nMOS transistors see a large Vds while ON. Therefore, the problem is worst for
inverters and NOR gates with fast rising inputs and heavily loaded outputs [Sakurai86],
and for high power supply voltages.

Hot carriers cause circuit wearout as nMOS transistors become too slow. They can
also cause failures of sense amplifiers and other matched circuits if matched components
degrade differently [Huh98]. Hot electron degradation can be analyzed with simulators
[Hu92, Hsu91, Quader94]. The wear is limited by setting maximum values on input rise
time and stage electrical effort [Leblebici96]. These maximum values depend on the pro-
cess and operating voltage.

7.3.2.2 Negative Bias Temperature Instability When an electric field is applied across a
gate oxide, dangling bonds called traps develop at the Si-SiO2 interface. The threshold
voltage increases as more traps form, reducing the drive current until the circuit fails
[Doyle91, Reddy02]. The process is most pronounced for pMOS transistors with a strong
negative bias (i.e., a gate voltage of 0 and source voltage of VDD) at elevated temperature. It
has become the most important oxide wearout mechanism for many nanometer processes.
When a field Eox = VDD/tox is applied for time t, the threshold voltage shift can be mod-
eled as [Paul07]:

(7.1)

The high stress during burn-in can lock in most of the threshold voltage shift
expected from NBTI; this is good because it allows testing with full NBTI degradation.
During design, a chip should be simulated under the worst-case NBTI shift expected over
its lifetime.

7.3.2.3 Time-Dependent Dielectric Breakdown As an electric field is applied across the
gate oxide, the gate current gradually increases. This phenomenon is called time-dependent
dielectric breakdown (TDDB) and the elevated gate current is called stress-induced leakage cur-
rent (SILC). The exact physical mechanisms are not fully understood, but TDDB likely
results from a combination of charge injection, bulk trap state generation, and trap-assisted
conduction [Hicks08]. After sufficient stress, it can result in catastrophic dielectric break-
down that short-circuits the gate.

The failure rate is exponentially dependent on the temperature and oxide thickness
[Monsieur01]; for a 10-year life at 125 °C, the field across the gate Eox = VDD/tox should
be kept below about 0.7 V/nm [Moazzami90]. Nanometer processes operate close to this
limit. The problem is greatest when voltage overshoots occur; this can be caused by noisy

V k tt

E
E= e

ox

0 0 25.

7.3 Reliability 249

power supplies or reflections at I/O pads. Reliability is improved by lowering the power
supply voltage, minimizing power supply noise, and using thicker oxides on the I/O pads.

7.3.3 Interconnect Wearout
High currents flowing through wires eventually can damage the wires. For wires carrying
unidirectional (DC) currents, electromigration is the main failure mode. For wires carry-
ing bidirectional (AC) currents, self-heating is the primary concern.

7.3.3.1 Electromigration High current densities lead to an “electron wind”
that causes metal atoms to migrate over time. Such electromigration causes
wearout of metal interconnect through the formation of voids [Hu95]. Figure
7.8 shows a scanning electron micrograph of electromigration failure of a via
between M2 and M3 layers [Christiansen06]. Remarkable videos taken under a
scanning electron microscope show void formation and migration and wire fail-
ure [Meier99]. The problem is especially severe for aluminum wires; it is com-
monly alleviated with an Al-Cu or Al-Si alloy and is much less important for
pure copper wires because of the different grain transport properties. The elec-
tromigration properties also depend on the grain structure of the metal film.

Electromigration depends on the current density J = I/wt. It is more
likely to occur for wires carrying a DC current where the electron wind blows
in a constant direction than for those with bidirectional currents [Liew90].
Electromigration current limits are usually expressed as a maximum Jdc. The
mean time to failure (MTTF) also is highly sensitive to operating tempera-
ture as given by Black’s Equation [Black69]:

(7.2)

Ea is the activation energy that can be experimentally determined by stress testing at high
temperatures and n is typically 2. The electromigration DC current limits vary with mate-
rials, processing, and desired MTTF and should be obtained from the fabrication vendor.
In the absence of better information, a maximum Jdc of 1–2 mA/ m2 is a conservative
limit for aluminum wires at 110 °C [Rzepka98]. Copper is less susceptible to electromi-
gration and may endure current densities of 10 mA/ m2 or better [Young00]. Current
density may be more limited in contact cuts.

Considering the dynamic switching power, we can estimate the maximum switching
capacitance that a wire can drive. The current is Idc = P/V = CVf. Thus, for a wire limited
to Idc–max, the switching capacitance should be less than

(7.3)

7.3.3.2 Self-Heating While bidirectional wires are less prone to electromigration, their
current density is still limited by self-heating. High currents dissipate power in the wire.
Because the surrounding oxide or low-k dielectric is a thermal insulator, the wire tempera-
ture can become significantly greater than the underlying substrate. Hot wires exhibit greater
resistance and delay. Electromigration is also highly sensitive to temperature, so self-heating
may cause temperature-induced electromigration problems in the bidirectional wires. Brief

MTTF
e

E
kT

dc
n

a

J

C
I

V f
dc

DD

= max

(a) (b)

FIGURE 7.8 Electromigration failure of
M2-M3 via (© IEEE 2006.)

Chapter 7 Robustness250

pulses of high peak currents may even melt the interconnect. Self-heating is
dependent on the root-mean-square (RMS) current density. This can be measured
with a circuit simulator or calculated as

(7.4)

A conservative rule to control reliability problems with self-heating is to
keep Jrms < 15 mA/ m2 for bidirectional aluminum wires on a silicon substrate
[Rzepka98]. The maximum capacitance of the wire can be estimated based on
the RMS current. If a signal has symmetric rising and falling edges, we only
need to consider half of a period. Figure 7.9(a) shows a signal with a 20–80% rise
time tr and an average period T = 1/ f. The switching current i(t) can be approx-
imated as a triangular pulse of duration �t = tr / (0.8–0.2), as shown in Figure
7.9(b). Then, the RMS current is

(7.5)

and, to avoid excessive self-heating, the wire and load capacitance should be less than

(7.6)

Example 7.1

A clock signal is routed on the top metal layer using a wire that is 1 m wide and has a
self-heating limit of 10 mA. The wire has a capacitance of 0.4 fF/ m and the load
capacitance is 85 fF. The clock switches at 3 GHz and has a 20 ps rise time. How far
can the wire run between repeaters without overheating?

SOLUTION: A clock has an activity factor of 1. According to EQ (7.6), the maximum
capacitance of the line is

(7.7)

Thus, the maximum wire length is (685 – 85 fF) / (0.4 fF/ m) = 1500 m.

I

I t dt

Trms

T

=

()2

0

I
T

i t dt

T
CV

t
t

t

rms

T

DD

= ()

=

1
0 5

2
0 5

2
2

2

0

0 5

.

. /

.

22

0

2

1 26

dt

CV
f

t

t

DD
r

/

.

C
I

V
f

t

rms

DD
r

= max

.1 26

C =

() ×
×

=10

1 26 1
1 3 10
20 10

685
2

9

12

A

V
Hz

s

fF

.

0 T/2
0

VDD

0.8 VDD

0.2 VDD

tr

T/20
0

i(t)

2CVDD/Δt

Δt = tr/0.6

(a)

(b)

FIGURE 7.9 Switching waveforms
for RMS current estimation

7.3 Reliability 251

In summary, electromigration from high DC current densities is primarily a
problem in power and ground lines. Self-heating limits the RMS current density in
bidirectional signal lines. However, do not overlook the significant unidirectional
currents that flow through the wires contacting nMOS and pMOS transistors. For
example, Figure 7.10 shows which lines in an inverter are limited by DC and RMS
currents. Both problems can be addressed by widening the lines or reducing the
transistor sizes (and hence the current).

7.3.4 Soft Errors
In the 1970s, as dynamic RAMs (DRAMs) replaced core memories, DRAM ven-
dors were puzzled to find DRAM bits occasionally flipping value spontaneously. At
first, the errors were attributed to “system noise,” “voltage marginality,” “sense
amplifiers,” or “pattern sensitivity,” but the errors were found to be random. When
the corrupted bit was rewritten with a new value, it was no more likely than any
other bit to experience another error. In a classic paper [May79], Intel identified the
source of these soft errors as alpha particle collisions that generate electron-hole
pairs in the silicon as the particles lose energy. The excess carriers can be collected
into the diffusion terminals of transistors. If the charge collected is comparable to
the charge on the node, the voltage can be disturbed.

Soft errors are random nonrecurring errors triggered by
radiation striking a chip. Alpha particles, emitted by the decay
of trace uranium and thorium impurities in packaging materi-
als, was once the dominant source of soft errors, but they have
been greatly reduced by using highly purified materials. Today,
high-energy (> 1 MeV) neutrons from cosmic radiation
account for most soft errors in many systems [Baumann01,
Baumann05]. When a neutron strikes a silicon atom, it can
induce fission, shattering the atom into charged fragments that
continue traveling through the substrate. These ions leave a trail
of electron-hole pairs behind as they travel through the lattice.
Figure 7.11 shows the effect of an ion striking a reverse-biased
p-n junction [Baumann05]. The ion leaves a cylindrical trail of
electrons and holes in its wake, with a radius of less than a
micron. Within tens of picoseconds, the electric field at the
junction collects the carriers into a funnel-shaped depletion region. Over the subsequent
nanoseconds, electrons diffuse into the depletion region. Depending on the type of ion, its
energy, its trajectory, and the geometry of the p-n junction, up to several hundred femto-
coulombs of charge may be collected onto the junction.

The spike of current is called a single-event transient (SET). If the collected charge
exceeds a critical amount, Qcrit, it may flip the state of the node, causing a fault called a
single-event upset (SEU). Failures caused by such faults are called soft errors. Qcrit depends
on the capacitance and voltage of the node, and on any feedback devices that may fight
against the disturbance. This is a serious challenge because both capacitance and voltage
have been decreasing as transistors shrink, reducing Qcrit. Fortunately, the amount of
charge collected on a smaller junction also decreases, but the net trend has been toward
higher soft error rates.

The holes generated by the particle strike flow to a nearby substrate contact where
they are collected. The current flowing through the resistive substrate raises the potential
of the substrate. This can turn on a parasitic bipolar transistor (see Section 7.3.6) between

VDD

GND

Jdc

Jdc

Jdc

Jdc

Jdc

Jdc

Jrms Jrms

FIGURE 7.10 Current density lim-
its in an inverter

FIGURE 7.11 Generation and collection of carriers after a
radiation strike (© IEEE 2005.)

Chapter 7 Robustness252

the source and drain of a nearby nMOS transistor, disturbing that transistor too
[Osada04]. Such multinode disturbances can be controlled by using plenty of substrate
and well contacts.

At sea level, SRAM generally experiences a soft error rate (SER) of 100–2000 FIT/Mb
[Hazucha00, Normand96]. The neutron flux from cosmic rays increases by two orders of
magnitude at aircraft flight altitudes [Ziegler96] and can cause up to 106 FIT/Mb at these
levels. Depending on the process and layout, roughly 1% of the soft errors affect multiple
nodes [Hazucha04].

Soft errors affect memories, registers, and combinational logic. Memories use error
detecting and correcting codes to tolerate soft errors, so these errors rarely turn into fail-
ures in a well-designed system. Such codes will be discussed further in Sections 11.7.2 and
12.8.2. Soft errors in registers are becoming much more common as their charge storage
diminishes. Radiation-hardening schemes for registers and memory are discussed in Sec-
tions 10.3.10 and 12.8.3.

In combinational logic, the collected charge causes a momentary glitch on the output
of a gate. This glitch can propagate through downstream logic until it reaches a register.
The fault does not necessarily cause a failure. The masking mechanisms include the following:

� Logical masking : the SEU may not trigger a sensitized path through the logic. For
example, if both inputs to a NAND gate are 0, a SEU on one input does not affect
the output.

� Temporal masking : The SEU may not reach a register at the time it is sampling.
� Electrical masking : The SEU may be attenuated if it is faster than the bandwidth of

the gate.

In older technologies, larger gates had more charge, so they were less likely to experi-
ence upsets. Even if they did see an upset, it was likely to be attenuated by electrical mask-
ing. However, soft errors in combinational logic are a growing problem at 65 nm and
below because the gates have less capacitance and higher speed [Mitra05, Rao07]. Section
7.6.2 discusses the use of redundancy to mitigate logic errors.

7.3.5 Overvoltage Failure
Tiny transistors can be easily damaged by relatively low voltages. Overvoltage may be trig-
gered by excessive power supply transients or by electrostatic discharge (ESD) from static
electricity entering the I/O pads, which can cause very large voltage and current transients
(see Section 13.6.2).

Overvoltage at the gate node accelerates the oxide wearout. In extreme cases, it can
cause breakdown and arcing across the thin dielectric, destroying the device. The DC oxide
breakdown voltage scales with oxide thickness and absolute temperature and can be mod-
eled as [Monsieur01]

(7.8)

with typical values of a = 1.5 V/nm, b = 533 V · K, and V0 close to 0. Breakdown occurs
around 3 V under worst case (hot) conditions in a 65 nm process.

Higher-than-normal voltages applied between source and drain lead to punchthrough
when the source/drain depletion regions touch [Tsividis99]. This can lead to abnormally
high current flow and ultimately self-destructive overheating.

V at
b
T

Vbd ox= + + 0

7.3 Reliability 253

Both problems lead to a maximum safe voltage that can be applied to transistors. Even
when catastrophic failure is avoided, high voltage accelerates the wearout mechanisms. Thus,
processes specify a Vmax for long-term reliable operation. For nanometer processes, this volt-
age is often much less than the I/O standard voltage, requiring a second type of transistor
with thicker oxides and longer channels to endure the higher I/O voltages.

7.3.6 Latchup
Early adoption of CMOS processes was slowed by a curious tendency of CMOS chips to
develop low-resistance paths between VDD and GND, causing catastrophic meltdown.
The phenomenon, called latchup, occurs when parasitic bipolar transistors formed by the
substrate, well, and diffusion turn ON. With process advances and proper layout proce-
dures, latchup problems can be easily avoided.

The cause of the latchup effect [Estreich82, Troutman86] can be understood by
examining the process cross-section of a CMOS inverter, as shown in Figure 7.12(a), over
which is laid an equivalent circuit. In addition to the expected nMOS and pMOS transis-
tors, the schematic depicts a circuit composed of an npn-transistor, a pnp-transistor, and
two resistors connected between the power and ground rails (Figure 7.12(b)). The npn-
transistor is formed between the grounded n-diffusion source of the nMOS transistor, the
p-type substrate, and the n-well. The resistors are due to the resistance through the sub-
strate or well to the nearest substrate and well taps. The cross-coupled transistors form a
bistable silicon-controlled rectifier (SCR). Ordinarily, both parasitic bipolar transistors are
OFF. Latchup can be triggered when transient currents flow through the substrate during
normal chip power-up or when external voltages outside the normal operating range are
applied. If substantial current flows in the substrate, Vsub will rise, turning ON the npn-
transistor. This pulls current through the well resistor, bringing down Vwell and turning
ON the pnp-transistor. The pnp-transistor current in turn raises Vsub, initiating a positive
feedback loop with a large current flowing between VDD and GND that persists until the
power supply is turned off or the power wires melt.

Fortunately, latchup prevention is easily accomplished by minimizing Rsub and Rwell.
Some processes use a thin epitaxial layer of lightly doped silicon on top of a heavily doped

FIGURE 7.12 Origin and model of CMOS latchup

Rsub

Rwell

Vsub

Vwell

n+n+

p substrate

p+

n well

A

YGND
VDD

p+

Substrate Tap Well Tap

n+ p+

Rwell Vwell

Vsub Rsub

(a) (b)

Chapter 7 Robustness254

substrate that offers a low substrate resistance. Most importantly, the
designer should place substrate and well taps close to each transistor.
A conservative guideline is to place a tap adjacent to every source
connected to VDD or GND. If this is not practical, you can obtain
more detailed information from the process vendor (they will nor-
mally specify a maximum distance for diffusion to substrate/well tap)
or try the following guidelines:

� Every well should have at least one tap.
� All substrate and well taps should connect directly to the

appropriate supply in metal.
� A tap should be placed for every 5–10 transistors, or more

often in sparse areas.
� nMOS transistors should be clustered together near GND

and pMOS transistors should be clustered together near VDD,
avoiding convoluted structures that intertwine nMOS and
pMOS transistors in checkerboard patterns.

I/O pads are especially susceptible to latchup because external
voltages can ring below GND or above VDD, forward biasing the
junction between the drain and substrate or well and injecting cur-
rent into the substrate. In such cases, guard rings should be used to
collect the current, as shown in Figure 7.13. Guard rings are simply
substrate or well taps tied to the proper supply that completely sur-
round the transistor of concern. For example, the n+ diffusion in
Figure 7.13(b) can inject electrons into the substrate if it falls a diode
drop below 0 volts. The p+ guard ring tied to ground provides a low-
resistance path to collect these electrons before they interfere with

the operation of other circuits outside the guard ring. All diffusion structures in any circuit
connected to the external world must be guard ringed; i.e., n+ diffusion by p+ connected to
GND or p+ diffusion by n+ connected to VDD. For the ultra-paranoid, double guard rings
may be employed; i.e., n+ ringed by p+ to GND, then n+ to VDD or p+ ringed by n+ to
VDD, then p+ to GND.

SOI processes avoid latchup entirely because they have no parasitic bipolar structures.
Also, processes with VDD < 1.4–2 V are immune to latchup because the two parasitic tran-
sistors will never have a large enough voltage to sustain positive feedback [Johnston96].
Therefore, latchup has receded to a minor concern in nanometer processes.

7.4 Scaling
The only constant in VLSI design is constant change. Figure 1.6 showed the unrelenting
march of technology, in which feature size has reduced by 30% every two to three years.
As transistors become smaller, they switch faster, dissipate less power, and are cheaper to
manufacture! Since 1995, as the technical challenges have become greater, the pace of
innovation has actually accelerated because of ferocious competition across the industry.
Such scaling is unprecedented in the history of technology. However, scaling also exacer-

p+

n well

p substrate

n+

GND

p+ Guard Ring

n+ Guard Ring

VDD

(b)

(a)

FIGURE 7.13 Guard rings

7.4 Scaling 255

bates reliability issues, increases complexity, and introduces new problems. Designers need
to be able to predict the effect of this feature size scaling on chip performance to plan
future products, ensure existing products will scale gracefully to future processes for cost
reduction, and anticipate looming design challenges. This section examines how transis-
tors and interconnect scale, and the implications of scaling for design. The Semiconductor
Industry Association prepares and maintains an International Technology Roadmap for
Semiconductors predicting future scaling. Section 7.8 gives a case study of how scaling has
influenced Intel microprocessors over more than three decades.

7.4.1 Transistor Scaling
Dennard’s Scaling Law [Dennard74] predicts that the basic operational characteristics of a
MOS transistor can be preserved and the performance improved if the critical parameters
of a device are scaled by a dimensionless factor S. These parameters include the following:

� All dimensions (in the x, y, and z directions)
� Device voltages
� Doping concentration densities

This approach is also called constant field scaling because the electric fields remain the same
as both voltage and distance shrink. In contrast, constant voltage scaling
shrinks the devices but not the power supply. Another approach is lateral
scaling, in which only the gate length is scaled. This is commonly called a
gate shrink because it can be done easily to an existing mask database for a
design.

The effects of these types of scaling are illustrated in Table 7.4 (next
page). The industry generally scales process generations with ; this
is also called a 30% shrink. It reduces the cost (area) of a transistor by a fac-
tor of two. A 5% gate shrink (S = 1.05) is commonly applied as a process
becomes mature to boost the speed of components in that process.

Figure 7.14 shows how voltage has scaled with feature size. Histori-
cally, feature sizes were shrunk from 6 m to 1 m while maintaining a 5 V
supply voltage. This constant voltage scaling offered quadratic delay
improvement as well as cost reduction. It also maintained continuity in I/O
voltage standards. Constant voltage scaling increased the electric fields in
devices. By the 1 m generation, velocity saturation was severe enough that decreasing
feature size no longer improved device current. Device breakdown from the high field was
another risk. And power consumption became unacceptable. Therefore, Dennard scaling
has been the rule since the half-micron node. A 30% shrink with Dennard scaling
improves clock frequency by 40% and cuts power consumption per gate by a factor of 2.
Maintaining a constant field has the further benefit that many nonlinear factors and
wearout mechanisms are essentially unaffected. Unfortunately, voltage scaling has dramat-
ically slowed since the 90 nm generation because of leakage, and this may ultimately limit
CMOS scaling.

The FO4 inverter delay will scale as 1/S assuming ideal constant-field scaling. As we
saw in Section 7.2.4, this delay is commonly 0.5 ps/nm of the effective channel length for
typical processing and worst-case environment.

S = 2

Feature Size (m)

0.010.1110

VDD

5

3.3
2.5
1.8
1.5
1.2
1.0

FIGURE 7.14
Voltage scaling with feature size

Chapter 7 Robustness256

Example 7.2

Nanometer processes have gate capacitance of roughly 1 fF/ m. If the FO4 inverter
delay of a process with features size f (in nm) is 0.5 ps × f, estimate the ON resistance of
a unit (i.e., 4 wide) nMOS transistor.

SOLUTION: An FO4 inverter has a delay of 5 = 15RC. Therefore,

(7.9)

A unit transistor has width W = 2f and thus capacitance of C = 2f fF/ m. Solving for R,

(7.10)

TABLE 7.4 Influence of scaling on MOS device characteristics

Parameter Sensitivity Dennard
Scaling

Constant
Voltage

Lateral
Scaling

Scaling Parameters

Length: L 1/S 1/S 1/S
Width: W 1/S 1/S 1
Gate oxide thickness: tox 1/S 1/S 1
Supply voltage: VDD 1/S 1 1
Threshold voltage: Vtn, Vtp 1/S 1 1
Substrate doping: NA S S 1

Device Characteristics

S S S

Current: Ids 1/S S S

Resistance: R 1 1/S 1/S

Gate capacitance: C 1/S 1/S 1/S

Gate delay: RC 1/S 1/S2 1/S2

Clock frequency: f 1/ S S2 S2

Switching energy (per gate): E CV 2
DD 1/S3 1/S 1/S

Switching power dissipation (per gate): P Ef 1/S2 S S
Area (per gate): A 1/S2 1/S2 1
Switching power density P/A 1 S3 S
Switching current density Ids/A S S3 S

W
L t

1

ox

V VDD t()2

V
I
DD

ds

WL
tox

RC
f f

= =
0 5
15 30
. ps

nm

R
f

f
= =

30
1

2
16 6

ps

nm

m

fF
k.

7.4 Scaling 257

Note that this is independent of feature size. The resistance of a unit transistor is
roughly independent of feature size, while the gate capacitance decreases with feature
size. Alternatively, the capacitance per micron is roughly independent of feature size
while the resistance · micron decreases with feature size.

7.4.2 Interconnect Scaling
Wires also tend to be scaled equally in width and thickness to maintain an aspect ratio
close to 2.1 Table 7.5 shows the resistance, capacitance, and delay per unit length. Wires

TABLE 7.5 Influence of scaling on interconnect characteristics

Parameter Sensitivity Scale Factor
Scaling Parameters

Width: w 1/S
Spacing: s 1/S
Thickness: t 1/S
Interlayer oxide height: h 1/S
Die size Dc

Characteristics per Unit Length

Wire resistance per unit length: Rw S2

Fringing capacitance per unit length: Cwf 1

Parallel plate capacitance per unit length: Cwp
1

Total wire capacitance per unit length: Cw Cwf + Cwp 1
Unrepeated RC constant per unit length: twu RwCw S2

Repeated wire RC delay per unit length: twr
(assuming constant field scaling of gates)
Crosstalk noise 1

Energy per bit per unit length: Ew CwVDD
2 1/S2

Local/Semiglobal Interconnect Characteristics

Length: l 1/S
Unrepeated wire RC delay l 2twu 1
Repeated wire delay ltwr

Energy per bit l Ew 1/S3

Global Interconnect Characteristics

Length: l Dc
Unrepeated wire RC delay l 2twu S2Dc

2

Repeated wire delay ltwr

Energy per bit l Ew Dc /S
2

1Historically, wires had a lower aspect ratio and could be scaled in width but not thickness. This helped
control RC delay. However, coupling capacitance becomes worse at higher aspect ratios and thus crosstalk
limits wires to an aspect ratio of 2–3 before the noise is hard to manage.

1
wt

t
s

w
h

RCR Cw w S

w
h

1 / S

D Sc

Chapter 7 Robustness258

can be classified as local, semiglobal, and global. Local wires run within functional units
and use the bottom layers of metal. Semiglobal (or scaled) wires run across larger blocks or
cores, typically using middle layers of metal. Both local and semiglobal wires scale with
feature size. Global wires run across the entire chip using upper levels of metal. For exam-
ple, global wires might connect cores to a shared cache. Global wires do not scale with fea-
ture size; indeed, they may get longer (by a factor of Dc , on the order of 1.1) because die
size has been gradually increasing.

Most local wires are short enough that their resistance does not matter. Like gates,
their capacitance per unit length is remaining constant, so their delay is improving just like
gates. Semiglobal wires long enough to require repeaters are speeding up, but not as fast as
gates. This is a relatively minor problem. Global wires, even with optimal repeaters, are
getting slower as technology scales. The time to cross a chip in a nanometer process can be
multiple cycles, and this delay must be accounted for in the microarchitecture.

Observe that when wire thickness is scaled, the capacitance per unit length remains
constant. Hence, a reasonable initial estimate of the capacitance of a minimum-pitch wire
is about 0.2 fF/ m, independent of the process. In other words, wire capacitance is
roughly 1/5 of gate capacitance per unit length.

7.4.3 International Technology Roadmap for Semiconductors
The incredible pace of scaling requires cooperation among many companies and research-
ers both to develop compatible process steps and to anticipate and address future chal-
lenges before they hold up production. The Semiconductor Industry Association (SIA)
develops and updates the International Technology Roadmap for Semiconductors (ITRS)
[SIA07] to forge a consensus so that development efforts are not wasted on incompatible
technologies and to predict future needs and direct research efforts. Such an effort to pre-
dict the future is inevitably prone to error, and the industry has scaled feature sizes and
clock frequencies more rapidly than the roadmap predicted in the late 1990s. Neverthe-
less, the roadmap offers a more coherent vision than one could obtain by simply interpo-
lating straight lines through historical scaling data.

The ITRS forecasts a major new technology generation, also called technology node,
approximately every three years. Table 7.6 summarizes some of the predictions, particu-
larly for high-performance microprocessors. However, serious challenges lie ahead, and
major breakthroughs will be necessary in many areas to maintain the scaling on the road-
map.

TABLE 7.6 Predictions from the 2007 ITRS

Year 2009 2012 2015 2018 2021
Feature size (nm) 34 24 17 12 8.4

Lgate (nm) 20 14 10 7 5
VDD (V) 1.0 0.9 0.8 0.7 0.65
Billions of transistors/die 1.5 3.1 6.2 12.4 24.7
Wiring levels 12 12 13 14 15
Maximum power (W) 198 198 198 198 198
DRAM capacity (Gb) 2 4 8 16 32
Flash capacity (Gb) 16 32 64 128 256

7.4 Scaling 259

7.4.4 Impacts on Design
One of the limitations of first-order scaling is that it gives the wrong impression of being
able to scale proportionally to zero dimensions and zero voltage. In reality, a number of
factors change significantly with scaling. This section attempts to peer into the crystal ball
and predict some of the impacts on design for the future. These predictions are notoriously
risky because chip designers have had an astonishing history of inventing ingenious solu-
tions to seemingly insurmountable barriers.

7.4.4.1 Improved Performance and Cost The most positive impact of scaling is that per-
formance and cost are steadily improving. System architects need to understand the scal-
ing of CMOS technologies and predict the capabilities of the process several years into the
future, when a chip will be completed. Because transistors are becoming cheaper each year,
architects particularly need creative ideas of how to exploit growing numbers of transistors
to deliver more or better functions. When transistors were first invented, the best predic-
tions of the day suggested that they might eventually approach a fifty-cent manufacturing
cost. Figure 7.15 plots the number of transistors and average price per transistor shipped
by the semiconductor industry over the past three decades [Moore03]. In 2008, you could
buy more than 100,000 transistors for a penny, and the price of a transistor is expected to
reach a microcent by 2015 [SIA07].

7.4.4.2 Interconnect Scaled transistors are steadily improving in delay, but scaled global
wires are getting worse. Figure 7.16, taken from the 1997 Semiconductor Industry Associ-
ation Roadmap [SIA97], forecast the sum of gate and wire bottoming out at the 250 or
180 nm generation and getting worse thereafter. The wire problem motivated a number of
papers predicting the demise of conventional wires. However, the plot is misleading in two
ways. First, the “gate” delay is shown for a single unloaded transistor (delay = RC) rather
than a realistically loaded gate (e.g., an FO4 inverter delay = 15RC). Second, the wire
delays shown are for fixed lengths, but as technology scales, most local wires connecting
gates within a unit also become shorter.

In practice, for short wires, such as those inside a logic gate, the wire RC delay is neg-
ligible and will remain so for the foreseeable future. However, the long wires present a
considerable challenge. It is no longer possible to send a signal from one side of a large,

FIGURE 7.15 Transistor shipments and average price (© IEEE 2003.)

Chapter 7 Robustness260

high-performance chip to another in a single cycle. Also, the “reachable radius” that a
signal can travel in a cycle is steadily getting smaller, as shown in Figure 7.17. This
requires that microarchitects understand the floorplan and budget multiple pipeline
stages for data to travel long distances across the die.

Repeaters help somewhat, but even so, interconnect does not keep up. Moreover,
the “repeater farms” must be allocated space in the floorplan. As scaled gates become
faster, the delay of a repeater goes down and hence, you should expect it will be better
to use more repeaters. This means a greater number of repeater farms are required.

One technique to alleviate the interconnect problem is to use more layers of inter-
connect. Table 7.7 shows the number of layers of interconnect increasing with each
generation in TSMC processes. The lower layers of interconnect are classically scaled to
provide high-density short connections. The higher layers are scaled less aggressively, or
possibly even reverse-scaled to be thicker and wider to provide low-resistance, high-
speed interconnect, good clock distribution networks, and a stiff power grid. Copper
and low-k dielectrics were also introduced to reduce resistance and capacitance.

Blocks of 50–100 Kgates (1 Kgate = 1000 3-input NAND gates or 6000 transis-
tors) will continue to have reasonably short internal wires and acceptably low wire RC
delay [Sylvester98]. Therefore, large systems can be partitioned into blocks of roughly
this size with repeaters inserted as necessary for communication between blocks.

TABLE 7.7 Scaling of metal layers in TSMC processes

Process (nm) Metal Layers

500 3 (Al)
350 4 (Al)
250 5 (Al)
180 6 (Al, low-k)
150 7 (Cu, low-k)
130 8 (Cu, low-k)
90 9 (Cu, low-k)
65 10 (Cu, low-k)
45 10 (Cu, low-k)

FIGURE 7.16 Gate and wire delay scaling (Reprinted from [SIA97] with permission
of the Semiconductor Industry Association.)

Chip Size

Reachable Radius

180 nm

90 nm

FIGURE 7.17
Reachable radius scaling

7.4 Scaling 261

7.4.4.3 Power In classical constant field scaling, dynamic power density remains constant
and overall chip power increases only slowly with die size. In practice, microprocessor
power density skyrocketed in the 1990s because extensive pipelining increased clock fre-
quencies much faster than classical scaling would predict and because VDD is somewhat
higher than constant field scaling would demand. High-performance microprocessors
bumped against the limit of about 150 W that a low-cost fan and heat sink can dissipate.
This trend has necessarily ended, and now designers aim for the maximum performance
under a power envelope rather than for the maximum clock rate.

Static power is a more serious limitation. Subthreshold leakage power increased expo-
nentially as threshold voltages decreased, and has abruptly changed from being negligible
to being a substantial fraction of the total. Section 5.4.2 demonstrated that static power
should account for approximately one-third of total power to minimize the energy-delay
product. Higher leakage has required the adoption of power gating techniques to control
power during sleep mode, especially for battery-powered systems. To limit leakage to –100
nA/ m, Vt has remained fairly constant near 300 mV. The VDD /Vt ratio has dropped from
about 5 in older processes toward 3, and EQ (5.27) showed that it may go as low as 2 for
best EDP. As the ratio decreased, circuits with threshold drops have ceased to be viable.
Performance suffers as the gate overdrive decreases, so VDD scaling has slowed below the
90 nm node. This increases the electric fields, exacerbating velocity saturation and reliabil-
ity problems. It also raises dynamic power.

 Gate leakage current is also important for oxides of less than 15–20 Å, and essentially
precludes scaling oxides below 10 Å. If oxides thickness does not scale with the other
dimensions, the ratio of ON to OFF current degrades. High-k metal gates solve the prob-
lem by offering a lower effective thickness at a higher physical thickness.

Even if power remains constant, lower supply voltage leads to higher current density.
This in turn causes higher IR drops and di/dt noise in the supply network (see Sections
9.3.5 and 13.3). These factors lead to more pins and metal resources on a chip being
required for the power distribution networks.

All considered, scaling is being squeezed from many directions by power limitations.
Some manufacturers are finding that conventional scaling can offer performance or power
benefits, but not both [Muller08]. Intel is aggressively introducing new materials such as
high-k metal gates and strained silicon to continue to see both performance and power
benefits from scaling at the 45 nm node. Even so, the frenetic pace of Moore’s Law may
begin slowing at last.

7.4.4.4 Variability As transistors shrink, the spread in parameters such as channel length
and threshold voltage increases. Variability has moved from being an analog nuisance to
becoming a key factor in mainstream digital circuits. Designers are forced to employ wider
guard bands to ensure that an acceptable fraction of chips meet specifications. Later sec-
tions of this chapter examine variability and variation-tolerant design techniques in more
detail.

7.4.4.5 Productivity The number of transistors that fit on a chip is increasing faster than
designer productivity (gates/week). This leads to design teams of increasing size, difficulty
recruiting enough experienced engineers when the economy is good, and a trend to out-
source to locations such as India where more engineering graduates are available. (Banga-
lore was once considered a low-cost labor market as well, but salaries have been increasing
exponentially because of demand and may approach global parity within the decade.) It
has driven a search for design methodologies that maximize productivity, even at the
expense of performance and area. Now most chips are designed using synthesis and place

Chapter 7 Robustness262

& route; the number of situations where custom circuit design is affordable is diminishing.
In other words, creativity is shifting from the circuit to the systems level for many designs.
On the other hand, performance is still king in the microprocessor world. Design teams in
that field are approaching the size of automotive and aerospace teams because the devel-
opment cost is justified by the size of the market. This drives a need for engineering man-
agers who are skilled in leading such large organizations.

The number of 50–100 Kgate blocks is growing, even in relatively low-end systems.
This demands greater attention to floorplanning and placement of the blocks.

One of the key tools to solve the productivity gap is design reuse. Intellectual property
(IP) blocks can be purchased and used as black boxes within a system-on-chip (SOC) in
much the same way chips are purchased for a board-level design. Early problems with val-
idation of IP blocks have been partially overcome, but the market for IP still lacks trans-
parency.

7.4.4.6 Physical Limits How far will CMOS processes scale? A minimum-sized transis-
tor in a 32 nm process has an effective channel length of less than 100 Si atoms. The gate
oxide is only 4 atoms thick. The channel contains approximately 50 dopant atoms. It is
clear that scaling cannot continue indefinitely as dimensions reach the atomic scale.
Numerous papers have been written forecasting the end of silicon scaling [Svensson03].
For example, in 1972, the limit was placed at the 0.25 m generation because of tunneling
and fluctuations in dopant distributions [Hoeneisen72, Mead80]; at this generation, chips
were predicted to operate at 10–30 MHz! In 1999, IBM predicted that scaling would
nearly grind to a halt beyond the 100 nm generation in 2004 [Davari99].

In the authors’ experience, seemingly insurmountable barriers have seemed to loom
about a decade away. Reasons given for these barriers have included the following:

� Subthreshold leakage at low VDD and Vt

� Tunneling current through thin oxides
� Poor I-V characteristics due to DIBL and other short channel effects
� Dynamic power dissipation
� Lithography limitations
� Exponentially increasing costs of fabrication facilities and mask sets
� Electromigration
� Interconnect delay
� Variability

Dennard scaling is beginning to groan under the weight of its own success. At the 32
nm node and beyond, the performance and power benefits of geometrical scaling are start-
ing to diminish as the engineering costs continue to escalate. Nevertheless, scaling still
provides a competitive advantage in a cutthroat industry. Improved structures such as cop-
per wires, low-k dielectrics, strained silicon, high-k metal gates, and 3D integration pro-
vide benefits independent of reduced feature size. Novel structures are under intensive
research. A large number of extremely talented people are continuously pushing the limits
and hundreds of billions of dollars are at stake, so we are reluctant to bet against the future
of scaling.

7.5 Statistical Analysis of Variability 263

7.5 Statistical Analysis of Variability
Variability was introduced in Section 7.2. Die-to-die variability is relatively straightfor-
ward to handle with process corners defining the range of acceptable variations (e.g., 3);
designing to ensure that all chips within the corners meet speed, power, and functionality
requirements; and rejecting the few chips that fall outside the corners. Within-die vari-
ability is more complicated because a chip has millions or billions of transistors. Even if
the die itself is in the TT corner, some transistors are likely to stray at least 5 from the
mean. To achieve acceptable yield, most chips with a few such extreme variations must still
be acceptable. Static CMOS gates are so robust that they generally function correctly even
when parameters vary enormously. However, their delay and leakage will change, which
affects the delay and leakage of the entire chip. Special circuits such as memories, analog
circuits, and trickier circuit families may fail entirely under extreme variation.

This section revisits within-die variability from a statistical point of view. It begins
with a review of the properties of random variables that are essential for understanding on-
chip variability. Then, it examines the sources of variability in more detail. Finally, it con-
siders the impact of variation on circuit delay, energy, and functionality.

7.5.1 Properties of Random Variables
The probability distribution function (PDF) f (x) specifies the probability that the value of a
continuous random variable X falls in a particular interval:

(7.11)

The cumulative distribution function (CDF) F(x) specifies the probability that X is less than
some value x:

(7.12)

Thus, the PDF is the slope of the CDF at any given point.

(7.13)

The mean or expected value, written as X or E[X], is the average value of X.

(7.14)

The standard deviation (X) measures the dispersion; i.e., how far X is expected to vary
from its mean.

(7.15)

It is often more convenient to deal with the variance, 2(X), to avoid the square root.

P a X b f x dx
a

b

< = ()

F x P X x f u du
x

() ()= <() =

f x
d
dx

F x() ()=

X E X x f x dx= = ()

() ()X E x X x X f x dx= () = ()2 2

Chapter 7 Robustness264

When studying variability in circuits, we are usually interested in the variation from
the nominal (mean) value. Thus, a random variable X can be written as X = X + Xv, where
X is the mean and Xv is a random variable with zero mean describing the variation. Thus,
we will focus on such zero-mean random variables.

7.5.1.1 Uniform Random Variables Figure 7.1(a) shows a uniform random variable with
zero mean. A uniform random variable distributed between –a and a has the following
PDF, CDF, and variance:

(7.16)

7.5.1.2 Normal Random Variables Figure 7.1(b) shows a normal random
variable. It is convenient to shift the variable to have zero mean, then scale
it to have a standard deviation = 1. The result is called a standard normal
distribution and has the following PDF, CDF, and variance:

(7.17)

where erf(x) is the error function.2 For example, a threshold voltage with a
mean of 0.3 V and a standard deviation of 0.025 V can be expressed as Vt =
0.3 + 0.025 X, where X is a standard normal random variable.

A component may fail if a parameter varies too far. The CDF describes
the probability that the parameter is less than an upper bound. It is shown
in Figure 7.18 and handy values are given in Table 7.8. For example, a chip
may be rejected if its delay is more than 3 above nominal, and this event
has a probability of 0.135%.

7.5.1.3 Sums of Random Variables Chip designers are frequently interested in quantities
such as path delay that are the sum of independent random variables. The mean is the sum
of the means. If the distributions are normal, the sum is another normal distribution with

2Microsoft Excel and other spreadsheets define erf, which is more convenient than looking it up in a math-
ematical handbook. In some versions of Excel, you must first select Add-Ins from the Tools menu and check
Analysis ToolPak to use the function.

f x a
a x a

F x

x a
x a

a
a

()

()

=

=

<

1
2

0

0

2

otherwise

x a

x a

X
a

>

=

1

3
2

2

()

f x

F x
x

X

x()

()

()

=

= +

1

2

1
2

1
2

2

1
2

2

e

erf

== 1

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1.0

−2 0 2 4 6

1

x

F(x)

x

(a)

(b)

10−10

10−8

10−6

10−4

10−2

1 − F(x)

FIGURE 7.18 Cumulative distribution function
for a standard normal random variable

7.5 Statistical Analysis of Variability 265

a variance equal to the sum of the variances:

(7.18)

Even if the distributions are not normal, the Central Limit Theorem states that EQ (7.18)
still holds as the number of variables gets large. Therefore, it is often a reasonable approx-
imation to replace uniformly distributed variables with normal variables that have the
same variance.

7.5.1.4 Maximum of Random Variables The cycle time is set by the
longest of many possible critical paths that have nearly equal nominal
delays. Let M be the maximum of N random variables with indepen-
dent standard normal distributions. M is not normally distributed, but
its expected value and standard deviation can be found numerically as
a function of N, as given in Table 7.9. As N increases, the expected
maximum increases (roughly logarithmically for big N) and its stan-
dard deviation decreases. Figure 7.19 shows how the distribution of
longest paths change with the number of nearly critical paths. As the
number of paths increase, they form a tight wall with an expected
worst-case delay that can be significantly longer than nominal
[Bowman02]. [Clark61] extends this tabular approach to handle ran-
dom variables with correlations and unequal standard deviations.

TABLE 7.8 CDF of standard normal random variables

x F(x) 1 – F(x)

1 0.8413 1.59 × 10–1

2 0.9772 2.28 × 10–2

3 0.998650 1.35 × 10–3

4 0.9999683 3.17 × 10–5

5 0.999999713 2.87 × 10–7

6 0.999999999013 9.87 × 10–10

TABLE 7.9 Behavior of maximum of normal variables

N E[M] s(M)

2 0.56 0.82
10 1.54 0.59
100 2.50 0.43
1000 3.24 0.35

10,000 3.85 0.30
100,000 4.40 0.28

2 2= i
i

300 350 400 450 500 550

Longest Path Delay (ps)

P
ro

ba
b

ty

N = 1

N = 10

N = 100

N = 1000

FIGURE 7.19 Delay distributions of typical
and longest paths

Chapter 7 Robustness266

Example 7.3

A large chip has 100 paths that are all nearly critical. Each path has a nominal delay of
400 ps and a standard deviation of 20 ps. What is the expected delay of the critical
path, and what is the standard deviation in this delay?

SOLUTION: According to Table 7.9, the maximum of 100 standard normal random vari-
ables has an expected value of 2.50 and a standard deviation of 0.43. Thus, the expected
critical path delay is 400 + 2.50 × 20 = 450 ps, and the standard deviation is only 0.43 ×
20 = 9 ps.

7.5.1.5 Exponential of Normal Random Variables According to EQ (2.42), subthreshold
leakage is exponentially related to the threshold voltage. If Y is a normally distributed ran-
dom variable with mean and variance 2, then X = eY has a log-normal distribution with
the following properties:

(7.19)

Figure 7.20 shows the log-normal PDF and CDF for = 0, 2 = 1. The mean is
x = e0.5 = 1.65 because of the long tail.

7.5.1.6 Monte Carlo Simulation For many problems of realistic concern, closed
form PDFs do not exist. Monte Carlo simulations are used to evaluate the impact of
variations. Such a simulation involves generating N scenarios. In each scenario, each
of the variables is given a random value based on its distribution, then the simula-
tion is performed and the characteristics of interest are measured. The collected
results of all the scenarios describe the effect of variation on the system. For exam-
ple, the delay distribution shown in Figure 7.19 can be obtained from the histogram
of delays for a large number of simulations of a large number of paths.

7.5.2 Variation Sources
Section 7.2 introduced the major process and environmental variation sources considered
when defining design corners. On closer inspection, we can add variations from circuit
operation and CAD limitations. Circuit variations include data-dependent crosstalk,
simultaneous input switching, and wearout. CAD limitations include imperfect models
for SPICE and timing analysis, and approximations made during parasitic extraction.

Variations can be characterized as systematic, random, drift, and jitter. Systematic
variations have a quantitative relationship with a source. For example, an ion implanter
may systematically deliver a different dosage to different regions of a wafer. Similarly,

f x
x

F x
x

x

()

()
ln()

ln()

=

= +

()
1

2

1
2

2

22

1
2

e

erf

=

= ()
+

+

X e

Variance e e

2

2 2

2

21

0 1 2 3 4 5
0

0.5

1

x

PDF

CDF

FIGURE 7.20 PDF of standard
log-normal variable

7.5 Statistical Analysis of Variability 267

polysilicon gates may systematically be etched narrower in regions of high polysilicon den-
sity than low density. Systematic variability can be modeled and nulled out at design time;
for example, in principle, you could examine a layout database and calculate the etching
variations as a function of nearby layout, then simulate a circuit with suitably adjusted gate
lengths. Random variations include those that are truly random (such as the number of
dopant atoms implanted in a transistor), those whose sources are not fully understood, and
those that are too costly to model. Etching variations are usually treated as random
because extraction is not worth the effort. Random variations do not change with time, so
they can be nulled out by a single calibration step after manufacturing. Drift, notably
aging and temperature variation, change slowly with time as compared to the operating
frequency of the system. Drift can again be nulled by compensation circuits, but such cir-
cuits must recalibrate faster than the drift occurs. Jitter, often from voltage variations or
crosstalk, is the most difficult cause of mismatch. It occurs at frequencies comparable to or
faster than the system clock and therefore may not be eliminated through feedback. Sys-
tematic and random variations are considered static, while drift and jitter are dynamic.

The yield is the fraction of manufactured chips that work according to specification.
Some chips fail because of gross problems such as open or short circuits caused by contam-
inants during manufacturing. This is called the functional yield. Other operational chips
are rejected because they are too slow or consume too much power or have insufficient
noise margin. This is called the parametric yield. Increasing variability tends to reduce
parametric yield, but designers are introducing adaptive techniques to compensate.

According to Pelgrom’s model, the standard deviation of most random WID variability
sources is inversely proportional to the square root of the area (WL) of the transistor
[Pelgrom89]. This makes sense intuitively because variations tend to average out over a
larger area, and the model is well-supported experimentally.

A good design manual for a nanometer fabrication process will specify the major vari-
ation sources and their distributions.

7.5.2.1 Channel Length Channel length varies within-die because of systematic across-
chip linewidth variation (ACLV) and random line edge roughness. ACLV is caused by
lithography limitations and by pattern-dependent etch rates.

Figure 7.21 shows the desired layout and actual printed circuit for a NAND gate in a
nanometer process. Subwavelength lithography cannot perfectly reproduce the intended
polysilicon shapes. The polysilicon tends to be wider near contacts and narrower near its
end, causing transistor lengths to deviate from their intended value. In severe cases, the
variation can cause shorts between neighboring polysilicon lines, as seen in the center of
the gate. Diffusion rounding also changes the transistor widths. Resolution enhancement
techniques partially compensate, but some error remains.

The etch rate decreases slightly with the amount of polysilicon that must be etched.
Nested polysilicon lines are those surrounded by closely spaced parallel lines, while isolated
lines are those far from other polysilicon. Nested polysilicon tends to be narrower, while
isolated lines tend to be wider. Density rules limit the etch rate variation, but again, some
remains.

Channel lengths display spatial correlation, called the proximity effect. Two adjacent
transistors are better matched than two transistors that are hundreds of microns apart.
One of the reasons for this is large-scale etch rate variation, where etch rates depend on
the average polysilicon density of a large area.

Horizontal polysilicon lines may print differently than vertical lines. This orientation
effect can be exacerbated when resolution enhancement techniques such as off-axis illumi-
nation and double patterning are applied.

FIGURE 7.21 Discrep-
ancy between drawn and
printed layout of NAND
gate caused by subwave-
length lithography
(© 2007 Larry Pileggi,
reprinted with permis-
sion.)

Chapter 7 Robustness268

Lithography has a shallow depth of focus, leading to variations dependent on the pla-
narity of the underlying wafer. The topography effect describes the variation of polysilicon
lines dependent on step-height differences between the diffusion and STI regions it
crosses.

Many of the factors in ACLV can be controlled by the designer. In nanometer pro-
cesses, it is good practice to draw gates exclusively in one orientation to avoid variation
from the orientation effect. Some processes may require that minimum-width polysilicon
run unidirectionally, even where it does not form a gate. In critical circuits such as memo-
ries, the density variations are controlled because all the cells are identical. The edge of the
array is usually surrounded by one or more dummy rows and columns to provide even
more uniformity. Although the remaining variation is systematic and might be predicted
by detailed simulation of the lithography and etch effects, it is usually too difficult to
model and is thus treated as random. The variance of channel length can be found by sum-
ming the variances of the relevant factors.

Figure 7.22 shows the line edge roughness (LER) of a polysilicon gate. Roughness,
ranging on a scale from atomic to 100 nm, is becoming significant as transistors become so
narrow. The standard deviation in channel length caused by LER is inversely proportional
to the square root of channel width because variations tend to average out along a wide
transistor. [Asenov07] reports variations of about 4 nm in a 35 nm process.

Channel length variation is often expressed as a percentage of the nominal (mean)
channel length because delay variations are proportional to this percentage variation. For
example, [Misaka96] reported a 0.02 m standard deviation of channel length in a 0.4 m
process, corresponding to / = 5%. The amount of variation is highly process-dependent
and a foundry should be able to supply detailed variation statistics for processes where it is
significant. Controlling variation as a fraction of the nominal value is not getting easier as
dimensions shrink. The 2007 International Technology Roadmap for Semiconductors
estimates a target / = 4%.

Corner rounding on the diffusion layer affects the transistor widths. This tends to be
a less important effect because the widths are generally longer. For good matching, avoid
minimum-width transistors.

7.5.2.2 Threshold Voltage The threshold voltage is determined by
the number and location of dopant atoms implanted in the channel
or halo region. This ion implantation is a stochastic process, lead-
ing to random dopant fluctuations (RDF) that cause Vt to vary
[Keys75, Tang97]. For example, Figure 7.23 shows the simulated
placement of n-type (black) and p-type (blue) dopant atoms along
an nMOS transistor in a 50 nm process [Bernstein06]. The varia-
tions have become large in nanometer processes because the num-
ber of dopant atoms is small.

The standard deviation of Vt caused by RDF can be estimated
using [Mizuno94, Stolk98]

(7.20)

where Na is the doping level, si = 11.8 0 and b is the surface
potential. This standard deviation obeys Pelgrom’s model that it is

V
b a V

t

tt q N

LW

A

LW
= =ox

ox

si
34

2

FIGURE 7.22
SEM of polysilicon showing
line edge roughness (Courtesy
of Texas Instruments.)

FIGURE 7.23 Random placement of dopant
atoms in a 50 nm process. Adapted from
[Bernstein06]. (Courtesy of International Busi-
ness Machines Corporation. Unauthorized use
not permitted.)

7.5 Statistical Analysis of Variability 269

inversely proportional to transistor area. High-Vt transistors have higher effective channel
doping, so increases with Vt [Agarwal07]. Under Dennard scaling, the change in
effective oxide thickness cancels the change in square root of area, so the variability scales
with the fourth root of the doping level.

[Agarwal07] predicts that the standard deviation in threshold volatage for minimum-
sized device is approximately 10 mV in a 90 nm process, 30 mV in a 50 nm process, and
40 mV in a 25 nm process. High-Vt transistors have higher effective channel doping, so
the standard deviation increases slightly with Vt . [Bernstein06] reports a standard devia-
tion of 26 mV in an IBM 90 nm process for a minimum-sized transistor. High-k metal
gate transistors use the gate work function to control Vt , have a higher dielectric constant,
and need a lower halo doping, so they have a smaller threshold variation. [Itoh09] reports
Avt of 1.0 2.5 mV · m for 45 nm process with metal gates, and predicts a lower bound
of 0.4 mV · m in future processes.

Vt is also sensitive to the channel length on account of short channel effects. This can
be modeled as a threshold variation proportional to the channel length variation. It is
important because a systematic decrease in L will cause a systematic decrease in Vt that
exponentially increases leakage.

7.5.2.3 Oxide Thickness Average oxide thickness tox is controlled with remarkable preci-
sion, to a fraction of an atomic layer. [Koh01] reports a variation of 0.1 Å in a 10 Å oxide
layer. Device variations caused by oxide thickness are presently minor compared to those
caused by channel length and threshold voltage. For example, [Bernstein06] finds that
they can be accounted for by raising the standard distribution of Vt by 10%.

7.5.2.4 Layout Effects As mentioned in Section 3.2.3, transistors near the edge of a well
may have different threshold voltages caused by the well-edge proximity effect. The sig-
nificance is process-dependent. [Kanamoto07] finds that transistors close to the edge of a
well in a 65 nm process may have delays up to 10% higher.

Section 3.4.1.4 described how strain can be used to increase the carrier mobility to
improve ON current. Various mechanisms are employed in different processes to create
the strain. For example, some processes use the shallow trench isolation (STI) to introduce
stress on the transistors. Variations in the layout may change the amount of stress and
hence the mobility [Topaloglu07]. This is called across-chip mobility variation.

7.5.3 Variation Impacts
Variations affect transistor ON and OFF current, which in turn influence delay and
energy. This section offers a first-order analysis of the effects to give some intuition about
the effects. More sophisticated analyses to predict parametric yield are given in [Najm07,
Agarwal07b]. In practice, Monte Carlo simulations are commonly used to assess the
impact of variation.

7.5.3.1 Fundamentals of Yield The yield Y of a manufacturing process is the fraction of
products that are operational. Equivalently, it is the probability that a particular product
will work. Sometimes it is more convenient to talk about the failure probability X = 1 – Y.

If a system is built from N components, each of which must work, then the yield of
the system Ys is the product of the yields Yc of the components:

(7.21)

Vt

Y Ys c
N=

Chapter 7 Robustness270

Sometimes it is easier to measure the defect density, D, which is the average number
of defects per unit area, than the yield of a specific component. If there are M components
per unit area and the defects are randomly distributed and uncorrelated, then the average
failure rate of a component is Xc = D/M. A system with an area A thus has a yield of

(7.22)

Taking the limit as M approaches infinity produces a beautiful simplification

(7.23)

This is called the Poisson distribution. Yield drops abruptly for A > 1/D.
Section 14.5.2 will discuss defect densities for functional yield. The remainder of this

section is concerned with parametric yield.

7.5.3.2 ON and OFF Current The dependence of transistor currents on L and Vt are

(7.24)

Taking partial derivatives with respect to L and Vt and neglecting the dependence of Vt on
L, we can estimate the sensitivity to small changes in these parameters

(7.25)

In other words, a 10% change in channel length causes a 10% change in
current. If = 1.3, S = 100 mV/decade (n = 1.6), VDD = 1.0 V, and Vt = 0.3
V, a 10 mV change in Vt causes a 1.8% change in ON current and a 23%
change in OFF current. As one would expect, subthreshold leakage is
extremely sensitive to the threshold voltage.

Figure 7.24 shows a scatter plot of Ion against Ioff obtained by a 1500-
point Monte Carlo simulation assuming / = 0.04 for L and = 25 mV
for Vt . There is a strong positive correlation. However, variation changes
OFF current by 6× while changing ON current by only 40%.

7.5.3.3 Delay A change in ON current changes the delay of an inverter by
the same fraction. An M-input gate will have up to M transistors that can
vary separately. The delay of an N-stage path is the sum of the delays
through each stage. If the variations are completely correlated (e.g., ACLV
variation caused by neighboring pattern density), the delay of the path will
have the same variance as the delay of a gate. However, if the variations are
independent, the variance reduces by a factor of N × M.

Y X
D
Ms c

MA
M A

= () =1 1

Ys
DA= e

I
W
L

V V

I
W
L

W
L

DD t

V
S

V
nv

t t

T

on

off e

()

=10

I I
L

L V V
V

I I

DD t
ton on-nominal

off off-

=

=

1

nominal 1
L

L
V

nv
t

T

0 1 2 3 4 5 6
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Nominal

Normalized Ioff

N
or

m
al

iz
ed

 I o
n

FIGURE 7.24 Ion vs. Ioff with variation

7.5 Statistical Analysis of Variability 271

Example 7.4

A path contains 16 2-input gates, each of which has a nominal 20 ps delay. Suppose
ACLV due to neighboring pattern density causes all of the transistors to experience the
same channel length variation, which has a standard deviation of 2% of nominal. Sup-
pose RDF causes a 25 mV standard deviation in each transistor’s threshold. Estimate
the standard deviation in path delay.

SOLUTION: The nominal path delay is 320 ps. If the path involves two series transistors in
half the gates and one parallel transistor in the other half, then 24 transistors are involved
in the path. The correlated channel length variation causes a change in Ion with a 2%
standard deviation, which in turn creates a 2% standard deviation in delay (6.4 ps). We
observed below EQ (7.25) that a 10 mV change in Vt causes a 1.8% change in ON cur-
rent. Thus, a 25 mV standard deviation in Vt causes a (25/10) × 1.8% = 4.6% standard
deviation in Ion. However, the standard deviation in the delay of the entire path is only
4.6%/ = 0.95%, or 3.0 ps. The standard deviation considering both effects is the
RMS sum, , or 2.2%. Even though the threshold variation
accounts for most of the variation in the delay of each individual gate, it adds little to
the delay of the path because the chance of all gates seeing worst-case thresholds is
miniscule.

As discussed in Section 7.5.1.4, a circuit with many nearly critical paths tends to
develop a “wall” of worst case paths 2–3 standard deviations above nominal. Also, paths
with fewer gates per pipeline stage suffer more because there is less averaging of random
variations.

Example 7.5

A microprocessor in a 0.25 m process was observed to have an average D2D variation
of 8.99% and WID variation of 3% on several critical paths [Bowman02]. If the nomi-
nal clock period is T without considering variations and the chip has 1000 nearly criti-
cal paths, what clock period should be used to ensure a parametric yield of 97.7%?
Neglect clock skew.

SOLUTION: According to Table 7.9, the worst case path due to WID variation has a
mean that is 3% × 3.24 = 9.7% above nominal and a standard deviation of 3% × 0.35 =
1.05% of nominal. The total standard deviation is the RMS sum of the 8.99% and
1.05% D2D and WID components, or 9.05%. According to Table 7.8, 97.7% of chips
fall within two standard deviations of the mean. Therefore, the clock period should be
increased by 9.7% + 2 × 9.05% to 1.28T to achieve the desired parametric yield.

7.5.3.4 Energy Variation has a minor impact on dynamic energy, but a major impact on
static leakage energy [Rao03]. Variation shifts the minimum energy and EDP operating
points toward a higher supply and threshold voltage, and reduces the potential benefits in
operating at these points.

Dynamic energy is proportional to the total switching capacitance. Systematic varia-
tions affecting the mean channel length or wire widths changes this energy, but the total

24
6 4 3 0 7 12 2. . .+ = ps

Chapter 7 Robustness272

variation is relatively small. Uncorrelated random variations average out over the
vast number of circuit elements and have a negligible effect.

Static leakage energy is exponentially sensitive to threshold voltage. System-
atic variation in Vt makes a tremendous impact because all transistors are correlated
and the exponential has a long tail. Suppose we need to accept all parts with up to
3 variation. Then, leakage current may be as great as

(7.26)

where Ioff is the nominal leakage. Figure 7.25 shows this exponential dependence
of worst-case leakage on systemic threshold voltage variation at room temperature.
Systematic threshold voltage variation must be tightly constrained to prevent
enormous leakage.

Random dopant fluctuations are uncorrelated, but may have a greater stan-
dard deviation, so they can still be important. Leakage variation caused by RDF is
averaged across a huge number of gates, so we are interested in the mean of the
log-normal leakage distribution. Using EQ (7.19), we compute the expected sub-
threshold current as follows:

(7.27)

Figure 7.26 shows the impact of random variation on the average leakage.
Figure 7.27 shows contours of equal energy-delay product

accounting for temperature and Vt variations [Gonzalez97]. These
variations increase the expected leakage. Recall from Section 5.4.2
that the best EDP occurs when leakage is about one third of total
energy. Thus, the circuit should operate at a higher VDD and Vt to
increase the switching energy and decrease the leakage energy. As
compared to the results without variations given in Figure 5.28, the
minimum EDP point shifts significantly up and right to a supply of
about 500 mV and a threshold of about 200 mV. The relative advan-
tage of operating at the minimum EDP point over the typical point
goes down from a factor of 4 to 2. Variation also shifts the minimum
energy point to a higher supply voltage and diminishes the relative
benefits of operating in the subthreshold regime [Zhai05b].

7.5.3.5 Functionality Variation can cause circuits to malfunction,
especially at low voltage. Some of the circuits that are affected
include the following:

� Ratioed circuits such as pseudo-nMOS gates and SRAM cells, where one ON
device should provide more current than another ON device

� Memories and domino keepers, where one ON device should provide more cur-
rent than many parallel OFF devices

� Subthreshold circuits, where one not-quite-fully OFF device should provide more
current than another OFF device

� Matched circuits such as sense amplifiers that must recognize a small differential
voltage

I I
Vt

Tnv
sub off e=

3

I I

Vt

Tnv
sub off e=

1
2

2

0

2

4

6

8

0 10 20 30
Vt

N
or

m
a

ze
d

I o
ff

(mV)

0

1

2

0 10 20 30 40 50 60

N
or

m
a

ze
d

I o
ff

Vt
 (mV)

FIGURE 7.25 Impact of systematic
threshold variation on worst-case
leakage

FIGURE 7.26 Impact of random
threshold voltage on average
leakage

VDD

Vt

2.5

3

2

1.25

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.75

FIGURE 7.27 Contours of equal EDP accounting for
variation, adapted from [Gonzalez97] (© IEEE 1997.)

7.5 Statistical Analysis of Variability 273

� Circuits with matched delays (see Section 7.5.3.6) that depend on one path being
slower than another

These issues will be addressed more closely in subsequent chapters as they arise. In
general, using bigger transistors reduces the variability at the expense of greater area and
power, which is a good trade-off if only a few circuits are critically sensitive to variation.

Example 7.6

Suppose the offset voltage in a sense amplifier is a normally distributed zero-mean ran-
dom variable with a standard deviation of 10 mV. If a memory contains 4096 sense
amplifiers, how much offset voltage must it tolerate to achieve a 99.9% parametric yield
overall?

SOLUTION: Use EQ (7.21) with Ys = 0.999 and N = 4096 to solve for Ys = 0.99999976.
According to Table 7.8, this requires tolerating about five standard deviations, or 50
mV of amplifier offset.

7.5.3.6 Matched Delays Some circuits rely on matched delays. For example, clock-delayed
domino (see Section 10.5) needs to provide clocks to gates after their inputs have settled.
The clocks must be matched to the gate delay; if they arrive late, the system functions
slower, but if they arrive early, the system doesn’t work at all. Therefore, it is of great inter-
est to the designer how well two delays can be matched.

The best way to build matched delays is to provide replicas of the gates that are being
matched. For example, in a static RAM (see Section 12.2.3.3), replica bitlines are used to
determine when the sense amplifier should fire. Any relative variation in wire, diffusion,
and gate capacitances happens to both circuits.

In many situations, it is not practical to use replica gates; instead, a chain of inverters
can be used. For example, a DVS system may try to set the frequency based on a ring-
oscillator intended to run slower than any of the various critical paths [Gutnik97]. Unfor-
tunately, even if there is no within-die process variation, the inverter delay may not exactly
track the delay it matches across design corners. For example, if the inverter chain were
matching a wire delay in the typical corner, it would be faster than the wire in the FFSFF
corner and slower than the wire in the SSFSS corner. This variation requires that the
designer provide margin in the typical case so that even in the worst case, the matched
delay does not arrive too early [Wei00]. How much margin is necessary?

Figure 7.28 shows how gate delays, measured as a multiple of an FO4 inverter delay,
vary with process, design corners, temperature, and voltage. The circuits studied include
complementary CMOS NAND and NOR gates, domino AND and OR gates, and a 64-bit
domino adder with significant wire RC delay. Figure 7.28(a) shows the gate delay of various
circuits in different processes. The adder shows the greatest variation because of its wire-
limited paths, but all the circuits track to within 20% across processes. This indicates that if a
circuit delay is measured in FO4 inverter delays for one process, it will have a comparable
delay in a different process. Figure 7.28(b-c) shows gate delay scaling with power supply
voltage and temperature. Figure 7.28(d) shows what combination of design corner, voltage,
and temperature gives the largest variation in delay normalized to an FO4 inverter in the
same combination in the 0.6 m process. Observe that the variation is smallest for simple
static CMOS gates that most closely resemble inverters and can reach 30% for some gates.

These figures demonstrate that an inverter chain should have a nominal delay about
30% greater than the path it matches so that the inverter output always arrives later than

Chapter 7 Robustness274

the matched path across all combinations of voltage, temperature, and design corners. This
is a hefty margin and discourages the casual use of matched delays. Considering within-
die variations only makes the margin greater. It is prudent to make the amount of margin
adjustable after manufacturing (e.g., via a scan chain or programmable fuse) to avoid
extreme conservatism. The Power6 processor reduces the margin using a critical path
monitor consisting of several different types of paths (nMOS dominated, pMOS domi-
nated, wire dominated, etc.) and setting the cycle time based on the slowest one
[Drake07]. The Montecito Itanium processor used multiple frequency generators distrib-
uted across the die to compensate for local voltage variations [Fischer06]. In light of all
these issues, circuit designers tend to be moving away from matched delays and instead
setting delays based on the clock because failures can be fixed by slowing the clock.

7.6 Variation-Tolerant Design
Variation has traditionally been handled by margining to ensure a good parametric yield.
As variability increases, the growing margins severely degrade the performance and power
of a chip. Variation-tolerant designs are becoming more important. This section describes

(a)

(c) (d)

(b)

FIGURE 7.28 Delay tracking

7.6 Variation-Tolerant Design 275

methods of using adaptive control and fault tolerance to reduce margins. Chapter 10
addresses skew-tolerant circuits.

7.6.1 Adaptive Control
A chip can measure its operating conditions and adjust parameters such as supply voltage,
body bias, frequency, or activity factor on the fly to compensate for variability. This is
called adaptive control [Wang08a].

Dynamic voltage scaling (DVS) was introduced in Section 5.2.3.2 to save switching
energy, and body bias was introduced in Section 5.3.4 to control the threshold voltage.
The two techniques can be used together or individually to improve parametric yield
[Chen03]. Adaptive body bias (ABB) can compensate for systematic die-to-die threshold
variations to greatly reduce the spread in leakage and improve performance [Narendra99,
Tschanz02]. Adaptive voltage scaling (AVS) can trade-off frequency and dynamic energy to
compensate for problems in the slow or fast corners. The adjustments tend to be subtle so
voltage control requires high resolution (~20 mV) to give significant benefit
[Tschanz03b]. If variations are correlated over smaller blocks, the blocks can be individu-
ally controlled to run each at its best point [Gregg07].

Chips are usually designed so that worst-case power dissipation remains below a spec-
ified level under a worst-case workload. However, in many applications, the chip could
work at a higher voltage or frequency if only part of it is active or if the duration is short.
For example, a multicore processor running a single-threaded application might benefit
from running one core at an accelerated frequency and putting the other cores to sleep.

Adaptive control systems can use one or more temperature sensors (see Section
13.2.5) to monitor die temperature and throttle back voltage or activity when sections of
the chip become too hot. For example, the dual-core Itanium processor contains a separate
embedded microcontroller that monitors temperature every 20 ms and adjusts core voltage
to keep power within limits [McGowen06].

7.6.2 Fault Tolerance
Tolerating occasional faults reduces cost by improving yield and improves performance by
reducing the amount of margin necessary. Some techniques include providing spare parts
and performing error detection and correction.

Memory designers learned long ago that yield could be improved by providing spare
rows and columns of memory cells. If a row or column had a manufacturing error, it could
be fixed during manufacturing test by mapping in the spare. This technique will be
explored further in Section 12.8.1. This technique generalizes readily to any circuit with
multiple identical components. For example, an 8-core processor could be sold as a 6-core
model if one or two cores were defective.

If each component has a yield Yc , the probability P that a system with N components
has r defective components is

(7.28)

where

(7.29)

P N
r

Y Yc
N r

c
r

=
⎛

⎝⎜
⎞

⎠⎟
−()− 1

N
r

N N N N r

r r r

⎛

⎝⎜
⎞

⎠⎟
≡

() −() −() ⋅⋅⋅ − +()
() −() −() ⋅⋅

1 2 1

1 2 ⋅() =
−()1

N
r N r

!
! !

Chapter 7 Robustness276

is the number of ways to choose r items from a set of N. Thus, if up to r defects can be
repaired with spare components, the system yield improves to

(7.30)

If the number of components is large, we may prefer to consider the defect rate per
unit area D. Using a limit argument similar to the derivation of EQ (7.23), we obtain an
expression based on the Poisson distribution

(7.31)

Example 7.7

Suppose each core in a 16-core processor has a yield of 90% and nothing else on the
chip fails. What is the yield of the chip? How much better would the yield be if the
chip had two spare cores that could replace defective ones?

SOLUTION: If all the cores must work, EQ (7.21) shows that the yield is (0.9)16 = 18.5%.
If two failures can be replaced, EQ (7.30) predicts that the yield improves to (0.9)16 +
16 × (0.9)15 × (0.1) + 16 × 15 / 2 × (0.9)14 × (0.1)2 = 78.9%.

Memories have also long used error detecting and correcting codes (see Section
12.8.2). The codes are usually used to fix soft errors, but can also fix hard errors. Coding is
also common in communication links where noise occasionally flips bits.

Logic fault tolerance is more difficult. Systems that require a high level of dependabil-
ity (such as life-support) or that are subject to high error rates (such as spacecraft bom-
barded with cosmic radiation) may use two or three copies of the hardware running in
lock-step. In master-checker configuration of Figure 7.29(a), the system periodically saves
its state to a checkpoint. It detects an error when the master and checker differ. The system
can then roll back to the last checkpoint and repeat the failed operation. For example, the
IBM G5 S/390 mainframe processor contained two identical cores operating in lockstep
[Northrop99]. In triple-mode redundancy (TMR) shown in Figure 7.29(b), the system uses
majority voting to select the correct answer even if one copy of the hardware malfunctions
[Lyons62]. This is ideal for real-time systems because the fault is masked and does not
slow down operation. In suitably configured systems with many cores, it is possible to lock
two or three cores into a fault-tolerant configuration for critical operations.

If a module has a hard failure probability of Xm over its period of service in the field,
then the probability that the entire TMR system will fail is the probability that two mod-
ules fail plus the probability that three modules fail

(7.32)

Y N
r

Y Ys
N r

c
r

i

r

=
⎛
⎝⎜

⎞
⎠⎟

−()−

=
∑ 1

0
c

Y
DA

is
DA

i

i

r

=
()

=
e

!0

X X X X X Xs m m m m=
⎛

⎝⎜
⎞

⎠⎟
−() + = −3

2
1 3 22 3 2 3

m

Master

Checker

=

In Out

Error

(a)

(b)

Module 1

Module 2

Module 3

V
O

T
E

In

Out

FIGURE 7.29 Master-checker
operation and triple-mode
redundancy

7.7 Pitfalls and Fallacies 277

Example 7.8

Engineers designing an attitude control computer for a probe traveling to Saturn deter-
mine that the computer has a 1% chance of failure from cosmic radiation en route.
They choose to use TMR to improve the reliability. What is the new chance of failure?

SOLUTION: Using EQ (7.32), the chance of failure reduces to 3(0.01)2 2(0.01)3 =
0.0298%.

7.7 Pitfalls and Fallacies
Not stating process corner or environment when citing circuit performance
Most products must be guaranteed to work at high temperature, yet many papers are written

with transistors operating at room temperature (or lower), giving optimistic performance re-

sults. For example, at the International Solid State Circuits Conference, Intel described a Pen-

tium II processor running at a surprisingly high clock rate [Choudhury97], but when asked, the

speaker admitted that the measurements were taken while the processor was “colder than an

ice cube.”

Similarly, the FFFFF design corner is sometimes called the “published paper” corner be-

cause delays are reported under these simulation or manufacturing conditions without both-

ering to state that fact or report the FO4 inverter delay in the same conditions. Circuits in this

corner are about twice as fast as in a manufacturable part.

Providing too little margin in matched delays
We have seen that the delay of a chain of inverters can vary by about 30% as compared to the

delay of other circuits across design corners, voltage, and temperature. On top of this, you

should expect intra-die process variation and errors in modeling and extraction. If a race con-

dition exists where the circuit will fail when the inverter delay is faster than the gate delay, the

experienced designer who wishes to sleep well at night provides generous delay margin under

nominal conditions. Remember that the consequences of too little margin can be a million dol-

lars in mask costs for another revision of the chip and far more money in the opportunity cost

of arriving late to market.

Failing to plan for process scaling
Many products will migrate through multiple process generations. For example, the Intel Pen-

tium Pro was originally designed and manufactured on a 0.6 m BiCMOS process. The Pentium

II is a closely related derivative manufactured in a 0.35 m process operating at a lower volt-

age. In the new process, bipolar transistors ceased to offer performance advantages and were

removed at considerable design effort. Further derivatives of the same architecture migrated

to 0.25 and 0.18 m processes in which wire delay did not improve at the same rate as gate

delay. Interconnect-dominated paths required further redesign to achieve good performance

in the new processes. In contrast, the Pentium 4 was designed with process scaling in mind.

Knowing that over the lifetime of the product, device performance would improve but wires

would not, designers overengineered the interconnect-dominated paths for the original pro-

cess so that the paths would not limit performance improvement as the process advanced

[Deleganes02].

Chapter 7 Robustness278

7.8 Historical Perspective
The incredible history of scaling can be seen in the advancement of the microprocessor.
The Intel microprocessor line makes a great case study because it spans more than three
decades. Table 7.10 summarizes the progression from the first 4-bit microprocessor, the
4004, through the Core i7, courtesy of the Intel Museum. Over the years, feature size has
improved more than two orders of magnitude. Transistor budgets multiplied by more than
five orders of magnitude and clock frequencies have multiplied more than three orders of
magnitude. Even as the challenges have grown in the past decade, scaling has accelerated.

Die photos of the microprocessors illustrate the remarkable story of scaling. The 4004
[Faggin96] in Figure 7.30 was handcrafted to pack the transistors onto the tiny die.
Observe the 4-bit datapaths and register files. Only a single layer of metal was available, so
polysilicon jumpers were required when traces had to cross without touching. The masks
were designed with colored pencils and were hand-cut from red plastic rubylith. Observe
that diagonal lines were used routinely. The 16 I/O pads and bond wires are clearly visible.
The processor was used in the Busicom calculator.

The 80286 [Childs84] shown in Figure 7.31 has a far more regular appearance. It is
partitioned into regular datapaths, random control logic, and several arrays. The arrays
include the instruction decoder PLA and memory management hardware. At this scale,
individual transistors are no longer visible.

The Intel386 (originally 80386, but renamed during an intellectual property battle
with AMD because a number cannot be trademarked) shown in Figure 7.32 was Intel’s
first 32-bit microprocessor. The datapath on the left is clearly recognizable. To the right

TABLE 7.10 History of Intel microprocessors over three decades

Processor Year Feature
Size (mm)

Transistors Frequency
(MHz)

Word
Size

Power
(W)

Cache
(L1 / L2 / L3)

Package

4004 1971 10 2.3k 0.75 4 0.5 none 16-pin DIP
8008 1972 10 3.5k 0.5–0.8 8 0.5 none 18-pin DIP
8080 1974 6 6k 2 8 0.5 none 40-pin DIP
8086 1978 3 29k 5–10 16 2 none 40-pin DIP
80286 1982 1.5 134k 6–12 16 3 none 68-pin PGA

Intel386 1985 1.5–1.0 275k 16–25 32 1–1.5 none 100-pin PGA
Intel486 1989 1–0.6 1.2M 25–100 32 0.3–2.5 8K 168-pin PGA
Pentium 1993 0.8–0.35 3.2–4.5M 60–300 32 8–17 16K 296-pin PGA

Pentium Pro 1995 0.6–0.35 5.5M 166–200 32 29–47 16K / 256K+ 387-pin MCM PGA
Pentium II 1997 0.35–0.25 7.5M 233–450 32 17–43 32K / 256K+ 242-pin SECC
Pentium III 1999 0.25–0.18 9.5–28M 450–1000 32 14–44 32K / 512K 330-pin SECC2
Pentium 4 2000 180–65 nm 42–178M 1400–3800 32/64 21–115 20K+ / 256K+ 478-pin PGA
Pentium M 2003 130–90 nm 77–140M 1300–2130 32 5–27 64K / 1M 479-pin FCBGA

Core 2006 65 nm 152M 1000–1860 32 6–31 64K / 2M 479-pin FCBGA
Core 2 Duo 2006 65–45 nm 167–410M 1060–3160 32/64 10–65 64K / 4M+ 775-pin LGA

Core i7 2008 45 nm 731M 2660–3330 32/64 45–130 64K / 256K / 8M 1366-pin LGA
Atom 2008 45 nm 47M 800–1860 32/64 1.4–13 56K / 512K+ 441-pin FCBGA

7.8 Historical Perspective 279

are several blocks of synthesized control logic generated with automatic place & route
tools. The “more advanced” tools no longer support diagonal interconnect.

The Intel486 integrated an 8 KB cache and floating point unit with a pipelined inte-
ger datapath, as shown in Figure 7.33. At this scale, individual gates are not visible. The
center row is the 32-bit integer datapath. Above is the cache, divided into four 2 KB sub-
arrays. Observe that the cache involves a significant amount of logic beside the subarrays.
The wide datapaths in the upper right form the floating point unit.

FIGURE 7.30 4004 microprocessor (Courtesy of Intel Corporation.)

FIGURE 7.31 80286 microprocessor (Courtesy of Intel Corporation.)

Chapter 7 Robustness280

The Pentium Processor shown in Figure 7.34 provides a superscalar integer execution
unit and separate 8 KB data and instruction caches. The 32-bit datapath and its associated
control logic is again visible in the center of the chip, although at this scale, the individual
bitslices of the datapath are difficult to resolve. The instruction cache in the upper left
feeds the instruction fetch and decode units to its right. The data cache is in the lower left.
The bus interface logic sits between the two caches. The pipelined floating point unit,
home of the infamous FDIV bug [Price95], is in the lower right. This floorplan is impor-
tant to minimize wire lengths between units that often communicate, such as the instruc-
tion cache and instruction fetch or the data cache and integer datapath. The integer
datapath often forms the heart of a microprocessor, and other units surround the datapath
to feed it the prodigious quantities of instructions and data that it consumes.

r

Microcode
PLA

-
pa

Mem ory
Management

Unit

Controller

Microcode
PLA

32-Bit
Datapath

Mem ory
Management

Unit

FIGURE 7.32 Intel386 microprocessor (Courtesy of Intel Corporation.)

32-Bit
Datapath

Controller

8 KB
Cache

Floating
Point

it

ic
r

o
P32-Bit

Datapath

Controller

8 KB
Cache

Floating
Point
Unit

M
ic

ro
co

de
PL

A

FIGURE 7.33 Intel486 microprocessor (Courtesy of Intel Corporation.)

7.8 Historical Perspective 281

The P6 architecture used in the Pentium Pro, Pentium II, and Pentium III Processors
[Colwell95, Choudhury97, Schutz98] converts complex x86 instructions into a sequence
of one or more simpler RISC-style “micro-ops.” It then issues up to three micro-ops per
cycle to an out-of-order pipeline. The Pentium Pro was packaged in an expensive multi-
chip module alongside a level 2 cache chip. The Pentium II and Pentium III reduced the
cost by integrating the L2 cache on chip. Figure 7.35 shows the Pentium III Processor.
The Integer Execution Unit (IEU) and Floating Point Unit (FPU) datapaths are tiny por-

FIGURE 7.34 Pentium microprocessor (Courtesy of Intel Corporation.)
t e

a
r

l KB
a a

C he
F oa i

Point

8
nst t on

Cache

pr ss ogi

Instruction
h cod

nc
Prediction

Complex
I r i

S e e

32-Bit
D

atapath

Superscalar
Controller

8 KB
Data

Cache
Floating

Point
Unit

8 KB
Instruction

Cache

Multiprocessor Logic

Instruction
Fetch & Decode

Branch
Prediction

Complex
Instruction

SupportBus Interface Unit

Ins truction Fetch

16 K B
a

 L

B r
g

B uffer

I

25
Level 2 Cache

Out of
Order
I
ogi

Re
i

e
.

Renam
ing

Bus Logic

roc
e

Ins truction Fetch
&

16 K B Cache

16 K B
Data Cache

Data TLB

B ranch
Target
B uffer

FPU

IEU

SIMD

256 K B
Level 2 Cache

Out of
Order
Issue
Logic

Register.
Renam

ing

Bus Logic

M
icrocode

PLA

FIGURE 7.35 Pentium III microprocessor (Courtesy of Intel Corporation.)

Chapter 7 Robustness282

tions of the overall chip. The entire left portion of the die is dedicated to 256–512 KB of
level 2 cache to supplement the 32 KB instruction and data caches. As processor perfor-
mance outstrips memory bandwidth, the portion of the die devoted to the cache hierarchy
continues to grow. The Pentium Chronicles [Colwell06] gives a fascinating behind-the-
scenes look at the development of the P6 from the perspective of the project leader.

The Pentium 4 Processor [Hinton01, Deleganes02] is shown in Figure 7.36. The
complexity of a VLSI system is clear from the enormous number of separate blocks that
were each uniquely designed by a team of engineers. Indeed, at this scale, even major func-
tional units become difficult to resolve. The high operating frequency is achieved with a
long pipeline using 14 or fewer FO4 inverter delays per cycle. Remarkably, portions of the
integer execution unit are “double-pumped” at twice the regular chip frequency. The Pen-
tium 4 was the culmination of the “Megahertz Wars” waged in the 1990s, in which Intel
marketed processors based on clock rate rather than performance. Design teams used
extreme measures, including 20- to 30-stage pipelines and outlandishly complicated dom-
ino circuit techniques to achieve such clock rates.

The Pentium 4’s high power consumption was its eventual downfall, especially in lap-
tops where it had to be throttled severely to achieve adequate battery life. In 2004, Intel
returned to shorter, simpler pipelines with better energy efficiency, starting with the Pen-
tium M [Gochman03] and continuing with the Core, Core 2, and Core i7 architectures.
Clock frequencies leveled out at 2–3 GHz. Adding more execution units and speculation
hurts energy efficiency, so the IPC of these machines also leveled out. Thus, these archi-
tectures marked the end of the steady advance in single-threaded application performance
that had driven microprocessors during the three decades. Instead, the Core line seeks
performance through parallelism using 2, 4, 8 [Sakran07, George07, Rusu10], and inevi-
tably more cores. Figure 7.37 shows the Core 2 Duo, in which each core occupies about a
quarter of the die and the large cache fills the remainder. The Core i7 appears on the cover
of this book. Time will tell if mainstream software uses this parallelism well enough to
drive market demand for ever-more cores.

FIGURE 7.36 Pentium III microprocessor (Courtesy of Intel Corporation.)

IEU

8 KB
Data Cache

a e
a e

256 KB
Le el 2

F U

&
I D

Bu

IEU

8 KB
Data Cache

Trace
Cache

256 KB
Level 2

 Cache
FPU

&
SIMD

Bus

7.8 Historical Perspective 283

It is reasonable to ask if most computer users need the full capability of a multicore
CPU operating running at 3 GHz, especially considering that the 66 MHz Pentium was
perfectly satisfactory for word processing, e-mail, and Web browsing. The Atom proces-
sor, shown in 7.38, is a blast from the past, using an in-order dual-issue pipeline reminis-
cent of the original Pentium, and achieving 1.86 GHz operation at 2 W and 800 MHz
operation at 0.65 W [Gerosa09]. The Atom processor proved to be a stunningly popular
CPU for 3-pound netbooks offering an all-day battery life and a sale price as low as $300.

ore Co e

4 MB
h r d
ev l

C c

Core 1 Core 2

4 MB
Shared
Level 2
Cache

FIGURE 7.37 Core 2 Duo (Courtesy of Intel Corporation.)

L2 Cache u
In

te
rf

ac
e

M ry IEU

P

on
End

Fu
se

PL
L

Front Side Bus: Address

Front Side Bus: Data

L2 Cache

Bu
s

In
te

rf
ac

e

Memory IEU

FPU

Front
End

Fu
se

PL
L

Front Side Bus: Address

Front Side Bus: Data

FIGURE 7.38 Atom Processor (Courtesy of Intel Corporation.)

Chapter 7 Robustness284

Summary
This chapter has covered three main aspects of robust design: managing variability,
achieving reliability, and planning for future scaling.

The designer must ensure that the circuit performs correctly across variations in the
operating voltage, temperature, and device parameters. Process corners are used to
describe the worst-case die-to-die combination of processing and environment for delay,
power consumption, and functionality. However, statistical techniques are becoming more
important to avoid margining for extremely pessimistic worst cases, especially considering
within-die variations. The circuits must also be designed to continue working even as they
age or are subject to cosmic rays and electrostatic discharge.

MOS processes have been steadily improving for more than 30 years. A good
designer should not only be familiar with the capabilities of current processes, but also be
able to predict the capabilities of future processes as feature sizes get progressively smaller.
According to Dennard’s scaling, all three dimensions should scale equally, and voltage
should scale as well. Gate delay improves with scaling. The number of transistors on a chip
grows quadratically. The switching energy for each transistor decreases with the cube of
channel length, but the dynamic power density remains about the same because chips have
more transistors switching at higher rates. Leakage energy goes up as small transistors
have exponentially more OFF current. Interconnect capacitance per unit length remains
constant, but resistance increases because the wires have a smaller cross-section. Local
wires get shorter and have constant delay, while global wires have increasing delay. Since
the 90 nm node, Dennard scaling has been suffering from leakage, which is setting lower
bounds on threshold voltage and oxide thickness. However, materials innovations have
partially compensated and processes continue to improve. VLSI designers increasingly
need to understand the effects arising as transistors reach atomic scales. The future of scal-
ing depends on our ability to find innovative solutions to very challenging physical prob-
lems and our creativity of using the advanced processes to create compelling new products.

Exercises
7.1 The path from the data cache to the register file of a microprocessor involves 500 ps

of gate delay and 500 ps of wire delay along a repeated wire. The chip is scaled using
constant field scaling and reduced height wires to a new generation with S = 2.
Estimate the gate and wire delays of the path. By how much did the overall delay
improve?

7.2 A circuit is being subjected to accelerated life testing at high voltage. If the mea-
sured time to failure is 20 hours at 2 V, 160 hours at 1.8 V, and 1250 hours at 1.6 V,
predict the maximum operating voltage for a 10-year lifespan.

7.3 Heavily used subsystems are sometimes designed for “5 9s” yield: 99.999%. How
many standard deviations increase must they accept if the parameter leading to fail-
ure is normally distributed?

7.4 Design a TMR system that can survive a single-point failure in any component or
wire.

 Exercises 285

7.5 How low can the module yield go before TMR becomes detrimental to system
yield?

7.6 A chip contains 100 11-stage ring oscillators. Each inverter has an average delay of
10 ps with a standard deviation of 1 ps, so the average ring oscillator runs at 4.54
GHz. The operating frequency of the chip is defined to be the slowest frequency of
any of the oscillators on the chip.

(a) Find the expected operating frequency of a chip.

(b) Find the maximum target operating frequency to achieve 97.7% parametric
yield.

7.7 A large chip has a nominal power consumption of 60 W, of which 20 is leakage. The
effective channel length is 40 nm, with a 4 nm standard deviation from die to die
and a 3 nm standard deviation for uncorrelated random within-die variation. The
threshold voltage has a 30 mV standard deviation caused by random dopant fluctua-
tions. It also has a sensitivity to channel length of 2.5 mV/nm caused by short-
channel effects. The subthreshold slope is 100 mV/decade. Estimate the maximum
power that should be allowed to achieve an 84% parametric yield.

This page intentionally left blank

8

287

Circuit
Simulation

8.1 Introduction
Fabricating chips is expensive and time-consuming, so designers need simulation tools to
explore the design space and verify designs before they are fabricated. Simulators operate
at many levels of abstraction, from process through architecture. Process simulators such as
SUPREME predict how factors in the process recipe such as time and temperature affect
device physical and electrical characteristics. Circuit simulators such as SPICE and Spectre
use device models and a circuit netlist to predict circuit voltages and currents, which indi-
cate performance and power consumption. Logic simulators such as VCS and ModelSim
are widely used to verify correct logical operation of designs specified in a hardware
description language (HDL). Architecture simulators, sometimes offered with a processor’s
development toolkit, work at the level of instructions and registers to predict throughput
and memory access patterns, which influence design decisions such as pipelining and
cache memory organization. The various levels of abstraction offer trade-offs between
degree of detail and the size of the system that can be simulated. VLSI designers are pri-
marily concerned with circuit and logic simulation. This chapter focuses on circuit simula-
tion with SPICE. Section 15.3 discusses logic simulation.

Is it better to predict circuit behavior using paper-and-pencil analysis, as has been
done in the previous chapters, or with simulation? VLSI circuits are complex and modern
transistors have nonlinear, nonideal behavior, so simulation is necessary to accurately pre-
dict detailed circuit behavior. Even when closed-form solutions exist for delay or transfer
characteristics, they are too time-consuming to apply by hand to large numbers of circuits.
On the other hand, circuit simulation is notoriously prone to errors: garbage in, garbage out
(GIGO). The simulator accepts the model of reality provided by the designer, but it is very
easy to create a model that is inaccurate or incomplete. Moreover, the simulator only
applies the stimulus provided by the designer, and it is common to overlook the worst-case
stimulus. In the same way that an experienced programmer doesn’t expect a program to
operate correctly before debugging, an experienced VLSI designer does not expect that the
first run of a simulation will reflect reality. Therefore, the circuit designer needs to have a
good intuitive understanding of circuit operation and should be able to predict the
expected outcome before simulating. Only when expectation and simulation match can
there be confidence in the results. In practice, circuit designers depend on both hand anal-
ysis and simulation, or as [Glasser85] puts it, “simulation guided through insight gained
from analysis.”

Chapter 8 Circuit Simulation288

This chapter presents a brief SPICE tutorial by example. It then discusses models for
transistors and diffusion capacitance. The remainder of the chapter is devoted to simula-
tion techniques to characterize a process and to check performance, power, and correct-
ness of circuits and interconnect.

8.2 A SPICE Tutorial
SPICE (Simulation Program with Integrated Circuit Emphasis) was originally developed in
the 1970s at Berkeley [Nagel75]. It solves the nonlinear differential equations describing
components such as transistors, resistors, capacitors, and voltage sources. SPICE offers
many ways to analyze circuits, but digital VLSI designers are primarily interested in DC
and transient analysis that predicts the node voltages given inputs that are fixed or arbi-
trarily changing in time. SPICE was originally developed in FORTRAN and has some
idiosyncrasies, particularly in file formats, related to its heritage. There are free versions of
SPICE available on most platforms, but the commercial versions tend to offer more robust
numerical convergence. In particular, HSPICE is widely used in industry because it con-
verges well, supports the latest device and interconnect models, and has a large number of
enhancements for measuring and optimizing circuits. PSPICE is another commercial ver-
sion with a free limited student version. LTSpice is a robust free version. The examples
throughout this section use HSPICE and generally will not run in ordinary SPICE.

While the details of using SPICE vary with version and platform, all versions of
SPICE read an input file and generate a list file with results, warnings, and error messages.
The input file is often called a SPICE deck and each line a card because it was once pro-
vided to a mainframe as a deck of punch cards. The input file contains a netlist consisting
of components and nodes. It also contains simulation options, analysis commands, and
device models. The netlist can be entered by hand or extracted from a circuit schematic or
layout in a CAD program.

A good SPICE deck is like a good piece of software. It should be readable, maintain-
able, and reusable. Comments and white space help make the deck readable. Often, the
best way to write a SPICE deck is to start with a good deck that does nearly the right
thing and then modify it.

The remainder of this section provides a sequence of examples illustrating the key
syntax and capabilities of SPICE for digital VLSI circuits. For more detail, consult the
Berkeley SPICE manual [Johnson91], the lengthy HSPICE manual, or any number of
textbooks on SPICE (such as [Kielkowski95, Foty96]).

8.2.1 Sources and Passive Components
Suppose we would like to find the response of the RC circuit in Figure 8.1(a) given an
input rising from 0 to 1.0 V over 50 ps. Because the RC time constant of 100 fF × 2 k

� =
200 ps is much greater than the input rise time, we intuitively expect the output would
look like an exponential asymptotically approaching the final value of 1.0 V with a 200 ps
time constant. Figure 8.2 gives a SPICE deck for this simulation and Figure 8.1(b) shows
the input and output responses.

Lines beginning with * are comments. The first line of a SPICE deck must be a com-
ment, typically indicating the title of the simulation. It is good practice to treat SPICE
input files like computer programs and follow similar procedures for commenting the
decks. In particular, giving the author, date, and objective of the simulation at the begin-
ning is helpful when the deck must be revisited in the future (e.g., when a chip is in silicon

8.2 A SPICE Tutorial 289

debug and old simulations are being reviewed to
track down potential reasons for failure).

Control statements begin with a dot (.). The
.option post statement instructs HSPICE to
write the results to a file for use with a waveform
viewer. The last statement of a SPICE deck must be
.end.

Each line in the netlist begins with a letter indi-
cating the type of circuit element. Common ele-
ments are given in Table 8.1. In this case, the circuit
consists of a voltage source named Vin, a resistor
named R1, and a capacitor named C1. The nodes in
the circuit are named in, out, and gnd. gnd is a spe-
cial node name defined to be the 0 V reference. The
units consist of one or two letters. The first character
indicates the order of magnitude, as given in Table
8.2. Take note that mega is x, not m. The second let-
ter indicates a unit for human convenience (such as F
for farad or s for second) and is ignored by SPICE.
For example, the hundred femtofarad capacitor can
be expressed as 100fF, 100f, or simply 100e–15.
Note that SPICE is case-insensitive but consistent
capitalization is good practice nonetheless because
the netlist might be parsed by some other tool.

R1 = 2KΩ

C1 =
100fF

Vin

+
Vout

−

(a)

(b)

 (V)

0.0

0.4

0.6

0.8

1.0

0.2

0.0 200p 400p 600p 800p 1n
t(s)

in

out

FIGURE 8.1 RC circuit response

* rc.sp
* David_Harris@hmc.edu 2/2/03
* Find the response of RC circuit to rising input

*--
* Parameters and models
*--
.option post

*--
* Simulation netlist
*--
Vin in gnd pwl 0ps 0 100ps 0 150ps 1.0 1ns 1.0
R1 in out 2k
C1 out gnd 100f

*--
* Stimulus
*--
.tran 20ps 1ns
.plot v(in) v(out)
.end

FIGURE 8.2 RC SPICE deck

Chapter 8 Circuit Simulation290

The voltage source is defined as a piecewise linear (PWL) source. The waveform is
specified with an arbitrary number of (time, voltage) pairs. Other common sources include
DC sources and pulse sources. A DC voltage source named Vdd that sets node vdd to 2.5
V could be expressed as

Vdd vdd gnd 2.5

Pulse sources are convenient for repetitive signals like clocks. The general form for a
pulse source is illustrated in Figure 8.3. For example, a clock with a 1.0 V swing, 800 ps
period, 100 ps rise and fall times, and 50% duty cycle (i.e., equal high and low times)
would be expressed as

Vck clk gnd PULSE 0 1 0ps 100ps 100ps 300ps 800ps

TABLE 8.1 Common SPICE elements

Letter Element

R Resistor
C Capacitor
L Inductor
K Mutual inductor
V Independent voltage source
I Independent current source

M MOSFET
D Diode
Q Bipolar transistor
W Lossy transmission line
X Subcircuit
E Voltage-controlled voltage source
G Voltage-controlled current source
H Current-controlled voltage source
F Current-controlled current source

TABLE 8.2 SPICE units

Letter Unit Magnitude

a atto 10–18

f femto 10–15

p pico 10–12

n nano 10–9

u micro 10–6

m milli 10–3

k kilo 103

x mega 106

g giga 109

8.2 A SPICE Tutorial 291

The stimulus specifies that a transient analysis (.tran) should be performed using a max-
imum step size of 20 ps for a duration of 1 ns. When plotting node voltages, the step size
determines the spacing between points.

The .plot command generates a textual plot of the node variables specified (in this
case the voltages at nodes in and out), as shown in Figure 8.4. Similarly, the .print
statement prints the results in a multicolumn table. Both commands show the legacy of

v1

v2

td tr tfpw

per

PULSE v1 v2 td tr tf pw per

FIGURE 8.3 Pulse waveform

legend:

a: v(in)
b: v(out)

 time v(in)
 (ab) -500.0000m 0. 500.0000m 1.0000 1.5000
 + + + + +
 0. 0. -+------+------2------+------+------+------+------+------+-
 20.0000p 0. + + 2 + + + + + +
 40.0000p 0. + + 2 + + + + + +
 60.0000p 0. + + 2 + + + + + +
 80.0000p 0. + + 2 + + + + + +
 100.0000p 0. + + 2 + + + + + +
 120.0000p 400.000m + + +b + a + + + + +
 140.0000p 800.000m + + + b + + +a + + +
 160.0000p 1.000 + + + b + + + a + +
 180.0000p 1.000 + + + b + + a + +
 200.0000p 1.000 -+------+------+------+-b----+------+------a------+------+-
 220.0000p 1.000 + + + + b + + a + +
 240.0000p 1.000 + + + + b + + a + +
 260.0000p 1.000 + + + + b + a + +
 280.0000p 1.000 + + + + +b + a + +
 300.0000p 1.000 + + + + + b + a + +
 320.0000p 1.000 + + + + + b + a + +
 340.0000p 1.000 + + + + + b + a + +
 360.0000p 1.000 + + + + + b + a + +
 380.0000p 1.000 + + + + + b+ a + +
 400.0000p 1.000 -+------+------+------+------+------b------a------+------+-
 420.0000p 1.000 + + + + + +b a + +
 440.0000p 1.000 + + + + + +b a + +
 460.0000p 1.000 + + + + + + b a + +
 480.0000p 1.000 + + + + + + b a + +
 500.0000p 1.000 + + + + + + b a + +
 520.0000p 1.000 + + + + + + b a + +
 540.0000p 1.000 + + + + + + b a + +
 560.0000p 1.000 + + + + + + b a + +
 580.0000p 1.000 + + + + + + b a + +
 600.0000p 1.000 -+------+------+------+------+------+---b--a------+------+-
 620.0000p 1.000 + + + + + + b a + +
 640.0000p 1.000 + + + + + + b a + +
 660.0000p 1.000 + + + + + + b a + +
 680.0000p 1.000 + + + + + + b a + +
 700.0000p 1.000 + + + + + + b a + +
 720.0000p 1.000 + + + + + + ba + +
 740.0000p 1.000 + + + + + + ba + +
 760.0000p 1.000 + + + + + + ba + +
 780.0000p 1.000 + + + + + + ba + +
 800.0000p 1.000 -+------+------+------+------+------+-----ba------+------+-
 820.0000p 1.000 + + + + + + ba + +
 840.0000p 1.000 + + + + + + ba + +
 860.0000p 1.000 + + + + + + ba + +
 880.0000p 1.000 + + + + + + ba + +
 900.0000p 1.000 + + + + + + ba + +
 920.0000p 1.000 + + + + + + ba + +
 940.0000p 1.000 + + + + + + 2 + +
 960.0000p 1.000 + + + + + + 2 + +
 980.0000p 1.000 + + + + + + 2 + +
 1.0000n 1.000 -+------+------+------+------+------+------2------+------+-
 + + + + +

FIGURE 8.4 Textual plot of RC circuit response

Chapter 8 Circuit Simulation292

FORTRAN and line printers. On modern computers with graphical user interfaces, the
.option post command is usually preferred. It generates a file (in this case, rc.tr0)contain-
ing the results of the specified (transient) analysis. Then, a separate graphical waveform viewer
can be used to look at and manipulate the waveforms. SPICE Explorer is a waveform viewer
from Synopsys compatible with HSPICE.

8.2.2 Transistor DC Analysis
One of the first steps in becoming familiar with a new CMOS process is to look at the I-V char-
acteristics of the transistors. Figure 8.5(a) shows test circuits for a unit (4/2

) nMOS transistor
in a 65 nm process at VDD = 1.0 V. The I-V characteristics are plotted in Figure 8.5(b) using the
SPICE deck in Figure 8.6.

.include reads another SPICE file from disk. In this example, it loads device models that
will be discussed further in Section 8.3. The circuit uses two independent voltage sources with
default values of 0 V; these voltages will be varied by the .dc command. The nMOS transistor is
defined with the MOSFET element M using the syntax

Mname drain gate source body model W=<width> L=<length>

Note that this process has = 25 nm and a minimum drawn channel length of 50 nm even
though it is nominally called a 65 nm process.

The .dc command varies the voltage source Vgs DC voltage from 0 to 1.0 V in increments
of 0.05 V. This is repeated multiple times as Vgs is swept from 0 to 1.0 V in 0.2 V increments to
compute many Ids vs. Vds curves at different values of Vgs .

8.2.3 Inverter Transient Analysis
Figure 8.7 shows the step response of an unloaded unit inverter, annotated with propagation delay
and 20–80% rise and fall times. Observe that significant initial overshoot from bootstrapping

Vgs Vds

Ids

(a)

4/2

(b)

0.0

20u

40u

60u

80u

I d
s

Vds

0.0 0.2 0.4 0.6 0.8 1.0

Vgs = 1.0

Vgs = 0.8

Vgs = 0.6

Vgs = 0.4

FIGURE 8.5 MOS I-V characteristics. Current in units of microamps (u).

8.2 A SPICE Tutorial 293

occurs because there is no load (see Section 4.4.6.6). The SPICE deck for the simulation is
shown in Figure 8.8.

This deck introduces the use of parameters and scaling. The .param statement defines
a parameter named SUPPLY to have a value of 1.0. This is then used to set Vdd and the
amplitude of the input pulse. If we wanted to evaluate the response at a different supply volt-
age, we would simply need to change the .param statement. The .scale sets a scale factor
for all dimensions that would by default be measured in meters. In this case, it sets the scale
to = 25 nm. Now the transistor widths and lengths in the inverter are specified in terms of

* mosiv.sp

*--
* Parameters and models
*--
.include '../models/ibm065/models.sp'
.temp 70
.option post

*--
* Simulation netlist
*--
*nmos
Vgs g gnd 0
Vds d gnd 0
M1 d g gnd gnd NMOS W=100n L=50n

*--
* Stimulus
*--
.dc Vds 0 1.0 0.05 SWEEP Vgs 0 1.0 0.2
.end

FIGURE 8.6 MOSIV SPICE deck

a
y

4/2

8/2

(a) (b)

(V)

0.0

0.5

0.2

0.8

1.0

0.0 20p 40p 60p 80p
t(s)

a

y

tpdf = 3.1 ps tpdr = 3.6 ps

tr = 3.5 ps

tf = 2.5 ps

FIGURE 8.7 Unloaded inverter

Chapter 8 Circuit Simulation294

lambda rather than in meters. This is convenient for chips designed using scalable rules, but
is not normally done in commercial processes with micron-based rules.

Recall that parasitic delay is strongly dependent on diffusion capacitance, which in
turn depends on the area and perimeter of the source and drain. As each diffusion region
in an inverter must be contacted, the geometry resembles that of Figure 2.8(a). The diffu-
sion width equals the transistor width and the diffusion length is 5 . Thus, the area of the
source and drain are AS = AD = 5W 2 and the perimeters are PS = PD = (2W + 10) .
Note that the + sign in the first column of a line indicates that it is a continuation of the
previous line. These dimensions are also affected by the scale factor.

8.2.4 Subcircuits and Measurement
One of the simplest measures of a process’s inherent speed is the fanout-of-4 inverter
delay. Figure 8.9(a) shows a circuit to measure this delay. The nMOS and pMOS transis-
tor sizes (in multiples of a unit 4/2 transistor) are listed below and above each gate,
respectively. X3 is the inverter under test and X4 is its load, which is four times larger than
X 3. To first order, these two inverters would be sufficient. However, the delay of X 3
also depends on the input slope, as discussed in Section 4.4.6.1. One way to obtain a real-
istic input slope is to drive node c with a pair of FO4 inverters X1 and X2. Also, as dis-
cussed in Section 4.4.6.6, the input capacitance of X4 depends not just on its Cgs but also
on Cgd. Cgd is Miller-multiplied as node e switches and would be effectively doubled if e
switched instantaneously. When e is loaded with X5, it switches at a slower, more realistic
rate, slightly reducing the effective capacitance presented at node d by X4. The waveforms
in Figure 8.9(b) are annotated with the rising and falling delays.

* inv.sp

*--
* Parameters and models
*--
.param SUPPLY=1.0
.option scale=25n
.include '../models/ibm065/models.sp'
.temp 70
.option post

*--
* Simulation netlist
*--
Vdd vdd gnd 'SUPPLY'
Vin a gnd PULSE 0 'SUPPLY' 25ps 0ps 0ps 35ps 80ps
M1 y a gnd gnd NMOS W=4 L=2
+ AS=20 PS=18 AD=20 PD=18
M2 y a vdd vdd PMOS W=8 L=2
+ AS=40 PS=26 AD=40 PD=26

*--
* Stimulus
*--
.tran 0.1ps 80ps
.end

FIGURE 8.8 INV SPICE deck

8.2 A SPICE Tutorial 295

SPICE decks are easier to read and maintain
when common circuit elements are captured as
subcircuits. For example, the deck in Figure 8.10
computes the FO4 inverter delay using an inverter
subcircuit.

The .global statement defines vdd and
gnd as global nodes that can be referenced from
within subcircuits. The inverter is declared as a
subcircuit with two terminals: a and y. It also
accepts two parameters specifying the width of
the nMOS and pMOS transistors; these parame-
ters have default values of 4 and 8, respectively.
The source and drain area and perimeter are func-
tions of the transistor widths. HSPICE evaluates
functions given inside single quotation marks.
The functions can include parameters, constants,
parentheses, +, , *, /, and ** (raised to a power).

The simulation netlist contains the power
supply, input source, and five inverters. Each
inverter is a subcircuit (X) element. As N and P are
not specified, each uses the default size. The M
parameter multiplies all the currents in the subcir-
cuit by the factor given, equivalent to M elements
wired in parallel. In this case, the fanouts are
expressed in terms of a parameter H. Thus, X2 has
the capacitance and output current of 4 unit
inverters, while X3 is equivalent to 16. Another
way to model the inverters would have been to use
the N and P parameters:

X1 a b inv N=4 P=8 * shape input waveform
X2 b c inv N=16 P=32 * reshape input waveform
X3 c d inv N=64 P=128 * device under test
X4 d e inv N=256 P=512 * load
X5 e f inv N=1024 P=2048 * load on load

However, a transistor of four times unit width does not have exactly the same input capaci-
tance or output current as four unit inverters tied in parallel, so the M parameter is preferred.

In this example, the subcircuit declaration and simulation netlist are part of the
SPICE deck. When working with a standard cell library, it is common to keep subcircuit
declarations in their own files and reference them with a .include statement instead.
When the simulation netlist is extracted from a schematic or layout CAD system, it is
common to put the netlist in a separate file and .include it as well.

The .measure statement measures simulation results and prints them in the listing
file. The deck measures the rising propagation delay tpdr as the difference between the time
that the input c first falls through VDD /2 and the time that the output d first rises through
VDD /2. TRIG and TARG indicate the trigger and target events between which delay is mea-
sured. The .measure statement can also be used to compute functions of other measure-
ments. For example, the average FO4 inverter propagation delay tpd is the mean of tpdr and
tpdf , 17 ps. The 20–80% rise time is tr = 20 ps and the fall time is tf = 17 ps.

a b c d e2 8 f

(b)

(a)

Shape Input

Device
Under
Test Load

Load on
Load

32 128 512
X1 X2 X3 X4 X5

1 4 16 64 256

a

b

c

d

e

f a

b

c

d

e

f

t(s)
0.0 50p 100p 150p 200p 250p

 (V)

0.0

0.2

0.4

0.6

0.8

1.0

tpdf = 16 ps tpdr = 18 ps

FIGURE 8.9 Fanout-of-4 inverters

Chapter 8 Circuit Simulation296

8.2.5 Optimization
In many examples, we have assumed that a P/N ratio of 2:1 gives approximately equal rise
and fall delays. The FO4 inverter simulation showed that a ratio of 2:1 gives rising delays
that are slower than the falling delays because the pMOS mobility is less than half that of
the nMOS. You could repeatedly run simulations with different default values of P to find
the ratio for equal delay. HSPICE has built-in optimization capabilities that will automat-

* fo4.sp
*--
* Parameters and models
*--
.param SUPPLY=1.0
.param H=4
.option scale=25n
.include '../models/ibm065/models.sp'
.temp 70
.option post
*--
* Subcircuits
*--
.global vdd gnd
.subckt inv a y N=4 P=8
M1 y a gnd gnd NMOS W='N' L=2
+ AS='N*5' PS='2*N+10' AD='N*5' PD='2*N+10'
M2 y a vdd vdd PMOS W='P' L=2
+ AS='P*5' PS='2*P+10' AD='P*5' PD='2*P+10'
.ends
*--
* Simulation netlist
*--
Vdd vdd gnd 'SUPPLY'
Vin a gnd PULSE 0 'SUPPLY' 0ps 20ps 20ps 120ps 280ps
X1 a b inv * shape input waveform
X2 b c inv M='H' * reshape input waveform
X3 c d inv M='H**2' * device under test
X4 d e inv M='H**3' * load
X5 e f inv M='H**4' * load on load
*--
* Stimulus
*--
.tran 0.1ps 280ps
.measure tpdr * rising prop delay
+ TRIG v(c) VAL='SUPPLY/2' FALL=1
+ TARG v(d) VAL='SUPPLY/2' RISE=1
.measure tpdf * falling prop delay
+ TRIG v(c) VAL='SUPPLY/2' RISE=1
+ TARG v(d) VAL='SUPPLY/2' FALL=1
.measure tpd param='(tpdr+tpdf)/2' * average prop delay
.measure trise * rise time
+ TRIG v(d) VAL='0.2*SUPPLY' RISE=1
+ TARG v(d) VAL='0.8*SUPPLY' RISE=1
.measure tfall * fall time
+ TRIG v(d) VAL='0.8*SUPPLY' FALL=1
+ TARG v(d) VAL='0.2*SUPPLY' FALL=1
.end

FIGURE 8.10 FO4 SPICE deck

8.2 A SPICE Tutorial 297

* fo4opt.sp
*--
* Parameters and models
*--
.param SUPPLY=1.0
.option scale=25n
.include '../models/ibm065/models.sp'
.temp 70
.option post
*--
* Subcircuits
*--
.global vdd gnd
.subckt inv a y N=4 P=8
M1 y a gnd gnd NMOS W='N' L=2
+ AS='N*5' PS='2*N+10' AD='N*5' PD='2*N+10'
M2 y a vdd vdd PMOS W='P' L=2
+ AS='P*5' PS='2*P+10' AD='P*5' PD='2*P+10'
.ends
*--
* Simulation netlist
*--
Vdd vdd gnd 'SUPPLY'
Vin a gnd PULSE 0 'SUPPLY' 0ps 20ps 20ps 120ps 280ps
X1 a b inv P='P1' * shape input waveform
X2 b c inv P='P1' M=4 * reshape input waveform
X3 c d inv P='P1' M=16 * device under test
X4 d e inv P='P1' M=64 * load
X5 e f inv P='P1' M=256 * load on load
*--
* Optimization setup
*--
.param P1=optrange(8,4,16) * search from 4 to 16, guess 8
.model optmod opt itropt=30 * maximum of 30 iterations
.measure bestratio param='P1/4' * compute best P/N ratio
*--
* Stimulus
*--
.tran 0.1ps 280ps SWEEP OPTIMIZE=optrange RESULTS=diff MODEL=optmod
.measure tpdr * rising propagation delay
+ TRIG v(c) VAL='SUPPLY/2' FALL=1
+ TARG v(d) VAL='SUPPLY/2' RISE=1
.measure tpdf * falling propagation delay
+ TRIG v(c) VAL='SUPPLY/2' RISE=1
+ TARG v(d) VAL='SUPPLY/2' FALL=1
.measure tpd param='(tpdr+tpdf)/2' goal=0 * average prop delay
.measure diff param='tpdr-tpdf' goal = 0 * diff between delays
.end

FIGURE 8.11 FO4OPT SPICE deck

ically tweak parameters to achieve some goal and report what parameter value gave the
best results. Figure 8.11 shows a modified version of the FO4 inverter simulation using
the optimizer.

The subcircuits X 1–X 5 override their default pMOS widths to use a width of
P1 instead. In the optimization setup, the difference of tpdr and tpdf is measured. The
goal of the optimization will be to drive this difference to 0. To do this, P1 may be var-

Chapter 8 Circuit Simulation298

ied from 4 to 16, with an initial guess of 8. The optimizer may use up to 30 iterations to
find the best value of P1. Because the nMOS width is fixed at 4, the best P/N ratio is com-
puted as P1/4. The transient analysis includes a SWEEP statement containing the parame-
ter to vary, the desired result, and the number of iterations.

HSPICE determines that the P/N ratio for equal rise and fall delay is 2.87:1, giving a
rising and falling delay of 17.9 ps. This is slower than what the 2:1 ratio provides and
requires large, power-hungry pMOS transistors, so such a high ratio is seldom used.

A similar scenario is to find the P/N ratio that gives lowest average delay. By changing
the .tran statement to use RESULTS=tpd, we find a best ratio of 1.79:1 with rising, fall-
ing, and average propagation delays of 18.8, 15.2, and 17.0 ps, respectively. Whenever you
do an optimization, it is important to consider not only the optimum but also the sensitiv-
ity to deviations from this point. Further simulation finds that P/N ratios of anywhere
from 1.5:1 to 2.2:1 all give an average propagation delay of better than 17.2 ps. There is no
need to slavishly stick to the 1.79:1 “optimum.” The best P/N ratio in practice is a compro-
mise between using smaller pMOS devices to save area and power and using larger devices
to achieve more nearly equal rise/fall times and avoid the hot electron reliability problems
induced by very slow rising edges in circuits with weak pMOS transistors. P/N ratios are
discussed further in Section 9.2.1.6.

8.2.6 Other HSPICE Commands
The full HSPICE manual fills over 4000 pages and includes many more capabilities than
can be described here. A few of the most useful additional commands are covered in this
section. Section 8.3 describes transistor models and library calls, and Section 8.6 discusses
modeling interconnect with lossy transmission lines.

.option accurate

Tighten integration tolerances to obtain more accurate results. This is useful for oscil-
lators and high-gain analog circuits or when results seem fishy.

.option autostop

Conclude simulation when all .measure results are obtained rather than continuing for
the full duration of the .tran statement. This can substantially reduce simulation time.

.temp 0 70 125

Repeat the simulation three times at temperatures of 0, 70, and 125 °C. Device mod-
els may contain information about how changing temperature changes device perfor-
mance.

.op

Print the voltages, currents, and transistor bias conditions at the DC operating point.

8.3 Device Models
Most of the examples in Section 8.2 included a file containing transistor models. SPICE
provides a wide variety of MOS transistor models with various trade-offs between complex-
ity and accuracy. Level 1 and Level 3 models were historically important, but they are no
longer adequate to accurately model very small modern transistors. BSIM models are more

8.3 Device Models 299

accurate and are presently the most widely used. Some companies use their own proprietary
models. This section briefly describes the main features of each of these models. It also
describes how to model diffusion capacitance and how to run simulations in various process
corners. The model descriptions are intended only as an overview of the capabilities and lim-
itations of the models; refer to a SPICE manual for a much more detailed description if one
is necessary.

8.3.1 Level 1 Models
The SPICE Level 1, or Shichman-Hodges Model [Shichman68] is closely related to the
Shockley model described in EQ (2.10), enhanced with channel length modulation and
the body effect. The basic current model is:

 (8.1)

The parameters from the SPICE model are given in ALL CAPS. Notice that is written
instead as KP(Weff /Leff), where KP is a model parameter playing the role of k� from
EQ (2.7). Weff and Leff are the effective width and length, as described in EQ (2.48). The
LAMBDA term (LAMBDA = 1/VA) models channel length modulation (see Section
2.4.2).

The threshold voltage is modulated by the source-to-body voltage Vsb through the
body effect (see Section 2.4.3.1). For nonnegative Vsb , the threshold voltage is

 (8.2)

Notice that this is identical to EQ (2.30), where VTO is the “zero-bias” threshold voltage
Vt 0, GAMMA is the body effect coefficient , and PHI is the surface potential s .

The gate capacitance is calculated from the oxide thickness TOX. The default gate
capacitance model in HSPICE is adequate for finding the transient response of digital cir-
cuits. More elaborate models exist that capture nonreciprocal effects that are important for
analog design.

Level 1 models are useful for teaching because they are easy to correlate with hand
analysis, but are too simplistic for modern design. Figure 8.12 gives an example of a Level
1 model illustrating the syntax. The model also includes terms to compute the diffusion
capacitance, as described in Section 8.3.4.

V Vt sb= + +()VTO GAMMA PHI PHI

.model NMOS NMOS (LEVEL=1 TOX=40e-10 KP=155E-6 LAMBDA=0.2
+ VTO=0.4 PHI=0.93 GAMMA=0.6
+ CJ=9.8E-5 PB=0.72 MJ=0.36
+ CJSW=2.2E-10 PHP=7.5 MJSW=0.1)

FIGURE 8.12 Sample Level 1 Model

I

V V

W
L

V V V
ds

gs t

ds gs t=

<

+ ×()
0

1

cutoff

KP LAMBDAeff

eff

<

+

V V V V V

W
L

ds
ds ds gs t2

1

linear

KP

2
LAMeff

eff

BDA saturation×()() >V V V V V Vds gs t ds gs t

2

Chapter 8 Circuit Simulation300

8.3.2 Level 2 and 3 Models
The SPICE Level 2 and 3 models add effects of velocity saturation, mobility degradation,
subthreshold conduction, and drain-induced barrier lowering. The Level 2 model is based
on the Grove-Frohman equations [Frohman69], while the Level 3 model is based on
empirical equations that provide similar accuracy, faster simulation times, and better con-
vergence. However, these models still do not provide good fits to the measured I-V char-
acteristics of modern transistors.

8.3.3 BSIM Models
The Berkeley Short-Channel IGFET1 Model (BSIM) is a very elaborate model that is
now widely used in circuit simulation. The models are derived from the underlying device
physics but use an enormous number of parameters to fit the behavior of modern transis-
tors. BSIM versions 1, 2, 3v3, and 4 are implemented as SPICE levels 13, 39, 49, and 54,
respectively.

BSIM 3 and 4 require entire books [Cheng99, Dunga07] to describe the models.
They include over 100 parameters and the device equations span 27 pages. BSIM is quite
good for digital circuit simulation. Features of the model include:

� Continuous and differentiable I-V characteristics across subthreshold, linear, and
saturation regions for good convergence

� Sensitivity of parameters such as Vt to transistor length and width
� Detailed threshold voltage model including body effect and drain-induced barrier

lowering
� Velocity saturation, mobility degradation, and other short-channel effects
� Multiple gate capacitance models
� Diffusion capacitance and resistance models
� Gate leakage models (in BSIM 4)

Some device parameters such as threshold voltage change significantly with device
dimensions. BSIM models can be binned with different models covering different ranges
of length and width specified by LMIN, LMAX, WMIN, and WMAX parameters. For
example, one model might cover transistors with channel lengths from 0.18–0.25 m,
another from 0.25–0.5 m, and a third from 0.5–5 m. SPICE will complain if a transis-
tor does not fit in one of the bins.

As the BSIM models are so complicated, it is impractical to derive closed-form equa-
tions for propagation delay, switching threshold, noise margins, etc., from the underlying
equations. However, it is not difficult to find these properties through circuit simulation.
Section 8.4 will show simple simulations to plot the device characteristics over the regions
of operation that are interesting to most digital designers and to extract effective capaci-
tance and resistance averaged across the switching transition. The simple RC model con-
tinues to give the designer important insight about the characteristics of logic gates.

8.3.4 Diffusion Capacitance Models
The p–n junction between the source or drain diffusion and the body forms a diode. We
have seen that the diffusion capacitance determines the parasitic delay of a gate and

1IGFET in turn stands for Insulated-Gate Field Effect Transistor, a synonym for MOSFET.

8.3 Device Models 301

depends on the area and perimeter of the diffusion. HSPICE provides a number of meth-
ods to specify this geometry, controlled by the ACM (Area Calculation Method) parame-
ter, which is part of the transistor model. The model must also have values for junction
and sidewall diffusion capacitance, as described in Section 2.3.3. The diffusion capacitance
model is common across most device models including Levels 1–3 and BSIM.

By default, HSPICE models use ACM = 0. In this method, the designer must specify
the area and perimeter of the source and drain of each transistor. For example, the dimen-
sions of each diffusion region from Figure 2.8 are listed in Table 8.3 (in units of 2 for area
or for perimeter). A SPICE description of the shared contacted diffusion case is shown
in Figure 8.13, assuming .option scale is set to the value of .

* Shared contacted diffusion
M1 mid b bot gnd NMOS W='w' L=2
+ AS='w*5' PS='2*w+10' AD='w*3' PD='w+6'
M2 top a mid gnd NMOS W='w' L=2
+ AS='w*3' PS='w+6' AD='w*5' PD='2*w+10'

FIGURE 8.13 SPICE model of transistors with shared contacted diffusion

The SPICE models also should contain parameters CJ, CJSW, PB, PHP, MJ, and
MJSW. Assuming the diffusion is reverse-biased and the area and perimeter are specified,
the diffusion capacitance between source and body is computed as described in Section
2.3.3.

(8.3)

The drain equations are analogous, with S replaced by D in the model parameters.
The BSIM3 models offer a similar area calculation model (ACM = 10) that takes into

account the different sidewall capacitance on the edge adjacent to the gate. Note that the
PHP parameter is renamed to PBSW to be more consistent.

(8.4)

If the area and perimeter are not specified, they default to 0 in ACM = 0 or 10,
grossly underestimating the parasitic delay of the gate. HSPICE also supports ACM = 1,
2, 3, and 12 that provide nonzero default values when the area and perimeter are not spec-
ified. Check your models and read the HSPICE documentation carefully.

TABLE 8.3 Diffusion area and perimeter

AS1 / AD2 PS1 / PD2 AD1 / AS2 PD1 / PS2

(a) Isolated contacted diffusion W × 5 2 × W + 10 W × 5 2 × W + 10
(b) Shared contacted diffusion W × 5 2 × W + 10 W × 3 W + 6
(c) Merged uncontacted diffusion W × 5 2 × W + 10 W × 1.5 W + 3

C
V V

sb
sb

MJ
sb= × × + + × × +AS CJ

PB
PS CJSW

PHP
1 1

MJSW

C
V

W
V

sb
sb

MJ
sb= × × + + × × +AS CJ

PB
PS) CJSW

PBS
1 1(

WW

CJSWG
PBSWG

+

× × +

MJSW

sb
MJSWG

W
V

1

Chapter 8 Circuit Simulation302

The diffusion area and perimeter are also used to compute the junction leakage cur-
rent. However, this current is generally negligible compared to subthreshold leakage in
modern devices.

8.3.5 Design Corners
Engineers often simulate circuits in multiple design corners to verify operation across vari-
ations in device characteristics and environment. HSPICE includes the .lib statement
that makes changing libraries easy. For example, the deck in Figure 8.14 runs three simu-
lations on the step response of an unloaded inverter in the TT, FF, and SS corners.

* corner.sp
* Step response of unloaded inverter across process corners

*--
* Parameters and models
*--
.option scale=25n
.param SUP=1.0 * Must set before calling .lib
.lib '../models/ibm065/opconditions.lib' TT
.option post

*--
* Simulation netlist
*--
Vdd vdd gnd 'SUPPLY'
Vin a gnd PULSE 0 'SUPPLY' 25ps 0ps 0ps 35ps 80ps
M1 y a gnd gnd NMOS W=4 L=2
+ AS=20 PS=18 AD=20 PD=18
M2 y a vdd vdd PMOS W=8 L=2
+ AS=40 PS=26 AD=40 PD=26

*--
* Stimulus
*--
.tran 0.1ps 80ps
.alter
.lib '../models/ibm065/opconditions.lib' FF
.alter
.lib '../models/ibm065/opconditions.lib' SS
.end

FIGURE 8.14 CORNER SPICE deck

The deck first sets SUP to the nominal supply voltage of 1.0 V. It then invokes .lib
to read in the library specifying the TT conditions. In the stimulus, the .alter statement
is used to repeat the simulation with changes. In this case, the design corner is changed.
Altogether, three simulations are performed and three sets of waveforms are generated for
the three design corners.

The library file is given in Figure 8.15. Depending on what library was specified, the
temperature is set (in degrees Celsius, with .temp) and the VDD value SUPPLY is calcu-
lated from the nominal SUP. The library loads the appropriate nMOS and pMOS transis-
tor models. A fast process file might have lower nominal threshold voltages Vt 0, greater
lateral diffusion LD , and lower diffusion capacitance values.

8.4 Device Characterization 303

* opconditions.lib
* For IBM 65 nm process

* TT: Typical nMOS, pMOS, voltage, temperature
.lib TT
.temp 70
.param SUPPLY='SUP'
.include 'modelsTT.sp'
.endl TT

* SS: Slow nMOS, pMOS, low voltage, high temperature
.lib SS
.temp 125
.param SUPPLY='0.9 * SUP'
.include 'modelsSS.sp'
.endl SS

* FF: Fast nMOS, pMOS, high voltage, low temperature
.lib FF
.temp 0
.param SUPPLY='1.1 * SUP'
.include 'modelsFF.sp'
.endl FF

* FS: Fast nMOS, Slow pMOS, typical voltage and temperature
.lib FS
.temp 70
.param SUPPLY='SUP'
.include 'modelsFS.sp'
.endl FS

* SF: Slow nMOS, Fast pMOS, typical voltage and temperature
.lib SF
.temp 70
.param SUPPLY='SUP'
.include 'modelsSF.sp'
.endl SF

FIGURE 8.15 OPCONDITIONS library

8.4 Device Characterization
Modern SPICE models have so many parameters that the designer cannot easily read key
performance characteristics from the model files. A more convenient approach is to run a
set of simulations to extract the effective resistance and capacitance, the fanout-of-4
inverter delay, the I-V characteristics, and other interesting data. This section describes
these simulations and compares the results across a variety of CMOS processes.

8.4.1 I-V Characteristics
When familiarizing yourself with a new process, a starting point is to plot the current-
voltage (I-V) characteristics. Although digital designers seldom make calculations directly
from these plots, it is helpful to know the ON current of nMOS and pMOS transistors,
how severely velocity-saturated the process is, how the current rolls off below threshold,
how the devices are affected by DIBL and body effect, and so forth. These plots are made

Chapter 8 Circuit Simulation304

with DC sweeps, as discussed in Section 8.2.2. Each transistor is 1 m wide in a represen-
tative 65 nm process at 70 °C with VDD = 1.0 V. Figure 8.16 shows nMOS characteristics
and Figure 8.17 shows pMOS characteristics.

Figure 8.16(a) plots Ids vs. Vds at various values of Vgs , as was done in Figure 8.5. The
saturation current would ideally increase quadratically with Vgs – Vt , but in this plot it
shows closer to a linear dependence, indicating that the nMOS transistor is severely velocity-
saturated (closer to 1 than 2 in the -power model). The significant increase in saturation
current with Vds is caused by channel-length modulation. Figure 8.16(b) makes a similar
plot for a device with a drawn channel length of twice minimum. The current drops by less
than a factor of two because it experiences less velocity saturation. The current is slightly
flatter in saturation because channel-length modulation has less impact at longer channel
lengths.

Figure 8.16(c) plots Ids vs. Vgs on a semilogarithmic scale for Vds = 0.1 V and 1.0 V.
The straight line at low Vgs indicates that the current rolls off exponentially below thresh-
old. The difference in subthreshold leakage at the varying drain voltage reflects the effects

Vgs = 1.0
Vgs = 1.0

Vgs = 0.8

Vgs = 0.6

Vgs = 0.4

Vgs = 0.8

Vgs = 0.6

Vgs = 0.4

0.0 0.2 0.4 0.6 0.8 1.0

Vds

I d
s

0.0

200u

400u

600u

800u

(a)

(c)

(b)

(d)

0.0 0.2 0.4 0.6 0.8 1.0

Vds

I d
s

0.0

100u

200u

300u

400u

500u

Vbs = 0.2

Vbs = −0.2

0.0 0.2 0.4 0.6 0.8 1.0

Vgs

I d
s

0.0

50u

100u

150u

200u

250u

Vds = 1.0

Vds = 0.1

Subthreshold
Slope

Idsat = 750 μA

Ioff = 27 nA

0.0 0.2 0.4 0.6 0.8 1.0

Vgs

I d
s

100p

10n

1u

100u

10.0m

= 105 mV/decade

DIBL = 110 mV

FIGURE 8.16 65 nm nMOS I-V characteristics

8.4 Device Characterization 305

of drain-induced barrier lowering (DIBL) effectively reducing Vt at high Vds. The satura-
tion current Idsat is measured at Vgs = Vds = VDD, while the OFF current Ioff is measured
at Vgs = 0 and Vds = VDD. The subthreshold slope is 105 mV/decade and DIBL reduces the
effective threshold voltage by about 110 mV over the range of Vds. The ratio of ON to
OFF current is 4–5 orders of magnitude.

Figure 8.16(d) makes a similar plot on a linear scale for Vbs = –0.2, 0, and 0.2 V. Vds is
held constant at 0.1 V. The curves shift horizontally, indicating that the body effect
increases the threshold voltage by 125 mV / V as Vbs becomes more negative.

Compare the pMOS characteristics in Figure 8.17. The saturation current for a
pMOS transistor is lower than for the nMOS (note the different vertical scales), but the
device is not as velocity-saturated.

Also compare the 180 nm nMOS characteristics in Figure 8.18. The saturation cur-
rent is lower in the older technology, leading to lower performance. However, the device
characteristics are closer to ideal. The channel-length modulation effect is not as pro-
nounced, though velocity saturation is still severe. The subthreshold slope is 90 nV per
decade and DIBL reduces the effective threshold voltage by 40 mV. The ratio of ON to
OFF current is 6–7 orders of magnitude.

Vbs 0.2

Vbs 0.2

ds

100u

75u

50u

25u

0.0

Idsat 370 A

Ioff 22 nA

Subthreshold
Slope

ds

100p

10n

1u

100u

10.0m

 112 mV/decade

DIBL 130 mV

Vgs 0.4 Vgs 0.4

Vgs 0.6

Vgs 0.8

Vgs 1.0

Vgs 0.6

Vgs 0.8

Vgs 1.0

Vds 1.0

Vds 0.1

1.0 0.8 0.6

(a) (b)

(c) (d)

0.4 0.2 0.0

Vds

1.0 0.8 0.6 0.4 0.2 0.0

Vgs

ds

400u

300u

200u

100u

0.0

1.0 0.8 0.6 0.4 0.2 0.0

Vgs

1.0 0.8 0.6 0.4 0.2 0.0

Vds

ds

200u

150u

100u

50u

0.0

FIGURE 8.17 65 nm pMOS I-V characteristics

Chapter 8 Circuit Simulation306

8.4.2 Threshold Voltage
In the Shockley model, the threshold voltage Vt is defined as
the value of Vgs below which Ids becomes 0. In the real transistor
characteristics shown in Figure 8.16(c), subthreshold current
continues to flow for Vgs < Vt , so measuring or even defining the
threshold voltage becomes problematic. Moreover, the thresh-
old voltage varies with L, W, Vds , and Vbs . At least eleven differ-
ent methods have been used in the literature to determine the
threshold voltage from measured Ids-Vgs data [Ortiz-Conde02].
This section will explore two common methods (constant cur-
rent and linear extrapolation) and a hybrid that combines the
advantages of each.

The constant current method defines threshold as the gate
voltage at a given drain current Icrit. This method is easy to use,
but depends on an arbitrary choice of critical drain current. A
typical choice of Icrit is 0.1 A × (W/L). Figure 8.19 shows how
the extracted threshold voltage varies with the choice of Icrit =
0.1 or 1 A at Vds = 100 mV.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

I d
s

Vgs

0.0

50u

100u

150u

200u

Vbs = 0.2

Vbs = −0.2I d
s

Vgs

100p

10n

1u

100u

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Ioff = 90 pA

Idsat = 570 μA
Vds = 1.8

Vds = 0.1

DIBL = 40 mV

Subthreshold
Slope

= 90 mV/decade

0.0

(a) (b)

(c) (d)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Vds

I d
s

Vgs = 1.8 Vgs = 1.8

Vgs = 1.5

Vgs = 1.2

Vgs = 0.9

Vgs = 0.6

Vgs = 1.5

Vgs = 1.2

Vgs = 0.9

Vgs = 0.6

0.0

100u

200u

300u

400u

500u

600u

Vds

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

I d
s

0.0

100u

200u

300u

400u

FIGURE 8.18 180 nm nMOS I-V characteristics

Vds = 0.1

0.0 0.2 0.4 0.6 0.8 1.0

Vgs

I d
s

100p

10n

1u

100u

10m

Vt

FIGURE 8.19 Constant current threshold voltage
extraction method

8.4 Device Characterization 307

The linear extrapolation (or maximum-gm) method
extrapolates the gate voltage from the point of maximum
slope on the Ids-Vgs characteristics. It is unambiguous but
valid only for the linear region of operation (low Vds)
because of the series resistance of the source/drain diffusion
and because drain-induced barrier lowering effectively
reduces the threshold at high Vds . Figure 8.20 shows how
the threshold is extracted from measured data using the lin-
ear extrapolation method at Vds = 100 mV. Observe that
this method can give a significantly different threshold
voltage and nonnegligible current at threshold, so it is
important to check how the threshold voltage was mea-
sured when interpreting threshold voltage specifications.
Icrit is defined to be the value of Ids at Vgs = Vt .

 [Zhou99] describes a hybrid method of extracting
threshold voltage that is valid for all values of Vds and does
not depend on an arbitrary choice of critical current. Vt and
Icrit are found at low Vds (e.g., 100 mV) for a given value of
L and W using the linear extrapolation method. For other
values of Vds , Vt is defined to be the gate voltage when Ids =
Icrit.

Figure 8.21(a) plots the threshold voltage Vt vs. length
for a 16 wide device over a variety of design corners and
temperatures. The threshold is extracted using the linear
extrapolation method and clearly is not constant. It
decreases with temperature and is lower in the FF corner
than in the SS corner. In an ideal long-channel transistor,
the threshold is independent of width and length. In a real
device, the geometry sensitivity depends on the particular
doping profile of the process. This data shows the threshold
decreasing with L, but in many processes, the threshold
increases with L. Figure 8.21(b) plots Vt against Vds for 16/2

 transistors using Zhou’s method. The threshold voltage
decreases with Vds because of DIBL.

Maximum
Slope

Icrit

Vt0.3 0.4 0.5 0.550.450.35

Vgs

0.0 0.4 0.8 1.00.60.2

Vgs

0.0

50u

150u

250u

I d
s

200u

100u

0.0

10u

30u

50u

I d
s

40u

20u

Vds = 0.1

FIGURE 8.20 Linear extrapolation threshold voltage extraction
method

2 4 6 8 10

Length ()

0.35

0.40

0.45

0.50

0.30

(a) (b)

V
t

FF 125

TT 125
TT 70
TT 0

SS 0

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.0 0.2 0.4 0.6 0.8 1.0

Vds

Vds = 0.1 V L = 2
SS 0

TT 70

TT 125
FF 125

TT 0

FIGURE 8.21 MOS threshold voltages

Chapter 8 Circuit Simulation308

The lesson is that Vt depends on length, width, temperature, processing, and how you
define it. The current does not abruptly drop to zero at threshold and is significant even
for OFF devices in nanometer processes.

8.4.3 Gate Capacitance
When using RC models to estimate gate delay, we need to know the effective gate capaci-
tance for delay purposes. In Section 2.3.2, we saw that the gate capacitance is voltage-
dependent. The gate-to-drain component may be effectively doubled when a gate switches

because the gate and drain switch in opposite directions. Neverthe-
less, we can obtain an effective capacitance averaged across the
switching time. We use fanout-of-4 inverters to represent gates with
“typical” switching times because we know from logical effort that cir-
cuits perform well when the stage effort is approximately 4.

Figure 8.22 shows a circuit for determining the effective gate
capacitance of inverter X4. The approach is to adjust the capacitance
Cdelay until the average delay from c to g equals the delay from c to d.
Because X6 and X3 have the same input slope and are the same size,
when they have the same delay, Cdelay must equal the effective gate
capacitance of X4. X1 and X2 are used to produce a reasonable input

slope on node c. A single inverter could suffice, but the inverter pair is even better because
it provides a slope on c that is essentially independent of the rise time at a. X5 is the load
on X4 to prevent node e from switching excessively fast, which would overpredict the sig-
nificance of the gate-to-drain capacitance in X4.

Figure 8.23 (on page 309) lists a SPICE deck that uses the optimizer to automatically
tune Cdelay until the delays are equalized. This capacitance is divided by the total gate
width (in m) of X4 to obtain the capacitance per micron of gate width Cpermicron. This
capacitance is listed as Cg (delay) in Table 8.5 for a variety of processes. Note that the deck
sets diffusion area and perimeter to 0 to measure only the gate capacitance.

Gate capacitance is also important for dynamic power consumption, as was given in
EQ (5.10). The effective gate capacitance for power is typically somewhat higher than for
delay because Cgd is effectively doubled by the Miller effect when we wait long enough for
the drain to completely switch. Figure 8.24 shows a circuit for measuring gate capacitance
for power purposes. A voltage step is applied to the input, and the current out of the volt-
age source is integrated. The effective capacitance for dynamic power consumption is:

(8.5)

Again, this capacitance can be divided by the total transistor width to find the effective
gate capacitance per micron.

8.4.4 Parasitic Capacitance
The parasitic capacitance associated with the source or drain of a transistor includes
the gate-to-diffusion overlap capacitance, Cgol , and the diffusion area and perimeter
capacitance Cjb and Cjbsw. As discussed in Section 8.3.4, some models assign a different
capacitance Cjbswg to the perimeter along the gate side. The diffusion capacitance is volt-
age-dependent, but as with gate capacitance, we can extract an effective capacitance aver-
aged over the switching transition to use for delay estimation.

C
i t dt

VDD
eff power

in=
()

b c d e f
X2 X3 X4 X5

4

8

8

16

32

64

128

256

X6
8

16 g
Cdelay

a
X1

1

2

FIGURE 8.22 Circuit for extracting effective gate
capacitance for delay estimation

X1
1

2iin

Vin

FIGURE 8.24 Circuit for
extracting effective gate
capacitance for power
estimation

8.4 Device Characterization 309

Figure 8.25 shows circuits for extracting these capacitances. They operate in much the
same way as the gate capacitance extraction from Section 8.4.3. The first two fanout-of-4
inverters shape the input slope to match a typical gate. X3 drives the drain of an OFF

* capdelay.hsp
* Extract effective gate capacitance for delay estimation.
*--
* Parameters and models
*--
.option scale=25n
.param SUP=1.0 * Must set before calling .lib
.lib '../models/ibm065/opconditions.lib' TT
.option post
*--
* Subcircuits
*--
.global vdd gnd
.subckt inv a y
M1 y a gnd gnd NMOS W=16 L=2 AD=0 AS=0 PD=0 PS=0
M2 y a vdd vdd PMOS W=32 L=2 AD=0 AS=0 PD=0 PS=0
.ends
*--
* Simulation netlist
*--
Vdd vdd gnd 'SUPPLY' * SUPPLY is set by .lib call
Vin a gnd pulse 0 'SUPPLY' 0ps 20ps 20ps 120ps 280ps
X1 a b inv * set appropriate slope
X2 b c inv M=4 * set appropriate slope
X3 c d inv M=8 * drive real load
X4 d e inv M=32 * real load
X5 e f inv M=128 * load on load (important!)
X6 c g inv M=8 * drive linear capacitor
cdelay g gnd 'CperMicron*32*(16+32)*25n/1u' * linear capacitor
*--
* Optimization setup
*--
.measure errorR param='invR - capR' goal=0
.measure errorF param='invF - capF' goal=0
.param CperMicron=optrange(2f, 0.2f, 3.0f)
.model optmod opt itropt=30
.measure CperMic param = 'CperMicron'
*--
* Stimulus
*--
.tran 1ps 280ns SWEEP OPTIMIZE = optrange
+ RESULTS=errorR,errorF MODEL=optmod
.measure invR
+ TRIG v(c) VAL='SUPPLY/2' FALL=1
+ TARG v(d) VAL='SUPPLY/2' RISE=1
.measure capR
+ TRIG v(c) VAL='SUPPLY/2' FALL=1
+ TARG v(g) VAL='SUPPLY/2' RISE=1
.measure invF
+ TRIG v(c) VAL='SUPPLY/2' RISE=1
+ TARG v(d) VAL='SUPPLY/2' FALL=1
.measure capF
+ TRIG v(c) VAL='SUPPLY/2' RISE=1
+ TARG v(g) VAL='SUPPLY/2' FALL=1
.end

FIGURE 8.23 CAPDELAY SPICE deck

Chapter 8 Circuit Simulation310

transistor M1 with specified W, AD, and PD. X4 drives a simple capac-
itor, whose value is optimized so that the delay of X3 and X4 are equal.
This value is the effective capacitance of M1’s drain. Similar simulations
must be run to find the parasitic capacitances of pMOS transistors.

Table 8.4 lists the appropriate values of W, AD, and PD to extract
each of the capacitances. The sizes are chosen such that the gate delays
and slope on node d are reasonable when a unit transistor is 16 wide
(as in Figure 8.23). It also gives values to find the effective capacitance
Cd of isolated-contacted, shared-contacted, and merged-uncontacted
diffusion regions. The capacitance is found, assuming the transistors are
wide enough that the perimeter perpendicular to the polysilicon gate is a

negligible fraction of the overall capacitance. The AD and PD dimensions are based on
the layouts of Figure 2.8; you should substitute your own design rules. The total capaci-
tance of shared and merged regions should be split between the two transistors sharing the
diffusion node. The capacitance can be converted to units per micron (or per micron
squared) by normalizing for the value of . For example, in our 65 nm process, if Cdelay is
23 fF for gate overlap, the capacitance per micron is

(8.6)

TABLE 8.4 Dimensions for diffusion capacitance extraction

W (l) AD (l2) PD (l) To find effective C per micron

Cgol 1600 0 0 Cdelay /1600 (per m)

Cjb 0 8000 0 Cdelay /8000 2 (per m2)

Cjbsw 0 0 1600 Cdelay /1600 (per m)

Cjbswg 1600 0 1600 Cdelay /1600 – Cgol (per m)

Cd (isolated-contacted) 1600 8000 3200 Cdelay /1600 (per m of gate width)

Cd (shared-contacted) 3200 9600 3200 Cdelay /1600 (per m of gate width)

Cd (merged-uncontacted) 3200 4800 3200 Cdelay /1600 (per m of gate width)

C gol = ()() =
23

1600
0 57

0 025

fF fF

mm.
.

b c d
X2 X3

4

8

8

16

X4
8

16 e
Cdelay

a
X1

1

2

W
AD, PD

M1

FIGURE 8.25 Circuit for extracting effective
parasitic capacitance for delay estimation

h

2h

1

2

(a) Fanout of h Inverter (b) Rising Delay (c) Falling Delay

Rp/2

3hC + 3Cd Rn 3hC + 3Cd

tpdr =
Rp(3hC + 3Cd) tpdf = Rn(3hC + 3Cd)
2

FIGURE 8.26 RC delay model for fanout-of-h inverter

8.4.5 Effective Resistance
If a unit transistor has gate capacitance C, parasitic capacitance Cd , and resistance Rn (for
nMOS) or Rp (for pMOS), the rising and falling delays of a fanout-of-h inverter with a
2:1 P/N ratio can be found according to Figure 8.26. These delays can readily be measured
from the FO4 inverter simulation in Figure 8.10 by changing h.

8.4 Device Characterization 311

The dependence on parasitics can be removed by calculating the difference between
delays at different fanouts. For example, the difference between delays for h = 3 and h = 4 are

(8.7)

As C is known from the effective gate capacitance extraction, Rn and Rp are readily calcu-
lated. These represent the effective resistance of single nMOS and pMOS transistors for
delay estimation.

When two unit transistors are in series, each nomi-
nally would have the same effective resistance, giving
twice the overall resistance. However, in modern pro-
cesses where the transistors usually experience some
velocity saturation, each transistor sees a smaller Vds and
hence less velocity saturation and a lower effective resis-
tance. We can determine this resistance by simulating
fanout-of-h tristates in place of inverters, as shown in
Figure 8.27. By a similar reasoning, the difference
between delays from c to d for h = 2 and h = 3 is

(8.8)

As C is still known, we can extract the effective resistance of series nMOS and pMOS
transistors for delay estimation and should expect this resistance to be smaller than for sin-
gle transistors.

It is important to use realistic input slopes when extracting effective resistance because
the delay varies with input slope. Realistic means that the input and output edge rates
should be comparable; if a step input is applied, the output will transition faster and the
effective resistance will appear to decrease. h was chosen in this section to give stage efforts
close to 4.

8.4.6 Comparison of Processes
Table 8.5 compares the characteristics of a variety of CMOS processes with feature sizes
ranging from 2 m down to 65 nm. The older models are obtained from MOSIS wafer
test results [Piña02], while the newer models are from IBM or TSMC. The MOSIS mod-
els use ACM = 0, so the diffusion sidewall capacitance is treated the same along the gate
and the other walls. The 0.6 m process operates at either VDD = 5 V (for higher speed) or
VDD = 3.3 V (for lower power). All characteristics are extracted for TTTT conditions
(70 °C) for normal-Vt transistors.

Transistor lengths are usually shorter than the nominal feature size. For example, in
the 0.6 m process, MOSIS preshrinks polysilicon by 0.1 m before generating masks. In
the IBM process, transistors are drawn somewhat shorter than the feature size. Moreover,
gates are usually processed such that the effective channel length is even shorter than the
drawn channel length. The shorter channels make transistors faster than one might expect
simply based on feature size.

t
R

C C
R

C C R C

t

pdr
p

d
p

d p

pdf

= × × +() × × +() =
=

2
3 4 3

2
3 3 3 3

2

R C C R C C R Cn d n d n3 4 3 3 3 3 3× × +() × × +() =

t R C

t R C

pdr p

pdf n

= ()
= ()

3
2 2

3 2

-series

-series

1

1

2

2

h

h

2h

2h

h2

h2

2h2

2h2

h3

h3

2h3

2h3

h4

h4

2h4

2h4

a b c d e f

FIGURE 8.27 Circuit for extracting effective series resistance

Chapter 8 Circuit Simulation312

The gate capacitance for delay held steady near 2 fF/ m for many generations, as scal-
ing theory would predict, but abruptly dropped after the 180 nm generation. The gate
capacitance for power is slightly higher than that for delay as discussed in Section 8.4.3.

The FO4 inverter delay has steadily improved with feature size as constant field scal-
ing predicts. It fits our rule from Section 4.4.3 of one third to one half of the effective
channel length, when delay is measured in picoseconds and length in nanometers.

Diffusion capacitance of an isolated contacted source or drain has been 1–2 fF/ m for
both nMOS and pMOS transistors over many generations. The capacitance of a shared
contacted diffusion region is slightly higher because it has more area and includes two gate
overlaps. The capacitance of the merged diffusion reflects two gate overlaps but a smaller
diffusion area. Half the capacitance of the shared and merged diffusions is allocated to
each of the transistors connected to the diffusion region.

TABLE 8.5 Device characteristics for a variety of processes

Vendor Orbit HP AMI AMI TSMC TSMC TSMC IBM IBM IBM

Model MOSIS MOSIS MOSIS MOSIS MOSIS MOSIS TSMC IBM IBM IBM

Feature Size f nm 2000 800 600 600 350 250 180 130 90 65

VDD V 5 5 5 3.3 3.3 2.5 1.8 1.2 1.0 1.0

Gates
Cg (delay) fF/ m 1.77 1.67 1.55 1.48 1.90 2.30 1.67 1.04 0.97 0.80

Cg (power) fF/ m 2.24 1.70 1.83 1.76 2.20 2.92 2.06 1.34 1.23 1.07

FO4 Inv. Delay ps 856 297 230 312 210 153 75.6 45.9 37.2 17.2

nMOS
Cd (isolated) fF/ m ·1.19 1.11 1.14 1.21 1.63 1.88 1.12 0.94 0.89 0.76

Cd (shared) fF/ m 1.62 1.43 1.41 1.50 2.04 2.60 1.62 1.56 1.60 1.28

Cd (merged) fF/ m 1.48 1.36 1.19 1.24 1.60 2.16 1.41 1.40 1.51 1.20

Rn (single) k� · m 30.3 10.1 9.19 11.9 5.73 4.02 2.69 2.54 2.35 1.34

Rn (series) k� · m 22.1 6.95 6.28 8.59 4.01 3.10 2.00 1.93 1.81 1.13

Vtn (const. I) V 0.65 0.65 0.70 0.70 0.59 0.48 0.41 0.32 0.32 0.31

Vtn (linear ext.) V 0.65 0.75 0.76 0.76 0.67 0.57 0.53 0.43 0.43 0.43

Idsat A/ m 152 380 387 216 450 551 566 478 497 755

Ioff pA/ m 2.26 9.36 2.21 1.45 6.57 56.3 93.9 1720 4000 33400

Igate pA/ m n/a n/a n/a n/a n/a n/a n/a 1.22 3620 8520

pMOS
Cd (isolated) fF/ m 1.42 1.17 1.31 1.42 1.89 2.07 1.24 0.94 0.74 0.73

Cd (shared) fF/ m 1.92 1.62 1.73 1.86 2.37 2.89 1.79 1.56 1.25 1.25

Cd (merged) fF/ m 1.52 1.23 1.35 1.43 1.83 2.40 1.56 1.41 1.16 1.18

Rp (single) k� · m 67.1 26.7 19.9 29.6 16.1 8.93 6.51 6.39 5.47 2.87

Rp (series) k� · m 53.9 21.4 15.4 23.6 13.3 6.91 5.41 5.48 4.92 2.42

|Vtp| (const. I) V 0.72 0.91 0.90 0.90 0.83 0.46 0.43 0.33 0.35 0.33

|Vtp| (linear ext.) V 0.71 0.94 0.93 0.93 0.88 0.52 0.51 0.42 0.43 0.42

Idsat A/ m 70.5 154 215.3 99.0 181 245 228 177 187 360

Ioff pA/ m 2.18 1.57 2.08 1.38 2.06 30.1 25.2 1330 2780 19500

Igate pA/ m n/a n/a n/a n/a n/a n/a n/a 0.06 1210 2770

8.5 Circuit Characterization 313

The effective resistance of a 1 m wide transistor has decreased with process scaling in
proportion to the feature size f. However, the resistance of a unit (4/2) nMOS transistor,
R/2f, has remained roughly constant around 8 k , as constant field scaling theory would
predict. The effective resistance of pMOS transistors is 2–3 times that of nMOS transis-
tors. A pair of nMOS transistors in series each have lower effective resistance than a single
device because each has a smaller Vds and thus experiences less velocity saturation. Series
pMOS transistors show less pronounced improvement because they were not as velocity-
saturated to begin with.

Threshold voltages are reported at Vds = 100 mV for 16/2 devices using both the
constant current (at Icrit = 0.1(W/L) A for nMOS and 0.06(W/L) for pMOS) and linear
extrapolation methods. Threshold voltages have generally decreased, but not as fast as
channel length or supply voltage (because of subthreshold leakage). Therefore, the
VDD /Vt ratio is decreasing and pass transistor circuits with threshold drops do not perform
well in modern processes.

Saturation current per micron has increased somewhat through aggressive device
design as feature size decreases even though constant field scaling would suggest it should
remain constant. OFF current was on the order of a few picoamperes per micron in old
processes, but is exponentially increasing in nanometer processes because of subthreshold
conduction through devices with low threshold voltages. The current at threshold using
the linear extrapolation method is somewhat higher than the constant current Icrit, corre-
sponding to the higher threshold voltages found by the linear extrapolation method. Gate
leakage has become significant below 90 nm.

8.4.7 Process and Environmental Sensitivity
Table 8.6 shows how the IBM 65 nm process characteristics vary with process corner,
voltage, and temperature. The FO4 inverter delay varies by a factor of two between best
and worst case. In the TT process, inverter delay varies by about 0.12%/°C and by about
1% for every percent of supply voltage change. These figures agree well with the Artisan
library data from Section 7.2.4. Gate and diffusion capacitance change only slightly with
process, but effective resistance is inversely proportional to supply voltage and highly sen-
sitive to temperature and device corners. Ioff subthreshold leakage rises dramatically at
high temperature or in the fast corner where threshold voltages are lower.

8.5 Circuit Characterization
The device characterization techniques from the previous section are typically run once by
engineers who are familiarizing themselves with a new process. SPICE is used more often
to characterize entire circuits. This section gives some pointers on simulating paths and
describes how to find the DC transfer characteristics, logical effort, and power consump-
tion of logic gates.

8.5.1 Path Simulations
The delays of most static CMOS circuit paths today are computed with a static timing
analyzer (see Sections 4.6 and 14.4.1.4). As long as the noise sources (particularly cou-
pling and power supply noise) are controlled, the circuits will operate correctly and will

Chapter 8 Circuit Simulation314

correlate reasonably well with static timing predictions. However, SPICE-level simulation
is important for sensitive circuits such as the clock generator and distribution network,
custom memory arrays, and novel circuit techniques.

Most experienced designers begin designing paths based on simple models in order to
understand what aspects are most important, evaluate design trade-offs, and obtain a qual-
itative prediction of the results. The ideal Shockley transistor models, RC delay models,
and logical effort are all helpful here because they are simple enough to give insight. When
a good first-pass design is ready, the designer simulates the circuit to verify that it operates
correctly and meets delay and power specifications. Just as few new software programs run
correctly before debugging, the simulation often will be incorrect at first. Unless the
designer knows what results to expect, it is tempting to trust the false results that are nicely
printed with beguilingly many significant figures. Once the circuit appears to be correct, it

TABLE 8.6 Process corners of IBM 65 nm process

nMOS T F S F S T T T T
pMOS T F S S F T T T T
VDD V 1.0 1.1 0.9 1.0 1.0 1.1 0.9 1.0 1.0
T °C 70 0 125 70 70 70 70 0 125

Gates
Cg (delay) f F / m 0.80 0.79 0.80 0.82 0.79 0.82 0.78 0.79 0.81
Cg (power) f F / m 1.07 1.05 1.07 1.07 1.04 1.07 1.04 1.07 1.06
FO4 Inv. Delay ps 17.2 12.2 24.4 17.4 17.1 15.1 20.4 16.6 17.5

nMOS
Cd (isolated) f F / m 0.76 0.72 0.79 0.72 0.80 0.75 0.77 0.75 0.76
Cd (shared) f F / m 1.28 1.22 1.33 1.22 1.33 1.26 1.29 1.27 1.28
Cd (merged) f F / m 1.20 1.15 1.25 1.15 1.25 1.19 1.22 1.20 1.21
Rn (single) k · m 1.34 0.96 1.92 1.21 1.49 1.16 1.63 1.31 1.37
Rn (series) k · m 1.13 0.79 1.66 0.96 1.31 0.97 1.39 1.09 1.16
Vtn (const. I) V 0.31 0.32 0.30 0.27 0.34 0.31 0.31 0.36 0.27
Vtn (linear ext.) V 0.43 0.45 0.43 0.40 0.47 0.43 0.43 0.48 0.40
Idsat A/ m 755 1094 510 844 672 919 596 793 731
Ioff nA/ m 33.4 22.4 38.9 95.0 12.3 41.5 2.7 4.6 120
Igate nA/ m 8.5 13.6 5.0 8.9 8.1 12.6 5.7 8.1 8.9

pMOS
Cd (isolated) f F / m 0.73 0.69 0.77 0.77 0.70 0.72 0.74 0.72 0.74
Cd (shared) f F / m 1.25 1.18 1.32 1.30 1.20 1.23 1.26 1.23 1.26
Cd (merged) f F / m 1.18 1.12 1.24 1.23 1.13 1.16 1.20 1.17 1.19
Rp (single) k · m 2.87 2.09 3.99 3.10 2.65 2.46 3.47 2.82 2.89
Rp (series) k · m 2.42 1.67 3.47 2.69 2.04 1.16 3.05 2.40 2.35
Vtn (const. I) V 0.33 0.36 0.32 0.37 0.30 0.33 0.33 0.39 0.28
Vtp (linear ext.) V 0.42 0.44 0.41 0.45 0.39 0.42 0.42 0.47 0.39
Idsat A/ m 360 517 247 319 407 438 285 373 353
Ioff nA/ m 19.5 7.4 27.7 7.0 53.0 24.0 15.7 1.4 86.1
Igate nA/ m 2.8 4.3 1.7 2.6 2.9 4.0 1.9 2.5 2.9

8.5 Circuit Characterization 315

should be checked across design corners to verify that it operates in
all cases. Section 7.2.4 gives examples of circuits sensitive to various
corners.

Simulation is cheap, but silicon revisions are devastating expen-
sive. Therefore, it is important to construct a circuit model that cap-
tures all of the relevant conditions, including real input waveforms,
appropriate output loading, and adequate interconnect models.
When matching is important, you must consider the effects of mis-
matches that are not given in the corner files (see Section 8.5.5).
However, as SPICE decks get more complicated, they run more
slowly, accumulate more mistakes, and are more difficult to debug. A
good compromise is to start simple and gradually add complexity,
ensuring after each step that the results still make sense.

8.5.2 DC Transfer Characteristics
The .dc statement is useful for finding the transfer characteristics
and noise margins of logic gates. Figure 8.29 shows an example of
characterizing static and dynamic inverters (dynamic logic is covered
in Section 9.2.4). Figure 8.28(a and b) show the circuit schematics of
each gate. Figure 8.28(c) shows the simulation results. The static
inverter characteristics are nearly symmetric around VDD/2. The
dynamic inverter has a lower switching threshold and its output
drops abruptly beyond this threshold because positive feedback turns
off the keeper.

Note that when the input a is 0 and the dynamic inverter is in evaluation (= 1), the
output would be stable at either 0 or 1. To find the transfer characteristics, we initialize the
gate with a 1 output using the .ic command.

8.5.3 Logical Effort
The logical effort and parasitic delay of each input of a gate can be measured by fitting a
straight line to delay vs. fanout simulation results. As with the FO4 inverter example, it is
important to drive the gate with an appropriate input waveform and to provide two stages
of loads. Figure 8.30(a) shows an example of a circuit for characterizing the delay of a 2-
input NAND gate X3 using the M parameter to simulate multiple gates in parallel. Figure
8.30(b) plots the delay vs. fanout in a 65 nm process for an inverter and the 2-input
NAND. The data is well-fit by a straight line even though the transistors experience all
sorts of nonlinear and nonideal effects. This shows that the linear delay model is quite
accurate as long as the input and output slopes are consistent.

The SWEEP command is convenient to vary the fanout and repeat the transient simu-
lation multiple times. For example, the following statement runs eight simulations varying
H from 1 to 8 in steps of 1.

.tran 1ps 1000ps SWEEP H 1 8 1

To characterize an entire library, you can write a script in a language such as Perl or
Python that generates the appropriate SPICE decks, invokes the simulator, and post-
processes the list files to extract the data and do the curve fit.

Recall that is the coefficient of h (i.e., the slope) in a delay vs. fanout plot for an
inverter; in this process it is 3.3 ps. The parasitic delay of the inverter is found from the

(a)

(c)

a y
a

y
φ

16

32

16

16 4

(b)

z

Static
Inverter

Dynamic
Inverter

0.2

0.4

0.6

1.0

0.0

0.8

0.0 0.2 0.4 0.6 0.8 1.0

y
(V

)

a (V)

FIGURE 8.28 Circuits for DC transfer analysis

Chapter 8 Circuit Simulation316

* invdc.sp
* Static and dynamic inverter DC transfer characteristics

*--
* Parameters and models
*--
.param SUPPLY=1.0
.option scale=25n
.include '../models/ibm065/models.sp'
.temp 70
.option post

*--
* Simulation netlist
*--
Vdd vdd gnd 'SUPPLY'
Va a gnd 0
Vclk clk gnd 'SUPPLY'
* Static Inverter
M1 y1 a gnd gnd NMOS W=16 L=2
M2 y1 a vdd vdd PMOS W=32 L=2
* Dynamic Inverter
M3 y2 a gnd gnd NMOS W=16 L=2
M4 y2 clk vdd vdd PMOS W=16 L=2
M5 y2 z vdd vdd PMOS W=4 L=2
M6 z y2 gnd gnd NMOS W=4 L=2
M7 z y2 vdd vdd PMOS W=8 L=2
.ic V(y2) = 'SUPPLY'

*--
* Stimulus
*--
.dc Va 0 1.0 0.01
.end

FIGURE 8.29 INVDC SPICE deck for DC transfer analysis

X1 X2 X3 X4 X5

(a) (b)

a b c d e
fM = 1

M = h M = h2
M = h3

M = h4

Shape Input

Device
Under
Test Load

Load on
Load

h

d a
bs

(p
s)

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

= 3.3 ps

inv :
dabs = 3.3 h + 3.8

pinv = 3.8/ = 1.15

pnand = 8.9/ = 2.70

gnand = 3.9/ = 1.18 nand2 :
dabs = 3.9 h + 8.9

FIGURE 8.30 Logical effort characterization of 2-input NAND gate and inverter

8.5 Circuit Characterization 317

y-intercept of the fit line; it is 3.8 ps, or 1.15 in normalized units. Similarly, the logical
effort and parasitic delay of the NAND gate are obtained by normalizing the slope and
y-intercept by .

Table 8.7 compares the logical effort and parasitic delay of the different inputs of
multi-input NAND gates for rising, falling, and average output transitions in the IBM 65
nm process. For rising and falling transitions, we still normalize against the value of
found from the average delay of an inverter. Input A is the outermost (closest to power or
ground). As discussed in Section 9.2.1.3, the outer input has higher parasitic delay, but
slightly lower logical effort. The rising and falling delays in this process are quite different
because pMOS transistors have less than half the mobility of nMOS transistors and
because the nMOS transistors are quite velocity-saturated so that series transistors have
less resistance than expected.

Table 8.8 compares the average logical effort and parasitic delay of a variety of gates in
many different processes. In each case, the simulations are performed in the TTTT corner
for the outer input. For reference, the FO4 inverter delay and are given for each process.
The logical effort of gates with series transistors is lower than predicted in Section 4.4.1
because one of the transistors is already fully ON and hence has a lower effective resistance
than the transistor that is turning ON during the transition. Moreover, the logical effort of
NAND gates is even lower because velocity saturation has a smaller effect on series
nMOS transistors that see only part of the electric field between drain and source as com-
pared to a single nMOS transistor that experiences the entire field. This effect is less sig-
nificant for NOR gates because pMOS transistors have lower mobility and thus
experience less velocity saturation. The efforts are fairly consistent across process and volt-
age. In comparison, the velocity-saturated model from Example 4.12 predicts logical
efforts of 1.20, 1.39, 1.50, and 2.00 for NAND2, NAND3, NOR2, and NOR3 gates,
agreeing reasonably well with the nanometer processes. The parasitic delays show greater
spread because of the variation in the relative capacitances of diffusion and gates.

This data includes more detail than the designer typically wants when doing design
by hand; the coarse estimates of logical effort from Table 4.2 are generally sufficient for an
initial design. However, the accurate delay vs. fanout information, often augmented with
input slope dependence, is essential when characterizing a standard cell library to use with

TABLE 8.7 Logical effort and parasitic delay of different inputs of multi-input NAND gates

of inputs Input Rising
Logical
Effort gu

Falling
Logical
Effort gu

Average
Logical
Effort g

Rising
Parasitic
Delay pu

Falling
Parasitic
Delay pd

Average
Parasitic
Delay p

2 A 1.40 1.12 1.26 2.46 2.48 2.47
B 1.31 1.16 1.24 1.97 1.82 1.89

3 A 1.76 1.27 1.51 4.77 4.10 4.44
B 1.73 1.32 1.52 3.93 3.60 3.77
C 1.59 1.38 1.48 3.05 2.43 2.74

4 A 2.15 1.42 1.78 7.63 5.94 6.79
B 2.09 1.48 1.78 6.67 5.37 6.02
C 2.08 1.53 1.80 5.32 4.51 4.91
D 1.90 1.59 1.75 4.04 2.93 3.49

Chapter 8 Circuit Simulation318

a static timing analyzer. The FO4 inverter delays may differ slightly from Table 8.5
because the widths of the transistors are different.

8.5.4 Power and Energy
Recall from Section 5.1 that energy and power are proportional to the supply current.
They can be measured based on the current out of the power supply voltage source. For
example, the following code uses the INTEGRAL command to measure charge and energy
delivered to a circuit during the first 10 ns.

.measure charge INTEGRAL I(vdd) FROM=0ns TO=10ns

.measure energy param='charge*SUPPLY'

Alternatively, HSPICE allows you to directly measure the instantaneous and average
power delivered by a voltage source.

.print P(vdd)

.measure pwr AVG P(vdd) FROM=0ns TO=10ns

Sometimes it is helpful to measure the power consumed by only one gate in a larger
circuit. In that case, you can use a separate voltage source for that gate and measure power
only from that source. Unfortunately, this means that vdd cannot be declared as .global.

TABLE 8.8 Logical effort and parasitic delay of gates in various processes

Vendor Orbit HP AMI AMI TSMC TSMC TSMC IBM IBM IBM
Model MOSIS MOSIS MOSIS MOSIS MOSIS MOSIS TSMC IBM IBM IBM
Feature Size f nm 2000 800 600 600 350 250 180 130 90 65
VDD V 5 5 5 3.3 3.3 2.5 1.8 1.2 1.0 1.0
FO4 Delay ps 856 297 230 312 210 153 75.6 46.0 37.3 17.2

ps 170 59 45 60 40 30 15 9.0 7.4 3.3
Logical Effort

Inverter 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NAND2 1.13 1.07 1.05 1.08 1.12 1.12 1.14 1.16 1.20 1.26
NAND3 1.32 1.21 1.19 1.24 1.29 1.29 1.31 1.35 1.41 1.51
NAND4 1.53 1.37 1.36 1.42 1.47 1.47 1.50 1.55 1.62 1.78
NOR2 1.57 1.59 1.58 1.60 1.52 1.50 1.50 1.57 1.56 1.50
NOR3 2.16 2.23 2.23 2.30 2.07 2.02 2.00 2.12 2.08 1.96
NOR4 2.76 2.92 2.96 3.09 2.62 2.52 2.53 2.70 2.60 2.43

Parasitic Delay

Inverter 1.08 1.05 1.18 1.25 1.33 1.18 1.03 1.16 1.07 1.20
NAND2 1.87 1.85 1.92 2.10 2.28 2.07 1.90 2.29 2.25 2.47
NAND3 3.34 3.30 3.40 3.79 4.15 3.65 3.51 4.14 4.10 4.44
NAND4 4.98 5.12 5.22 5.78 6.30 5.47 5.52 6.39 6.39 6.79
NOR2 2.86 2.91 3.29 3.56 3.52 2.95 2.85 3.35 3.01 3.29
NOR3 5.65 6.05 7.02 7.70 6.89 5.61 5.57 6.59 5.76 6.35
NOR4 9.11 10.3 12.4 13.9 11.0 8.76 8.95 10.54 9.11 10.16

8.6 Interconnect Simulation 319

When the input of a gate switches, it delivers power to the supply through the gate-
to-source capacitances. Be careful to differentiate this input power from the power drawn
by the gate discharging its internal and load capacitances.

8.5.5 Simulating Mismatches
Many circuits are sensitive to mismatches between nominally identical transistors. For
example, sense amplifiers (see Section 12.2.3.3) should respond to a small differential volt-
age between the inputs. Mismatches between nominally identical transistors add an offset
that can significantly increase the required voltage. Merely simulating in different design
corners is inadequate because the transistors will still match each other. As discussed in
Section 7.5.2, the mismatch between currents in two nominally identical transistors can be
primarily attributed to shifts in the threshold voltage and channel length. Figure 8.31
shows an example of simulating this mismatch. Each transistor is replaced by an equiva-
lent circuit with a different channel length and a voltage source modeling the difference in
threshold voltage. Note that many binned BSIM models do not allow setting the transis-
tor length shorter than the minimum value supported by the process. Obtaining data on
parameter variations was formerly difficult but is now part of the vendor’s model guide in
nanometer processes.

In many cases, the transistors are not adjacent and may see substantial differences in
voltage and temperature. For example, two clock buffers in different corners of the chip
that see different environments will cause skew between the two clocks. The voltage dif-
ference can be modeled with two different voltage sources. The temperature difference is
most easily handled through two separate simulations at different temperatures.

8.5.6 Monte Carlo Simulation
Monte Carlo simulation can be used to find the effects of random variations on a circuit. It
consists of running a simulation repeatedly with different randomly chosen parameter off-
sets. To use Monte Carlo simulation, the statistical distributions of parameters must be
part of the model. Manufacturers commonly supply such models for nanometer processes.

For example, consider modifying the FO4 inverter delay simulation from Figure 8.10
to obtain a statistical delay distribution. The transient command must be changed to

.tran 1ps 1000ps SWEEP MONTE=30

The .measure statements report average, minimum, maximum, and standard devia-
tion computed from the 30 repeated simulations. The mean is 17.1 ps and the standard
deviation is = 0.56 ps.

Good models will include parameters that the user can set to control whether die-to-
die variations, within-die variations, or both are considered. They also may accept infor-
mation extracted from the layout such as transistor orientation and well edge proximity.

8.6 Interconnect Simulation
Interconnect parasitics can dominate overall delay. When an actual layout is available, the
wire geometry can be extracted directly. If only the schematic is available, the designer
may need to estimate wire lengths. For small gates, even the capacitances of the wires
inside the gate are important. Therefore, some companies use parasitic estimator tools to

W/L

W/(L + L)

(a)

(b)

d

g

s

d

s

g

Vt

FIGURE 8.31
Modeling mismatch

Chapter 8 Circuit Simulation320

guess wire parasitics in schematics based on the number and size of the transistors. In any
case, the designer must explicitly model long wires based on their estimated lengths in the
floorplan.

Once wire length and pitch are known or estimated, they can be converted to a wire
resistance R and capacitance C using the methods discussed in Section 6.2. A short wire
(where wire resistance is much less than gate resistance) can be modeled as a lumped
capacitor. A longer wire can be modeled with a multisegment -model. A four-segment
model such as the one shown in Figure 8.32 is generally quite accurate. The model can be
readily extended to include coupling between adjacent lines.

In general, interconnect consists of multiple interacting signal and power/ground lines
[Young00]. For example, Figure 8.33(a) shows a pair of parallel signals running between a
pair of ground wires. Although it is possible to model the ground lines with a resistance and

inductance per unit length, it is usually more practical to treat
the supply networks as ideal, then account for power supply
noise separately in the noise budget. Figure 8.33(b) shows an
equivalent circuit using a single -segment model. Each line
has a series resistance and inductance, a capacitance to
ground, and mutual capacitance and inductance. The mutual
elements describe how a changing voltage or current in one
conductor induce a current or voltage in the other.

HSPICE also supports the W element that models lossy
multiconductor transmission lines. This is more convenient
than constructing an enormous -model with resistance, capac-
itance, inductance, mutual capacitance, and mutual inductance.
Moreover, HSPICE has a built-in two-dimensional field solver
that can compute all of the terms from a cross-sectional
description of the interconnect. Figure 8.34 gives a SPICE
deck that uses the field solver to extract the element values and
models the lines with the W element.

The deck describes a two-dimensional cross-section of
the interconnect that the field solver uses to extract the electri-
cal parameters. The interconnect consists of the two signal
traces between two ground wires. Each wire is 2 m wide and

0.7 m thick. The copper wires are sandwiched with 0.9 m of low-k (= 3.55 0) dielectric
above and below. The N = 2 signal traces are spaced 6 m from the ground lines and 2 m
from each other and have a length of 6 mm. The HSPICE field solver is quite flexible and
is fully documented in the HSPICE manual. It generates the transmission line model and
writes it to the coplanar.rlgc file. The file contains resistance, capacitance, and induc-
tance matrices and is shown in Figure 8.35.

The matrices require a bit of effort to interpret. They are symmetric around the diag-
onal so only the lower half is printed. The resistances are R11 = R22 = 12.4 �/mm. The
inductances are L11 = L22 = 0.67 nH/mm and L12 = 0.37 nH/mm. The capacitance matrix
represents coupling capacitances with negative numbers and places the sum of all the
capacitances for a wire on the diagonal. Therefore, C11 = C22 = 0.0117 pF/mm and C12 =
0.0137 pF/mm. In the -model, half of each of these capacitances is lumped at each end.

Figure 8.36 shows the voltages along the wires. The characteristic velocity of the
line is approximately . This is close to the speed of
light (3 × 1011 mm/s) because the model assumes air rather than a ground plane outside
the dielectric. The flight time down the wire is 6 mm/(2.4 × 1011 mm/s) = 25 ps.

1 2 4 1011 11 12
11L C C+ = ×. mm/s()

C/8 C/4 C/4 C/4 C/8

R/4 R/4 R/4 R/4

FIGURE 8.32 Four-segment
 model for interconnect

C12a

n11 n12 n13 n14

n21 n22 n23 n24

(a)

n11 n12 n13 n14

n21 n22 n23 n24

Length: l
Width: w
Spacing: s

C12b

C11a C11b

C22a C22b

R11

R22

L11

L22

(b)

L12

FIGURE 8.33 Lossy multiconductor transmission lines

8.6 Interconnect Simulation 321

* interconnect.sp
*--
* Parameters and models
*--
.param SUPPLY=1.0
.include '../models/ibm065/models.sp'
.temp 70
.option post
*--
* Subcircuits
*--
.global vdd gnd
.subckt inv a y N=100nm P=200nm
M1 y a gnd gnd NMOS W='N' L=50nm
+ AS='N*125nm' PS='2*N+250nm' AD='N*125nm' PD='2*N+250nm'
M2 y a vdd vdd PMOS W='P' L=50nm
+ AS='P*125nm' PS='2*P+250nm' AD='P*125nm' PD='2*P+250nm'
.ends
*--
* Compute transmission line parameters with field solver
*--
.material oxide DIELECTRIC ER=3.55
.material copper METAL CONDUCTIVITY=57.6meg
.layerstack chipstack LAYER=(oxide,2.5um)
.fsoptions opt1 ACCURACY=MEDIUM PRINTDATA=YES
.shape widewire RECTANGLE WIDTH=2um HEIGHT=0.7um
.model coplanar W MODELTYPE=FieldSolver
+ LAYERSTACK=chipstack FSOPTIONS=opt1 RLGCFILE=coplanar.rlgc
+ CONDUCTOR=(SHAPE=widewire ORIGIN=(0,0.9um) MATERIAL=copper TYPE=reference)
+ CONDUCTOR=(SHAPE=widewire ORIGIN=(8um,0.9um) MATERIAL=copper)
+ CONDUCTOR=(SHAPE=widewire ORIGIN=(12um,0.9um) MATERIAL=copper)
+ CONDUCTOR=(SHAPE=widewire ORIGIN=(20um,0.9um) MATERIAL=copper TYPE=reference)
*--
* Simulation netlist
*--
Vdd vdd gnd 'SUPPLY'
Vin n11 gnd PULSE 0 'SUPPLY' 0ps 20ps 20ps 500ps 1000ps
W1 n12 n22 gnd n13 n23 gnd FSmodel=coplanar N=2 l=6mm
X1 n11 n12 inv M=80
X2 n13 n14 inv M=40
X3 gnd n22 inv M=80
X4 n23 n24 inv M=40
*--
* Stimulus
*--
.tran 1ps 250ps
.end

FIGURE 8.34 SPICE deck for lossy multiconductor transmission line

* L(H/m), C(F/m), Ro(Ohm/m), Go(S/m), Rs(Ohm/(m*sqrt(Hz)), Gd(S/(m*Hz))
.MODEL coplanar W MODELTYPE=RLGC, N=2
+ Lo = 6.68161e-007
+ 3.67226e-007 6.68161e-007
+ Co = 2.53841e-011
+ -1.36778e-011 2.53841e-011
+ Ro = 12400.8
+ 0 12400.8
+ Go = 0
+ 0 0

FIGURE 8.35 coplanar.rlgc file

Chapter 8 Circuit Simulation322

8.7 Pitfalls and Fallacies
Failing to estimate diffusion and interconnect parasitics in simulations
The diffusion capacitance can account for 20% of the delay of an FO4 inverter and more than

50% of the delay of a high-fanin, low-fanout gate. Be certain when simulating circuits that the

area and perimeter of the source and drain are included in the simulations, or automatically

estimated by the models. Interconnect capacitance is also important, but difficult to estimate.

For long wires, the capacitance and RC delay represent most of the path delay. A common error

is to ignore wires while doing circuit design at the schematic level, and then discover after lay-

out that the wire delay is important enough to demand major circuit changes and complete

change of the layout.

t(s)

0.0 50p 100p 150p 200p

(V
)

0.0

0.2

0.4

0.6

0.8

1.0

0.2

1.2

n11: Input

n12: Aggressor Near End

n13: Aggressor Far End

n22: Victim Near End

n23: Victim Far End

FIGURE 8.36 Transmission line response

 When the input (n11) rises, the near end of the aggressor (n12) begins to fall. n12
levels out for a while at 0.2V as the driver supplies current to charge the rest of the wire.
After one flight time (25 ps), the far end of the aggressor (n13) begins to fall. It under-
shoots to 0.2 V. After a second flight time, n12 levels out near 0. The far end oscillates
for a while with a half-period of two flight times (50 ps).

When the aggressor falls, the victim is capacitively coupled down at both ends. The
far end (n23) experiences stronger coupling because it is distant from its driver.

The ringing can be viewed as either the response of the 2nd order RLC circuit, or as a
transmission line reflection. It is visible because the wires are far from their returns (hence
having high inductance), are wide and thick enough to have low resistance (that would
damp the oscillation), and are driven with an edge much faster than the wire flight time. If
the inductance were reduced by moving the ground lines closer to the conductors, the
ringing would decrease.

8.7 Pitfalls and Fallacies 323

Applying inappropriate input waveforms
Gate delay is strongly dependent on the rise/fall time of the input. For example, the propaga-

tion delay of an inverter is substantially shorter when a step input is applied than when an in-

put with a realistic rise time is provided.

Applying inappropriate output loading
Gate delay is even more strongly dependent on the output loading. Some engineers, particu-

larly those in the marketing department, report gate delay as the delay of an unloaded in- vert-

er. This is about one-fifth of the delay of an FO4 inverter or other gate with “typical” loading.

When simulating a critical path, it is important to include the estimated load that the final

stage must drive.

Choosing inappropriate transistor sizes
Gate delay also depends on transistor widths. Some papers compare a novel design with care-

fully selected transistor sizes to a conventional design with poorly selected sizes, and arrive at

the misleading conclusion that the novel design is superior.

Identifying the incorrect critical path
During preliminary design, it is much more efficient to compare circuits by modeling only the

critical paths rather than the entire circuit. However, this requires that the designer correctly

identify the path that will be most critical; sometimes this requires much consideration.

Failing to account for hidden scale factors
Many CAD systems introduce scaling factors. For example, a circuit can be drawn with one set

of design rules and automatically scaled to the next process generation. The CAD tools may

introduce a scaling factor to reflect this change. Specifying the proper transistor sizes reflect-

ing this scaling is notoriously tricky. Simulation results will look good, but mean nothing if

scaling is not accounted for properly.

Blindly trusting results from SPICE
Novice SPICE users often trust the results of simulation far too much. This is exacerbated by

the fact that SPICE prints results to many significant figures and generates pretty waveforms.

As we have seen, there are a multitude of reasons why simulation results may not reflect the

behavior of the real circuit.

When first using a new process or tool set, always predict what the results should be for

some simple circuits (e.g., an FO4 inverter) and verify that the simulation matches expectation.

It doesn’t hurt to be a bit paranoid at first. After proving that the flow is correct, lock down all

the models and netlist generation scripts with version control if possible. That way, if any

changes are made, a good reason for the change must be evident and the simulations can be

revalidated. In general, assume SPICE decks are buggy until proven otherwise. If the simulation

does not agree with your expectations, look closely for errors or inadequate modeling in the

deck.

Using SPICE in place of thinking
A related error, common among perhaps the majority of circuit designers, is to use SPICE too

much and one’s brain too little. Circuit simulation should be guided by analysis. In particular,

designing to simulation results produced by the optimizer rather than designing based on un-

derstanding has led more than one engineer to grief.

Making common SPICE deck errors
Some of the common mistakes in SPICE decks include the following:

� Omitting the comment on the first line

� Omitting the new line at the end of the deck

Chapter 8 Circuit Simulation324

� Omitting the .option post command when using a waveform viewer

� Leaving out diffusion parasitics

� Forgetting to set initial values for dynamic logic or sequential circuits

Using incorrect dimensions when .option scale is not set
If .option scale is not used, a transistor with W = 4, L = 2 would be interpreted as 4 by 2

meters! This often is outside the legal range of sizes in a BSIM model file, causing SPICE to pro-

duce error messages. Similarly, a drain diffusion of 3 × 0.5 m should be specified as PD = 7u

AD = 1.5p as opposed to the common mistakes of PD = 7 AD = 1.5 or PD = 7u AD = 1.5u.

Summary
When used properly, SPICE is a powerful tool to characterize the behavior of CMOS cir-
cuits. This chapter began with a brief tutorial showing how to perform DC and transient
analyses to characterize and optimize simple circuits. SPICE supports many different
transistor models. At the time of writing, the BSIM model is most widely used and
describes MOSFET behavior quite well for most digital applications. When specifying
the MOSFET connection, you must include not only the terminal connections (drain,
gate, source, and body) and width and length, but also the area and perimeter of the source
and drain that are used to compute parasitic capacitance.

Modern SPICE models have so many parameters that they are intractable for hand
calculations. However, the designer can perform some simple simulations to characterize a
process. For example, it is helpful to know the effective gate capacitance and resistance,
the diffusion capacitance, and the threshold voltage and leakage current. You can also
determine the delay of a fanout-of-4 inverter and the logical effort and parasitic delay of a
library of gates to make quick estimates of circuit performance.

Most designers use SPICE to characterize real circuits. During preliminary design,
you can model the critical path to quickly determine whether a circuit will meet perfor-
mance requirements. A good model describes not only the circuit itself, but also the input
edge rates, the output loading, and parasitics such as diffusion capacitance and intercon-
nect. Most interconnect can be represented with a four-segment model, although when
inductance becomes important, the lossy multiconductor transmission line W element is
convenient. Novel and “risky” circuits should be simulated in multiple design corners or
with Monte Carlo analysis to ensure they will work correctly across variations in process-
ing and environment. As SPICE is prone to garbage-in, garbage-out, it is often best to
begin with a simple model and debug until it matches expectations. Then more detail can
be added and tested incrementally.

Exercises
Note: This book’s Web site at www.cmosvlsi.com contains SPICE models and charac-
terization scripts used to generate the data in this chapter. Unless otherwise stated, try the
exercises using the mosistsmc180 model file (extracted by MOSIS from test structures
manufactured on the TSMC 180 nm process) in TTTT conditions.

 Exercises 325

 8.1 Find the average propagation delay of a fanout-of-5 inverter by modifying the
SPICE deck shown in Figure 8.10.

 8.2 By what percentage does the delay of Exercise 8.1 change if the input is driven by a
voltage step rather than a pair of shaping inverters?

 8.3 By what percentage does the delay of Exercise 8.1 change if X5, the load on the
load, is omitted?

 8.4 Find the input and output logic levels and high and low noise margins for an
inverter with a 3:1 P/N ratio.

 8.5 What P/N ratio maximizes the smaller of the two noise margins for an inverter?

 8.6 Generate a set of eight I-V curves like those of Figure 8.16–8.17 for nMOS and
pMOS transistors in your process.

 8.7 The char.pl Perl script runs a number of simulations to characterize a process.
Use the script to add another column to Table 8.5 for your process.

 8.8 The charlib.pl script runs a number of simulations to extract logical effort and
parasitic delay of gates in a specified process. Add another column to Table 8.8 for
your process.

 8.9 Use the charlib.pl script to find the logical effort and parasitic delay of a 5-input
NAND gate for the outermost input.

 8.10 Exercise 4.10 compares two designs of 2-input AND gates. Simulate each design
and compare the average delays. What values of x and y give least delay? How much
faster is the delay than that achieved using values of x and y suggested from logical
effort calculations? How does the best delay compare to estimates using logical
effort? Let C = 10 m of gate capacitance.

 8.11 Exercise 4.13 asks you to estimate the delay of a logic function. Simulate your
design and compare your results to your estimate. Let one unit of capacitance be a
minimum-sized transistor.

This page intentionally left blank

9

327

Combinational
Circuit Design

9.1 Introduction
Digital logic is divided into combinational and sequential circuits. Combinational circuits
are those whose outputs depend only on the present inputs, while sequential circuits have
memory. Generally, the building blocks for combinational circuits are logic gates, while
the building blocks for sequential circuits are registers and latches. This chapter focuses on
combinational logic; Chapter 10 examines sequential logic.

In Chapter 1, we introduced CMOS logic with the assumption that MOS transistors
act as simple switches. Static CMOS gates used complementary nMOS and pMOS net-
works to drive 0 and 1 outputs, respectively. In Chapter 4, we used the RC delay model
and logical effort to understand the sources of delay in static CMOS logic.

In this chapter, we examine techniques to optimize combinational circuits for lower
delay and/or energy. The vast majority of circuits use static CMOS because it is robust,
fast, energy-efficient, and easy to design. However, certain circuits have particularly strin-
gent speed, power, or density restrictions that force another solution. Such alternative
CMOS logic configurations are called circuit families. Section 9.2 examines the most
commonly used alternative circuit families: ratioed circuits, dynamic circuits, and pass-
transistor circuits. The decade roughly spanning 1994–2004 was the heyday of dynamic
circuits, when high-performance microprocessors employed ever-more elaborate struc-
tures to squeeze out the highest possible operating frequency. Since then, power, robust-
ness, and design productivity considerations have eliminated dynamic circuits wherever
possible, although they remain important for memory arrays where the alternatives are
painful. Similarly, other circuit families have been removed or relegated to narrow niches.

Recall from Section 4.3.7 that the delay of a logic gate depends on its output current
I, load capacitance C, and output voltage swing V

 (9.1)

Faster circuit families attempt to reduce one of these three terms. nMOS transistors pro-
vide more current than pMOS for the same size and capacitance, so nMOS networks are
preferred. Observe that the logical effort is proportional to the C/I term because it is
determined by the input capacitance of a gate that can deliver a specified output current.

One drawback of static CMOS is that it requires both nMOS and pMOS transistors on
each input. During a falling output transition, the pMOS transistors add significant capaci-
tance without helping the pulldown current; hence, static CMOS has a relatively large logi-
cal effort. Many faster circuit families seek to drive only nMOS transistors with the inputs,
thus reducing capacitance and logical effort. An alternative mechanism must be provided to

t
C
I

V

Chapter 9 Combinational Circuit Design328

pull the output high. Determining when to pull outputs high involves monitoring the
inputs, outputs, or some clock signal. Monitoring inputs and outputs inevitably loads the
nodes, so clocked circuits are often fastest if the clock can be provided at the ideal time.
Another drawback of static CMOS is that all the node voltages must transition between 0
and VDD. Some circuit families use reduced voltage swings to improve propagation delays
(and power consumption). This advantage must be weighed against the delay and power of
amplifying outputs back to full levels later or the costs of tolerating the reduced swings.

Static CMOS logic is particularly popular because of its robustness. Given the correct
inputs, it will eventually produce the correct output so long as there were no errors in logic
design or manufacturing. Other circuit families are prone to numerous pathologies exam-
ined in Section 9.3, including charge sharing, leakage, threshold drops, and ratioing con-
straints. When using alternative circuit families, it is vital to understand the failure
mechanisms and check that the circuits will work correctly in all design corners.

A host of other circuit families have been proposed, but most have never been used in
commercial products and are doomed to reside on dusty library shelves. Every transistor
contributes capacitance, so most fast structures are simple. Nevertheless, we will describe
some of these circuits in Section 9.4 as a record of ideas that have been explored. A few
hold promise for the future, particularly in specialized applications. Many texts simply cat-
alog these circuit families without making judgments. This book attempts to evaluate the
circuit families so that designers can concentrate their efforts on the most promising ones,
rather than searching for the “gotchas” that were not mentioned in the original papers. Of
course, any such evaluation runs the risk of overlooking advantages or becoming incorrect
as technology changes, so you should use your own judgment.

Silicon-on-insulator (SOI) chips eliminate the conductive substrate. They can achieve
lower parasitic capacitance and better subthreshold slopes, leading to lower power and/or
higher speed, but they have their own special pathologies. Section 9.5 examines consider-
ations for SOI circuits.

CMOS is increasingly applied to ultra-low power systems such as implantable medi-
cal devices that require years of operation off of a tiny battery and remote sensors that
scavenge their energy from the environment. Static CMOS gates operating in the sub-
threshold regime can cut the energy per operation by an order of magnitude at the expense
of several orders of magnitude performance reduction. Section 9.6 explores design issues
for subthreshold circuits.

9.2 Circuit Families
Static CMOS circuits with complementary nMOS pulldown and pMOS pullup networks
are used for the vast majority of logic gates in integrated circuits. They have good noise
margins, and are fast, low power, insensitive to device variations, easy to design, widely
supported by CAD tools, and readily available in standard cell libraries. When noise does
exceed the margins, the gate delay increases because of the glitch, but the gate eventually
will settle to the correct answer. Most design teams now use static CMOS exclusively for
combinational logic. This section begins with a number of techniques for optimizing static
CMOS circuits.

Nevertheless, performance or area constraints occasionally dictate the need for other
circuit families. The most important alternative is dynamic circuits. However, we begin by
considering ratioed circuits, which are simpler and offer a helpful conceptual transition
between static and dynamic. We also consider pass transistors, which had their zenith in
the 1990s for general-purpose logic and still appear in specialized applications.

9.2 Circuit Families 329

9.2.1 Static CMOS
Designers accustomed to AND and OR functions must learn to think in terms of NAND
and NOR to take advantage of static CMOS. In manual circuit design, this is often done
through bubble pushing. Compound gates are particularly useful to perform complex
functions with relatively low logical efforts. When a particular input is known to be latest,
the gate can be optimized to favor that input. Similarly, when either the rising or falling
edge is known to be more critical, the gate can be optimized to favor that edge. We have
focused on building gates with equal rising and falling delays; however, using smaller
pMOS transistors can reduce power, area, and delay. In processes with multiple threshold
voltages, multiple flavors of gates can be constructed with different speed/leakage power
trade-offs.

9.2.1.1 Bubble Pushing CMOS stages are inherently inverting, so AND and OR func-
tions must be built from NAND and NOR gates. DeMorgan’s law helps with this conver-
sion:

(9.2)

These relations are illustrated graphically in Figure 9.1. A NAND gate is equivalent to an
OR of inverted inputs. A NOR gate is equivalent to an AND of inverted inputs. The
same relationship applies to gates with more inputs. Switching between these representa-
tions is easy to do on a whiteboard and is often called bubble pushing.

Example 9.1

Design a circuit to compute F = AB + CD using NANDs and NORs.

SOLUTION: By inspection, the circuit consists of two ANDs and an OR, shown in Figure
9.2(a). In Figure 9.2(b), the ANDs and ORs are converted to basic CMOS stages. In
Figure 9.2(c and d), bubble pushing is used to simplify the logic to three NANDs.

A B A B

A B A B

= +

+ =

FIGURE 9.1 Bubble pushing
with DeMorgan’s law

F

A
B
C
D

FIGURE 9.3 Logic using AOI22
gate

FIGURE 9.2 Bubble pushing to convert ANDs and ORs to NANDs and NORs

A
B

C
D

F F

A
B

C
D

F

A
B

C
D

F

A
B

C
D

(a) (b)

(c) (d)

9.2.1.2 Compound Gates As described in Section 1.4.5, static CMOS also efficiently
handles compound gates computing various inverting combinations of AND/OR func-
tions in a single stage. The function F = AB + CD can be computed with an AND-OR-
INVERT-22 (AOI22) gate and an inverter, as shown in Figure 9.3.

Chapter 9 Combinational Circuit Design330

In general, logical effort of compound gates can be different for different inputs. Fig-
ure 9.4 shows how logical efforts can be estimated for the AOI21, AOI22, and a more
complex compound AOI gate. The transistor widths are chosen to give the same drive as a
unit inverter. The logical effort of each input is the ratio of the input capacitance of that
input to the input capacitance of the inverter. For the AOI21 gate, this means the logical
effort is slightly lower for the OR terminal (C) than for the two AND terminals (A, B).
The parasitic delay is crudely estimated from the total diffusion capacitance on the output
node by summing the sizes of the transistors attached to the output.

Example 9.2

Calculate the minimum delay, in , to compute F = AB + CD using the circuits from
Figure 9.2(d) and Figure 9.3. Each input can present a maximum of 20 of transistor
width. The output must drive a load equivalent to 100 of transistor width. Choose
transistor sizes to achieve this delay.

SOLUTION: The path electrical effort is H = 100/20 = 5 and the branching effort is B =
1. The design using NAND gates has a path logical effort of G = (4/3) × (4/3) = 16/9
and parasitic delay of P = 2 + 2 = 4. The design using the AOI22 and inverter has a
path logical effort of G = (6/3) × 1 = 2 and a parasitic delay of P = 12/3 + 1 = 5.
Both designs have N = 2 stages. The path efforts F = GBH are 80/9 and 10, respec-
tively. The path delays are NF 1/N + P, or 10.0 and 11.3 , respectively. Using com-
pound gates does not always result in faster circuits; simple 2-input NAND gates can
be quite fast.

To compute the sizes, we determine the best stage efforts, = 3.0 and 3.2,
respectively. These are in the range of 2.4–6 so we know the efforts are reasonable and

ˆ /f F N= 1

A
B
C
D

Y

A
B
C

Y

A

B
C

C

A B

A

B

C

D

A

C

B

D

2

2
1

4

44

2

2 2

2

4

4 4

4

gA = 6/3

gB = 6/3

gC = 5/3

p = 7/3

gA = 6/3

gB = 6/3

gC = 6/3

p = 12/3

gD = 6/3

YA

A Y

gA = 3/3

p = 3/3

2

1
YY

Unit Inverter AOI21 AOI22

A

C

D
E

Y

B

Y

B C

A

D

E

A

B

C

D E

gA = 5/3

gB = 8/3

gC = 8/3

gD = 8/3

2

2 2

22

6

6

6 6

3

p = 16/3

gE = 8/3

Complex AOI

Y = A Y = A · B + C Y = A · B + C · D Y = A · (B+C) + D · E

FIGURE 9.4 Logical efforts and parasitic delays of AOI gates

9.2 Circuit Families 331

the design would not improve too much by adding or removing stages. The input capac-
itance of the second gate is determined by the capacitance transformation

For the NAND design,

For the AOI22 design,

The paths are shown in Figure 9.5 with transistor widths rounded to integer values.

9.2.1.3 Input Ordering Delay Effect The logical
effort and parasitic delay of different gate inputs
are often different. Some logic gates, like the
AOI21 in the previous section, are inherently asym-
metric in that one input sees less capacitance than
another. Other gates, like NANDs and NORs, are
nominally symmetric but actually have slightly dif-
ferent logical effort and parasitic delays for the dif-
ferent inputs.

Figure 9.6 shows a 2-input NAND gate anno-
tated with diffusion parasitics. Consider the falling
output transition occurring when one input held a stable 1 value and the other rises from 0
to 1. If input B rises last, node x will initially be at VDD – Vt VDD because it was pulled up
through the nMOS transistor on input A. The Elmore delay is (R/2)(2C) + R(6C) = 7RC
= 2.33 .1 On the other hand, if input A rises last, node x will initially be at 0 V because it
was discharged through the nMOS transistor on input B. No charge must be delivered to
node x, so the Elmore delay is simply R(6C) = 6RC = 2 .

In general, we define the outer input to be the input closer to the supply rail (e.g., B)
and the inner input to be the input closer to the output (e.g., A). The parasitic delay is
smallest when the inner input switches last because the intermediate nodes have already
been discharged. Therefore, if one signal is known to arrive later than the others, the gate
is fastest when that signal is connected to the inner input.

Table 8.7 lists the logical effort and parasitic delay for each input of various NAND
gates, confirming that the inner input has a lower parasitic delay. The logical efforts are
lower than initial estimates might predict because of velocity saturation. Interestingly, the
inner input has a slightly higher logical effort because the intermediate node x tends to
rise and cause negative feedback when the inner input turns ON (see Exercise 9.5)
[Sutherland99]. This effect is seldom significant to the designer because the inner input
remains faster over the range of fanouts used in reasonable circuits.

1Recall that = 3RC is the delay of an inverter driving the gate of an identical inverter.

C
C g

fi

i i
in

out=
×

ˆ

Cin = × =100 4 3
3 0

44
(/)

.

Cin = × =100 1
3 2

31
()

.

A

B

C

D

A

C

B

D

7

7 7

7

Y
21

10

C

D

C D

10

A

B

A B

10

22
Y

10

10

10

10

10

10

13

13

13

1322

22

22

FIGURE 9.5 Paths with transistor widths

6C

2C2

2

22

B

A
x

Y

FIGURE 9.6 NAND gate
delay estimation

Chapter 9 Combinational Circuit Design332

9.2.1.4 Asymmetric Gates When one input is far less critical than another, even nomi-
nally symmetric gates can be made asymmetric to favor the late input at the expense of the
early one. In a series network, this involves connecting the early input to the outer transis-
tor and making the transistor wider so that it offers less series resistance when the critical
input arrives. In a parallel network, the early input is connected to a narrower transistor to
reduce the parasitic capacitance.

For example, consider the path in Figure 9.7(a). Under ordinary conditions, the path
acts as a buffer between A and Y. When reset is asserted, the path forces the output low. If
reset only occurs under exceptional circumstances and can take place slowly, the circuit
should be optimized for input-to-output delay at the expense of reset. This can be done
with the asymmetric NAND gate in Figure 9.7(b). The pulldown resistance is R/4 +
R/(4/3) = R, so the gate still offers the same driver as a unit inverter. However, the capac-
itance on input A is only 10/3, so the logical effort is 10/9. This is better than 4/3, which is
normally associated with a NAND gate. In the limit of an infinitely large reset transistor
and unit-sized nMOS transistor for input A, the logical effort approaches 1, just like an
inverter. The improvement in logical effort of input A comes at the cost of much higher
effort on the reset input. Note that the pMOS transistor on the reset input is also shrunk.
This reduces its diffusion capacitance and parasitic delay at the expense of slower response
to reset.

CMOS transistors are usually velocity saturated, and thus series transistors carry more
current than the long-channel model would predict. The current can be predicted by col-
lapsing the series stack into an equivalent transistor, as discussed in Section 4.4.6.3. For
asymmetric gates, the equivalent width is that of the inner (narrower) transistor. The
equivalent length increases by the sum of the reciprocals of the relative widths. The rela-
tive current is computed using EQ (4.28), where N is the equivalent length.

Example 9.3

Size the nMOS transistors in the asymmetric NAND gate for unit pulldown current
considering velocity saturation. Make the noncritical transistor three times as wide as
the critical transistor. Assume VDD = 1.0 V and Vt = 0.3 V. Use Ec L = 1.04 V for
nMOS devices. Estimate the logical effort of the gate.

SOLUTION: The equivalent length is 1 + 1/3 = 4/3 times that of a unit transistor. Apply-
ing EQ (4.28) gives a relative current of 0.83. Therefore, the transistors’ widths should
be 1.20 and 3.60 to deliver unit current. The logical effort is (1.20 + 2) / 3 = 1.07,
which is even better than predicted without velocity saturation.

In other circuits such as arbiters, we may wish to build gates that are perfectly sym-
metric so neither input is favored. Figure 9.8 shows how to construct a symmetric NAND
gate.

9.2.1.5 Skewed Gates In other cases, one input transition is more important than the
other. In Section 2.5.2, we defined HI-skew gates to favor the rising output transition and
LO-skew gates to favor the falling output transition. This favoring can be done by decreasing
the size of the noncritical transistor. The logical efforts for the rising (up) and falling (down)
transitions are called gu and gd, respectively, and are the ratio of the input capacitance of the
skewed gate to the input capacitance of an unskewed inverter with equal drive for that transi-
tion. Figure 9.9(a) shows how a HI-skew inverter is constructed by downsizing the nMOS

A
reset

Y

(a)

4

4/3

21

reset

A

Y

(b)

FIGURE 9.7 Resettable
buffer optimized for data
input

A

B

Y
2 2

1

1

1

1

FIGURE 9.8 Perfectly
symmetric 2-input
NAND gate

9.2 Circuit Families 333

transistor. This maintains the same effective resistance for
the critical transition while reducing the input capacitance
relative to the unskewed inverter of Figure 9.9(b), thus
reducing the logical effort on that critical transition to gu =
2.5/3 = 5/6. Of course, the improvement comes at the
expense of the effort on the noncritical transition. The log-
ical effort for the falling transition is estimated by compar-
ing the inverter to a smaller unskewed inverter with equal
pulldown current, shown in Figure 9.9(c), giving a logical
effort of gd = 2.5/1.5 = 5/3. The degree of skewing (e.g.,
the ratio of effective resistance for the fast transition relative to the slow transition) impacts
the logical efforts and noise margins; a factor of two is common. Figure 9.10 catalogs HI-
skew and LO-skew gates with a skew factor of two. Skewed gates are sometimes denoted
with an H or an L on their symbol in a schematic.

(a)

1/2

2
A Y

1

2
A Y

1/2

1
A Y

(b) (c)

HI-skew
Inverter

Unskewed Inverter
(equal rise resistance)

Unskewed Inverter
(equal fall resistance)

FIGURE 9.9 Logical effort calculation for HI-skew inverter

1/2

2
A Y

Inverter

1

1

22

B

A
Y

B

A

NAND2 NOR2

1/21/2

4

4

HI-skew

LO-skew
1

1
A Y

2

2

11

B

A
Y

B

A

11

2

2

gu = 5/6
gd = 5/3
gavg = 5/4

gu = 4/3
gd = 2/3
gavg = 1

gu = 1
gd = 2
gavg = 3/2

gu = 2
gd = 1
gavg = 3/2

gu = 3/2
gd = 3
gavg = 9/4

gu = 2
gd = 1
gavg = 3/2

Y

Y

1

2
A Y

2

2

22

B

A
Y

B

A

11

4

4

Unskewed
gu = 1
gd = 1
gavg = 1

gu = 4/3
gd = 4/3
gavg = 4/3

gu = 5/3
gd = 5/3
gavg = 5/3

Y

FIGURE 9.10 Catalog of skewed gates

Alternating HI-skew and LO-skew gates can be used when only one transition is
important [Solomatnikov00]. Skewed gates work particularly well with dynamic circuits,
as we shall see in Section 9.2.4.

9.2.1.6 P/N Ratios Notice in Figure 9.10 that the average logical effort of the LO-skew
NOR2 is actually better than that of the unskewed gate. The pMOS transistors in the
unskewed gate are enormous in order to provide equal rise delay. They contribute input
capacitance for both transitions, while only helping the rising delay. By accepting a slower
rise delay, the pMOS transistors can be downsized to reduce input capacitance and average
delay significantly.

In general, what is the best P/N ratio for logic gates (i.e., the ratio of pMOS to nMOS
transistor width)? You can prove in Exercise 9.13 that the ratio giving lowest average delay is

Chapter 9 Combinational Circuit Design334

the square root of the ratio that gives equal rise and fall delays. For processes with a mobility
ratio of n/ p = 2 as we have generally been assuming, the best ratios are shown in Figure
9.11.

Reducing the pMOS size from 2 to for the inverter gives the theoretical
fastest average delay, but this delay improvement is only 3%. However, this significantly
reduces the pMOS transistor area. It also reduces input capacitance, which in turn reduces
power consumption. Unfortunately, it leads to unequal delay between the outputs. Some
paths can be slower than average if they trigger the worst edge of each gate. Excessively
slow rising outputs can also cause hot electron degradation. And reducing the pMOS size
also moves the switching point lower and reduces the inverter’s noise margin.

In summary, the P/N ratio of a library of cells should be chosen on the basis of area,
power, and reliability, not average delay. For NOR gates, reducing the size of the pMOS
transistors significantly improves both delay and area. In most standard cell libraries, the
pitch of the cell determines the P/N ratio that can be achieved in any particular gate.
Ratios of 1.5–2 are commonly used for inverters.

9.2.1.7 Multiple Threshold Voltages Some CMOS processes offer two or more thresh-
old voltages. Transistors with lower threshold voltages produce more ON current, but also
leak exponentially more OFF current. Libraries can provide both high- and low-threshold
versions of gates. The low-threshold gates can be used sparingly to reduce the delay of
critical paths [Kumar94, Wei98]. Skewed gates can use low-threshold devices on only the

critical network of transistors.

9.2.2 Ratioed Circuits
Ratioed circuits depend on the proper size or resistance of
devices for correct operation. For example, in the 1970s and
early 1980s before CMOS technologies matured, circuits were
often built with only nMOS transistors, as shown in Figure
9.12. Conceptually, the ratioed gate consists of an nMOS pull-
down network and some pullup device called the static load.

When the pulldown network is OFF, the static load pulls the output to 1. When the pull-
down network turns ON, it fights the static load. The static load must be weak enough
that the output pulls down to an acceptable 0. Hence, there is a ratio constraint between
the static load and pulldown network. Stronger static loads produce faster rising outputs,
but increase VOL, degrade the noise margin, and burn more static power when the output
should be 0. Unlike complementary circuits, the ratio must be chosen so the circuit oper-
ates correctly despite any variations from nominal component values that may occur

2 1 4.

Inverter NAND2 NOR2

1

1.414
A Y

2

2

22

B

A
Y

B

A

11

2

2

Fastest

P/N Ratio gu = 1.14
gd = 0.80
gavg = 0.97

gu = 4/3
gd = 4/3
gavg = 4/3

gu = 2
gd = 1
gavg = 3/2

Y

FIGURE 9.11 Gates with P/N ratios giving least delay

(a)

R

VGG

Y

Inputs
f

(b)

Y

Inputs
f

(c)

Y

Inputs
f

FIGURE 9.12 nMOS ratioed gates

9.2 Circuit Families 335

during manufacturing. CMOS logic eventually displaced nMOS logic because the static
power became unacceptable as the number of gates increased. However, ratioed circuits
are occasionally still useful in special applications.

A resistor is a simple static load, but large resistors consume a large layout area in typi-
cal MOS processes. Another technique is to use an nMOS transistor with the gate tied to
VGG. If VGG = VDD, the nMOS transistor will only pull up to VDD – Vt. Worse yet, the
threshold is increased by the body effect. Thus, using VGG > VDD was attractive. To elimi-
nate this extra supply voltage, some nMOS processes offered depletion mode transistors.
These transistors, indicated with the thick bar, are identical to ordinary enhancement mode
transistors except that an extra ion implantation was performed to create a negative thresh-
old voltage. The depletion mode pullups have their gate wired to the source so Vgs = 0 and
the transistor is always weakly ON.

9.2.2.1 Pseudo-nMOS Figure 9.13(a) shows a pseudo-nMOS inverter. Neither high-value
resistors nor depletion mode transistors are readily available as static loads in most CMOS

Vout

Vin

16

(a)

P

0 0.3 0.6 0.9 1.2 1.5 1.8

0

0.3

0.6

0.9

1.2

1.5

1.8

P = 24

P = 4

P = 14

Vin Vin

Vout

(c)

Ids

(b)

P = 24

P = 14

P = 4

Vin

1.8

1.5

1.2

0.9

0.6

0 0.3 0.6 0.9 1.2 1.5 1.8

200

400

600

800

Vout

Ids (A)

Ids (A)

0 0.3 0.6 0.9 1.2 1.5 1.8

(d)

100

0

300

200

500

400

P = 4

P = 14

P = 24

Load

0

1000

FIG 9.13 Pseudo-nMOS inverter and DC transfer characteristics

Chapter 9 Combinational Circuit Design336

processes. Instead, the static load is built from a single pMOS transistor that has its gate
grounded so it is always ON. The DC transfer characteristics are derived by finding Vout
for which Idsn = |Idsp| for a given Vin, as shown in Figure 9.13(b–c) for a 180 nm process.
The beta ratio affects the shape of the transfer characteristics and the VOL of the inverter.
Larger relative pMOS transistor sizes offer faster rise times but less sharp transfer charac-
teristics. Figure 9.13(d) shows that when the nMOS transistor is turned on, a static DC
current flows in the circuit.

Figure 9.14 shows several pseudo-nMOS logic gates. The pulldown network is like
that of an ordinary static gate, but the pullup network has been replaced with a single
pMOS transistor that is grounded so it is always ON. The pMOS transistor widths are
selected to be about 1/4 the strength (i.e., 1/2 the effective width) of the nMOS pulldown
network as a compromise between noise margin and speed; this best size is process-depen-
dent, but is usually in the range of 1/3 to 1/6.

To calculate the logical effort of pseudo-nMOS gates, suppose a complementary
CMOS unit inverter delivers current I in both rising and falling transitions. For the
widths shown, the pMOS transistors produce I/3 and the nMOS networks produce 4I/3.
The logical effort for each transition is computed as the ratio of the input capacitance to
that of a complementary CMOS inverter with equal current for that transition. For the
falling transition, the pMOS transistor effectively fights the nMOS pulldown. The output
current is estimated as the pulldown current minus the pullup current, (4I/3 – I/3) = I.
Therefore, we will compare each gate to a unit inverter to calculate gd. For example, the
logical effort for a falling transition of the pseudo-nMOS inverter is the ratio of its input
capacitance (4/3) to that of a unit complementary CMOS inverter (3), i.e., 4/9. gu is three
times as great because the current is 1/3 as much.

The parasitic delay is also found by counting output capacitance and comparing it to
an inverter with equal current. For example, the pseudo-nMOS NOR has 10/3 units of
diffusion capacitance as compared to 3 for a unit-sized complementary CMOS inverter, so
its parasitic delay pulling down is 10/9. The pullup current is 1/3 as great, so the parasitic
delay pulling up is 10/3.

As can be seen, pseudo-nMOS is slower on average than static CMOS for NAND
structures. However, pseudo-nMOS works well for NOR structures. The logical effort is
independent of the number of inputs in wide NORs, so pseudo-nMOS is useful for fast
wide NOR gates or NOR-based structures like ROMs and PLAs when power permits.

Inverter NAND2 NOR2

4/3

2/3

A
Y

8/3

8/3

2/3

B

A
Y

A B 4/34/3

2/3

gu = 4/3
gd = 4/9
gavg = 8/9
pu = 18/9
pd = 6/9
pavg = 12/9

Y

Generic

f

Inputs

Y

gu = 8/3
gd = 8/9
gavg = 16/9
pu = 30/9
pd = 10/9
pavg = 20/9

gu = 4/3
gd = 4/9
gavg = 8/9
pu = 30/9
pd = 10/9
pavg = 20/9

FIGURE 9.14 Pseudo-nMOS logic gates

9.2 Circuit Families 337

Example 9.4

Design a k-input AND gate with DeMorgan’s law using static CMOS
inverters followed by a k-input pseudo-nMOS NOR, as shown in Figure
9.15. Let each inverter be unit-sized. If the output load is an inverter of
size H, determine the best transistor sizes in the NOR gate and estimate
the average delay of the path.

SOLUTION: The path electrical effort is H and the branching effort is B = 1.
The inverter has a logical effort of 1. The pseudo-nMOS NOR has an
average logical effort of 8/9 according to Figure 9.14. The path logical
effort is G = 1 × (8/9) = 8/9, so the path effort is 8H/9. Each stage should
bear an effort of . Using the capacitance transformation gives
NOR pulldown transistor widths of

unit-sized inverters. As a unit inverter has three units of input capacitance,
the NOR transistor nMOS widths should be . According to Figure
9.14, the pullup transistor should be half this width. The complete circuit
marked with nMOS and pMOS widths is drawn in Figure 9.16.

We estimate the average parasitic delay of a k-input pseudo-nMOS
NOR to be (8k + 4)/9. The total delay in is

Increasing the number of inputs only impacts the parasitic delay, not the
effort delay.

Pseudo-nMOS gates will not operate correctly if VOL > VIL of the receiving
gate. This is most likely in the SF design corner where nMOS transistors are
weak and pMOS transistors are strong. Designing for acceptable noise margin in
the SF corner forces a conservative choice of weak pMOS transistors in the nor-
mal corner. A biasing circuit can be used to reduce process sensitivity, as shown in
Figure 9.17. The goal of the biasing circuit is to create a Vbias that causes P2 to
deliver 1/3 the current of N 2, independent of the relative mobilities of the
pMOS and nMOS transistors. Transistor N2 has width of 3/2 and hence pro-
duces current 3I/2 when ON. Transistor N1 is tied ON to act as a current source
with 1/3 the current of N2, i.e., I/2. P1 acts as a current mirror using feedback to
establish the bias voltage sufficient to provide equal current as N1, I/2. The size
of P1 is noncritical so long as it is large enough to produce sufficient current and
is equal in size to P2. Now, P2 ideally also provides I/2. In summary, when A is
low, the pseudo-nMOS gate pulls up with a current of I/2. When A is high, the
pseudo-nMOS gate pulls down with an effective current of (3I/2 – I/2) = I. To
first order, this biasing technique sets the relative currents strictly by transistor
widths, independent of relative pMOS and nMOS mobilities.

ˆ /f H= 8 9

C
gC

f

H

H

H
in

out= = =ˆ
(/)

/

8 9

8 9

8
3

8H

D Nf P H
k= + = + +ˆ 4 2

3
8 13

9

In1

Ink

Y

Pseudo-nMOS

1

1

H

Pseudo-nMOS

1

2
1

2

8H

2H

3/2

2

A
Y

1/2

2
Vbias

N1 N2

P2P1

To other
pseudo-nMOS
gates

gu = 1
gd = 1/2
gavg = 3/4

FIGURE 9.15 k-input AND gate
driving load of H

FIGURE 9.16 k-input AND
marked with transistor widths

FIGURE 9.17 Replica biasing
of pseudo-nMOS gates

Chapter 9 Combinational Circuit Design338

Such replica biasing permits the 1/3 current ratio rather than the conservative 1/4
ratio in the previous circuits, resulting in lower logical effort. The bias voltage Vbias can be
distributed to multiple pseudo-nMOS gates. Ideally, Vbias will adjust itself to keep VOL
constant across process corners. Unfortunately, the currents through the two pMOS tran-
sistors do not exactly match because their drain voltages are unequal, so this technique still
has some process sensitivity. Also note that this bias is relative to VDD, so any noise on
either the bias voltage line or the VDD supply rail will impact circuit performance.

Turning off the pMOS transistor can reduce power when the logic is idle or during
IDDQ test mode (see Section 15.6.4), as shown in Figure 9.18.

Example 9.5

Calculate the static power dissipation of a 32-word × 48-bit ROM that contains a 5:32
pseudo-nMOS row decoder and pMOS pullups on the 48-bit lines. The pMOS tran-
sistors have an ON current of 360 A/ m and are minimum width (100 nm). VDD =
1.0 V. Assume one of the word lines and 50% of the bitlines are high at any given time.

SOLUTION: Each pMOS transistor dissipates 360 A/ m × 0.1 m × 1.0 V = 36 W of
power when the output is low. We expect to see 31 wordlines and 24 bitlines low, so the
total static power is 36 W × (31 + 24) = 1.98 mW.

9.2.2.2 Ganged CMOS Figure 9.19 illustrates pairs of
CMOS inverters ganged together. The truth table is given
in Table 9.1, showing that the pair compute the NOR func-
tion. Such a circuit is sometimes called a symmetric 2 NOR
[Johnson88], or more generally, ganged CMOS [Schultz90].
When one input is 0 and the other 1, the gate can be viewed
as a pseudo-nMOS circuit with appropriate ratio con-
straints. When both inputs are 0, both pMOS transistors

turn on in parallel, pulling the output high faster than they would in an ordinary pseudo-
nMOS gate. Moreover, when both inputs are 1, both pMOS transistors turn OFF, saving
static power dissipation. As in pseudo-nMOS, the transistors are sized so the pMOS are
about 1/4 the strength of the nMOS and the pulldown current matches that of a unit
inverter. Hence, the symmetric NOR achieves both better performance and lower power
dissipation than a 2-input pseudo-nMOS NOR.

Johnson also showed that symmetric structures can be used for NOR gates with more
inputs and even for NAND gates (see Exercises 9.23–9.24). The 3-input symmetric NOR
also works well, but the logical efforts of the other structures are unattractive.

2Do not confuse this use of symmetric with the concept of symmetric and asymmetric gates from Section
9.2.1.4.

TABLE 9.1 Operation of symmetric NOR

A B N1 P1 N2 P2 Y

0 0 OFF ON OFF ON 1
0 1 OFF ON ON OFF ~ 0
1 0 ON OFF OFF ON ~ 0
1 1 ON OFF ON OFF 0

A B
Y

C

en

FIGURE 9.18 Pseudo-
nMOS gate with enabled
pullup

4/3

2/3A
Y

N2

P2

gu = 1
gd = 2/3
gavg = 5/6

4/3

2/3

N1

P1
BA

Y
B

(a) (b)

FIGURE 9.19 Symmetric 2-input NOR gate

9.2 Circuit Families 339

9.2.3 Cascode Voltage Switch Logic
Cascode Voltage Switch Logic (CVSL3) [Heller84] seeks the benefits of ratioed
circuits without the static power consumption. It uses both true and comple-
mentary input signals and computes both true and complementary outputs
using a pair of nMOS pulldown networks, as shown in Figure 9.20(a). The
pulldown network f implements the logic function as in a static CMOS gate,
while f uses inverted inputs feeding transistors arranged in the conduction
complement. For any given input pattern, one of the pulldown networks will be
ON and the other OFF. The pulldown network that is ON will pull that out-
put low. This low output turns ON the pMOS transistor to pull the opposite
output high. When the opposite output rises, the other pMOS transistor turns
OFF so no static power dissipation occurs. Figure 9.20(b) shows a CVSL
AND/NAND gate. Observe how the pulldown networks are complementary,
with parallel transistors in one and series in the other. Figure 9.20(c) shows a
4-input XOR gate. The pulldown networks share A and A transistors to reduce
the transistor count by two. Sharing is often possible in complex functions, and
systematic methods exist to design shared networks [Chu86].

CVSL has a potential speed advantage because all of the logic is per-
formed with nMOS transistors, thus reducing the input capacitance. As in
pseudo-nMOS, the size of the pMOS transistor is important. It fights the
pulldown network, so a large pMOS transistor will slow the falling transition.
Unlike pseudo-nMOS, the feedback tends to turn off the pMOS, so the out-
puts will settle eventually to a legal logic level. A small pMOS transistor is
slow at pulling the complementary output high. In addition, the CVSL gate
requires both the low- and high-going transitions, adding more delay. Con-
tention current during the switching period also increases power consumption.

Pseudo-nMOS worked well for wide NOR structures. Unfortunately,
CVSL also requires the complement, a slow tall NAND structure. Therefore,
CVSL is poorly suited to general NAND and NOR logic. Even for symmetric
structures like XORs, it tends to be slower than static CMOS, as well as more
power-hungry [Chu87, Ng96]. However, the ideas behind CVSL help us
understand dual-rail domino and complementary pass-transistor logic dis-
cussed in later sections.

9.2.4 Dynamic Circuits
Ratioed circuits reduce the input capacitance by replacing the pMOS transis-
tors connected to the inputs with a single resistive pullup. The drawbacks of
ratioed circuits include slow rising transitions, contention on the falling transi-
tions, static power dissipation, and a nonzero VOL. Dynamic circuits circum-
vent these drawbacks by using a clocked pullup transistor rather than a pMOS that is
always ON. Figure 9.21 compares (a) static CMOS, (b) pseudo-nMOS, and (c) dynamic
inverters. Dynamic circuit operation is divided into two modes, as shown in Figure 9.22.
During precharge, the clock is 0, so the clocked pMOS is ON and initializes the output
Y high. During evaluation, the clock is 1 and the clocked pMOS turns OFF. The output
may remain high or may be discharged low through the pulldown network. Dynamic

3 Many authors call this circuit family Differential Cascode Voltage Switch Logic (DCVS [Chu86] or DCVSL
[Ng96]). The term cascode comes from analog circuits where transistors are placed in series.

Y

f
Inputs

f

A

BBA

= A · B = A · B

(a)

(b)

(c)

Y

Y Y

A

B B
B

A

C CC

D D
D

Y Y

FIGURE 9.20 CVSL gates

1

2
A Y

4/3

2/3

A
Y

1

1

A
Y

φ

(a) (b) (c)

FIGURE 9.21 Comparison of (a) static
CMOS, (b) pseudo-nMOS, and (c) dynamic
inverters

Chapter 9 Combinational Circuit Design340

circuits are the fastest commonly used circuit family because
they have lower input capacitance and no contention during
switching. They also have zero static power dissipation.
However, they require careful clocking, consume significant
dynamic power, and are sensitive to noise during evaluation.
Clocking of dynamic circuits will be discussed in much more
detail in Section 10.5.

In Figure 9.21(c), if the input A is 1 during precharge, contention will take
place because both the pMOS and nMOS transistors will be ON. When the
input cannot be guaranteed to be 0 during precharge, an extra clocked evalua-
tion transistor can be added to the bottom of the nMOS stack to avoid con-
tention as shown in Figure 9.23. The extra transistor is sometimes called a foot.
Figure 9.24 shows generic footed and unfooted gates.4

Figure 9.25 estimates the falling logical effort of both footed and unfooted
dynamic gates. As usual, the pulldown transistors’ widths are chosen to give
unit resistance. Precharge occurs while the gate is idle and often may take place
more slowly. Therefore, the precharge transistor width is chosen for twice unit
resistance. This reduces the capacitive load on the clock and the parasitic
capacitance at the expense of greater rising delays. We see that the logical
efforts are very low. Footed gates have higher logical effort than their unfooted
counterparts but are still an improvement over static logic. In practice, the log-
ical effort of footed gates is better than predicted because velocity saturation
means series nMOS transistors have less resistance than we have estimated.
Moreover, logical efforts are also slightly better than predicted because there is
no contention between nMOS and pMOS transistors during the input transi-
tion. The size of the foot can be increased relative to the other nMOS transis-
tors to reduce logical effort of the other inputs at the expense of greater clock
loading. Like pseudo-nMOS gates, dynamic gates are particularly well suited
to wide NOR functions or multiplexers because the logical effort is indepen-

4The footed and unfooted terminology is from IBM [Nowka98]. Intel calls these styles D1
and D2, respectively.

φ Precharge Evaluate

Y

Precharge

FIGURE 9.22 Precharge and evaluation of dynamic gates

A
Y

φ

Foot

Precharge Transistor

FIGURE 9.23 Footed dynamic
inverter

φ
Y

Inputs

φ
Y

Inputs

Footed Unfooted

f f

FIGURE 9.24 Generalized footed and
unfooted dynamic gates

Inverter NAND2 NOR2

1

1

A
Y

2

2

1

B

A
Y

A B 11

1

gd = 1/3
pd = 2/3

gd = 2/3
pd = 3/3

gd = 2/3
pd = 3/3

gd = 3/3
pd = 4/3

gd = 1/3
pd = 3/3

gd = 2/3
pd = 5/3

Y
φ

φ

φ

2

1

A
Y

3

3

1

B

A
Y

A B 22

1
Y

φ

φ

φ

Footed

Unfooted

32 2

FIGURE 9.25 Catalog of dynamic gates

9.2 Circuit Families 341

dent of the number of inputs. Of course, the parasitic delay
does increase with the number of inputs because there is more
diffusion capacitance on the output node. Characterizing the
logical effort and parasitic delay of dynamic gates is tricky
because the output tends to fall much faster than the input
rises, leading to potentially misleading dependence of propa-
gation delay on fanout [Sutherland99].

A fundamental difficulty with dynamic circuits is the
monotonicity requirement. While a dynamic gate is in evalua-
tion, the inputs must be monotonically rising. That is, the input
can start LOW and remain LOW, start LOW and rise HIGH,
start HIGH and remain HIGH, but not start HIGH and fall
LOW. Figure 9.26 shows waveforms for a footed dynamic
inverter in which the input violates monotonicity. During precharge, the output is pulled
HIGH. When the clock rises, the input is HIGH so the output is discharged LOW
through the pulldown network, as you would want to have happen in an inverter. The input
later falls LOW, turning off the pulldown network. However, the precharge transistor is also
OFF so the output floats, staying LOW rather than rising as it would in a normal inverter.
The output will remain low until the next precharge step. In summary, the inputs must be
monotonically rising for the dynamic gate to compute the correct function.

Unfortunately, the output of a dynamic gate begins HIGH and monotonically falls
LOW during evaluation. This monotonically falling output X is not a suitable input to a
second dynamic gate expecting monotonically rising signals, as shown in Figure 9.27.
Dynamic gates sharing the same clock cannot be directly connected. This problem is often
overcome with domino logic, described in the next section.

9.2.4.1 Domino Logic The monotonicity problem can be solved by placing a static
CMOS inverter between dynamic gates, as shown in Figure 9.28(a). This converts the
monotonically falling output into a monotonically rising signal suitable for the next gate,
as shown in Figure 9.28(b). The dynamic-static pair together is called a domino gate
[Krambeck82] because precharge resembles setting up a chain of dominos and evaluation
causes the gates to fire like dominos tipping over, each triggering the next. A single clock
can be used to precharge and evaluate all the logic gates within the chain. The dynamic
output is monotonically falling during evaluation, so the static inverter output is mono-
tonically rising. Therefore, the static inverter is usually a HI-skew gate to favor this rising
output. Observe that precharge occurs in parallel, but evaluation occurs sequentially. This

φ Precharge Evaluate

Y

Precharge

A

Output should rise but does not

Violates monotonicity
 during evaluation

FIGURE 9.26 Monotonicity problem

A
X

φ
Y

φ Precharge Evaluate

X

Precharge

A = 1

Y should rise but cannot

Y

X monotonically falls during evaluation

FIGURE 9.27 Incorrect connection of dynamic gates

Chapter 9 Combinational Circuit Design342

explains why precharge is usually less critical. The
symbols for the dynamic NAND, HI-skew
inverter, and domino AND are shown in Figure
9.28(c).

In general, more complex inverting static
CMOS gates such as NANDs or NORs can be
used in place of the inverter [Sutherland99]. This
mixture of dynamic and static logic is called com-
pound domino. For example, Figure 9.29 shows an
8-input domino multiplexer built from two
4-input dynamic multiplexers and a HI-skew
NAND gate. This is often faster than an 8-input
dynamic mux and HI-skew inverter because the
dynamic stage has less diffusion capacitance and
parasitic delay.

Domino gates are inherently noninverting,
while some functions like XOR gates necessarily require inversion. Three methods of
addressing this problem include pushing inversions into static logic, delaying clocks, and
using dual-rail domino logic. In many circuits including arithmetic logic units (ALUs),
the necessary XOR gate at the end of the path can be built with a conventional static
CMOS XOR gate driven by the last domino circuit. However, the XOR output no longer
is monotonically rising and thus cannot directly drive more domino logic. A second
approach is to directly cascade dynamic gates without the static CMOS inverter, delaying
the clock to the later gates to ensure the inputs are monotonic during evaluation. This is
commonly done in content-addressable memories (CAMs) and NOR-NOR PLAs and
will be discussed in Sections 10.5 and 12.7. The third approach, dual-rail domino logic, is
discussed in the next section.

9.2.4.2 Dual-Rail Domino Logic Dual-rail domino gates encode each signal with a pair of
wires. The input and output signal pairs are denoted with _h and _l, respectively. Table 9.2
summarizes the encoding. The _h wire is asserted to indicate that the output of the gate is
“high” or 1. The _l wire is asserted to indicate that the output of the gate is “low” or 0.
When the gate is precharged, neither _h nor _l is asserted. The pair of lines should never
be both asserted simultaneously during correct operation.

A

W

φ

φ Precharge Evaluate

W

Precharge

X

B C

X Y Z

Y

Z

Domino AND

Dynamic
NAND

Static
Inverter

A

φ

B
C

φ φ φ

C

A
B

W X Y Z =
X

Z

(a)

(b)

(c)

H H

FIGURE 9.28 Domino gates

S0

D0

S1

D1

S2

D2

S3

D3

φ

S4

D4

S5

D5

S6

D6

S7

D7

φ

YH

FIGURE 9.29 Domino gate using logic in static
CMOS stage

9.2 Circuit Families 343

Dual-rail domino gates accept both true and
complementary inputs and compute both true and
complementary outputs, as shown in Figure
9.30(a). Observe that this is identical to static
CVSL circuits from Figure 9.20 except that the
cross-coupled pMOS transistors are instead con-
nected to the precharge clock. Therefore, dual-rail
domino can be viewed as a dynamic form of
CVSL, sometimes called DCVS [Heller84]. Fig-
ure 9.30(b) shows a dual-rail AND/NAND gate
and Figure 9.30(c) shows a dual-rail XOR/XNOR
gate. The gates are shown with clocked evaluation
transistors, but can also be unfooted. Dual-rail
domino is a complete logic family in that it can
compute all inverting and noninverting logic func-
tions. However, it requires more area, wiring, and
power. Dual-rail structures also lose the efficiency
of wide dynamic NOR gates because they require
complementary tall dynamic NAND stacks.

Dual-rail domino signals not only the result of a computation but also
indicates when the computation is done. Before computation completes,
both rails are precharged. When the computation completes, one rail will
be asserted. A NAND gate can be used for completion detection, as shown
in Figure 9.31. This is particularly useful for asynchronous circuits
[Williams91, Sparsø01].

Coupling can be reduced in dual-rail signal busses by interdigitating
the bits of the bus, as shown in Figure 9.32. Each wire will never see more
than one aggressor switching at a time because only one of the two rails
switches in each cycle.

9.2.4.3 Keepers Dynamic circuits also suffer from charge leakage on the
dynamic node. If a dynamic node is precharged high and then left floating,
the voltage on the dynamic node will drift over time due to subthreshold,
gate, and junction leakage. The time constants tend to be in the milli-
second to nanosecond range, depending on process and temperature. This
problem is analogous to leakage in dynamic RAMs. Moreover, dynamic
circuits have poor input noise margins. If the input rises above Vt while the
gate is in evaluation, the input transistors will turn on weakly and can
incorrectly discharge the output. Both leakage and noise margin problems
can be addressed by adding a keeper circuit.

TABLE 9.2 Dual-rail domino signal encoding

sig_h sig_l Meaning

0 0 Precharged
0 1 ‘0’
1 0 ‘1’
1 1 Invalid

Y_h

f

φ

φ

Inputs

Y_l

f

Done

FIGURE 9.31 Dual-rail domino gate with
completion detection

Y_h

f
Inputs

Y_l

f

Y_hY_l

A_h

B_hB_lA_l

= A · B

Y_hY_l

A_l

B_h

= A xor B

B_l

A_h

= A · B

A_lA_h= A xnor B

(a)

(b)

(c)

FIGURE 9.30 Dual-rail domino gates

b_h a_la_h b_l

FIGURE 9.32 Reducing
coupling noise on dual-rail
busses

Chapter 9 Combinational Circuit Design344

Figure 9.33 shows a conventional keeper on a domino buffer. The keeper is a weak
transistor that holds, or staticizes, the output at the correct level when it would otherwise
float. When the dynamic node X is high, the output Y is low and the keeper is ON to pre-
vent X from floating. When X falls, the keeper initially opposes the transition so it must
be much weaker than the pulldown network. Eventually Y rises, turning the keeper OFF
and avoiding static power dissipation.

The keeper must be strong (i.e., wide) enough to compensate for any leakage current
drawn when the output is floating and the pulldown stack is OFF. Strong keepers also
improve the noise margin because when the inputs are slightly above Vt the keeper can sup-
ply enough current to hold the output high. Figure 8.28 showed the DC transfer character-
istics of a dynamic inverter. As the keeper width k increases, the switching point shifts right.
However, strong keepers also increase delay, typically by 5–10%. For example, the 90 nm Ita-
nium Montecito processor selected a pMOS keeper with 6% of the combined width of the
leaking pulldown transistors [Naffziger06]. An 8-input NOR with 1 m wide transistors
would thus need a keeper width of 0.48 m. More advanced processes tend to have greater
Ioff/Ion ratios and more variability, so the keepers must be even stronger.

For small dynamic gates, the keeper must be weaker
than a minimum-sized transistor. This is achieved by
increasing the keeper length, as shown in Figure 9.34(a).
Long keeper transistors increase the capacitive load on the
output Y. This can be avoided by splitting the keeper, as
shown in Figure 9.34(b).

Figure 9.35 shows a differential keeper for a dual-rail
domino buffer. When the gate is precharged, both keeper
transistors are OFF and the dynamic outputs float. How-
ever, as soon as one of the rails evaluates low, the opposite
keeper turns ON. The differential keeper is fast because it
does not oppose the falling rail. As long as one of the rails is
guaranteed to fall promptly, the keeper on the other rail will
turn on before excessive leakage or noise causes failure. Of
course, dual-rail domino can also use a pair of conventional
keepers.

During burn-in, the chip operates at reduced fre-
quency, but at very high temperature and voltage. This
causes severe leakage that can overpower the keeper in wide
dynamic NOR gates where many nMOS transistors leak in
parallel. Figure 9.36 shows a domino gate with a burn-in
conditional keeper [Alvandpour02]. The BI signal is asserted
during burn-in to turn on a second keeper in parallel with
the primary keeper. The second keeper slows the gate dur-
ing burn-in, but provides extra current to fight leakage.

Noise on the output of the inverter (e.g., from capaci-
tive crosstalk) can reduce the effectiveness of the keeper.
In nanometer processes at low voltage where the leakage is
high, this effect can significantly increase the required
keeper width. Notice how the domino gate in Figure 9.36
used a separate feedback inverter that is not subject to
crosstalk noise because it remains inside the cell. This
technique is used at Intel even when the burn-in keeper is
not employed.

A

φ
H

2

2

1
X

Y

Width: min
Length: L

A

φ
H

2

2

1
X

Y

Width: min
Length: min

(a) (b)

Width: min
Length: L−min

FIGURE 9.34 Weak keeper implementations

A

φ
H

2

2

1 k
X Y

Weak Keeper

FIGURE 9.33 Conventional
keeper

Y_h
φ

φ

Y_l
A_hA_l

FIGURE 9.35 Differential keeper

X
Y

f

Normal
Mode
Keeper

H

Inputs

BI Burn-In
Keeper

FIGURE 9.36 Burn-in conditional keeper

9.2 Circuit Families 345

Like ratioed circuits, domino keepers are afflicted by process variation
[Brusamarello08]. The keeper must be wide enough to retain the output in the
FS corner. It has the greatest impact on delay in the SF corner. Furthermore, the
keeper must be sized to handle roughly 5 of within-die variation to have negli-
gible impact on yield when the chip has many domino gates. More elaborate
keepers can be used to compensate for systemic variations. The adaptive keeper of
Figure 9.37 has a digitally configurable keeper strength [Kim03]. The leakage cur-
rent replica (LCR) keeper of Figure 9.38 uses a current mirror so that the keeper
current tracks the leakage current in a fashion similar to replica biasing of pseudo-
nMOS gates [Lih07]. The width of the nMOS transistor in the current mirror is
chosen to match the width of the leaking devices. Additional margin is necessary
to compensate for noise and random variations.

Domino circuits with delayed clocks can use full keepers consisting of cross-coupled
inverters to hold the output either high or low, as discussed in Section 10.5.

9.2.4.4 Secondary Precharge Devices Dynamic gates are subject to problems with
charge sharing [Oklobdzija86]. For example, consider the 2-input dynamic NAND gate in
Figure 9.39(a). Suppose the output Y is precharged to VDD and inputs A and B are low.
Also suppose that the intermediate node x had a low value from a previous cycle. During
evaluation, input A rises, but input B remains low so the output Y should remain high.
However, charge is shared between Cx and CY, shown in Figure 9.39(b). This behaves as a
capacitive voltage divider and the voltages equalize at

 (9.3)

Charge sharing is most serious when the output is lightly loaded (small CY) and the
internal capacitance is large. For example, 4-input dynamic NAND gates and complex AOI
gates can share charge among multiple nodes. If the charge-sharing noise is small, the keeper
will eventually restore the dynamic output to VDD. However, if the charge-sharing noise is
large, the output may flip and turn off the keeper, leading to incorrect results.

Charge sharing can be overcome by precharging some or all of the internal nodes with
secondary precharge transistors, as shown in Figure 9.40. These transistors should be small
because they only must charge the small internal capacitances and their diffusion capaci-
tance slows the evaluation. It is often sufficient to precharge every other node in a tall
stack. SOI processes are less susceptible to charge sharing in dynamic gates because the
diffusion capacitance of the internal nodes is smaller. If some charge sharing is acceptable,
a gate can be made faster by predischarging some internal nodes [Ye00].

V V
C

C C
Vx Y

Y

x Y
DD= =

+

Y

f

LCR Keeper

Shared
Replica
Current
Mirror

m

FIGURE 9.38 Leakage
current replica keeper

B

A
Y

x

Cx

CY

A

x

Y

Charge Sharing Noise

(a) (b)

FIGURE 9.39 Charge-sharing noise

B

A
Y

x

Secondary
Precharge
Transistor

FIGURE 9.40 Secondary pre-
charge transistor

Y

f

S0 S1 S2

Adaptive Keeper

W 2W 4W

FIGURE 9.37 Adaptive keeper

Chapter 9 Combinational Circuit Design346

In summary, domino logic was originally proposed as a fast and compact circuit tech-
nique. In practice, domino is prized for its speed. However, by the time feet, keepers, and
secondary precharge devices are added for robustness, domino is seldom much more com-
pact than static CMOS and it demands a tremendous design effort to ensure robust cir-
cuits. When dual-rail domino is required, the area exceeds static CMOS.

9.2.4.5 Logical Effort of Dynamic Paths In Section 4.5.2, we found the best stage effort
by hypothetically appending static CMOS inverters onto the end of the path. The best
effort depended on the parasitic delay and was 3.59 for pinv = 1. When we employ alterna-
tive circuit families, the best stage effort may change. For example, with domino circuits,

we may consider appending domino buffers onto the end of the path. Fig-
ure 9.41 shows that the logical effort of a domino buffer is G = 5/9 for
footed domino and 5/18 for unfooted domino. Therefore, each buffer
appended to a path actually decreases the path effort. Hence, it is better to
add more buffers, or equivalently, to target a lower stage effort than you
would in a static CMOS design.

[Sutherland99] showed that the best stage effort is = 2.76 for paths
with footed domino and 2.0 for paths with unfooted domino. In paths
mixing footed and unfooted domino, the best effort is somewhere
between these extremes. As a rule of thumb, just as you target a stage
effort of 4 for static CMOS paths, you can target a stage effort of 2–3 for
domino paths.

We have also seen that it is possible to push logic into the static CMOS stages
between dynamic gates. The following example explores under what circumstances this is
beneficial.

Example 9.6

Figure 9.42 shows two designs for an 8-input domino AND gate using footed dynamic
gates. One uses four stages of logic with static CMOS inverters. The other uses only
two stages by employing a HI-skew NOR gate. For what range of path electrical efforts
is the 2-stage design faster?

SOLULTION: You might expect that the second design is superior because it scarcely
increases the complexity of the static gate and uses half as many stages, but this is only
true for low electrical efforts. Figure 9.43 shows the paths annotated with (a) logical
effort, (b) parasitic delay, and (c) total delay. The parasitic delays only consider diffusion
capacitance on the output node. The delay of each design is plotted against path elec-
trical effort H.5 For H > 2.9, the 4-stage design becomes preferable because the dom-
ino gates are effective buffers.

5Do not confuse the path electrical effort H with the letter H designating the HI-skew static CMOS gates
in the schematic.

H

H

H

(a) (b)

H

FIGURE 9.42 8-input domino AND gates

1

1

A
Y

g = 1/3

φ
2

1

A
Y

g = 2/3

φ

FootedUnfooted

2
H

H

g = 5/6g = 5/6

G = 5/18 G = 5/9

FIGURE 9.41 Logical efforts of domino buffers

9.2 Circuit Families 347

In summary, dynamic stages are fast because they build logic using nMOS transistors.
Moreover, the low logical efforts suggest that using a relatively large number of stages is
beneficial. Pushing logic into the static CMOS stages uses slower pMOS transistors and
reduces the number of stages. Thus, it is usually good to use static CMOS gates only on
paths with low electrical effort.

9.2.4.6 Multiple-Output Domino Logic (MODL) It is often necessary to compute multiple
functions where one is a subfunction of another or shares a subfunction. Multiple-output
domino logic (MODL) [Hwang89, Wang97] saves area by combining all of the computa-
tions into a multiple-output gate.

A popular application is in addition, where the carry-out ci of each bit of a 4-bit block
must be computed, as discussed in Section 11.2.2.2. Each bit position i in the block can
either propagate the carry (pi) or generate a carry (gi). The carry-out logic is

 (9.4)

This can be implemented in four compound AOI gates, as shown in Figure 9.44(a).
Notice that each output is a function of the less significant outputs. The more compact
MODL design shown in Figure 9.44(b) is often called a Manchester carry chain. Note that
the intermediate outputs require secondary precharge transistors. Also note that care must
be taken for certain inputs to be mutually exclusive in order to avoid sneak paths. For exam-
ple, in the adder we must define

 (9.5)

c g p c

c g p g p c

c g p g p g p c

1 1 1 0

2 2 2 1 1 0

3 3 3 2 2 1 1 0

= +

= + +()
= + + +()()
= + + + +()()()c g p g p g p g p c4 4 4 3 3 2 2 1 1 0

g a b

p a b
i i i

i i i

=

=

1/4
125

108
D = 4 H + 5

H

H

H

(a) (b)

g = 5/3
p = 6/3

g = 5/6
p = 5/6

g = 3/3
p = 4/3

g = 5/6
p = 5/6

g = 5/3
p = 6/3

g = 3/2
p = 5/3

H

G = (5/3)(5/6)(3/3)(5/6) = 125/108
P = 6/3 + 5/6 + 4/3 + 5/6 = 5

G = (5/3)(3/2) = 5/2
P = 6/3 + 5/3 = 11/3

1/2
5 11

2 3
D = 2 H +

(c)

Four Stage

Two Stage

H

D

0 2 4 6 8
0

2

4

6

8

10

FIGURE 9.43 8-input domino AND delays

Chapter 9 Combinational Circuit Design348

If pi were defined as ai + bi, a sneak path could exist when a4 and b4 are 1 and all other
inputs are 0. In that case, g4 = p4 = 1. c4 would fire as desired, but c3 would also fire incor-
rectly, as shown in Figure 9.45.

9.2.4.7 NP and Zipper Domino Another variation on domino is shown in Figure 9.46(a).
The HI-skew inverting static gates are replaced with predischarged dynamic gates using
pMOS logic. For example, a footed dynamic p-logic NAND gate is shown in Figure
9.46(b). When is 0, the first and third stages precharge high while the second stage pre-
discharges low. When rises, all the stages evaluate. Domino connections are possible, as
shown in Figure 9.46(c). The design style is called NP Domino or NORA Domino
(NO RAce) [Gonclaves83, Friedman84].

NORA has two major drawbacks. The logical effort of footed p-logic gates is gener-
ally worse than that of HI-skew gates (e.g., 2 vs. 3/2 for NOR2 and 4/3 vs. 1 for
NAND2). Secondly, NORA is extremely susceptible to noise. In an ordinary dynamic
gate, the input has a low noise margin (about Vt), but is strongly driven by a static CMOS
gate. The floating dynamic output is more prone to noise from coupling and charge shar-

(a)

(b)

c0

p1 g1

g2p2

c2

φ

c0

p1 g1

g2

g3

g4

p2

p3

p4

c4

φ

c0

p1 g1

c1

φ

c0

p1 g1

g2

g3

p2

p3

c
3

φ

c0

p1 g1

g2

g3

g4

p2

p3

p4

c4

φ

c3

c2

c1

FIGURE 9.44 Conventional and MODL carry chains

9.2 Circuit Families 349

ing, but drives another static CMOS gate with a larger noise margin. In
NORA, however, the sensitive dynamic inputs are driven by noise-
prone dynamic outputs. Given these drawbacks and the extra clock
phase required, there is little reason to use NORA.

Zipper domino [Lee86] is a closely related technique that leaves the
precharge transistors slightly ON during evaluation by using precharge
clocks that swing between 0 and VDD – |Vtp| for the pMOS precharge
and Vtn and VDD for the nMOS precharge. This plays much the same
role as a keeper. Zipper never saw widespread use in the industry
[Bernstein99].

9.2.5 Pass-Transistor Circuits
In the circuit families we have explored so far, inputs are applied only to the gate terminals
of transistors. In pass-transistor circuits, inputs are also applied to the source/drain diffu-
sion terminals. These circuits build switches using either nMOS pass transistors or parallel
pairs of nMOS and pMOS transistors called transmission gates. Many authors have
claimed substantial area, speed, and/or power improvements for pass transistors compared
to static CMOS logic. In specialized circumstances this can be true; for example, pass
transistors are essential to the design of efficient 6-transistor static RAM cells used in
most modern systems (see Section 12.2). Full adders and other circuits rich in XORs also
can be efficiently constructed with pass transistors. In certain other cases, we will see that

φ

Inputs
Stable
During
clk = 1

f

n logic

φ

f

p logic

φ

f

n logic

Other p Blocks Other n Blocks

φ

Inputs
Stable
During
clk = 1

f

n logic

φ

f

p logic

φ

f

n logic

Other p Blocks Other n Blocks

Other n Blocks Other p Blocks

(a)

(c)

φ

A B
Y

(b)

FIGURE 9.46 NP Domino

0

0 0

0

0

1

0

0

1
c4

φ

c3

c2

c1

Sneak Path

FIGURE 9.45 Sneak path

Chapter 9 Combinational Circuit Design350

pass-transistor circuits are essentially equivalent ways to draw the fundamental logic struc-
tures we have explored before. An independent evaluation finds that for most general-
purpose logic, static CMOS is superior in speed, power, and area [Zimmermann97].

For the purpose of comparison, Figure 9.47 shows a 2-input multiplexer constructed
in a wide variety of pass-transistor circuit families along with static CMOS, pseudo-
nMOS, CVSL, and single- and dual-rail domino. Some of the circuit families are dual-
rail, producing both true and complementary outputs, while others are single-rail and may
require an additional inversion if the other polarity of output is needed. U XOR V can be

Static CMOS

CMOSTG

CPL EEPL DCVSPG

SRPL

LEAP

Pseudo-nMOS CVSL

Domino Dual-Rail Domino

A

B

S

S

S

Y

S
Y

A B

S

S S

BA

Y

A B

SS S

B A

Y
S

BA

Y

A B

SS

φ
Y

φ
Y_hY_l

B

S

S

S

S

A

B

A

B

S

S

S

S

A

B

A

B

S

S

S

S

A

B

A
Y

Y

B

S

S

S

A

B

A

Y

Y

S

B

S

S
A

Y

S

B
S

S

S

A

B

A

PPL

A

B

S

S

S

Y

S

S

A

B

Y

DPL

H
H H

L

L

L

L

L

L

SS

S

B A

S

BA

SS

Y

Y

Y

Y

Y

Y

L

FIGURE 9.47 Comparison of circuit families for 2-input multiplexers

9.2 Circuit Families 351

computed with exactly the same logic using S = U, S = U, A = V, B = V. This shows that
static CMOS is particularly poorly suited to XOR because the complex gate and two
additional inverters are required; hence, pass-transistor circuits become attractive. In com-
parison, static CMOS NAND and NOR gates are relatively efficient and benefit less from
pass transistors.

This section first examines mixing CMOS with transmission gates, as is common in
multiplexers and latches. It next examines Complementary Pass-transistor Logic (CPL),
which can work well for XOR-rich circuits like full adders and LEAn integration with Pass
transistors (LEAP), which illustrates single-ended pass-transistor design. Finally, it cata-
logs and compares a wide variety of alternative pass-transistor families.

9.2.5.1 CMOS with Transmission Gates Structures such as tristates, latches, and multi-
plexers are often drawn as transmission gates in conjunction with simple static CMOS
logic. For example, Figure 1.28 introduced the transmission gate multiplexer using two
transmission gates. The circuit was nonrestoring; i.e., the logic levels on the output are no
better than those on the input so a cascade of such circuits may accumulate noise. To
buffer the output and restore levels, a static CMOS output inverter can be added, as
shown in Figure 9.47 (CMOSTG).

A single nMOS or pMOS pass transistor suffers from a threshold drop. If used alone,
additional circuitry may be needed to pull the output to the rail. Transmission gates solve
this problem but require two transistors in parallel. The resistance of a unit-sized trans-
mission gate can be estimated as R for the purpose of delay estimation. Current flows
through the parallel combination of the nMOS and pMOS transistors. One of the transis-
tors is passing the value well and the other is passing it poorly; for example, a logic 1 is
passed well through the pMOS but poorly through the nMOS. Estimate the effective
resistance of a unit transistor passing a value in its poor direction as twice
the usual value: 2R for nMOS and 4R for pMOS. Figure 9.48 shows the
parallel combination of resistances. When passing a 0, the resistance is R
|| 4R = (4/5)R. The effective resistance passing a 1 is 2R || 2R = R.
Hence, a transmission gate made from unit transistors is approximately R
in either direction. Note that transmission gates are commonly built
using equal-sized nMOS and pMOS transistors. Boosting the size of the
pMOS transistor only slightly improves the effective resistance while sig-
nificantly increasing the capacitance.

At first, CMOS with transmission gates might appear to offer an
entirely new range of circuit constructs. A careful examination shows that
the topology is actually almost identical to static CMOS. If multiple
stages of logic are cascaded, they can be viewed as alternating transmission
gates and inverters. Figure 9.49(a) redraws the multiplexer to include the
inverters from the previous stage that drive the diffusion inputs but to
exclude the output inverter. Figure 9.49(b) shows this multiplexer drawn
at the transistor level. Observe that this is identical to the static CMOS
multiplexer of Figure 9.47 except that the intermediate nodes in the
pullup and pulldown networks are shorted together as N1 and N2.

The shorting of the intermediate nodes has two effects on delay. The
effective resistance decreases somewhat (especially for rising outputs) because the output is
pulled up or down through the parallel combination of both pass transistors rather than
through a single transistor. However, the effective capacitance increases slightly because of
the extra diffusion and wire capacitance required for this shorting. This is apparent from

(a) (b)

A

B

S

S

S

Y
S

Y

A B

S

S S

BA

N1 N2

N1

N2

FIGURE 9.49 Alternate representations of
CMOSTG in a 2-input inverting multiplexer

a b

1

0

a = 0
R

4R

a = 1
2R

2R

FIGURE 9.48 Effective resistance of a unit
transmission gate

Chapter 9 Combinational Circuit Design352

layouts of the multiplexers; the transmission gate
design in Figure 9.50(a) requires contacted diffu-
sion on N1 and N2 while the static CMOS gate in
Figure 9.50(b) does not. In most processes, the
improved resistance dominates for gates with mod-
erate fanouts, making shorting generally faster at a
small cost in power.

Figure 9.51 shows a similar transformation of a
tristate inverter from transmission gate form to
conventional static CMOS by unshorting the inter-
mediate node and redrawing the gate. Note that the
circuit in Figure 9.51(d) interchanges the A and
enable terminals. It is logically equivalent, but elec-
trically inferior because if the output is tristated but
A toggles, charge from the internal nodes may dis-
turb the floating output node. Charge sharing is
discussed further in Section 9.3.4.

Several factors favor the static CMOS repre-
sentation over CMOS with transmission gates. If

the inverter is on the output rather than the input, the delay of the gate
depends on what is driving the input as well as the capacitance driven by the
output. This input driver sensitivity makes characterizing the gate more diffi-
cult and is incompatible with most timing analysis tools. Novice designers
often erroneously characterize transmission gate circuits by applying a voltage
source directly to the diffusion input. This makes transmission gate multi-
plexers look very fast because they only involve one transistor in series rather
than two. For accurate characterization, the driver must also be included. A
second drawback is that diffusion inputs to tristate inverters are susceptible to
noise that may incorrectly turn on the inverter; this is discussed further in
Section 9.3.9. Finally, the contacts slightly increase area and their capacitance
increases power consumption.

The logical effort of circuits involving transmission gates is computed by
drawing stages that begin at gate inputs rather than diffusion inputs, as in
Figure 9.52 for a transmission gate multiplexer. The effect of the shorting can
be ignored, so the logical effort from either the A or B terminals is 6/3, just as
in a static CMOS multiplexer. Note that the parasitic delay of transmission
gate circuits with multiple series transmission gates increases rapidly because
of the internal diffusion capacitance, so it is seldom beneficial to use more
than two transmission gates in series without buffering.

9.2.5.2 Complementary Pass Transistor Logic (CPL) CPL [Yano90] can be understood
as an improvement on CVSL. CVSL is slow because one side of the gate pulls down, and
then the cross-coupled pMOS transistor pulls the other side up. The size of the cross-
coupled device is an inherent compromise between a large transistor that fights the pull-
down excessively and a small transistor that is slow pulling up. CPL resolves this problem
by making one half of the gate pull up while the other half pulls down.

Figure 9.53(a) shows the CPL multiplexer from Figure 9.47 rotated sideways. If a
path consists of a cascade of CPL gates, the inverters can be viewed equally well as being
on the output of one stage or the input of the next. Figure 9.53(b) redraws the mux to

BAD

(a) (b)

A Y A Y

(c)

A Y

EN

ENb

(d)

A Y

EN

ENb

EN

ENb

EN

ENb

FIGURE 9.51 Tristate inverter

A BS

S

(a)

n1 n2
Y

A BS

S

n1
n

n2
n

n2
p

n1
p

(b)

Y

FIGURE 9.50 Multiplexer layout comparison

S
Y

A B

S

S S

BA

2

2

2

4

2

2

2

4

FIGURE 9.52 Logical
effort of transmission gate
circuit

9.2 Circuit Families 353

include the inverters from the previous stage that drives the diffusion input, but to exclude
the output inverters. Figure 9.53(c) shows the mux drawn at the transistor level. Observe
that this is identical to the CVSL gate from Figure 9.47 except that the internal node of
the stack can be pulled up through the weak pMOS transistors in the inverters.

When the gate switches, one side pulls down well through its nMOS transistors. The
other side pulls up. CPL can be constructed without cross-coupled pMOS transistors, but
the outputs would only rise to VDD – Vt (or slightly lower because the nMOS transistors
experience the body effect). This costs static power because the output inverter will be
turned slightly ON. Adding weak cross-coupled devices helps bring the rising output to
the supply rail while only slightly slowing the falling output. The output inverters can be
LO-skewed to reduce sensitivity to the slowly rising output.

9.2.5.3 Lean Integration with Pass Transistors (LEAP) Like CPL, LEAP6 [Yano96]
builds logic networks using only fast nMOS transistors, as shown in Figure 9.47. It is a
single-ended logic family in that the complementary network is not required, thus saving
area and power. The output is buffered with an inverter, which can be LO-skewed to favor
the asymmetric response of an nMOS transistor. The nMOS network only pulls up to
VDD – Vt so a pMOS feedback transistor is necessary to pull the internal node fully high,
avoiding power consumption in the output inverter. The pMOS width is a trade-off
between fighting falling transitions and assisting the last part of a rising transition; it gen-
erally should be quite weak and the circuit will fail if it is too strong. LEAP can be a good
way to build wide 1-of-N hot multiplexers with many of the advantages of pseudo-nMOS
but without the static power consumption. It was originally proposed for use in a pass
transistor logic synthesis system because the cells are compact.

Unlike most circuit families that can operate down to VDD max(Vtn, |Vtp|), LEAP is
limited to operating at VDD 2Vt because the inverter must flip even when receiving an
input degraded by a threshold voltage.

9.2.5.4 Other Pass Transistor Families There have been a host of pass transistor families
proposed in the literature, including Differential Pass Transistor Logic (DPTL)
[Pasternak87, Pasternak91], Double Pass Transistor Logic (DPL) [Suzuki93], Energy Econ-
omized Pass Transistor Logic (EEPL) [Song96], Push-Pull Pass Transistor Logic (PPL)
[Paik96], Swing-Restored Pass Transistor Logic (SRPL) [Parameswar96], and Differential
Cascode Voltage Switch with Pass Gate Logic (DCVSPG) [Lai97]. All of these are dual-rail
families like CPL, as contrasted with the single-rail CMOSTG and LEAP.

6The LEAP topology was reinvented under the name Single Ended Swing Restoring Pass Transistor Logic
[Pihl98].

S

BA

Y

S

B A

Y

SS

S

B A

S

BA

SS
L L

(a) (c)

S

B A

Y
S

BA

Y
SS

L L L L

Y Y

(b)

FIGURE 9.53 Alternate representations of CPL

Chapter 9 Combinational Circuit Design354

DPL is a double-rail form of CMOSTG optimized to use single-pass transistors
where only a known 0 or 1 needs to be passed. It passes good high and low logic levels
without the need for level-restoring devices. However, the pMOS transistors contribute
substantial area and capacitance, but do not help the delay much, resulting in large and
relatively slow gates.

The other dual-rail families can be viewed as modifications to CPL. EEPL drives the
cross-coupled level restoring transistors from the opposite rail rather than VDD. The
inventors claimed this led to shorter delay and lower power dissipation than CPL, but the
improvements could not be confirmed [Zimmermann97]. SRPL cross-couples the invert-
ers instead of using cross-coupled pMOS pullups. This leads to a ratio problem in which
the nMOS transistors in the inverter must be weak enough to be overcome as the pass
transistors try to pull up. This tends to require small inverters, which make poor buffers.
DCVSPG eliminates the output inverters from CPL. Without these buffers, the output
of a DCVSPG gate makes a poor input to the diffusion terminal of another DCVSPG
gate because a long unrestored chain of nMOS transistors would be formed, leading to
delay and noise problems. PPL also has unbuffered outputs and associated delay and noise
issues. DPTL generalizes the output buffer structure to consider alternatives to the cross-
coupled pMOS transistors and LO-skewed inverters of CPL. All of the alternatives are
slower and larger than CPL.

9.3 Circuit Pitfalls
Circuit designers tend to use simple circuits because they are robust. Elaborate circuits,
especially those with more transistors, tend to add more area, more capacitance, and more
things that can go wrong. Static CMOS is the most robust circuit family and should be
used whenever possible. This section catalogs a variety of circuit pitfalls that can cause
chips to fail. They include the following:

� Threshold drops
� Ratio failures
� Leakage
� Charge sharing
� Power supply noise
� Coupling
� Minority carrier injection
� Back-gate coupling
� Diffusion input noise sensitivity
� Race conditions
� Delay matching
� Metastability
� Hot spots
� Soft errors
� Process sensitivity

9.3 Circuit Pitfalls 355

Capacitive and inductive coupling were discussed in Section 6.3. Sneak paths were
discussed in Section 9.2.4.6. Reliability issues such as soft errors impacting circuit design
were discussed in Section 7.3. Timing-related problems including race conditions, delay
matching, and metastability will be examined in Sections 10.2.3, 10.5.4, and 10.6.1. The
other pitfalls are described here.

9.3.1 Threshold Drops
Pass transistors are good at pulling in a preferred direction, but only swing to within Vt of
the rail in the other direction; this is called a threshold drop. For example, Figure 9.54
shows a pass transistor driving a logic 1 into an inverter. The output of the pass transistor
only rises to VDD – Vt . Worse yet, the body effect increases this threshold voltage because
Vsb > 0 for the pass transistor. The degraded level is insufficient to completely turn off the
pMOS transistor in the inverter, resulting in static power dissipation. Indeed, for low
VDD, the degraded output can be so poor that the inverter no longer sees a valid input
logic level VIH. Finally, the transition becomes lethargic as the output approaches VDD –
Vt . Threshold drops were sometimes tolerable in older processes where VDD 5Vt , but are
seldom acceptable in modern processes where the power supply has been scaled down
faster than the threshold voltage to VDD 3Vt . As a result, pass transistors must be
replaced by full transmission gates or may use weak pMOS feedback transistors to pull the
output to VDD, as was done in several pass transistor families.

9.3.2 Ratio Failures
Pseudo-nMOS circuits illustrated ratio constraints that occur when a node is simulta-
neously pulled up and down, typically by strong nMOS transistors and weak pMOS tran-
sistors. The weak transistors must be sufficiently small that the output level falls below VIL
of the next stage by some noise margin. Ideally, the output should fall below Vt so the next
stage does not conduct static power. Ratioed circuits should be checked in the SF and FS
corners.

Another example of ratio failures occurs in circuits with feedback. For example,
dynamic keepers, level-restoring devices in SRPL and LEAP, and feedback inverters in
static latches all have weak feedback transistors that must be ratioed properly.

Ratioing is especially sensitive for diffusion inputs. For example, Figure 9.55(a) shows
a static latch with a weak feedback inverter. The feedback inverter must be weak enough to
be overcome by the series combination of the pass transistor and the gate driving the D
input, as shown in Figure 9.55(b). This cannot be verified by checking the latch alone; it
requires a global check of the latch and driver. Worse yet, if the driver is far away, the series
wire resistance must also be considered, as shown in Figure 9.55(c).

VDD − Vt

FIGURE 9.54 Pass
transistor with threshold
drop

QD

φ

φ Weak

QD

φ

φ Weak
Stronger

QD

φ

φ Weak
Stronger

(a) (b) (c)

FIGURE 9.55 Ratio constraint on static latch with diffusion input

Chapter 9 Combinational Circuit Design356

9.3.3 Leakage
Leakage current is a growing problem as technology scales, especially for dynamic nodes
and wide NOR structures. Recall that leakage arises from subthreshold conduction, gate
tunneling, and reverse-biased diode leakage. Subthreshold conduction is presently the
most important component because Vt is low and getting lower, but gate tunneling will
become profoundly important too as oxide thickness diminishes. Besides causing static
power dissipation, leakage can result in incorrect values on dynamic or weakly driven
nodes. The time required for leakage to disturb a dynamic node by some voltage V is

 (9.6)

Subthreshold leakage gradually discharges dynamic nodes through transistors that are
nominally OFF. Fully dynamic gates and latches without keepers are not viable in most
modern processes. DRAM refresh times are also set by leakage and DRAM processes
must minimize leakage to have satisfactory retention times.

Even when a keeper is used, it must be wide enough. This seems trivial because the
keeper is fully ON while leakage takes place through transistors that are supposed to be
OFF. However, in wide dynamic NOR structures, many parallel nMOS transistors may
be leaking simultaneously. Similar problems apply to wide pseudo-nMOS NOR gates and
PLAs. Leakage increases exponentially with temperature, so the problem is especially bad
at burn-in. For example, a preliminary version of the Sun UltraSparc V had difficulty with
burn-in because of excess leakage.

Subthreshold leakage is much lower through two OFF transistors in series than
through a single transistor because the outer transistor has a lower drain voltage and sees a
much lower effect from DIBL. Multiple threshold voltages are also frequently used to
achieve high performance in critical paths and lower leakage in other paths.

9.3.4 Charge Sharing
Charge sharing was introduced in Section 9.2.4.4 in the context of a dynamic gate.
Charge sharing can also occur when dynamic gates drive pass transistors. For example,
Figure 9.56 shows a dynamic inverter driving a transmission gate. Suppose the dynamic
gate has been precharged and the output is floating high. Further suppose the transmis-
sion gate is OFF and Y = 0. If the transmission gate turns on, charge will be shared
between X and Y, disturbing the dynamic output.

9.3.5 Power Supply Noise
VDD and GND are not constant across a large chip. Both are subject to power supply noise
caused by IR drops and di/dt noise. IR drops occur across the resistance R of the power
supply grid between the supply pins and a block drawing a current I, as shown in Figure
9.57. di/dt noise occurs across the power supply inductance L as the current rapidly
changes. di/dt noise can be especially important for blocks that are idle for several cycles

t
C V

I
= node

leak

0

X
1

Y
CX CY

Y

X

Charge Sharing Noise

FIGURE 9.56 Charge sharing on dynamic gate driving pass transistor

GND
at Driver

GND
at ReceiverRgrid Igrid

FIGURE 9.57 Power supply IR drops

9.3 Circuit Pitfalls 357

and then begin switching. Power supply noise hurts performance and can degrade noise
margins. Typical targets are for power supply noise on the order of 5–10% of VDD. Power
supply noise causes both noise margin problems and delay variations. The noise margin
issues can be managed by placing sensitive circuits near each other and having them share
a common low-resistance power wire.

Power supply noise can be estimated from simulations of the chip power grid, bypass
capacitance, and packaging, as discussed in Section 13.3. Figure 7.2 shows a map of power
supply noise across a chip.

9.3.6 Hot Spots
Transistor performance degrades with temperature, so care must be taken to avoid exces-
sively hot spots. These can be caused by nonuniform power dissipation even when the over-
all power consumption is within budget. The nonuniform temperature distribution leads
to variation in delay between gates across the chip. Full-chip temperature plots can be
generated through electrothermal simulation [Petegem94, Cheng00]; this can begin when
the floorplan and preliminary power estimates for each unit are available. Figure 7.3 shows
a thermal map of the Itanium 2. A particularly localized form of hot spots is self-heating
in resistive wires, described in Section 7.3.3.2.

9.3.7 Minority Carrier Injection
It is sometimes possible to drive a signal momentarily outside the rails, either through
capacitive coupling or through inductive ringing on I/O drivers. In such a case, the junc-
tions between drain and body may momentarily become forward-biased, causing current
to flow into the substrate. This effect is called minority carrier injection [Chandrakasan01].
For example, in Figure 9.58, the drain of an nMOS transistor is driven below GND,
injecting electrons into the p-type substrate. These can be collected on a nearby transistor

p+

p substrate

Injector Node
Driven Below GND Dynamic Node

e e e

e e e

GND

(a)

(b)

n+n+ n+n+

p substrate

Injector Node
Driven Below GND Dynamic NodeGND

n+n+ n+n+

Carriers Collected
at Substrate Contact

GND

FIGURE 9.58 Minority carrier injection and collection

Chapter 9 Combinational Circuit Design358

diffusion node (Figure 9.58(a)), disturbing a high voltage on the node. This is a particular
problem for dynamic nodes and sensitive analog circuits.

Minority carrier injection problems are avoided by keeping injection sources away
from sensitive nodes. In particular, I/O pads should not be located near sensitive nodes.
Noise tools can identify potential coupling problems so the layout can be modified to
reduce coupling. Alternatively, the sensitive node can be protected by an intermediate sub-
strate or well contact. For example in Figure 9.58(b), most of the injected electrons will be
collected into the substrate contact before reaching the dynamic node. In I/O pads, it is
common to build guard rings of substrate/well contacts around the output transistors.
Guard rings were illustrated in Figure 7.13.

9.3.8 Back-Gate Coupling
Dynamic gates driving multiple-input static CMOS gates
a re su s c ep t i b l e t o the b a c k - ga t e c o u p l i n g e f f e c t
[Chandrakasan01] illustrated in Figure 9.59. In this exam-
ple, a dynamic NAND gate drives a static NAND gate. The
gate-to-source capacitance Cgs1 of N1 is shown explicitly.
Suppose that the dynamic gate is in evaluation and its out-
put X is floating high. The other input B to the static
NAND gate is initially low. Therefore, the NAND output Y
is high and the internal node W is charged up to VDD – Vt .

At some time B rises, discharging Y and W through transistor N2. The source of N1 falls.
This tends to bring the gate along for the ride because of the Cgs1 capacitance, resulting in
a droop on the dynamic node X. As with charge sharing, the magnitude of the droop
depends on the ratio of Cgs1 to the total capacitance on node X.

Back-gate coupling is eliminated by driving the input closer to the rail. For example,
if X drove N2 instead of N1, the problem would be avoided. Otherwise, the back-gate
coupling noise must be included in the dynamic noise budget.

9.3.9 Diffusion Input Noise Sensitivity
Figure 9.55(a) showed a static latch with an exposed diffusion input. Such an input is also
particularly sensitive to noise. For example, imagine that power supply noise and/or cou-
pling noise drove the input voltage below –Vt relative to GND seen by the transmission
gate, as shown in Figure 9.60. Vgs now exceeds Vt for the nMOS transistor in the transmis-
sion gate, so the transmission gate turns on. If the latch had contained a 1, it could be
incorrectly discharged to 0. A similar effect can occur for voltage excursions above VDD.

For this reason, along with the ratio issues discussed in Section 9.3.2, standard cell
latches are usually built with buffered inputs rather than exposed diffusion nodes. This is a
good example of the structured design principle of modularity. Exposing the diffusion
input results in a faster latch and can be used in datapaths where the inputs are carefully
controlled and checked.

9.3.10 Process Sensitivity
Marginal circuits can operate under nominal process conditions, but fail in certain process
corners or when the circuit is migrated to another process. Novel circuits should be simu-
lated in all process corners and carefully scrutinized for any process sensitivities. They
should also be verified to work at all voltages and temperatures, including the elevated

0

X

φ
A

Y

B
Cgs1

W

N1

φ

B

W

X

N2

FIGURE 9.59 Back-gate coupling

QD

0

Weak

0

2Vt

Coupling &
Supply Noise

VDD

VDD

FIGURE 9.60
Noise on diffusion input of latch

9.3 Circuit Pitfalls 359

voltages and temperatures used during burn-in and the lower voltage that might be used
for low-power versions of a part.

When a design is likely to be migrated to another process for cost-reduction, circuits
should be designed to facilitate this migration. You can expect that leakage will increase,
threshold drops will become a greater fraction of the supply voltage, wire delay will
become a greater portion of the cycle time, and coupling may get worse as aspect ratios of
wires increase. For example, the Pentium 4 processor was originally fabricated in a 180 nm
process. Designers placed repeaters closer than was optimal for that process because they
knew the best repeater spacing would become smaller as transistor dimensions were
reduced later in the product’s life [Kumar01].

9.3.11 Example: Domino Noise Budgets
Domino logic requires careful verification because it is sensitive to noise. Noise in static
CMOS gates usually results in greater delay, but noise in domino logic can produce incor-
rect results. This section reviews the various noise sources that can affect domino gates and
presents a sample noise budget.

Dynamic outputs are especially susceptible to noise when they float high, held only by
a weak keeper. Dynamic inputs have low noise margins (approximately Vt). Noise issues
that should be considered include [Chandrakasan01]:

� Charge leakage Subthreshold leakage on the dynamic node is presently most
important, but gate leakage will become important, too. Subthreshold leakage is
worst for wide NOR structures at high temperature (especially during burn-in).
Keepers must be sized appropriately to compensate for leakage.

� Charge sharing Charge sharing can take place between the dynamic output node
and the nodes within the dynamic gate. Secondary precharge transistors should be
added when the charge sharing could be excessive. Do not drive dynamic nodes
directly into transmission gates because charge sharing can occur when the trans-
mission gate turns ON.

� Capacitive coupling Capacitive coupling can occur on both the input and output.
The inputs of dynamic gates have the lowest noise margin, but are actively driven
by a static gate, which fights coupling noise. The dynamic outputs have more noise
tolerance, but are weakly driven. Coupling is minimized by keeping wires short
and increasing the spacing to neighbors or shielding the lines. Coupling can be
extremely bad in processes below 250 nm because the wires have such high aspect
ratios.

� Back-gate coupling Dynamic gates connected to multiple-input CMOS gates
should drive the outer input when possible. This is not a factor for dynamic gates
driving inverters.

� Minority carrier injection Dynamic nodes should be protected from nodes that
can inject minority carriers. These include I/O circuits and nodes that can be cou-
pled far outside the supply rails. Substrate/well contacts and guard rings can be
added to protect dynamic nodes from potential injectors.

� Power supply noise Static gates should be located close to the dynamic gates they
drive to minimize the amount of power supply noise seen.

� Soft errors Alpha particles and cosmic rays can disturb dynamic nodes. The prob-
ability of failure is reduced through large node capacitance and strong keepers.

Chapter 9 Combinational Circuit Design360

� Noise feedthrough Noise that pushes the input of a previous stage to near its
noise margin will cause the output to be slightly degraded, as shown in Figure
2.30.

� Process corner effects Noise margins are degraded in certain process corners.
Dynamic gates have the smallest noise margin in the FS corner where the nMOS
transistors have a low threshold and the pMOS keepers are weak. HI-skew static
gates have the smallest noise margins in the SF corner where the gates are most
skewed.

In a domino gate, the noise-prone dynamic output drives a static gate with a reason-
able noise margin. The noise-sensitive dynamic gate is strongly driven by a noise-resistant
static gate. In an NP domino gate or clock-delayed domino gate, the noise-prone dynamic
output directly drives a noise-sensitive dynamic input, making such circuits particularly
risky.

Consider a noise budget for a 3.3 V process [Harris01a]. A HI-skew inverter in this
process has VIH = 2.08 V, resulting in NMH = 37% of VDD if VOH = VDD A dynamic gate
with a small keeper has VIL = 0.63 V, resulting in NML = 19% of VDD. Table 9.3 allocates
these margins to the primary noise sources. In a full design methodology, different
margins can be used for different gates. For example, wide NOR structures have no
charge-sharing noise, but may see significant leakage instead. More coupling noise could
be tolerated if other noise sources are known to be smaller. Noise analysis tools are dis-
cussed further in Section 14.4.2.6.

9.4 More Circuit Families
This section is available in the online Web Enhanced chapter at www.cmosvlsi.com.

9.5 Silicon-On-Insulator Circuit Design
Silicon-on-Insulator (SOI) technology has been a subject of research for decades, but has
become commercially important since it was adopted by IBM for PowerPC microproces-
sors in 1998 [Shahidi02]. SOI is attractive because it offers potential for higher perfor-
mance and lower power consumption, but also has a higher manufacturing cost and some
unusual transistor behavior that complicates circuit design.

The fundamental difference between SOI and conventional bulk CMOS technology
is that the transistor source, drain, and body are surrounded by insulating oxide rather than
the conductive substrate or well (called the bulk). Using an insulator eliminates most of the

TABLE 9.3 Sample domino noise budget

Source Dynamic Output Dynamic Input

Charge sharing 10 n/a
Coupling 17 7
Supply noise 5 5
Feedthrough noise 5 7
Total 37% 19%

WEB
ENHANCED

9.5 Silicon-On-Insulator Circuit Design 361

parasitic capacitance of the diffusion
regions. However, it means that the body
is no longer tied to GND or VDD through
the substrate or well. Any change in body
voltage modulates Vt , leading to both
advantages and complications in design.

Figure 9.61 shows a cross-section of
an inverter in a SOI process. The process
is similar to standard CMOS, but starts
with a wafer containing a thin layer of
SiO2 buried beneath a thin single-crystal
silicon layer. Section 3.4.1.2 discussed
several ways to form this buried oxide.
Shallow trench isolation is used to sur-
round each transistor by an oxide insula-
tor. Figure 9.62 shows a scanning electron micrograph of a
6-transistor static RAM cell in a 0.22 m IBM SOI process.

SOI devices are categorized as partially depleted (PD) or
fully depleted (FD). A depletion region empty of free carriers
forms in the body beneath the gate. In FD SOI, the body is
thinner than the channel depletion width, so the body charge is
fixed and thus the body voltage does not change. In PD SOI,
the body is thicker and its voltage can vary depending on how
much charge is present. This varying body voltage in turn
changes Vt through the body effect. FD SOI has been difficult
to manufacture because of the thin body, so PD SOI appears to
be the most promising technology.

Throughout this section we will concentrate on nMOS
transistors. pMOS transistors have analogous behaviors.

9.5.1 Floating Body Voltage
The key to understanding PD SOI is to follow the body voltage. If the body volt-
age were constant, the threshold voltage would be constant as well and the transis-
tor would behave much like a conventional bulk device except that the diffusion
capacitance is lower.

In PD SOI, the floating body voltage varies as it charges or discharges. Figure
9.63 illustrates the mechanisms by which charges enter into or exit from the body
[Bernstein00]. There are two paths through which charge can slowly build up in
the body:

� Reverse-biased drain-to-body Ddb and possibly source-to-body Dsb junctions carry
small diode leakage currents into the body.

� High-energy carriers cause impact ionization, creating electron-hole pairs. Some
of these electrons are injected into the gate or gate oxide. (This is the mechanism
for hot-electron wearout described in Section 7.3.2.1.) The corresponding holes
accumulate in the body. This effect is most pronounced at VDS above the intended
operating point of devices and is relatively unimportant during normal operation.
The impact ionization current into the body is modeled as a current source Iii.

p substrate

p+

A

Y
GND VDD

p+

nMOS Transistor pMOS Transistor

p

Insulator

np ppn+ n+

FIGURE 9.61 SOI inverter cross-section

FIGURE 9.62 IBM SOI process electron micrograph
(Courtesy of International Business Machines Corporation.
Unauthorized use not permitted.)

n+n+

Source Drain

Body

IiiDsb Ddb

Gate

FIGURE 9.63 Charge paths to/from
floating body

Chapter 9 Combinational Circuit Design362

The charge can exit the body through two other paths:

� As the body voltage increases, the source-to-body Dsb junction becomes slightly
forward-biased. Eventually, the charge exiting from this junction equals the charge
leaking in from the drain-to-body Ddb junction.

� A rising gate or drain capacitively couples the body upward, too. This may strongly
forward-bias the source-to-body Dsb junction and rapidly spill charge out of the
body.

In summary, when a device is idle long enough (on the order of microseconds), the
body voltage will reach equilibrium when based on the leakage currents through the source
and drain junctions. When the device then begins switching, the charge may spill off the
body, shifting the body voltage (and threshold voltage) significantly.

9.5.2 SOI Advantages
A major advantage of SOI is the lower diffusion capacitance. The source and drain abut
oxide on the bottom and sidewalls not facing the channel, essentially eliminating the par-
asitic capacitance of these sides. This results in a smaller parasitic delay and lower dynamic
power consumption.

A more subtle advantage is the potential for lower threshold voltages. In bulk pro-
cesses, threshold voltage varies with channel length. Hence, variations in polysilicon etch-
ing show up as variations in threshold voltage. The threshold voltage must be high enough
in the worst (lowest) case to limit subthreshold leakage, so the nominal threshold voltage
must be higher. In SOI processes, the threshold variations tend to be smaller. Hence, the
nominal Vt can be closer to worst-case. Lower nominal Vt results in faster transistors,
especially at low VDD.

According to EQ (2.44), CMOS devices have a subthreshold slope of nvT l n10,
where vT = kT/q is the thermal voltage (26 mV at room temperature) and n is process-
dependent. Bulk CMOS processes typically have n 1.5, corresponding to a subthreshold
slope of 90 mV/decade. In other words, for each 90 mV decrease in Vgs below Vt , the sub-
threshold leakage current reduces by an order of magnitude. Misleading claims have been
made suggesting SOI has n = 1 and thus an ideal subthreshold slope of only 60
mV/decade. IBM has found that real SOI devices actually have subthreshold slopes of
75–85 mV/decade. This is better than bulk, but not as good as the hype would suggest.
FinFETs discussed in Section 3.4.4 are variations on SOI transistors that offer lower sub-
threshold slopes because the gate surrounds the channel on more sides and thus turns the
transistor off more abruptly.

Finally, SOI is immune to latchup because the insulating oxide eliminates the para-
sitic bipolar devices that could trigger latchup.

9.5.3 SOI Disadvantages
PD SOI suffers from the history effect. Changes in the body voltage modulate the thresh-
old voltage and thus adjust gate delay. The body voltage depends on whether the device
has been idle or switching, so gate delay is a function of the switching history. Overall, the
elevated body voltage reduces the threshold and makes the gates faster, but the uncertainty
makes circuit design more challenging. The history effect can be modeled in a simplified
way by assigning different propagation and contamination delays to each gate. IBM found
the history effect tends to result in about an 8% variation in gate delay, which is modest

9.5 Silicon-On-Insulator Circuit Design 363

compared to the combined effects of manufacturing and environmental varia-
tions [Shahidi02].

Unfortunately, the history effect causes significant mismatches between
nominally identical transistors. For example, if a sense amplifier has repeatedly
read a particular input value, the threshold voltages of the differential pair will
be different, introducing an offset voltage in the sense amplifier. This problem
can be circumvented by adding a contact to tie the body to ground or to the
source for sensitive analog circuits.

Another PD SOI problem is the presence of a parasitic bipolar transistor
within each transistor. As shown in Figure 9.64, the source, body, and drain
form an emitter, base, and collector of an npn bipolar transistor. In an ordinary
transistor, the body is tied to a supply, but in SOI, the body/base floats. If the source and
drain are both held high for an extended period of time while the gate is low, the base will
float high as well through diode leakage. If the source should then be pulled low, the npn
transistor will turn ON. A current IB flows from body/base to source/emitter. This causes

IB to flow from the drain/collector to source/emitter. The bipolar transistor gain
depends on the channel length and doping levels but can be greater than 1. Hence, a sig-
nificant pulse of current can flow from drain to source when the source is pulled low even
though the transistor should be OFF.

This pulse of current is sometimes called pass-gate leakage because it commonly hap-
pens to OFF pass transistors where the source and drain are initially high and then pulled
low. It is not a major problem for static circuits because the ON transistors oppose the
glitch. However, it can cause malfunctions in dynamic latches and logic. Thus, dynamic
nodes should use strong keepers to hold the node steady.

A third problem common to all SOI circuits is self-heating. The oxide is a good ther-
mal insulator as well as an electrical insulator. Thus, heat dissipated in switching transis-
tors tends to accumulate in the transistor rather than spreading rapidly into the substrate.
Individual transistors dissipating large amounts of power may become substantially
warmer than the die as a whole. At higher temperature they deliver less current and hence
are slower. Self-heating can raise the temperature by 10–15 °C for clock buffer and I/O
transistors, although the effects tend to be smaller for logic transistors.

9.5.4 Implications for Circuit Styles
In summary, SOI is attractive for fast CMOS logic. The smaller diffusion capacitance
offers a lower parasitic delay. Lower threshold voltages offer better drive current and lower
gate delays. Moreover, SOI is also attractive for low-power design. The smaller
diffusion capacitance reduces dynamic power consumption. The speed
improvements can be traded for lower supply voltage to reduce dynamic power
further. Sharper subthreshold slopes offer the opportunity for reduced static
leakage current, especially in FinFETs.

Complementary static CMOS gates in PD SOI behave much like their
bulk counterparts except for the delay improvement. The history effect also
causes pattern-dependent variation in the gate delay.

Circuits with dynamic nodes must cope with a new noise source from pass
gate leakage. In particular, dynamic latches and dynamic gates can lose the
charge on the dynamic node. Figure 9.65 shows the pass gate leakage mecha-
nism. In each case, the dynamic node X is initially high and the transistor con-
nected to the node is OFF. The source of this transistor starts high and pulls

Source Drain

Bodyp
n+ n+

Gate

FIGURE 9.64 Parasitic bipolar tran-
sistor in PD SOI

0

X

φ
Y

Ileak

X

Y

φ

D
X

Q
X

D
0

Ileak

FIGURE 9.65 Pass gate leakage in
dynamic latches and gates

Chapter 9 Combinational Circuit Design364

low, turning on the parasitic bipolar transistor and partially discharging X. To overcome
pass gate leakage, X should be staticized with a cross-coupled inverter pair for latches or a
pMOS keeper for dynamic gates. The staticizing transistors must be relatively strong (e.g.,
1/4 as strong as the normal path) to fight the leakage. The gates are slower because they
must overcome the strong keepers. Dynamic gates may predischarge the internal nodes to
prevent pass gate leakage, but then must deal with charge sharing onto those internal
nodes.

Analog circuits, sense amplifiers, and other circuits that depend on matching between
transistors suffer from major threshold voltage mismatches caused by the history of the
floating body. They require body contacts to eliminate the mismatches by holding the
body at a constant voltage. Gated clocks also have greater clock skew because the history
effect makes the clock switch more slowly on the first active cycle after the clock has been
disabled for an extended time

9.5.5 Summary
In summary, Silicon-on-Insulator is attractive because it greatly reduces the source/drain
diffusion capacitance, resulting in faster and power-efficient transistors. It also is immune
to latchup. Partially depleted SOI is the most practical technology and also boosts drive
current because the floating body leads to lower threshold voltages.

SOI design is more challenging because of the floating body effects. Gate delay
becomes history-dependent because the voltage of the body depends on the previous state
of the device. This complicates device modeling and delay estimation. It also contributes
to mismatches between devices. In specialized applications like sense amplifiers, a body
contact may be added to create a fully depleted device.

A second challenge with SOI design is pass-gate leakage. Dynamic nodes may be dis-
charged from this leakage even when connected to OFF transistors. Strong keepers can
fight the leakage to prevent errors.

Finally, the oxide surrounding SOI devices is a good thermal insulator. This leads to
greater self-heating. Thus, the operating temperature of individual transistors may be up
to 10–15 °C higher than that of the substrate. Self-heating reduces ON current and makes
modeling more difficult.

This section only scratches the surface of a subject worthy of entire books. In particu-
lar, SOI static RAMs require special care because of pass gate leakage and floating bodies.
[Bernstein00] offers a definitive treatment of partially depleted SOI circuit design and
[Kuo01] surveys the literature of SOI circuits.

9.6 Subthreshold Circuit Design
In a growing body of applications, performance requirements are minimal and battery life
is paramount. For example, a pacemaker would ideally last for the life of the patient
because surgery to replace the battery carries significant risk and expense. In other applica-
tions, the battery can be eliminated entirely if the system can scavenge enough energy
from the environment. For example, a tire pressure sensor could obtain its energy from the
vibration of the rolling tire. Such applications demand the lowest possible energy con-
sumption.

As discussed in Section 5.4.1, the minimum energy point typically occurs at
VDD < Vt , which is called the subthreshold regime. All the transistors in the circuit are

9.6 Subthreshold Circuit Design 365

OFF, but some are more OFF than others. According to EQ (2.45), subthreshold
leakage increases exponentially with Vgs. Assuming a subthreshold slope of S = 100 mV, a
transistor with Vgs = 0.3 will nominally leak 1000 times more current than a transistor with
Vgs = 0. This difference is sufficient to perform logic, albeit slowly. Gate leakage and junction
leakage drop off rapidly with VDD, so they are negligible compared to subthreshold leakage.

In the subthreshold regime, delay increases exponentially as the supply voltage
decreases. Reducing the supply voltage reduces the switching energy but causes the OFF
transistors to leak for a longer time, increasing the leakage energy. The minimum energy
point is where the sum of dynamic and leakage energies is smallest. This point is typically
at a supply close to 300–500 mV; a somewhat higher voltage is preferable when leakage
dominates (e.g., at low activity factor or high temperature). At this voltage, static CMOS
logic operates at kHz or low MHz frequencies and consumes an order of magnitude lower
energy per operation than at typical voltages. The power consumption is many orders of
magnitude lower because the operating frequency is so slow. It is possible to operate at a
voltage and frequency below the minimum energy point to reduce power further at the
expense of increased energy per operation. However, if system considerations permit, the
average power is even lower if the system operates at the minimum energy point, then
turns off its power supply until the next operation is required.

This section outlines the key points, including transistor sizing, DC transfer charac-
teristics, and gate selection. Section 12.2.6.3 examines subthreshold memories. [Wang06]
devotes an entire book to subthreshold circuit design and [Hanson06] explores design
issues at the minimum energy point. One of the earliest applications of subthreshold cir-
cuits was in a frequency divider for a wristwatch [Vittoz72]. More recently, [Hanson09]
and [Kwong09] have demonstrated experimental microcontrollers achieving power as low
as nanowatts in active operation and picowatts in sleep.

9.6.1 Sizing
Transistor sizing offers at best a linear performance benefit, while supply voltage offers an
exponential performance benefit. As a general rule, minimum energy under a performance
constraint is thus achieved by using minimum width transistors and raising the supply
voltage if necessary from the minimum energy point until the performance is achieved
(assuming the performance requirement is low enough that the circuit remains in the sub-
threshold regime) [Calhoun05].

If Vt variations from random dopant fluctuations are extremely high, wider transistors
might become advantageous to reduce the variability and its attendant risk of high leakage
[Kwong06]. Also, if one path through a circuit is far more critical than the others, upsizing
the transistors in that path for speed might be better than raising the supply voltage to the
entire circuit.

When minimum-width transistors are employed, wires are likely to contribute the
majority of the switching capacitance. To shorten wires, subthreshold cells should be as
small as possible; the cell height is generally set by the minimum height of a flip-flop.
Good floorplanning and placement is essential.

9.6.2 Gate Selection
A logic gate must have a slope steeper than –1 in its DC transfer characteristics to achieve
restoring behavior and maintain noise margins. Decades ago, static CMOS logic was
shown to have good transfer characteristics at supply voltages as low as 100 mV

Chapter 9 Combinational Circuit Design366

[Swanson72]. Figure 9.66 shows the typical characteristics as the supply volt-
age varies in a 65 nm process using minimum-width transistors. The switch-
ing point is skewed because the pMOS and nMOS thresholds are unequal
and the gate is not designed for equal rise/fall currents, but the behavior still
looks good to 300 mV and is tolerable at 200 mV.

Unfortunately, process variation degrades the switching characteristics.
In the worst case corners (usually SF or FS), the supply voltage may need to
be 300 mV, or higher for complex gates, to guarantee proper operation. Gates
with multiple series and parallel transistors require a higher supply voltage to
ensure the ON current through the series stack exceeds the OFF current
through all of the parallel transistors. Moreover, the stack effect degrades the
ON current and speed for the series transistors. Thus, subthreshold circuits
should use simple gates (e.g., no more complicated than an AOI22 or
NAND3).

Static structures with many parallel transistors such as wide multiplexers
do not work well at low voltage because the leakage through the OFF transistors can
exceed the current through the ON transistor, especially considering variation. This is an
important consideration for subthreshold RAM design.

Ratioed circuits do not work well at low voltage because exponential sensitivity to
variation makes it difficult to ensure that the proper transistor is stronger. Latches and reg-
isters with weak feedback devices should thus be avoided. The conventional register shown
in Figure 10.19(b) works well in subthreshold.

Additionally, dynamic circuits are not robust in subthreshold operation because leak-
age easily disturbs the dynamic node. Keepers present a ratioing problem that is difficult
to resolve across the range of process variations.

Subthreshold circuits can be synthesized using commercially available low-power
standard cell libraries by excluding all the cells that are too complex or that exceed that
smallest available size.

9.7 Pitfalls and Fallacies
Failing to plan for advances in technology
There are many advances in technology that change the relative merits of different circuit tech-

niques. For example, interconnect delays are not improving as rapidly as gate delays, threshold

drops are becoming a greater portion of the supply voltage, and leakage currents are increasing.

Failing to anticipate these changes leads to inventions whose usefulness is short-lived.

A salient example is the rise and fall of BiCMOS circuits. Bipolar transistors have a higher cur-

rent output per unit input capacitance (i.e., a lower logical effort) than CMOS circuits in the 0.8

m generation, so they became popular, particularly for driving large loads. In the early 1990s,

hundreds of papers were written on the subject. The Pentium and Pentium Pro processors were

built using BiCMOS processes. Investors poured at least $40 million into a startup company

called Exponential, which sought to build a fast PowerPC processor in a BiCMOS process.

Unfortunately, technology scaling works against BiCMOS because of the faster CMOS transis-

tors, lower supply voltages, and larger numbers of transistors on a chip. The relative benefit of

bipolar transistors over fine-geometry CMOS decreased. As discussed in Section 9.4.3, the Vbe

drop became an unacceptable fraction of the power supply. Finally, the static power consump-

tion caused by bipolar base currents limits the number of bipolar transistors that can be used.

1.00.0 0.2 0.4 0.6 0.8
0.0

1.0

0.2

0.4

0.6

0.8

A

Y

FIGURE 9.66 Inverter DC transfer
characteristics at low voltage

9.8 Historical Perspective 367

The Pentium II was based on the Pentium Pro design, but the bipolar transistors had to be

removed because they no longer provided advantages in the 0.35 m generation. Despite a tal-

ented engineering team, Exponential failed entirely, ultimately producing a processor that

lacked compelling performance advantages and dissipated far more power than anything else

on the market [Maier97].

Comparing a well-tuned new circuit to a poor example of existing practice
A time-honored way to make a new invention look good is to tune it as well as possible and

compare it to an untuned strawman held up as an example of “existing practice.” For example,

[Zimmermann97] points out that most papers finding pass-transistor adders faster than static

CMOS adders use 40-transistor static adder cells rather than the faster and smaller 28-transis-

tor cells (Figure 11.4).

Ignoring driver resistance when characterizing pass-transistor circuits
Another way to make pass-transistor circuit families look about twice as fast as they really are

is to drive diffusion inputs with a voltage source rather than with the output stage of the pre-

vious gate.

Reporting only part of the delay of a circuit
Clocked circuits all have a setup time and a clock-to-output delay. A good way to make clocked

circuits look fast is to only report the clock-to-output delay. This is particularly common for

the sense-amplifier logic families.

Making outrageous claims about performance
Many published papers have made outrageous performance claims. For example, while com-

paring full adder designs, some authors have found that DSL and dual-rail domino are 8–10×
faster than static CMOS. Neither statement is anywhere close to what designers see in practice;

for example, [Ng96] finds that an 8 × 8 multiplier built from DSL is 1.5× faster and one built

from dual-rail domino is 2× faster than static CMOS.

In general, “there ain’t no such thing as a free lunch” in circuit design. CMOS design is a

fairly mature field and designers are not stupid (or at least not all designers are stupid all the

time), so if some new invention seems too good to be true, it probably is. Beware of papers that

push the advantages of a new invention without disclosing the inevitable trade-offs. The trade-

offs may be acceptable, but they must be understood.

Building circuits without adequate verification tools
It is impractical to manually verify circuits on chips that have many millions (soon billions) of

transistors. Automated verification tools should check for any pitfalls common to widely used

circuit families. If you cannot afford to buy or write appropriate tools, stick with robust static

CMOS logic.

Sizing subthreshold circuits for speed
The purpose of operating in the subthreshold regime is to minimize energy. A number of pa-

pers have proposed using wide transistors to achieve higher speed. Given the exponential re-

lationship between voltage and speed, the same speed could have been achieved at a lower

energy by increasing the supply voltage slightly.

9.8 Historical Perspective
Ratioed and dynamic circuits predate the widespread use of CMOS. In an nMOS process,
pMOS transistors were not available to build complementary gates. One strategy was to
build ratioed gates, which consume static power whenever the outputs are low. The speed

Chapter 9 Combinational Circuit Design368

is proportional to the RC product, so fast
gates need low-resistance pullups, exacerbat-
ing the power problem. An alternative was to
use dynamic gates. The classic MOS textbook
of the early 1970s [Penney72] devotes 29
pages to describing a multitude of dynamic
gate configurations. Unfortunately, dynamic
gates suffer from the monotonicity problem,
so each phase of logic may contain only one
gate. Phases were separated using nMOS pass
transistors that behaved as dynamic latches.

Figure 9.67 shows an approach using two-phase nonoverlapping clocks. Each gate pre-
charges in one phase while the subsequent latch is opaque. It then evaluates while making
the latch transparent. This approach is prone to charge-sharing noise when the latch
opens and precharge only rises to VDD – Vt . Numerous four-phase clocking techniques
were also developed.

With the advent of CMOS technology, dynamic logic lost its advantage of power
consumption. However, chip space was at a premium and dynamic gates could eliminate
most of the pMOS transistors to save area. Domino gates were developed at Bell Labs for
a 32-bit adder in the BELLMAC-32A microprocessor to solve problems of both area and
speed [Krambeck82, Shoji82]. Domino allows multiple noninverting gates to be cascaded
in a single phase.

Some older domino designs leave out the keeper to save area and gain a slight perfor-
mance advantage. This has become more difficult as leakage and coupling noise have
increased with process scaling. The 0.35 m Alpha 21164 was one of the last designs to have
no keeper (and to use dynamic latches). Its fully dynamic operation gave advantages in both
speed and area, but during test it had a minimum operating frequency of 20 MHz to retain
state. In the Alpha 21264, leakage current had increased to the point that keepers were
essential. Modern designs always need keepers. As an interesting aside, the Alpha micropro-
cessors also did not use scan latches because scan cost area and a small amount of perfor-
mance. This proved unfortunate on the Alpha 21264, which was difficult to debug because
of the limited observability into the processor state. Now virtually all design methodologies
require scan capability in the latches or registers, as discussed in Section 15.6.

High-performance microprocessors have boosted clock speeds faster than simple pro-
cess improvement would allow, so the number of gate delays per cycle has shrunk. The
DEC Alpha microprocessors pioneered this trend through the 1990s [Gronowski98] and
most other CPUs have followed. During the “MHz Wars” from about 1994 through 2004
when microprocessors were marketed primarily on clock frequency, the number of FO4
inverter delays per cycle dropped from more than 24 down to only 10–12. Domino circuits
became crucial to achieving these fast cycle times. Intel moved domino gates with overlap-
ping clocks (see Section 10.5) in the Pentium Pro / II / III [Colwell95, Choudhury97]
and Itanium series [Naffziger02]. The initial 180 nm “Willamette” Pentium 4 adopted
even more elaborate self-resetting domino and double-pumped the integer execution unit
at twice the core frequency (see Section 10.5) [Hinton01]. The 90 nm “Prescott” Pentium
4 moved to the extraordinarily complex LVS logic family with long chains of nMOS tran-
sistors connected to sense amplifiers [Deleganes04, Deleganes05]. The integer core
required painstaking custom design of 6.8M transistors by a team of circuit wizards.

Unfortunately, the low-swing logic did not scale well as supply voltages decreased and
variability and coupling increased. Moreover, dynamic circuits have a high activity factor

φ1

Inputs
f f

φ2

φ2
A

B

C

D

φ2

φ1

A

B

C

D

FIGURE 9.67 nMOS dynamic gates

 Summary 369

and thus consume a great deal of power, which makes them unsuited to power-constrained
designs. Tricky circuit techniques have often been the cause of problems during silicon
debug [Josephson02]. A six-month delay can cost hundreds of millions of dollars in a
competitive market and a year-long delay can kill a product entirely, giving designers yet
another reason to be conservative. The “Tejas” team was in the midst of stripping out the
hard-won LVS logic when the project was canceled in 2004. Intel moved to the Core
architecture with longer cycle times and better power efficiency. Dynamic logic continues
to be essential for dense memory arrays, but it has largely been eliminated from datapaths.

Pass-transistor logic families enjoyed a period of intense popularity in Japan in the
1990s. Advocates claimed speed or power advantages, though these claims have been dis-
puted, as discussed in Section 9.2.5. They suffer from a lack of modularity: the delay driv-
ing a diffusion input depends on the previous stage as well as the current stage. This is an
obstacle for conventional static timing analysis. The effort to build cell libraries is another
drawback. Given the marginal benefits and clear costs, pass transistor logic families have
faded from commercial application.

IBM is notable for having always relied on static CMOS logic and fast time to market
in cutting-edge SOI processes [Curran02]. For example, the POWER6 can operate up to
5 GHz without needing dynamic logic in the datapaths [Stolt08].

For many years, inventing a circuit family, giving it a three- or four-letter acronym,
and publishing it in the IEEE Journal of Solid-State Circuits was seemingly grounds to
claim a Ph.D. degree. This intensive research led to an enormous proliferation of circuit
families, of which only a miniscule proportion have ever seen commercial application.
Today, even the few circuit families that were used have been largely removed in favor of
static CMOS circuits that are robust, perform quite well, and offer the fastest design and
debug time. Circuit innovation has moved on to more rewarding areas such as low-voltage
memories, high-speed I/O, phase-locked loops, and analog and RF circuits.

Summary
Circuit delay is related to the (C/I) V product of gates. This chapter explored alternative
combinational circuit structures to improve the C/I ratio or respond to smaller voltage
swings. Many of these techniques trade higher power consumption and/or lower noise
margins for better delay. While complementary CMOS circuits are quite robust, the alter-
native circuit families have pitfalls that must be understood and managed.

Most logic outside arrays now uses static CMOS. Many techniques exist for optimiz-
ing static CMOS logic, including gate selection and sizing, input ordering, asymmetric
and skewed gates, and multiple threshold voltages. Silicon-on-insulator processes reduce
the parasitic capacitance and improve leakage, allowing lower power or higher perfor-
mance. Operating circuits in the subthreshold region at a supply voltage of 300–500 mV
can save an order of magnitude of energy when performance is not important.

Three of the historically important alternatives to complementary CMOS are dom-
ino, pseudo-nMOS, and pass transistor logic. Each attempts to reduce the input capaci-
tance by performing logic mostly through nMOS transistors. Power, robustness, and
productivity issues have largely eliminated these techniques from datapaths and random
logic, though niche applications still exist, especially in arrays.

Pseudo-nMOS replaces the pMOS pullup network with a single weak pMOS tran-
sistor that is always ON. The pMOS transistor dissipates static power when the output is

Chapter 9 Combinational Circuit Design370

low. If it is too weak, the rising transition is slow. If it is too strong, VOL is too high and the
power consumption increases. When the static power consumption is tolerable, pseudo-
nMOS gates work well for wide NOR functions.

Dynamic gates resemble pseudo-nMOS, but use a clocked pMOS transistor in place
of the weak pullup. When the clock is low, the gates precharge high. When the clock rises,
the gates evaluate, pulling the output low or leaving it floating high. The input of a
dynamic gate must be monotonically rising while the gate is in evaluation, but the output
monotonically falls. Domino gates consist of a dynamic gate followed by an inverting
static gate and produce monotonically rising outputs. Therefore, domino gates can be cas-
caded, but only compute noninverting functions. Dual-rail domino accepts true and com-
plementary inputs and produces true and complementary outputs to provide any logic
function at the expense of larger gates and twice as many wires. Dynamic gates are also
sensitive to noise because VIL is close to the threshold voltage Vt and the output floats.
Major noise sources include charge sharing, leakage, and coupling. Therefore, domino cir-
cuits typically use secondary precharge transistors, keepers, and shielded or carefully
routed interconnect. The high-activity factors of the clock and dynamic node make dom-
ino power hungry. Despite all of these challenges, domino offers a 1.5–2× speedup over
static CMOS, giving it a compelling advantage for the critical paths of high-performance
systems.

Pass-transistor circuits use inputs that drive the diffusion inputs as well as the gates of
transistors. Many pass-transistor techniques have been explored and Complementary Pass
Transistor logic has proven to be one of the most effective. This dual-rail technique uses
networks of nMOS transistors to compute true and complementary logic functions. The
nMOS transistors only pull up to VDD – Vt , so cross-coupled pMOS transistors boost the
output to full-rail levels. Some designers find that pass-transistor circuits are faster and
smaller for functions such as XOR, full adders, and multiplexers that are clumsy to imple-
ment in static CMOS. Because of the threshold drop, the circuits do not scale well as
VDD /Vt decreases.

Exercises
9.1 Design a fast 6-input OR gate in each of the following circuit families. Sketch an

implementation using two stages of logic (e.g., NOR6 + INV, NOR3 + NAND2,
etc.). Label each gate with the width of the pMOS and nMOS transistors. Each
input can drive no more than 30 of transistor width. The output must drive a
60/30 inverter (i.e., an inverter with a 60 wide pMOS and 30 wide nMOS tran-
sistor). Use logical effort to choose the topology and size for least average delay.
Estimate this delay using logical effort. When estimating parasitic delays, count
only the diffusion capacitance on the output node.

a) static CMOS
b) pseudo-nMOS with pMOS transistors 1/4 the strength of the pulldown stack
c) domino (a footed dynamic gate followed by a HI-skew inverter); only optimize

the delay from rising input to rising output

9.2 Simulate each gate you designed in Exercise 9.1. Determine the average delay (or
rising delay for the domino design). Logical effort is only an approximation. Tweak

 Exercises 371

the transistor sizes to improve the delay. How much improvement can you obtain?

 9.3 Sketch a schematic for a 12-input OR gate built from NANDs and NORs of no
more than three inputs each.

 9.4 Design a static CMOS circuit to compute F = (A + B)(C + D) with least delay. Each
input can present a maximum of 30 of transistor width. The output must drive a
load equivalent to 500 of transistor width. Choose transistor sizes to achieve least
delay and estimate this delay in .

 9.5 Figure 9.68 shows two series transistors modeling the pulldown network of 2-input
NAND gate.

a) Plot I vs. A using long-channel transistor models for 0 A 1, B = Y = 1, Vt = 0,
= 1. On the same axes, plot I vs. B for 0 B 1, A = 1. Hint: You will need to

solve for x ; this can be done numerically.

b) Using your results from (a), explain why the inner input of a 2-input NAND gate
has a slightly greater logical effort than the outer input.

 9.6 What is the logical effort of an OR-AND-INVERT gate at either of the OR termi-
nals? At the AND terminal? What is the parasitic delay if only diffusion capacitance
on the output is counted?

 9.7 Simulate a 3-input NOR gate in your process. Determine the logical effort and par-
asitic delay from each input.

 9.8 Using the datasheet from Figure 4.25, find the rising and falling logical effort and
parasitic delay of the X1 2-input NAND gate from the A input.

 9.9 Repeat Exercise 9.8 for the B input. Explain why the results are different for the dif-
ferent inputs.

9.10 Sketch HI-skew and LO-skew 3-input NAND and NOR gates. What are the logi-
cal efforts of each gate on its critical transition?

9.11 Derive a formula for gu, gd, and gavg for HI-skew and LO-skew k-input NAND
gates with a skew factor of s < 1 (i.e., the noncritical transistor is s times normal size)
as a function of s and k.

9.12 Design an asymmetric 3-input NOR gate that favors a critical input over the other
two. Choose transistor sizes so the logical effort on the critical input is 1.5. What is
the logical effort of the noncritical inputs?

9.13 Prove that the P/N ratio that gives lowest average delay in a logic gate is the square
root of the ratio that gives equal rise and fall delays.

9.14 Let (g, p) be the best stage effort of a path if one is free to add extra buffers with a
parasitic delay p and logical effort g. For example, Section 4.5.2 shows that (1, 1) =
3.59. It is easy to make a plot of (1, p) by solving EQ (4.19) numerically; this gives
the best stage effort of static CMOS circuits where the inverter has a parasitic delay
of p. Prove the following result, which is useful for determining the best stage effort
of domino circuits where buffers have lower logical efforts:

(,) (,)g p g
p
g= 1

A

B

Y

I

x

FIGURE 9.68
Current in series
transistors

Chapter 9 Combinational Circuit Design372

9.15 Simulate a fanout-of-4 inverter. Use a unit-sized nMOS transistor. How wide must
the pMOS transistor be to achieve equal rising and falling delays? What is the
delay? How wide must the pMOS transistor be to achieve minimum average delay?
What is the delay? How much faster is the average delay?

9.16 Many standard cell libraries choose a P/N ratio for an inverter in between that
which would give equal rising and falling delays and that which would give mini-
mum average delay. Why is this done?

9.17 A static CMOS NOR gate uses four transistors, while a pseudo-nMOS NOR gate
uses only three. Unfortunately, the pseudo-nMOS output does not swing rail to rail.
If both the inputs and their complements are available, it is possible to build a 3-
transistor NOR that swings rail to rail without using any dynamic nodes. Show how
to do it. Explain any drawbacks of your circuit.

9.18 Sketch pseudo-nMOS 3-input NAND and NOR gates. Label the transistor
widths. What are the rising, falling, and average logical efforts of each gate?

9.19 Sketch a pseudo-nMOS gate that implements the function

9.20 Design an 8-input AND gate with an electrical effort of six using pseudo-nMOS
logic. If the parasitic delay of an n-input pseudo-nMOS NOR gate is (4n + 2)/9,
what is the path delay?

9.21 Simulate a pseudo-nMOS inverter in which the pMOS transistor is half the width
of the nMOS transistor. What are the rising, falling, and average logical efforts?
What is VOL?

9.22 Repeat Exercise 9.21 in the FS and SF process corners.

9.23 Sketch a 3-input symmetric NOR gate. Size the inverters so that the pulldown is
four times as strong as the net worst-case pullup. Label the transistor widths. Esti-
mate the rising, falling, and average logical efforts. How do they compare to a static
CMOS 3-input NOR gate?

9.24 Sketch a 2-input symmetric NAND gate. Size the inverters so that the pullup is
four times as strong as the net worst-case pulldown. Label the transistor widths.
Estimate the rising, falling, and average logical efforts. How do they compare to a
static CMOS 2-input NAND gate?

9.25 Compare the average delays of a 2, 4, 8, and 16-input pseudo-NMOS and SFPL
NOR gate driving a fanout of four identical gates.

9.26 Sketch a 3-input CVSL OR/NOR gate.

9.27 Sketch dynamic footed and unfooted 3-input NAND and NOR gates. Label the
transistor widths. What is the logical effort of each gate?

9.28 Sketch a 3-input dual-rail domino OR/NOR gate.

9.29 Sketch a 3-input dual-rail domino majority/minority gate. This is often used in
domino full adder cells. Recall that the majority function is true if more than half of
the inputs are true.

F A B C D E F G= + +() + · ·

 Exercises 373

9.30 Compare a standard keeper with the noise tolerant precharge device. Larger pMOS
transistors result in a higher VIL (and thus better noise margins) but more delay.
Simulate a 2-input footed NAND gate and plot VIL vs. delay for various sizes of
keepers and noise tolerant precharge transistors.

9.31 Design a 4-input footed dynamic NAND gate driving an electrical effort of 1. Esti-
mate the worst charge-sharing noise as a fraction of VDD assuming that diffusion
capacitance on uncontacted nodes is about half of gate capacitance and on contacted
nodes it equals gate capacitance.

9.32 Repeat Exercise 9.31, generating a graph of charge-sharing noise vs. electrical effort
for h = 0, 1, 2, 4, and 8.

9.33 Repeat Exercise 9.31 if a small secondary precharge transistor is added on one of the
internal nodes.

9.34 Perform a simulation of your circuits from Exercise 9.31. Explain any discrepancies.

9.35 Design a domino circuit to compute F = (A + B)(C + D) as fast as possible. Each
input may present a maximum of 30 of transistor width. The output must drive a
load equivalent to 500 of transistor width. Choose transistor sizes to achieve least
delay and estimate this delay in .

9.36 Redesign the memory decoder from Section 4.5.3 using footed domino logic. You
can assume you have both true and complementary monotonic inputs available, each
capable of driving 10 unit transistors. Label gate sizes and estimate the delay.

9.37 Sketch an NP Domino 8-input AND circuit.

9.38 Sketch a 4:1 multiplexer. You are given four data signals D0, D1, D2, and D3, and
two select signals, S0 and S1. How many transistors does each design require?

a) Use only static CMOS logic gates.
b) Use a combination of logic gates and transmission gates.

9.39 Sketch 3-input XOR functions using each of the following circuit techniques:

a) Static CMOS
b) Pseudo-nMOS
c) Dual-rail domino
d) CPL
e) EEPL
f) DCVSPG
g) SRPL
h) PPL
i) DPL
j) LEAP

9.40 Repeat Exercise 9.39 for a 2-input NAND gate.

9.41 Design sense-amplifier gates using each of the following circuit families to compute
an 8-input XOR function in a single gate: SSDL, ECDL, LCDL, DCSL1,
DCSL2, DCSL3. Each true or complementary input can drive no more than 24

Chapter 9 Combinational Circuit Design374

of transistor width. Each output must drive a 32/16 inverter. Simulate each circuit
to determine the setup time and clock-to-out delays.

9.42 Figure 9.69 shows a Switched Output Differential Structure (SODS) gate. Explain
how the gate operates and sketch waveforms for the gate acting as an inverter/buffer.
Comment on the strengths and weaknesses of the circuit family.

9.43 Choose one of the circuit families (besides SODS, Exercise 9.42) mentioned in
Section 9.4.4 or published in a recent paper. Critically evaluate the original paper in
which the circuit was proposed. Sketch an inverter or buffer and explain how it
operates, including appropriate waveforms. What are the strengths of the circuit
family? If you were the circuit manager choosing design styles for a large chip, what
concerns might you have about the circuit family?

9.44 Derive Vout using the long-channel models for the pseudo-nMOS inverter from
Figure 9.13 with Vin = VDD as a function of the threshold voltages and beta values of
the two transistors. Assume Vout < |Vtp|.

Y

f
Inputs

f

Y
φ

φ φ

FIGURE 9.69 SODS

10

375

Sequential
Circuit Design

10.1 Introduction
Chapter 9 addressed combinational circuits in which the output is a function of the current
inputs. This chapter discusses sequential circuits in which the output depends on previous
as well as current inputs; such circuits are said to have state. Finite state machines and
pipelines are two important examples of sequential circuits.

Sequential circuits are usually designed with flip-flops or latches, which are some-
times called memory elements, that hold data called tokens. The purpose of these elements is
not really memory; instead, it is to enforce sequence, to distinguish the current token from
the previous or next token. Therefore, we will call them sequencing elements [Harris01a].
Without sequencing elements, the next token might catch up with the previous token,
garbling both. Sequencing elements delay tokens that arrive too early, preventing them
from catching up with previous tokens. Unfortunately, they inevitably add some delay to
tokens that are already critical, decreasing the performance of the system. This extra delay
is called sequencing overhead.

This chapter considers sequencing for both static and dynamic circuits. Static circuits
refer to gates that have no clock input, such as complementary CMOS, pseudo-nMOS, or
pass transistor logic. Dynamic circuits refer to gates that have a clock input, especially dom-
ino logic. To complicate terminology, sequencing elements themselves can be either static or
dynamic. A sequencing element with static storage employs some sort of feedback to retain
its output value indefinitely. An element with dynamic storage generally maintains its value as
charge on a capacitor that will leak away if not refreshed for a long period of time. The
choices of static or dynamic for gates and for sequencing elements can be independent.

Sections 10.2–10.4 explore sequencing elements for static circuits, particularly flip-
flops, 2-phase transparent latches, and pulsed latches. Section 10.5 delves into a variety of
ways to sequence dynamic circuits. A periodic clock is commonly used to indicate the tim-
ing of a sequence. Section 10.6 describes how external signals can be synchronized to the
clock and analyzes the risks of synchronizer failure. Wave pipelining is discussed in Sec-
tion 10.7. Clock generation and distribution will be examined further in Section 13.4.

The choice of sequencing strategy is intimately tied to the design flow that is being
used by an organization. Thus, it is important before departing on a design direction to
ensure that all phases of design capture, synthesis, and verification can be accommodated.
This includes such aspects as cell libraries (are the latch or flip-flop circuits and models
available?); tools such as timing analyzers (can timing closure be achieved easily?); and
automatic test generation (can self-test elements be inserted easily?).

Chapter 10 Sequential Circuit Design376

10.2 Sequencing Static Circuits
Recall from Section 1.4.9 that latches and flip-flops are the two most commonly used
sequencing elements. Both have three terminals: data input (D), clock (clk), and data out-
put (Q). The latch is transparent when the clock is high and opaque when the clock is low;
in other words, when the clock is high, D flows through to Q as if the latch were just a
buffer, but when the clock is low, the latch holds its present Q output even if D changes.
The flip-flop is an edge-triggered device that copies D to Q on the rising edge of the clock
and ignores D at all other times. These are illustrated in Figure 10.1. The unknown state
of Q before the first rising clock edge is indicated by the pair of lines at both low and high
levels.

This section explores the three most widely used methods of sequencing static circuits
with these elements: flip-flops, 2-phase transparent latches, and pulsed latches [Unger86].
An ideal sequencing methodology would introduce no sequencing overhead, allow
sequencing elements back-to-back with no logic in between, grant the designer flexibility
in balancing the amount of logic in each clock cycle, tolerate moderate amounts of clock
skew without degrading performance, and consume zero area and power. We will compare
these methods and explore the trade-offs they offer. We will also examine a number of
transistor-level circuit implementations of each element.

10.2.1 Sequencing Methods
Figure 10.2 illustrates three methods of sequencing blocks of combinational logic. In each
case, the clock waveforms, sequencing elements, and combinational logic are shown. The
horizontal axis corresponds to the time at which a token reaches a point in the circuit. For
example, the token is captured in the first flip-flop on the first rising edge of the clock. It
propagates through the combinational logic and reaches the second flip-flop on the second
rising edge of the clock. The dashed vertical lines indicate the boundary between one
clock cycle and the next. The clock period is Tc . In a 2-phase system, the phases may be
separated by tnonoverlap. In a pulsed system, the pulse width is tpw.

D

F
lo

p

La
tc

h
Q

clk clk

D Q

clk

D

Q (latch)

Q (flop)

FIGURE 10.1 Latches and flip-flops

10.2 Sequencing Static Circuits 377

Flip-flop-based systems use one flip-flop on each cycle boundary. Tokens advance
from one cycle to the next on the rising edge. If a token arrives too early, it waits at the
flip-flop until the next cycle. Recall that the flip-flop can be viewed as a pair of back-to-
back latches using clk and its complement, as shown in Figure 10.3. If we separate the
latches, we can divide the full cycle of combinational logic into two phases, sometimes
called half-cycles. The two latch clocks are often called 1 and 2. They may correspond to
clk and its complement clk or may be nonoverlapping (tnonoverlap > 0). At any given time, at
least one clock is low and the corresponding latch is opaque, preventing one token from
catching up with another. The two latches behave in much the same manner as two water-
tight gates in a canal lock [Mead80]. Pulsed latch systems eliminate one of the latches
from each cycle and apply a brief pulse to the remaining latch. If the pulse is shorter than
the delay through the combinational logic, we can still expect that a token will only
advance through one clock cycle on each pulse.

Table 10.1 defines the delays and timing constraints of the combinational logic and
sequencing elements. These delays may differ significantly for rising and falling transitions
and can be distinguished with an r or f suffix. For brevity, we will use the overall maximum
and minimum.

Flip-Flops
F

lo
p

La
tc

h

F
lo

p

clk

φ1

φ2

φp

clk clk

La
tc

h

La
tc

h

φp φp

φ1 φ1φ2

2-Phase
Transparent
Latches

Pulsed
Latches

Combinational Logic

Combinational
Logic

Combinational
Logic

Combinational Logic

La
tc

h

La
tc

h

Tc

Tc/2

tnonoverlap tnonoverlap

tpw

Half-Cycle 1 Half-Cycle 1

FIGURE 10.2 Static sequencing methods

Chapter 10 Sequential Circuit Design378

Figure 10.4 illustrates these delays in a timing diagram. In a timing diagram, the hor-
izontal axis indicates time and the vertical axis indicates logic level. A single line indicates
that a signal is high or low at that time. A pair of lines indicates that a signal is stable but
that we don’t care about its value. Criss-crossed lines indicate that the signal might change
at that time. A pair of lines with cross-hatching indicates that the signal may change once
or more over an interval of time.

Figure 10.4(a) shows the response of combinational logic to the input A changing
from one arbitrary value to another. The output Y cannot change instantaneously. After
the contamination delay tcd , Y may begin to change or glitch. After the propagation delay
tpd, Y must have settled to a final value. The contamination delay and propagation delay
may be very different because of multiple paths through the combinational logic. Figure
10.4(b) shows the response of a flip-flop. The data input must be stable for some window
around the rising edge of the flop if it is to be reliably sampled. Specifically, the input D
must have settled by some setup time tsetup before the rising edge of clk and should not
change again until a hold time thold after the clock edge. The output begins to change after
a clock-to-Q contamination delay tccq and completely settles after a clock-to-Q propagation
delay tpcq . Figure 10.4(c) shows the response of a latch. Now the input D must set up and
hold around the falling edge that defines the end of the sampling period. The output ini-
tially changes tccq after the latch becomes transparent on the rising edge of the clock and
settles by tpcq . While the latch is transparent, the output will continue to track the input

TABLE 10.1 Sequencing element timing notation

Term Name
tpd Logic Propagation Delay
tcd Logic Contamination Delay
tpcq Latch/Flop Clock-to-Q Propagation Delay
tccq Latch/Flop Clock-to-Q Contamination Delay
tpdq Latch D-to-Q Propagation Delay
tcdq Latch D-to-Q Contamination Delay

tsetup Latch/Flop Setup Time
thold Latch/Flop Hold Time

La
tc

h

La
tc

h

La
tc

h

clkclk

La
tc

h

clk

Combinational Logic

clk

clk

clk

Flip-Flop Flip-Flop

FIGURE 10.3 Flip-flop viewed as back-to-back latch pair

10.2 Sequencing Static Circuits 379

after some D-to-Q delay tcdq and tpdq . Section 10.4.2 discusses how to measure the setup
and hold times and propagation delays in simulation.

10.2.2 Max-Delay Constraints
Ideally, the entire clock cycle would be available for computations in the combinational
logic. Of course, the sequencing overhead of the latches or flip-flops cuts into this time. If
the combinational logic delay is too great, the receiving element will miss its setup time
and sample the wrong value. This is called a setup time failure or max-delay failure. It can be
solved by redesigning the logic to be faster or by increasing the clock period. This section
computes the actual time available for logic and the sequencing overhead of each of our
favorite sequencing elements: flip-flops, two-phase latches, and pulsed latches.

Figure 10.5 shows the max-delay timing constraints on a path from one flip-flop to
the next, assuming ideal clocks with no skew. The path begins with the rising edge of the
clock triggering F 1. The data must propagate to the output of the flip-flop Q 1 and
through the combinational logic to D2, setting up at F2 before the next rising clock edge.
This implies that the clock period must be at least

 (10.1)

Alternatively, we can solve for the maximum allowable logic delay, which is simply the
cycle time less the sequencing overhead introduced by the propagation delay and setup
time of the flip-flop.

 (10.2)

T t t tc pcq pd+ + setup

sequencing overhead

t T t tpd c pcq+()setup

F
lo

p

(a)

(b)

(c)

D Q

clk clk

D

Q

La
tc

h

D Q

clk clk

D

Q

tsetup thold

tccq tpcq

tccq

tsetup thold
tpcq

tpdq
tcdq

A

Y

tpd
Combinational

Logic
A Y

tcd

FIGURE 10.4 Timing diagrams

Chapter 10 Sequential Circuit Design380

Example 10.1

The Arithmetic/Logic Unit (ALU) self-bypass path limits the clock frequency of some
pipelined microprocessors. For example, the Integer Execution Unit (IEU) of the Ita-
nium 2 contains self-bypass paths for six separate ALUs, as shown in Figure 10.6(a)
[Fetzer02]. The path for one of the ALUs begins at registers containing the inputs to
an adder, as shown in Figure 10.6(b). The adder must compute the sum (or difference,
for subtraction). A result multiplexer chooses between this sum, the output of the logic
unit, and the output of the shifter. Then a series of bypass multiplexers selects the inputs
to the ALU for the next cycle. The early bypass multiplexer chooses among results of
ALUs from previous cycles and is not on the critical path. The 8:1 middle bypass mul-
tiplexer chooses a result from any of the six ALUs, the early bypass mux, or the register
file. The 4:1 late bypass multiplexer chooses a result from either of two results returning
from the data cache, the middle bypass mux result, or the immediate operand specified
by the next instruction. The late bypass mux output is driven back to the ALU to use
on the next cycle. Because the six ALUs and the bypass multiplexers occupy a signifi-
cant amount of area, the critical path also involves 2 mm wires from the result mux to
middle bypass mux and from the middle bypass mux back to the late bypass mux. (Note:
In the Itanium 2, the ALU self-bypass path is built from four-phase skew-tolerant
domino circuits. For the purposes of these examples, we will hypothesize instead that it
is built from static logic and flip-flops or latches.)

For our example, the propagation delays and contamination delays of the path are
given in Table 10.2. Suppose the registers are built from flip-flops with a setup time of
62 ps, hold time of –10 ps, propagation delay of 90 ps, and contamination delay of 75
ps. Calculate the minimum cycle time Tc at which the ALU self-bypass path will oper-
ate correctly.

SOLUTION: The critical path involves propagation delays through the adder (590 ps),
result mux (60 ps), middle bypass mux (80 ps), late bypass mux (70 ps), and two 2-mm
wires (100 ps each), for a total of tpd = 1000 ps. According to EQ (10.1), the cycle time
Tc must be at least 90 + 1000 + 62 = 1152 ps.

F
1

F
2

clk

clk clk

Combinational Logic

Tc

Q1 D2

Q1

D2

tpd

tsetup
tpcq

FIGURE 10.5 Flip-flop max-delay constraint

10.2 Sequencing Static Circuits 381

Figure 10.7 shows the analogous constraints on a path using two-phase transparent
latches. Let us assume that data D1 arrives at L1 while the latch is transparent (1 high).
The data propagates through L1, the first block of combinational logic, L2, and the sec-
ond block of combinational logic. Technically, D3 could arrive as late as a setup time
before the falling edge of 1 and still be captured correctly by L3. To be fair, we will insist

TABLE 10.2 Combinational logic delays

Element Propagation Delay Contamination Delay

Adder 590 ps 100 ps
Result Mux 60 ps 35 ps
Early Bypass Mux 110 ps 95 ps
Middle Bypass Mux 80 ps 55 ps
Late Bypass Mux 70 ps 45 ps
2-mm Wire 100 ps 65 ps

(a)

+

F
lo

p

Adder
Result
Mux

Middle
Bypass

Mux
Late

Bypass
Mux

Early
Bypass

Mux

Src1

Src2

Logicals
Shifter

Sum

Regfile

ALU2

ALU1

ALU6

Bypass

Dcache1

Dcache2

imm

2 mm

2 mm

ALU #1

(b)

1.87 mm

4.0 mm

FIGURE 10.6 Itanium 2 ALU self-bypass path ((a) © IEEE 2002.)

Chapter 10 Sequential Circuit Design382

that D3 nominally arrive no more than one clock period after D1 because, in the long run,
it is impossible for every single-cycle path in a design to consume more than a full clock
period. Certain paths may take longer if other paths take less time; this technique is called
time borrowing and will be addressed in Section 10.2.4. Assuming the path takes no more
than a cycle, we see the cycle time must be

 (10.3)

Once again, we can solve for the maximum logic delay, which is the sum of the logic
delays through each of the two phases. The sequencing overhead consists of the two latch
propagation delays. Notice that the nonoverlap between clocks does not degrade perfor-
mance in the latch-based system because data continues to propagate through the combi-
national logic between latches even while both clocks are low. Realizing that a flip-flop
can be made from two latches whose delays determine the flop propagation delay and
setup time, we see EQ (10.4) is closely analogous to EQ (10.2).

 (10.4)

The max-delay constraint for pulsed latches is similar to that of two-phase latches
except that only one latch is in the critical path, as shown in Figure 10.8(a). However, if
the pulse is narrower than the setup time, the data must set up before the pulse rises, as
shown in Figure 10.8(b). Combining these two cases gives

 (10.5)

T t t t tc pdq pd pdq pd+ + +1 1 2 2

t t t T tpd pd pd c pdq= + ()1 2 2

sequencing overhead

T t t t t t tc pdq pd pcq pd pw+ + +()max , setup

Tc

Q1

L1

φ1

φ2

L2 L3

φ1 φ1φ2

Combinational
Logic1

Combinational
Logic2

Q2 Q3D1 D2 D3

Q1

D2

Q2

D3

D1

tpd1

tpdq1

tpd2

tpdq2

FIGURE 10.7 Two-phase latch max-delay constraint

10.2 Sequencing Static Circuits 383

Solving for the maximum logic delay shows that the sequencing overhead is just one latch
delay if the pulse is wide enough to hide the setup time

 (10.6)

Example 10.2

Recompute the ALU self-bypass path cycle time if the flip-flop is replaced with a
pulsed latch. The pulsed latch has a pulse width of 150 ps, a setup time of 40 ps, a hold
time of 5 ps, a clk-to-Q propagation delay of 82 ps and contamination delay of 52 ps,
and a D-to-Q propagation delay of 92 ps.

SOLUTION: tpd is still 1000 ps. According to EQ (10.5), the cycle time must be at least
92 + 1000 = 1092 ps.

10.2.3 Min-Delay Constraints
Ideally, sequencing elements can be placed back-to-back without intervening combina-
tional logic and still function correctly. For example, a pipeline can use back-to-back regis-
ters to sequence along an instruction opcode without modifying it. However, if the hold
time is large and the contamination delay is small, data can incorrectly propagate through
two successive elements on one clock edge, corrupting the state of the system. This is
called a race condition, hold-time failure, or min-delay failure. It can only be fixed by rede-
signing the logic, not by slowing the clock. Therefore, designers should be very conserva-
tive in avoiding such failures because modifying and refabricating a chip is catastrophically
expensive and time-consuming.

t T t t t tpd c pdq pcq pw+()max , setup

sequencing overhead

Tc

Q1 Q2D1 D2

Q1

D2

D1

φp

φp φp

Combinational LogicL1 L2

tpw

Q1

D2

(b) tpw < tsetup

(a) tpw > tsetup

Tc

tpd

tpdq

tpcq

tpd tsetup

FIGURE 10.8 Pulsed latch max-delay constraint

Chapter 10 Sequential Circuit Design384

Figure 10.9 shows the min-delay timing constraints on a path from one flip-flop to
the next assuming ideal clocks with no skew. The path begins with the rising edge of the
clock triggering F1. The data may begin to change at Q1 after a clk-to-Q contamination
delay, and at D2 after another logic contamination delay. However, it must not reach D2
until at least the hold time t hold after the clock edge, lest it corrupt the contents of F2.
Hence, we solve for the minimum logic contamination delay:

 (10.7)t t tcd ccqhold

CL

clk

Q1

D2

F
1

clk

Q1

F
2

clk

D2

tcd

thold

tccq

FIGURE 10.9 Flip-flop latch min-delay constraint

Example 10.3

In the ALU self-bypass example with flip-flops from Figure 10.6, the earliest input to
the late bypass multiplexer is the imm value coming from another flip-flop. Will this
path experience any hold-time failures?

SOLUTION: No. The late bypass mux has tcd = 45 ps. The flip-flops have thold = –10 ps
and tccq = 75 ps. Hence, EQ (10.7) is easily satisfied.

If the contamination delay through the flip-flop exceeds the hold time, you can safely
use back-to-back flip-flops. If not, you must explicitly add delay between the flip-flops
(e.g., with a buffer) or use special slow flip-flops with greater than normal contamination
delay on paths that require back-to-back flops. Scan chains are a common example of
paths with back-to-back flops.

Figure 10.10 shows the min-delay timing constraints on a path from one transparent
latch to the next. The path begins with data passing through L1 on the rising edge of 1. It
must not reach L2 until a hold time after the previous falling edge of 2 because L2 should
have become safely opaque before L1 becomes transparent. As the edges are separated by
tnonoverlap, the minimum logic contamination delay through each phase of logic is

 (10.8)t t t t tcd cd ccq1 2, hold nonoverlap

10.2 Sequencing Static Circuits 385

(Note that our derivation found the minimum delay through the first half-cycle, but that
the second half-cycle has the same constraint.)

This result shows that by making tnonoverlap sufficiently large, hold-time failure can be
avoided entirely. However, generating and distributing nonoverlapping clocks is challeng-
ing at high speeds. Therefore, most commercial transparent latch-based systems use the
clock and its complement. In this case, tnonoverlap = 0 and the contamination delay con-
straint is the same between the latches and flip-flops.

This leads to an apparent paradox: The contamination delay constraint applies to each
phase of logic for latch-based systems, but to the entire cycle of logic for flip-flops. There-
fore, latches seem to require twice the overall logic contamination delay as compared to
flip-flops. Yet flip-flops can be built from a pair of latches! The paradox is resolved by
observing that a flip-flop has an internal race condition between the two latches. The flip-
flop must be carefully designed so that it always operates reliably.

Figure 10.11 shows the min-delay timing constraints on a path from one pulsed latch
to the next. Now data departs on the rising edge of the pulse but must hold until after the
falling edge of the pulse. Therefore, the pulse width effectively increases the hold time of
the pulsed latch as compared to a flip-flop.

 (10.9)

Example 10.4

If the ALU self-bypass path uses pulsed latches in place of flip-flops, will it have any
hold-time problems?

SOLUTION: Yes. The late bypass mux has tcd = 45 ps. The pulsed latches have tpw = 150
ps, thold = 5 ps, and tccq = 52 ps. Hence, EQ (10.9) is badly violated. Src1 may receive
imm from the next instruction rather than the current instruction. The problem could

t t t tcd ccq pw+hold

CL

Q1

D2

D2

Q1

1

L1
2

L2

1

2

tnonoverlap

tcd

thold

tccq

FIGURE 10.10 Two-phase latch min-delay constraint

Chapter 10 Sequential Circuit Design386

be solved by adding buffers after the imm-pulsed latch. The buffers would need to add
a minimum delay of thold – tccq + tpw – tcd = 58 ps. Alternatively, the imm-pulsed latch
could be replaced with a flip-flop without slowing the critical path. If the flip-flop were
designed with a very long (> 110 ps) contamination delay, the race would be avoided.

10.2.4 Time Borrowing
In a system using flip-flops, data departs the first flop on the rising edge of the clock and
must set up at the second flop before the next rising edge of the clock. If the data arrives
late, the circuit produces the wrong result. If the data arrives early, it is blocked until the
clock edge, and the remaining time goes unused. Therefore, we say the clock imposes a
hard edge because it sharply delineates the cycles.

In contrast, when a system uses transparent latches, the data can depart the first latch
on the rising edge of the clock, but does not have to set up until the falling edge of the
clock on the receiving latch. If one half-cycle or stage of a pipeline has too much logic, it
can borrow time into the next half-cycle or stage, as illustrated in Figure 10.12(a)
[Bernstein99]. Time borrowing can accumulate across multiple cycles. However, in systems
with feedback, the long delays must be balanced by shorter delays so that the overall loop
completes in the time available. For example, Figure 10.12(b) shows a single-cycle self-
bypass loop in which time borrowing occurs across half-cycles, but the entire path must fit
in one cycle. A typical example of a self-bypass loop is the execution stage of a pipelined
processor in which an ALU must complete an operation and bypass the result back for use
in the ALU on a dependent instruction. Most critical paths in digital systems occur in
self-bypass loops because otherwise latency does not matter.

Figure 10.13 illustrates the maximum amount of time that a two-phase latch-based
system can borrow (beyond the Tc /2 – tpdq nominally available to each half-cycle of logic).

CL

Q1

D2

Q1

D2

φp tpw

φp

L1
φp

L
2

tcd

thold

tccq

FIGURE 10.11 Pulsed latch min-delay constraint

10.2 Sequencing Static Circuits 387

Because data does not have to set up until the falling edge of the receiving latch’s clock,
one phase can borrow up to half a cycle of time from the next (less setup time and non-
overlap):

 (10.10)t
T

t tc
borrow setup nonoverlap+()2

Borrowing time across
half cycle boundary

Borrowing time across
pipeline stage boundary

La
tc

h

La
tc

h

La
tc

h

Combinational Logic
Combinational

Logic
(a)

(b)

La
tc

h

La
tc

h
Combinational Logic

Combinational
Logic

Loops may borrow time internally but must complete within the cycle.

1

2

1 1

1

2

2

FIGURE 10.12 Time borrowing

Q1

L1 L2

φ1

φ2

φ1 φ2

Combinational Logic
Q2D1 D2

D2

Tc

Tc/2
Nominal Half-Cycle Delay

tborrow

tnonoverlap

tsetup

FIGURE 10.13 Maximum amount of time borrowing

Chapter 10 Sequential Circuit Design388

Example 10.5

Suppose the ALU self-bypass path is modified to use two-phase transparent latches. A
mid-cycle 2 latch is placed after the adder, as shown in Figure 10.14. The latches have
a setup time of 40 ps, a hold time of 5 ps, a clk-to-Q propagation delay of 82 ps and
contamination delay of 52 ps, and a D-to-Q propagation delay of 82 ps. Compute the
minimum cycle time for the path. How much time is borrowed through the mid-cycle
latch at this cycle time? If the cycle time is increased to 2000 ps, how much time is bor-
rowed?

SOLUTION: According to EQ (10.3), the cycle time is Tc = 82 + 590 + 82 + 410 = 1164
ps. The first half of the cycle involves the latch and adder delays and consumes 82 + 590
= 672 ps. The nominal half-cycle time is Tc /2 = 582 ps. Hence, the path borrows 90 ps
from the second half-cycle. If the cycle time increases to 2000 ps and the nominal half-
cycle time becomes 1000 ps, time borrowing no longer occurs.

Pulsed latches can be viewed as transparent latches with a narrow pulse. If the pulse is
wider than the setup time, pulsed latches are also capable of a small amount of time bor-
rowing from one cycle to the next.

 (10.11)

Example 10.6

If the ALU self-bypass path uses pulsed latches, how much time may it borrow from
the next cycle?

SOLUTION: None. Because the path is a feedback loop, if its outputs arrive late and bor-
row time, the path begins later on the next cycle. This in turn causes the outputs to
arrive later. Time borrowing can be used to balance logic within a pipeline but, despite
the wishes of many designers, it does not increase the amount of time available in a
clock cycle.

t t tpwborrow setup

+

Adder
Result
Mux

Middle
Bypass

Mux
Late

Bypass
Mux

Early
Bypass

Mux

Src1

Src2

Logicals
Shifter

Sum

Regfile

ALU2

ALU1

ALU6

Bypass

Dcache1

Dcache2

imm

2 mm

2 mmLa
tc

h

La
tc

h

φ1
φ2

FIGURE 10.14 ALU self-bypass path with two-phase latches

10.2 Sequencing Static Circuits 389

Time borrowing has two benefits for the system designer. The most obvious is inten-
tional time borrowing, in which the designer can more easily balance logic between
half-cycles and pipeline stages. This leads to potentially shorter design time because the
balancing can take place during circuit design rather than requiring changes to the
microarchitecture to explicitly move functions from one stage to another. The other bene-
fit is opportunistic time borrowing. Even if the designer carefully equalizes the delay in each
stage at design time, the delays will differ from one stage to another in the fabricated chip
because of process and environmental variations and inaccuracies in the timing model used
by the CAD system. In a system with hard edges, the longest cycle sets the minimum
clock period. In a system capable of time borrowing, the slow cycles can opportunistically
borrow time from faster ones and average out some of the variation.

Some experienced design managers forbid the use of intentional time borrowing until
the chip approaches tapeout. Otherwise designers are overly prone to assuming that their
pipeline stage can borrow time from adjacent stages. When many designers make this same
assumption, all of the paths become excessively long. Worse yet, the problem may be hidden
until full-chip timing analysis begins, at which time it is too late to redesign so many paths.
Another solution is to do full-chip timing analysis starting early in the design process.

10.2.5 Clock Skew
The analysis so far has assumed ideal clocks with zero skew. In reality, clocks have some
uncertainty in their arrival times that can cut into the time available for useful computa-
tion, as shown in Figure 10.15(a). The bold clk line indicates the latest possible clock
arrival time. The hashed lines show that the clock might arrive over a range of earlier
times because of skew. The worst scenario for max delay in a flip-flop-based system is that
the launching flop receives its clock late and the receiving flop receives its clock early. In
this case, the clock skew is subtracted from the time available for useful computation and
appears as sequencing overhead. The worst scenario for min delay is that the launching
flop receives its clock early and the receiving clock receives its clock late, as shown in Fig-
ure 10.15(b). In this case, the clock skew effectively increases the hold time of the system.

 (10.12)

 (10.13)

In the system using transparent latches, clock skew does not degrade performance.
Figure 10.16 shows how the full cycle (less two latch delays) is available for computation
even when the clocks are skewed because the data can still arrive at the latches while they
are transparent. Therefore, we say that transparent latch-based systems are skew-tolerant.
However, skew still effectively increases the hold time in each half-cycle. It also cuts into
the window available for time borrowing.

 (10.14)

 (10.15)

 (10.16)

t T t t tpd c pcq + +()setup skew

sequencing overhead

t t t tcd ccq +hold skew

t T tpd c pdq()2

sequencing overhead

t t t t t tcd cd ccq1 2, +hold nonoverlap skew

t
T

t t tc
borrow setup nonoverlap skew+ +()2

Chapter 10 Sequential Circuit Design390

F
1

F
2

clk

clk clk

Combinational Logic

Tc

Q1 D2

Q1

D2

tskew

CL

Q1

D2

F
1

clk

Q1

F
2

clk

D2

clk

tskew

(a)

(b)

tsetup

tpcq

tpd

tcd

thold

tccq

FIGURE 10.15 Clock skew and flip-flops

Q1

L1

φ1

φ2

L
2

L3

φ1 φ1φ2

Combinational
Logic1

Combinational
Logic2

Q2 Q3D1 D2 D3

FIGURE 10.16 Clock skew and transparent latches

10.3 Circuit Design of Latches and Flip-Flops 391

Example 10.7

If the ALU self-bypass path from Figure 10.6 can experience 50 ps of skew from one
cycle to the next between flip-flops in the various ALUs, what is the minimum cycle
time of the system? How much clock skew can the system have before hold-time fail-
ures occur?

SOLUTION: According to EQ (10.12), the cycle time should increase by 50 ps to 1202 ps.
The maximum skew for which the system can operate correctly at any cycle time is
tcd – thold + tccq = 45 – (–10) + 75 = 130 ps.

Pulsed latches can tolerate an amount of skew proportional to the pulse width. If the
pulse is wide enough, the skew will not increase the sequencing overhead because the data
can arrive while the latch is transparent. If the pulse is narrow, skew can degrade perfor-
mance. Again, skew effectively increases the hold time and reduces the amount of time
available for borrowing (see Exercise 10.7).

 (10.17)

 (10.18)

 (10.19)

In summary, systems with hard edges (e.g., flip-flops) subtract clock skew from the time
available for useful computation. Systems with softer edges (e.g., latches) take advantage
of the window of transparency to tolerate some clock skew without increasing the
sequencing overhead. Clock skew will be addressed further in Section 13.4. In particular,
different amounts of skew can be budgeted for min-delay and max-delay checks. More-
over, nearby sequential elements are likely to see less skew than elements on opposite cor-
ners of the chip. Current automated place & route tools spend considerable effort to
model clock delays and insert buffer elements to minimize clock skew, but skew is a grow-
ing problem for systems with aggressive cycle times.

10.3 Circuit Design of Latches and Flip-Flops
Conventional CMOS latches are built using pass transistors or tristate buffers to pass the
data while the latch is transparent and feedback to hold the data while the latch is opaque.
We begin by exploring circuit designs for basic latches, then build on them to produce
flip-flops and pulsed latches. Many latches accept reset and/or enable inputs. It is also pos-
sible to build logic functions into the latches to reduce the sequencing overhead.

A number of alternative latch and flip-flop structures have been used in commercial
designs. The True Single Phase Clocking (TSPC) technique uses a single clock with no
inversions to simplify clock distribution. The Klass Semidynamic Flip-Flop (SDFF) is a
fast flip-flop using a domino-style input stage. Differential flip-flops are good for certain
applications. Each of these alternatives are described and compared.

t T t t t t tpd c pdq pcq pw+ +()max , setup skew

sequencingg overhead

t t t t tcd pw ccq+ +hold skew

t t t tpwborrow setup skew+()

Chapter 10 Sequential Circuit Design392

10.3.1 Conventional CMOS Latches
Figure 10.17(a) shows a very simple transparent latch built from a single transistor. It is
compact and fast but suffers four limitations. The output does not swing from rail-to-rail
(i.e., from GND to VDD); it never rises above VDD – Vt. The output is also dynamic; in
other words, the output floats when the latch is opaque. If it floats long enough, it can be
disturbed by leakage (see Section 9.3.3). D drives the diffusion input of a pass transistor
directly, leading to potential noise issues (see Section 9.3.9) and making the delay harder

to model with static timing analyzers.
Finally, the state node is exposed, so noise on
the output can corrupt the state. The
remainder of the figures illustrate improved
latches using more transistors to achieve
more robust operation.

Figure 10.17(b) uses a CMOS trans-
mission gate in place of the single nMOS
pass transistor to offer rail-to-rail output
swings. It requires a complementary clock ,
which can be provided as an additional input
or locally generated from through an
inverter. Figure 10.17(c) adds an output
inverter so that the state node X is isolated
from noise on the output. Of course, this
creates an inverting latch. Figure 10.17(d)
also behaves as an inverting latch with a
buffered input but unbuffered output. As
discussed in Section 9.2.5.1, the inverter fol-
lowed by a transmission gate is essentially
equivalent to a tristate inverter but has a
slightly lower logical effort because the out-
put is driven by both transistors of the trans-
mission gate in parallel. Figure 10.17(c) and
(d) are both fast dynamic latches.

In modern processes, subthreshold leak-
age is large enough that dynamic nodes
retain their values for only a short time,
especially at the high temperature and volt-
age encountered during burn-in test. There-
fore, practical latches need to be staticized,
adding feedback to prevent the output from
floating, as shown in Figure 10.17(e). When
the clock is 1, the input transmission gate is
ON, the feedback tristate is OFF, and the
latch is transparent. When the clock is 0,
the input transmission gate turns OFF.
However, the feedback tristate turns ON,
holding X at the correct level. Figure
10.17(f) adds an input inverter so the input
is a transistor gate rather than unbuffered

D Q

φ

D

φ

φ

X Q

φ

φ φ

φ

QD X

φ

φ

Q

D X

Q

D
X

(a)

(c)

(e)

(g)

(i)

φ

φ

φ

φ

D Q

φ

φ

φ

QD X

(b)

(f)

φ

φ φ

φ

Q

D X

(h)

D Q

(d)

φ

φ

φ

φ

Q

X

weak

φ

D

(k)

Dout

Din
X

(j)

WR RD

φ

FIGURE 10.17 Transparent latches

10.3 Circuit Design of Latches and Flip-Flops 393

diffusion. Unfortunately, both (e) and (f) reintroduced output noise sensitivity: A large
noise spike on the output can propagate backward through the feedback gates and corrupt
the state node X. Figure 10.17(g) is a robust transparent latch that addresses all of the
deficiencies mentioned so far: The latch is static, all nodes swing rail-to-rail, the state
noise is isolated from output noise, and the input drives transistor gates rather than
diffusion. Such a latch is widely used in standard cell applications including the Artisan
standard cell library [Artisan02]. It is recommended for all but the most performance- or
area-critical designs.

In semicustom datapath applications where input noise can be better controlled, the
inverting latch of Figure 10.17(h) may be preferable because it is faster and more compact.
Intel uses this as a standard datapath latch [Karnik01]. Figure 10.17(i) shows the jamb
latch, a variation of Figure 10.17(g) that reduces the clock load and saves two transistors by
using a weak feedback inverter in place of the tristate. This requires careful circuit design
to ensure that the tristate is strong enough to overpower the feedback inverter in all pro-
cess corners. Figure 10.17(j) shows another jamb latch commonly used in register files and
Field Programmable Gate Array (FPGA) cells. Many such latches read out onto a single
Dout wire and only one latch is enabled at any given time with its RD signal. The Itanium
2 processor uses the latch shown in Figure 10.17(k) [Naffziger02]. In the static feedback,
the pulldown stack is clocked, but the pullup is a weak pMOS transistor. Therefore, the
gate driving the input must be strong enough to overcome the feedback. The Itanium 2
cell library also contains a similar latch with an additional
input inverter to buffer the input when the previous gate is
too weak or far away. With the input inverter, the latch can
be viewed as a cross between the designs shown in (g) and
(i). Some latches add one more inverter to provide both true
and complementary outputs.

The dynamic latch of Figure 10.17(d) can also be
drawn as a clocked tristate, as shown in Figure 10.18(a).
Such a form is sometimes called clocked CMOS (C2MOS)
[Suzuki73]. The conventional form using the inverter and
transmission gate is slightly faster because the output is
driven through the nMOS and pMOS working in parallel.
C2MOS is slightly smaller because it eliminates two con-
tacts. Figure 10.18(b) shows another form of the tristate
that swaps the data and clock terminals. It is logically equiv-
alent but electrically inferior because toggling D while the
latch is opaque can cause charge-sharing noise on the out-
put node [Suzuki73].

All of the latches shown so far are transparent while is
high. They can be converted to active-low latches by swap-
ping and .

10.3.2 Conventional CMOS Flip-Flops
Figure 10.19(a) shows a dynamic inverting flip-flop built
from a pair of back-to-back dynamic latches [Suzuki73].
Either the first or the last inverter can be removed to reduce
delay at the expense of greater noise sensitivity on the
unbuffered input or output. Figure 10.19(b) adds feedback

(a) (b)

φ

φ
D Qφ

φ

D Q
φ

φ

D Q

Bad

FIGURE 10.18 C2MOS Latch

D Q

φ

φ

φ

φ

X

D

φ

φ

φ

φ

X

Q

Q
φ

φ

φ

φ

(a)

(b)

FIGURE 10.19 Flip-flops

Chapter 10 Sequential Circuit Design394

and another inverter to produce a noninverting static flip-flop. The PowerPC 603 micro-
processor datapath used this flip-flop design without the input inverter or Q output
[Gerosa94]. Most standard cell libraries employ this design because it is simple, robust,
compact, and energy-efficient [Stojanovic99]. However, some of the alternatives described
later are faster.

Flip-flops usually take a single clock signal and locally generate its complement . If
the clock rise/fall time is very slow, it is possible that both the clock and its complement
will simultaneously be at intermediate voltages, making both latches transparent and
increasing the flip-flop hold time. In ASIC standard cell libraries (such as the Artisan
library), the clock is both complemented and buffered in the flip-flop cell to sharpen up
the edge rates at the expense of more inverters and clock loading. However, the clock load
should be kept as small as possible because it has an activity factor of 1 and thus accounts
for much of the power consumption in the flip-flop.

Recall that the flip-flop also has a potential internal race condition between the two
latches. This race can be exacerbated by skew between the clock and its complement
caused by the delay of the inverter. Figure 10.20(a) redraws Figure 10.19(a) with a built-in
clock inverter. When falls, both the clock and its complement are momentarily low as
shown in Figure 10.20(b), turning on the clocked pMOS transistors in both transmission
gates. If the skew (i.e., inverter delay) is too large, the data can sneak through both latches
on the falling clock edge, leading to incorrect operation. Figure 10.20(c) shows a C2MOS
dynamic flip-flop built using C2MOS latches rather than inverters and transmission gates
[Suzuki73]. Because each stage inverts, data passes through the nMOS stack of one latch
and the pMOS of the other, so skew that turns on both clocked pMOS transistors is not a
hazard. However, the flip-flop is still susceptible to failure from very slow edge rates that
turn both transistors partially ON. The same skew advantages apply even when an even
number of inverting logic stages are placed between the latches; this technique is some-
times called NO RAce (NORA) [Gonclaves83]. In practice, most flip-flop designs care-
fully control the delay of the clock inverter so the transmission gate design is safe and
slightly faster than C2MOS [Chao89].

All of these flip-flop designs still present potential min-delay problems between flip-
flops, especially when there is little or no logic between flops and the clock skew is large or

φ

φ

D

X

Q

φ

φ

D

X

Q

(a) (c)

φ

φ

(b)

Both pMOS momentarily ON
because of clock inverter delay

FIGURE 10.20 Transmission gate and NORA dynamic flip-flops

10.3 Circuit Design of Latches and Flip-Flops 395

poorly analyzed. For VLSI class projects where careful clock
skew analysis is too much work and performance is less impor-
tant, a reasonable alternative is to use a pair of two-phase non-
overlapping clocks instead of the clock and its complement, as
shown in Figure 10.21. The flip-flop captures its input on the
rising edge of 1. By making the nonoverlap large enough, the
circuit will work despite large skews. However, the nonoverlap
time is not used by logic, so it directly increases the setup time
and sequencing overhead of the flip-flop (see Exercise 10.8).
The layout for the flip-flop is shown on the inside front cover
and is readily adapted to use a single clock. Observe how diffu-
sion nodes are shared to reduce parasitic capacitance.

10.3.3 Pulsed Latches
A pulsed latch can be built from a conventional CMOS transparent latch driven by a brief
clock pulse. Figure 10.22(a) shows a simple pulse generator, sometimes called a clock chop-
per or one-shot [Harris01a]. The pulsed latch is faster than a regular flip-flop because it
involves a single latch rather than two and because it allows time borrowing. It can also
consume less energy, although the pulse generator adds to the energy consumption (and is
ideally shared across multiple pulsed latches for energy and area efficiency). The drawback
is the increased hold time.

D

φ2

X

Q

Q

φ1

φ2

φ1

φ1
φ1

φ2

φ2

FIGURE 10.21 Flip-flop with two-phase nonoverlapping
clocks

φ

en

φ

φp

en

φp

(b)

slow

(c)

φ φp

φp

(a)

φ φp

en

(d)

FIGURE 10.22 Pulse generators

Chapter 10 Sequential Circuit Design396

The Naffziger pulsed latch used on the Itanium 2 processor consists of the latch from
Figure 10.17(k) driven by even shorter pulses produced by the generator of Figure
10.22(b) [Naffziger02]. This pulse generator uses a fairly slow (weak) inverter to produce a
pulse with a nominal width of about one-sixth of the cycle (125 ps for 1.2 GHz opera-
tion). When disabled, the internal node of the pulse generator floats high momentarily,
but no keeper is required because the duration is short. Of course, the enable signal has
setup and hold requirements around the rising edge of the clock, as shown in Figure
10.22(c).

Figure 10.22(d) shows yet another pulse generator used on an NEC RISC processor
[Kozu96] to produce substantially longer pulses. It includes a built-in dynamic transmission-
gate latch to prevent the enable from glitching during the pulse.

Many designers consider short pulses risky. The pulse generator should be carefully
simulated across process corners and possible RC loads to ensure the pulse is not degraded
too badly by process variation or routing. However, the Itanium 2 team found that the
pulses could be used just as regular clocks as long as the pulse generator had adequate
drive. The quad-core Itanium pulse generator selects between 1- and 3-inverter delay
chains using a transmission gate multiplexer [Stackhouse09]. The wider pulse offers more
robust latch operation across process and environmental variability and permits more time
borrowing, but increases the hold time. The multiplexer select is software-programmable
to fix problems discovered after fabrication.

The Partovi pulsed latch in Figure 10.23 eliminates the
need to distribute the pulse by building the pulse generator
into the latch itself [Partovi96, Draper97]. The weak cross-
coupled inverters in the dashed box staticize the circuit,
although the latch is susceptible to back-driven output
noise on Q or Q unless an extra inverter is used to buffer
the output. The Partovi pulsed latch was used on the AMD
K6 and Athlon [Golden99], but is slightly slower than a
simple latch [Naffziger02]. It was originally called an Edge
Triggered Latch (ETL), but strictly speaking is a pulsed
latch because it has a brief window of transparency.

10.3.4 Resettable Latches and Flip-Flops
Most practical sequencing elements require a reset signal to enter a known initial state on
startup and ensure deterministic behavior. Figure 10.24 shows latches and flip-flops with
reset inputs. There are two types of reset: synchronous and asynchronous. Asynchronous
reset forces Q low immediately, while synchronous reset waits for the clock. Synchronous
reset signals must be stable for a setup and hold time around the clock edge while asyn-
chronous reset is characterized by a propagation delay from reset to output. Synchronous
reset simply requires ANDing the input D with reset. Asynchronous reset requires gating
both the data and the feedback to force the reset independent of the clock. The tristate
NAND gate can be constructed from a NAND gate in series with a clocked transmission
gate.

Settable latches and flip-flops force the output high instead of low. They are similar to
resettable elements of Figure 10.24 but replace NAND with NOR and reset with set. Fig-
ure 10.25 shows a flip-flop combining both asynchronous set and reset.

D
Q

Q

FIGURE 10.23 Partovi pulsed latch

10.3 Circuit Design of Latches and Flip-Flops 397

10.3.5 Enabled Latches and Flip-Flops
Sequencing elements also often accept an enable input. When enable en is low, the ele-
ment retains its state independently of the clock. The enable can be performed with an
input multiplexer or clock gating, as shown in Figure 10.26. The input multiplexer feeds
back the old state when the element is disabled. The multiplexer adds area and delay.
Clock gating does not affect delay from the data input and the AND gate can be shared

D

φ

φ

φ

φ

Q

Q
φ

φ

φ

φ

reset

D

φ

φ

φ

φ

Qφ

φ

D
reset

φ

φ

Q
φ

φ

D
reset

reset

φ

φ

F
lo

p

D Q
La

tc
h

D Q

reset reset

φ φSymbol

Synchronous
Reset

Asynchronous
Reset

Q

φ

φ

reset

φ

φ

reset

FIGURE 10.24 Resettable latches and flip-flops

D

φ

φ

φ

φ
φ

φ

Q

φ

φ

reset

set reset

set

FIGURE 10.25 Flip-flop with asynchronous set and reset

Chapter 10 Sequential Circuit Design398

among multiple clocked elements. Moreover, it significantly reduces power consumption
because the clock on the disabled element does not toggle. However, the AND gate delays
the clock, potentially introducing clock skew. Section 13.4.5 addresses techniques to min-
imize the skew by building the AND gate into the final buffer of the clock distribution
network. en must be stable while the clock is high to prevent glitches on the clock, as will
be discussed further in Section 10.4.6.

10.3.6 Incorporating Logic into Latches
Since the early days of computing, engineers have recognized that they can reduce
sequencing overhead by incorporating logic into latches [Earle65]. For example, some of
the inverters can be replaced with gates that perform useful computation. Figure 10.27
shows two ways to do this in dynamic latches. The DEC Alpha 21164 used an assortment
of latches built from a clocked transmission gate preceded and followed by inverting static
CMOS gates such as NANDs, NORs, or inverters [Bowhill95]. This provides the low
overhead of the transmission gate latch while preserving the buffered inputs and outputs.

La
tc

h

La
tc

h

La
tc

hD Q

en

φ
D

Q

φ

0

1

en
D Q

φ en

D Q

en

φ

F
lo

p

D
Q

φ

0

1

en

F
lo

p

D Q

φ en

F
lo

p

Symbol Multiplexer Design Clock Gating Design

FIGURE 10.26 Enabled latches and flip-flops

A

φ

φ Qφ

φ

B

C
D
E

φ S0 S1

D0

D1

Q

FIGURE 10.27 Combining logic and latches

10.3 Circuit Design of Latches and Flip-Flops 399

The mux-latch consists of two transmission gates in parallel controlled by clocks gated
with the corresponding select signals. It integrates the multiplexer function with no extra
delay from the D inputs to the Q outputs except the small amount of extra diffusion
capacitance on the state node. Note that the setup time on the select inputs is relatively
high. The clock gating will introduce skew unless the clocking methodology systemati-
cally plans to gate all clocks. The same principles extend to static latches and flip-flops.

10.3.7 Klass Semidynamic Flip-Flop (SDFF)
The Klass semidynamic flip-flop (SDFF) [Klass99] shown in Figure 10.28 is a cross
between a pulsed latch and a flip-flop. Like the Partovi pulsed latch, it operates on the
principle of intersecting pulses. However, it uses a
dynamic NAND gate in place of the static NAND.
While the clock is low, X precharges high and Q
holds its old state. When the clock rises, the dynamic
NAND evaluates. If D is 0, X remains high and the
top nMOS transistor turns OFF. If D is 1 and X starts
to fall low, the transistor remains ON to finish the
transition. This allows for a short pulse and hold time.
The dynamic front end serves as the master latch,
while the second stage serves as the slave. The weak
cross-coupled inverters staticize the flip-flop and the
final inverter buffers the output node.

Like a pulsed latch, the SDFF accepts rising inputs slightly after the rising clock
edge. Like a flip-flop, falling inputs must set up before the rising clock edge. It is called
semidynamic because it combines the dynamic input stage with static operation. The
SDFF is slightly faster than the Partovi pulsed latch but loses the skew tolerance and time
borrowing capability. It also has a higher energy consumption because of the large number
of nodes with high activity factors.

The Sun UltraSparc III built logic into the SDFF very efficiently by replacing the sin-
gle transistor connected to D with a collection of transistors performing the OR or multi-
plexer functions [Heald00]. The Cell processor similarly employed dynamic mux-latches
with up to 4 inputs (plus a fifth input for scan) [Warnock06].

10.3.8 Differential Flip-Flops
Differential flip-flops accept true and complementary inputs and produce true and comple-
mentary outputs. They are built from a clocked sense amplifier so that they can rapidly
respond to small differential input voltages. While they are larger than an ordinary single-
ended flip-flop—having an extra inverter to produce the complementary output—they
work well with low-swing inputs such as register file bitlines (Section 12.2.3.3) and low-
swing busses (Section 6.4.4).

Figure 10.29(a) shows a differential sense-amplifier flip-flop (SA-F/F) receiving differ-
ential inputs and producing a differential output [Matsui94]. When the clock is low, the
internal nodes X and X precharge. When the clock rises, one of the two nodes is pulled
down, while the cross-coupled pMOS transistors act as a keeper for the other node. The
SR latch formed by the cross-coupled NAND gates behaves as a slave stage, capturing the
output and holding it through precharge. The flip-flop can amplify and respond to small
differential input voltages, or it can use an inverter to derive the complementary input

D

QQX

Weak Weak

FIGURE 10.28 Klass semidynamic flip-flop

Chapter 10 Sequential Circuit Design400

from D. This flip-flop was used in the Alpha 21264 [Gronowski98]. It has a small clock
load and avoids the need for an inverted clock. However, the structure is fairly large and
consumes more energy than a conventional flip-flop. If the two input transistors are
replaced by true and complementary nMOS logic networks, the SA-F/F can also perform
logic functions at the expense of greater setup time [Klass99].

The original SA-F/F suffers from the possibility that one of the internal nodes will
float low if the inputs switch while the clock is high. The StrongArm 110 processor
[Montanaro96] adds the weak nMOS transistor shown in Figure 10.29(a) to fully staticize
the flip-flop at the expense of a small amount more internal loading and delay.

Although the sense amplifier stage is fast, the propagation delay through the two
cross-coupled NAND gates hurts performance. The NAND gates serve as a slave SR
latch and are only necessary to convert the monotonically falling pulsed X signals to static
Q outputs; they can be replaced by HI-skew inverters when Q drives domino gates.
[Nikolic 00], [Kim00], and [Strollo05] all propose alternative slave latch designs that are
faster but use more transistors.

The AMD K6 used another differential flip-flop shown in Figure 10.29(b) at the
interface from static to self-resetting domino logic [Draper97]. The master stage consists
of a self-resetting dual-rail domino gate. Assume the internal nodes are initially pre-
charged. On the rising edge of the clock, one of the two will pull down and drive the cor-
responding output high. The OR gate detects this and produces a done signal that
precharges the internal nodes and resets the outputs. Therefore, the flip-flop produces
pulsed outputs primarily suitable for use in subsequent self-resetting domino gates (see
Section 10.5.2.4). The cross-coupled pMOS transistors improve the noise immunity while
the cross-coupled inverters staticize the internal nodes.

10.3.9 Dual Edge-Triggered Flip-Flops
Many researchers have proposed flip-flops that sample data on both the rising and falling
edges of the clock to save energy by operating at half the clock frequency. A major draw-
back is sensitivity to duty cycle variation that increases the skew of the falling clock edge.
(The skew from rising edge to rising edge tends to be smaller than the skew from rising
edge to falling edge because it involves the same transitions and thus matches better in the
face of variation.) To first order, a dual edge-triggered (DET) flip-flop has half the clock

(a)

D

Q

D
Weak

Weak Weak

Q

Q

Q

(b)

X X

X

D

X

Done

Slave
Latch

φ

φ

FIGURE 10.29 Differential flip-flops

10.3 Circuit Design of Latches and Flip-Flops 401

frequency and twice the activity factor, so
the energy consumed in the flip-flop is
unchanged. However, the energy in the glo-
bal clock distribution network is cut by a fac-
tor of two from the reduced frequency. In a
well-designed system, the energy is usually
dominated by the registers and not by the
clock distribution. Moreover, the DET flip-
flop tends to have some overhead in area,
delay, and energy. The extra skew caused by
duty cycle variation further increases the
sequencing overhead. By the time the path is
modified to recover the extra delay, the net
energy savings may be small or negative.
Even if the savings are real, DET flip-flops
require modifications to timing analysis and
other CAD flows. For all these reasons,
DET flip-flops have yet to find widespread
use in commercial systems.

Two conceptual designs for DET flip-
flops are shown in Figure 10.30 along with
circuit realizations [Tschanz01, Gago93]. In
the master-slave design of Figure 10.30(a),
two separate master latches operate on oppo-
site phases of the clock. The multiplexer,
serving in place of the slave latch, selects the
result of the opaque master. Figure 10.30(b) shows a transistor-level implementation
of this design. In the pulsed design of Figure 10.30(c), a pulse generator produces a
pulse on both edges of the clock. This pulse serves as the clock to an ordinary flip-
flop or pulsed latch. Figure 10.30(d) shows a transistor-level design using a pulsed
latch and an efficient pulse generator.

Figure 10.31 shows the Zhao implicitly pulsed DET flip-flop [Zhao07]. In
contrast to the explicit pulse generator in Figure 10.30(c), the bottom two pairs of
nMOS transistors act as an implicit pulse generator, pulling down node M for a brief
interval on the rising and falling edges of the clock. During these intervals, if D is 0,
X gets pulled down to 0. If D is 1 and X is 0, Y is briefly pulled down to 0, causing X
to rise to 1. For the remainder of the cycle, Y is held at 1 by the weak pMOS transis-
tor and X is held at its current value by the weak inverter. Note that there is a severe
ratio constraint: the weak transistors must be overcome by up to four series nMOS
transistors.

10.3.10 Radiation-Hardened Flip-Flops
Soft errors caused by alpha particles or cosmic rays were once of primary concern in mem-
ories because RAM cells have the smallest node capacitance and weakest feedback, so they
are easily disturbed, as discussed in Section 7.3.4. As transistors have scaled, soft error
rates for flip-flops have increased to the point that they are important for high-reliability
systems. Radiation-hardened flip-flops are designed to resist such errors. They are also crit-
ically important for space applications where the cosmic ray flux is much greater.

D

φ

weak

weak

X

M

Y Q

FIGURE 10.31 Zhao implicitly
pulsed DET flip-flop

φ φ

φ

φ

φ

φ

D Q

D Q

(a)

(c)

(b) (d)

D Q

Flip-Flop or
Pulsed Latch

φ

Pulse Generator

φp

φp

φ

D

φ

φp

weak

Q

φ

FIGURE 10.30 DET flip-flops

Chapter 10 Sequential Circuit Design402

The simplest way to minimize soft errors is to use a storage
node holding enough charge that a particle strike is unlikely to
flip the state. This has become difficult in nanometer processes
because scaling reduces both the capacitance and voltage,
greatly decreasing the charge. An unusually large storage node
can still reduce the probability of disturbance, but it comes at a
cost in performance, energy, and area.

Another option is to use triple-mode redundancy with
three registers per bit, and to use majority voting to tolerate an
upset in one of the bits (see Section 7.6.2). This is clearly even
more costly, but is an effective way of protecting critical state
elements.

F igure 10 .32 shows a rad ia t ion-hardened la tch
[Stackhouse09, Hazucha04] used on the quad-core Itanium

processor. The soft-error resistance is based on the dual interlocked cell (DICE) principle
[Calin96]. The transmission gate and three inverters at the top form an ordinary latch.
The latch is staticized using the dual interlocked feedback circuitry underneath. In an
ordinary latch, a particle strike that flipped the state of one of the internal nodes would
corrupt the value in the latch. In the DICE approach, nodes n0 and n2 normally have the
same value as Q. n1 and n3 also normally have the complementary value. When the cell is
written, n1 is driven to D. To prevent contention, the nMOS and pMOS feedback transis-
tors driving n1 should be turned off during the write. This is performed by the write assist
circuit, which ensures n2 = 0 and n0 = 1 during writes. If one of the four state nodes n0–n3
is disturbed by a soft error, the interlocked feedback will correct the value. The latch is still
vulnerable to radiation strikes that disturb two nodes. Separating the nodes in the cell lay-
out reduces this risk. The quad-core Itanium found that the latch reduced soft errors by
two orders of magnitude with no delay penalty at a cost of 34% in area and 25% in power.

The Razor latch discussed in Section 10.4.5 uses a redundant storage node to detect
soft errors. In combination with a replay mechanism, it can eliminate these errors.

10.3.11 True Single-Phase-Clock (TSPC) Latches and Flip-Flops
This section is available in the online Web Enhanced chapter at www.cmosvlsi.com.

10.4 Static Sequencing Element Methodology
This section examines a number of issues designers must address when selecting a
sequencing element methodology. We begin with general issues, and then proceed to
techniques specific to flip-flops, pulsed latches, and transparent latches.

Until the 0.5 m generation, leakage was relatively low and thus dynamic latches held
their state for acceptably long times. The DEC Alpha 21164 was one of the last major
microprocessors to use a dynamic latching methodology in a 0.35 m process in the mid-
1990s. It required a minimum operating frequency of 1/10th full speed to retain state,
even during testing. Modern systems generally require static sequencing elements to hold
state when clocks are gated or the system is tested at a moderate frequency. Leakage is
usually worst during burn-in testing at elevated temperature and voltage, where the chip
must still function correctly to ensure good toggle coverage. Static elements are larger and
somewhat slower than their dynamic counterparts.

WEB
ENHANCED

n1 n2 n3n0

φ

D Q

φ

Ordinary Latch

Dual Interlocked Feedback
Write
Assist

FIGURE 10.32 Radiation-hardened latch

10.4 Static Sequencing Element Methodology 403

Similarly, the growing difficulty and cost of debugging and testing has induced engi-
neers to build design-for-test (DFT) features into the sequencing elements. The most
important feature is scan, a special mode in which the latches or flip-flops can be chained
together into a large shift register so that they can be read and written under external con-
trol during testing. This technique is discussed further in Section 15.6.2. Scan has become
particularly important because chips have so many metal layers that most internal signals
cannot be directly reached with probes. Moreover, some flip-chips are mounted upside
down, making physical access even more difficult. Scan can dramatically decrease the time
required to debug a chip and reduce the cost of testing, so most design methodologies dic-
tate that all sequencing elements must be scannable despite the extra area this entails. The
Alpha 21264 did not support full scan and was very difficult to debug, leading to a later-
than-desired release.

Clock distribution is another key challenge. As we will see in Section 13.4, it is very
difficult to distribute a single clock across a large die in a fashion that gets it to all sequenc-
ing elements at nearly the same time. Controlling the clock skew on more than one clock
is even more difficult, so almost all modern designs distribute a single high-speed clock in
any given region. Other signals such as complementary clocks, pulses, and delayed clocks
are generated locally where they are needed. The clock edge rates must be relatively sharp
to avoid races in which both the master and slave latches are partially on simultaneously.
The global clock may have slow edge rates after propagating along long wires, so it is typ-
ically buffered locally (either in each sequencing element or in a buffer cell serving a bank
of elements) to sharpen the edge rates. Clock power, from the clock distribution network
and the clocked loads, typically accounts for one third to one half of the total chip power
consumption. Therefore, clocks are often gated with an AND gate in the local clock
buffer to turn off the sequencing elements for inactive units of the chip.

All bistable elements are subject to soft errors from alpha particles or cosmic rays
striking the circuits and injecting charge onto sensitive nodes (see Section 7.3.4).
Sequencing elements require relatively high capacitance on the state node to achieve low
soft error rates. This can set a lower bound on the minimum transistor sizes on that node.

10.4.1 Choice of Elements
Flip-flops, pulsed latches, and transparent latches offer trade-offs in sequencing overhead,
skew tolerance, and simplicity.

10.4.1.1 Flip-Flops As we have seen, flip-flops have fairly high sequencing overhead but
are popular because they are so simple. Nearly all engineers understand how flip-flops
work. Some synthesis tools and timing analyzers handle flip-flops much more gracefully
than transparent latches. Most ASIC methodologies use flip-flops exclusively for pipelines
and state machines. If performance requirements are not near the cutting edge of a pro-
cess, flip-flops are clearly the right choice in today’s CAD flows.

10.4.1.2 Pulsed Latches Pulsed latches are faster than flip-flops and offer some time-
borrowing capability at the expense of greater hold times. They have fewer clocked
transistors and hence lower power consumption. If intentional time borrowing is not nec-
essary, you can model a pulsed latch as a flip-flop triggered on the rising edge of the pulse
with a lower delay but a lengthy hold time. This makes pulsed latches relatively easy to
integrate into flip-flop-based CAD flows. Moreover, the pulsed latches still offer opportu-
nistic time borrowing to compensate for modeling inaccuracies even if the intentional time

Chapter 10 Sequential Circuit Design404

borrowing is not used. Pulsed latches are used in some microprocessors where their perfor-
mance justifies the effort managing hold times.

The long hold times make pulsed latches unsuitable for use in pipelines with no logic
between pipeline stages. One solution is to use ordinary flip-flops in place of the pulsed
latches in these circumstances where speed is not important. Unfortunately, some pulsed
latches fan out to multiple paths, some of which are short and others long. The Itanium 2
processor used the clocked deracer in conjunction with Naffziger pulsed latches, as shown in
Figure 10.33 [Naffziger02]. These were placed before the receiving latches on short paths
and block incoming paths while the receiving latch is transparent. They automatically
adapt to pulse with variation and hence have a shorter nominal propagation delay than
buffers, but also consume more power than buffers because of the clock loading [Rusu03].

D Q

P
L

P
L

D
er

ac
er

p p

p

Deracer

p

p

pTo Receiving
Pulsed Latch

FIGURE 10.33 Clocked deracer

La
tc

h

La
tc

h

La
tc

h
La

tc
h

Combinational
Logic(a)

(b) Combinational Logic

φ1

φ2

φ1 φ2

φ1 φ2

FIGURE 10.34 Latch placement and time borrowing

10.4.1.3 Transparent Latches Transparent latches also have lower sequencing overhead
than flip-flops and are attractive because they permit nearly half a cycle of time borrowing.
One latch must be placed in each half-cycle. Data can arrive at the latch any time the latch
is transparent. A convenient design approach is to nominally place the latch at the begin-
ning of each half-cycle. Then time borrowing occurs when the logic in one half-cycle is
longer than nominal and data does not arrive at the next latch until some time into the
next half-cycle.

Figure 10.34 illustrates pipeline timing for short and long logic paths between latches.
When the path is short (a), the data arrives at the second latch early and is delayed until
the rising edge of 2. Therefore, it is natural to consider latches residing at the beginning
of their half-cycle because short paths automatically adjust to operate this way. When the

10.4 Static Sequencing Element Methodology 405

path is longer (b), it borrows time from the first half-cycle into the second. Notice how
clock skew does not slow long paths because the data does not arrive at the latch until after
the latest skewed rising edge.

Logic blocks involving multiple signals must ensure that each signal path passes
through two latches in each cycle. Signals can be classified as Phase 1 or Phase 2 and logic
gates must receive all their inputs from the same phase. Section 10.4.6 develops a formal
notation of timing types to track when signals are safe to use.

10.4.2 Characterizing Sequencing Element Delays
Previous sections have derived sequencing element performance in terms of the setup and
hold times and propagation and contamination delays. These delays are interrelated and
are used for budgeting purposes. For example, a flip-flop might still capture its input prop-
erly if the data changes slightly less than a setup time before the clock edge. However, the
clock-to-Q delay might be quite long in this situation. The best way to define these timing
parameters is to minimize the overall D-to-Q delay from when the data must set up until
the output is stable. If we call tDC the time that the data actually sets up before the clock
edge and tCQ the actual delay from clock to Q, we could define tsetup as the smallest value
of tDC such that tCQ tpcq. Moreover, we could choose tpcq to minimize the sequencing
overhead tsetup + tpcq. In this section we will explore how to characterize these delays
through simulation.

Figure 10.35 shows the timing of a conventional static edge-triggered flip-flop from
Figure 10.19(b). Delays are normalized to an FO4 inverter. The actual clk-to-Q (tCQ) and
D-to-Q (tDQ) delays for a rising input are plotted against the D-to-clk (tDC) delay, i.e., how
long the data arrived before the clock rises. If the data arrives long before the clock, tCQ is
short and essentially independent of tDC delay. tDQ = tDC + tCQ, so it increases linearly as data
arrives earlier because the data is blocked and waits for the clock before proceeding. As the
data arrives closer to the clock, tCQ begins to rise. However, tDQ initially decreases and
reaches a minimum when tCQ has a slope of –1 (note that the axes are not to scale).

Therefore, let us define the setup time tsetup as tDC at which this minimum tDQ occurs
and the propagation delay tpcq as tCQ at this time. The contamination delay tccq is the min-
imum tCQ that occurs when the input arrives early. The hold time is the minimum delay
from clock to D changing such that the tCQ tpcq.

D

D

D
e

ay
(F

O
4

In
ve

rt
er

 D
e

ay
s)

(FO4 Inverter Delays)

0.8
0.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

1.0 1.2 1.4 1.6

tDC

tCQ

tDQ

Q

Q

F
op

tDC

tDQ

tCQ

tpcq = 2.31 tccq = 2.17
tsetup 1.03

FIGURE 10.35 Flip-flop delay vs. data arrival time

Chapter 10 Sequential Circuit Design406

In general, the delays will differ for inputs of 0 and 1. Figure 10.36 plots tCQ vs. tDC
for the four combinations of rising and falling D and Q. The setup times tsetup0 and tsetup1
are the times that D must fall or rise, respectively, before the clock so that the data is prop-
erly captured with the least possible tDQ. Observe that this flip-flop has a longer setup
time but shorter propagation delay for low inputs than high inputs. The hold times thold0
and thold1 are the times that D must rise or fall, respectively, after the clock so that the old
value of 0 or 1 is captured instead of the new value. Observe that the hold times are typi-
cally negative. The contamination delay tccq 0/1 again is the lowest possible tCQ and occurs
when the input changes well before the clock edge. When only one delay is quoted for a
flip-flop timing parameter, it is customarily the worst of the 0 and 1 delays.

The aperture width ta is the width of the window around the clock edge during which
the data must not transition if the flip-flop is to produce the correct output with a propa-
gation delay less than tpcq. The aperture times for rising and falling inputs are

 (10.20)

If the data transitions within the aperture, Q can become metastable and take an
unbounded amount of time to settle. Metastability is discussed further in Section 10.6.1.

If D is a very short pulse, the flip-flop may fail to capture it even if D is stable during
the setup and hold times around the rising clock edge. Similarly, if the clock pulse is too
short, the flip-flop may fail to capture stable data. Well-characterized libraries sometimes

t t t
t t t
ar

af

= +
= +

setup1 hold0

setup0 hold1

Input = 1 D

φ

Q

Input = 0 D

φ

Q

tsetup1

thold1

tpcq1

tccq1

tsetup0

thold0

tpcq0

tccq0

tDC

(FO4 Inverter Delays)

t C
Q

D rises
Q rises

D rises
Q falls

D falls
Q falls

D falls
Q rises

taf
tar

tsetup1

tccq0

tpcq1

−thold1

tsetup0

tccq1

tpcq0

(F
O

4
In

ve
rt

er
 D

el
ay

s)

−thold0

4

3.5

3

2.5

2

1.5

0
0 0.5 1 1.5 2 2.5

FIGURE 10.36 Flip-flop setup and hold times

10.4 Static Sequencing Element Methodology 407

specify minimum pulse widths for the
clock and/or data as well as setup and hold
times.

Level-sensitive latches have some-
what different timing constraints because
of their transparency, as shown in Figure
10.37 for a conventional static latch from
Figure 10.17(g) using a pulse width of 4
FO4 inverter delays. As with an edge-
triggered flip-flop, if the data arrives
before the clock rises (tDCr > 0), it must
wait for the clock. In this region, the
clock-to-Q tCrQ delay is nearly constant
and t DQ increases as the data arrives ear-
lier. If the data arrives after the clock rises
while the latch is transparent, tDQ is essen-
tially independent of the arrival time. The
data must set up before the falling edge of
the clock. The second set of labels on the
X-axis indicates the D-to-clk fall time
tDCf . As the data arrives too close to the
falling edge, tDQ increases. Now, to achieve low tDQ, we choose the setup time before the
knee of the curve, e.g., 5% greater than its minimum value. The setup time is measured
relative to the falling edge of the clock. If the data changes less than a hold time after the
falling edge of the clock, Q may momentarily glitch. Thus, the hold time thold for a latch is
defined to be –tDCf for which Q displays a negligible glitch.

Pulsed latches have setup and hold times measured around the falling edge of the
clock. However, designers often wish to treat pulsed latches as edge-triggered flip-flops
from the perspective of timing analysis. Therefore, we can define “virtual” setup and hold
times relative to the rising clock edge [Stojanovic99]. For example, the pulsed latch in
Figure 10.37 has tsetup–virtual = tsetup – tpw = –2.4 FO4 but tpcq–virtual = tpdq + (tpw – tsetup)
= 4.06 FO4, so the total sequencing overhead of tpdq = tsetup–virtual + tpcq–virtual is unaf-
fected by the change of reference or pulse width. The virtual hold time is now thold–virtual =
thold + tpw = 2.6 FO4, which is positive as one should expect because the input must hold
long after the rising edge of the clock.

The delays vary with input slope, volt-
age, and temperature. The contamination
delay should be measured in the environ-
ment where it is shortest while the setup
and hold times and propagation delay
should be measured in the environment
where they are longest.

The designer can trade off setup time,
hold time, and propagation delay. Figure
10.38 shows the effects of adding delay tbuf
to the clock, D, or Q terminals of a flip-flop.
Recall that the sequencing overhead
depends on the sum of the setup time and
propagation delay while the minimum delay

0.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

−3.0 −2.0 −1.0 0.0 1.0 2.0

tCrQ

1.0 2.0 3.0 4.0 5.0 6.0

tDCr

tDCf

tpw = 4 FO4

tccq = 1.36tpdq = 1.66

(FO4 Inverter Delays)

tsetup =
 1.6

t
DQ

D
el

ay
(F

O
4

In
ve

rt
er

 D
el

ay
s)

FIGURE 10.37 Latch delay vs. data arrival time

D

F
op

F
op

F
opQ D Q D Q

t setup = t setup + tbuf

t pcq = tpcq

t hold = thold tbuf

t setup = t setup

t pcq = tpcq + tbuf

t hold = thold

t setup = t setup – tbuf

t pcq = tpcq + tbuf

t hold = thold + tbuf

FIGURE 10.38 Delay trade-offs

Chapter 10 Sequential Circuit Design408

between flip-flops depends on the hold time less the contamination delay. Adding delay on
either the input or output eases min-delay at the expense of sequencing overhead. Many
standard cell libraries intentionally use slow flip-flops so that logic designers do not have to
worry about hold-time violations. Adding delay on the clock simply shifts when the flop
activates. The sequencing overhead does not change, but the system can accommodate more
logic in the previous cycle and less in the next cycle. This is similar to time borrowing in
latch-based systems, but must be done intentionally by adjusting the clock rather than
opportunistically by taking advantage of transparency. Some authors refer to delaying the
clock as intentional clock skew. This book reserves the term clock skew for uncertainty in the
clock arrival times.

10.4.3 State Retention Registers
Section 5.3.2 introduced power gating to save leakage power while a unit is idle for
extended periods of time. The unit must either reinitialize itself when power is reapplied
or must maintain its state during powerdown. State retention registers receive a second
power supply to hold their state while the rest of the unit is powered down. They require
special design to achieve low leakage and to prevent corruption when their inputs become
invalid.

Figure 10.39 shows a flip-flop with a balloon circuit for state retention
[Shigematsu97]. The cross-coupled inverters in the balloon circuit use low-
leakage transistors connected to a separate power supply to hold state while
the power is gated to the remainder of the flip-flop. The balloon circuit
typically uses minimum-sized high-Vt and/or thick oxide transistors to
minimize leakage; for example, I/O transistors typically have these proper-
ties and are available at no extra cost. The control signals SAMPLE (S)
and HOLD (H) are 0 during normal operation, as shown in the timing
diagram. When the unit is about to be power-gated, stops low with the
slave latch opaque. SAMPLE is pulsed for long enough to write the state
into the balloon (potentially a long time if the transistors are particularly
slow). Then HOLD is asserted to retain the state. Now, the virtual power
rail can be deactivated to power down the unit. Even if the clock or other
latch control signals such as reset or data toggle during powerdown, the
copy of the state will be safely stored in the balloon. When the unit powers
back up, SAMPLE is pulsed again to copy the state from the balloon back
to the slave latch. Then HOLD is deasserted and finally the unit can
restart and resume normal operation. The same balloon circuit could be
attached to the state node of a transparent latch or pulsed latch for state
retention.

10.4.4 Level-Converter Flip-Flops
As discussed in Section 5.2.3.1, circuits require level converters when crossing between volt-
age domains from low to high. Figure 5.15 showed a standard differential level converter. If
the crossing occurs on a clock cycle boundary, the overhead of the level converter can be
absorbed into the flip-flop, saving time and energy. For example, the sense-amplifier flip-
flop from Figure 10.29(a) accepts low-swing inputs.

The literature is full of other level-converter flip-flops. The general principle is that
the low-swing inputs should only drive nMOS transistors or pass transistors because they

D Q

S

H

S

H

H

H

S

H

VDDV

Balloon

FIGURE 10.39 Balloon circuit for state
retention

10.4 Static Sequencing Element Methodology 409

cannot fully turn OFF pMOS transistors connected
to VDDH. Figure 10.40 shows an assortment of
approaches. The blue inverters and tristates use
VDDL; the other gates use VDDH. Both D and may
use VDDL levels. Figure 10.40(a) shows a flip-flop
with a pair of slave latches connected to a differential
level converter [Hamada98]. The cross-coupled
nMOS transistors serve to staticize the slave latches.
Figure 10.40(b) shows a simple latch level converter
[Usami95]. The cross-coupled inverters perform
level restoration as well as staticizing the latch. They
must be weak enough to be overcome by the nMOS
pulldown stacks. Figure 10.40(c) shows Zhao’s
implicitly pulsed level converter [Zhao09]. It is simi-
lar to the implicitly pulsed DET flip-flop from Fig-
ure 10.31. [Zhao09] and [Ishihara04] survey a
variety of other designs. However, commercial
designs still tend to use standard flip-flops and dif-
ferential level converters.

10.4.5 Design Margin and Adaptive
Sequential Elements
Sequential circuits require some margin in voltage or frequency to ensure that they work
reliably despite variations. All considered, the margin forces designers to derate perfor-
mance or power by 30% or more from what could be achieved under TT processing and
nominal operating conditions.1 Adaptive (or variation-tolerant) sequential elements seek to
reduce this margin by measuring and compensating for the variation.

Dynamic voltage scaling is a particularly good application for adaptive sequential ele-
ments because the voltage-frequency trade-off must be made at multiple operating points.
The problem can be viewed as selecting the minimum voltages necessary to achieve each
of several frequency targets, although an equivalent dual problem is selecting the maxi-
mum frequencies the part can work at each of several voltage points. The simplest
approach is to precharacterize the chip and create a table of voltage-frequency pairs that
are guaranteed to work even under worst case variation. This is a common technique in
commercial microprocessors because it is simple to build and easy to test, but it requires
the most conservative margins [Stackhouse09]. By measuring the temperature, voltage
droop, and/or supply current and providing these to the lookup table, the margins can be
relaxed somewhat [Tschanz07].

An adaptive approach introduced in Section 7.5.3.6 is to build a delay chain that
mimics the worst case path on the chip and to use that delay to set the operating fre-
quency. This is called a canary circuit: in the same way that miners sent a canary into the
tunnel to see if the air is safe to breathe, the chip uses the canary circuit to determine the

1For example, some PC enthusiasts enjoy trying to recoup some of this performance by overclocking their
CPUs, taking advantage of the fact that the processing is likely better than worst case. They often use a
fancy heat sink to keep the operating temperature below worst case, then crank up the supply voltage to
achieve even higher performance. And occasionally they burn out their CPUs by overstressing them at
high voltage and/or temperature.

D

weak

weak

X
Y

D

Q
weak

D

Q

(a)

(b) (c)

VDDH

VDDH

Q

FIGURE 10.40 Level-converter flip-flops and latches

Chapter 10 Sequential Circuit Design410

frequency that is safe to operate [Calhoun04]. The canary circuit tracks with the process-
ing and environmental corners, so some of the margin can be eliminated. However, it is
still subject to random variations, process tilt, within-die voltage and temperature varia-
tions, and other mismatches between the canary circuit and the true critical paths. Char-
acterizing all of these mismatch sources is difficult, so a conservative designer will provide
additional margin for the uncertainty. Better yet, the amount of margin can be adjusted at
runtime to ensure the part will function at some speed.

A fascinating recent innovation is to let the circuits themselves indicate when they are
at the edge of failure. This can be done by modifying sequential elements to double-
sample the input. The main path through the sequential element is unchanged, but a sec-
ondary checking path samples the input slightly later. If the two results agree, the circuit is
operating correctly. If they differ, the data missed its setup time at the main path but made
it for the later sampler, so the frequency is slightly too high or the voltage is slightly too
low. This error is reported to a system controller. If the system is designed with a replay
mechanism to repeat operations from a last known good state, the operation can be
repeated at a lower frequency or higher voltage where it works correctly.

Figure 10.41(a) shows the basic concept of the Razor flip-flop [Ernst03, Das06]. The
main path uses an ordinary flip-flop, while the checking path uses a latch. The flip-flop
samples on the rising edge of p, while the latch samples some time later on the falling
edge of p. Figure 10.41(b) illustrates the operation of the circuit. If the data arrives at
least a setup time before the rising edge of p, both elements sample the same value. If the
data arrives late, the flip-flop misses the data and the XOR generates an ERR signal. The
ERR signals from all the flip-flops in the system (or at least those on potentially critical
paths) are ORed together to indicate an error and trigger the replay mechanism.

The operating voltage and frequency are adjusted until the system is barely working
so that very little margin is provided: the circuit is functioning “on the razor’s edge.” Vari-
ations such as power supply noise, unusually large crosstalk, or even activation of a rarely
triggered critical path, are sufficient to delay the arrival of D and cause an occasional error.

φp

D Q

ERR

(a)

(d)

(b) (c)

D Q

ERR

weak

D QN
Latch

φp
φp

DX
Q

X

ERR

X

weakreset

d0 d1

d2

d3

d0

d2

d1

d3

φs

ERR

Short Pulse Generator
Transition
DetectorDelay

Chain

φp

φp

FIGURE 10.41 Adaptive sequencing elements

 411

The width of the clock pulse presents a trade-off between error detection and hold time.
Wider pulses allow later inputs to be detected as errors, which increases the allowable dif-
ference between typical and worst-case delay. However, the hold time increases with the
pulse width, just like a pulsed latch. Managing long hold times is difficult, so a relatively
narrow pulse (e.g., < 3 FO4 delays) is preferable.

The Razor circuit has the drawback that the flip-flop may become metastable if D
changes during the aperture. If Q resolves to the same value as the latch, no error will be
flagged, but the propagation through the flip-flop can increase by an unbounded amount
of time. [Ernst03] suggests adding a metastability detector, which significantly increases
the overhead of the circuit.

Figure 10.41(c) shows an improved structure called Double Sampling with Time Bor-
rowing (DSTB) that moves metastability out of the data path and onto the error path
[Bowman09]. If the data arrives slightly late, the pulsed latch will still capture it correctly.
The flip-flop will either miss it, causing ERR to rise and signaling that the system is near
the edge of failure, or will become metastable. Assuming that the error path has plenty of
slack, the metastability can resolve before ERR is sampled.

Figure 10.41(d) shows the Razor II pulsed latch [Das09], which consists of an ordi-
nary pulsed latch, a short pulse generator, and a transition detector. The short pulse gener-
ator produces a brief downgoing pulse when the latch becomes transparent. The transition
detector signals an error if any changes are observed outside this brief pulse. The transition
detector uses a dynamic XOR structure precharged by the reset signal, which must be reap-
plied after each error is detected. The short pulse width sets the time borrowing, the long
pulse width sets the hold time, and the difference sets the detection window during which
delay errors can be detected.

In addition to detecting late data, these adaptive sequencing elements can detect soft
errors. A particle strike that corrupts the latch or flip-flop will trigger the ERR signal. A
particle strike that induces a glitch in the combinational logic is only significant if it causes
the sequential element to capture the wrong value. As long as the detection window is
longer than the glitch, ERR will also rise. The replay mechanism can then be used to
recompute the result correctly.

10.4.6 Two-Phase Timing Types
This section is available in the online Web Enhanced chapter at www.cmosvlsi.com.

10.5 Sequencing Dynamic Circuits
This section is available in the online Web Enhanced chapter at www.cmosvlsi.com.

10.6 Synchronizers
Sequencing elements are characterized by their setup and hold time. If the data input
changes before the setup time, the output reflects the new value after a bounded propaga-
tion delay. If the data changes after the hold time, the output reflects the old value after a
bounded propagation delay. If the data changes during the aperture between the setup and
hold times, the output may be unpredictable and the time for the output to settle to a good
logic level may be unbounded. Properly designed synchronous circuits guarantee the data

WEB
ENHANCED

WEB
ENHANCED

10.6 Synchronizers

Chapter 10 Sequential Circuit Design412

is stable during the aperture. However, many interesting systems must interface with data
coming from sources that are not synchronized to the same clock. For example, the user
may press a key at any time and data coming over a network may be aligned with a clock of
differing phase or frequency.

A synchronizer is a circuit that accepts an input that can change at arbitrary times and
produces an output aligned to the synchronizer’s clock. Because the input can change dur-
ing the synchronizer’s aperture, the synchronizer has a nonzero probability of producing a
metastable output [Chaney73]. This section first examines the response of a latch to an
analog voltage that can change near the sampling clock edge. The latch can enter a meta-
stable state for some amount of time that is unbounded, although the probability of
remaining metastable drops off exponentially with time. Therefore, you can build a simple
synchronizer by sampling a signal, waiting until the probability of metastability is accept-
ably low, then sampling again. In certain circumstances, the relationship of the data and
clock timing is more predictable, permitting faster and more reliable synchronizers.

10.6.1 Metastability
A latch is a bistable device; i.e., it has two stable states (0 and 1). Under the right condi-
tions, that latch can enter a metastable state in which the output is at an indeterminate
level between 0 and 1. For example, Figure 10.42 shows a simple model for a static latch
consisting of two switches (probably transmission gates in practice) and two inverters.
While the latch is transparent, the sample switch is closed and the hold switch open (Fig-
ure 10.42(a)). When the latch goes opaque, the sample switch opens and the hold switch
closes (Figure 10.42(b)). Figure 10.42(c) shows the DC transfer characteristics of the two
inverters. Because A = B when the latch is opaque, the stable states are A = B = 0 and

A

B

D Q A

B

D Q

(a)

(c)

(b)

Stable

Stable

Metastable

Metastable

StableStable

(d)

A, B

(A −> Q)

(Q −> B)

A B VDD

A B Vm

A B 0
VDD

VDD

Q

0
0

FIGURE 10.42 Metastable state in static latch

10.6 Synchronizers 413

A = B = VDD. The metastable state is A = B = Vm, where Vm is an invalid logic level. This
point is called metastable because the voltages are self-consistent and can remain there
indefinitely. However, any noise or other disturbance will cause A and B to switch to one
of the two stable states. Figure 10.42(d) shows an analogy of a ball delicately balanced on
a hill. The top of the hill is a metastable state. Any disturbance will cause the ball to roll
down to one of the two stable states on the left or right side of the hill.

Figure 10.43(a) plots the output of the latch from Figure 10.17(g) as the data transi-
tions near the falling clock edge. If the data changes at just the wrong time tm within the
aperture, the output can remain at the metastable point for some time before settling to a
valid logic level. Figure 10.43(b) plots tDQ vs. tDC – tm on a semilogarithmic scale for a
rising input and output. The delay is less than or equal to tpdq for inputs that meet the setup
time and increases for inputs that arrive too close to tm. The points marked on the graph will
be used in the example at the end of this section.

The cross-coupled inverters behave like a linear amplifier with gain G when A is near
the metastable voltage Vm. The inverter delay can be modeled with an output resistance R
and load capacitance C. We can predict the behavior in metastability by assuming that the
initial voltage on node A when the latch becomes opaque at time t = 0 is

 (10.21)

where a(0) is a small signal offset from the metastable point. Figure 10.44 shows a small-
signal model for a(t). The behavior after time 0 is given by the first-order differential
equation

 (10.22)

Solving this equation shows that the positive feedback drives a(t) exponentially away from
the metastable point with a time constant determined by the gain and RC delay of the
cross-coupled inverter loop.

 (10.23)

A V am() ()0 0= +

Ga t a t
R

C
da t

dt
() () ()

=

a t a
RC

G

t
s

s() () ;= =0
1

e

(a) (b)

0

100

200

300

400

0.01 0.1 1 10 100

tDC − tm (ps)

t D
Q

(p
s)

0 200

0.3

0.6

0.9

1.2

1.5

1.8

400

t (ps)

0

φ
D

Q
Vmtm

h

tpdq

FIGURE 10.43 Metastable transients and propagation delay

a(t)
R

C

G

FIGURE 10.44 Small
signal model of bistable
element in metastability

Chapter 10 Sequential Circuit Design414

Suppose the node is defined to reach a legal logic level when a(t) exceeds some
deviation V. The time to reach this level is

 (10.24)

This shows that the latch propagation delay increases as A(0) approaches the metastable
point and a(0) approaches 0. The delay approaches infinity if a(0) is precisely 0, but this
can never physically happen because of noise. However, there is no upper bound on the
possible waiting time t required for the signal to become valid. If the input A(t) is a ramp
that passes through Vm at time tm, a(0) is proportional to tDC – tm. Observe that
EQ (10.24) is a good fit to the log-linear portion of Figure 10.43(b). The time constant s
is essentially the reciprocal of the gain-bandwidth product [Flannagan85]. Therefore, the
feedback loop in a latch should have a high gain-bandwidth product to resolve from meta-
stability quickly.

Designers need to know the probability that latch propagation delay exceeds some
time t . Longer propagation delays are less likely because they require a(0) to be closer to
0. This probability should decrease with the clock period Tc because a uniformly distrib-
uted input change is less likely to occur near the critical time. Projecting through
EQ (10.24) shows that it should also decrease exponentially with waiting time t . Theo-
retical and experimental studies [Chaney83, Veendrick80, Horstmann89] find that the
probability can be expressed as

 (10.25)

where T0 and s can be extracted through simulation [Baghini02] or measurement. Intu-
itively, T0/Tc describes the probability that the input would change during the aperture,
causing metastability, and the exponential term describes the probability that the output
has not resolved after t if it did enter metastability. The model is only valid for sufficiently
long propagation delays (h significantly greater than tpdq).

Example 10.8

Find s, T0, and h for the latch using the data in Figure 10.43.

SOLUTION: h is the propagation delay above which the data fits a good straight line on a
log-linear scale. In Figure 10.43, this appears to be approximately 175 ps. The proba-
bility that the delay exceeds some t is the chance that the input changing at a random
time falls within the small aperture that leads to the high delay. We can choose two
points on the linear portion of the plot and solve for the two unknowns. For example,
choosing (0.1 ps, 290 ps) and (0.01 ps, 415 ps), we solve

 (10.26)

t V aDQ s= ln ln ()0

P t t
T
T

t hDQ
c

s

t

>() = >0 e for

P t
T

T
T

P t

DQ
c c

s

DQ

>() = =

>() =
290

0 1

415

0

290

ps
ps

e

ps

ps
.

0 01 0

415
. ps

e

ps

T
T
Tc c

s=

10.6 Synchronizers 415

Tc drops out of the equations and we find s = 54 ps and T0 = 21 ps. Recall that this
data was taken for a rising input. A conservative design should also consider the falling
input and take data in the slow rather than typical environment.

We have seen that a good synchronizer latch should have a feedback loop with a high-
gain-bandwidth product. Conventional latches have data and clock transistors in series,
increasing the delay (i.e., reducing the bandwidth). Figure 10.45 shows a synchronizer
flip-flop in which the feedback loops simplify to cross-coupled inverter pairs [Dike99].
Furthermore, the flip-flop is reset to 0, and then is only set to 1 if D = 1 to minimize load-
ing on the feedback loop.

The flip-flop consists of master and slave jamb latches. Each latch is reset to 0 while
D = 0. When D rises before , the master output X is driven high. This in turn drives the
slave output Q high when rises. The pulldown transistors are just large enough to over-
power the cross-coupled inverters, but should add as little stray capacitance to the feed-
back loops as possible. X and Q are buffered with small inverters so they do not load the
feedback loops.

10.6.2 A Simple Synchronizer
A synchronizer accepts an input D and a clock . It produces an output Q that ought to be
valid some bounded delay after the clock. The synchronizer has an aperture defined by a
setup and hold time around the rising edge of the clock. If the
data is stable during the aperture, Q should equal D. If the data
changes during the aperture, Q can be chosen arbitrarily.
Unfortunately, it is impossible to build a perfect synchronizer
because the duration of metastability can be unbounded. We
define synchronizer failure as occurring if the output has not
settled to a valid logic level after some time t .

Figure 10.46 shows a simple synchronizer built from a pair
of flip-flops. F1 samples the asynchronous input D. The output
X may be metastable for some time, but will settle to a good
level with high probability if we wait long enough. F2 samples
X and produces an output Q that should be a valid logic level
and be aligned with the clock. The synchronizer has a latency of
one clock cycle, Tc . It can fail if X has not settled to a valid level
by a setup time before the second clock edge.

D

Q

φ

X Q

φ

X

φ

Tc

tsetup

tpcq

Metastable
Time

F
1

 F
2

FIGURE 10.46 Simple synchronizer

Reset Reset

Q

D

φ

Master Latch Slave Latch

X

FIGURE 10.45 Fast synchronizer flip-flop

Chapter 10 Sequential Circuit Design416

Each flip-flop samples on the rising clock edge when the master latch becomes
opaque. The slave latch merely passes along the contents of the master and does not sig-
nificantly affect the probability of metastability. If the synchronizer receives an average of
N asynchronous input changes at D each second, the probability of synchronizer failure in
any given second is

 (10.27)

and the mean time between failures increases exponentially with cycle time

 (10.28)

The acceptable MTBF depends on the application. For medical equipment where
synchronizer reliability is crucial and latency is relatively unimportant, the MTBF can be
chosen to be longer than the life of the universe (~1019 seconds) by waiting more than one
clock cycle before using the data. For noncritical applications, the MTBF can be chosen to
be merely longer than the designer’s expected duration of employment at the company!

Example 10.9

A particular synchronizer flip-flop in a 0.25 m process has s = 20 ps and T0 = 15 ps
[Dike99]. Assuming the input toggles at N = 50 MHz and the setup time is negligible,
what is the minimum clock period Tc for which the MTBF exceeds one year?

SOLUTION: 1 year × 107 seconds. Thus, we must solve

 (10.29)

numerically for a minimum clock period of 625 ps (1.6 GHz).

Example 10.10

How much longer must we wait for a 1000-year MTBF?

SOLUTION: Solving an equation similar to EQ (10.29) gives 760 ps. Increasing the wait-
ing time by 135 ps improved MTBF by a factor of 1000.

10.6.3 Communicating Between Asynchronous Clock Domains
A common application of synchronizers is in communication between asynchronous clock
domains, i.e., blocks of circuits that do not share a common clock. Suppose System A is
controlled by clkA that needs to transmit N-bit data words to System B, which is con-
trolled by clkB, as shown in Figure 10.47. The systems can represent separate chips or sep-
arate units within a chip using unrelated clocks. Each word should be received by system

P N
T
Tc

c

s

T t

failure e

setup

() =
()

0

MTBF
P

T
NT

c

c

s

T t

= () =
1

0failure

e

setup

× =
×() ×()

×
10

5 10 15 10
7

7 12

20 10 12

Tc

cT

e

10.6 Synchronizers 417

B exactly once. System A must guarantee that the data is stable while the
flip-flops in System B sample the word. It indicates when new data is
valid by using a request signal (Req), so System B receives the word
exactly once rather than zero or multiple times. System B replies with an
acknowledge signal (Ack) when it has sampled the data so System A
knows when the data can safely be changed. If the relationship between
clkA and clkB is completely unknown, a synchronizer is required at the
interface.

The request and acknowledge signals are called handshaking lines.
Figure 10.48 illustrates two-phase and four-phase handshaking protocols.
The four-phase handshake is level-sensitive while the two-phase hand-
shake is edge-triggered. In the four-phase handshake, system A places
data on the bus. It then raises Req to indicate that
the data is valid. System B samples the data when
it sees a high value on Req and raises Ack to indi-
cate that the data has been captured. System A
lowers Req, then system B lowers Ack. This pro-
tocol requires four transitions of the handshake
lines. In the two-phase handshake, system A
places data on the bus. Then it changes Req (low
to high or high to low) to indicate that the data is
valid. System B samples the data when it detects
a change in the level of Req and toggles Ack to indicate that the data has been captured.
This protocol uses fewer transitions (and thus possibly less time and energy), but requires
circuitry that responds to edges rather than levels.

Req is not synchronized to clkB. If it changes at the same time clkB rises, System B
may receive a metastable value. Thus, System B needs a synchronizer on the Req input. If
the synchronizer waits long enough, the request will resolve to a valid logic level with very
high probability. The synchronizer may resolve high or low. If it resolves high, the rising
request was detected and System B can sample the data. If it resolves low, the rising
request was just missed. However, it will be detected on the next cycle of clkB, just as it
would have been if the rising request occurred just slightly later. Ack is not synchronized to
clkA, so it also requires a synchronizer.

Figure 10.49 shows a typical two-phase handshaking system [Crews03]. clkA and clkB
operate at unrelated frequencies and each system may not know the frequency of its coun-
terpart. Each system contains a synchronizer, a level-to-pulse converter, and a pulse-to-
level converter. System A asserts ReqA for one cycle when DataA is ready. We will refer to
this as a pulse. The XOR and flip-flop form a pulse-to-level converter that toggles the level
of Req. This level is synchronized to clkB. When an edge is detected, the level-to-pulse
converter produces a pulse on ReqB. This pulse in turn toggles Ack. The acknowledge level
is synchronized to clkA and converted back to a pulse on AckA. The synchronizers add sig-
nificant latency so the throughput of asynchronous communication can be much lower
than that of synchronous communication.

10.6.4 Common Synchronizer Mistakes
Although a synchronizer is a simple circuit, it is notoriously easy to misuse. For example,
the AMD 9513 system timing controller, AMD 9519 interrupt controller, Zilog Z-80
Serial I/O interface, Intel 8048 microprocessor, and AMD 29000 microprocessor are all

System B

clkBclkA

System A Data
 N

Req

Ack

FIGURE 10.47 Communication between asyn-
chronous systems

Req

Ack

Req

Ack

(a) Four Phase (b) Two Phase

FIGURE 10.48 Four-phase and two-phase handshake protocols

Chapter 10 Sequential Circuit Design418

said to have suffered from metastability problems [Wakerly00]. [Ginosar03] has even
written a paper on Fourteen Ways to Fool Your Synchronizer illustrating overly imaginative
designs.

 One way to build a bad synchronizer is to use a bad latch or flip-flop. The synchro-
nizer depends on positive feedback to drive the output to a good logic level. Therefore,
dynamic latches without feedback such as Figure 10.17(a–d) do not work. The probability
of failure grows exponentially with the time constant of the feedback loop. Therefore, the
loop should be lightly loaded. The latch from Figure 10.17(f) is a poor choice because a
large capacitive load on the output will increase the time constant; Figure 10.17(g) is a
much better choice.

Another error is to capture inconsistent data. For example, Figure 10.50(a) shows a
single signal driving two synchronizers (each consisting of a pair of back-to-back flip-
flops). If the signal is stable through the aperture, Q1 and Q2 will be the same. However, if
the signal changes during the aperture, Q1 and Q2 might resolve to different values. If the
system requires that Q1 and Q2 be identical representations of the data input, they must
come from a single synchronizer.

Another example is to synchronize a multibit word where more than one bit might be
changing at a time. For example, if the word in Figure 10.50(b) is transitioning from 0000
to 1111, the synchronizer might produce a value such as 0101 that is neither the old nor
the new data word. For this reason, the system in Figure 10.49 synchronized only the

Synchronizer

System B

en

clkB

Synchronizer

clkA

System A

Data

Req

Ack

ReqA
ReqB

AckA

DataA DataB

clkB

clkA

Req

Ack

ReqA

ReqB/AckB

AckA

AckB

FIGURE 10.49 Two-phase handshake circuitry with synchronizers

10.6 Synchronizers 419

Req/Ack signals and used them to indicate that data was stable to
sample or finished being sampled. Gray codes (see Section 11.7.3)
are also useful for counters whose outputs must be synchronized
because exactly one bit changes on each count so that the synchro-
nizer is guaranteed to find either the old or the new data value.

In general, synchronizer bugs are intermittent and notoriously
difficult to locate and diagnose. For this reason, asynchronous
interfaces should be reviewed closely.

10.6.5 Arbiters
The arbiter of Figure 10.51(a) is closely related to the synchronizer.
It determines which of two inputs arrived first. If the spacing
between the inputs exceeds some aperture time, the first input should be acknowledged. If
the spacing is smaller, exactly one of the two inputs should be acknowledged, but the
choice is arbitrary. For example, in a television game show, two contestants may pound
buttons to answer a question. If one presses the button first, she should be acknowledged.
If both press the button at times too close to distinguish, the host may choose one of the
two contestants arbitrarily (but must not lock up or catch on fire).

Figure 10.51(b) shows an arbiter built from an SR latch and a four-transistor metasta-
bility filter. If one of the request inputs arrives well before the other, the latch will respond
appropriately. However, if they arrive at nearly the same time, the latch may be driven into
metastability, as shown in Figure 10.51(c). The filter keeps both acknowledge signals low
until the voltage difference between the internal nodes n1 and n2 exceeds Vt , indicating
that a decision has been made. Such an asynchronous arbiter will never produce metasta-
ble outputs. However, the time required to make the decision can be unbounded, so the
acknowledge signals must be synchronized before they are used in a clocked system.

Arbiters can be generalized to select 1-of-N or M-of-N inputs. However, such arbi-
ters have multiple metastable states and require careful design [van Berkel99].

10.6.6 Degrees of Synchrony
The simple synchronizer from Section 10.6.2 accepts inputs that can change at any time,
but has two-cycle latency and a nonzero probability of failure. In practice, many inputs
may not be aligned to a single system clock, but they may still be predictable. Table 10.3
provides a classification of degrees of synchrony between input signals and the receiver
system clock [Messerschmitt90] based on the difference in phase and frequency f.

D

Q1

S
yn

c
S

yn
c

S
yn

c

φ

φ

Q2

(a) (b)

D

φ

Q
4 4

FIGURE 10.50 Bad synchronizer designs

(a) (b)

Req1

Req2

Ack1

Ack2

Req1

Req2

Ack2

Ack1

n1

n2
Ack1/2

n1/2

Req1/2

(c)

SR Latch
Metastability Filter

FIGURE 10.51 Arbiter

Chapter 10 Sequential Circuit Design420

[Dally98] describes a number of synchronizers that have zero failure probability and
possibly lower latency when the input is predictable. They are based on the observation
that either the signal or a copy of the signal delayed by ta will be stable throughout the
aperture. Hence, a synchronizer that can predict the input arrival time can choose the sig-
nal or its delayed counterpart to safely sample. Mesochronous signals are synchronized by
measuring the phase difference and delaying the input enough to ensure it falls outside the
aperture. Plesiochronous signals can be synchronized in a similar fashion, but the phase
difference slowly varies, so the delay must be occasionally adjusted. Because the frequen-
cies differ, the synchronizer requires some control flow to handle the missing or extra data
items. Periodic signals also require control flow and use a clock predictor to calculate
where the next clock edge will occur and whether the signal must be delayed to avoid fall-
ing in the aperture.

10.7 Wave Pipelining
Recall that sequencing elements are used in pipelined systems to prevent the current token
from overtaking the next token or from being overtaken by the previous token in the pipe-
line. If the elements propagate through the pipeline at a fairly constant rate, explicit
sequencing elements may not be necessary to maintain sequence. As an analogy, fiber
optic cables carry data as a series of light pulses. Many pulses enter the cable before the

TABLE 10.3 Degrees of synchrony

Classification Periodic Df Df Description

Synchronous Yes 0 0 Signal has same frequency and phase as clock. Safe to
sample signal directly with the clock.
Example: Flip-flop to flip-flop on chip.

Mesochronous Yes Constant 0 Signal has same frequency, but is out of phase with the
clock. Safe to sample signal if it is delayed by a con-
stant amount to fall outside aperture.
Example: Chip-to-chip where chips use same clock
signal, but might have arbitrarily large skews.

Plesiochronous Yes Varies
slowly

Small Signal has nearly the same frequency. Phase drifts
slowly over time. Safe to sample signal if it is delayed
by a variable but predictable amount. Difference in fre-
quency can lead to dropped or duplicated data.
Example: Board-to-board where boards use clock
crystals with small mismatches in nominally identical
rates.

Periodic Yes Varies
rapidly

Large Signal is periodic at an arbitrary frequency. Periodic
nature can be exploited to predict and delay accord-
ingly when data will change during aperture.
Example: Board-to-board where boards use different
frequency clocks.

Asynchronous No Unknown Unknown Signal may change at arbitrary times. Full synchronizer
is required.
Example: Input from pushbutton switch.

10.7 Wave Pipelining 421

first one reaches the end, yet the cable does not need internal latches to keep the pulses
separated because they propagate along the cable at a well-controlled velocity. The maxi-
mum data rate is limited by the dispersion along the line that causes pulses to smear over
time and blur into one another if they become too short.

Figure 10.52 compares traditional pipelining with wave pipelining. In both cases, the
pipeline contains combinational logic separated by registers (Figure 10.52(a)). The regis-
ters F1 and F2 receive clocks clk1 and clk2 that are nominally identical, but might experi-
ence skew. Figure 10.52(b) shows traditional pipelining. The data is launched on the rising
edge of clk1. Its propagation is indicated by the hashed cone. D2 becomes stable some-
where between the contamination and propagation delays after the clock edge (neglecting
the flip-flop clk-to-Q delay). D2 must not change during the setup and hold aperture
around clk2, marked with the blue box. The figure shows two successive cycles in which
tokens i and i + 1 move through the pipeline. Each token passes through the combina-
tional logic in a single cycle. Figure 10.52(c) shows wave pipelining with a clock of twice
the frequency. Token i enters the combinational logic, but takes two cycles to reach F2.
Meanwhile, token i + 1 enters the logic a cycle later. As long as each token is stable to
sample at F2 and the cones do not overlap, the pipeline will operate correctly with the
same latency but twice the throughput.

F
1

F
2

clk1 clk2

Combinational Logic
Q1 D2

(a)

(b)

(c)

clk1

clk2

D2

clk1

clk2

D2

i i + 1

i i + 1 i + 2 i + 3

tcd
tpd

Tc

ta

FIGURE 10.52 Wave pipelining

Chapter 10 Sequential Circuit Design422

[Burleson98] gives a tutorial on wave pipelining and derives the timing constraints. In
general, a wave pipeline can contain N tokens between each pair of registers. The maxi-
mum value of N is limited by the ratio of propagation delay to dispersion of the logic
cones:

 (10.30)

If the contamination and propagation delays are nearly equal, the combinational logic can
contain many tokens simultaneously. In practice, the delays tend to be widely variable
because of voltage, temperature, and processing as well as differences in path lengths
through the logic. Clock skew and sequencing overhead also eat into the timing budgets.
In practice, even achieving N = 2 simultaneous tokens can be difficult and wave pipelining
has not achieved widespread popularity for general-purpose logic.

10.8 Pitfalls and Fallacies
Incompletely reporting flip-flop delay
The effective delay of a flip-flop is its minimum D-to-Q time. This is the sum of the setup time

tsetup and the clk-to-Q delay tpdq if these delays are defined to minimize the sum. Some engi-

neers focus on only the clk-to-Q delay or define setup and clk-to-Q delays in a way that does not

minimize the sum.

Failing to check hold times
One of the leading reasons that chips fail to operate even though they appear to simulate cor-

rectly is hold-time violations, especially violations caused by unexpected clock skew. Unless a

design uses two-phase nonoverlapping clocks, the clock skew should be carefully modeled and

the hold times should be checked with a static timing analyzer. These checks should happen

as soon as a block is designed so that errors can be corrected immediately. For example, a large

microprocessor used a wide assortment of delayed clocks to solve setup time problems on long

paths. Hold times were not checked until shortly before tapeout, leading to a significant sched-

ule slip when many violations were found.

Choosing a sequencing methodology too late in the design cycle
Designers may choose from many sequencing methodologies, each of which has trade-offs.

The best methodology for a particular application is very debatable, and engineers love a good

debate. If the sequencing methodology is not settled at the beginning of the project, experience

shows that engineers will waste tremendous amounts of time redoing work as the method

changes, or supporting and verifying multiple methodologies. Projects need a strong technical

manager to demand that a team choose one method at the beginning and stick with it.

Failing to synchronize asynchronous inputs
Unsynchronized inputs can cause strange and wonderful sporadic system failures that are

very difficult to locate. For example, a finite state machine running off one clock received a

READY input from a UART running on another clock when the UART had data available, as

shown in Figure 10.53. The designer reasoned that synchronizing the READY signal was unim-

portant because if it changed near the clock edge of the FSM, she did not care whether it was

detected in one cycle or the next. Moreover, the clock was so slow that metastability would

have time to resolve. However, the FSM occasionally failed by jumping to seemingly random

N
t

t t
pd

pd cd

<

10.9 Case Study: Pentium 4 and Itanium 2 Sequencing Methodologies 423

states that could never legally occur. After two months of debugging, she realized that the

problem was triggered if the asynchronous READY signal was asserted a few gate delays before

the FSM clock edge. The propagation delay through the combinational logic was different for

various bits of the next state logic. Some bits had changed to their new values while others

were still at their old values, so the FSM could jump to an undefined state. Registering the

READY signal with the FSM clock before it drove the combinational logic solved the problem.

Building faulty synchronizers
Designers have found many ways to build faulty synchronizers. For example, if an asynchro-

nous input drives more than one synchronizer, the two synchronizers can resolve to different

values. If they must produce consistent outputs, only one synchronizer should be used. In an-

other example, synchronizers must not accept multibit inputs where more than one of the bits

can change simultaneously. This would pose the risk that some of the bits resolve as changed

while others resolve in their old state, resulting in an invalid pattern that is neither the old nor

the new input word. In yet another example, synchronizers with poorly designed feedback

loops can be much slower than expected and can have exponentially worse mean time

between failures.

10.9 Case Study: Pentium 4 and Itanium 2
Sequencing Methodologies
This section is available in the online Web Enhanced chapter at www.cmosvlsi.com.

Summary
This chapter has examined the trade-offs of sequencing with flip-flops, two-phase trans-
parent latches, and pulsed latches. Minimizing sequencing overhead is critical in these
high-performance systems. Flip-flops are the simplest, but have the greatest sequencing
overhead. Transparent latches are most tolerant of skew and allow the most time borrow-
ing, but require greater design effort to partition logic into half-cycles instead of cycles.
Pulsed latches have the lowest sequencing overhead, but are most susceptible to min-delay
problems. Table 10.4 compares the sequencing overhead, minimum delay constraint, and
time borrowing capability of each technique. All of the techniques are used in commercial
products, and the designer’s choice depends on the design constraints and CAD tools.

WEB
ENHANCED

Comb.
Logic

8 MHz1.8432 MHz

UART
READY

STATE

FIGURE 10.53 Unsynchronized input

Chapter 10 Sequential Circuit Design424

In class projects for introductory VLSI classes, timing analysis is often rudimentary or
nonexistent. Using two-phase nonoverlapping clocks generated off chip is attractive
because you can guarantee the chip will have no max-delay or min-delay failures if the
clock period and nonoverlap are sufficiently large. However, it is not practical to generate
and distribute two nonoverlapping phases on a large, high-performance commercial chip.

The great majority of low- and mid-performance designs and some high-speed
designs use flip-flops. Flip-flops are easy to use and are well understood by most designers.
Even more importantly, they are handled well by synthesis tools and timing analyzers.
Unfortunately, in systems with few gate delays per cycle, the sequencing overhead can
consume a large fraction of the cycle. Moreover, many standard cell flip-flops are inten-
tionally rather slow to prevent hold-time violations at the expense of greater sequencing
overhead.

Most two-phase latch systems distribute a single clock and locally invert it to drive
the second latch. These systems tolerate significant amounts of clock skew without loss of
performance and can borrow time to balance delay intentionally or opportunistically.
However, the systems require more effort to understand because time borrowing distrib-
utes the timing constraints across many stages of a pipeline rather than isolating them at
each stage. Not all timing analyzers handle latches gracefully, especially when there are
different amounts of clock skew between different clocks [Harris99]. Two-phase latches
have been used in the Alpha 21064 and 21164 [Gronowski98] and a variety of older chips,
but are rarely used today.

Pulsed latches have low sequencing overhead. They present a trade-off when choos-
ing pulse width: A wide pulse permits more time borrowing and skew tolerance, but
makes min-delay constraints harder to meet. Pulsed latches are also popular because they
can be modeled as fast flip-flops with a lousy hold time from the point of view of a timing
analyzer (or novice designer) if intentional time borrowing is not permitted. The
min-delay problems can be largely overcome by mixing pulsed latches for long paths and
flip-flops for short paths. Unfortunately, many real designs have paths in which the propa-
gation delay is very long but the contamination delay is very short, making robust design
more challenging. Pulsed latches have been used on Itanium 2 [Naffziger02], Pentium 4
[Kurd01], Athlon [Draper97], and CRAY 1 [Unger86]. However, they can wreak havoc
with conventional commercially available design flows and are best avoided unless the per-
formance requirements are extreme.

When inputs to a system arrive asynchronously, they cannot be guaranteed to meet
setup or hold times at clocked elements. Even if we do not care whether an input arrived

TABLE 10.4 Comparison of sequencing elements

Sequencing Overhead
(Tc – tpd)

Minimum Logic Delay
tcd

Time Borrowing
tborrow

Flip-Flops tpcq + tsetup + tskew thold tccq + tskew 0

Two-Phase Transparent
Latches 2tpdq

thold tccq + tnonoverlap + tskew
in each half-cycle

Tc /2 – (tsetup +
tnonoverlap + tskew)

Pulsed Latches max(tpdq, tpcq + tsetup tpw + tskew) thold tccq + tpw + tskew tpw (tsetup + tskew)

 Exercises 425

in one cycle or the next, we must ensure that the clocked element produces a valid logic
level. Unfortunately, if the element samples a changing input at just the wrong time, it
may produce a metastable output that remains invalid for an unbounded amount of time.
The probability of metastability drops off exponentially with time. Systems use synchro-
nizers to sample the asynchronous input and hold it long enough to resolve to a valid logic
level with very high probability before passing it onward.

Most synchronous VLSI systems use opaque sequencing elements to separate one
token from the next. In contrast, many optical systems transmit data as pulses separated in
time. As long as the propagation medium does not disperse the pulses too badly, they can
be recovered at a receiver. Similarly, if a VLSI system has low dispersion, i.e., nearly equal
contamination and propagation delays, it can send more than one wave of data without
explicit latching. Such wave pipelining offers the potential of high throughput and low
sequencing overhead. However, it is difficult to perform in practice because of the variabil-
ity of data delay.

Exercises
Use the timing parameters in Table 10.5 for the following exercises.

10.1 For each of the following sequencing styles, determine the maximum logic propaga-
tion delay available within a 500 ps clock cycle. Assume there is zero clock skew and
no time borrowing takes place.
a) Flip-flops
b) Two-phase transparent latches
c) Pulsed latches with 80 ps pulse width

10.2 Repeat Exercise 10.1 if the clock skew between any two elements can be up to 50 ps.

10.3 For each of the following sequencing styles, determine the minimum logic contami-
nation delay in each clock cycle (or half-cycle, for two-phase latches). Assume there
is zero clock skew.
a) Flip-flops
b) Two-phase transparent latches with 50% duty cycle clocks
c) Two-phase transparent latches with 60 ps of nonoverlap between phases
d) Pulsed latches with 80 ps pulse width

10.4 Repeat Exercise 10.3 if the clock skew between any two elements can be up to 50 ps.

TABLE 10.5 Sequencing element parameters

Setup Time clk-to-Q
Delay

D-to-Q
Delay

Contamination
Delay

Hold Time

Flip-Flops 65 ps 50 ps n/a 35 ps 30 ps
Latches 25 ps 50 ps 40 ps 35 ps 30 ps

Chapter 10 Sequential Circuit Design426

 10.5 Suppose one cycle of logic is particularly critical and the next cycle is nearly empty.
Determine the maximum amount of time the first cycle can borrow into the sec-
ond for each of the following sequencing styles. Assume there is zero clock skew
and that the cycle time is 500 ps.
a) Flip-flops
b) Two-phase transparent latches with 50% duty cycle clocks
c) Two-phase transparent latches with 60 ps of nonoverlap between phases
d) Pulsed latches with 80 ps pulse width

 10.6 Repeat Exercise 10.5 if the clock skew between any two elements can be up to 50
ps.

 10.7 Prove EQ (10.17).

 10.8 Consider a flip-flop built from a pair of transparent latches using nonoverlapping
clocks. Express the setup time, hold time, and clock-to-Q delay of the flip-flop in
terms of the latch timing parameters and tnonoverlap, relative to the rising edge of

1.

 10.9 For the path in Figure 10.54, determine which latches borrow time and if any
setup time violations occur. Repeat for cycle times of 1200, 1000, and 800 ps.
Assume there is zero clock skew and that the latch delays are accounted for in the
propagation delay
a) 1 = 550 ps; 2 = 580 ps; 3 = 450 ps; 4 = 200 ps
b) 1 = 300 ps; 2 = 600 ps; 3 = 400 ps; 4 = 550 ps

F
lo

p

La
tc

h
1

La
tc

h
2

La
tc

h
3

La
tc

h
4

clk

clk clk clk clk clk

Δ1 Δ2 Δ3 Δ4

FIGURE 10.54 Example path

10.10 Determine the minimum clock period at which the circuit in Figure 10.55 will
operate correctly for each of the following logic delays. Assume there is zero clock
skew and that the latch delays are accounted for in the propagation delay
a) 1 = 300 ps; 2 = 400 ps; 3 = 200 ps; 4 = 350 ps
b) 1 = 300 ps; 2 = 400 ps; 3 = 400 ps; 4 = 550 ps
c) 1 = 300 ps; 2 = 900 ps; 3 = 200 ps; 4 = 350 ps

 Exercises 427

10.11 Repeat Exercise 10.10 if the clock skew is 100 ps.

10.12 Label the timing types of each signal in the circuit from Figure 10.54. The flip-
flop is constructed with back-to-back transparent latches—the first controlled by
clk_b and the second by clk.

10.13 Using a simulator, compare the D-to-Q propagation delays of a conventional
dynamic latch from Figure 10.17(d) and a TSPC latch from Section 10.3.11.
Assume each latch is loaded with a fanout of 4. Use 4 -wide clocked transistors
and tune the other transistor sizes for least propagation delay.

10.14 Using a simulator, find the setup and hold times of a TSPC latch under the
assumptions of Exercise 10.13.

10.15 Determine the maximum logic propagation delay available in a cycle for a tradi-
tional domino pipeline using a 500 ps clock cycle. Assume there is zero clock skew.

10.16 Repeat Exercise 10.15 if the clock skew between any two elements can reach 50 ps.

10.17 Determine the maximum logic propagation delay available in a cycle for a four-
phase skew-tolerant domino pipeline using a 500 ps clock cycle. Assume there is
zero clock skew.

10.18 Repeat Exercise 10.17 if the clock skew between any two elements can be up to 50
ps.

10.19 How much time can one phase borrow into the next in Exercise 10.18 if the clocks
each have a 50% duty cycle? Assume thold = 0.

10.20 Repeat Exercise 10.18 if the clocks have a 65% duty cycle.

10.21 Design a fast pulsed latch. Make the gate capacitance on the clock and data inputs
equal. Let the latch drive an output load of four identical latches. Simulate your
latch and find the setup and hold times and clock-to-Q propagation and contami-
nation delays. Express your results in FO4 inverter delays.

10.22 Simulate the worst-case propagation delay of an 8-input dynamic NOR gate driv-
ing a fanout of 4. Report the delay in all 16 design corners (voltage, temperature,
nMOS, pMOS). Also determine the delay of a fanout-of-4 inverter in each of
these corners. By what percentage does the absolute propagation delay of the NOR
gate vary across corners? By what percentage does its normalized delay vary (in
terms of FO4 inverters)? Comment on the implications for circuits using matched
delays.

La
tc

h

La
tc

h

La
tc

h

La
tc

h

clk

clk clk clk clk clk

Δ1 Δ2 Δ3 Δ4

F
lo

p

FIGURE 10.55 Another example path

Chapter 10 Sequential Circuit Design428

10.23 A synchronizer uses a flip-flop with s = 54 ps and T0 = 21 ps. Assuming the input
toggles at 10 MHz and the setup time is negligible, what is the minimum clock
period for which the mean time between failures exceeds 100 years?

10.24 Simulate the synchronizer flip-flop of Figure 10.45 and make a plot analogous to
Figure 10.43. From your plot, find DQ, h, , and T0.

10.25 InferiorCircuits, Inc., wants to sell you a perfect synchronizer that they claim never
produces a metastable output. The synchronizer consists of a regular flip-flop fol-
lowed by a high-gain comparator that produces a high output for inputs above
VDD/4 and a low output for inputs below that point. The VP of marketing argues
that even if the flip-flop enters metastability, its output will hover near VDD/2 so
the synchronizer will produce a good high output after the comparator. Why
wouldn’t you buy this synchronizer?

11

429

Datapath
Subsystems

11.1 Introduction
Chip functions generally can be divided into the following categories:

� Datapath operators

� Memory elements

� Control structures

� Special-purpose cells

○ I/O

○ Power distribution

○ Clock generation and distribution

○ Analog and RF

CMOS system design consists of partitioning the system into subsystems of the types
listed above. Many options exist that make trade-offs between speed, density, programma-
bility, ease of design, and other variables. This chapter addresses design options for com-
mon datapath operators. The next chapter addresses arrays, especially those used for
memory. Control structures are most commonly coded in a hardware description language
and synthesized. Special-purpose subsystems are considered in Chapter 13.

As introduced in Chapter 1, datapath operators benefit from the structured design
principles of hierarchy, regularity, modularity, and locality. They may use N identical cir-
cuits to process N-bit data. Related data operators are placed physically adjacent to each
other to reduce wire length and delay. Generally, data is arranged to flow in one direction,
while control signals are introduced in a direction orthogonal to the dataflow.

Common datapath operators considered in this chapter include adders, one/zero
detectors, comparators, counters, Boolean logic units, error-correcting code blocks,
shifters, and multipliers.

11.2 Addition/Subtraction
“Multitudes of contrivances were designed, and almost endless drawings made, for the
purpose of economizing the time and simplifying the mechanism of carriage.”

—Charles Babbage, on Difference Engine No. 1, 1864 [Morrison61]

Chapter 11 Datapath Subsystems430

Addition forms the basis for many processing operations, from ALUs to address genera-
tion to multiplication to filtering. As a result, adder circuits that add two binary numbers
are of great interest to digital system designers. An extensive, almost endless, assortment
of adder architectures serve different speed/power/area requirements. This section begins
with half adders and full adders for single-bit addition. It then considers a plethora of
carry-propagate adders (CPAs) for the addition of multibit words. Finally, related struc-
tures such as subtracters and multiple-input adders are discussed.

11.2.1 Single-Bit Addition
The half adder of Figure 11.1(a) adds two single-bit inputs, A and B. The result is 0, 1, or
2, so two bits are required to represent the value; they are called the sum S and carry-out
Cout. The carry-out is equivalent to a carry-in to the next more significant column of a
multibit adder, so it can be described as having double the weight of the other bits. If mul-
tiple adders are to be cascaded, each must be able to receive the carry-in. Such a full adder
as shown in Figure 11.1(b) has a third input called C or Cin.

The truth tables for the half adder and full adder are given in Tables 11.1 and 11.2.
For a full adder, it is sometimes useful to define Generate (G), Propagate (P), and Kill (K)
signals. The adder generates a carry when Cout is true independent of Cin, so G = A · B.
The adder kills a carry when Cout is false independent of Cin, so K = A · B = A + B. The
adder propagates a carry; i.e., it produces a carry-out if and only if it receives a carry-in,
when exactly one input is true: P = A B.

From the truth table, the half adder logic is

 (11.1)

TABLE 11.1 Truth table for half adder

A B Cout S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

TABLE 11.2 Truth table for full adder

A B C G P K Cout S

0 0 0 0 0 1 0 0
1 0 1

0 1 0 0 1 0 0 1
1 1 0

1 0 0 0 1 0 0 1
1 1 0

1 1 0 1 0 0 1 0
1 1 1

S A B
C A B

=
=out ·

A B

C

S

Cout

A B

S

Cout

(a) (b)

FIGURE 11.1
Half and full adders

11.2 Addition/Subtraction 431

and the full adder logic is

 (11.2)

The most straightforward approach to designing an adder is with logic gates. Figure
11.2 shows a half adder. Figure 11.3 shows a full adder at the gate (a) and transistor (b)
levels. The carry gate is also called a majority gate because it produces a 1 if at least two of
the three inputs are 1. Full adders are used most often, so they will receive the attention of
the remainder of this section.

S ABC ABC ABC ABC

A B C P C

C AB AC BC

AB C

= + + +
= () =

= + +

= +
out

A B

AB C A B

A B C

+()
= + +()
= MAJ(, ,)

A
B

A
B

S

Cout

FIGURE 11.2
Half adder design

A
B
C

S

Cout

(a)

M
A

J

A
B
C

A

B B
B

A

C
S

C

CC

B B
B

A A

(b)

A B

C

B

A

CBA A B C

Cout

C

A

A

BB

FIGURE 11.3 Full adder design

The full adder of Figure 11.3(b) employs 32 transistors (6 for the inverters, 10 for the
majority gate, and 16 for the 3-input XOR). A more compact design is based on the
observation that S can be factored to reuse the Cout term as follows:

 (11.3)

Such a design is shown at the gate (a) and transistor (b) levels in Figure 11.4 and uses
only 28 transistors. Note that the pMOS network is identical to the nMOS network
rather than being the conduction complement, so the topology is called a mirror adder.
This simplification reduces the number of series transistors and makes the layout more
uniform. It is possible because the addition function is symmetric ; i.e., the function of com-
plemented inputs is the complement of the function.

The mirror adder has a greater delay to compute S than Cout. In carry-ripple adders
(Section 11.2.2.1), the critical path goes from C to Cout through many full adders, so the

S ABC A B C C= + + +() out

Chapter 11 Datapath Subsystems432

extra delay computing S is unimportant. Figure 11.4(c) shows the adder with transistor
sizes optimized to favor the critical path using a number of techniques:

� Feed the carry-in signal (C) to the inner inputs so the internal capacitance is
already discharged.

� Make all transistors in the sum logic whose gate signals are connected to the carry-
in and carry logic minimum size (1 unit, e.g., 4). This minimizes the branching
effort on the critical path. Keep routing on this signal as short as possible to reduce
interconnect capacitance.

� Determine widths of series transistors by logical effort and simulation. Build an
asymmetric gate that reduces the logical effort from C to Cout at the expense of
effort to S.

S

(a)

(b)

S

Cout

A B

C

B

A

Cout

C

A

A

BB

S

A B C

A B C

A

B

C

B

C

A

8 8

8

4

4 4 1

1

1

1

1

1

1

1

1 1

1 1 1

1

1

1

1

1

A

B

C

Cout

MINORITYA
B
C Cout

Cout

SS

A
B
C

(c)

MINORITY

FIGURE 11.4 Full adder for carry-ripple operation

11.2 Addition/Subtraction 433

� Use relatively large transistors on the critical path so that stray wiring capacitance
is a small fraction of the overall capacitance.

� Remove the output inverters and alternate positive and negative logic to reduce
delay and transistor count to 24 (see Section 11.2.2.1).

Figure 11.5 shows two layouts of the adder (see also the inside front cover). The
choice of the aspect ratio depends on the application. In a standard-cell environment, the
layout of Figure 11.5(a) might be appropriate when a single row of nMOS and pMOS
transistors is used. The routing for the A, B, and C inputs is shown inside the cell,
although it could be placed outside the cell because external routing tracks have to be
assigned to these signals anyway. Figure 11.5(b) shows a layout that might be appropriate
for a dense datapath (if horizontal polysilicon is legal). Here, the transistors are rotated
and all of the wiring is completed in polysilicon and metal1. This allows metal2 bus lines
to pass over the cell horizontally. Moreover, the widths of the transistors can increase

A

A

B C S Cout

VDD

GND

(a)

VDD

GND
A

B

C

(b)

S

Cout

FIGURE 11.5 Full adder layouts. Color version on inside front cover.

Chapter 11 Datapath Subsystems434

without impacting the bit-pitch (height) of the datapath. In this case, the widths are
selected to reduce the Cin to Cout delay that is on the critical path of a carry-ripple adder.

A rather different full adder design uses transmission gates to form multiplexers and
XORs. Figure 11.6(a) shows the transistor-level schematic using 24 transistors and pro-
viding buffered outputs of the proper polarity with equal delay. The design can be under-
stood by parsing the transmission gate structures into multiplexers and an “invertible
inverter” XOR structure (see Section 11.7.4), as drawn in Figure 11.6(b).1 Note that the
multiplexer choosing S is configured to compute P C, as given in EQ (11.2).

Figure 11.7 shows a complementary pass-transistor logic (CPL) approach. In com-
parison to a poorly optimized 40-transistor static CMOS full adder, [Yano90] finds CPL
is twice as fast, 30% lower in power, and slightly smaller. On the other hand, in compari-
son to a careful implementation of the mirror adder, [Zimmermann97] finds the CPL
delay slightly better, the power comparable, and the area much larger.

Dynamic full adders are widely used in fast multipliers when power is not a concern.
As the sum logic inherently requires true and complementary versions of the inputs, dual-
rail domino is necessary. Figure 11.8 shows such an adder using footless dual-rail domino
XOR/XNOR and MAJORITY/MINORTY gates [Heikes94]. The delays to the two
outputs are reasonably well balanced, which is important for multipliers where both paths
are critical. It shares transistors in the sum gate to reduce transistor count and takes advan-
tage of the symmetric property to provide identical layouts for the two carry gates.

Static CMOS full adders typically have a delay of 2–3 FO4 inverters, while domino
adders have a delay of about 1.5.

11.2.2 Carry-Propagate Addition
N-bit adders take inputs {AN, …, A1}, {BN, …, B1}, and carry-in Cin, and compute the sum
{SN, …, S1} and the carry-out of the most significant bit Cout, as shown in Figure 11.9.

1Some switch-level simulators, notably IRSIM, are confused by this XOR structure and may not simulate
it correctly.

B

S

Cout

BA C

P

P

A

1

0

1

0

P

P

C

S

Cout

(a) (b)

FIGURE 11.6 Transmission gate full adder

11.2 Addition/Subtraction 435

(Ordinarily, this text calls the least significant bit A0 rather than A1. However, for adders,
the notation developed on subsequent pages is more graceful if column 0 is reserved to
handle the carry.) They are called carry-propagate adders (CPAs) because the carry into
each bit can influence the carry into all subsequent bits. For example, Figure 11.10 shows
the addition 11112 + 00002 + 0/1, in which each of the sum and carry bits is influenced by
Cin. The simplest design is the carry-ripple adder in which the carry-out of one bit is sim-
ply connected as the carry-in to the next. Faster adders look ahead to predict the carry-out
of a multibit group. This is usually done by computing group PG signals to indicate

+

BN...1AN...1

SN...1

CinCout

FIGURE 11.9
Carry-propagate adder

A

C

S

S

B

B

C

C

C

B

B Cout

Cout

C

C

C

C

B

B

B

B

B

B

B

B

A

A

A

FIGURE 11.7 CPL full adder

Cout_h

A_h B_h

C_h

B_h

A_h

φ
Cout_l

A_l B_l

C_l

B_l

A_l

φ

S_lS_h

A_h

B_h B_h
B_l

A_l

C_l
C_h C_h

φ

FIGURE 11.8 Dual-rail domino full

Chapter 11 Datapath Subsystems436

whether the multibit group will propagate a carry-in or will generate a
carry-out. Long adders use multiple levels of lookahead structures for
even more speed.

11.2.2.1 Carry-Ripple Adder An N-bit adder can be constructed by
cascading N full adders, as shown in Figure 11.11(a) for N = 4. This is
called a carry-ripple adder (or ripple-carry adder). The carry-out of bit
i, Ci, is the carry-in to bit i + 1. This carry is said to have twice the
weight of the sum Si. The delay of the adder is set by the time for the
carries to ripple through the N stages, so the tC Cout delay should be
minimized.

This delay can be reduced by omitting the inverters on the out-
puts, as was done in Figure 11.4(c). Because addition is a self-dual
function (i.e., the function of complementary inputs is the comple-
ment of the function), an inverting full adder receiving complemen-
tary inputs produces true outputs. Figure 11.11(b) shows a carry-
ripple adder built from inverting full adders. Every other stage oper-
ates on complementary data. The delay inverting the adder inputs or
sum outputs is off the critical ripple-carry path.

11.2.2.2 Carry Generation and Propagation This section introduces
notation commonly used in describing faster adders. Recall that the P
(propagate) and G (generate) signals were defined in Section 11.2.1.
We can generalize these signals to describe whether a group spanning
bits i…j, inclusive, generate a carry or propagate a carry. A group of
bits generates a carry if its carry-out is true independent of the carry-
in; it propagates a carry if its carry-out is true when there is a carry-in.
These signals can be defined recursively for i k > j as

 (11.4)

with the base case

 (11.5)

In other words, a group generates a carry if the upper (more significant) or the lower por-
tion generates and the upper portion propagates that carry. The group propagates a carry if
both the upper and lower portions propagate the carry.2

The carry-in must be treated specially. Let us define C0 = Cin and CN = Cout. Then we
can define generate and propagate signals for bit 0 as

 (11.6)

2Alternatively, many adders use Ki = Ai + Bi in place of Pi because OR is faster than XOR. The group logic
uses the same gates: Gi:j = Gi:k + Ki:k · Gk–1:j and Ki:j = Ki:k · Kk–1:j. However, Pi = Ai Bi is still required
in EQ (11.7) to compute the final sum. It is sometimes renamed Xi or Ti to avoid ambiguity.

G G P G

P P P
i j i k i k k j

i j i k k j

: : : :

: : :

·

·

= +

=
1

1

G G A B
P P A B

i i i i i

i i i i i

:

:

·=
=

G C

P
0 0

0 0 0
:

:

=
=

in

 11111
 1111
 +0000
 0000

A4...1

carries

B4...1

S4...1

CinCout

 00000
 1111
 +0000
 1111

CinCout

FIGURE 11.10 Example of carry propagation

CinCout

B1A1B2A2B3A3B4A4

S1S2S3S4

(a)

Cout Cin

B1A1B2A2B3A3B4A4

S1S2S3S4

(b)

C1C2C3

C1C2C3

FIGURE 11.11 4-bit carry-ripple adder

11.2 Addition/Subtraction 437

Observe that the carry into bit i is the carry-out of bit i–1 and is Ci–1 = Gi–1:0. This is
an important relationship; group generate signals and carries will be used synonymously in
the subsequent sections. We can thus compute the sum for bit i using EQ (11.2) as

 (11.7)

Hence, addition can be reduced to a three-step process:

1. Computing bitwise generate and propagate signals using EQs (11.5) and (11.6)

2. Combining PG signals to determine group generates Gi–1:0 for all N i 1 using
EQ (11.4)

3. Calculating the sums using EQ (11.7)

These steps are illustrated in Figure 11.12. The first and third steps are routine, so most of
the attention in the remainder of this section is devoted to alternatives for the group PG
logic with different trade-offs between speed, area, and complexity. Some of the hardware
can be shared in the bitwise PG logic, as shown in Figure 11.13.

S P Gi i i= 1 0:

S1

B1A1

P1G1

G0:0

S2

B2

P2G2

G1:0

A2

S3

B3A3

P3G3

G2:0

S4

B4

P4G4

G3:0

A4 Cin

G0 P0

1: Bitwise PG Logic

2: Group PG Logic

3: Sum Logic
C0C1C2C3

Cout

C4

FIGURE 11.12 Addition with generate and propagate logic

Many notations are used in the literature to describe the group
PG logic. In general, PG logic is an example of a prefix computa-
tion [Leighton92]. It accepts inputs {PN:N, …, P0:0} and {GN:N, …,
G0:0} and computes the prefixes {GN:0, …, G0:0} using the relation-
ship given in EQ (11.4). This relationship is given many names in
the literature including the delta operator, fundamental carry operator,
and prefix operator. Many other problems such as priority encoding
can be posed as prefix computations and all the techniques used to
build fast group PG logic will apply, as we will explore in Section
11.10.

Ai
Bi

Gi

Pi

FIGURE 11.13 Shared bitwise PG logic

Chapter 11 Datapath Subsystems438

EQ (11.4) defines valency-2 (also called radix-2) group PG logic because it combines
pairs of smaller groups. It is also possible to define higher-valency group logic to use fewer
stages of more complex gates [Beaumont-Smith99], as shown in EQ (11.8) and later in
Figure 11.16(c). For example, in valency-4 group logic, a group propagates the carry if all
four portions propagate. A group generates a carry if the upper portion generates, the sec-
ond portion generates and the upper propagates, the third generates and the upper two
propagate, or the lower generates and the upper three propagate.

Logical Effort teaches us that the best stage effort is about 4. Therefore, it is not neces-
sarily better to build fewer stages of higher-valency gates; simulations or calculations should
be done to compare the alternatives for a given process technology and circuit family.

11.2.2.3 PG Carry-Ripple Addition The critical path of the carry-ripple adder passes from
carry-in to carry-out along the carry chain majority gates. As the P and G signals will have
already stabilized by the time the carry arrives, we can use them to simplify the majority
function into an AND-OR gate:3

 (11.9)

Because Ci = Gi:0, carry-ripple addition can now be viewed as the extreme case of
group PG logic in which a 1-bit group is combined with an i-bit group to form an (i+1)-
bit group

 (11.10)

In this extreme, the group propagate signals are never used and need not be com-
puted. Figure 11.14 shows a 4-bit carry-ripple adder. The critical carry path now proceeds
through a chain of AND-OR gates rather than a chain of majority gates. Figure 11.15
illustrates the group PG logic for a 16-bit carry-ripple adder, where the AND-OR gates
in the group PG network are represented with gray cells.

Diagrams like these will be used to compare a variety of adder architectures in subse-
quent sections. The diagrams use black cells, gray cells, and white buffers defined in
Figure 11.16(a) for valency-2 cells. Black cells contain the group generate and propagate
logic (an AND-OR gate and an AND gate) defined in EQ (11.4). Gray cells containing
only the group generate logic are used at the final cell position in each column because
only the group generate signal is required to compute the sums. Buffers can be used to
minimize the load on critical paths. Each line represents a bundle of the group generate
and propagate signals (propagate signals are omitted after gray cells). The bitwise PG and

3Whenever positive logic such as AND-OR is described, you can also use an AOI gate and alternate pos-
itive and negative polarity stages as was done in Figure 11.11(b) to save area and delay.

G G P G P P G P Pi j i k i k k l i k k l l m i k: : : : : : : :· · · ·= + + +1 1 1 k l l m m j

i k i k k l k l l

P G

G P G P G= + +
1 1 1

1 1 1

: : :

: : : :

· ·

: : :

: : : :· · ·
m l m m j

i j i k k l l m m

P G

P P P P P

+()()
=

1 1

1 1 1: j

i k l m j> > >() (11.8)

C A B A B C

A B A B C

G PC

i i i i i i

i i i i i

i i i

= + +()
= + ()
= +

1

1

1

G G P Gi i i i: :·0 1 0= +

11.2 Addition/Subtraction 439

S1

B1A1

P1G1

G0:0

S2

B2

P2G2

G1:0

A2

S3

B3A3

P3G3

G2:0

S4

B4

P4G4

G3:0

A4 Cin

G0 P0

C0C1C2C3

Cout

C4

FIGURE 11.14 4-bit carry-ripple adder using PG logic

D
e

ay

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

Bit Position

FIGURE 11.15 Carry-ripple adder group PG network

Chapter 11 Datapath Subsystems440

sum XORs are abstracted away in the top and bottom boxes and it is assumed that an
AND-OR gate operates in parallel with the sum XORs to compute the carry-out:

 (11.11)

The cells are arranged along the vertical axis according to the time at which they
operate [Guyot97]. From Figure 11.15 it can be seen that the carry-ripple adder critical
path delay is

 (11.12)

where tpg is the delay of the 1-bit propagate/generate gates, tAO is the delay of the AND-
OR gate in the gray cell, and txor is the delay of the final sum XOR. Such a delay estimate
is only qualitative because it does not account for fanout or sizing.

C G G P GN N N Nout = = +: :0 1 0

t t N t tpg AOripple xor= + () +1

i:j

i:j

i:k k 1:j

i:j

i:j

i:k k 1:l l 1:m m 1:j

i:k k 1:j

i:j

Gi:k

Pk 1:j

Gk 1:j

Gi:j

Pi:j

Pi:k

Gi:k

Gk 1:j

Gi:j Gi:j

Pi:j

Gi:j

Pi:j

(a)

Gi:k

Gk 1:l

Gl 1:m

Gm 1:j

Gi:j

Pi:j

Pi:k

Pi:k

Pk 1:l

Pl 1:m

Pm 1:j

Gi:k

Pk 1:j

Gk 1:j

Gi:j

Pi:j

Pi:k

Gi:k

Gk 1:j

Gi:j Gi:j

Pi:j

Gi:j

Pi:j

Pi:k

Gi:j

Pi:j

Gi:j Gi:j

Pi:j

G i:j

P i:j

Gi:k

Pi:k

Gk 1:j

Gi:k

Pi:k

Gk 1:j

Pk 1:j

(b)

Odd Rows

Even Rows

Black Cell Gray Cell Buffer

(c)

FIGURE 11.16 Group PG cells

11.2 Addition/Subtraction 441

Often, using noninverting gates leads to more stages of logic than are necessary. Fig-
ure 11.16(b) shows how to alternate two types of inverting stages on alternate rows of the
group PG network to remove extraneous inverters. For best performance, Gk–1:j should
drive the inner transistor in the series stack. You can also reduce the number of stages by
using higher-valency cells, as shown in Figure 11.16(c) for a valency-4 black cell.

11.2.2.4 Manchester Carry Chain Adder This section is available in the online Web Enhanced
chapter at www.cmosvlsi.com.

11.2.2.5 Carry-Skip Adder The critical path of CPAs considered so far involves a gate or
transistor for each bit of the adder, which can be slow for large adders. The carry-skip (also
called carry-bypass) adder, first proposed by Charles Babbage in the nineteenth century
and used for many years in mechanical calculators, shortens the critical path by computing
the group propagate signals for each carry chain and using this to skip over long carry rip-
ples [Morgan59, Lehman61]. Figure 11.17 shows a carry skip adder built from 4-bit
groups. The rectangles compute the bitwise propagate and generate signals (as in Figure
11.15), and also contain a 4-input AND gate for the propagate signal of the 4-bit group.
The skip multiplexer selects the group carry-in if the group propagate is true or the ripple
adder carry-out otherwise.

The critical path through Figure 11.17 begins with generating a carry from bit 1, and
then propagating it through the remainder of the adder. The carry must ripple through the
next three bits, but then may skip across the next two 4-bit blocks. Finally, it must ripple
through the final 4-bit block to produce the sums. This is illustrated in Figure 11.18. The
4-bit ripple chains at the top of the diagram determine if each group generates a carry. The
carry skip chain in the middle of the diagram skips across 4-bit blocks. Finally, the 4-bit
ripple chains with the blue lines represent the same adders that can produce a carry-out
when a carry-in is bypassed to them. Note that the final AND-OR and column 16 are not
strictly necessary because Cout can be computed in parallel with the sum XORs using
EQ (11.11).

The critical path of the adder from Figures 11.17 and 11.18 involves the initial PG
logic producing a carry out of bit 1, three AND-OR gates rippling it to bit 4, three multi-
plexers bypassing it to C12, 3 AND-OR gates rippling through bit 15, and a final XOR to
produce S16. The multiplexer is an AND22-OR function, so it is slightly slower than the
AND-OR function. In general, an N-bit carry-skip adder using k n-bit groups (N = n × k)
has a delay of

 (11.13)

WEB
ENHANCED

t t n t k t tpg AOskip mux xor= + () + +2 1 1()

Cin
+

S4:1

A4:1 B4:1

+

S8:5

A8:5 B8:5

+

S12:9

A12:9 B12:9

+

S16:13

A16:13 B16:13

Cout

C4 1

0

C8 1

0

C12 1

0

1

0

P8:5P12:9P16:13 P4:1

FIGURE 11.17 Carry-skip adder

Chapter 11 Datapath Subsystems442

This critical path depends on the length of the first and last group and the number of
groups. In the more significant bits of the network, the ripple results are available early.
Thus, the critical path could be shortened by using shorter groups at the beginning and
end and longer groups in the middle. Figure 11.19 shows such a PG network using groups
of length [2, 3, 4, 4, 3], as opposed to [4, 4, 4, 4], which saves two levels of logic in a 16-
bit adder.

The hardware cost of a carry-skip adder is equal to that of a simple carry-ripple adder
plus k multiplexers and k n-input AND gates. It is attractive when ripple-carry adders are
too slow, but the hardware cost must still be kept low. For long adders, you could use a
multilevel skip approach to skip across the skips. A great deal of research has gone into
choosing the best group size and number of levels [Majerski67, Oklobdzija85, Guyot87,
Chan90, Kantabutra91], although now, parallel prefix adders are generally used for long
adders instead.

012345678910111213141516

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:016:0

FIGURE 11.18 Carry-skip adder PG network

012345678910111213141516

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:016:0

FIGURE 11.19 Variable group size carry-skip adder PG network

11.2 Addition/Subtraction 443

It might be tempting to replace each skip multiplexer in Figures 11.17 and 11.18 with
an AND-OR gate combining the carry-out of the n-bit adder or the group carry-in and
group propagate. Indeed, this works for domino-carry skip adders in which the carry out
is precharged each cycle; it also works for carry-lookahead adders and carry-select adders
covered in the subsequent section. However, it introduces a sneaky long critical path into
an ordinary carry-skip adder. Imagine summing 111…111 + 000…000 + Cin. All of the
group propagate signals are true. If Cin = 1, every 4-bit block will produce a carry-out.
When Cin falls, the falling carry signal must ripple through all N bits because of the path
through the carry out of each n-bit adder. Domino-carry skip adders avoid this path
because all of the carries are forced low during precharge, so they can use AND-OR gates.

Figure 11.20 shows how a Manchester carry chain from Section 11.2.2.4 can be mod-
ified to perform carry skip [Chan90]. A valency-5 chain is used to skip across groups of 4
bits at a time.

11.2.2.6 Carry-Lookahead Adder The carry-lookahead adder (CLA) [Weinberger58] is
similar to the carry-skip adder, but computes group generate signals as well as group prop-
agate signals to avoid waiting for a ripple to determine if the first group generates a carry.
Such an adder is shown in Figure 11.21 and its PG network is shown in Figure 11.22
using valency-4 black cells to compute 4-bit group PG signals.

In general, a CLA using k groups of n bits each has a delay of

 (11.14)t t t n k t tpg pg n AOcla xor= + + () + () +() 1 1

P2
φ

G2

φ

G3

P3
φ

G4

P4

G1

G2:0 G3:0

C4 (G4:0)

G1:0

φ
P1

φ

Cin (G0)

P4:1 Skip Path

φ

FIGURE 11.20 Carry-skip adder Manchester stage

Cin+

S4:1

G4:1
P4:1

A4:1 B4:1

+

S8:5

G8:5
P8:5

A8:5 B8:5

+

S12:9

G12:9
P12:9

A12:9 B12:9

+

S16:13

G16:13
P16:13

A16:13 B16:13

C4C8C12
Cout

FIGURE 11.21 Carry-lookahead adder

Chapter 11 Datapath Subsystems444

where tpg(n) is the delay of the AND-OR-AND-OR-…-AND-OR gate computing the
valency-n generate signal. This is no better than the variable-length carry-skip adder in
Figure 11.19 and requires the extra n-bit generate gate, so the simple CLA is seldom a
good design choice. However, it forms the basis for understanding faster adders presented
in the subsequent sections.

CLAs often use higher-valency cells to reduce the delay of the n-bit additions by com-
puting the carries in parallel. Figure 11.23 shows such a CLA in which the 4-bit adders are
built using Manchester carry chains or multiple static gates operating in parallel.

11.2.2.7 Carry-Select, Carry-Increment, and Conditional-Sum Adders The critical path
of the carry-skip and carry-lookahead adders involves calculating the carry into each n-bit
group, and then calculating the sums for each bit within the group based on the carry-in.
A standard logic design technique to accelerate the critical path is to precompute the out-
puts for both possible inputs, and then use a multiplexer to select between the two output
choices. The carry-select adder [Bedrij62] shown in Figure 11.24 does this with a pair of

012345678910111213141516

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:016:0

FIGURE 11.22 Carry-lookahead adder group PG network

012345678910111213141516

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:016:0

FIGURE 11.23 Improved CLA group PG network

11.2 Addition/Subtraction 445

n-bit adders in each group. One adder calculates the sums assuming a carry-in of 0 while
the other calculates the sums assuming a carry-in of 1. The actual carry triggers a multi-
plexer that chooses the appropriate sum. The critical path delay is

 (11.15)

The two n-bit adders are redundant in that both contain the initial PG logic and final
sum XOR. [Tyagi93] reduces the size by factoring out the common logic and simplifying
the multiplexer to a gray cell, as shown in Figure 11.25. This is sometimes called a carry-
increment adder [Zimmermann96]. It uses a short ripple chain of black cells to compute
the PG signals for bits within a group. The bits spanned by each group are annotated on
the diagram. When the carry-out from the previous group becomes available, the final
gray cells in each column determine the carry-out, which is true if the group generates a
carry or if the group propagates a carry and the previous group generated a carry. The
carry-increment adder has about twice as many cells in the PG network as a carry-ripple
adder. The critical path delay is about the same as that of a carry-select adder because a
mux and XOR are comparable, but the area is smaller.

 (11.16)

t t n k t tpg AOselect mux= + + +()2

t t n k t tpg AOincrement xor= + () + () +1 1

Cin+

A4:1 B4:1

S4:1

C4

+

+

1

A8:5 B8:5

S8:5

C8

+

+

A12:9 B12:9

S12:9

C12

+

+

A16:13 B16:13

S16:13

Cout

0

1

0

1

0

1

01 01 0

FIGURE 11.24 Carry-select adder

5:4

6:4

7:4

9:8

10:8

11:8

13:12

14:12

15:12

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

FIGURE 11.25 Carry-increment adder PG network

Chapter 11 Datapath Subsystems446

Of course, Manchester carry chains or higher-valency cells can be used to speed the
ripple operation to produce the first group generate signal. In that case, the ripple delay is
replaced by a group PG gate delay and the critical path becomes

 (11.17)

As with the carry-skip adder, the carry chains for the more significant bits complete
early. Again, we can use variable-length groups to take advantage of the extra time, as
shown in Figure 11.26(a). With such a variable group size, the delay reduces to

 (11.18)

The delay equations do not account for the fanout that each stage must drive. The
fanouts in a variable-length group can become large enough to require buffering between
stages. Figure 11.26(b) shows how buffers can be inserted to reduce the branching effort
while not impeding the critical lookahead path; this is a useful technique in many other
applications.

In wide adders, we can recursively apply multiple levels of carry-select or carry-
increment. For example, a 64-bit carry-select adder can be built from four 16-bit carry-

t t t k t tpg pg n AOincrement xor= + + +() 1

t t N t tpg AOincrement xor+ +2

3:25:4

6:4

8:7

9:7

12:11

13:11

14:11

15:11

10:7

(a)

(b)

3:25:4

6:4

8:7

9:7

12:11

13:11

14:11

15:11

10:7 6:0

3:0

1:0

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

FIGURE 11.26 Variable-length carry-increment adder

11.2 Addition/Subtraction 447

select adders, each of which selects the carry-in to the next 16-bit group. Taking this to
the limit, we obtain the conditional-sum adder [Sklansky60] that performs carry-select
starting with groups of 1 bit and recursively doubling to N/2 bits. Figure 11.27 shows a
16-bit conditional-sum adder. In the first two rows, full adders compute the sum and
carry-out for each bit assuming carries-in of 0 and 1, respectively. In the next two rows,
multiplexer pairs select the sum and carry-out of the upper bit of each block of two, again
assuming carries-in of 0 and 1. In the next two rows, multiplexers select the sum and
carry-out of the upper two bits of each block of four, and so forth.

Figure 11.28 shows the operation of a conditional-sum adder in action for N = 16
with Cin = 0. In the block width 1 row, a pair of full adders compute the sum and carry-out
for each column. One adder operates assuming the carry-in to that column is 0, while the
other assumes it is 1. In the block width 2 row, the adder selects the sum for the upper half
of each block (the even-numbered columns) based on the carry-out of the lower half. It
also computes the carry-out of the pair of bits. Again, this is done twice, for both possibil-
ities of carry-in to the block. In the block width 4 row, the adder again selects the sum for
the upper half based on the carry-out of the lower half and finds the carry-out of the entire
block. This process is repeated in subsequent rows until the 16-bit sum and the final carry-
out are selected.

The conditional-sum adder involves nearly 2N full adders and 2N log2 N multiplexers.
As with carry-select, the conditional-sum adder can be improved by factoring out the sum
XORs and using AND-OR gates in place of multiplexers. This leads us to the Sklansky
tree adder discussed in the next section.

11.2.2.8 Tree Adders For wide adders (roughly, N > 16 bits), the delay of carry-lookahead
(or carry-skip or carry-select) adders becomes dominated by the delay of passing the carry
through the lookahead stages. This delay can be reduced by looking ahead across the look-
ahead blocks [Weinberger58]. In general, you can construct a multilevel tree of look-ahead

s

s

s

0

1

0

1

0

1

cscs

sc

0

1

0

1

sc

sc

0

1

0

1

cs

cs

cscs

cs

scs s s

s

s

0

1

0

1

cs

cs

cs

cs

scs

cs s

cs s

A0B0A1B1A2B2A3B3A4B4A5B5A6B6A7B7A14B14A15B15

S0S1S2S3S4S5S6S7S14S15Cout

Block
Width

Block
Carry In

0
1

1

0
2

1

0
4

1

0
8

1

016

Cin

FIGURE 11.27 Conditional-sum adder

Chapter 11 Datapath Subsystems448

structures to achieve delay that grows with log N. Such adders are variously referred to as
tree adders, logarithmic adders, multilevel-lookahead adders, parallel-prefix adders, or simply
lookahead adders. The last name appears occasionally in the literature, but is not recom-
mended because it does not distinguish whether multiple levels of lookahead are used.

There are many ways to build the lookahead tree that offer trade-offs among the
number of stages of logic, the number of logic gates, the maximum fanout on each gate,
and the amount of wiring between stages. Three fundamental trees are the Brent-Kung,
Sklansky, and Kogge-Stone architectures. We begin by examining each in the valency-2
case that combines pairs of groups at each stage.

The Brent-Kung tree [Brent82] (Figure 11.29(a)) computes prefixes for 2-bit groups.
These are used to find prefixes for 4-bit groups, which in turn are used to find prefixes for
8-bit groups, and so forth. The prefixes then fan back down to compute the carries-in to
each bit. The tree requires 2log2 N – 1 stages. The fanout is limited to 2 at each stage. The
diagram shows buffers used to minimize the fanout and loading on the gates, but in prac-
tice, the buffers are generally omitted.

The Sklansky or divide-and-conquer tree [Sklansky60] (Figure 11.29(b)) reduces the
delay to log2 N stages by computing intermediate prefixes along with the large group pre-
fixes. This comes at the expense of fanouts that double at each level: The gates fanout to
[8, 4, 2, 1] other columns. These high fanouts cause poor performance on wide adders
unless the high fanout gates are appropriately sized or the critical signals are buffered
before being used for the intermediate prefixes. Transistor sizing can cut into the regularity
of the layout because multiple sizes of each cell are required, although the larger gates can
spread into adjacent columns. Note that the recursive doubling in the Sklansky tree is
analogous to the conditional-sum adder of Figure 11.27. With appropriate buffering, the
fanouts can be reduced to [8, 1, 1, 1], as explored in Exercise 11.7.

The Kogge-Stone tree [Kogge73] (Figure 11.29(c)) achieves both log2 N stages and
fanout of 2 at each stage. This comes at the cost of many long wires that must be routed
between stages. The tree also contains more PG cells; while this may not impact the area if

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Block
Width

Block
Carry In

Block Sum and Carry Out

a
b

s
c

1
0

0
0

1
0

1
1

1
1

0
0

1
0

1
1

0
1

1
0

1
1

0
1

1
0

1
1

0
1

1
0

0
1

1
s
c
s
c

0
2

1
s
c
s
c

0
4

1
s
c
s
c

0
8

1
s
c
s
c

0
16

1
s
c

1
0

1
0
0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
0
0
1

1
0
0
1

1
0
0
1

1
0
0
1

1
0
0
1

1
0
0
1

1
0
0
1

0
0
1
0

0
0
1
0

11
0

00
1

10
1

11
0

00
1

00
1

00
1

01
0

10
1

01
1

00
1

10
1

10
1

10
1

11
0

1100
1

1000
1

0100
1

0010
1

1010
1

0011
0

1011
0

11000100
1

00101011
0

10101011
0

0101011
0

11000100

Cin

0

Cout

Sum1

FIGURE 11.28 Conditional-sum addition example

11.2 Addition/Subtraction 449

the adder layout is on a regular grid, it will increase power consumption. Despite these
costs, the Kogge-Stone tree is widely used in high-performance 32-bit and 64-bit adders.

In summary, a Sklansky or Kogge-Stone tree adder reduces the critical path to

 (11.19)

An ideal tree adder would have log2 N levels of logic, fanout never exceeding 2, and
no more than 1 wiring track (Gi:j and Pi:j bundle) between each row. The basic tree archi-
tectures represent cases that approach the ideal, but each differ in one respect. Brent-Kung

t t N t tpg AOtree xor+ +log2

(a) Brent Kung

(b) Sklansky

1:03:25:47:69:811:1013:1215:14

3:07:411:815:12

7:0
15:8

11:0

5:09:013:0

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

1:0

2:03:0

3:25:47:69:811:1013:1215:14

6:47:410:811:814:1215:12

12:813:814:815:8

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

15:0

(c) Kogge Stone

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(e) Knowles [2,1,1,1]

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

1:03:25:47:69:811:1013:12

3:07:411:815:12

5:07:013:815:8

15:14

15:8 13:0 11:0 9:0

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(f) Ladner Fischer

1:03:25:47:69:811:1013:1215:14

3:05:27:49:611:813:1015:12

5:07:09:211:413:615:8

0123456789101112131415

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

(d) Han Carlson

FIGURE 11.29 Tree adder PG networks

Chapter 11 Datapath Subsystems450

has too many logic levels. Sklansky has too much fanout. And Kogge-Stone has too many
wires. Between these three extremes, the Han-Carlson, Ladner-Fischer, and Knowles
trees fill out the design space with different compromises between number of stages,
fanout, and wire count.

The Han-Carlson trees [Han87] are a family of networks between Kogge-Stone and
Brent-Kung. Figure 11.29(d) shows such a tree that performs Kogge-Stone on the odd-
numbered bits, and then uses one more stage to ripple into the even positions.

The Knowles trees [Knowles01] are a family of networks between Kogge-Stone and
Sklansky. All of these trees have log2 N stages, but differ in the fanout and number of
wires. If we say that 16-bit Kogge-Stone and Sklansky adders drive fanouts of [1, 1, 1, 1]
and [8, 4, 2, 1] other columns, respectively, the Knowles networks lie between these
extremes. For example, Figure 11.29(e) shows a [2, 1, 1, 1] Knowles tree that halves the
number of wires in the final track at the expense of doubling the load on those wires.

The Ladner-Fischer trees [Ladner80] are a family of networks between Sklansky and
Brent-Kung. Figure 11.29(f) is similar to Sklansky, but computes prefixes for the odd-
numbered bits and again uses one more stage to ripple into the even positions. Cells at
high-fanout nodes must still be sized or ganged appropriately to achieve good speed. Note
that some authors use Ladner-Fischer synonymously with Sklansky.

An advantage of the Brent-Kung network and those related to it (Han-Carlson and
the Ladner-Fischer network with the extra row) is that for any given row, there is never
more than one cell in each pair of columns. These networks have low gate count. More-
over, their layout may be only half as wide, reducing the length of the horizontal wires
spanning the adder. This reduces the wire capacitance, which may be a major component
of delay in 64-bit and larger adders [Huang00].

Figure 11.30 shows a 3-dimensional taxonomy of the tree adders [Harris03]. If we let
L = log2 N, we can describe each tree with three integers (l, f, t) in the range [0, L – 1].
The integers specify the following:

� Logic Levels: L + l

� Fanout: 2 f + 1
� Wiring Tracks: 2t

The tree adders lie on the plane l + f + t = L – 1. 16-bit Brent-Kung, Sklansky, and
Kogge-Stone represent vertices of the cube (3, 0, 0), (0, 3, 0) and (0, 0, 3), respectively.
Han-Carlson, Ladner-Fischer, and Knowles lie along the diagonals.

11.2.2.9 Higher-Valency Tree Adders Any of the trees described so far can combine
more than two groups at each stage [Beaumont-Smith01]. The number of groups com-
bined in each gate is called the valency or radix of the cell. For example, Figure 11.31
shows 27-bit valency-3 Brent-Kung, Sklansky, Kogge-Stone, and Han-Carlson trees. The
rounded boxes mark valency-3 carry chains (that could be constructed using a Manchester
carry chain, multiple-output domino gate, or several discrete gates). The trapezoids mark
carry-increment operations. The higher-valency designs use fewer stages of logic, but each
stage has greater delay. This tends to be a poor trade-off in static CMOS circuits because
the stage efforts become much larger than 4, but is good in domino because the logical
efforts are much smaller so fewer stages are necessary.

Nodes with large fanouts or long wires can use buffers. The prefix trees can also be
internally pipelined for extremely high-throughput operation. Some higher-valency
designs combine the initial PG stage with the first level of PG merge. For example, the

11.2 Addition/Subtraction 451

Ling adder described in Section 11.2.2.11 computes generate and propagate for up to
4-bit groups from the primary inputs in a single stage.

Higher valency (v) adders can still be described in a 3-dimensional taxonomy with
L = logv N and l + f + t = L – 1. There are L + l logic levels, a maximum fanout of
(v – 1)vf + 1, and (v – 1)vt wiring tracks at the worst level.

11.2.2.10 Sparse Tree Adders Building a prefix tree to compute carries in to every bit is
expensive in terms of power. An alternative is to only compute carries into short groups
(e.g., s = 2, 4, 8, or 16 bits). Meanwhile, pairs of s-bit adders precompute the sums assum-
ing both carries-in of 0 and 1 to each group. A multiplexer selects the correct sum for each
group based on the carries from the prefix tree. The group length can be balanced such
that the carry-in and precomputed sums become available at about the same time. Such a
hybrid between a prefix adder and a carry select adder is called a sparse tree. s is the sparse-
ness of the tree.

The spanning-tree adder [Lynch92] is a sparse tree adder based on a higher-valency
Brent-Kung tree of Figure 11.31(a). Figure 11.32 shows a simple valency-3 version that

f (Fanout)

t (Wire Tracks)

l (Logic Levels)

0 (2)
1 (3)

2 (5)

3 (9)

0 (4)

1 (5)

2 (6)

3 (8)

2 (4)

1 (2)

0 (1)

3 (7)

Kogge
Stone

Sklansky

Brent
Kung

Han
Carlson

Knowles
[2,1,1,1]

Knowles
[4,2,1,1]

Ladner
Fischer

Han
Carlson

Ladner
Fischer

New
(1,1,1)

l + f + t = L 1
Plane

FIGURE 11.30 Taxonomy of prefix networks

Chapter 11 Datapath Subsystems452

01234567891011121314151617181920212223242526

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:026:0 25:0 24:0 23:0 22:0 21:0 20:0 19:0 18:0 17:0 16:0

01234567891011121314151617181920212223242526

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:026:0 25:0 24:0 23:0 22:0 21:0 20:0 19:0 18:0 17:0 16:0

01234567891011121314151617181920212223242526

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:026:0 25:0 24:0 23:0 22:0 21:0 20:0 19:0 18:0 17:0 16:0

(b) Sklansky

(c) Kogge-Stone

(a) Brent-Kung

01234567891011121314151617181920212223242526

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:026:0 25:0 24:0 23:0 22:0 21:0 20:0 19:0 18:0 17:0 16:0

(d) Han-Carlson

FIGURE 11.31 Higher-valency tree adders

0123456789101112131415161718192021222324252627

123456789101112131415161718192021222324252627Cout

FIGURE 11.32 Valency-3 Brent-Kung sparse tree adder with s = 3

11.2 Addition/Subtraction 453

precomputes sums for s = 3-bit groups and saves one logic level by selecting the output
based on the carries into each group. The carry-out (Cout) is explicitly shown. Note that
the least significant group requires a valency-4 gray cell to compute G3:0, the carry-in to
the second select block.

[Lynch92] describes a 56-bit spanning-tree design from the AMD AM29050
floating-point unit using valency-4 stages and 8-bit carry select groups. [Kantabutra93]
and [Blackburn96] describe optimizing the spanning-tree adder by using variable-length
carry-select stages and appropriately selecting transistor sizes.

A carry-select box spanning bits i…j is shown in Figure 11.33(a). It uses short carry-
ripple adders to precompute the sums assuming carry-in of 0 and 1 to the group, and then
selects between them with a multiplexer, as shown in Figure 11.33(b). The adders can be
simplified somewhat because the carry-ins are constant, as shown in Figure 11.33(c) for a
4-bit group.

[Mathew03] describes a 32-bit sparse-tree adder using a valency-2 tree similar to
Sklansky to compute only the carries into each 4-bit group, as shown in Figure 11.34. This
reduces the gate count and power consumption in the tree. The tree can also be viewed as
a (2, 2, 0) Ladner-Fischer tree with the final two tree levels and XOR replaced by the
select multiplexer. The adder assumes the carry-in is 0 and does not produce a carry-out,
saving one input to the least-significant gray box and eliminating the prefix logic in the
four most significant columns.

These sparse tree approaches are widely used in high-performance 32–64-bit higher-
valency adders because they offer the small number of logic levels of higher-valency trees
while reducing the gate count and power consumption in the tree. Figure 11.35 shows a
27-bit valency-3 Kogge-Stone design with carry-select on 3-bit groups. Observe how the
number of gates in the tree is reduced threefold. Moreover, because the number of wires is
also reduced, the extra area can be used for shielding to reduce path delay. This design can
also be viewed as the Han-Carlson adder of Figure 11.31(d) with the last logic level
replaced by a carry-select multiplexer.

i j...

(a)

+

+

Ai:j Bi:j

Si:j

0

1

Gj − 1:0

(b)

P1

Cin

S1S2S3S4

P4P4 P2P2P3P3 P1

G1P1G1PG2PG3

(c)

Cin =
Gj − 1:0

1 0 1 0 1 0 1 01 0

FIGURE 11.33 Carry-select implementation

Chapter 11 Datapath Subsystems454

Sparse trees reduce the costly part of the prefix tree. For Kogge-Stone architectures,
they reduce the number of wires required by a factor of s. For Sklansky architectures, they
reduce the fanout by s. For Brent-Kung architectures, they eliminate the last logv s logic
levels. In effect, they can move an adder toward the origin in the (l, f, t) design space.
These benefits come at the cost of a fanout of s to the final select multiplexer, and of area
and power to precompute the sums.

11.2.2.11 Ling Adders Ling discovered a technique to remove one series transistor from
the critical group generate path through an adder at the expense of another XOR gate in the
sum precomputation [Ling81, Doran88, Bewick94]. The technique depends on using K in
place of P in the prefix network, and on the observation that GiKi = (AiBi)(Ai + Bi) = Gi .

Define a pseudogenerate (sometimes called pseudo-carry) signal Hi : j = Gi + Gi-1: j. This
is simpler than Gi : j = Gi + PiGi-1: j . Gi : j can be obtained later from Hi : j with an AND
operation when it is needed:

(11.20)

The advantage of pseudogenerate signals over regular generate is that the first row in the
prefix network is easier to compute.

Also define a pseudopropagate signal I that is simply a shifted version of propagate:
Ii:j = Ki-1: j-1. Group pseudogenerate and pseudopropagate signals are combined using the
same black or gray cells as ordinary group generate and propagate signals, as you may show
in Exercise 11.11.

 (11.21)

K H K G K G G K G Gi i j i i i i j i i i j i j: : : := + = + =1 1

H H I H

I I I
i j i k i k k j

i j i k k j

: : : :

: : :

= +

=
1

1

2:1

4:1

4:36:58:710:912:1114:1316:15

8:512:916:13

16:9 8:1

12:116:1

16 123456789101112131415

18:17

20:17

20:1922:2124:2326:2528:27

24:2128:25

24:17

28:17

32 171819202122232425262728293031

1234567891011121314151617181920212223242526272829303132

20:124:128:1 '0'

FIGURE 11.34 Intel valency-2 Sklansky sparse tree adder with s = 4

0123456789101112131415161718192021222324252627

123456789101112131415161718192021222324252627Cout

FIGURE 11.35 Valency-3 Kogge-Stone sparse tree adder with s = 3

11.2 Addition/Subtraction 455

The true group generate signals are formed from the pseudogenerates using EQ
(11.20). These signals can be used to compute the sums with the usual XOR: Si =
Pi Gi–1:0 = Pi (Ki–1Hi–1:0). To avoid introducing an AND gate back onto the critical
path, we expand Si in terms of Hi–1:0

(11.22)

Thus, sum selection can be performed with a multiplexer choosing either Pi Ki–1 or Pi
based on Hi–1:0.

The Ling adder technique can be used with any form of adder that uses black and
gray cells in a prefix network. It works with any valency and for both domino and static
designs. The initial PG stage and the first levels of the prefix network are replaced by a cell
that computes the group H and I signals directly. The middle of the prefix network is
identical to an ordinary prefix adder but operates on H and I instead of G and P. The sum-
selection logic uses the multiplexer from EQ (11.22) rather than an XOR. In sparse trees,
the sum out of s-bit blocks is selected directly based on the H signals.

For a valency-v adder, the Ling technique converts a generate gate with v series
nMOS transistors and v series pMOS transistors to a pseudogenerate gate with v – 1 series
nMOS but still v series pMOS. For example, in valency 2, the AOI gate becomes a NOR2
gate. This is not particularly helpful for static logic, but is ben-
eficial for domino implementations because the series pMOS
are eliminated and the nMOS stacks are shortened.

Another advantage of the Ling technique is that it allows
the first level pseudogenerate and pseudopropagate signals to
be computed directly from the Ai and Bi inputs rather than
based on Gi and Ki gates. For example, Figure 11.36 compares
static gates that compute G2:1 and H2:1 directly from A2:1 and
B2:1. The H gate has one fewer series transistor and much less
parasitic capacitance. H3:1 can also be computed directly from
A3:1 and B3:1 using the complex static CMOS gate shown in
Figure 11.37(a) [Quach92]. Similarly, Figure 11.37(b) shows
a compound domino gate that directly computes H4:1 from A
and B using only four series transistors rather than the
five required for G4:1 [Naffziger96, Naffziger98].

S H P K H Pi i i i i i= +1 0 1 1 0: :

A1

B1

A2 B2A2

B2

A2 B2

A1 B1

A2

B2

G2:1

G2:1 = G2 + K2G1
 = A2B2 + (A2 + B2)A1B1

H2:1 = G2 + G1
 = A2B2 + A1B1

A1A2

B1B2

A2 B2

A1 B1

H2:1

(a) (b)

FIGURE 11.36 2-bit generate and pseudogenerate gates
using primary inputs

A1

B1

A2 B2A2

B2

A2 B2

A1 B1

A2

B2

H3:1

(a) (b)

A3

B3

A2

B2

A2 B2

A1

B1

A3 B3
H4:1

A4

B4

H4:1 G4 + G3 + K3(G2 + K2G1)
A4B4 + A3B3 + (A3 + B3)(A2B2 + (A2 + B2)A1B1)

H3:1 G3 + G2 + K2G1
 A3B3 + A2B2 + (A2 + B2)A1B1

A3

B3

A3A3

FIGURE 11.37 3-bit and 4-bit pseudogenerate gates using primary inputs

Chapter 11 Datapath Subsystems456

[Jackson04] proposed applying the Ling method recursively to factor out the K signal
elsewhere in the adder tree. [Burgess09] showed that this recursive Ling technique opens
up a new design space containing faster and smaller adders.

11.2.2.12 An Aside on Domino Implementation Issues This section is available in the
online Web Enhanced chapter at www.cmosvlsi.com.

11.2.2.13 Summary Having examined so many adders, you probably want to know
which adder should be used in which application. Table 11.3 compares the various adder
architectures that have been illustrated with valency-2 prefix networks. The category
“logic levels” gives the number of AND-OR gates in the critical path, excluding the initial
PG logic and final XOR. Of course, the delay depends on the fanout and wire loads as
well as the number of logic levels. The category “cells” refers to the approximate number of
gray and black cells in the network. Carry-lookahead is not shown because it uses higher-
valency cells. Carry-select is also not shown because it is larger than carry-increment for
the same performance.

In general, carry-ripple adders should be used when they meet timing constraints
because they use the least energy and are easy to build. When faster adders are required,
carry-increment and carry-skip architectures work well for 8–16 bit lengths. Hybrids
combining these techniques are also popular. At word lengths of 32 and especially 64 bits,
tree adders are distinctly faster.

There is still debate about the best tree adder designs; the choice is influenced by
power and delay constraints, by domino vs. static and custom vs. synthesis choices, and by
the specific manufacturing process. Moreover, careful optimization of a particular archi-
tecture is more important than the choice of tree architecture.

When power is no concern, the fastest adders use domino or compound domino cir-
cuits [Naffziger96, Park00, Mathew03, Mathew05, Oklobdzija05, Zlatanovici09,
Wijeratne07]. Several authors find that the Kogge-Stone architecture gives the lowest

TABLE 11.3 Comparison of adder architectures

Architecture Classification Logic Levels Max Fanout Tracks Cells

Carry-Ripple N – 1 1 1 N
Carry-Skip

(n = 4)
N/4 + 5 2 1 1.25N

Carry-Increment
(n = 4)

N/4 + 2 4 1 2N

Carry-Increment
(variable group)

1 2N

Brent-Kung (L–1, 0, 0) 2log2 N – 1 2 1 2N
Sklansky (0, L–1, 0) log2 N N/2 + 1 1 0.5 N log2 N

Kogge-Stone (0, 0, L – 1) log2 N 2 N/2 N log2 N
Han-Carlson (1, 0, L – 2) log2 N + 1 2 N/4 0.5 N log2 N

Ladner Fischer
(l = 1)

(1, L – 2, 0) log2 N + 1 N/4 + 1 1 0.25 N log2 N

Knowles
[2,1,…,1]

(0, 1, L – 2) log2 N 3 N/4 N log2 N

WEB
ENHANCED

2N 2N

11.2 Addition/Subtraction 457

possible delay [Silberman98, Park00, Oklobdzija05, Zlatanovici09]. However, the large
number of long wires consume significant energy and require large drivers for speed. Other
architectures such as Sklansky [Mathew03] or Han-Carlson [Vangal02] offer better energy
efficiency because they have fewer long wires. Valency-4 dynamic gates followed by inverters
tend to give a slight speed advantage [Naffziger96, Park00, Zlatanovici09, Harris04,
Oklobdzija05], but compound domino implementations using valency-2 dynamic gates fol-
lowed by valency-2 HI-skew static gates are also used [Mathew03]. Sparse trees save energy
in domino adders with little effect on performance [Naffziger96, Mathew03, Zlatanovici09].
The Ling optimization is not used universally, but several studies have found it to be
beneficial [Quach92, Naffziger96, Zlatanovici09, Grad04]. The UltraSparc III used a dual-
rail domino Kogge-Stone adder [Heald00]. The Itanium 2 and Hewlett Packard PA-RISC
lines of 64-bit microprocessors used a dual-rail domino sparse tree Ling adder [Naffziger96,
Fetzer02]. The 65 nm Pentium 4 uses a compound domino radix-2 Sklansky sparse tree
[Wijeratne07]. A good 64-bit domino adder takes 7–9 FO4 delays and has an area of
4–12 M 2 [Naffziger96, Zlatanovici09, Mathew05].

Power-constrained designs use static adders, which consume one third to one tenth
the energy of dynamic adders and have a delay of about 13 FO4 [Oklobdzija05, Harris03,
Zlatanovici09]. For example, the CELL processor floating point unit uses a valency-2
static Kogge-Stone adder [Oh06].

[Patil07] presents a comprehensive study of energy-delay design space for
adders. The paper concludes that the Sklansky architecture is most energy
efficient for any delay requirement because it avoids the large number of power-
hungry wires in Kogge-Stone and the excessive number of logic levels in Brent-
Kung. The high-fanout gates in the Sklansky tree are upsized to maintain a
reasonable logical effort. Static adders are most efficient using valency-2 cells,
which provide a stage effort of about 4. Domino adders are most efficient alter-
nating valency-4 dynamic gates with static inverters. The sum precomputation
logic in a static sparse tree adder costs more energy than it saves from the prefix
network. In a domino adder, a sparseness of 2 does save energy because the sum
precomputation can be performed with static gates. Figure 11.38 shows some
results, finding that static adders are most energy-efficient for slow adders,
while domino become better at high speed requirements and dual-rail domino
Ling adders are preferable only for the very fastest and most energy-hungry
adders. The very fast delays are achieved using a higher VDD and lower Vt .
[Zlatanovici09] explores the energy-delay space for 64-bit domino adders and
came to the contradictory conclusion that Kogge-Stone is
superior. Again, alternating valency-4 dynamic gates with
static inverters and using a sparseness of 2 gave the best
results, as shown in Figure 11.39. Other reasonable adders
are almost as good in the energy-delay space, so there is not
a compelling reason to choose one topology over another
and the debate about the “best” adder will doubtlessly rage
into the future.

Good logic synthesis tools automatically map the “+”
operator onto an appropriate adder to meet timing con-
straints while minimizing area. For example, the Synopsys
DesignWare libraries contain carry-ripple adders, carry-
select adders, carry-lookahead adders, and a variety of pre-
fix adders. Figure 11.40 shows the results of synthesizing

Static
Single Rail Domino

Dual Rail Domino Ling

Delay (ps)

E
ne

rg
y

(p
J)

100 200 500 1000

1

10

20

2

5

FIGURE 11.38 Energy-delay trade-offs for
90 nm 32-bit Sklansky static, domino, and
dual-rail domino adders. FO4 inverter
delay in this process at 1.0 V and nominal
Vt is 31 ps. (© IEEE 2007.)

7 8 9 10 11 12 13 14 15

Delay (FO4)

0

10

20

30

40 v = 2

v = 4

s = 1

s = 2

s = 4

s = 2
s = 1
s = 4

E
ne

rg
y

(p
J)

FIGURE 11.39 Energy-delay trade-offs for 90 nm 64-bit domino
Kogge-Stone Ling adders as a function of valency (v) and sparse-
ness (s). (© IEEE 2009.)

Chapter 11 Datapath Subsystems458

32-bit and 64-bit adders under different timing con-
straints. As the latency decreases, synthesis selects more
elaborate adders with greater area. The results are for a
0.18 m commercial cell library with an FO4 inverter
delay of 89 ps in the TTTT corner and the area
includes estimated interconnect as well as gates. The
fastest designs use tree adders and achieve implausibly
fast prelayout delays of 7.0 and 8.5 FO4 for 32-bit and
64-bit adders, respectively, by creating nonuniform
designs with side loads carefully buffered off the critical
path. The carry-select adders achieve an interesting
area/delay trade-off by using carry-ripple for the lower
three-fourths of the bits and carry-select only on the
upper fourth. The results will be somewhat slower when
wire parasitics are included.

11.2.3 Subtraction
An N-bit subtracter uses the two’s complement relationship

 (11.23)

This involves inverting one operand to an N-bit CPA and adding 1
via the carry input, as shown in Figure 11.41(a). An adder/subtracter uses
XOR gates to conditionally invert B, as shown in Figure 11.41(b). In pre-
fix adders, the XOR gates on the B inputs are sometimes merged into the
bitwise PG circuitry.

11.2.4 Multiple-Input Addition
The most obvious method of adding k N-bit words is with k – 1 cascaded CPAs as illus-
trated in Figure 11.42(a) for 0001 + 0111 + 1101 + 0010. This approach consumes a large
amount of hardware and is slow. A better technique is to note that a full adder sums three
inputs of unit weight and produces a sum output of unit weight and a carry output of dou-
ble weight. If N full adders are used in parallel, they can accept three N-bit input words
XN…1, YN…1, and ZN…1, and produce two N-bit output words SN…1 and CN…1, satisfying
X + Y + Z = S + 2C, as shown in Figure 11.42(b). The results correspond to the sums and
carries-out of each adder. This is called carry-save redundant format because the carry out-
puts are preserved rather than propagated along the adder. The full adders in this applica-
tion are sometimes called [3:2] carry-save adder (CSA) because they accept three inputs
and produce two outputs in carry-save form. When the carry word C is shifted left by one
position (because it has double weight) and added to the sum word S with an ordinary
CPA, the result is X + Y + Z. Alternatively, a fourth input word can be added to the carry-
save redundant result with another row of CSAs, again resulting in a carry-save redundant
result. Such carry-save addition of four numbers is illustrated in Figure 11.42(c), where
the underscores in the carry outputs serve as reminders that the carries must be shifted left
one column on account of their greater weight.

The critical path through a [3:2] adder is for the sum computation, which involves
one 3-input XOR, or two levels of XOR2. This is much faster than a CPA. In general, k

A B A B= + +1

0

1

2

3

4

5

6

0 20 40 60 80 100

32-bit
64-bit

Prefix Tree

Carry Lookahead

Carry Select

Ripple Carry

Delay (FO4)

A
re

a(
M

2)

FIGURE 11.40 Area vs. delay of synthesized adders

+

BN...1AN...1

SN...1 A B

1

(N)

(a)

+

BN...1AN...1

SN...1 A B

(N)

(b)

Sub/Add

+

FIGURE 11.41 Subtracters

11.2 Addition/Subtraction 459

numbers can be summed with k – 2 [3:2] CSAs and only one CPA. This approach will be
exploited in Section 11.9 to add many partial products in a multiplier rapidly. The tech-
nique dates back to von Neumann’s early computer [Burks46].

When one of the inputs to a CSA is a constant, the hardware can be reduced further.
If a bit of the input is 0, the CSA column reduces to a half-adder. If the bit is 1, the CSA
column simplifies to S = A B and C = A + B.

11.2.5 Flagged Prefix Adders
Sometimes it is necessary to compute either A + B, and then, depending on a late-arriving
control signal, adding 1. Some applications include calculating A + B mod 2n–1 for cryp-
tography and Reed-Solomon coding, computing the absolute difference |A – B|, doing
addition/subtraction of sign-magnitude numbers, and performing rounding in certain
floating-point adders [Beaumont-Smith99]. A straightforward approach is to build two
adders, provide a carry to one, and select between the results. [Burgess02] describes a
clever alternative called a flagged prefix adder that uses much less hardware.

A flagged prefix adder receives A, B, and a control signal, inc, and computes A + B +
inc. Recall that an ordinary adder computes the prefixes Gi–1:0 as the carries into each
column i, then computes the sum Si = Pi Gi–1:0. In this situation, there is no Cin and
hence column 0 is omitted; Gi–1:1 is used instead. The goal of the flagged prefix adder
is to adjust these carries when inc is asserted. A flagged prefix adder instead uses

(a)

(c) (d)

(b)

0001 0111

1000

1101 0010

10101

10111

Z4Y4X4

S4C4

Z3Y3X3

S3C3

Z2Y2X2

S2C2

Z1Y1X1

S1C1

XN...1 YN...1 ZN...1

SN...1CN...1

n-bit CSA

4-bit CSA

5-bit CSA

0001 0111 1101 0010

10110101_

01010_ 00011

 0001
 0111
1101
 1011
0101_

X
Y
Z
S
C

 0101_
 1011
0010

 00011
01010_

X
Y
Z
S
C

 01010_
 00011
 010111

A
B
S

10111

A1B1C1D1A2B2C2D2A3B3C3D3A4B4C4D4

S1S2S3S4S5S6

CSA

CSA

CPA

FIGURE 11.42 Multiple-input adders

Chapter 11 Datapath Subsystems460

Gi–1:1 = Gi–1:1 + Pi–1:1 · inc. Thus, if inc is true, it generates a carry into all of the low order
bits whose group propagate signals are TRUE. The modified prefixes, G i–1:1, are called
flags. The sums are computed in the same way with an XOR gate: Si = Pi Gi–1:1.

To produce these flags, the flagged prefix adder uses one more row of gray cells. This
requires that the former bottom row of gray cells be converted to black cells to produce the
group propagate signals. Figure 11.43 shows a flagged prefix Kogge-Stone adder. The new
row, shown in blue, is appended to perform the late increment. Column 0 is eliminated
because there is no Cin, but column 16 is provided because applications of flagged adders
will need the generate and propagate signals spanning the entire n bits.

11.2.5.1 Modulo 2n – 1 Addition To compute A + B mod 2n – 1 for unsigned operands,
an adder should first compute A + B. If the sum is greater than or equal to 2n – 1, the result
should be incremented and truncated back to n bits. Gn:1 is TRUE if the adder will over-
flow; i.e., the result is greater than 2n – 1. Pn:1 is TRUE if all columns propagate, which
only occurs when the sum equals 2n – 1. Hence, modular addition can done with a flagged
prefix adder using inc = Gn:1 + Pn:1.

Compared to ordinary addition, modular addition requires one more row of black
cells, an OR gate to compute inc, and a buffer to drive inc across all n bits.

11.2.5.2 Absolute Difference |A – B| is called the absolute difference and is commonly
used in applications such as video compression. The most straightforward approach is to
compute both A – B and B – A, then select the positive result. A more efficient technique
is to compute A + B and look at the sign, indicated by Gn:1. If the result is negative, it
should be inverted to obtain B – A. If the result is positive, it should be incremented to
obtain A – B.

All of these operations can be performed using a flagged prefix adder enhanced to
invert the result conditionally. Modify the sum logic to calculate Si = (Pi inv) Gi–1:1.
Choose inv = Gn:1 and inc = Gn:1.

Compared to ordinary addition, absolute difference requires a bank of inverters to
obtain B, one more row of black cells, buffers to drive inv and inc across all n bits, and a
row of XORs to invert the result conditionally. Note that (Pi inv) can be precomputed
so this does not affect the critical path.

11.2.5.3 Sign-Magnitude Arithmetic Addition of sign-magnitude numbers involves
examining the signs of the operands. If the signs agree, the magnitudes are added and the

2:13:24:35:46:57:68:79:810:911:1012:1113:1214:13

3:14:15:26:37:48:59:610:711:812:913:1014:11

5:16:17:18:19:210:311:412:513:614:7

15:1 14:1 13:1 12:1 11:1 10:1 9:1 8:1 7:1 6:1 5:1 4:1 3:1 2:1 1:1

inc

12345678910111213141516

15:1416:15

15:1216:13

15:816:9

16:1 9:110:111:112:113:114:115:1

P,Gi:1

G'i:1

FIGURE 11.43 Flagged prefix Kogge-Stone adder

11.3 One/Zero Detectors 461

sign is unchanged. If the signs differ, the absolute difference of the magnitudes must be
computed. This can be done using the flagged carry adder described in the previous sec-
tion. The sign of the result is sign(A) Gn:1.

Subtraction is identical except that the sign of B is first flipped.

11.3 One/Zero Detectors
Detecting all ones or zeros on wide N-bit words requires large fan-in AND or NOR gates.
Recall that by DeMorgan’s law, AND, OR, NAND, and NOR are fundamentally the
same operation except for possible inversions of the inputs and/or outputs. You can build a
tree of AND gates, as shown in Figure 11.44(a). Here, alternate NAND and NOR gates
have been used. The path has log N stages. In general, the minimum logical effort is
achieved with a tree alternating NAND gates and inverters and the path logical effort is

 (11.24)

A rough estimate of the path delay driving a path electrical effort of H using static
CMOS gates is

 (11.25)

where tFO4 is the fanout-of-4 inverter delay.

G N N N
N

and () = = =4
3

2
2

4
3 0 415

log
log .

D F t H N tFO FO() = +()log log . log4 4 4 4 40 415

(a)

A0

A1

A2

A3

A4

A5

A6

A7

allones

allones

(b)

A0

A1

A2

A3

A4

A5

A6

A7

A0

A1

A2

A3

(c)

allzeros
A0 A1 A2 A3

allzeros

FIGURE 11.44 One/zero detectors

Chapter 11 Datapath Subsystems462

If the word being checked has a natural skew in the arrival time of the bits (such as at
the output of a ripple adder), the designer might consider an asymmetric design that
favors the late-arriving inputs, as shown in Figure 11.44(b). Here, the delay from the latest
bit A7 is a single gate.

Another fast detector uses a pseudo-nMOS or dynamic NOR structure to perform
the “wired-OR,” as shown in Figure 11.44(c). This works well for words up to about 16
bits; for larger words, the gates can be split into 8–16-bit chunks to reduce the parasitic
delay and avoid problems with subthreshold leakage.

11.4 Comparators

11.4.1 Magnitude Comparator
A magnitude comparator determines the larger of two binary numbers. To compare two
unsigned numbers A and B, compute B – A = B + A + 1. If there is a carry-out, A B;

otherwise, A > B. A zero detector indicates that the numbers are equal. Figure
11.45 shows a 4-bit unsigned comparator built from a carry-ripple adder and
two’s complementer. The relative magnitude is determined from the carry-out
(C) and zero (Z) signals according to Table 11.4. For wider inputs, any of the
faster adder architectures can be used.

Comparing signed two’s complement numbers is slightly more complicated
because of the possibility of overflow when subtracting two numbers with dif-
ferent signs. Instead of simply examining the carry-out, we must determine if
the result is negative (N, indicated by the most significant bit of the result) and
if it overflows the range of possible signed numbers. The overflow signal V is
true if the inputs had different signs (most significant bits) and the output sign
is different from the sign of B. The actual sign of the difference B – A is
S = N V because overflow flips the sign. If this corrected sign is negative
(S = 1), we know A > B. Again, the other relations can be derived from the cor-
rected sign and the Z signal.

11.4.2 Equality Comparator
An equality comparator determines if (A = B). This can be done more simply and rapidly
with XNOR gates and a ones detector, as shown in Figure 11.46.

TABLE 11.4 Magnitude comparison

Relation Unsigned Comparison Signed Comparison

A = B Z Z

A B Z Z

A < B C · Z S · Z

A > B C S

A B C S

A B C + Z S + Z

A0

B0

A1

B1

A2

B2

A3

B3

A = BZ

C

A B

N
A B>

<

FIGURE 11.45
Unsigned magnitude comparator

11.5 Counters 463

11.4.3 K = A + B Comparator
Sometimes it is necessary to determine if (A + B = K). For example, the sum-
addressed memory [Heald98] described in Section 12.2.2.4 contains a decoder
that must match against the sum of two numbers, such as a register base address
and an immediate offset. Remarkably, this comparison can be done faster than
computing A + B because no carry propagation is necessary. The key is that if you
know A and B, you also know what the carry into each bit must be if K = A + B
[Cortadella92]. Therefore, you only need to check adjacent pairs of bits to verify
that the previous bit produces the carry required by the current bit, and then use a
ones detector to check that the condition is true for all N pairs. Specifically, if K =
A + B, Table 11.5 lists what the carry-in ci – 1 must have been for this to be true
and what the carry-out ci will be for each bit position i.

From this table, you can see that the required ci–1 for bit i is

 (11.26)

and the ci – 1 produced by bit i – 1 is

 (11.27)

Figure 11.47 shows one bitslice of a circuit to perform this operation. The XNOR
gate is used to make sure that the required carry matches the produced carry at each bit
position; then the AND gate checks that the condition is satisfied for all bits.

11.5 Counters
Two commonly used types of counters are binary counters and linear-feedback shift registers.
An N-bit binary counter sequences through 2N outputs in binary order. Simple designs
have a minimum cycle time that increases with N, but faster designs operate in constant
time. An N-bit linear-feedback shift register sequences through up to 2N – 1 outputs in
pseudo-random order. It has a short minimum cycle time independent of N, so it is useful
for extremely fast counters as well as pseudo-random number generation.

TABLE 11.5 Required and generated carries if K = A + B

Ai Bi Ki ci–1
(required)

ci
(produced)

0 0 0 0 0
0 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 0
1 1 0 0 1
1 1 1 1 1

c A B Ki i i i=1

c A B K A Bi i i i i i= () +1 1 1 1 1 1·

A[0]
B[0]

A = B

A[1]
B[1]

A[2]
B[2]

A[3]
B[3]

FIGURE 11.46 Equality comparator

Chapter 11 Datapath Subsystems464

Some of the common features of counters include the following:

� Resettable: counter value is reset to 0 when RESET is asserted (essential for testing)
� Loadable: counter value is loaded with N-bit value when LOAD is asserted
� Enabled: counter counts only on clock cycles when EN is asserted
� Reversible: counter increments or decrements based on UP/DOWN input
� Terminal Count: TC output asserted when counter overflows (when counting up)

or underflows (when counting down)

In general, divide-by-M counters (M < 2N) can be built using an ordinary N-bit
counter and circuitry to reset the counter upon reaching M. M can be a programmable
input if an equality comparator is used. Alternatively, a loadable counter can be used to
restart at N – M whenever TC indicates that the counter overflowed.

11.5.1 Binary Counters
The simplest binary counter is the asynchronous ripple-carry counter, as shown in Figure
11.48. It is composed of N registers connected in toggle configuration, where the falling
transition of each register clocks the subsequent register. Therefore, the delay can be quite
long. It has no reset signal, making it difficult to test. In general, asynchronous circuits
introduce a whole assortment of problems, so the ripple-carry counter is shown mainly for
historical interest and is not recommended for commercial designs.

A general synchronous up/down counter is shown in Figure 11.49(a). It uses a resettable
register and full adder for each bit position. The cycle time is limited by the ripple-carry
delay. While a faster adder could be used, the next section describes a better way to build
fast counters. If only an up counter (also called an incrementer) is required, the full adder
degenerates into a half adder, as shown in Figure 11.49(b). Including an input multiplexer
allows the counter to load an initialization value. A clock enable is also often provided to
each register for conditional counting. The terminal count (TC) output indicates that the
counter has overflowed or underflowed. Figure 11.50 shows a fully featured resettable
loadable enabled synchronous up/down counter.

clk

Q0

Q1

Q2

Q3

FIGURE 11.48
Asynchronous ripple-
carry counter

Ki

Ai
Bi

ci (Produced)

ci − 1

Equal

ci - 1

(Required)

(Produced)

FIGURE 11.47 A + B = K comparator

11.5 Counters 465

11.5.2 Fast Binary Counters
The speed of the counter in Figure 11.49 is limited by the adder. This can be overcome by
dividing the counter into two or more segments [Ercegovac89]. For example, a 32-bit
counter could be constructed from a 4-bit prescalar counter and a 28-bit counter, as shown
in Figure 11.51. The TC output of the prescalar enables counting on the more significant
segment. Now, the cycle time is limited only by the prescalar speed because the 28-bit
adder has 24 cycles to produce a result. By using more segments, a counter of arbitrary
length can run at the speed of a 1- or 2-bit counter.

Prescaling does not suffice for up/down counters because the more significant seg-
ment may have only a single cycle to respond when the counter changes direction. To solve
this, a shadow register can be used on the more significant segments to hold the previous
value that should be used when the direction changes [Stan98]. Figure 11.52 shows the
more significant segment for a fast up/down counter. On reset (not shown in the figure),
the dir register is set to 0, Q to 0, and shadow to –1. When UP/DOWN changes, swap is

FIGURE 11.51 Fast binary counter

TC

clk

TC

clk

EN

TC

Q3:0 Q31:4

Least Significant
Segment

(prescalar)

Most Significant
Segment

4-B
it

C
ounter

28-B
it

C
ounter

Q0

Q1

Q2

clk

Q3

down/up

TC

r

r

r

r

reset

(a)

clkTC

r

r

r

r

reset

(b)

Q0

Q1

Q2

Q3

FIGURE 11.49 Synchronous counters

+ 0

1

load

D

Q

clk

TC

down/up
reset
en

FIGURE 11.50 Synchronous
up/down counter with reset, load,
and enable

en en

en

+ 0

1

Q

shadow

en

clk clk

clk
swap

dir

en

down/up

FIGURE 11.52 Fast binary up/down counter
(most significant segment)

Chapter 11 Datapath Subsystems466

asserted for a cycle to load the new count from the shadow register rather than the adder
(which may not have had enough time to ripple carries).

11.5.3 Ring and Johnson Counters
A ring counter consists of an M-bit shift register with the output fed back to the input, as
shown in Figure 11.53(a). On reset, the first bit is initialized to 1 and the others are ini-
tialized to 0. TC toggles once every M cycles. Ring counters are a convenient way to build
extremely fast prescalars because there is no logic between flip-flops, but they become
costly for larger M.

A Johnson or Mobius counter is similar to a ring counter, but inverts the output before it
is fed back to the input, as shown in Figure 11.53(b). The flip-flops are reset to all zeros
and count through 2M states before repeating. Table 11.6 shows the sequence for a 3-bit
Johnson counter.

11.5.4 Linerar-Feedback Shift Registers
A linear-feedback shift register (LFSR) consists of N registers configured as a shift regis-
ter. The input to the shift register comes from the XOR of particular bits of the register, as
shown in Figure 11.54 for a 3-bit LFSR. On reset, the registers must be initialized to a
nonzero value (e.g., all 1s). The pattern of outputs for the LFSR is shown in Table 11.7.

TABLE 11.6 Johnson counter sequence

Cycle Q0 Q1 Q2 TC

0 0 0 0 0
1 1 0 0 0
2 1 1 0 0
3 1 1 1 0
4 0 1 1 0
5 0 0 1 1
6 0 0 0 0

Repeats forever

TABLE 11.7 LFSR sequence

Cycle Q0 Q1 Q2 / Y

0 1 1 1
1 0 1 1
2 0 0 1
3 1 0 0
4 0 1 0
5 1 0 1
6 1 1 0
7 1 1 1

Repeats forever

s r r

clk

reset

TC
Q0 Q1 Q2

Q0 Q1 Q2

r r r

clk

reset
TC

(a)

(b)

FIGURE 11.53 3-bit ring and Johnson counters

Q0 Q1 Q2 Y

clk

FIGURE 11.54 3-bit LFSR

11.5 Counters 467

This LFSR is an example of a maximal-length shift register because its output
sequences through all 2n – 1 combinations (excluding all 0s). The inputs fed to the XOR
are called the tap sequence and are often specified with a characteristic polynomial. For exam-
ple, this 3-bit LFSR has the characteristic polynomial 1 + x 2 + x3 because the taps come
after the second and third registers.

The output Y follows the 7-bit sequence [1110010]. This is an example of a pseudo-
random bit sequence (PRBS). LFSRs are used for high-speed counters and pseudo-random
number generators. The pseudo-random sequences are handy for built-in self-test and
bit-error-rate testing in communications links. They are also used in many spread-
spectrum communications systems such as GPS and CDMA where their correlation
properties make other users look like uncorrelated noise.

Table 11.8 lists characteristic polynomials for some commonly used maximal-length
LFSRs. For certain lengths, N, more than two taps may be required. For many values of
N, there are multiple polynomials resulting in different maximal-length LFSRs. Observe
that the cycle time is set by the register and a small number of XOR delays. [Golomb81]
offers the definitive treatment on linear-feedback shift registers.

Example 11.1

Sketch an 8-bit linear-feedback shift register.
How long is the pseudo-random bit sequence
that it produces?

SOLUTION: Figure 11.55 shows an 8-bit LFSR
using the four taps after the 1st, 6th, 7th, and 8th
bits, as given in Table 11.7. It produces a sequence
of 28 – 1 = 255 bits before repeating.

TABLE 11.8 Characteristic polynomials

N Polynomial

3 1 + x2 + x3

4 1 + x3 + x4

5 1 + x3 + x5

6 1 + x5 + x6

7 1 + x6 + x7

8 1 + x1 + x6 + x7 + x8

9 1 + x5 + x9

15 1 + x14 + x15

16 1 + x4 + x13 + x15 + x16

23 1 + x18 + x23

24 1 + x17 + x22 + x23 + x24

31 1 + x28 + x31

32 1 + x10 + x30 + x31 + x32

Y

clk
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

FIGURE 11.55 8-bit LFSR

Chapter 11 Datapath Subsystems468

11.6 Boolean Logical Operations
Boolean logical operations are easily accomplished using a multiplexer-based circuit, as
shown in Figure 11.56. Table 11.9 shows how the inputs are assigned to perform different
logical functions. By providing different P values, the unit can perform other operations
such as XNOR(A, B) or NOT(A). An Arithmetic Logic Unit (ALU) requires both arith-
metic (add, subtract) and Boolean logical operations.

11.7 Coding
Error-detecting and error-correcting codes are used to increase system reliability. Memory
arrays are particularly susceptible to soft errors caused by alpha particles or cosmic rays
flipping a bit. Such errors can be detected or even corrected by adding a few extra check bits
to each word in the array. Codes are also used to reduce the bit error rate in communica-
tion links.

The simplest form of error-detecting code is parity, which detects single-bit errors.
More elaborate error-correcting codes (ECC) are capable of single-error correcting and
double-error detecting (SEC-DED). Gray codes are another useful alternative to the
standard binary codes. All of the codes are heavily based on the XOR function, so we will
examine a variety of CMOS XOR designs.

11.7.1 Parity
A parity bit can be added to an N-bit word to indicate whether the number of 1s in the
word is even or odd. In even parity, the extra bit is the XOR of the other N bits, which
ensures the (N + 1)-bit coded word has an even number of 1s:

 (11.28)

Figure 11.57 shows a conventional implementation. Multi-input XOR gates can also
be used.

11.7.2 Error-Correcting Codes
The Hamming distance [Hamming50] between a pair of binary numbers is the number of
bits that differ between the two numbers. A single-bit error transforms a data word into
another word separated by a Hamming distance of 1. Error-correcting codes add check
bits to the data word so that the minimum Hamming distance between valid words
increases. Parity is an example of a code with a single check bit and a Hamming distance

TABLE 11.9 Functions implemented by Boolean unit

Operation P0 P1 P2 P3

AND(A, B) 0 0 0 1
OR(A, B) 0 1 1 1
XOR(A, B) 0 1 1 0
NAND(A, B) 1 1 1 0
NOR(A, B) 1 0 0 0

A A A A An n= =PARITY 0 1 2 1...

Y

0P0

1

0

1

0

1

B A

P1

P2

P3

FIGURE 11.56
Boolean logical unit

Y

A7
A6

A5
A4

A3
A2

A1
A0

FIGURE 11.57
8-bit parity generator

11.7 Coding 469

of 2 between valid words, so that single-bit errors lead to invalid words and hence are
detectable. If more check bits are added so that the minimum distance between valid
words is 3, a single-bit error can be corrected because there will be only one valid word
within a distance of 1. If the minimum distance between valid words is 4, a single-bit error
can be corrected and an error corrupting two bits can be detected (but not corrected). If
the probability of bit errors is low and uncorrelated from one bit to another, such single
error-correcting, double error-detecting (SEC-DED) codes greatly reduce the overall
error rate of the system. Larger Hamming distances improve the error rate further at the
expense of more check bits.

In general, you can construct a distance-3 Hamming code of length up to 2c – 1 with
c check bits and N = 2c – c – 1 data bits using a simple procedure [Wakerly00]. If the bits
are numbered from 1 to 2c – 1, each bit in a position that is a power of 2 serves as a check
bit. The value of the check bit is chosen to obtain even parity for all bits with a 1 in the
same position as the check bit, as illustrated in Figure 11.58(a) for a 7-bit code with 4 data
bits and 3 check bits. The bits are traditionally reorganized into contiguous data and check
bits, as shown in Figure 11.58(b). The structure is called a parity-check matrix and each
check bit can be computed as the XOR of the highlighted data bits:

 (11.29)

The error-correcting decoder examines the check bits. If they all have even parity, the
word is considered to be correct. If one or more groups have odd parity, an error has
occurred. The pattern of check bits that have the wrong parity is called the syndrome and
corresponds to the bit position that is incorrect. The decoder must flip this bit to recover
the correct result.

Example 11.2

Suppose the data value 1001 were to be transmitted using a distance-3 Hamming code.
What are the check bits? If the data bits were garbled into 1101 during transmission,
explain what the syndrome would be and how the data would be corrected.

SOLUTION: According to EQ (11.29), the check bits should be 100, corresponding to a
transmitted word of 1001100. The received word is 1101100. The syndrome is 110,

C D D D

C D D D

C D D D

0 3 1 0

1 3 2 0

2 3 2 1

=

=

=

1
001

2
010

3
011

4
100

5
101

6
110

7
111

Bit Position

C
he

ck
 G

ro
up

C
he

ck
 G

ro
up

1

2

4

(a) (b)

1
001

2
010

3
011

4
100

5
101

6
110

7
111

Bit Position

1

2

4

Check BitsData BitsCheck Bits

D3 D2 C2 C1 C0D1 D0

FIGURE 11.58 Parity-check matrix

Chapter 11 Datapath Subsystems470

i.e., odd parity on check bits C2 and C1, which indicates an error in bit position 110 =
6. This position is flipped to produce a corrected word of 1001100 and the check bits
are discarded, leaving the proper data value of 1001.

A SEC-DED distance-4 Hamming code can be constructed from a distance-3 code
by adding one more parity bit for the entire word. If there is a single-bit error, parity will
fail and the check bits will indicate how to correct the data. If there is a double-bit error,
the check bits will indicate an error, but parity will pass, indicating a detectable but uncor-
rectable double-bit error.

The parity check matrix determines the number of XORs required in the encoding
and decoding logic. A SEC-DED Hamming code for a 64-bit data word has 8 check bits.
It requires 296 XOR gates. The parity logic for the entire word has 72 inputs. The Hsiao
SEC-DED achieves the same function with the same number of data and check bits but is
ingeniously designed to minimize the cost, using only 216 XOR gates and parity logic
with a maximum of 27 inputs. [Hsiao70] shows parity-check matrices for 16, 32, and 64-
bit data words with 6, 7, and 8 check bits.

As the data length and allowable decoder complexity increase, other codes become
efficient. These include Reed-Solomon, BCH, and Turbo codes. [Lin83, Sweeney02,
Sklar01, Fujiwara06] and many other texts provide extensive information on a variety of
error-correcting codes.

11.7.3 Gray Codes
The Gray codes, named for Frank Gray, who patented their use on shaft encoders
[Gray53], have a useful property that consecutive numbers differ in only one bit position.
While there are many possible Gray codes, one of the simplest is the binary-reflected Gray
code that is generated by starting with all bits 0 and successively flipping the right-most bit
that produces a new string. Table 11.10 compares 3-bit binary and binary-reflected Gray
codes. Finite state machines that typically move through consecutive states can save power
by Gray-coding the states to reduce the number of transitions. When a counter value must
be synchronized across clock domains, it can be Gray-coded so that the synchronizer is
certain to receive either the current or previous value because only one bit changes each
cycle.

Converting between N-bit binary B and binary-reflected Gray code G representations
is remarkably simple.

TABLE 11.10 3-bit Gray code

Number Binary Gray Code

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

11.7 Coding 471

 (11.30)

11.7.4 XOR/XNOR Circuit Forms
One of the chronic difficulties in CMOS circuit design is to construct a fast, compact,
low-power XOR or XNOR gate. Figure 11.59 shows a number of common static single-
rail 2-input XOR designs; XNOR designs are similar. Figure 11.59(a) and Figure
11.59(b) show gate-level implementations; the first is cute, but the second is slightly more
efficient. Figure 11.59(c) shows a complementary CMOS gate. Figure 11.59(d) improves
the gate by optimizing out two contacts and is a commonly used standard cell design. Fig-
ure 11.59(e) shows a transmission gate design. Figure 11.59(f) is the 6-transistor “invert-
ible inverter” design. When A is 0, the transmission gate turns on and B is passed to the
output. When A is 1, the A input powers a pair of transistors that invert B. It is compact,
but nonrestoring. Some switch-level simulators such as IRSIM cannot handle this uncon-
ventional design. Figure 11.59(g) [Wang94] is a compact and fast 4-transistor pass-gate
design, but does not swing rail to rail.

XOR gates with 3 or 4 inputs can be more compact, although not necessarily faster
than a cascade of 2-input gates. Figure 11.60(a) is a 4-input static CMOS XOR
[Griffin83] and Figure 11.60(b) is a 4-input CPL XOR/XNOR, while Figure 9.20(c)
showed a 4-input CVSL XOR/XNOR. Observe that the true and complementary trees
share most of the transistors. As mentioned in Chapter 9, CPL does not perform well at
low voltage.

Dynamic XORs pose a problem because both true and complementary inputs are
required, violating the monotonicity rule. The common solutions mentioned in Section
11.2.2.11 are to either push the XOR to the end of a chain of domino logic and build it

Binary Binary

= =

= +

Gray Gray

G B B G

G B
N N N N

i i

1 1 1 1

1 = >+B B B G N ii i i i1 1 0

A
Y

B

A

B

A A
BB

AA

BB

A
Y

B

A

B

A

A

B

B

AA

BB

A

B
A

B

Y

AA

Y
A

A

B B

A
B

Y

(a) (b)

B
A Y

(c)

A

A

A

B

B

Y

AA

BB

(d) (e) (f) (g)

FIGURE 11.59 Static 2-input XOR designs

Chapter 11 Datapath Subsystems472

with static CMOS or to construct a dual-rail domino structure. A dual-rail domino
2-input XOR was shown in Figure 9.30(c).

11.8 Shifters
Shifts can either be performed by a constant or variable amount. Constant shifts are trivial
in hardware, requiring only wires. They are also an efficient way to perform multiplication
or division by powers of two. A variable shifter takes an N-bit input, A, a shift amount, k,
and control signals indicating the shift type and direction. It produces an N-bit output, Y.
There are three common types of variable shifts, each of which can be to the left or right:

� Rotate: Rotate numbers in a circle such that empty spots are filled with bits shifted
off the other end

○ Example: 1011 ROR 1 = 1101; 1011 ROL 1 = 0111
� Logical shift: Shift the number to the left or right and fills empty spots with zeros.

○ Example: 1011 LSR 1 = 0101; 1011 LSL 1 = 0110
� Arithmetic shift: Same as logical shifter, but on right shifts fills the most significant

bits with copies of the sign bit (to properly sign, extend two’s complement num-
bers when using right shift by k for division by 2k).

○ Example: 1011 ASR 1 = 1101; 1011 ASL 1 = 0110

Conceptually, rotation involves an array of N N-input multiplexers to select each of
the outputs from each of the possible input positions. This is called an array shifter. The
array shifter requires a decoder to produce the 1-of-N-hot shift amount. In practice, mul-
tiplexers with more than 4–8 inputs have excessive parasitic capacitance, so they are faster
to construct from logv N levels of v-input multiplexers. This is called a logarithmic shifter.
For example, in a radix-2 logarithmic shifter, the first level shifts by N/2, the second by
N/4, and so forth until the final level shifts by 1. In a logarithmic shifter, no decoder is
necessary. The CMOS transmission gate multiplexer of Figure 9.47 is especially well-
suited to logarithmic shifters because the hefty wire capacitance is driven directly by an
inverter rather than through a pair of series transistors. 4:1 or 8:1 transmission gate multi-
plexers reduce the number of levels by a factor of 2 or 3 at the expense of more wiring and

Y
A

B B

C C

D

A

B B

C C

D

D

C C

B B

A

D

C C

B B

A

(a) (b)

D

D

L

L Y

Y

C

C

C

C

B

B

B

B A

A

A

A

FIGURE 11.60 4-input XOR designs

11.8 Shifters 473

fanout. Pairs or triplets of the shift amount are decoded to drive one-hot mux selects at
each level. [Tharakan92] describes a domino logarithmic shifter using 3:1 multiplexers to
reduce the number of logic levels.

A left rotate by k bits is equivalent to a right rotate by N – k bits. Computing N – k
requires a subtracter in the critical path. Taking advantage of two’s complement arithmetic
and the fact that rotation is cyclic modulo N, N – k = N + k + 1 = k + 1. Thus, the left
rotate can be performed by preshifting right by 1, then doing a right rotate by the comple-
mented shift amount.

Logical and arithmetic shifts are similar to rotates, but must replace bits at one end or
the other with a kill value (either 0 or the sign bit). The two major shifter architectures are
funnel shifters and barrel shifters. In a funnel shifter, the kill values are incorporated at the
beginning, while in a barrel shifter, the kill values are chosen at the end. Each of these
architectures is described below. Both barrel and funnel shifters can use array or logarith-
mic implementations. [Huntzicker08] examines the energy-delay trade-offs in static
shifters. For general-purpose shifting, both architectures are comparable in energy and
delay. Given typical parasitics capacitances, the theory of Logical Effort shows that loga-
rithmic structure using 4:1 multiplexers is most efficient. If only shift operations
(but not rotates) are required, the funnel architecture is simpler, while if only
rotates (but not shifts) are required, the barrel is simpler.

11.8.1 Funnel Shifter
The funnel shifter creates a 2N – 1-bit input word Z from A and/or the kill val-
ues, then selects an N-bit field from this input word, as shown in Figure 11.61. It
gets its name from the way the wide word funnels down to a narrower one. Table
11.11 shows how Z is formed for each type of shift. Z incorporates the 1-bit pre-
shift for left shifts.

The simplest funnel shifter design consists of an array of N N-input
multiplexers accepting 1-of-N-hot select signals (one multiplexer for each
output bit). Such an array shifter is shown in Figure 11.62 using nMOS pass
transistors for a 4-bit shifter. The shift amount is conditionally inverted and
decoded into select signals that are fed vertically across the array. The outputs
are taken horizontally. Each row of transistors attached to an output forms
one of the multiplexers. The 2N – 1 inputs run diagonally to the appropriate
mux inputs. Figure 11.63 shows a stick diagram for one of the N 2 transistors
in the array. nMOS pass transistors suffer a threshold drop, but the problem
can be solved by precharging the outputs (done in the Alpha 21164
[Gronowski96]) or by using full CMOS transmission gates.

TABLE 11.11 Funnel shifter source generator

Shift Type Z2N – 2:N ZN – 1 ZN – 2:0 Offset

Logical Right AN–2:0 AN–1 AN–2:0 k

Arithmetic Right 0 AN–1 AN–2:0 k

Rotate Right sign AN–1 AN–2:0 k

Logical/Arithmetic Left AN–1:1 A0 AN–1:1 k

Rotate Left AN–1:1 A0 0 k

Z

OffsetOffset N − 1

02N − 2

Y

0N − 1

FIGURE 11.61 Funnel shifter function

k[1:0]

Left Inverters & Decoder

Y3

s3 s2 s1 s0

Y2

Y1

Y0

Z0Z1Z2Z3Z4

Z5

Z6

FIGURE 11.62 4-bit array funnel shifter

Chapter 11 Datapath Subsystems474

The array shifter works well for small shifters in transistor-level designs, but has high
parasitic capacitance in larger shifters, leading to excessive delay and energy. Moreover,
array shifters are not amenable to standard cell designs. Figure 11.64 shows a 4-bit loga-
rithmic shifter based on multiple levels of 2:1 multiplexers (which, of course, can be trans-
mission gates) [Lim72]. The XOR gates on the control inputs conditionally invert the
shift amount for left shifts.

Figure 11.65 shows a 32-bit funnel shifter using a 4:1 multiplexer followed by an 8:1
multiplexer [Huntzicker08]. The source generator selects the 63-bit Z. The first stage per-
forms a coarse shift right by 0, 8, 16, or 24 bits. The second stage performs a fine shift
right by 0–7 bits. The mux decode block conditionally inverts k for left shifts, computes
the 1-hot selects, and buffers them to drive the wide multiplexers.

Conceptually, the source generator consists of a 2N – 1-bit 5:1 multiplexer controlled by
the shift type and direction. Figure 11.66 shows how the source generator logic can be sim-
plified. The horizontal control lines need to be buffered to drive the high fanout and they are
on the critical path. Even if they are available early, the sign bit is still critical. If only certain
types of shifts or rotates are supported, the logic can be optimized down further.

Y

Z

ZS

FIGURE 11.63 Array
funnel shifter cell stick
diagram

leftZ0Z1Z2Z3

Y0

k1

k0
Y1Y2Y3

Z4Z5Z6

FIGURE 11.64 4-bit logarithmic funnel shifter

Source Generator

A

32

63

39

32

Y

Z

5
k

left

arith
shift

4

8

4:1

8:1

M
ux D

ecode

FIGURE 11.65
32-bit logarithmic funnel shifter

left

arith

shift

AN-1

AN − 2:0 AN − 1

ZN − 1

A0AN − 1:1 AN − 2:0 AN − 1:1

ZN − 2:N ZN − 2:0

(sign)
left

left
shift

Sign
Ext

Right
Rot

Left
Rot

FIGURE 11.66 Optimized source generator logic

11.8 Shifters 475

The funnel shifter presents a layout problem
because the source generator and early stages of multi-
plexers are wider than the rest of the datapath. Figure
11.67 shows a floorplan in which the source generator
is folded to fit the datapath. Such folding also reduces
wire lengths, saving energy. Depending on the layout
constraints, the extra seven most significant bits of the
first-level multiplexer may be folded into another row
or incorporated into the zipper.

11.8.2 Barrel Shifter
A barrel shifter performs a right rotate operation
[Davis69]. As mentioned earlier, it handles left rota-
tions using the complementary shift amount. Barrel
shifters can also perform shifts when suitable masking
hardware is included. Barrel shifters come in array and
logarithmic forms; we focus on logarithmic barrel
shifters because they are better suited for large shifts.

Figure 11.68(a) shows a simple 4-bit barrel shifter
that performs right rotations. Notice how, unlike fun-
nel shifters, barrel shifters contain long wrap-around
wires. In a large shifter, it is beneficial to upsize or
buffer the drivers for these wires. Figure 11.68(b)
shows an enhanced version that can rotate left by pre-
rotating right by 1, then rotating right by k. Perform-
ing logical or arithmetic shifts on a barrel shifter
requires a way to mask out the bits that are rotated off
the end of the shifter, as shown in Figure 11.68(c).

Figure 11.69 shows a 32-bit barrel shifter using a
5:1 multiplexer and an 8:1 multiplexer. The first stage
rotates right by 0, 1, 2, 3, or 4 bits to handle a prerotate
of 1 bit and a fine rotate of up to 3 bits combined into
one stage. The second stage rotates right by 0, 4, 8, 12,
16, 20, 24, or 28 bits. The critical path starts with
decoding the shift amount for the first stage. If the shift
amount is available early, the delay from A to Y
improves substantially.

While the rotation is taking place, the masking
unit generates an N-bit mask with ones where the kill
value should be inserted for right shifts. For a right
shift by m, the m most significant bits are ones. This is
called a thermometer code and the logic to compute it
is described in Section 11.10. When the rotation result
X is complete, the masking unit replaces the masked bits with the kill value. For left shifts,
the mask is reversed. Figure 11.70 shows masking logic. If only certain shifts are sup-
ported, the unit can be simplified, and if only rotates are supported, the masking unit can
be eliminated, saving substantial hardware, power, and delay.

31

0

38

31

31

1

0

Source
Generator Bits

0-31

Source
Generator Bits

32-62

mux4

mux8

0

FIGURE 11.67 Funnel shifter floorplans

left

Preshift

Mask arithmetic
shift

sign

left

A3 A2 A1 A0

A3 A2 A1 A0

A3 A2 A1 A0

Y3 Y2 Y1 Y0 Y3 Y2 Y1 Y0

Y3 Y2 Y1 Y0

X3 X2 X1 X0

k0

k1

k0

k1

k0

k1

S0

S1

(a) (b)

(c)

FIGURE 11.68 Barrel shifters: (a) rotate right, (b) rotate left or right,
(c) rotates and shifts

Chapter 11 Datapath Subsystems476

11.8.3 Alternative Shift Functions
Other flavors of shifts, including shuffles, bit-reversals, interchanges, extraction, and
deposit, are sometimes required, especially for cryptographic and multimedia applications
[Hilewitz04, Hilewitz07]. These are also built from appropriate combinations of multi-
plexers.

11.9 Multiplication
Multiplication is less common than addition, but is still essential for microprocessors, dig-
ital signal processors, and graphics engines. The most basic form of multiplication consists

of forming the product of two unsigned (positive) binary numbers. This can
be accomplished through the traditional technique taught in primary school,
simplified to base 2. For example, the multiplication of two positive 6-bit
binary integers, 2510 and 3910, proceeds as shown in Figure 11.71.

M × N-bit multiplication P = Y × X can be viewed as forming N partial
products of M bits each, and then summing the appropriately shifted partial
products to produce an M + N-bit result P. Binary multiplication is equivalent
to a logical AND operation. Therefore, generating partial products consists of
the logical ANDing of the appropriate bits of the multiplier and multiplicand.
Each column of partial products must then be added and, if necessary, any
carry values passed to the next column. We denote the multiplicand as

Y = {yM–1, yM–2, …, y1, y0} and the multiplier as X = {xN–1, xN–2, …, x1, x0}. For unsigned
multiplication, the product is given in EQ (11.31). Figure 11.72 illustrates the generation,
shifting, and summing of partial products in a 6 × 6-bit multiplier.

 (11.31)P y x x yj
j

j

M

i
i

i

N

i j
i j= =

= =

+2 2 2
0

1

0

1

jj

M

i

N

== 0

1

0

1

left

arith
AN − 1

maskN − 2:0 XN − 1:0

YN − 1:0

(sign)

shift

Kill X

Left
Shifts

Right
Shifts

Sign
Ext

R
everse

FIGURE 11.70 Barrel shifter masking logic

multiplier

multiplicand

partial
products

product

 011001 : 2510
 100111 : 3910
 011001
 011001
 011001
 000000
 000000
+011001
001111001111 : 97510

FIGURE 11.71 Multiplication example

A

32

32

Masking

32

32

Y

5
k

5

8

arith

left
shift

X

5:1

8:1

M
ux D

ecode

FIGURE 11.69 32-bit
logarithmic barrel shifter

11.9 Multiplication 477

Large multiplications can be more conveniently illustrated using dot diagrams. Figure
11.73 shows a dot diagram for a simple 16 × 16 multiplier. Each dot represents a place-
holder for a single bit that can be a 0 or 1. The partial products are represented by a hori-
zontal boxed row of dots, shifted according to their weight. The multiplier bits used to
generate the partial products are shown on the right.

There are a number of techniques that can be used to perform multiplication. In gen-
eral, the choice is based upon factors such as latency, throughput, energy, area, and design
complexity. An obvious approach is to use an M + 1-bit carry-propagate adder (CPA) to
add the first two partial products, then another CPA to add the third partial product to the
running sum, and so forth. Such an approach requires N – 1 CPAs and is slow, even if a
fast CPA is employed. More efficient parallel approaches use some sort of array or tree of
full adders to sum the partial products. We begin with a simple array for unsigned multi-
pliers, and then modify the array to handle signed two’s complement numbers using the
Baugh-Wooley algorithm. The number of partial products to sum can be reduced using
Booth encoding and the number of logic levels required to perform the summation can be
reduced with Wallace trees. Unfortunately, Wallace trees are complex to lay out and have
long, irregular wires, so hybrid array/tree structures may be more attractive. For complete-
ness, we consider a serial multiplier architecture. This was once popular when gates were
relatively expensive, but is now rarely necessary.

Multiplier

Multiplicand

Partial
Products

Productp11

x5y5 x5y4 x5y3 x5y2 x5y1 x5y0

x4y5 x4y4 x4y3 x4y2 x4y1 x4y0

x3y5 x3y4 x3y3 x3y2 x3y1 x3y0

x2y5 x2y4 x2y3 x2y2 x2y1 x2y0

x1y5 x1y4 x1y3 x1y2 x1y1 x1y0

x0y5

y5 y4 y3 y2 y1 y0

x5 x4 x3 x2 x1 x0

x0y4 x0y3 x0y2 x0y1 x0y0

p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

FIGURE 11.72 Partial products

Partial Products

x0

x15

M
ultiplier x

FIGURE 11.73 Dot diagram

Chapter 11 Datapath Subsystems478

11.9.1 Unsigned Array Multiplication
Fast multipliers use carry-save adders (CSAs, see Section 11.2.4) to sum the partial prod-
ucts. A CSA typically has a delay of 1.5–2 FO4 inverters independent of the width of the
partial product, while a carry-propagate adder (CPA) tends to have a delay of 4–15+ FO4
inverters depending on the width, architecture, and circuit family. Figure 11.74 shows a
4 × 4 array multiplier for unsigned numbers using an array of CSAs. Each cell contains a
2-input AND gate that forms a partial product and a full adder (CSA) to add the partial
product into the running sum. The first row converts the first partial product into
carry-save redundant form. Each later row uses the CSA to add the corresponding partial
product to the carry-save redundant result of the previous row and generate a carry-save
redundant result. The least significant N output bits are available as sum outputs directly
from CSAs. The most significant output bits arrive in carry-save redundant form and
require an M-bit carry-propagate adder to convert into regular binary form. In Figure
11.74, the CPA is implemented as a carry-ripple adder. The array is regular in structure
and uses a single type of cell, so it is easy to design and lay out. Assuming the carry output
is faster than the sum output in a CSA, the critical path through the array is marked on
the figure with a dashed line. The adder can easily be pipelined with the placement of reg-
isters between rows. In practice, circuits are assigned rectangular blocks in the floorplan so
the parallelogram shape wastes space. Figure 11.75 shows the same adder squashed to fit a
rectangular block.

B

ASin Cin

SoutCout

BA

CinCout

Sout

Sin

CSA
Array

CPA

Critical Path BA

Sout

Cout CinCout

Sout

=Cin

BA

y3

p7 p6

y2 y1 y0

x0

x1

x2

x3

p5 p4 p3 p2 p1 p0

=

FIGURE 11.74 Array multiplier

11.9 Multiplication 479

A key element of the design is a compact CSA. This not only
benefits area but also helps performance because it leads to short
wires with low wire capacitance. An ideal CSA design has approxi-
mately equal sum and carry delays because the greater of these two
delays limits performance. The mirror adder from Figure 11.4 is
commonly used for its compact layout even though the sum delay
exceeds the carry delay. The sum output can be connected to the
faster carry input to partially compensate [Sutherland99, Hsu06a].

Note that the first row of CSAs adds the first partial product to
a pair of 0s. This leads to a regular structure, but is inefficient. At a
slight cost to regularity, the first row of CSAs can be used to add the
first three partial products together. This reduces the number of rows
by two and correspondingly reduces the adder propagation delay. Yet
another way to improve the multiplier array performance is to
replace the bottom row with a faster CPA such as a lookahead or tree
adder. In summary, the critical path of an array multiplier involves
N–2 CSAs and a CPA.

11.9.2 Two’s Complement Array Multiplication
Multiplication of two’s complement numbers at first might seem
more difficult because some partial products are negative and must
be subtracted. Recall that the most significant bit of a two’s comple-
ment number has a negative weight. Hence, the product is

In EQ (11.32), two of the partial products have negative weight and thus should be
subtracted rather than added. The Baugh-Wooley [Baugh73] multiplier algorithm handles
subtraction by taking the two’s complement of the terms to be subtracted (i.e., inverting the
bits and adding one). Figure 11.76 shows the partial products that must be summed. The
upper parallelogram represents the unsigned multiplication of all but the most significant
bits of the inputs. The next row is a single bit corresponding to the product of the most
significant bits. The next two pairs of rows are the inversions of the terms to be subtracted.
Each term has implicit leading and trailing zeros, which are inverted to leading and trail-
ing ones. Extra ones must be added in the least significant column when taking the two’s
complement.

The multiplier delay depends on the number of partial product rows to be summed.
The modified Baugh-Wooley multiplier [Hatamian86] reduces this number of partial prod-
ucts by precomputing the sums of the constant ones and pushing some of the terms
upward into extra columns. Figure 11.77 shows such an arrangement. The parallelogram-
shaped array can again be squashed into a rectangle, as shown in Figure 11.78, giving a
design almost identical to the unsigned multiplier of Figure 11.75. The AND gates are
replaced by NAND gates in the hatched cells and 1s are added in place of 0s at two of the

P y y x xM
M

j
j

j

M

n
N

i
i

i

= + +
= =

1
1

0

2

1
12 2 2 2

00

2

1 1
2

12 2 2

N

i j
i j

N M
M N

i M
i Mx y x y x y+ + += +

=

+

===
+1

0

2

1
1

0

2

0

2

2
i

N

N j
j N

j

M

j

M

i

x y
00

2N

y3 y2 y1 y0

x0

x1

x2

x3

p7 p6 p5 p4

p3

p2

p1

p0

FIGURE 11.75 Rectangular array multiplier

(11.32)

Chapter 11 Datapath Subsystems480

1

1

p11

y5 y4 y3 y2 y1 y0

x5 x4 x3 x2 x1 x0

p10 p9 p8 p7 p6 p5 p4 p3 p2 p1

x5y5 x4y5 x3y5 x2y5 x1y5 x0y5

x5y4 x4y4 x4y3 x4y2 x4y1 x4y0

x5y3 x3y4 x3y3 x3y2 x3y1 x3y0

x5y2 x2y4 x2y3 x2y2 x2y1 x2y0

x5y1 x1y4 x1y3 x1y2 x1y1 x1y0

x5y0 x0y4 x0y3 x0y2 x0y1 x0y0

FIGURE 11.77 Simplified partial products for two’s complement multiplier

y3 y2 y1 y0

x0

x1

x2

x3

p7 p6 p5 p4

p3

p2

p1

p0

FIGURE 11.78 Modified Baugh-Wooley two’s comple-
ment multiplier

unused inputs. The signed and unsigned arrays are so similar that a single array can be used
for both purposes if XOR gates are used to conditionally invert some of the terms depend-
ing on the mode.

11.9.3 Booth Encoding
The array multipliers in the previous sections compute the partial products in a radix-2
manner; i.e., by observing one bit of the multiplier at a time. Radix 2r multipliers produce

11 11 11 1

11 11 11 1

1

1

 N 2 M 2

i 0 j 0

xi yj 2
i + j

 M 2

j 0

xN 1 yj 2
j + N 1

 N 2

i 0

xi yM 1 2i + M 1

xN 1 yM 1 2M + N 2

p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

x5y4 x5y3 x5y2 x5y1 x5y0

x4y5 x3y5 x2y5 x1y5 x0y5

x4y4

x5y5

x4y3 x4y2 x4y1 x4y0

x3y4 x3y3 x3y2 x3y1 x3y0

x2y4 x2y3 x2y2 x2y1 x2y0

x1y4 x1y3 x1y2 x1y1 x1y0

x0y4 x0y3 x0y2 x0y1 x0y0

y5 y4 y3 y2 y1 y0

x5 x4 x3 x2 x1 x0

FIGURE 11.76 Partial products for two’s complement multiplier

11.9 Multiplication 481

N/r partial products, each of which depend on r bits of the multiplier. Fewer partial prod-
ucts leads to a smaller and faster CSA array. For example, a radix-4 multiplier produces
N/2 partial products. Each partial product is 0, Y, 2Y, or 3Y, depending on a pair of bits of
X. Computing 2Y is a simple shift, but 3Y is a hard multiple requiring a slow carry-
propagate addition of Y + 2Y before partial product generation begins.

Booth encoding was originally proposed to accelerate serial multiplication [Booth51].
Modified Booth encoding [MacSorley61] allows higher radix parallel operation without gen-
erating the hard 3Y multiple by instead using negative partial products. Observe that
3Y = 4Y – Y and 2Y = 4Y – 2Y. However, 4Y in a radix-4 multiplier array is equivalent to Y
in the next row of the array that carries four times the weight. Hence, partial products are
chosen by considering a pair of bits along with the most significant bit from the previous
pair. If the most significant bit from the previous pair is true, Y must be added to the cur-
rent partial product. If the most significant bit of the current pair is true, the current par-
tial product is selected to be negative and the next partial product is incremented.

Table 11.12 shows how the partial products are selected, based on bits of the multi-
plier. Negative partial products are generated by taking the two’s complement of the
multiplicand (possibly left-shifted by one column for –2Y). An unsigned radix-4 Booth-
encoded multiplier requires partial products rather than N. Each partial
product is M + 1 bits to accommodate the 2Y and –2Y multiples. Even though X and Y are
unsigned, the partial products can be negative and must be sign extended properly. The
Booth selects will be discussed further after an example.

Example 11.3

Repeat the multiplication of P = Y × X = 0110012 × 1001112 from Fig-
ure 11.71, applying Booth encoding to reduce the number of partial
products.

SOLUTION: Figure 11.79 shows the multiplication. X is written verti-
cally and the bits are used to select the four partial products. Each par-
tial product is shifted two columns left of the previous one because it
has four times the weight. The upper bits are sign-extended with 1s for
negative partial products and 0s for positive partial products. The par-
tial products are added to obtain the result.

TABLE 11.12 Radix-4 modified Booth encoding values

Inputs Partial Product Booth Selects

x2i+1 x2i x2i–1 PPi SINGLEi DOUBLEi NEGi

0 0 0 0 0 0 0
0 0 1 Y 1 0 0
0 1 0 Y 1 0 0
0 1 1 2Y 0 1 0
1 0 0 –2Y 0 1 1
1 0 1 –Y 1 0 1
1 1 0 –Y 1 0 1
1 1 1 –0 (= 0) 0 0 1

() /N +1 2

0

0
0

x−1
x0
x1
x2
x3
x4
x5
x6
x7

1
1
1
0
0
1

X

111111100111

0000110010

11001110

011001

001111001111

Sign
Extension PP0 = −Y

PP1 = 2Y

PP2 = −2Y

PP3 = Y

FIGURE 11.79 Booth-encoded example

Chapter 11 Datapath Subsystems482

In a typical radix-4 Booth-encoded multiplier design, each group of 3 bits (a pair,
along with the most significant bit of the previous pair) is encoded into several select lines
(SINGLEi, DOUBLEi, and NEGi, given in the rightmost columns of Table 11.12) and
driven across the partial product row as shown in Figure 11.80. The multiplier Y is distrib-
uted to all the rows. The select lines control Booth selectors that choose the appropriate
multiple of Y for each partial product. The Booth selectors substitute for the AND gates of
a simple array multiplier to determine the ith partial product. Figure 11.80 shows a con-
ventional Booth encoder and selector design [Goto92]. Y is zero-extended to M + 1 bits.
Depending on SINGLEi and DOUBLEi, the A22OI gate selects either 0, Y, or 2Y. Nega-
tive partial products should be two’s-complemented (i.e., invert and add 1). If NEGi is
asserted, the partial product is inverted. The extra 1 can be added in the least significant
column of the next row to avoid needing a CPA.

Even in an unsigned multiplier, negative partial products must be sign-extended to be
summed correctly. Figure 11.81 shows a 16-bit radix-4 Booth partial product array for an
unsigned multiplier using the dot diagram notation. Each dot in the Booth-encoded mul-

0, YN − 1:0

PPi N:0

Booth
Selector

x2i + 1

x2i

x2i − 1

NEGi

SINGLEi

DOUBLEi

Booth
Encoder

<<1

FIGURE 11.80 Radix-4 Booth encoder and selector

x0

x15

0

0
0

x−1

x16
x17

s
sssssssssssssss

s
sssssssssssss

s
sssssssssss

s
sssssssss

s
sssssss

s
sssss

s
sss

s
s

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

M
ultiplier x

FIGURE 11.81 Radix-4 Booth-encoded partial products with sign extension

11.9 Multiplication 483

tiplier is produced by a Booth selector rather than a simple AND gate. Partial products
0–7 are 17 bits. Each partial product i is sign extended with si = NEGi = x2i+1, which is 1
for negative multiples (those in the bottom half of Table 11.12) or 0 for positive multiples.
Observe how an extra 1 is added to the least significant bit in the next row to form the 2’s
complement of negative multiples. Inverting the implicit leading zeros generates leading
ones on negative multiples. The extra terms increase the size of the multiplier. PP8 is
required in case PP7 is negative; this partial product is always 0 or Y because x16 and x17
are 0. Hence, partial product 8 is only 16 bits.

Observe that the sign extension bits are all either 1s or 0s. If a single 1 is added to
the least significant position in a string of 1s, the result is a string of 0s plus a carry-out
the top bit that may be discarded. Therefore, the large number of s bits in each partial
product can be replaced by an equal number of constant 1s plus the inverse of s added to
the least significant position, as shown in Figure 11.82(a). These constants mostly can
be optimized out of the array by precomputing their sum. The simplified result is shown
in Figure 11.82(b). As usual, it can be squashed to fit a rectangular floorplan.

The critical path of the multiplier involves the Booth decoder, the select line drivers,
the Booth selector, approximately N/2 CSAs, and a final CPA. Each partial product fills
about M + 5 columns. 54 × 54-bit radix-4 Booth multipliers for IEEE double-precision
floating-point units are typically 20–50% smaller (and arguably up to 20% faster) than
nonencoded counterparts, so the technique is widely used. The multiplier requires
M × N/2 Booth selectors.

Because the selectors account for a substantial portion of the area and only a small
fraction of the critical path, they should be optimized for size over speed. For example,

s
sss

s
s1

s
s1

s
s1

s
s1

s
s1

s
s1

s
s

s
111111111111111
s

s
1111111111111
s

s
11111111111
s

s
111111111
s

s
1111111
s

s
11111
s

s
111
s

s
1
s

(a)

(b)

PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7
PP8

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

FIGURE 11.82 Radix-4 Booth-encoded partial products with simplified sign extension

Chapter 11 Datapath Subsystems484

[Goto97] describes a sign select Booth encoder and selector that uses only 10 transistors per
selector bit at the expense of a more complex encoder. [Hsu06a] presents a one-hot Booth
encoder and selector that chooses one of the six possible partial products using a transmis-
sion gate multiplexer. Exercise 11.18 explores yet another encoding.

11.9.3.1 Booth Encoding Signed Multipliers Signed two’s complement multiplication is
similar, but the multiplicand may have been negative so sign extension must be done based
on the sign bit of the partial product, PPiM [Bewick94]. Figure 11.83 shows such an array,
where the sign extension bit is ei = PPiM. Also notice that PP8, which was either Y or 0 for
unsigned multiplication, is always 0 and can be omitted for signed multiplication because
the multiplier x is sign-extended such that x17 = x16 = x15. The same Booth selector and
encoder can be employed (see Figure 11.80), but Y should be sign-extended rather than
zero-extended to M + 1 bits.

11.9.3.2 Higher Radix Booth Encoding Large multipliers can use Booth encoding of
higher radix. For example, ordinary radix-8 multiplication reduces the number of partial
products by a factor of 3, but requires hard multiples of 3Y, 5Y, and 7Y. Radix-8 Booth-
encoding only requires the hard 3Y multiple, as shown in Table 11.13. Although this
requires a CPA before partial product generation, it can be justified by the reduction in
array size and delay. Higher-radix Booth encoding is possible, but generating the other
hard multiples appears not to be worthwhile for multipliers of fewer than 64 bits. Similar
techniques apply to sign-extending higher-radix multipliers.

TABLE 11.13 Radix-8 modified Booth encoding values

xi+2 xi+1 xi xi–1 Partial Product

0 0 0 0 0
0 0 0 1 Y
0 0 1 0 Y
0 0 1 1 2Y
0 1 0 0 2Y
0 1 0 1 3Y
0 1 1 0 3Y
0 1 1 1 4Y
1 0 0 0 –4Y
1 0 0 1 –3Y
1 0 1 0 –3Y

s
eee

s
e1

s
e1

s
e1

s
e1

s
e1

s
e1

s
e

PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7

FIGURE 11.83 Radix-4 Booth-encoded partial products for signed multiplication

continues

11.9 Multiplication 485

11.9.4 Column Addition
The critical path in a multiplier involves summing the dots in each column. Observe that
a CSA is effectively a “ones counter” that adds the number of 1s on the A, B, and C inputs
and encodes them on the sum and carry outputs, as summarized in Table 11.14. A CSA is
therefore also known as a (3,2) counter because it converts three inputs into a count
encoded in two outputs [Dadda65]. The carry-out is passed to the next more significant
column, while a corresponding carry-in is received from the previous column. This is
called a horizontal path because it crosses columns. For simplicity, a carry is represented as
being passed directly down the column. Figure 11.84 shows a dot diagram of an array
multiplier column that sums N partial products sequentially using N–2 CSAs. For exam-
ple, the 16 × 16 Booth-encoded multiplier from Figure 11.82(b) sums nine partial prod-
ucts with seven levels of CSAs. The output is produced in carry-save redundant form
suitable for the final CPA.

The column addition is slow because only one CSA is active at a
time. Another way to speed the column addition is to sum partial prod-
ucts in parallel rather than sequentially. Figure 11.85 shows a Wallace tree
using this approach [Wallace64]. The Wallace tree requires

levels of (3,2) counters to reduce N inputs down to two carry-save redun-
dant form outputs.

Even though the CSAs in the Wallace tree are shown in two dimen-
sions, they are logically packed into a single column of the multiplier.
This leads to long and irregular wires along the column to connect the
CSAs. The wire capacitance increases the delay and energy of multiplier,
and the wires can be difficult to lay out.

1 0 1 1 –2Y
1 1 0 0 –2Y
1 1 0 1 –Y
1 1 1 0 –Y
1 1 1 1 –0

TABLE 11.14 An adder as a ones counter

A B C Carry Sum Number of 1s

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 2
1 0 0 0 1 1
1 0 1 1 0 2
1 1 0 1 0 2
1 1 1 1 1 3

TABLE 11.13 Radix-8 modified Booth encoding values

log /3 2 2
N()

a
b
c

Sum
Carry

(3,2) CSA

P
ar

tia
l P

ro
du

ct
s

Redundant
Output

FIGURE 11.84 Dot diagram for array multiplier

P
ar

tia
l P

ro
du

ct
s

Redundant
Output

FIGURE 11.85 Dot diagram for Wallace
tree multiplier

(continued)

Chapter 11 Datapath Subsystems486

11.9.4.1 [4:2] Compressor Trees [4:2] compressors can be used in a binary tree to produce
a more regular layout, as shown in Figure 11.86 [Weinberger81, Santoro89]. A [4:2] com-
pressor takes four inputs of equal weight and produces two outputs. It can be constructed
from two (3,2) counters as shown in Figure 11.87. Along the way, it generates an interme-

diate carry, ti, into the next column and accepts a carry, ti–1, from the previous col-
umn, so it may more aptly be called a (5,3) counter. This horizontal path does not
impact the delay because the output of the top CSA in one column is the input of
the bottom CSA in the next column. The [4:2] CSA symbol emphasizes only the
primary inputs and outputs to emphasize the main function of reducing four
inputs to two outputs. Only

levels of [4:2] compressors are required, although each has greater delay than a
CSA. The regular layout and routing also make the binary tree attractive.

To see the benefits of a [4:2] compressor, we introduce the notion of fast and
slow inputs and outputs. Figure 11.88 shows a simple gate-level CSA design. The
longest path through the CSA involves two levels of XOR2 to compute the sum.
X is called a fast input, while Y and Z are slow inputs because they pass through a
second level of XOR. C is the fast output because it involves a single gate delay,
while S is the slow output because it involves two gate delays. A [4:2] compressor
might be expected to use four levels of XOR2s. Figure 11.89 shows various [4:2]
compressor designs that reduce the critical path to only 3 XOR2s. In Figure
11.89(a), the slow output of the first CSA is connected to the fast input of the sec-
ond. In Figure 11.89(b), the [4:2] compressor has been munged into a single cell,

log2 2
N()

WX Y Z

SC

MAJ

0 1

WX Y Z

MAJ

MAJ

ti − 1

ti − 1

ti

ti

ti − 1ti

SC

WX Y Z

SC

[3:2]
CSA

[3:2]
CSA

X
N

O
R

X
N

O
R

(a) (b) (c)

FIGURE 11.89 [4:2] compressors

P
ar

tia
l P

ro
du

ct
s

Redundant
Output

FIGURE 11.86 Dot diagram for [4:2]
tree multiplier

W X Y Z

SC

ti 1ti

(a) (b)

W X Y Z

SC

FIGURE 11.87 [4:2] compressor
(a) implementation with two CSAs
(b) symbol

X Y Z

MAJ

SC

FIGURE 11.88 Gate-level
carry-save adder

11.9 Multiplication 487

allowing a majority gate to be replaced with a multiplexer. In
Figure 11.89(c), the initial XORs have been replaced with 2-level
XNOR circuits that allow some sharing of subfunctions, reduc-
ing the transistor count [Goto92].

Figure 11.90 shows a transmission gate implementation of a
[4:2] compressor from [Goto97]. It uses only 48 transistors,
allowing for a smaller multiplier array with shorter wires. Note
that it uses three distinct XNOR circuit forms and two transmis-
sion gate multiplexers.

Figure 11.91 compares floorplans of the 16 × 16 Booth-
encoded array multiplier from Figure 11.84, the Wallace tree
from Figure 11.85, and the [4:2] tree from Figure 11.86. Each
row represents a horizontal slice of the multiplier containing a
Booth selector or a CSA. Vertical busses connect CSAs. The
Wallace tree has the most irregular and lengthy wiring. In prac-
tice, the parallelogram may be squashed into a rectangular form
to make better use of the space. [Itoh01n] and [Huang05]
describes floorplanning issues in tree multipliers.

11.9.4.2 Three-Dimensional Method The notion of connecting
slow outputs to fast inputs generalizes to compressors with more
than four inputs. By examining the entire partial product array at
once, one can construct trees for each column that sum all of the
partial products in the shortest possible time. This approach is called the three-dimensional
method (TDM) because it considers the arrival time as a third dimension along with rows
and columns [Oklobdzija96, Stelling98].

Figure 11.92 shows an example of a 16 × 16 multiplier. The parallelogram at the top
shows the dot diagram from Figure 11.82(b) containing nine partial product rows
obtained through Booth encoding. The partial products in each of the 32 columns must be
summed to produce the 32-bit result. As we have seen, this is done with a compressor to
produce a pair of outputs, followed by a final CPA.

ti ti − 1

S C

WX Y Z

XNOR

XNOR

XNOR

X
N

O
R

MUX

MUX

FIGURE 11.90 Transmission gate [4:2] compressor

Redundant Output

PP0

0
Booth Selector(s)
Booth Selector + CSA

PP8

Level 1CSA

Redundant Output Redundant Output

31 15

031 15
PP2:0

PP5:3

PP8:6

PP3:0

PP7:4

PP8

[4:2] CSA

[4:2] CSA
[4:2] CSA

031 15

Level 2CSA
Level 3CSA
Level 4CSA

(a)

(b) (c)

FIGURE 11.91 16 × 16 Booth-encoded multiplier floorplans: (a) array, (b) Wallace tree, (c) [4:2] tree

Chapter 11 Datapath Subsystems488

In the three-dimensional method, each column is summed with a vertical
compressor slice (VCS) made of CSAs. In Figure 11.92, VCS 16 adds nine par-
tial products. In this diagram, the horizontal carries between compressor slices
are shown explicitly.

Each wire is labeled with its arrival time. All partial product inputs arrive
at time 0. The diagram assumes that an XOR2 and a majority gate each have
unit delay. Thus, a path through a CSA from any input to C or from X to S
takes one unit delay, and that a path from Y or Z to S takes two unit delays. A
half adder is assumed to have half the delay. Horizontal carries are represented
by diagonal lines coming from behind the slice or pointing out of the slice.
VCS 16 receives five horizontal carries in from VCS 15 and produces six hori-
zontal carries out to VCS 17. The final carry out is also shifted by one column
before driving the CPA. The inputs to the CSAs are arranged based on their
arrival times to minimize the delay of the multiplier. Note how the CSA shape
is drawn to emphasize the asymmetric delays. Also, note that VCS 16 is not
the slowest; some of the subsequent slices have one unit more delay because
the horizontal carries arrive later. [Oklobdzija96] describes an algorithm for
choosing the fastest arrangement of CSAs in each VCS given arbitrary CSA
delays. In comparison, Figure 11.93 shows the same VCS 16 using [4:2]
CSAs; more XOR levels are required but the wiring is more regular.

s
sss

s
s1

s
s1

s
s1

s
s1

s
s1

s
s1

s
s

0 0 0 0 0 0 0 0

0
.5

1

.5
2 2

2 2.5

2.5

3.5

1 1

22
1

1

2

3

4

5
5

4
3

3

5

3

To CPA

Final CPA

VCS
0

VCS
4

VCS
16VCS

32

VCS
26

CSA CSA

CSA

CSA
CSA

CSA

HA

CSA

X Y Z

C
S

Legend

X, Y, Z arrive at same time
C ready faster than S

CSA

X Y Z

C S

X arrives slightly later than Y and Z
C ready slightly faster than S

X
Y Z

C S

CSA
X arrives much later than Y and Z
C ready at same time as S

T
m

e

FIGURE 11.92 Vertical compressor slices in a TDM multiplier

4:2 4:2

4:2

1
1

0 0 0 0

3
3

1

1
0 0 0 0

3
3

33

33
4

4
6 6

6 0 6

8
8

FIGURE 11.93 Vertical compressor slice
using [4:2] compressors

11.9 Multiplication 489

Table 11.15 lists the number of XOR levels on the critical path for various numbers of
partial products. [4:2] trees offer a substantial improvement over Wallace trees in logic lev-
els as well as wiring complexity. TDM generally saves one level of XOR over [4:2] trees, or
more for very large multiplies. This savings comes at the cost of irregular wiring, so [4:2]
trees and variants thereof remain popular.

11.9.4.3 Hybrid Multiplication Arrays offer regular layout, but many levels of CSAs.
Trees offer fewer levels of CSAs, but less regular layout and some long wires. A number of
hybrids have been proposed that offer trade-offs between these two extremes. These
include odd/even arrays [Hennessy90], arrays of arrays [Dhanesha95], balanced delay trees
[Zuras86], overturned-staircase trees [Mou90], and upper/lower left-to-right leapfrog
(ULLRF) trees [Huang05]. They can achieve nearly as few levels of logic as the Wallace
tree while offering more regular (and faster) wiring. None have caught on as distinctly bet-
ter than [4:2] trees.

11.9.5 Final Addition
The output of the partial product array or tree is an M + N-bit number in carry-save
redundant form. A CPA performs the final addition to convert the result back to nonre-
dundant form.

The inputs to the CPA have nonuniform arrival times. As Figure 11.91 illustrated,
the partial products form a parallelogram, with the middle columns having more partial
products than the left or right columns. Hence, the middle columns arrive at the CPA
later than the others. This can be exploited to simplify the CPA [Zimmermann96,
Oklobdzija96]. Figure 11.94 shows an example of a 32-bit prefix network that takes
advantage of nonuniform arrival times out of a 16 × 16-bit multiplier. The initial and final
stages to compute bitwise PG signals and the sums are not shown. The path from the lat-
est middle inputs to the output involves only four levels of cells. The total number of cells

TABLE 11.15 Comparison of XOR levels in multiplier trees

Partial Products Wallace Tree 4:2 Tree TDM

8 8 6 5
9 8 8 6
16 12 9 8
24 14 11 10
32 16 12 11
64 20 15 14

012345678910111213141516171819202122232425262728293031

Time

FIGURE 11.94 CPA prefix network with nonuniform input arrival times

Chapter 11 Datapath Subsystems490

and the energy consumption is much less than that of a conventional Kogge-Stone or
Sklansky CPA.

11.9.6 Fused Multiply-Add
Many algorithms, particularly in digital signal processing, require computing P = X × Y +
Z. While this can be done with a multiplier and adder, it is much faster to use a fused
multiply-add unit, which is simply an ordinary multiplier modified to accept another input
Z that is summed just like the other partial products [Montoye90]. The extra partial prod-
uct increases the delay of an array multiplier by just one extra CSA.

11.9.7 Serial Multiplication
This section is available in the online Web Enhanced chapter at www.cmosvlsi.com.

11.9.8 Summary
The three steps of multiplication are partial product generation, partial product reduction,
and carry propagate addition. A simple M × N multiplier generates N partial products
using AND gates. For multipliers of 16 or more bits, radix-4 Booth encoding is typically
used to cut the number of partial products in two, saving substantial area and power. Some
implementations find Booth encoding is faster, while others find it has little speed benefit.
The partial products are then reduced to a pair of numbers in carry-save redundant form
using an array or tree of CSAs. Trees have fewer levels of logic, but longer and less regular
wiring; nevertheless most large multipliers use trees or hybrid structures. Pass transistor
Booth selectors and CSAs were popular in the 1990s, but the trend is toward static
CMOS as supply voltage scales. Finally, a CPA converts the result to nonredundant form.
The CPA can be simplified based on the nonuniform arrival times of the bits.

Table 11.16 compares reported implementations of 54 × 54-bit multipliers for double-
precision floating point arithmetic. All of the implementations use radix-4 Booth encoding.

TABLE 11.16 54 × 54-bit multipliers

Design Process
(mm)

PP
Reduction

Circuits Area
(mm × mm)

Area
(Ml2)

Transistors Latency
(ns)

Power
(mW)

[Mori91] 0.5 4:2 tree Pass
Transistor

XOR

3.6 × 3.5 200 82k 10 870

[Goto92] 0.8 4:2 tree Static 3.4 × 3.9 80 83k 13 875
[Heikes94] 0.8 array Dual-Rail

Domino
2.1 × 2.2 28 20

(2-stage pipeline)
[Ohkubo95] 0.25 4:2 tree Pass

Transistors
3.7 × 3.4 805 100k 4.4

[Goto97] 0.25 4:2 tree Pass
Transistors

1.0 × 1.3 84 61k 4.1

[Itoh01] 0.18 4:2 tree Static 1 × 1 100 3.2
(2-stage pipeline)

[Belluomini05] 90 nm 3:2 and
4:2 tree

LSDL 0.4 × 0.3 61 1800 @
8 GHz

[Kuang05] 90 nm 3:2 and
4:2 tree

Pass
Transistor

and Domino

0.5 × 0.4 94 426 @
4 GHz

WEB
ENHANCED

11.10 Parallel-Prefix Computations 491

11.10 Parallel-Prefix Computations
Many datapath operations involve calculating a set of outputs from a set of inputs in which
each output bit depends on all the previous input bits. Addition of two N-bit inputs AN…A1
and BN…B1 to produce a sum output YN…Y1 is a classic example; each output Yi depends on
a carry-in ci–1 from the previous bit, which in turn depends on a carry-in ci–2 from the bit
before that, and so forth. At first, this dependency chain might seem to suggest that the
delay must involve about N stages of logic, as in a carry-ripple adder. However, we have seen
that by looking ahead across progressively larger blocks, we can construct adders that involve
only log N stages. Section 11.2.2.2 introduced the notion of addition as a prefix computation
that involves a bitwise precomputation, a tree of group logic to form the prefixes, and a final
output stage, shown in Figure 11.12. In this section, we will extend the same techniques to
other prefix computations with associative group logic functions.

Let us begin with the priority encoder shown in Figure 11.95. A common application
of a priority encoder circuit is to arbitrate among N units that are all requesting access to a
shared resource. Each unit i sends a bit Ai indicating a request and receives a bit Yi indicat-
ing that it was granted access; access should only be granted to a single unit with highest
priority. If the least significant bit of the input corresponds to the highest priority, the
logic can be expressed as follows:

 (11.33)

We can express priority encoding as a prefix operation by defining a prefix Xi:j indi-
cating that none of the inputs Ai…Aj are asserted. Then, priority encoding can be defined
with bitwise precomputation, group logic, and output logic with i k > j:

 (11.34)

Any of the group networks (e.g., ripple, skip, lookahead, select, increment, tree) dis-
cussed in the addition section can be used to build the group logic to calculate the Xi:0 pre-
fixes. Short priority encoders use the ripple structure. Medium-length encoders may use a
skip, lookahead, select, or increment structure. Long encoders use prefix trees to obtain log
N delay. Figure 11.96 shows four 8-bit priority encoders illustrating the different group
logic. Each design uses an initial row of inverters for the Xi:i precomputation and a final
row of AND gates for the Yi output logic. In between, ripple, lookahead, increment, and
Sklansky networks form the prefixes with various trade-offs between gate count and delay.
Compare these trees to Figure 11.15, Figure 11.22, Figure 11.25, and Figure 11.29(b),
respectively. [Wang00, Delgado-Frias00, Huang02] describe a variety of priority encoder
implementations.

An incrementer can be constructed in a similar way. Adding 1 to an input word con-
sists of finding the least significant 0 in the word and inverting all the bits up to this point.
The X prefix plays the role of the propagate signal in an adder. Again, any of the prefix
networks can be used with varying area-speed trade-offs.

Y A

Y A A

Y A A A

Y A AN N N

1 1

2 2 1

3 3 2 1

1

=

=

=

=

...

.... A1

X A

X X X
i i i

i j i k k j

:

: : :

=
=

bitwise precomputation

gr1 oup logic

output logicY A Xi i i= 1 1:

A1
A2

AN

Y1
Y2

YN

P
rio

rit
y

E
nc

od
er

FIGURE 11.95
Priority encoder

Chapter 11 Datapath Subsystems492

 (11.35)

Decrementers and two’s complement circuits are also similar [Hashemian92]. The decre-
menter finds the least significant 1 and inverts all the bits up to this point. The two’s comple-
ment circuit negates a signed number by inverting all the bits above the least significant 1.

A binary-to-thermometer decoder is another application of a prefix computation. The
input B is a k-bit representation of the number M. The output Y is a 2k-bit number with
the M most significant bits set to 1, as given in Table 11.17. A simple approach is to use an
ordinary k:2k decoder to produce a one-hot 2k-bit word A. Then, the following prefix
computation can be applied:

X A

X X X
i i i

i j i k k j

:

: : :

=
=

bitwise precomputation

gr1 oup logic

output logicY A Xi i i= 1 1:

X2:1

X3:1

X4:1

X5:1

X6:5

X7:5

A8 A1A2A3A4A5A6A7

A8 A1A2A3A4A5A6A7

Y8 Y1Y2Y3Y4Y5Y6Y7

Y8 Y1Y2Y3Y4Y5Y6Y7

Y8 Y1Y2Y3Y4Y5Y6Y7

Y8 Y1Y2Y3Y4Y5Y6Y7

X1X2X3X4X5X6X7

A8 A1A2A3A4A5A6A7

A8 A1A2A3A4A5A6A7

X1X2X3X4X5X6X7

A8 A1A2A3A4A5A6A7

A8 A1A2A3A4A5A6A7

X1X2X3X4X5X6X7

A8 A1A2A3A4A5A6A7

A8 A1A2A3A4A5A6A7

X1X2X3X4X5X6X7

X2:1

X3:1

X4:1

X5:1

X6:1

X7:1

X6:1X7:1

X2:1

X4:3

X4:1

X

X6:5
X7:5

X6:1X7:1

X2:1

X3:1

X4:1

X5:1

X6:1

X4:1

X7:1

(a) Ripple (b) Lookahead

(c) Increment (d) Sklansky

5:1

FIGURE 11.96 Priority encoder trees

11.11 Pitfalls and Fallacies 493

(11.36)

TABLE 11.17 Binary to thermometer decoder

B Y
000 00000000
001 10000000
010 11000000
011 11100000
100 11110000
101 11111000
110 11111100
111 11111110

X A

X X X
i i N i

i j i k k j

:

: : :

=

= +
bitwise precomputation

1 group logic

output logicY Xi i= :0

3:8 Decoder
B2:0

111110101100011010001000

0

B2
B1
B0

0

X1X2X4X6 X3X5X7

Y1 Y0Y2Y3Y4Y5Y6Y7

Y1 Y0Y2Y3Y4Y5Y6Y7

(a)

(b)

FIGURE 11.97
Binary-to-thermometer decoders

Figure 11.97(a) shows an 8-bit binary-to-thermometer decoder using a
Sklansky tree. The 3:8 decoder contains eight 3-input AND gates operating on
true and complementary versions of the input. However, the logic can be signifi-
cantly simplified by eliminating the complemented AND inputs, as shown in
Figure 11.97(b)

In a slightly more complicated example, consider a modified priority
encoder that finds the first two 1s in a string of binary numbers. This might be
useful in a cache with two write ports that needs to find the first two free words
in the cache. We will use two prefixes: X and W. Again, Xi:j indicates that none
of the inputs Ai…Aj are asserted. Wi:j indicates exactly one of the inputs Ai…Aj
is asserted. We will produce two 1-hot outputs, Y and Z, indicating the first
two 1s.

(11.37)

11.11 Pitfalls and Fallacies
Equating logic levels and delay
Comparing a novel design with the best existing design is difficult. Some engineers cut corners

by merely comparing logic levels. Unfortunately, delay depends strongly on the logical effort

of each stage, the fanout it must drive, and the wiring capacitance. For example, [Srinivas92]

claims that a novel adder is 20–28% faster than the fastest known binary lookahead adder, but

X A
W A

X X X

i i i

i i i

i j i k

:

:

: :

=
=

=

bitwise precomputation

k j

i j i k k j i k k j

i

W W X X W

Y

= +
1

1 1

:

: : : : : group logic

==
=

A X
Z A W

i i

i i i

1 1

1 1

:

: output logic

Chapter 11 Datapath Subsystems494

does not present simulation results. Moreover, it reports some of the speed advantages to three

or four significant figures. On closer examination [Dobson95], the adder proves to just be a hy-

brid tree/carry-select design with some unnecessary precomputation.

Designing circuits with threshold drops
In modern processes, single-pass transistors that pull an output to VDD – Vt are generally un-

acceptable because the threshold drop (amplified by the body effect) results in an output with

too little noise margin. Moreover, when they drive the gate terminals of a subsequent stage,

the stage turns partially ON and consumes static power. Many 10-transistor full-adder cells

have been proposed that suffer from such a threshold drop problem.

Reinventing adders
There is an enormous body of literature on adders with various trade-offs among speed, area,

and power consumption. The design space has been explored fairly well and many designers

(one of the authors included) have spent quite a bit of time developing a “new” adder, only to

find that it is only a minor variation on an existing theme. Similarly, a number of recent pub-

lications on priority encoders reinvent prefix network techniques that have already been ex-

plored in the context of addition.

Summary
This chapter has presented a range of datapath subsystems. How one goes about designing
and implementing a given CMOS chip is largely affected by the availability of tools, the
schedule, the complexity of the system, and the final cost goals of the chip. In general, the
simplest and least expensive (in terms of time and money) approach that meets the target
goals should be chosen. For many systems, this means that synthesis and place & route is
good enough. Modern synthesis tools draw on a good library of adders and multipliers
with various area/speed trade-offs that are sufficient to cover a wide range of applications.
For systems with the most stringent requirements on performance or density, custom
design at the schematic level still provides an advantage. Domino parallel-prefix trees pro-
vide the fastest adders when the high power consumption can be tolerated. Domino CSAs
are also used in fast multipliers. However, in multiplier design, the wiring capacitance is
paramount and a multiplier with compact cells and short wires can be fast as well as small
and low in power.

Exercises
11.1 Design a fast 8-bit adder. The inputs may drive no more than 30 of transistor

width each and the output must drive a 20/10 inverter. Simulate the adder and
determine its delay.

11.2 When adding two unsigned numbers, a carry-out of the final stage indicates an
overflow. When adding two signed numbers in two’s complement format, overflow
detection is slightly more complex. Develop a Boolean equation for overflow as a
function of the most significant bits of the two inputs and the output.

 Exercises 495

 11.3 Repeat Exercise 11.2 for a signed add/subtract unit like that shown in Figure
11.41(b). Your overflow output should be a function of the subsignal and the most
significant bits of the two inputs and the output.

 11.4 Develop equations for the logical effort and parasitic delay with respect to the C0
input of an n-stage Manchester carry chain computing C1…Cn. Consider all of the
internal diffusion capacitances when deriving the parasitic delay. Use the transistor
widths shown in Figure 11.98 and assume the Pi and Gi transistors of each stage
share a single diffusion contact.

P1
φ

G1

φ

G2

P2
φ

Gn

Pn

C0 (G0)

C1 (G1:0)

Cn (Gn:0)

Cn − 1 (Gn − 1:0)

4 4
4

4
4

4
4

111

2/0.5 2/0.5
2/0.5

FIGURE 11.98 Manchester carry chain

 11.5 Using the results of Exercise 11.4, what Manchester carry chain length gives the
least delay for a long adder?

 11.6 The carry increment adder in Figure 11.26(b) with variable block size requires five
stages of valency-2 group PG cells for 16-bit addition. How many stages are
required for 32-bit addition? For 64-bit addition?

 11.7 Sketch the PG network for a modified 16-bit Sklansky adder with fanout of [8, 1,
1, 1] rather than [8, 4, 2, 1]. Use buffers to prevent the less-significant bits from
loading the critical path.

 11.8 Figure 11.29 shows PG networks for various 16-bit adders and Figure 11.30 illus-
trates how these networks can be classified as the intersection of the l + f + t = 3
plane with the face of a cube. The plane also intersects one point inside the cube at
(l, f, t) = (1, 1, 1) [Harris03]. Sketch the PG network for this 16-bit adder.

 11.9 Sketch a diagram of the group PG tree for a 32-bit Ladner-Fischer adder.

11.10 Write a Boolean expression for Cout in the circuit shown in Figure 11.6(b). Simplify
the equation to prove that the pass-transistor circuits do indeed compute the major-
ity function.

11.11 Prove EQ (11.21).

11.12 Sketch a design for a comparator computing A – B = k.

11.13 Show how the layout of the parity generator of Figure 11.57 can be designed as a
linear column of XOR gates with a tree-routing channel.

11.14 Design an ECC decoder for distance-3 Hamming codes with c = 3. Your circuit
should accept a 7-bit received word and produce a 4-bit corrected data word.
Sketch a gate-level implementation.

11.15 How many check bits are required for a distance-3 Hamming code for 8-bit data
words? Sketch a parity-check matrix and write the equations to compute each of
the check bits.

Chapter 11 Datapath Subsystems496

11.16 Find the 4-bit binary-reflected Gray code values for the numbers 0–15.

11.17 Design a Gray-coded counter in which only one bit changes on each cycle.

11.18 Table 11.12 and Figure 11.80 illustrated radix-4 Booth encoding using SINGLE,
DOUBLE, and NEG. An alternative encoding is to use POS, NEG, and
DOUBLE. POS is true for the multiples Y and 2Y. NEG is true for the multiples
–Y and –2Y. DOUBLE is true for the multiples 2Y and –2Y. Design a Booth
encoder and selector using this encoding.

11.19 Adapt the priority encoder logic of EQ (11.37) to produce three 1-hot outputs
corresponding to the first three 1s in an input string.

11.20 Sketch a 16-bit priority encoder using a Kogge-Stone prefix network.

11.21 Use Logical Effort to estimate the delay of the priority encoder from Exercise
11.20. Assume the path electrical effort is 1.

11.22 Write equations for a prefix computation that determines the second location in
which the pattern 10 appears in an N-bit input string. For example, 010010 should
return 010000.

11.23 [Jackson04] proposes an extension of the Ling adder formulation to simplify cells
later in the prefix network. Design a 16-bit adder using this technique and com-
pare it to a conventional 16-bit Ling adder.

12

497

Array
Subsystems

12.1 Introduction
Memory arrays often account for the majority of transistors in a CMOS system-on-chip.
Arrays may be divided into categories as shown in Figure 12.1. Programmable Logic Arrays
(PLAs) perform logic rather than storage functions, but are also discussed in this chapter.

Random access memory is accessed with an address and has a latency independent of the
address. In contrast, serial access memories are accessed sequentially so no address is neces-
sary. Content addressable memories determine which address(es) contain data that matches a
specified key.

Random access memory is commonly classified as read-only memory (ROM) or
read/write memory (confusingly called RAM). Even the term ROM is misleading because
many ROMs can be written as well. A more useful classification is volatile vs. nonvolatile
memory. Volatile memory retains its data as long as power is applied, while nonvolatile
memory will hold data indefinitely. RAM is synonymous with volatile memory, while
ROM is synonymous with nonvolatile memory.

Memory Arrays

Random Access Memory Serial Access Memory Content Addressable Memory
(CAM)

Volatile Memory
(RAM)

Nonvolatile Memory
(ROM)

Static RAM
(SRAM)

Dynamic RAM
(DRAM)

Shift Registers Queues

First In
First Out
(FIFO)

Last In
First Out
(LIFO)

Serial In
Parallel Out

(SIPO)

Parallel In
Serial Out

(PISO)

Mask ROM Programmable
ROM

(PROM)

Erasable
Programmable

ROM
(EPROM)

Electrically
Erasable

Programmable
ROM

(EEPROM)

Flash ROM

FIGURE 12.1 Categories of memory arrays

Chapter 12 Array Subsystems498

Like sequencing elements, the memory cells used in volatile memories can further be
divided into static structures and dynamic structures. Static cells use some form of feedback
to maintain their state, while dynamic cells use charge stored on a floating capacitor
through an access transistor. Charge will leak away through the access transistor even
while the transistor is OFF, so dynamic cells must be periodically read and rewritten to
refresh their state. Static RAMs (SRAMs) are faster and less troublesome, but require
more area per bit than their dynamic counterparts (DRAMs).

Some nonvolatile memories are indeed read-only. The contents of a mask ROM are
hardwired during fabrication and cannot be changed. But many nonvolatile memories can
be written, albeit more slowly than their volatile counterparts. A programmable ROM
(PROM) can be programmed once after fabrication by blowing on-chip fuses with a spe-
cial high programming voltage. An erasable programmable ROM (EPROM) is pro-
grammed by storing charge on a floating gate. It can be erased by exposure to ultraviolet
(UV) light for several minutes to knock the charge off the gate. Then the EPROM can be
reprogrammed. Electrically erasable programmable ROMs (EEPROMs) are similar, but can
be erased in microseconds with on-chip circuitry. Flash memories are a variant of
EEPROM that erases entire blocks rather than individual bits. Sharing the erase circuitry
across larger blocks reduces the area per bit. Because of their good density and easy in-
system reprogrammability, Flash memories have replaced other nonvolatile memories in
most modern CMOS systems.

Memory cells can have one or more ports for access. On a read/write memory, each
port can be read-only, write-only, or capable of both read and write.

A memory array contains 2n words of 2m bits each. Each bit is stored in a memory
cell. Figure 12.2 shows the organization of a small memory array containing 16 4-bit
words (n = 4, m = 2). Figure 12.2(a) shows the simplest design with one row per word and
one column per bit. The row decoder uses the address to activate one of the rows by assert-
ing the wordline. During a read operation, the cells on this wordline drive the bitlines,
which may have been conditioned to a known value in advance of the memory access. The
column circuitry may contain amplifiers or buffers to sense the data. A typical memory
array may have thousands or millions of words of only 8–64 bits each, which would lead to
a tall, skinny layout that is hard to fit in the chip floorplan and slow because of the long
vertical wires. Therefore, the array is often folded into fewer rows of more columns. After
folding, each row of the memory contains 2k words, so the array is physically organized as
2n–k rows of 2m+k columns or bits. Figure 12.2(b) shows a two-way fold (k = 1) with eight
rows and eight columns. The column decoder controls a multiplexer in the column cir-
cuitry to select 2m bits from the row as the data to access. Larger memories are generally
built from multiple smaller subarrays so that the wordlines and bitlines remain reasonably
short, fast, and low in power dissipation.

We begin in Section 12.2 with SRAM, the most widely used form of on-chip memory.
SRAM also illustrates all the issues of cell design, decoding, and column circuitry design.
Subsequent sections address DRAMs, ROMs, serial access memories, CAMs, and PLAs.

12.2 SRAM
Static RAMs use a memory cell with internal feedback that retains its value as long as
power is applied. It has the following attractive properties:

� Denser than flip-flops

� Compatible with standard CMOS processes

12.2 SRAM 499

� Faster than DRAM

� Easier to use than DRAM

For these reasons, SRAMs are widely used in applications from caches to register files to
tables to scratchpad buffers. The SRAM consists of an array of memory cells along with
the row and column circuitry. This section begins by examining the design and operation
of each of these components. It then considers important special cases of SRAMs, includ-
ing multiported register files, large SRAMs and subthreshold SRAMs.

12.2.1 SRAM Cells
A SRAM cell needs to be able to read and write data and to hold the data as long as the
power is applied. An ordinary flip-flop could accomplish this requirement, but the size
is quite large. Figure 12.3 shows a standard 6-transistor (6T) SRAM cell that can be an
order of magnitude smaller than a flip-flop. The 6T cell achieves its compactness at the
expense of more complex peripheral circuitry for reading and writing the cells. This is a

Bitline
Conditioning

Bitline
Conditioning

Wordlines

Bitlines

Address Data (2m bits) Address Data (2m bits)

n n

k
n − k

Memory
Cells

2n rows ×
2m columns

Memory
Cells

2n − k rows ×
2m + k columns

R
ow

 D
ecoder

R
ow

 D
ecoder

Column
Circuitry

Column
Circuitry

Col
Dec

(a) (b)

FIGURE 12.2 Memory array architecture

bit bit_b

word

FIGURE 12.3
6T SRAM cell

Chapter 12 Array Subsystems500

good trade-off in large RAM arrays where the memory cells dominate the area. The small
cell size also offers shorter wires and hence lower dynamic power consumption.

The 6T SRAM cell contains a pair of weak cross-coupled inverters holding the state
and a pair of access transistors to read or write the state. The positive feedback corrects
disturbances caused by leakage or noise. The cell is written by driving the desired value
and its complement onto the bitlines, bit and bit_b, then raising the wordline, word. The
new data overpowers the cross-coupled inverters. It is read by precharging the two bitlines
high, then allowing them to float. When word is raised, bit or bit_b pulls down, indicating
the data value. The central challenges in SRAM design are minimizing its size and ensur-
ing that the circuitry holding the state is weak enough to be overpowered during a write,
yet strong enough not to be disturbed during a read.

SRAM operation is divided into two phases. As described in Section 10.4.6, the
phases will be called 1 and 2, but may actually be generated from clk and its complement
clkb. Assume that in phase 2, the SRAM is precharged. In phase 1, the SRAM is read or
written. Timing diagrams will label the signals as _q1 for qualified clocks (1 gated with
an enable), _v1 for those that become valid during phase 1, and _s1 for those that remain
stable throughout phase 1.

It is no longer common for designers to develop their own SRAM cells. Usually, the
fabrication vendor will supply cells that are carefully tuned to the particular manufacturing
process. Some processes provide two or more cells with different speed/density trade-offs.

Read and write operations and the physical design of the SRAM are discussed in the
subsequent sections.

12.2.1.1 Read Operation Figure 12.4 shows a SRAM cell being read. The bitlines are
both initially floating high. Without loss of generality, assume Q is initially 0 and thus
Q_b is initially 1. Q_b and bit_b both should remain 1. When the wordline is raised, bit

should be pulled down through driver and access transistors D1 and A1.
At the same time bit is being pulled down, node Q tends to rise. Q is
held low by D1, but raised by current flowing in from A1. Hence, the
driver D1 must be stronger than the access transistor A1. Specifically,
the transistors must be ratioed such that node Q remains below the
switching threshold of the P2/D2 inverter. This constraint is called read
stability. Waveforms for the read operation are shown in Figure 12.4(b)
as a 0 is read onto bit. Observe that Q momentarily rises, but does not
glitch badly enough to flip the cell.

Figure 12.5 shows the same cell in the context of a full column
from the SRAM. During phase 2, the bitlines are precharged high. The
wordline only rises during phase 1; hence, it can be viewed as a _q1
qualified clock (see Section 10.4.6). Many SRAM cells share the same
bitline pair, which acts as a distributed dual-rail footless dynamic multi-
plexer. The capacitance of the entire bitline must be discharged through
the access transistor. The output can be sensed by a pair of HI-skew
inverters. By raising the switching threshold of the sense inverters,
delay can be reduced at the expense of noise margin. The outputs are
dual-rail monotonically rising signals, just as in a domino gate.

12.2.1.2 Write Operation Figure 12.6 shows the SRAM cell being
written. Again, assume Q is initially 0 and that we wish to write a 1 into
the cell. bit is precharged high and left floating. bit_b is pulled low by a

bit bit_b

D1

A1
P1

Q

P2

D2

A2

Q_b

word

0.0
0

(a)

(b)

t

word bit

Q

Q_b bit_b
1.0

FIGURE 12.4 Read operation for 6T SRAM cell

12.2 SRAM 501

write driver. We know on account of the read stability constraint that
bit will be unable to force Q high through A1. Hence, the cell must be
written by forcing Q_b low through A2. P2 opposes this operation;
thus, P 2 must be weaker than A 2 so that Q_b can be pulled low
enough. This constraint is called writability. Once Q_b falls low, D1
turns OFF and P1 turns ON, pulling Q high as desired.

Figure 12.7(a) again shows the cell in the context of a full column
from the SRAM. During phase 2, the bitlines are precharged high.
Write drivers pull the bitline or its complement low during phase 1 to
write the cell. The write drivers can consist of a pair of transistors on
each bitline for the data and the write enable, or a single transistor
driven by the appropriate combination of signals (Figure 12.7(b)). In
either case, the series resistance of the write driver, bitline wire, and
access transistor must be low enough to overpower the pMOS transis-
tor in the SRAM cell. Some arrays use tristate write drivers to improve
writability by actively driving one bitline high while the other is pulled
low.

12.2.1.3 Cell Stability To ensure both read stability and writability,
the transistors must satisfy ratio constraints. The nMOS pulldown
transistor in the cross-coupled inverters must be strongest. The access
transistors are of intermediate strength, and the pMOS pullup transis-
tors must be weak. To achieve good layout density, all of the transistors
must be relatively small. For example, the pulldowns could be 8/2 ,
the access transistors 4/2, and the pullups 3/3. The SRAM cells
must operate correctly at all voltages and temperatures despite process
variation.

The stability and writability of the cell are quantified by the hold
margin, the read margin, and the write margin, which are determined
by the static noise margin of the cell in its various modes of operation.
A cell should have two stable states during hold and read operation,
and only one stable state during write. The static noise margin (SNM)
measures how much noise can be applied to the inputs of the two
cross-coupled inverters before a stable state is lost (during hold or
read) or a second stable state is created (during write).

H H

SRAM Cell

word_q1

bit_v1f

bit_b_v1f

out_v1rout_b_v1r

word_q1

bit_v1f

out_v1r

φ2

More
Cells

Bitline Conditioning

φ1

φ2

FIGURE 12.5 SRAM column read

t

word

Q

Q_b

bit_b

0.0

1.0

0

FIGURE 12.6 Write operation for 6T SRAM cell

More
Cells

SRAM Cell

word_q1

b
t_v1f

b
t_b_v1f

data_s1

write_q1

(a)

(b)

Write Driver

Bitline Conditioning

φ1

φ2

write_s1
data_s1

write1_q1write0_q1

φ1

write_s1
data_s1

bit bit_b

FIGURE 12.7 SRAM column write

Chapter 12 Array Subsystems502

Figure 12.8 shows the test circuit for determining the hold margin (i.e., the
static noise margin while the cell is holding its state and being neither read nor
written; this is unrelated to the hold time of flip-flop). A noise source Vn is
applied to each of the cross-coupled inverters. The access transistors are OFF
and do not affect the circuit behavior. The static noise margin can be determined
graphically from a butterfly diagram shown in Figure 12.9. The plot is generated
by setting Vn = 0 and plotting V2 against V1 (curve I) and V1 against V2 (curve
II). If the inverters are identical, the DC transfer curves are mirrored across the
line of V1 = V2. The butterfly plot shows two stable states (with one output low
and the other high) and one metastable state (with V1 = V2). A positive value of
noise shifts curve I left and curve II up. Excessive noise eliminates the stable
state of V1 = 0 and V2 = VDD, forcing the cell into the opposite state. The static
noise margin is determined by the length of the side of the largest square that
can be inscribed between the curves [Lohstroh83, Seevinck87]. If the inverters
are identical, the butterfly diagram is symmetric, so the high and low static noise
margins are equal.1 If the inverters are not identical, the static noise margin is
the lesser of the two cases. The noise margin increases with VDD and Vt .

When the cell is being read, the bitlines are initially precharged and the
access transistor tends to pull the low node up. This distorts the voltage transfer
characteristics. The static noise margin under these circumstances is called the
read margin and is smaller than the hold margin. It can be obtained by perform-
ing the same simulation on the circuit in Figure 12.10 with the bitlines tied to
VDD. Figure 12.11 shows the results. The read margin depends on the relative
strength of the pulldown transistor D to the access transistor A. The ratio of
these two transistors’ widths is called the beta ratio or cell ratio. A higher beta
ratio increases the read margin but takes more area to build the wide pulldown
transistors. The read margin also improves by increasing VDD or Vt or by reduc-
ing the wordline voltage relative to VDD.

When the cell is being written, the access transistor A must overpower the
pullup P to create a single stable state. The write margin is determined by a sim-
ilar simulation as read margin, with one access transistor pulling to 0 and the
other to 1. If |Vn| is too large, a second stable state will exist, preventing the
function of writes. Figure 12.12 shows the characteristics while bit is held at 0.
The write margin is the size of the smallest square inscribed between the two
curves [Bhavnagarwala05]. The write margin improves as the access transistor
becomes stronger, the pullup becomes weaker, or the word line voltage increases.
These trends are in conflict with improving the read margin.

Threshold voltage mismatch caused by random dopant fluctuations is a par-
ticular problem in nanometer processes because of the vast number of cells on a
chip and the increasing variability [Bhavnagarwala01]. This variation creates a
distribution of read, write, and hold margins. If any cell develops a negative
margin, it is inoperable.

1In contrast, the unity gain noise margins defined in Section 2.5.3 may be unequal. The static
noise margin found by the butterfly diagram sacrifices part of the larger noise margin to im-
prove the smaller one.

V1

V2

VnVn

FIGURE 12.8
Cross-coupled inverters
with noise sources for
hold margin

1.00.0 0.2 0.4 0.6 0.8
0.0

1.0

0.2

0.4

0.6

0.8

V1

SNM =
0.32 V

Lin
e

of
 sy

m
m

et
ry

V2

I

II

FIGURE 12.9 Butterfly diagram indicating
hold margin

V1

V2

VnVn

FIGURE 12.10 Read
margin circuit

1.00.0 0.2 0.4 0.6 0.8
0.0

1.0

0.2

0.4

0.6

0.8

V1

0.10 V

V2

III

FIGURE 12.11 Read margin

12.2 SRAM 503

Example 12.1

Suppose the cells in a 64 Mb SRAM have normally distributed read mar-
gins with 15 mV standard deviations. Assume the array is unreliable if any
cell has a negative read margin (this is optimistic; some margin should be
budgeted for noise). What must the mean read margin be to achieve 90%
parametric yield for the array?

SOLUTION: Using EQ (7.21), each cell must have a failure probability of

(12.1)

According to Table 7.8, this means that nearly 6	 of Gaussian variation
must be accepted. Thus, the read margin should be at least 90 mV.

This analysis should be taken with several caveats. The calculation of Xc
assumes that the cell failure probabilities are independent (though not nec-
essarily Gaussian). The distribution of read margins is not necessarily
Gaussian and a distribution with a differently shaped tail will require a dif-
ferent amount of margin to achieve Xc. The failure criteria of zero read
margin does not account for noise that might disturb the cell. The choice of
90% parametric yield is arbitrary and possibly misleading. If the memory
were a small part of a larger chip, its parametric yield would have to be
larger to achieve good parametric yield for the whole chip. And point
defects that cause functional failure have not been considered.

Verifying such failure rates through brute force Monte Carlo simulation requires bil-
lions of simulations, which becomes impractical. However, the tails of the static noise
margins have been found empirically to follow normal distributions [Calhoun06b].
Therefore, a smaller number of Monte Carlo parameters can be used to fit a model, which
in turn is used to predict the behavior of the long tails. This should be done with caution
because if the tail distribution does not closely match the model, the results can be seri-
ously inaccurate. Alternatively, a technique called importance sampling performs simula-
tions using random values near the point of failure. The samples are then weighted to
produce the corrected probability of failure [Kanj06].

Because the static noise margins depend on VDD, SRAMs have a minimum voltage at
which they can reliably operate. This voltage is called Vmin and is typically on the order of
0.7–1.0 V when 6T cells are employed. Vmin presents an obstacle to continued voltage
scaling. Section 12.2.6.1 investigates alternatives for low-voltage SRAM design.

Static noise margins are conservative because they assume DC operation: noise
sources are constant, access transistors are ON indefinitely, and bitlines remain at their full
precharged level. These assumptions can be relaxed to define larger dynamic noise margins
[Khalil08, Sharifkhani09].

12.2.1.4 Physical Design SRAM cells require clever layout to achieve good density. A
traditional design was used until the 90 nm generation, and a lithographically friendly
design has been used since.

 Figure 12.13(a) shows a stick diagram of a traditional 6T cell. The cell is designed to
be mirrored and overlapped to share VDD and GND lines between adjacent cells along the
cell boundary, as shown in Figure 12.13(b). Note how a single diffusion contact to the bit-

X Yc
N= = = ×1 1 0 9 1 6 102 926

. .
1.00.0 0.2 0.4 0.6 0.8

0.0

1.0

0.2

0.4

0.6

0.8

V1

0.21 V

V2

II

I

FIGURE 12.12 Write margin

Chapter 12 Array Subsystems504

line is shared between a pair of cells. This halves the diffusion capaci-
tance, and hence reduces the delay discharging the bitline during a read
access. The wordline is run in both metal1 and polysilicon; the two lay-
ers must occasionally be strapped (e.g., every four or eight cells). Figure
12.14 shows a conservative cell of 26 × 45 , obeying the MOSIS sub-
micron design rules. In this layout, the metal1 and polysilicon wordlines
are contacted in each cell. The substrate and well are also contacted in
each cell.

The bends in polysilicon and diffusion are difficult to precisely fab-
ricate when the feature size is smaller than the wavelength of light.
Moreover, mask misalignments in the traditional cell further increase
the variability. Thus, nanometer processes now use the lithographically
friendly 6T cell shown in Figure 12.15 [Osada01]. Diffusion runs strictly
in the vertical direction and polysilicon runs strictly in the horizontal
direction. The cell is long and skinny, reducing the critical bitline capac-
itance at the expense of longer wordlines. It is thus sometimes called a
thin cell [Khare02]. The layout occupies two horizontal metal1 tracks
and six vertical metal2 tracks. It uses local interconnect or trench contacts
to bridge between the pMOS drain and the nMOS transistors and poly-
silicon routing. Again, substrate and well contacts are shared between
multiple cells.

The nMOS diffusion is of unequal width to achieve a beta ratio greater than 1. The
notch tends to round out because of lithography limitations. Thus, misalignment of the
polysilicon to the diffusion can change the effective width of the access transistor. An
alternative layout uses minimum-width diffusion for both nMOS transistor and a beta
ratio of 1. This is called a rectangular-diffusion [Yamaoka04] or diffusion-notch-free
[Khellah09] cell. The layout reduces the nominal read margin but reduces the variability of
the cell.

GND GNDbit bit_b

VDD

word
word

(a) (b)

Unit
Cell

FIGURE 12.13 Stick diagram of 6T SRAM cell

word

bit bit_bGND GND

VDD

Unit Cell

26 × 45 λ

FIGURE 12.14 Layout of 6T SRAM cell. Color
version on inside front cover.

12.2 SRAM 505

Figure 12.16 shows how SRAM cell size has
scaled over five process generations. The micro-
graphs show the diffusion and polysilicon regions.
Observe the transition from the traditional cell to
the thin cell. Figure 12.17 plots cell size vs. feature
size. The cell size has scaled well despite the grow-
ing challenges of lithography and variability.
SRAM is so important that design rules are scruti-
nized and bent where possible to minimize cell area
in commercial processes. The substrate and well
contacts are shared among multiple cells to save
area at the expense of regularity. Figure 3.12
showed another micrograph of a traditional 6T SRAM cell that used local interconnect in
place of metal1 to connect the nMOS and pMOS transistors.

12.2.1.5 Alternative Cells Figure 12.18 shows a dual-port SRAM cell using eight transis-
tors to provide independent read and write ports. For a write, the data and its complement
are applied to the wbl and wbl_b bitlines and the wwl wordline is asserted. For a read, the
rbl bitline is precharged, then the rwl wordline is asserted. Notice that read operation does
not backdrive the state nodes through the access transistor, so read margin is as good as
hold margin. Multiported cells are discussed further in Section 12.2.4

VDDbitGND GNDbit_b

word

FIGURE 12.15 Lithographically friendly 6T SRAM cell

1 m

130 nm [Tyagi00] 90 nm [Thompson02] 65 nm [Bai04] 45 nm [Mistry07] 32 nm [Natarajan08]

FIGURE 12.16 SRAM scaling (© 2000–2008 IEEE.)

32456590130180
Feature Size (nm)

C
el

l S
iz

e
(μ

m
2)

2.0

1.0

0.5
0.34

0.16

5.6 IBM
Intel

FIGURE 12.17 SRAM cell size vs. feature size

wbl wbl_b

wwl

rbl
rwl

Q

FIGURE 12.18 8T dual-port SRAM cell

Chapter 12 Array Subsystems506

The trade-off between read margin, write margin, transistor sizes, and
operating voltage limits the minimum operating voltage of a compact 6T
cell. Using an 8T dual-port cell for single-ported operation circumvents
these trade-offs and allows lower-voltage operation [Chang08]. Intel
switched from 6T to 8T cells within the cores for its 45 nm line of Core
processors [Kumar09].

SRAMs require careful design to ensure that the ratio constraints are
met and to protect the dynamic bitline from leakage and noise. For small
memories, a static design may be preferable. Figure 12.19(a) shows a
12-transistor SRAM cell built from a simple static latch and tristate
inverter. The cell has a single bitline. True and complementary read and
write signals are used in place of a single wordline. A representative layout
in Figure 12.19(b) has an area of 46 × 75 . The power and ground lines
can be shared between mirrored adjacent cells, but the area is still limited
by the wires. This cell is well-suited to low-voltage operation, to small reg-
ister files (< 32 entries), and to class projects where design time is more
important than density.

12.2.2 Row Circuitry
The row circuitry consists of the decoder and word line drivers. The sim-
plest decoder is a collection of AND gates using true and complementary
versions of the address bits. Figure 12.20 shows several straightforward
implementations. The design in Figure 12.20(a) is a static NAND gate

bit

write

write_b

read

read_b

(a)

(b)

VDDGND bit

write

write_b

read

read_b

FIGURE 12.19 12T SRAM cell

word0

word1

word2

word3

(a) (b)

A0A1

word0

word1

word2

word3

A0A1

word

A0

A1

1

1

11

4

8

A1
word

A0 1 1

1/2

2

4

8

16

FIGURE 12.20 Decoders

12.2 SRAM 507

followed by an inverter. This structure is useful for up to 5–6 inputs or more if speed is
not critical. The NAND transistors are usually made minimum size to reduce the load
on the buffered address lines because there are 2n–k transistors on each true and com-
plementary address line in the row decoder. The design in Figure 12.20(b) uses a
pseudo-nMOS NOR gate buffered with two inverters. The NOR gate transistors can
be made minimum size and the inverters can be scaled appropriately to drive the word-
line. This design is easy to build but requires verifying the ratio constraints and con-
sumes too much power to use in a large array.

The wordline generally must be qualified with the clock for proper bitline timing.
This is often performed with another AND gate after the decoder or with an extra clk
input to the final stage of decoding. The clock qualification behaves like a static-
to-domino interface so the address must setup long enough before the clock edge, as
described in Section 10.5.5. Figure 12.21 shows how to take advantage of the 1-hot
nature of decoder outputs to share the clocked nMOS transistor across multiple final
2-input AND gates, reducing wordline clock power [Hsu06b]. Similarly, the wordline
driver inverters are large and contribute a significant amount of leakage current. At
most one driver produces a 1 output at a time. The figure also shows a fine-grained
sleep transistor that cuts off leakage for the drivers in the 0 state when the array is
inactive [Kitsukawa93, Gerosa09]. The sleep transistor only needs to be wide enough
to supply current to a single inverter.

The layout of the decoder must be pitch-matched to the memory array; i.e., the
height of each decoder gate must match the height of the row it drives. This can be tricky
for SRAM and even harder for ROMs and other arrays with small memory cells. Figure
12.22(a) shows a layout of a conventional standard-cell style approach. The minimum-
sized transistors in the NAND gate drive a larger buffer inverter. The decoder height
grows with the number of inputs. The AND gates are easily programmed by connecting
the polysilicon inputs to the appropriate address inputs. Figure 12.22(b) shows a layout on
a pitch that is tighter and independent of the number of inputs. The decoder is pro-
grammed by placement of transistors and metal straps; this is best done with scripting
software that generates layout. The polysilicon address lines should be strapped with
metal2 to reduce their resistance, but the metal2 is left out of the figure for readability. The
decoder pitch is 5 tracks or 40 . If every other row is mirrored to share VDD and GND,
the pitch can be reduced to 4 tracks or 32 .

12.2.2.1 Predecoding Decoders typically have high electrical and branching effort.
Therefore, they need many stages, so the fastest design is the one that minimizes the
logical effort. A tree of 2- and 3-input NAND gates and inverters offers the lowest logical
effort to build high fan-in gates in static CMOS [Sutherland99]. For example, Figure
12.23(a) shows a 16-word decoder in which the 4-input AND function is built from a pair
of 2-input NANDs followed by a 2-input NOR.

Many NAND gates share exactly the same inputs and are thus redundant. The decoder
area can be improved by factoring these common NANDs out, as shown in Figure 12.23(b).
This technique is called predecoding. It does not change the path effort of the decoder, but
does improve area. In general, blocks of p address bits can be predecoded into 1-of-2p-hot
predecoded lines that serve as inputs to the final stage decoder. For example, Figure 12.23(b)
shows a p = 2-bit design that decodes each pair of address bits into a 1-of-4-hot code.

The wordline is a large capacitive load. When the decoder is designed for minimum
delay, the NAND gates tend to be large to drive this load. Placing a buffer between the
decoder and wordline saves a large amount of dynamic power at a small cost in delay.

word0
w0

word15
w15

Clocked
AND

Wordline
Driver

sleep

FIGURE 12.21 Shared clock
and transistors in wordline driver

Chapter 12 Array Subsystems508

12.2.2.2 Hierarchical Wordlines The wordline is heavily loaded. It also has a high resis-
tance because it is constructed from a narrow lower-level metal wire. This leads to a long
RC flight time for large arrays. An alternative is to divide the wordline into global and
local segments with one more level of distributed decoding, as shown in Figure 12.24
[Yoshimoto83, Itoh97]. These are also called hierarchical or divided wordlines. The local
wordlines (lwl) are shorter and each drive a smaller group of cells. The global wordlines
(gwl) are still long, but have lighter loads and can be constructed with a wider and thicker
level of metal. The arrangement also saves energy because only those bitlines activated by
the local wordline will switch.

12.2.2.3 Dynamic Decoders Dynamic gates are attractive for fast decoders because they
have lower logical effort. A major problem with traditional domino decoders is the high
power consumption. For example, even though only one of the 256 wordlines in the previ-
ous example will rise on each cycle, all 256 AND gates must precharge so the clock load is
extremely large. A much lower-power approach is to use self-resetting domino gates that
only precharge the wordline that evaluated. Section 10.5.2.4 describes some of these self-
resetting gates and [Amrutur01] shows some variations that work with long input pulses.

(a)

NAND Gate Buffer Inverter

A0 VDDGND

word

GNDA0A1A1A2A2A3A3

NAND Gate Buffer Inverter

A0A0A1A1A2A2A3A3

word

VDD

GND

(b)

FIGURE 12.22 Stick diagrams of two decoder layouts

12.2 SRAM 509

Self-resetting domino has essentially the same performance as traditional domino because
it uses the same basic gates. The pulses create timing races that lead to chip failure if
designed incorrectly or subjected to excessive variation. [Samson08] describes another
domino decoder in which each gate triggers precharge of its successor to save energy.

Yet another approach for dynamic decoders is to use wide NOR structures in which
N–1 of the N outputs discharge on each cycle. As most memories require monotonically
rising outputs but the NORs are monotonically falling, such decoders require the race-

word0

word1

word2

word3

word15

A0A1A2A3

A0

A1

A2

A3

word1

word2

word3

word15

(a)

(b)

word0

1-of-4-Hot
Predecoded Lines

Predecoders

FIGURE 12.23 Ordinary and predecoding circuits

R
ow

 D
ec

gwl0

gwl N − 1

lwl lwl

Col Dec

FIGURE 12.24 Hierarchical wordlines

Chapter 12 Array Subsystems510

based nonmonotonic techniques described in
Section 10.5.4.3. For example, Figure 12.25
shows a 4-input AND gate with monotonically
rising output using a race-based NOR structure
[Nambu98]. This technique is faster than a dom-
ino AND tree, but dissipates more power because
the dynamic node X must be precharged on each
cycle [Amrutur01]. It also requires that the
address inputs set up before the clock. Ensuring
race margin becomes more difficult as process
variation increases.

Example 12.2

Estimate the delays of 8:256 decoders using static CMOS and footed domino gates.
Assume the decoder has an electrical effort of H = 10 and that both true and comple-
mentary inputs are available.

SOLUTION: The decoder consists of 256 8-input AND gates. It has a branching effort of
B = 256/2 = 128 because each of the true inputs and each of the complementary inputs
are used by half the gates. Assuming the logical effort of the path G is close to 1, the
path effort is F = GBH = 1280 and the best number of stages is log4 F = 5.16. Let us
consider a 6-stage design using three levels of 2-input AND gates, each constructed
from a 2-input NAND and an inverter.

The static CMOS design has a logical effort of G = [(4/3) × (1)]3 = 64/27. There-
fore, the stage effort is F = 3034. The parasitic delay is P = 3 × (2 + 1) = 9. The total
delay is D = NF1/N + P = 31.8 or 6.4 FO4 inverter delays.

The footed domino design using HI-skew inverters has a logical effort of [(1) ×
(5/6)]3 = 125/256 and a stage effort of 625. The parasitic delay is P = 3 × (4/3 + 5/6) =
6.5. The total delay is 4.8 FO4 inverter delays. In general, domino decoders are about
33% faster than static CMOS.

12.2.2.4 Sum-Addressed Decoders Many microprocessor instruction sets include
addressing modes in which the effective address is the sum of two values, such as a base
address and an offset. In conventional SRAMs used as caches, the two values must first be
added, and then the result decoded to determine the cache wordline. If access latency
needs to be minimized, these two steps can be combined into one in a sum-addressed mem-
ory [Heald98].

Recall from Section 11.4.3 that checking if A + B = K is faster than actually comput-
ing A + B because no carry propagation need occur. A sum-addressed decoder for an N-word
memory accepts two inputs, A and B. In a simple form, it contains N comparators driving
the N wordlines. The first checks if A + B = 0. The second checks if A + B = 1, and so
forth. The comparators contain redundant logic repeated across wordlines. [Heald98]
shows how to reduce the area by factoring out common terms in a predecoder.

12.2.3 Column Circuitry
The column circuitry consists of the bitline conditioning circuitry, the write driver, the bit-
line sensing circuitry, and the column multiplexers. Figures 12.5 and 12.7 showed simple

φ
Y = ABCD

φ
X

φ

A B C D

Dynamic NOR Domino Buffer

W

FIGURE 12. 25 4-input AND using race-based NOR

12.2 SRAM 511

column circuitry with no column multiplexing. The bitlines are initially precharged. Dur-
ing a write, the write driver pulls down one of the bitlines. During a read, data is sensed
with a high-skew inverter. The dynamic bitline is connected to many transistors in paral-
lel, so leakage can be a serious problem. As discussed in Section 9.2.4.3, the bitline may
require a strong keeper, especially during burn-in. Moreover, the parasitic delay of the bit-
line contributes a major portion of the read time.

Example 12.3

A subarray of a large memory is organized as 256 words × 136 bits. Estimate the para-
sitic delay of the bitline. Assume the driver and access transistors are unit-sized and
that wire capacitance is comparable to diffusion capacitance.

SOLUTION: The bitline has 256 cells attached, but pairs of cells are mirrored to share a
bitline, so the diffusion capacitance is 128C. Wire capacitance is comparable, so the
total capacitance is 256C. The bitline is pulled down through the driver and access
transistors in series, with a total resistance of 2R. Therefore, the delay is 512RC, or 34.1
FO4 inverter delays. This is unacceptably large for many applications.

Bitline sensing can be classified as large-signal or small-signal. In large-signal or
single-ended sensing, a bitline swings between VDD and GND just like an ordinary digital
signal. The high-skew inverter is an example of large-signal sensing. To reduce the para-
sitic delay, the bitline can be hierarchically divided into multiple local bitlines, then com-
bined to drive a global wordline. In small-signal or differential sensing, one of the two
bitlines changes by a small amount. A sense amplifier detects the small difference and pro-
duces a digital output. This saves the delay of waiting for a full bitline swing and also
reduces energy consumption if the bitline swing is terminated after sensing. However, the
array requires a timing circuit to indicate when the sense amplifier should fire, and if the
time is too short, the wrong answer may be sensed. Process variation leads to offsets in the
sense amplifier that increase the required bitline swing. Historically, small SRAM arrays
such as register files used large-signal sensing while big SRAM and DRAM arrays used
small-signal sensing to improve speed and power, but the trend is toward large-signal
sensing in nanometer processes.

12.2.3.1 Bitline Conditioning The bitline conditioning circuitry is used to precharge the
bitlines high before operation. A simple conditioner consists of a pair of pMOS transis-
tors, as shown in Figure 12.26(a). It is also possible to construct pseudo-nMOS SRAMs
with weak pullup transistors in place of the precharge transistors (Figure 12.26(b)) where
no clock is available. The contention slows the read and creates a ratio constraint, so it is
not suitable to low-voltage operation.

12.2.3.2 Large-Signal Sensing The bitline delay is proportional to the number of words
attached to the bitline. Small memories (e.g., up to 16–32 words) may be fast enough with
a simple inverter sensing the bitline. Larger memories can read onto hierarchical or divided
bitlines, as shown in Figure 12.27. Small groups of cells are attached to local bitlines (lbl).
Pairs of local bitlines are combined with a HI-skew NAND gate, which in turn can pull
down the dynamic global bitline (gbl). The local bitline can be viewed as an unfooted dom-
ino multiplexer comprised of the access and driver transistors for each cell. Recall that a
dynamic multiplexer has a constant logical effort but a parasitic delay proportional to the

(a)

φ
bit bit_b

bit bit_b

(b)

FIGURE 12.26 Bitline
conditioning circuits

Chapter 12 Array Subsystems512

number of inputs (i.e., words on the local bitline), so local bitlines
become quite slow for more than 32 words. The global bitline can be
viewed as an unfooted domino OR gate. The global bitline drivers are
interspersed between the groups of cells. They use larger transistors to
drive the long global bitline. The global bitline typically runs over the
top of the cell using a higher level of metal (e.g., metal3 or metal4) so
that it does not increase the area of the array.

The maximum number of transistors connected to each bitline may
be limited by leakage. The worst case occurs when the cell being read
contains a 0 and all the others contain a 1. The local bitline should
remain at 1 but subthreshold leakage from all the unaccessed cells tends
to pull the bitline down. Section 9.2.4.3 described conditional and adap-
tive keepers to fight leakage when many cells share the same bitline. The
data read out must be latched before feeding static logic so that it is not
lost during precharge, as examined in Section 10.5.5.2. Examples of
large-signal sensing include the Power6 SRAM arrays [Stolt08] and the
Itanium register file [Fetzer06].

12.2.3.3 Small-Signal Sensing In a small-signal sensing scheme, the
access transistors are activated long enough to swing the bitlines by a
small amount (e.g., 100–300 mV), then the differential bitline voltage is
sensed. The wordline is turned OFF when sensing occurs to avoid the
bitline swinging further and consuming more power. Many sense amplifi-
ers have been invented to provide faster sensing by responding to a small
voltage swing.

The differential sense amplifier in Figure 12.28(a) is based on an
analog differential pair and requires no clock. However, the circuit con-
sumes a significant amount of DC power. It is also difficult to bias at low
voltage to keep all the transistors in saturation.

The clocked sense amplifier in Figure 12.28(b) consumes power only
while activated, but requires a timing chain to activate at the proper time.
When the sense clock is low, the amplifier is inactive. When the sense
amplifier rises, it effectively turns on the cross-coupled inverter pair, which
pulls one output low and the other high through regenerative feedback. The
isolation transistors speed up the response by disconnecting the outputs
from the highly capacitive bitlines during sensing. The sense amplifier
flip-flop from Figure 10.29(a) is also commonly used because it inherently
isolates the sensing nodes from the bitline [Hart06]. See Section 9.4.2 for
more discussion of sense amplifier circuits.

Power dissipation can be reduced for read operations by turning off
the wordlines once sufficient differential voltage has been achieved on
the bitlines. This reduces the bitline swing and hence the charge
required to restore the bitlines to VDD after sensing.

Sense amplifiers are highly susceptible to differential noise on the
bitlines because they detect small voltage differences. If bitlines are not
precharged long enough, residual voltages on the lines from the previous
read may cause pattern-dependent failure. An equalizer transistor (Fig-
ure 12.29(a)) can be added to the bitline conditioning circuits to reduce
the required precharge time by ensuring that bit and bit_b are at nearly

word 0

word b 1

gbl

H

lbl 1
lbl 0

H

out

H
More
Local

Bitlines

SRAM
Cell

Keeper

Keeper

FIGURE 12.27 Hierarchical bitlines

bit bit_b

(a)

sense_b sense

bit_bbit

sense sense_b

sense_clk Isolation
Transistors

Regenerative
Feedback

(b)

N1 N2

N3

P1 P2

FIGURE 12.28 Sense amplifiers

12.2 SRAM 513

equal voltage levels even if they have not precharged quite all the way to VDD.
Coupling from transitioning bitlines in neighboring cells may also introduce
noise. The bitlines can be twisted or transposed to cause equal coupling onto
both the bitline and its complement, as shown in Figure 12.29(b). For exam-
ple, careful inspection shows that b1 couples to b0_b for the first quarter of
its length, b2 for the next quarter, b2_b for the third quarter, and b0 for the
final quarter. b1_b also couples to each of these four aggressors for a quarter
of its length, so the coupling will be the same onto both lines.

The sense amplifier offset voltage is the differential input voltage
(bit – bit_b) necessary to produce zero differential output voltage
(sense – sense_b). If N1 is identical to N2 and P1 to P2, the sense amplifier
will ideally have zero offset voltage. In practice, the offset voltage is nonzero
because of statistical dopant fluctuations and NBTI degradation that affect
Vt . The differential input must substantially exceed the offset voltage to be
sensed reliably. A typical budget for offset voltage is 50 mV [Amrutur00].
Unfortunately, the threshold variations and offset voltage are not changing very
much with technology scaling, so the offset voltage is becoming a larger frac-
tion of the supply voltage, making sense amplifiers less effective [Mizuno94].

Clocked sense amplifiers must be activated at just the right time. If they fire too early,
the bitlines may not have developed enough voltage difference to operate reliably. If they
fire too late, the SRAM is unnecessarily slow. The sense amplifier enable clock (saen) is
generated by circuitry that must match the delay of the decoder, wordlines, and bitlines.
This leads to all of the delay matching challenges discussed in Section 10.5.4.1. Many
arrays use a chain of inverters, but inverters do not track the delay of the access path very
well across process and environmental corners: A margin of more than 30% is often neces-
sary in the typical corner for reliable operation in all corners.

Alternatively, the array may use replica cells and bitlines to more closely track the
access path, as shown in Figure 12.30 [Amrutur98]. The block decoder determines that a
particular memory block is selected (bs). The appropriate local wordline (lwl) is activated,
turning on a SRAM cell in a column and causing the bit or bit_b to begin discharging.
Meanwhile, the block select signal also activates one cell in the replica column. The replica
column has only 1/r as many cells connected
to the bitline (e.g., r = 10), so it discharges r
times faster. When the replica bitline (rbl)
falls low, a reset signal is generated to start
deactivating the block. Meanwhile, the signal
is buffered to drive the sense amplifiers. By
the time saen is enabled, the bitline swing will
be approximately VDD /r. Thus, r can be
selected to obtain the desired bitline swing.
Because the replica path involves most of the
same elements as the real path, its delay tracks
fairly well with PVT variations, reducing the
amount of margin required on saen. Never-
theless, providing a degree of tunability is
prudent so that the nominal margin can be
reasonably aggressive, yet the margin can be
increased if variation is greater than expected
and the circuit malfunctions.

φ

bit bit_b

(a)

(b)

b0 b0_b b1 b1_b b2 b2_b b3 b3_b

FIGURE 12.29 Bitline noise reduction
through equalizers and twisting

Tunable
Delay Line

Block
Decoder

saen

bs

gwl
lwl

replica
cells

bit bit_b

rbl

reset

FIGURE 12.30 Replica delay for sense amplifier enable

Chapter 12 Array Subsystems514

12.2.3.4 Column Multiplexing In general, 2k:1 column multi-
plexers may be required to extract 2m bits from the 2m+k bits
of each row. The column decoding takes place in parallel with
row decoding so it does not impact the critical path. Figure
12.31 shows two-way column multiplexing with large-signal
sensing using nMOS pass transistor multiplexers. The output
of the multiplexer is precharged high. Both the write drivers
and the read sensing inverter are connected to the multiplexer
outputs.

In small-signal sensing, the bitlines voltages are close to
VDD , so pMOS pass transistors are required. Thus, the array
may use transmission gates, or may use separate nMOS tran-
sistors in the write path and pMOS transistors in the read
path.

Column multiplexing is also helpful because the bit pitch
of each column is so narrow that it can be difficult to lay out a
sense amplifier for each column. After multiplexing, multiple
columns are available for the remainder of the column cir-
cuitry. Moreover, placing sense amplifiers after the column
multiplexers reduces the number of power-hungry amplifiers
required in the array.

When writing an array with column multiplexing, only a subset of the cells in a row
should be modified. This is called a partial write operation. It is performed by only driving
the bitlines in the appropriate columns, while allowing the bitlines in the unwritten col-
umns to float. Partial writes require good read stability so that the unwritten columns are
not disturbed; this can be a challenge at low voltage [Chang08].

12.2.4 Multi-Ported SRAM and Register Files
Register files are generally fast SRAMs with multiple read and write ports. They are used
in many tables and buffers beyond simply holding the architectural registers; for example,
the Core 2 has 54 different register files in each core [George07]. Data caches in super-
scalar microprocessors often require multiple ports to handle multiple simultaneous loads
and stores.

Figure 12.18 showed a conventional 8T dual-ported SRAM cell. An alternative 6T
dual-ported SRAM adds a second wordline, as shown in Figure 12.32 [Horowitz87]. Such
a split-wordline cell can perform two reads or one write in each cycle. The reads are per-
formed by independently selecting different words with the two wordlines. Read becomes a
single-ended operation; one read appears on bit, while the other appears in complementary
form on bit_b. For example, asserting wordA[7] and wordB[3] reads the third word onto bit
and the complement of the seventh onto bit_b. Write still requires both bit and bit_b, so
only a single write can occur. With careful timing, accesses can be performed each half-
cycle, permitting two reads in the first phase and a write in the second phase, as commonly
required for a register file in a single-issue RISC processor. This cell is used in dual-ported
caches in the UltraSPARC [Konstadinidis09] and Power6 [Plass07].

Cells with multiple read ports need to isolate the read ports from the state nodes to
achieve reasonable read margin, as was done with the 8T cell. Each additional single-
ended read port can be provided at the cost of a read wordline, a read bitline, and two read
transistors. Differential read ports double the number of read bitlines and transistors.

More
Cells

More
Cells

word_q1

write0_q1

φ2

φ2

A0

A0

data_v1

write1_q1

FIGURE 12.31 Complete pair of columns for two-way
multiplexed SRAM

bit bit_b

wordB
wordA

FIGURE 12.32
Simple dual-ported SRAM

12.2 SRAM 515

Cells with multiple write ports simply attach the ports to the state node. External
logic should ensure that two ports do not attempt to simultaneously write different values
to the register. Each additional write port can be provided at the cost of a write wordline,
true and complementary write bitlines, and two access transistors. For cells with many
ports, the area of the wires dwarfs the area of the transistors. To save space, the comple-
mentary write bitline can be eliminated by adding a transistor or inverter within the cell,
as shown in Figure 12.33. The inverter approach requires one more transistor but
improves the writability.

This style of cell readily extends to any number of ports by adding one wordline and
one bitline for each port. Figure 12.34 shows a SRAM cell with three write ports and four
read ports.

Register files for superscalar processors often require an enormous number of ports.
For example, the Itanium 2 processor issues up to six integer instructions in a cycle, each
of which requires two source registers and a destination. The register file requires four
more write ports for late cache data returns, leading to a total of 12 read ports and 10 write
ports [Fetzer06]. The area of the large register file is dominated by the mesh of wordlines
and bitlines. A rough rule for estimating multiport SRAM cell area is to count the number
of tracks for the wordlines and bitlines and then add three in each dimension for internal
wiring. The area of a 22-ported register file is enormous, leading to excessive delay and
power driving the lengthy wordlines and bitlines.

Two techniques exist for reducing the register file area: time-multiplexing and multiple
banks. These techniques can be applied individually or in tandem. As mentioned earlier for
the 6T two-ported cell, a register file can be time-multiplexed or double-pumped by reading
in one half of the cycle and writing in the other half. The Itanium 2 register file adopts this
technique to cut the number of wordlines to 12. Alternatively, each read and write port can
be used twice per cycle. These approaches involve pulsed wordlines
and bitlines. In a multiple bank design, a register file with R read
ports and W write ports is divided into two banks, each with R/2
read ports and W write ports. Writes always update both banks so
they contain identical data. Reads then can take place from either
bank. This technique generalizes to larger numbers of banks. For
example, a single-ended register file with 16 read ports and four
write ports has a cell size of 23 × 23 tracks, or about 184 × 184 =
33856 2. The area can be improved by partitioning the register file
into two banks, each with eight read ports and four write ports. The
cell size is now 15 × 15 tracks with an area of 14400 2 per file, or
28800 2 all together. The partitioned register file is not only smaller
but also faster because of the shorter bitlines and wordlines.

[Golden99, Hart06, and Warnock06] show other designs for
the large register files of the AMD Athlon, Sun UltraSparc IV+,
and IBM/Sony/Toshiba Cell processors, respectively.

12.2.5 Large SRAMs
The critical path in a static RAM read cycle includes the clock to address delay time, the
row address driver time, row decode time, bitline sense time, and the setup time to any
data register. The write operation is usually faster than the read cycle because the bitlines
are actively driven by large transistors. However, the bitlines may have to recover to their
quiescent values before the next read cycle takes place.

wbl

wwl

rbl

rwl
QQ_b

wbl

wwl

rbl

rwl
QQ_b

(a)

(b)

FIGURE 12.33 Register
cell with single-ended write
port

ww1

QQ_b

rw1

wb1 wb2 wb3 rb1 rb2 rb3 rb4

rw2
rw3
rw4

ww2

ww3

FIGURE 12.34 Multiported register cell

Chapter 12 Array Subsystems516

If the memory array becomes large, the wordlines and bitlines become rather long.
The long lines have high capacitance, leading to long delay and high power consumption.
Thus, large memories are partitioned into multiple smaller memory arrays called banks or
subarrays. Each subarray presents some area overhead for its periphery circuitry, so the size
of the subarrays represents a trade-off between area and speed.

The delay of the bitline is proportional to the number of cells and the bitline swing.
Large SRAMs use hierarchical bitlines or sense amplifiers for speed. Typical subarrays
accommodate 128 or 256 words per bitline. The wordline presents an RC delay from the
resistance of the wire and gate capacitance of the transistors it drives. This increases with
the square of the number of bits on a wordline. Typical subarrays also use 128 or 256 bits
on each wordline.

Figure 12.35 shows a typical 16 KB subarray for a large SRAM. The subarray is
divided into four 4 KB banks or blocks of 256 words by 128 bits each. The word line decod-
ers and column circuits are shared between banks to reduce the layout area. Each wordline
decoder block performs predecoding and then regular decoding to create a 1-hot 256-bit
signal, which in turn is gated with the clock and bank select signals and buffered to drive
the wordline of the appropriate bank. The column circuitry includes 4:1 column multi-
plexers and the sense amplifier and write driver for each group of columns. The timing cir-
cuitry generates the sense amplifier enable signal and any other required timing pulses.

Information is carried to and from the subarrays on datalines. The large SRAM
requires repeaters for the datalines and another decoder to select the appropriate subarray.
The clock for inactive subarrays is gated to save power.

Figure 12.36 shows a 512 KB L2 cache from a 130 nm UltraSparc Gemini processor
[Shin05]. It is built from four 128 KB arrays, each of which contains sixteen 8 KB banks
organized as 256 rows by 256 columns. The data arrays have an area efficiency of about

W
L D

E
C

W
L D

E
C

φ

word 0

Predecode

adr

word 255

word 0

word 255

φbs0 bs1

256-word ×
128-bit
bank 0

256-word ×
128-bit
bank 1

256-word ×
128-bit
bank 2

256-word ×
128-bit
bank 3

Column ColumnTimer

C
ol D

ec

bi
t0

bi
t0

_b

Datalineswr0
saen0

32

bi
t3

bi
t3

_b

FIGURE 12.35 16 KB subarray

12.2 SRAM 517

60%, while the overall cache has an area efficiency of 40% because
of the other control and routing blocks. See [Chappell91, Weiss02,
Shin05, Zhang05, Warnock06, Chang07, Plass07, Hamzaoglu09]
for more examples of large embedded SRAMs.

The array efficiency of a memory is the fraction of the area
occupied by memory cells. Large SRAM arrays typically achieve
an efficiency of 70–75% [Lu08], although faster memories tend to
have lower efficiency.

Large memories with multiple subarrays can simulate more
than one access port even if each subarray is single-ported. For
example, in a system with two subarrays, even-numbered words
could be stored in one subarray while odd-numbered words are
stored in the other. Two accesses could occur simultaneously if one
addresses an even word and another an odd word. If both address
an even word, we encounter a bank conflict and one access must
wait. Increasing the number of banks offers more parallelism and
lower probability of bank conflicts.

12.2.6 Low-Power SRAMs
SRAM occupies a large fraction of the area of most nanometer
chips and consumes a significant part of the dynamic and leakage power. For example, in
the dual-core Xeon processor with a 16 MB L3 cache [Rusu07, Chang07], the 6T cells in
the various caches account for 77% of the 1.3 billion total transistors and about half of the
chip area. The dynamic power is minimized by activating only 0.8% of the L3 cache for an
access, and the leakage is minimized by keeping the remainder of the cache in sleep mode.
Nevertheless, the L3 cache consumes about 14 W out of a 110 W typical total for the
chip, and about half of this cache power is leakage.

This section explores the challenges of low-power SRAM design. The general princi-
ples are to turn only the necessary subarrays to minimize dynamic power, to keep the other
subarrays in a sleep mode to minimize leakage, and to run at as low a voltage as possible to
minimize total power. Maintaining read and write margins at low voltage in the face of
process variation can be difficult. Many techniques are used for leakage reduction. When
minimum energy is the goal, modified SRAMs can operate subthreshold.

12.2.6.1 Low Voltage Operation The minimum operating voltage, Vmin, for RAMs is set
by the read stability and writability constraints. As discussed in Section 12.2.1.3, within-
die variability results in a distribution of read and write margins. The nominal margin
required to obtain a satisfactory yield increases with the standard deviation of the margins
and the number of cells, both of which are rising with technology scaling. Vmin for a stan-
dard 6T SRAM is around 0.7 V in a 90 nm process [Calhoun07] and is forecast to
increase with process scaling [Itoh09]. SRAM cells tend to use high threshold transistors
to reduce leakage, leading to slow operation at low voltage.

SRAM transistors with nearly minimum-sized transistors achieve better density but
have worse read/write margins and greater variability, increasing Vmin. For example, the
Intel 65 nm process has a high-performance SRAM cell with Vmin = 0.7 V during opera-
tion and 0.6 V during standby (when it retains state but cannot read or write). It also pro-
vides a high-density SRAM cell that packs 44% more memory into a given area but is
limited to 1.1/1.0 V operation [Khellah07].

FIGURE 12.36 512 KB cache array (© 2005 IEEE.)

Chapter 12 Array Subsystems518

Dynamic voltage scaling conflicts with the Vmin constraint. For example, the 65 nm
quad-core Itanium operates at a core supply of 0.9–1.2 V as the frequency varies from 1.2
to 2.4 GHz [Stackhouse09]. However, the chip uses the high density SRAM cell to build
a 30 MB cache. The simplest approach to solving this problem is to use a fixed, relatively
high 1.1 V supply for the memories and to perform level conversion at the interface
[Khellah07].

Vmin can be reduced with external circuitry to assist the read and write operations.
Examples of read assist techniques to improve read stability include the following:

� Pulsing the wordline or bitline briefly to exploit dynamic noise margins that are
larger than the static noise margins [Khellah06]

� Lowering the wordline voltage [Ohbayashi07, Yabuuchi07]
� Raising the cell VDD during reads [Zhang06, Bhavnagarwala04]

Examples of write assist techniques to improve writability include the following:

� Driving the bitline to a negative voltage
� Raising the wordline voltage [Morita06]
� Floating the cell GND during writes [Yamaoka04b]
� Floating the cell VDD during writes [Yamaoka06]
� Lowering the cell VDD during writes [Zhang06, Ohbayashi07]

A simpler approach is to avoid the problematic 6T cell altogether at low voltage. The
8T dual-ported cell of Figure 12.18 solves the read stability problem and thus can operate
at lower voltage [Chang08]. The cell area increases by about 30%. Intel switched to an 8T
cell in the processor cores of the 45 nm Core family to support dynamic voltage scaling
down to 0.7 V [Kumar09]. However, the L3 cache that accounts for much of the die size

still uses the denser 6T cell operating at a
higher voltage.

12.2.6.2 Leakage Control Most of the sub-
arrays in a large memory are inactive at any
given time, so minimizing leakage in this
state is critical. Leakage influences the
selection of threshold voltage and oxide
thickness for large memories. The three
general ways to control leakage dynamically
are to reduce Vds , provide a negative Vgs , or
provide a negative Vbs [Nakagome03]. Fig-
ure 12.37 illustrates these approaches
[Kim05].

The supply voltage necessary to hold a
cell’s state is lower than that necessary for
operation. Reducing the voltage across the
transistors reduces the DIBL effect and
thus decreases subthreshold leakage. More-
over, it greatly decreases gate leakage and
BTBT junction leakage. Hence, this is a
common technique for cutting the overall
leakage power. It can be done with power

VS

VS
Active Sleep

VDDV

VDDV

Active Sleep

word

word
Active Sleep

bit

bit

Active Sleep

bit_b

Vb
Active Sleep

Vb

(a) (b)

(c) (d) (e)

FIGURE 12.37 Leakage reduction techniques

12.2 SRAM 519

switches that permit VDD to droop [Kanda02, Nii04] (Figure 12.37(a)) or GND to rise
[Zhang05] (Figure 12.37(b)) by a controlled amount during sleep. The soft error rate
increases in this state, so ECC is essential to protect the data.

Example 12.4

Consider a process with a subthreshold slope of 100 mV/decade and a DIBL coeffi-
cient of 0.15. How far must the power supply droop to cut subthreshold leakage by a
factor of 2?

SOLUTION: According to EQ (2.45), if the voltage across the cell droops by �V, the sub-
threshold leakage becomes

(12.2)

Solving for Isub = Ioff/2 gives

(12.3)

Figure 12.38 shows an example of partial power gating during sleep [Gerosa09,
Hamzaoglu09]. The technique is similar to full power gating described in Section 5.3.2,
but the supply collapse must be limited so that the memory retains its state. When the
subarray is about to be accessed, a wide power gating transistor activates to connect the
array’s VDDV to VDD. When the subarray enters sleep mode, the power gating transistor
shuts OFF but an adjustable sleep transistor turns ON. The sleep current is set to a level
such that VDD droops to the minimum retention voltage. When the subarray is completely
disabled, the sleep transistor is also turned OFF. The transition from sleep to active mode
requires some time (e.g., two cycles) and energy, so unnecessary transitions should be
avoided. The turn-on process can begin as soon as the subarray to be accessed is known;
this is usually before row decoding completes. The subarray may remain ON for several
cycles after the access in case it is accessed again soon. Several options are available to
adjust the sleep transistor [Khellah07]. Closed-loop control involves measuring VDDV and
adjusting a control voltage accordingly. Alternatively, the sleep transistor can be built from
multiple smaller devices. After manufacturing, a chip calibration step can determine how
many should be ON during sleep and this value can be programmed into a set of fuses.

Leakage through the access transistors can be reduced by driving inactive wordlines to
a negative voltage (Figure 12.37(c)) [Itoh96, Wang07]. Beware: in some processes, the
increased gate-induced leakage overwhelms the savings in subthreshold leakage. Reduced
leakage increases the number of cells that can be connected to the bitline. During standby,
the bitlines can be floated to reduce the access transistor leakage as well (Figure 12.37(d))
[Heo02]. As mentioned in Section 5.3.4, body bias is another way to reduce subthreshold
leakage in sleep mode (Figure 12.37(e)) or increase speed in active mode.

12.2.6.3 Subthreshold Memories Conventional 6T SRAM cells do not function reliably
in the subthreshold regime because the ratio constraints for read stability and writability
cannot be guaranteed, especially in light of threshold variations [Calhoun06b, Chen07].
Moreover, the poor ratio of Ion to Ioff limits the number of cells that can be connected to a
local bitline.

I I
V

S
sub off= 10

V
S I

I
= =log10 200off

sub

mV

sleep

Subarray

VDD

VDDV

bias

FIGURE 12.38 Partial
power gating

Chapter 12 Array Subsystems520

The 12T cell from Figure 12.19 operates correctly down to voltages as low
as static CMOS registers because it has the same circuit form and eliminates
any ratio constraints. However, the 12T cell is three times larger than a 6T cell.
Moreover, the number of cells sharing a bitline is small because of leakage. The
8T dual-ported cell is dense and can operate at a lower voltage than a 6T cell,
but it becomes unwritable near threshold when the access transistor can’t be
assured of overpowering the pMOS pullup.

The 10T cell of Figure 12.39 is designed specifically for subthreshold
operation [Calhoun07]. It looks much like the 8T cell, but adds two transistors
to reduce read port leakage and substitutes a virtual supply line to improve
writability. The read bitline rbl is precharged to VDD. When rwl is 0, rbl is iso-
lated from GND through two series transistors. Because of the stack effect,

leakage is reduced by an order of magnitude. The pMOS transistor connected to node X is
optional and serves to further reduce leakage. When it is ON, it pulls X up to VDD. Even
when it is OFF, its leakage pulls X to an intermediate voltage above GND. In either case,
the nMOS transistor connected to rbl will see a negative Vgs , further reducing its leakage.
Leakage is low enough to allow hundreds of cells to share a common bitline. During write
operations, the virtual supply line VDDV is floated. This eliminates contention with the
pMOS pullup, allowing the access transistors to flip the state of the cell. VDDV is the
restored to VDD to stabilize the cell before the write operation concludes.

The literature is full of other subthreshold memory cells such as [Chen06, Zhai08,
Kim09]. Some of these cells only work properly in processes with specific characteristics
such as a strong reverse short channel effect, so check the read and write margins carefully
in your process while considering variability. Even using specialized cells, subthreshold
memories tend to have lower yields than memories operating at higher voltage.

12.2.7 Area, Delay, and Power of RAMs and Register Files

12.2.7.1 Area The area of a memory containing N bits can be predicted as

(12.4)

where Abit is the area of a memory cell, and E is the array efficiency. Cell areas for 6T
SRAM cells were shown in Figure 12.17. Abit is about 600 2 using industrial layouts or
1200 2 using MOSIS design rules. According to Section 12.2.4, a p-ported register file in
the MOSIS rules has an area of approximately 64(p + 3)2 2; industrial layouts may be
tighter depending on the pitch of metal3 and metal4 used for the wordlines and bitlines.
An array efficiency of 0.7 is a reasonable target. Peripheral circuitry such as a cache con-
troller are not considered in this model.

12.2.7.2 Delay The method of Logical Effort is helpful to estimate the delay of a static
RAM or register file. The critical read path for a small single-ported RAM with no col-
umn multiplexing involves the decoder to drive the wordline and the SRAM cell that pulls
down the bitline. Figure 12.40 highlights this path for a 2n word by 2m-bit memory with
total storage of N = 2n+m bits.

The decoder is modeled as an n-input AND gate taking some combination of true
and complemented address inputs. It has a logical effort of (n + 2)/3 and parasitic delay of
n according to Tables 4.2 and 4.3. The bitline is discharged in the SRAM cell through two
series transistors that behave like a dynamic multiplexer. Suppose each cell has two unit-

A
NA

E
= bit

wbl wbl_b

wwl

rbl
rwl

Q

vddv

X

FIGURE 12.39
10T subthreshold memory cell

12.2 SRAM 521

sized access transistors and stray wire capacitance
approximately equal to another unit-sized transis-
tor, for a total capacitance of 3C presented by each
cell to the wordline. Because there are two transis-
tors in series, the cell delivers about half the current
of a unit inverter with input capacitance 3C. Hence,
the logical effort is 2 because the cell delivers half
the current of an inverter with the same input
capacitance. Suppose each cell presents 1C of diffu-
sion capacitance on the bitline, so the total bitline
capacitance is 2nC. The cell has an effective resis-
tance of 2R discharging the bitline through two
series unit transistors. Hence, the bitline has a para-
sitic delay of 2n+1RC. Normalized by = 3RC, this
gives p = 2n+1/3.

Putting these two stages together, the path
logical effort is G = (n + 2)/3 × 2. If the true and
complementary bitline outputs each drive capacitance equal to half that seen by the
address inputs, the path electrical effort is H = 1/2. Within the path are a 2n-way branch
as each address bit is needed by each wordline decoder and another 2m-way branch as each
wordline drives all the bits on that word. Hence, the branching effort is B = N. The path
effort delay is F = GBH = N(n + 2)/3. The parasitic delay is P = n + 2n+1/3. The best num-
ber of stages is approximately log4 F = (m + n)/2 + log4 [(n + 2)/3]. These stages would
include buffers in the address driver, multiple levels of gates in the decoder, buffers to drive
the wordline, and an inverter on the bitline output. The path delay is

(12.5)

For a 32-word × 32-bit register file, n = 5, N = 210, and D = 48.8 = 9.8 FO4 inverter
delays.

This model is clearly an oversimplification valid only for subarray. The n-input AND
gate is usually constructed out of a chain of low fan-in gates, but this only slightly improves
its logical effort. We also neglect the effort of the clock gating to drive the wordlines on the
clock edge. We assume the RAM is small enough that sense amplifiers are not used and
neglect the wire resistance and capacitance. The pulldown transistor inside the SRAM cell
may be larger than the access transistor. Nevertheless, the model offers insights into the
number of stages that the memory should use and its approximate delay. For example, it
shows that, without sense amplifiers, putting too many words on a bitline causes excessive
parasitic delay.

[Amrutur00] models the delay of large SRAMs using Logical Effort in substantially
more detail than can be repeated here. The overall delay includes components contributed
by both the gates and the wire RC. In a well-designed N-bit SRAM (N 216) using static
CMOS decoders, the gate delay component is approximately

(12.6)

FO4 inverter delays. More aggressive decoders using domino or race-based NOR tech-
niques from Section 12.2.2 can reduce this delay by about 15% [Amrutur01]. Wire delay
becomes important for RAMs beyond the 1 Mbit capacity. A lower bound for wire delay
is set by the speed of light at about 1.75 FO4 for 4-Mbit memories. This delay doubles for

D F P m n n n n= + = + + + + + +4 2 4 2 3 2 34 4
1log () log [() /] /

D N= 1 2 42. log

n-input AND
g = (n + 2)/3

n-input AND

Decoder

Address

SRAM Cell

1

2n
w

or
ds

2m bits/word

Bitline
(output)

1
1

11

p = n

g = 2
p = 2n + 1/3

bit

FIGURE 12.40 Critical path for read of small SRAM

Chapter 12 Array Subsystems522

each quadrupling in memory size. In practice, the wire delay depends on the wire width
and thickness and repeater strategy, but can be several times this lower bound. In processes
beyond the 100 nm generation, sense amplifiers will need larger bitline swings because
their offset voltages are not scaling with the supply voltage. This will add several FO4
inverter delays to the bitline-sensing time.

CACTI (Cache Access and Cycle Time) is another model for cache delay
[Wilton96]. [Agarwal01] extends this model to account for process scaling of wires and
transistors. For caches up to 256 KB, the model predicts an access time of a single-ported
direct-mapped cache with a 32-byte block size in a 50 nm process of roughly

(12.7)

FO4 delays, where C is the capacity in KB. For example, the access time for a 16 KB cache
is approximately 19 FO4 delays. The model also predicts the delay of a six-ported register
file with 64-bit words to vary from 12–16 FO4 delays as the capacity increases from
32–256 registers.

12.2.7.3 Power Memory power has dynamic and leakage components. The dynamic
power is proportional to the number of cells in a bank and the number of banks that are
activated (typically 1). For large caches, the dynamic power of the datalines to route the
data out of the cache is also significant. This power grows with the wire length, which
depends on the square root of the capacity. The leakage power is proportional to the total
number of cells in the memory. Dynamic and leakage power both grow linearly with the
number of ports. [Evans95] describes SRAM power modeling further.

12.3 DRAM
Dynamic RAMs (DRAMs) store their contents as charge on a capacitor rather than in a
feedback loop. Thus, the basic cell is substantially smaller than SRAM, but the cell must
be periodically read and refreshed so that its contents do not leak away. Commercial
DRAMs are built in specialized processes optimized for dense capacitor structures. They
offer a factor of 10–20 greater density (bits/cm2) than high-performance SRAM built in a
standard logic process [Nakagome03], but they also have much higher latency. DRAM
circuit design is a specialized art and is the topic of excellent books such as [Keeth07].
This section provides an overview of the general issues.

A 1-transistor (1T) dynamic RAM cell consists of a transistor and a capacitor, as
shown in Figure 12.41(a). Like SRAM, the cell is accessed by asserting the wordline to
connect the capacitor to the bitline. On a read, the bitline is first precharged to VDD/2.
When the wordline rises, the capacitor shares its charge with the bitline, causing a voltage
change V that can be sensed, as shown in Figure 12.41(b). The read disturbs the cell con-
tents at x, so the cell must be rewritten after each read. On a write, the bitline is driven
high or low and the voltage is forced onto the capacitor. Some DRAMs drive the wordline
to VDDP = VDD + Vt to avoid a degraded level when writing a ‘1.’

The DRAM capacitor Ccell must be as physically small as possible to achieve good
density. However, the bitline is contacted to many DRAM cells and has a relatively large
capacitance Cbit. Therefore, the cell capacitance is typically much smaller than the bitline
capacitance. According to the charge-sharing equation, the voltage swing on the bitline
during readout is

D C= +1 5 13.

word

bit

Ccell

(a)

(b)

x

x

bit

word

VDD/2 2 V

FIGURE 12.41
1T DRAM cell read operation

12.3 DRAM 523

 (12.8)

We see that a large cell capacitance is important to provide a reasonable
voltage swing. It also is necessary to retain the contents of the cell for an
acceptably long time and to minimize soft errors. For example, 30 fF is a typi-
cal target. The most compact way to build such a high capacitance is to extend
into the third dimension. For example, Figure 12.42 shows a cross-section and
SEM image of trench capacitors etched under the source of the transistor. The
walls of the trench are lined with an oxide-nitride-oxide dielectric. The trench
is then filled with a polysilicon conductor that serves as one terminal of the
capacitor attached to the transistor drain, while the heavily doped substrate
serves as the other terminal. A variety of three-dimensional capacitor structures
have been used in specialized DRAM processes that are not available in con-
ventional CMOS processes.

12.3.1 Subarray Architectures
Like SRAMs described in Section 12.2.5, large DRAMs are divided into mul-
tiple subarrays. The subarray size represents a trade-off between density and
performance. Larger subarrays amortize the decoders and sense amplifiers
across more cells and thus achieve better array efficiency. But they also are slow
and have small bitline swings because of the high wordline and bitline capaci-
tance. A typical subarray size is 256 words by 512 bits, as shown in Figure
12.43. Array efficiencies are typically 50–60%.

A subarray of this size has an order of magnitude higher capacitance on
the bitline than in the cell, so the bitline voltage swing V during a read is tiny.
The array uses a sense amplifier to compare the bitline voltage to that of an idle
bitline (precharged to VDD/2). The sense amplifier must also be compact to fit
the tight pitch of the array. The low-swing bitlines are sensitive to noise. Three

V
V C

C C
DD=

+2
cell

cell bit

n+

Oxide Nitride Oxide
Dielectric

n+

Heavily Doped
p substrate

Bitline

Wordline

P
o

y P
ug

FIGURE 12.42 Trench capacitor

word0

word1

word2

word254

word255

bit0 bit1 bit2 bit3 bit4 bit509 bit510 bit511

FIGURE 12.43 DRAM subarray

Chapter 12 Array Subsystems524

bitline architectures, open, folded, and twisted, offer
different compromises between noise and area.

Early DRAMs (until the 64-kbit generation)
used the open bitline architecture shown in Figure
12.44. In this architecture, the sense amplifier
receives one bitline from each of two subarrays. The
wordline is only asserted in one array, leaving the bit-
lines in the other array floating at the reference volt-
age. The arrays are very dense. However, any noise
that affects one array more than the other will appear
as differential noise at the sense amplifier. Thus, open
bitlines have unacceptably low signal-to-noise ratios
for high-capacity DRAM.

The folded bitline architecture is shown in Figure
12.45. In this architecture, each bitline connects to
only half as many cells. Adjacent bitlines are organized
in pairs as inputs to the sense amplifiers. When a
wordline is asserted, one bitline will switch while its
neighbor serves as the quiet reference. Many noise
sources will couple equally onto the two adjacent bit-
lines so they tend to appear as common mode noise
that is rejected by the sense amplifier. This noise
advantage comes at the expense of greater layout area.
Figure 12.46 shows a clever layout for a 6 × 8 folded
bitline subarray that is only 33% larger than an open
bitline layout. Observe how DRAM processes push
the design rules and use diagonal polysilicon to reduce
area. Notice how pairs of cells in the layout share a sin-
gle bitline contact to minimize the bitline capacitance.

Sense
Amps

Subarray 1

Subarray 2

Wordline
Decoders

Wordline
Decoders

Wordline
Decoders

Wordline
Decoders

FIGURE 12.44 Open bitlines

Sense
Amps

Sense
Amps

Wordline
Decoders

Wordline
Decoders

FIGURE 12.45 Folded bitlines

12.3 DRAM 525

Unfortunately, the folded bitline architecture is still susceptible to noise from a neigh-
boring switching bitline that capacitively couples more strongly onto one of the bitlines in
the pair. Capacitive coupling is very significant in modern processes. The twisted bitline
architecture [Hidaka89] solves this problem by swapping the positions of the folded bit-
lines part way along the array in much the same way as SRAM bitlines were twisted in
Figure 12.29(b). The twists cost a small amount of extra area within the array.

12.3.2 Column Circuitry
The column circuitry in a DRAM includes the sense amplifiers, write drivers, col-
umn multiplexing, and bitline conditioning circuits. In a folded or twisted bitline
architecture, the column circuitry is placed on both sides of the array so that it can
be laid out on four times the pitch of a single column, as shown in Figure 12.46.
Part of the circuitry can be shared between two adjacent subarrays.

Figure 12.47(a) shows a sense amplifier built from cross-coupled inverters
with supplies tied to control voltages. Initially, the two bitlines bit and bit * are
precharged to VDD /2, the bottom voltage Vn is at VDD /2, and the top voltage Vp is
at 0 so all of the transistors in the amplifier are OFF. During a read, one of the
bitlines will change by a small amount while the other floats at VDD /2. Vn is then
pulled low. As it falls to a threshold voltage below the higher of the two bitline
voltages, the cross-coupled nMOS transistors will begin to pull the lower bitline
voltage down to 0. After a small delay, Vp is pulled high. The cross-coupled
pMOS transistors pull the higher bitline voltage up to VDD . For example, Figure
12.47(b) shows the waveforms while reading a ‘0’ on bit while using bit * as a refer-
ence. Driving the active bitline to one of the rails has the side effect of rewriting
the cell with the value that was just read.

Sense
Amp

Sense
Amp

Sense
Amp

Sense
Amp

Polysilicon wordline

Metal bitline

n+ Diffusion

Bitline contact

Capacitor

Wordline
Decoder

Wordline
Decoder

Wordline
Decoder

Wordline
Decoder

Wordline
Decoder

Wordline
Decoder

Unit
Cell

FIGURE 12.46 Layout of folded bitline subarray

bit*bit Vn

Vp

(a)

(b)

bit*

bit

Vn

Vp

VDD/2

0
VDD

0
VDD

0

VDD/2

VDD/2

FIGURE 12.47 Sense amplifier

Chapter 12 Array Subsystems526

Figure 12.48 shows a bitline conditioning circuit that precharges and equalizes a pair
of bitlines to VDD /2 when EQ is asserted. This consumes very little power because the
voltage is reached by sharing charge between one bitline at VDD and the other at GND.

Figure 12.49 puts together the complete column circuitry serving two folded subar-
rays. Each subarray column produces a pair of signals, bit and bit *. The CSEL signal, pro-
duced by the column decoder, determines if this column will be connected to the I/O line
for the array. Each subarray has its own equalization transistors and pMOS portion of the
sense amplifier. However, the nMOS sense amplifier and I/O lines are shared between the
subarrays. Either ISO1 or ISO2 is asserted to connect one subarray to the I/O lines while
leaving the other isolated. During a read operation, the data is read onto the I/O lines.
During a write, one I/O line is driven high and the other low to force a value onto the bit-
lines. The cross-coupled pMOS transistors pull the bitlines to a full logic level during a
write to compensate for the threshold drop through the isolation transistor.

12.3.3 Embedded DRAM
Memories now account for half or more of the area of many chips. Replacing the SRAM
with a denser DRAM could save a good fraction of this area and reduce manufacturing
costs. Unfortunately, DRAM processes are designed for low leakage using high thresholds
and thick oxides. Attempts to incorporate logic onto DRAM processes have been unin-
spiring. Standard logic processes lack the specialized capacitor and stacked contact struc-
tures to build extremely high density DRAM. However, some foundries offer an
embedded DRAM (eDRAM) option with a dense capacitor structure. For example, the
IBM 65 nm process supports a 0.127 m2 eDRAM cell using a trench capacitor. The cell
is four times denser than SRAM in the same process but is not as fast [Wang06, Barth08].
Figure 12.50 shows a 12 Mb RAM using this eDRAM cell.

Alternatively, DRAM can be constructed in a standard logic process using additional
transistors in place of the capacitor. Figure 12.51 shows some 3T and 4T DRAM gain cells
[Nakagome03]. These cells store a value on the gate capacitance of a transistor. The read
operation involves an active transistor rather than simple charge sharing, so they can pro-
duce a stronger signal. Early DRAMs used these cells, but they were superseded by Den-
nard’s invention of the 1T cell at IBM in 1968 [Dennard68]. They might become relevant
again as technology and power supplies continue to scale.

bit*bit

VDD/2

EQ

FIGURE 12.48
Bitline conditioning

bit1*bit1
Subarray 1

Vn

ISO1

IO
IO*

ISO2

Vp

VDD/2

EQ

Vp

VDD/2

EQ

bit2*bit2
Subarray 2

C
S

E
L

FIGURE 12.49
Column circuitry

4 Mb Array 2 Mb Array

292 Kb Subarray

FIGURE 12.50 eDRAM arrays (© 2008 IEEE.)

word
wbl rbl

rwl
wbl rbl

wwl

bit bit_b
word

FIGURE 12.51
3T and 4T
DRAM cells

12.4 Read-Only Memory 527

12.4 Read-Only Memory
Read-Only Memory (ROM) cells can be built with only one transistor per bit of storage.
A ROM is a nonvolatile memory structure in that the state is retained indefinitely—even
without power. A ROM array is commonly implemented as a single-ended NOR array.
Commercial ROMs are normally dynamic, although pseudo-nMOS is simple and suffices
for small structures. As in SRAM cells and other footless dynamic gates, the wordline
input must be low during precharge on dynamic NOR gates. In situations where DC
power dissipation is acceptable and the speed is sufficient, the pseudo-nMOS ROM is the
easiest to design, requiring no timing. The DC power dissipation can be significantly
reduced in multiplexed ROMs by placing the pullup transistors after the column multi-
plexer.

Figure 12.52 shows a 4-word by 6-bit ROM using pseudo-nMOS pullups with the
following contents:

word0: 010101
word1: 011001
word2: 100101
word3: 101010

The contents of the ROM can be symbolically represented with a dot diagram in which
dots indicate the presence of 1s, as shown in Figure 12.53. The dots correspond to nMOS
pulldown transistors connected to the bitlines, but the outputs are inverted.

Mask-programmed ROMs can be configured by the presence or absence of a transis-
tor or contact, or by a threshold implant that turns a transistor permanently OFF where it
is not needed. Omitting transistors has the advantage of reducing capacitance on the
wordlines and power consumption. Programming with metal contacts was once popular
because such ROMs could be completely manufactured except for the metal layer, and
then programmed according to customer requirements through a metallization step. The
advent of EEPROM and Flash memory chips has reduced demand for such mask-
programmed ROMs. Figure 12.54 shows a layout for the 4-word by 6-bit ROM array.

ROM Array

2:4
DEC

A0A1

Y0Y1Y2Y3Y4Y5

Weak
Pseudo nMOS
Pullups

word0

word1

word2

word3

FIGURE 12.52 Pseudo-nMOS ROM

word0
word1
word2
word3

bit5 bit0

FIGURE 12.53 Dot diagram representation
of ROM

Chapter 12 Array Subsystems528

The wordlines run horizontally in polysilicon, while the bitlines and grounds run vertically
in metal1. Notice how each ground is shared between a pair of cells. Each bit of the ROM
occupies a 12 × 8 cell2. Polysilicon wordlines are only appropriate for small or slow
ROMs. A larger ROM can run metal2 straps over the polysilicon and contact the two
periodically (e.g., every eight columns). Occasional substrate contacts are also required.

Row decoders for ROMS are similar to those for RAMs except that they are usually
tightly constrained by the ROM wordline pitch. Figure 12.55 shows how each output of a
2:4 decoder can be shoehorned into a single horizontal track using vertical polysilicon true

2The cell can be reduced to 11 × 7 by running the ground line in diffusion and by reducing the width and
spacing to 3 .

word3

word2

word1

word0

GND

bit0bit1bit2bit3bit4bit5

Unit
Cell

FIGURE 12.54 ROM array layout

A1A1A0A0A1A1A0A0

GNDVDD

word3

word2

word1

word0

FIGURE 12.55 Row decoder layout on tight pitch

12.4 Read-Only Memory 529

and complementary address lines and metal supply lines. Column decoders for ROMs are
usually simpler than those for RAMs because single-ended sensing is commonly
employed.

Figure 12.56 shows a complete pseudo-nMOS ROM including row decoder, cell
array, pMOS pullups, and output inverters.

A1

A0

GND

VDD

word3

word2

word1

word0

VDD Y0Y1Y2Y3Y4Y5

Pseudo nMOS
Pullups

Output
Inverters

ROM
Array

Decoder

Address
Inverters

Decoder

A0 A0 A1 A1 A0 A0 A1 A1

GND

FIGURE 12.56 Complete ROM layout

12.4.1 Progammable ROMs
It is often desirable for the user to be able to program or reprogram a ROM after it is man-
ufactured. Programming/writing speeds are generally slower than read speeds for ROMs.
Four types of nonvolatile memories include Programmable ROMs (PROMs), Erasable Pro-
grammable ROMs (EPROMs), Electrically Erasable Programmable ROMs (EEPROMs),
and Flash memories. All of these memories require some enhancements to a standard
CMOS process: PROMs use fuses while EPROMs, EEPROMs, and Flash use charge
stored on a floating gate.

Programmable ROMs can be fabricated as ordinary ROMs fully populated with pull-
down transistors in every position. Each transistor is placed in series with a fuse made of

Chapter 12 Array Subsystems530

polysilicon, nichrome, or some other conductor that can be burned out by applying a high
current. The user typically configures the ROM in a specialized PROM programmer
before putting it in the system. As there is no way to repair a blown fuse, PROMs are also
referred to as one-time programmable memories.

As technology has improved, reprogrammable nonvolatile memory has largely dis-
placed PROMs. These memories, including EPROM, EEPROM, and Flash, use a sec-

ond layer of polysilicon to form a floating gate between the
control gate and the channel, as shown in Figure 12.57.
The floating gate is a good conductor, but it is not attached
to anything. Applying a high voltage to the control gate
causes electrons to jump through the thin oxide onto the
floating gate through the processes called Fowler-Nordheim
(FN) tunneling. Injecting the electrons induces a negative
voltage on the floating gate, effectively increasing the
threshold voltage of the transistor to the point that it is
always OFF.

EPROM is programmed electrically, but it is erased
through exposure to ultraviolet light that knocks the elec-
trons off the floating gate. It offers a dense cell, but it is

inconvenient to erase and reprogram. EEPROM and Flash can be erased electrically
without being removed from the system. EEPROM offers fine-grained control over
which bits are erased, while Flash is erased in bulk. EEPROM cells are larger to achieve
this versatility, so Flash has become the most economical form of convenient nonvolatile
storage. Flash memory is discussed further in Section 12.4.3.

12.4.2 NAND ROMs
The ROM from Figure 12.52 is called a NOR ROM because each of the bitlines is just a
pseudo-nMOS NOR gate. The bitline pulls down when a wordline attached to any of the
transistors is asserted high. The size of the cell is limited by the ground line. Figure 12.58
shows a NAND ROM that uses active-low wordlines. Transistors are placed in series and
the transistors on the nonselected rows are ON. If no transistor is associated with the
selected word, the bitline will pull down. If a transistor is present, the bitline will remain
high.

Figure 12.59(a) shows a layout of the NAND ROM.
The cell size is only 7 × 8 . The contents are specified by
using either a transistor or a metal jumper in each bit posi-
tion. The contacts limit the cell size. Figure 12.59(b) shows
an even smaller layout in which transistors are located at
every position. In this design, an extra implantation step
can be used to create a negative threshold voltage, turning
certain transistors permanently ON where they are not
needed. In such a process, the cell size reduces to only 6 × 5

, assuming that the decoder and bitline circuitry can be
built on such a tight pitch.

A disadvantage of the NAND ROM is that the delay
grows quadratically with the number of series transistors
discharging the bitline. NAND structures with more than
8–16 series transistors become extremely slow, so NAND

p Bulk Si

n+ n+

Control GateSource Drain

Thin Gate Oxide
(SiO2)

Polysilicon
Floating Gate

FIGURE 12.57 Cross-section of floating gate nMOS transistor

2:4
DEC

A0A1

Y0Y1Y2Y3Y4Y5

word0

word1

word2

word3

FIGURE 12.58 Pseudo-nMOS NAND ROM

12.4 Read-Only Memory 531

ROMs are often broken into multiple small banks with a limited number of series transis-
tors. Nevertheless, these NAND structures are attractive for Flash memories in which
density and cost are more important than access time.

12.4.3 Flash
Flash memory was invented by Fujio Masuoka and colleagues at Toshiba in 1984
[Masuoka84]. Masuoka coined the name because blocks of memory were erased all at
once “in a flash.” By 1988, the long-term reliability had been proven and volume produc-
tion began with 256 KB parts [Kynett88]. Meanwhile, Masuoka developed the NAND
architecture that cut the area per bit by 30% [Masuoka87]. Flash memory has become tre-
mendously popular because of its nonvolatile storage and exceptionally low cost per bit.
For example, Flash memory cards are widely used in digital cameras to store hundreds of
high-resolution images. Flash is also useful for firmware or configuration data because it
can be rewritten to upgrade a system in the field without opening the case or removing
parts. Most of the Flash market has become a commodity business driven almost entirely
by cost, with performance and even reliability being secondary considerations. This sec-
tion summarizes the principles of Flash operation. [Brewer08] describes the many flavors
of Flash in great detail.

Most stand-alone Flash memory uses the NAND architecture to
minimize bit cell size and cost. NAND Flash memories are divided into
blocks, which in turn are made of pages. The memory is written one page
at a time and erased one block at a time. For example, a conventional
NAND flash memory might be made of 8 KB (64 Kb) blocks, each of
which contain sixteen 512 B (4 Kb) pages.

Recall that Flash uses floating gate transistors as memory cells. The
charge on the floating gate determines the threshold of the transistor
and indicates the state of the cell. A negative threshold represents a logic
‘1’ and a positive threshold represents a logic 0.’

In NAND Flash, the floating gate transistors are connected in series
to form strings. Figure 12.60 shows the organization of a string, page,
and block in a simple Flash memory. Each string consists of 16 cells, a
string select transistor, and a ground select transistor all connected in series
and attached to the bitline. The control gate of each cell is connected to

Unit Cell

Implant

Unit Cell

(a) (b)

GND

word0

word0

word3 word3

bit5 bit0

bit5 bit0

GND

FIGURE 12.59 NAND ROM array layouts

bit0

word0

word1

word15

ssl

gsl

bit1 bit4095

string

page1

block

More Blocks

page0

page15

FIGURE 12.60 NAND Flash string

Chapter 12 Array Subsystems532

a wordline. The array contains one column for each bit in a
page. Each column contains one string per block. The
number of cells in the string determines the number of
pages per block.

Figure 12.61 shows the operation of the Flash memory
using voltages representative of a multimegabit design. The
block is erased by setting all of the control gates to GND
and raising the substrate to 20 V. The high voltage across the

gate oxide induces FN tunneling, causing the electrons to flow from the floating gate to the
substrate. At the end of the erase step, all the floating gate transistors have a negative Vt and
thus represent 1. Tunneling is a slow process, so block erase takes on the order of a millisec-
ond. The wordlines for other blocks on the chip are set to the same voltage as the substrate
to inhibit erasing. An on-chip charge pump (see Section 13.3.7) is used to generate the
high voltages.

A cell is programmed (written) to 0 by tunneling electrons onto the floating gate. The
programming cannot restore 1 values, so the block must be erased before any cell is repro-
grammed. An entire page is programmed at once. To program a page, the bitlines are
driven with the data values: 0 V for a logic 0 and 8 V for a logic 1. The substrate is held at
ground. The wordline is set to 20 V for the page being programmed and 10 V for the
other pages in the block. The ground select line (gsl) is left OFF but the string select line
(ssl) for the block is turned ON, passing the voltage on the bitline to the channels of all
the transistors being programmed. Thus, cells being programmed to 0 see 20 V on the
control gate and 0 V on the channel. This high voltage difference induces FN tunneling
that drives electrons onto the floating gate, raising Vt to a positive voltage. The other cells
see a smaller voltage that is insufficient to cause tunneling.

A page is read in a similar fashion to a conventional NAND ROM. The bitlines are
precharged. ssl and gsl are both set to 3.3 V to activate the selected block. The active-low
wordline for the selected page is set to 0 V and the wordlines for all the other pages in the
block are set to 4.5 V, which is much higher than Vt . Thus, all the transistors in the stack
are ON except possibly the one corresponding to the selected page. If the cell being read
has a negative Vt , it turns ON too and the bitline discharges. If the cell being read has a
positive Vt , it remains OFF and the bitline does not switch.

To achieve higher densities, multilevel Flash cells store more than one bit on a transis-
tor by programming the threshold to one of several levels. The threshold can be sensed by
adjusting the voltage on the selected wordline. The number of bits that can be stored
depends on how accurately the threshold can be programmed and sensed.

Two reliability metrics for Flash memories are retention time and endurance. The
retention time is the duration for which a Flash cell will hold its value. Under normal con-
ditions, the charge on the floating gate would take thousands or millions of years to leak
off. However, defects in the oxide may increase leakage for some cells. Manufacturers typ-
ically specify a 10 year retention time. Endurance is the number of times that a cell can be
erased and reprogrammed. The high voltages stress the oxide and can eventually cause it
to wear out. Endurance of 100,000 erase-program cycles are typical, but some multilevel
Flash cells have endurance as low as 5000 cycles.

Some foundries offer an embedded Flash option, in which extra masks and process
steps are used to create the floating gate transistors. The embedded Flash is commonly
used for code storage in applications such as microcontrollers. These applications typically
use NOR Flash instead of NAND because they need fast access to individual words rather
than slow access to entire pages.

20 V

20 V

Inhibit
Erase

20 V

Program 0

0 V 0 V

20 V

Do Not
Program

8 V 8 V

0 V

Erase

10 V

Inhibit
Program

? ?
20 V 0 V 0 V 0 V

FIGURE 12.61 Erase and program operations

12.5 Serial Access Memories 533

Figure 12.62 shows a die photograph of a 64 Gb NAND
Flash chip from Toshiba and SanDisk built in a 43 nm pro-
cess with 3 metal layers [Trinh09]. The chip uses a 16-level
cell to store 4 bits per transistor. The memory is divided into
two 32 Gb (4 GB) panes that can operate independently to
double the throughput. Each pane has 64K columns. Hence,
each page is 64 Kb (8 KB). Each string contains 64 series
transistors. Thus, each block holds (64 transistors/string) × (4
bits/transistor) = 256 pages, or 2 MB of data. Each pane has
2K blocks. The chip operates at 3.3 V and has a program-
ming bandwidth of 5.6 MB/s.

12.5 Serial Access Memories
Using the basic SRAM cell and/or registers, we can construct
a variety of serial access memories including shift registers
and queues. These memories avoid the need for external logic
to track addresses for reading or writing.

12.5.1 Shift Registers
A shift register is commonly used in signal-processing appli-
cations to store and delay data. Figure 12.63(a) shows a sim-
ple 4-stage 8-bit shift register constructed from 32 flip-flops. As there is no logic between
the registers, particular care must be taken that hold times are satisfied. Flip-flops are
rather big, so large, dense shift registers use dual-port RAMs instead. The RAM is config-
ured as a circular buffer with a pair of counters specifying where the data is read and writ-
ten. The read counter is initialized to the first entry and the write counter to the last entry
on reset, as shown in Figure 12.63(b). Alternately, the counters in an N-stage shift register
can use two 1-of-N hot registers to track which entries should be read and written. Again,
one is initialized to point to the first entry and the other to the last entry. These registers
can drive the wordlines directly without the need for a separate decoder, as shown in Fig-
ure 12.63(c).

The tapped delay line is a shift register variant that offers a variable number of stages of
delay. Figure 12.64 shows a 64-stage tapped delay line that could be used in a video pro-
cessing system. Delay blocks are built from 32-, 16-, 8-, 4-, 2-, and 1-stage shift registers.
Multiplexers control pass-around of the delay blocks to provide the appropriate total delay.

Another variant is a serial/parallel memory. Figure 12.65(a) shows a 4-stage Serial In
Parallel Out (SIPO) memory and Figure 12.65(b) shows a 4-stage Parallel In Serial Out
(PISO) memory. These are also often useful in signal processing and communications
systems.

12.5.2 Queues (FIFO, LIFO)
Queues allow data to be read and written at different rates. Figure 12.66 shows an interface
to a queue. The read and write operations each are controlled by their own clocks that may
be asynchronous. The queue asserts the FULL flag when there is no room remaining to
write data and the EMPTY flag when there is no data to read. Because of other system

Sense Amp

Sense Amp

R
o

w
 D

eco
d

er

R
o

w
 D

eco
d

er

Peripheral Circuits

32 Gb
Plane 0

32 Gb
Plane 1

FIGURE 12.62 64 Gb NAND Flash (© 2009 IEEE.)

Chapter 12 Array Subsystems534

delays, some queues also provide ALMOST-FULL and ALMOST-EMPTY flags to
communicate the impending state and halt write or read requests. The queue internally
maintains read and write pointers indicating which data should be accessed next. As with
a shift register, the pointers can be counters or 1-of-N hot registers.

clk

Din

(a)

Dout

(b)

8

Din

Dout

clk

C
ounter

C
ounter

reset

00...00

11...11

readaddr

writeaddr
Dual-Ported

SRAM

1

0

0

0

0

0

0

1

clkreset

readword0

writeword0

readword1

writeword1

readwordN 2

writewordN 2

readwordN 1

writewordN 1

(c)

FIGURE 12.63 Shift registers

S
R

32

clk

Din

delay5

S
R

16

delay4

S
R

8

delay3

S
R

4

delay2

S
R

2

delay1

S
R

1

delay0

Dout

FIGURE 12.64 Tapped delay line

clk
shift/load

P0 P1 P2 P3

Sout

clk

P0 P1 P2 P3

Sin

(a) (b)

FIGURE 12.65 Serial/parallel memories

12.6 Content-Addressable Memory 535

First In First Out (FIFO) queues are commonly used to buffer data
between two asynchronous streams. Like a shift register, the FIFO is orga-
nized as a circular buffer. On reset, the read and write pointers are both ini-
tialized to the first element and the FIFO is EMPTY. On a write, the
write pointer advances to the next element. If it is about to catch the read
pointer, the FIFO is FULL. On a read, the read pointer advances to the
next element. If it catches the write pointer, the FIFO is EMPTY again.

Last In First Out (LIFO) queues, also known as stacks, are used in
applications such as subroutine or interrupt stacks in microcontrollers.
The LIFO uses a single pointer for both read and write. On reset, the pointer is initialized
to the first element and the LIFO is EMPTY. On a write, the pointer is incremented. If it
reaches the last element, the LIFO is FULL. On a read, the pointer is decremented. If it
reaches the first element, the LIFO is EMPTY again.

12.6 Content-Addressable Memory
Figure 12.67 shows the symbol for a content-addressable memory (CAM). The CAM
acts as an ordinary SRAM that can be read or written given adr and data, but also per-
forms matching operations. Matching asserts a matchline output for each word of the
CAM that contains a specified key.

A common application of CAMs is translation lookaside buffers (TLBs) in micropro-
cessors supporting virtual memory. The virtual address is given as the key to the TLB
CAM. If this address is in the CAM, the corresponding matchline is asserted. This
matchline can serve as the wordline to access a RAM containing the associated physical
address, as shown in Figure 12.68. A NOR gate processing all of the matchlines generates
a miss signal for the CAM. Note that the read, write, and adr lines for updating the TLB
entries are not drawn.

Figure 12.69 shows a 10T CAM cell consisting of a normal SRAM cell with addi-
tional transistors to perform the match. Multiple CAM cells in the same word are tied to
the same matchline. The matchline is either precharged or pulled high as a distributed
pseudo-nMOS gate. The key is placed on the bitlines. If the key and the value stored in
the cell differ, the matchline will be pulled down. Only if all of the key bits match all of the
bits stored in the word of memory will the matchline for that word remain high. The key
can contain a “don’t care” by setting both bit and bit_b low. The inside front cover shows a
layout of this cell in a 56 × 43 area; CAMs generally have about twice the area of SRAM

Queue

WriteClk

WriteData

FULL

ReadClk

ReadData

EMPTY

FIGURE 12.66 Queue

CAM

adr data/key

match
read

write

CAM

Virtual Address

SRAM
Array

Physical Addressmiss

match

FIGURE 12.67 Content-addressable memory FIGURE 12.68 Translation Lookaside Buffer (TLB)
using CAM

bit bit_b

word

match

cell

cell_b

FIGURE 12.69 CAM cell
implementation

Chapter 12 Array Subsystems536

cells. Sometimes the key is provided on separate
searchlines rather than on the bitlines to reduce the
capacitance and power consumption of a search.

Figure 12.70 shows a complete 4 × 4 CAM
array. Like an SRAM, it consists of an array of
cells, a decoder, and column circuitry. However,
each row also produces a dynamic matchline. The
matchlines are precharged with the clocked pMOS
transistors. The miss signal is produced with a dis-
tributed pseudo-nMOS NOR.

When the matchlines are used to access a
RAM, the monotonicity problem must be consid-
ered. Initially, all the matchlines are high. During
CAM operation, the lines pull down, leaving at most
one line asserted to indicate which row contains the
key. However, the RAM requires a monotonically
rising wordline. Figure 12.71 refines Figure 12.68
with strobed AND gates driving the wordlines as

early as possible after the matchlines have settled. The strobe can be timed with an inverter
chain or replica delay line in much the same way that the sense amplifier clock for an SRAM
was generated in Section 12.2.3.3. As usual, self-timing margin must be provided so the cir-
cuit operates correctly across all design corners. The strobe must be deasserted before the
match lines precharge.

In some applications, a CAM doesn’t care about the value of certain bits. For example,
a CAM used in a network router may not care about the subnet address when it is seeking
to route data to the correct continent. A ternary CAM (TCAM) can store X (don’t care)
values as well as 0 and 1 bits. Figure 12.72 shows a TCAM cell using two bits of state to
store the three values. This cell also illustrates separating the search lines from the bitlines.
When A = 1 and B = 0, the cell matches a 0. When A = 0 and B = 1, the cell matches a 1.
When A = 0 and B = 0, the cell matches both 0 and 1.

Large CAMs can use many of the same techniques as large RAMs, including sense
amplifiers and multiple subarrays. They tend to consume relatively large amounts of power
because the matchlines are heavily loaded and have an activity factor close to 1.
[Pagiamtzis06] surveys many alternative CAM structures such as NAND architectures.
[Agrawal08] offers a power and delay model.

R
ow

 D
ecoder

weak
miss
match0

match1

match2

match3

clk

Column Circuitry

CAM Cell

address

data

read/write

FIGURE 12.70 4 × 4 CAM array

CAM

Virtual Address

SRAM
Array

Physical Address

miss

Match Lines

clk

Word Lines

Delay
Strobe

adr

clk

match

strobe

word

FIGURE 12.71 Refined TLB path with monotonic wordlines

12.7 Programmable Logic Arrays 537

12.7 Programmable Logic Arrays
A programmable logic array (PLA) provides a regular structure for
implementing combinational logic specified in sum-of-products
canonical form. If outputs are fed back to inputs through registers,
PLAs also can form finite state machines. PLAs were most popu-
lar in the early days of VLSI when two-level logic minimization
was well understood, but multilevel logic optimizers were still
immature. They are dense and fast ways to implement simple
functions, and with suitable CAD support, are easy to change
when logic bugs are discovered. Logic synthesis tools have greatly
improved and now control logic is usually synthesized instead.
Moreover, pseudo-nMOS PLAs dissipate static power, while
dynamic PLAs require careful design of timing chains. Neverthe-
less, the Cell processor used 27 dynamic PLAs in each core to calculate control signals where
static logic would not meet timing [Warnock06].

Any logic function can be expressed in sum-of-products form; i.e., where each output
is the OR (sum) of the ANDs (products) of true and complementary inputs. The inputs
and their complements are called literals. The AND of a set of literals is called a product or
minterm. The outputs are ORs of minterms. The PLA consists of an AND plane to com-
pute the minterms and an OR plane to compute the outputs.

NOR gates are particularly efficient in pseudo-nMOS and dynamic logic because
they use only parallel, never series, transistors. Hence, we use DeMorgan’s law to replace
the AND and OR gates with NORs after inverting inputs and outputs, as shown in Fig-
ure 12.73. For brevity, we often represent the PLA with a dot diagram, shown in Figure
12.74. Experienced designers often add a few unused rows and columns to their PLAs to
accommodate last-minute design changes without changing the overall footprint of the

word

bit0 bit0_b

search

match

search_b

A B

bit1_b bit1

FIGURE 12.72 TCAM

AND Plane OR Plane

abc

abc

abc

abc

ab

bc

ac

sa b c cout

Inputs Outputs

M
nterm

s

FIGURE 12.73 OR/NOR representation of PLA

AND Plane OR Plane

s
a b c

cout

abc

abc

abc

abc

ab

bc

ac

FIGURE 12.74 Dot diagram representation of PLA

Chapter 12 Array Subsystems538

PLA. Observe that a ROM and a PLA are very similar in form. The ROM decoder is
equivalent to an AND plane generating all 2n minterms. The ROM array corresponds to
an OR plane producing the outputs.

Example 12.5

Write the equations for a full adder in sum-of-products form. Sketch a 3-input,
2-output PLA implementing this logic.

SOLUTION: Figure 12.75 shows the PLA. The logic equations are

 (12.9)

The most straightforward design for a small PLA uses a pseudo-nMOS NOR gate.
Figure 12.76 shows the circuit diagram for the full adder PLA. Advantages of this PLA
include simplicity and small size. Disadvantages include the static power dissipation of the
NOR gates, the slow pullup response, and the fact that they don’t fit into a conventional
logic synthesis flow today. Figure 12.77 shows a layout for the pseudo-nMOS PLA. The
transistor gates are run in polysilicon and could be strapped with metal2. Observe how
ground lines can be shared between pairs of minterms and outputs so that each minterm
and output can be placed on a 1.5 track pitch. The inverters require careful layout to fit the
tight pitch. The pMOS pullups may be tied to an enable instead of GND so that the static
current can be turned OFF when the PLA is not in use.

Dynamic PLAs eliminate the contention current and are faster than their pseudo-
nMOS counterparts. Figure 12.78(a) shows a PLA using footed dynamic NORs for both

s abc abc abc abc
c ab bc ac
= + + +
= + +out

AND Plane OR Plane

s
a b c

cout

abc

abc

abc

abc

ab

bc

ac

FIGURE 12.75 AND/OR representation of PLA

AND Plane OR Plane

s
a b c

cout

abc

abc

abc

abc

ab

bc

ac

FIGURE 12.76 Pseudo-nMOS PLA schematic

12.7 Programmable Logic Arrays 539

the AND and OR planes. Unfortunately, the AND plane must drive the OR plane
directly, violating monotonicity. The OR plane must take a clock phase that is delayed
until the minterms adequately discharge (to below Vt). This clock is often generated with a
replica delay line that is guaranteed to be no faster than the slowest minterm in the AND
plane. Moreover, the OR plane outputs must be captured before the AND plane pre-
charges so that the results are not corrupted. To accomplish this, the PLA may be supplied
by clocks similar to those shown in Figure 12.78(b). The dynamic power is high because
the activity factor on the heavily loaded minterm lines is close to 1.

a b c s Cout

Pseudo-nMOS
Pullups

Pseudo-nMOS
Pullups

AND Plane

OR Plane

Input
Inverters Output

Inverters

a b ca b c

GND

VDD

VDD

abc

ab

bc

ac

GND

Unit
Cell

Unit
Cell

abc

abc

abc

VDD

FIGURE 12.77 Pseudo-nMOS PLA layout

Chapter 12 Array Subsystems540

Figure 12.79 shows a self-timed dynamic PLA using two dummy rows as replica
delay lines. Assume that the inputs arrive from flip-flops and settle shortly after the rising
edge of the clock. The clocked circuitry acts as a pulse generator, producing a low-going
precharge pulse on AND shortly after the clock edge. The width of the pulse is equal to
the delay of dummy AND row 1 plus two inverters and should be great enough to fully
precharge all of the real AND rows. Thus, the loading on the dummy AND row is chosen
to equal or exceed the worst loading of any real row. This worst loading consists of one
nMOS drain for each input and one gate for each output. In this figure, the size of the
inverter loading the AND line can be selected to contribute the desired gate load. Once
the AND plane enters evaluation, the second dummy AND row starts to discharge
through a single transistor. Again, this row is loaded to equal or exceed the delay of the
worst real AND row. The three inverters provide some self-timing margin to ensure that

OR will not rise until the AND plane has fully evaluated. The output of the OR plane can
be sampled into flip-flops on the next rising edge of the clock.

[Wang01] surveys a variety of other PLA designs. [Samson09] describes a NAND-
NOR architecture in which the AND plane is constructed with domino AND gates. This
approach is monotonic and thus avoids the race condition. However, performance
degrades when the number of series transistors becomes large.

AND Plane OR Plane

φAND
φOR

φOR

clk

φAND

φOR

(a)

(b)

s

a b c

cout

abc

abc

abc

abc

ab

bc

ac

FIGURE 12.78 Dynamic PLA schematic

12.8 Robust Memory Design 541

12.8 Robust Memory Design
Because arrays occupy a large fraction of the die area of many system-on-chip and micro-
processor designs, they strongly influence the overall chip yield and reliability. Fortunately,
their regular structure makes it easy to enhance the design for better yield and reliability.
Redundant rows, columns, and even subarrays are used to fix defective memories. Error
correcting codes are used to correct soft errors. Radiation-hardened cells reduce the soft
error rate. This section also examines wearout mechanisms.

12.8.1 Redundancy
A single defect in logic circuits will usually render the entire chip useless. Memory yield is
improved by providing spare parts that can replace defective elements. Each subarray is
equipped with extra rows and columns to fix bad cells. Extra subarrays can be used to
replace subarrays that are beyond repair. Alternatively, if the exact memory capacity is
unimportant, the defective subarrays can be disabled and the chip can be sold anyway. The
challenge in redundancy is to minimize the overhead of the replacement logic.

AND OR
Dummy AND Row 2

clk

(c)

Dummy AND Row 1

s

a b c

cout

abc

abc

abc

abc

ab

bc

ac

FIGURE 12.79 Dynamic PLA schematic

Chapter 12 Array Subsystems542

Spare rows and columns date back to 64 Kb DRAM chips [Cenker79]. The number
of spares depends on the anticipated defect density and sensitivity; a small number can
make a big difference in yield. Originally, the chip was tested in the factory to identify bad
cells, then a laser zapped links to disable the bad rows and columns and program the
address of the spares. To reduce manufacturing cost, arrays now incorporate built-in self-
test (see Section 15.6.3). The chip itself may blow electronic fuses to configure the replace-
ments. Alternatively, the chip may run the self-test sequence each time it is reset so that it
can detect cells that wear out over the life of the product.

Figure 12.80 shows an example of a decoder for an array with two redundant rows.
The row decoder takes an extra enable input that forces all the outputs to 0. The addresses
of the defective rows are stored in the registers at startup. If the address matches one of the
defective rows, the decoder is disabled and one of the redundant rows is activated instead.

Figure 12.81 shows an example of the read path for an array with two redundant col-
umns. Each sense amplifier output may be shifted by one or two columns to skip over
defective columns. The write path requires the opposite logic.

Example 12.6

Example 12.1 considered a 64 Mb SRAM assuming read margins were normally dis-
tributed with a standard deviation of 15 mV. To achieve 90% parametric yield in the
absence of repair mechanisms, the mean read margin had to exceed 6 standard devia-
tions (90 mV). Assume that the array is divided into S = 2048 subarrays of M = 32 kb
each. How does the result improve in each of the following scenarios?

(a) The array can repair two defective cells per subarray.
(b) The array can replace two defective subarrays.

SOLUTION: (a) Using EQ (7.21), the probability of a subarray failing must be less than

(12.10)

According to EQ (7.30), if a cell has a probability Xc of failure, the probability that a
subarray has more than two failures and is unrepairable is

(12.11)

Solving numerically finds Xc = 2.1 × 10–6 to achieve the required level of subarray
reliability. By interpolating Table 7.8 or solving the CDF in EQ (7.17), we find this
corresponds to 4.6 standard deviations or 69 mV of read margin.

X S
sub = = ×1 0 9 5 1 10 5. .

X X M X X
M M

X Xc
M

c
M

c c
M

csub = () + () +
() ()1 1 1

1

2
1

1 2 2

wordlines

=

=

Redundant
wordA

Redundant
wordB

rowadr

en

A

B

D
E

C

FIGURE 12.80
Row redundancy

col 0 col 1 col 2 col N 1
Spare
col A

Spare
col B

D0 D1 D2 DN 1

Mux
Control

FIGURE 12.81 Column redundancy

12.8 Robust Memory Design 543

(b) It is arguably more convenient to work in terms of yield Y = 1 – X. According to
EQ (7.30), the array yield is

(12.12)

Solving numerically for Y = 0.9 gives Ysub = 1 – 5.4 × 10-4. The cell yield must be

(12.13)

This corresponds to 5.6 standard deviations or 84 mV of read margin.

Photolithography and etch problems occur most often along the perimeter of large
repetitive structures. Memory yield improves if a dummy row and column is placed on each
edge. These dummy cells are never activated. For example, the Sun Niagra processor used
spares to repair large caches and dummies to improve the yield on unrepairable register
files [Leon07]. Similarly, a NAND Flash string adds a dummy bit at each end of the
string [Trinh09].

Replacing defective subarrays requires remapping addresses to subarrays. This is easi-
est in associative structures where a level of address indirection is already built into the sys-
tem. For example, the Itanium 2 contained 9 MB of memory organized as an 18-way set
associative L3 cache [Chang05]. The cache provides six spare 48 kB subarrays for repairs.
If this is insufficient to fix a problem, one or more defective ways can be disabled with a
fuse bit. A die with at least 12 functional ways can be sold as a product with a 6 MB cache.

NAND Flash memories also tolerate high defect levels to minimize cell size. If a
block has too many defects to fix, it is marked as bad. The Flash memory controller per-
forms a mapping of logical addresses to physical blocks in much the same way as a hard
disk controller. The controller simply avoids using bad blocks. Blocks that wear out
because of their finite endurance are added to the bad block list. Good controllers also per-
form wear-leveling by shuffling the mapping each time a block is erased so no block sees
an unusually high number of program-erase cycles.

12.8.2 Error Correcting Codes (ECC)
RAMs are prone to soft errors that spontaneously flip a bit stored in one of the cells, as
discussed in Section 7.3.4. Scaling trends are increasing the soft error rate because of the
smaller charge on the cell and the larger number of bits on a chip. Soft errors also increase
if the power supply is lowered to reduce leakage during sleep mode [Degalahal05].

Error correcting codes (ECC) are commonly used to recover from soft errors, as dis-
cussed in Section 11.7.2. For example, adding 8 check bits to a 64-bit word in a memory is
sufficient to correct any error in the word and detect any pair of errors. ECC supplements
redundancy to dramatically improve yield as well. ECC increases the delay and area of a
memory, so it is best suited to large memories where the delay and area are already large.

12.8.3 Radiation Hardening
Radiation hardening is used to reduce soft error susceptibility in aviation and space appli-
cations when the flux of radiation is much higher and in high-reliability terrestrial applica-
tions such as mainframes or medical devices. The same dual-interlocked cell (DICE)

Y Y SY Y
S S

Y YS S S= + () + () ()sub sub sub sub sub
1 21

1

2
1

22

Y Yc
M= = ×sub 1 1 6 10 8.

Chapter 12 Array Subsystems544

technique used in registers in Section 10.3.10 also works for SRAM
cells [Calin96]. Figure 12.82 shows such a 12T radiation-hardened
cell. An upset on any single node is corrected by the feedback. The
12T cell has approximately twice the area of an ordinary 6T cell.

A particle strike may disturb not only the node it hits, but also
adjacent nodes due to the parasitic bipolar effect. This can flip bits in
adjacent SRAM cells. While ECC is effective at correcting a single
error per word, complicated and lengthy codes are required to correct
multiple bit errors. The number of adjacent cells that can be affected
depends on the layout. Upsets to cells in adjacent rows does not matter
because the other rows are independently protected by ECC. Column

multiplexing is an effective way to protect cells in the same row because it spreads out the
cells that represent a word. For example, a memory may store four 64-bit words (plus 8-bit
ECC for each word) in a 288-bit row using 4:1 column multiplexing. Every fourth bit
belongs to the same word. Hence, a strike that impacts four adjacent bits in the same row
only corrupts one bit in each of the four words and is correctable. In the thin-cell layout,
the n-well provides isolation so strikes rarely disturb more than two adjacent cells in the
same row. Hence, using 2:1 column multiplexing provides effective resistance to uncor-
rectable multibit errors [Osada06].

12.9 Historical Perspective
MOS memory made a splash in 1970 when Intel announced sales of the first 1103 1 kb
DRAM chip and IBM replaced magnetic core memories with semiconductor memories in
its 370-series mainframe computers. Since then, DRAM has become a commodity busi-
ness characterized by ferocious price competition (and occasional price fixing) among a
rather small number of manufacturers. Indeed, in 1986, Intel left what was then its core
business when the market was flooded by cheap chips during a cyclical downturn. DRAM
capacity per chip has increased by 60% per year and cost per bit has decreased by 27% per
year. Feature size improvement accounts for part but not all of the capacity gains. The area
per bit has shrunk faster than feature size because of clever cell designs such as the 1T
DRAM cell, innovative layout, and three-dimensional capacitor structures. Larger dice
have become economical because of manufacturing yield improvements. Growing DRAM
capacity has benefited system designers as much as the advances in processor performance.

DRAM density quadrupled approximately every three years for the first three decades
of its development. More recently, the trend has slowed toward doubling roughly every
three years. Table 12.1 lists some of the innovations at each DRAM generation [Itoh01k,
Isaac08]. Early DRAMs were built in nMOS processes requiring high supply voltages.
VDD standardized at 5 V through the 1980s and 1990s and CMOS peripheral circuitry
was eventually adopted to save power. Other improvements addressed the signal-to-noise
ratio, bandwidth and latency, power consumption, and test time.

n1 n2 n3n0

bit bit_b
word

FIGURE 12.82 Radiation-hardened SRAM cell

 Summary 545

Summary
Arrays repeat a basic cell in two dimensions. The cell is carefully optimized to provide very
high density. For performance or density reasons, the nodes within the array do not always
swing from rail to rail. Periphery circuitry restores the output swings to full digital logic
levels.

The static RAM is very widely used in CMOS systems. The ubiquitous 6T cell con-
sists of a cross-coupled inverter pair to hold the state and two access transistors for differ-
ential reads and writes. The bitlines are first preconditioned to a known value. A decoder
asserts one of the wordlines. That word is read onto the bitlines and sensed. A column
multiplexer may select only a subset of the bits as outputs. SRAMs are used in caches and
other embedded memories. Multiported SRAMs are used in register files.

Content-addressable memories are similar to SRAMs. However, they also provide a
lookup mode in which a key is placed on the bitlines and each word that contains that key

TABLE 12.1 DRAM generations

Capacity Years of Volume
Shipment

Power
Supply (V)

Memory Cell Circuit Innovations

1 kb 1970s > 12 3T or 4T MOS technology
Differential sensing

4 kb 1970s > 12 3T or 4T Multiplexed addresses
16 kb 1978–1984 12 1T Dynamic amplifier

Dynamic driver
64 kb 1981–1987 5 1T Folded bitline

Word bootstrapping
Substrate bias generator

256 kb 1984–1992 5 1T Shared amplifier
Metal-strapped wordline
Redundancy

1 Mb 1987–1997 5 1T CMOS peripheral circuits
Half-VDD precharge
Multidivided data line
BIST

4 Mb 1991–2000 5 1T 3-D capacitor structure
16 Mb 1994–2003 5 1T On-chip voltage converter

Twisted bitlines
64 Mb 1997–2006 3.3 1T Synchronous small-signal I/O

Multidivided wordlines
256 Mb 2001– 1.8–3.3 1T Double data rate interface
512 Mb 2004– 2.5 1T DDR2 interface

1 Gb 2007– 1.25–1.8 1T DDR3 interface
2 Gb 2010– 1.2–1.5 1T

Chapter 12 Array Subsystems546

asserts its matchline. CAMs are important for looking up addresses in translation look-
aside buffers and network routers.

Dynamic RAMs store information on a capacitor using a single access transistor.
With specialized process steps to build compact capacitors, they offer an order of magni-
tude higher density of data storage than SRAM. However, the data gradually leaks off the
capacitors, so DRAMs must be periodically refreshed to maintain their state. DRAMs are
usually built in specialized processes on dedicated chips, but potentially may be useful for
high-capacity embedded memories on digital CMOS processes.

Read-only memories also use a single access transistor, but their contents are wired to
a constant value. They are commonly used to store code and are convenient because they
can be easily changed late in the design process to correct bugs or add features. Flash
memories are electronically programmable and erasable and provide extremely high stor-
age density.

A ROM can also be viewed as a lookup table. In general, a ROM of 2x words by y bits
can serve as a lookup table to perform any function of x inputs and y outputs. If a function
is written in sum-of-products form, the ROM decoder performs the AND operation
while the ROM array performs the OR. Many functions are relatively sparse. A program-
mable logic array optimizes out the unnecessary entries by replacing the decoder with an
AND plane. In some cases, PLAs are smaller than ROMs, yet provide the same flexibility
of easy changes late in the design cycle. PLAs were commonly used for microcoded finite
state machines in the 1980s. They are still occasionally used, but good logic synthesis tools
now deliver the same ease of change for random logic while avoiding the complicated cir-
cuit design needed for an efficient PLA.

A good design flow should provide automatic generators for simple SRAMs and
ROMs. The designer should be comfortable with using these arrays where they are appro-
priate. High-performance designs need more elaborate multiported SRAM, large mem-
ory arrays, and CAMs. Most of these arrays demand skilled circuit design and thorough
simulation.

Exercises
 12.1 An embedded SRAM contains 2048 8-bit words. If it is physically arranged in a

square fashion, how many inputs does each column multiplexer require?

 12.2 Estimate the dimensions of the SRAM array in Exercise 12.1 using a 1.3 × 1.44
m SRAM cell, assuming periphery circuitry adds 10% to each dimension of the

core.

 12.3 Sketch designs for a 6:64 decoder with and without predecoding. Comment on the
pros and cons of predecoding.

 12.4 Figure 12.83 shows a 3:8 decoder [Lyon87]. How does the logical effort of each
input compare to an ordinary decoder made of 3-input NORs? Does the decoder
have any performance drawbacks?

 12.5 Estimate the minimum delay of a 10:1024 decoder driving an electrical effort of
H = 20 using
(a) static CMOS gates
(b) footless domino gates

 Exercises 547

 12.6 Design the footless domino decoder from Exercise 12.5(b) using self-resetting
domino gates. Assume the inputs are available in true and complementary form as
pulses with a duration of 3 FO4 inverters and can each drive 48 of gate width.
Indicate transistor sizes and estimate the delay of the decoder.

 12.7 Develop a model of wordline decoder delay for a RAM with 2n rows and 2m col-
umns. Assume true and complementary inputs are available and that the input
capacitance equals the capacitance of one of the columns so H = 2m. Use static
CMOS gates and express your result in terms of n and m.

 12.8 Explain the trade-offs between open, closed, and twisted bitlines in a dynamic
RAM array.

 12.9 Sketch a dot diagram for a 2-input XOR using a ROM.

12.10 Sketch a dot diagram for a 2-input XOR using a PLA.

12.11 Sketch a schematic for an 8-word × 2-bit NAND ROM that serves as a lookup
table to implement a full adder.

12.12 Explain the advantages and disadvantages of NAND ROMs as compared to NOR
ROMs.

12.13 Develop a model for the read time of a ROM with 2n rows and 2m columns analo-
gous to that of the SRAM from Section 12.2.6. Assume the wire capacitance in
the ROM array is negligible compared to the gate and diffusion capacitance.
Assume the ROM cells are laid out such that two cells share a single diffusion con-
tact and hence each contributes only C/2 of diffusion capacitance.

A0A1A2A2

word0

word1

word2

word3

word4

word5

word6

word7

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

7

7

7

7

14

14

V
D

D

A1 A0

FIGURE 12.83 Lyon-Schediwy decoder

This page intentionally left blank

13

549

Special-Purpose
Subsystems

13.1 Introduction
This chapter describes a variety of special-purpose subsystems that a digital designer may
encounter. These subsystems are usually designed by a specialist or obtained from a third-
party vendor, and each is the subject of entire books. However, the skilled digital designer
should be conversant in each area in order to understand the impact of the other sub-
systems on a core digital design.

The chapter begins with packaging because the package strongly influences other ele-
ments of the system. It continues with the power and clock distribution subsystems.
Phase-locked loops (PLLs) receive special attention because they are critical to high per-
formance systems. Input/Output (I/O) subsystems connect the chip to the package to
receive power, clock, and data. The chapter concludes with a handful of random circuits.

13.2 Packaging and Cooling
The chip package provides a mechanical and electrical connection between the chip and a
circuit board. It is no longer possible to separate the design of a high-performance inte-
grated circuit from the design of its package. An ideal package has the following properties:

� Connects signals and power between the chip and board with little delay or
distortion

� Removes heat produced by the chip

� Protects the chip from mechanical damage and thermal expansion stress

� Is inexpensive to manufacture and test

To provide good signal and power connections, the package must offer short wires
with low resistance and inductance. The impacts of the package on the power supply and
I/O are discussed further in Sections 13.3 and 13.6, respectively. The remainder of this
section describes some of the types of packages commonly available and how they remove
heat from the chip.

13.2.1 Package Options
Table 13.1 lists a variety of common integrated circuit packages. Figure 13.1 shows photo-
graphs of these packages. The I/O count includes connections for both signals and power.

Coauthored by Dr. Jaeha Kim

13.2 Packaging and Cooling 551

tance, and the size of the holes limits the density of the pins. Surface mount (SMT) pack-
ages are soldered to the surface of a printed circuit board to alleviate these problems. DIP,
PGA, PLCC, and LGA packages are easy to insert into low-cost sockets, so they are con-
venient for components that might be removed for reprogramming or replacement. Ball
Grid Array (BGA) packages and their offshoots become the preferred approach for parts
that require a large number of high-bandwidth signals in a compact form factor. Package
design is a rapidly advancing field and new packages are being adopted each year.

13.2.2 Chip-to-Package Connections
Conventionally, chips have been connected to their packages through thin (25 m) gold
wires bonded to metal pads. The pads are organized into a ring around the periphery of the
chip called a pad frame. The minimum pitch of the pads is limited by the bonding machine
to approximately 100–200 m. Thus, a 1-cm2 chip is limited to several hundred I/Os.
Chips with large numbers of I/Os sometimes are pad-limited, meaning that the chip size is
determined by the pad frame rather than by the logic within the chip. Figure 1.63 showed
an example of a pad-limited chip in a 40-pin pad frame. Some chips have used a second
ring of pads, but this approach results in longer bond wires and greater risk that the wires
will accidentally touch.

The bond wires connect to a metal lead frame in the package.
This lead frame distributes the I/Os to the periphery of the package
and is bent to form the pins of the package. Many packages also
include a heat spreader to help distribute the heat from the die across
the package and ultimately out to the heat sink. Figure 13.2 shows a
cutaway of a dual-in-line package showing a corner of the chip with
bond wires connecting to the lead frame [Mahalingam85]. The metal
leads contribute parasitic inductance and coupling capacitance to their
neighbors. More advanced packages internally resemble printed cir-
cuit boards, using multiple layers of signals and power/ground planes
to distribute the I/Os on controlled-impedance transmission lines.

Since the late 1990s, many manufacturers have adopted flip-chip
connections. This technology, also called Controlled Collapse Chip
Connection (C4), was developed by IBM in the 1960s and has been
used on their mainframes for decades. In a flip-chip design, the surface of the chip is cov-
ered with an array of pads on the top level of metal. Lead solder balls are bonded to these
pads in a final process step called wafer bumping. The chip is flipped upside down and con-
nected to the package by heating the balls until they melt. The bonding requires careful
alignment, but surface tension from the solder helps pull the chip into place. The chip is in
nearly direct contact with the package, eliminating the inductance associated with the
bond wires. The bumps can be placed on a pitch of 150 m or less, offering thousands of
connections between the die and package. For example, a Xeon processor has 13,164 sol-
der bumps, most of which are dedicated to power and ground to bring 120 A of current
onto the chip [Rusu07]. Flip-chip technology introduces new testing problems because
the top-level metal wires are no longer accessible for probing during debug.

Figure 13.3 shows a Core i7 microprocessor in an LGA package. The LGA substrate
can be viewed as a small circuit board. The image on the left is a top view of the bare die
flip-chip mounted onto the LGA substrate. Solder balls form connections between top-
level metal pads on the die and matching pads on the substrate. The image in the middle
shows the LGA after the integrated heat spreader has been attached. The heat spreader

Die and Bond Wires

Heat Spreader

Lead Frame

FIGURE 13.2 Cutaway view of dual-in-line package
(© IEEE 1985.)

Chapter 13 Special-Purpose Subsystems552

provides a good thermal path to the heat sink. The image on the right shows the bottom
view. The substrate has 1366 gold-plated pads that connect to a socket on the mother-
board. Notice the array of bypass capacitors in the center. These provide a low-inductance
connection to the die on the opposite side.

13.2.3 Package Parasitics
Figure 13.4 shows a model of an integrated circuit package. The bond wires and lead
frame contribute parasitic inductance to the signal traces. They also have some mutual
inductive and capacitive coupling to nearby signal traces, potentially causing crosstalk
when multiple signals switch. The VDD and GND wires also have inductance from both
bond wires and the lead frame. Moreover, they have nonzero resistance, which becomes
important for chips drawing large supply current. High-performance packages often
include bypass capacitors between VDD and GND. As we will see in Section 13.3.5, the
bypass capacitors have their own parasitic resistance and inductance that limit their effec-
tiveness at high frequencies.

13.2.4 Heat Dissipation
A 60-watt light bulb has a surface area of about 120 cm2 and is too hot to touch. In com-
parison, a high-performance microprocessor dissipates 150 W on a 1.6 cm2 die, resulting
in a power density 180 times as great! Clearly, removing heat from chips is a major chal-
lenge for the package.

FIGURE 13.3 LGA package (Courtesy of Intel Corporation.)

Chip

S
ignal P

ins

Package
Capacitor

S
ignal P

ads

Chip
VDD

Chip
GND

Board
VDD

Board
GND

Bond Wire Lead Frame

Package

FIGURE 13.4 Package parasitics

Chapter 13 Special-Purpose Subsystems550

I/O spacing is typically specified in the archaic unit of mils (1 mil = 0.001 inch = 25.4 m).
Packages come in both ceramic and plastic varieties; plastic is cheaper, but cannot remove as
much heat. Older DIP and PGA packages used through-hole pins, which pass through
holes in a printed circuit board and are soldered from below. The pins contribute induc-

TABLE 13.1 Package options

Package # I/Os Description

Dual Inline
Package (DIP)

8, 14, 16, 20, 28,
40, 64

Two rows of through-hole pins on 100 mil centers. Low cost. Long wires
between chip and corner pins.

Pin Grid Array
(PGA)

65–391+ Array of through-hole pins on 100 mil centers. Low thermal resistance and
high pin counts.

Small Outline IC
(SOIC)

8,10, 14, 16, 20,
24, 28

Two rows of SMT pins on 50 mil centers. Low cost, good for low-power
parts with small pin counts.

Thin Small
Outline Package
(TSOP)

28–86+ Two rows of SMT pins on 0.5 or 0.8 mm centers in a thin package. Com-
monly used for DRAMs.

Plastic Leadless
Chip Carrier
(PLCC)

20, 28, 44, 68, 84 J-shaped SMT pins on all four sides on 50 mil centers. Sturdy leads are con-
venient for socketing.

Quad Flat Pack
(QFP)

44–240 SMT pins on all four sides on 15.7–50 mil centers. High density of I/Os.
Available in thin (TQFP) and very thin (VQFP) forms as thin as 1.6 mm.

Ball Grid Array
(BGA)

49–2000+ Array of SMT solder balls on underside of package on 15.7–50 mil centers.
Extremely high density of I/Os with low parasitics. Requires specialized
assembly and inspection equipment to blindly attach to array of pads on
printed circuit board.

Land Grid Array
(LGA)

Many Similar to BGA, but with gold-plated pads rather than solder balls. Connects
to a socket or pads on the PCB.

Chip Scale
Packaging (CSP)

Variable SMT package no larger than 1.2× the die size. A common form of CSP is the
flip-chip, which directly connects to a printed circuit board through solder
balls on top metal layer of chip. Even higher I/O density and lower parasitics
than BGA. Popular for mobile devices.

FIGURE 13.1 Integrated circuit packages (© 2003 Harvey Mudd College. Reprinted with
permission.)

13.2 Packaging and Cooling 553

The heat generated by a chip flows from the transistor junctions where it is generated
through the substrate and package. It can be spread across a heat sink, and then carried
away through the air by means of convection. Just as current flow is determined by voltage
difference and electrical resistance, the heat flow is determined by temperature difference
and thermal resistance. Thus, the temperature difference T between the transistor junc-
tions and the ambient air is

 (13.1)

where ja is the thermal resistance (in °C/W) between the junction and ambient and P is
the power consumption of the chip. The thermal resistance in turn can be modeled as the
series resistance from the die to the package jp and from the package to the air pa.

 (13.2)

For most low-cost packages, pa dominates the resistance. Still air can transfer about
0.001 W/(cm2 °C) [Glasser85]. Thus, a package with a surface area of 10 cm2 has a ther-
mal resistance of about pa = 100 °C/W. Such a package cannot handle chips dissipating
more than about 1 watt. Forced air transfers 0.01–0.03 W/(cm2 °C). High-power chips
add a large heat sink and a fan to the package to reduce the thermal resistance. For exam-
ple, a 72-pin ceramic PGA package has a thermal resistance pa of 34 °C/W in still air,
18 °C/W in 400 feet/minute airflow, and 10 °C/W in 400 feet/minute airflow with a good
heat sink. Liquid cooling is costly but highly effective, offering thermal resistance as low as
0.3 °C/W. MEMS microchannels and microfluidics offer the potential for extremely low
thermal resistance cooling integrated directly into the die or package [Paik08].

Example 13.1

You are planning to package an ASIC in a ball grid array package with a passive heat
sink. The system box contains a large fan providing 250 linear feet/minute (LFM) of
airflow. The package vendor specs the thermal resistance from the junction to package
at 0.9 °C/W. The heat sink vendor specs the thermal resistance from the package to
ambient for this airflow at 4.0 °C/W for the heat sink plus 0.1 °C/W for the heat sink
adhesive between the package and heat sink. The system box ambient temperature may
reach 55 °C. What is the maximum power dissipation of your ASIC if its junction tem-
perature is not to exceed 100 °C?

SOLUTION: The thermal resistance is ja = 0.9 + 0.1 + 4.0 = 5 °C/W. The temperature
difference between the junction and ambient must not exceed T = 100 – 55 = 45 °C.
Therefore, the maximum power dissipation is P = T / ja = 9 W.

Advances in heat sinks, fans, and packages have raised the practical limit for heat
removal from about 8 W in 1985 to about 130 W in 2008 for low-cost packaging. Forced-
air cooling appears to be reaching its limits, setting a cap on the power consumption of
chips.

13.2.5 Temperature Sensors
If a cooling fan motor fails or air intake vents become clogged, a chip may rapidly overheat
to the point of self-destruction. Moreover, chips are normally designed to function

T Pja=

ja jp pa= +

Chapter 13 Special-Purpose Subsystems554

correctly in the worst-case environment (e.g., 70 °C inside the system box), so they could
operate at a higher power and performance level at room temperature. Most high-
performance microprocessors now include one or more temperature sensors placed at hot
spots on the die for adaptive control. Based on the temperature, the chip performs
dynamic voltage scaling or throttles activity to avoid overheating [McGowen06, Pham06,
Sakran07].

The most common method of sensing temperature on-chip is based on the relation-
ship between absolute temperature T, collector current Ic , and base-emitter voltage VBE
for a bipolar transistor [Pertijs06]:

(13.3)

In this equation, q is the charge on an electron and k is the Boltzmann constant. Is is a
function of the transistor geometry and processing, and is also highly sensitive to temper-
ature. Solving EQ (13.3) for VBE gives

(13.4)

Unfortunately, this base-emitter voltage is a complex function of temperature because of
the Is dependence. However, the difference between base-emitter voltages of two identical
transistors operating at different collector currents Ic1 and Ic2 eliminates the Is term and
becomes directly proportional to absolute temperature (PTAT).

(13.5)

As shown in Section 3.4.3.5, an ordinary CMOS process contains a vertical pnp
bipolar transistor formed by p-diffusion, an n-well, and the p-substrate. This structure is
exploited to build temperature sensors without costly process modifications.1 Figure 13.5
shows an implementation of a simple temperature sensor with a current ratio of m. The
output voltage could be measured with an A/D converter to produce a digital representa-
tion of temperature or simply compared with a reference voltage to generate an over-
temperature warning signal. The reference current I is typically on the order of 1 A to
avoid non idealities from low- or high-injection.

Example 13.2

Estimate the temperature coefficient of a temperature sensor if the collector current
ratio is 10.

SOLUTION: The temperature coefficient is

(13.6)

1A diode has a similar temperature dependence to the I-V characteristics and one might wonder why it
couldn’t be an even simpler sensor element. The trouble is that diodes suffer from recombination of
electron-hole pairs in the depletion region, which introduces inaccuracies in the measurement.

I Ic s

V
T
BE

= e

q

k

V
T I

IBE
c

s

= k
q ln

V V V
T I

I
I
I

T I
BE BE BE

c

s

c

s

c= = =1 2
1 2k

q
k
qln ln ln 11

2I c

V
T

I
I

BE c

c

= =
×

×
k
q C

J

Kln
.

.
1

2

23

19

1 38 10

1 602 10
lln10 198= V

K

mI I

+
−VBE1 VBE2

FIGURE 13.5
Temperature sensor

13.3 Power Distribution 555

In practice, the relationship of VBE to temperature is not perfectly linear, introducing
measurement error. The accuracy is greatly improved by calibrating the sensor at a known
temperature. Such calibration involves placing the chip or wafer in a thermal chamber and
allowing time for temperature to equilibrate. The increased test time is expensive in a
high-volume manufacturing environment. If thermal calibration is limited to 1 second,
inaccuracies of about 0.5 °C can be achieved. Two-point calibration produces better
results, but is impractically time-consuming.

13.3 Power Distribution
The power distribution subsystem of a chip consists of metal wires or planes on the chip,
in the package, and on the printed circuit board. It also includes bypass capacitors to sup-
ply the instantaneous current requirements of the system. An ideal power distribution net-
work has the following properties:

� Maintains a stable voltage with little noise
� Provides average and peak power demands
� Provides current return paths for signals
� Avoids wearout from electromigration and self-heating
� Consumes little chip area and wiring
� Easy to lay out

Real networks must balance these competing demands, meeting targets of noise and
reliability as inexpensively as possible. The noise goal is typically ±10%; for example, a sys-
tem with nominal VDD = 1.0 V may guarantee the actual supply remains within 0.9–1.1 V.
Reliability goals demand enough vias and metal cross-sectional area to carry the supply
current, as was discussed in Section 7.3.3. The two fundamental sources of power supply
noise are IR drops and L di/dt noise.

Figure 13.6 plots the power consumption versus time for a microprocessor
[Gauthier02]. The power varies on a number of time scales. While the processor is active,
the power depends on the operations and data. It also spikes near the clock edges when
the large clock loads switch. When the processor becomes idle, clock gating turns off the

Clock Gating

Time

Average

Max

Min

Power

FIGURE 13.6 Time-dependent power consumption of microprocessor (Reprinted with
permission of Sun Microsystems.)

Chapter 13 Special-Purpose Subsystems556

clock to unused units, driving the power down significantly. As the supply voltage is nearly
constant, the supply current I (also called IDD) is proportional to the instantaneous power
demand. As this current flows through the resistance R of the power distribution network,
it causes a voltage droop proportional to IR. Moreover, as the changing current flows
through the inductance of the printed circuit board and package, it also causes a voltage
drop proportional to the rate of change: L di/dt.

This section begins by examining the physical design of a power distribution network.
It then discusses IR drops and L di/dt noise. The key to controlling noise from current
spikes is to provide adequate bypass capacitance on and off the chip to provide low supply
impedance at all frequencies. The power network is complicated enough that manual anal-
ysis is inadequate; instead, it typically must be modeled in a finite element simulation. The
power network also provides return paths for current flowing in signal wires. The geome-
try of the network affects the inductance of on-chip signals. Some critical circuits such as
phase-locked loops and analog blocks require a quiet supply for good performance. RC fil-
ters can reduce much of the supply noise. In sensitive circuits, noise carried through the
substrate is also important.

13.3.1 On-Chip Power Distribution Network
The on-chip power distribution network consists of power and ground wires within the
cells and more wires connecting the cells together. Most cells contain internal power and
ground busses routed on metal1 or metal2. These wires are typically wider than minimum
to provide lower resistance and better electromigration immunity. For example, the cells
on the inside front cover use 8 metal1 power/ground busses. These wires are normally
connected between adjacent cells by abutment. Standard cell designs and datapaths both
can use rows of cells sharing common power and ground lines.

In a small, low-power design, these rows can be strapped together with even wider
vertical metal wires. Figure 13.7(a) shows an abstract diagram of this strapping. Figure
1.64 showed a standard cell design strapped with power on the left and ground on the
right. In this example, the nMOS and pMOS transistors in adjacent rows are separated by
a routing channel, so spacing between the wells is not a problem. In modern processes, the
routing is typically done over the cell in upper-level metal. Therefore, the rows of cells can
be packed more closely together and well spacing limits the packing density. Alternatively,
every other row can be mirrored (flipped upside down) so that the wells of adjacent rows
abut, as shown in Figure 13.7(b).

In a larger or high-power design, the resistance of the horizontal power and ground
busses routed on thin lower-level metal will cause too much IR drop. Instead, the power
should be delivered using a grid of metal on all layers. The top levels of metal are thickest
and carry the bulk of the current, but a robust grid on all layers is important to bring the
current down to the transistors. Where layers connect, multiple vias should be used to
carry the high currents. As discussed in Section 6.3.4, the power and ground wires inter-
digitated with signal wires provide good return paths to minimize inductive effects. Sys-
tems with multiple voltage domains and/or power gating require particular attention to
power network integrity [Kanno07].

The power grid extends across the entire chip or voltage domain. Ultimately, it must
connect to the package through the I/O pads. When a pad ring is used, the connections
are all near the periphery of the chip. Thus, the biggest IR drops occur near the center of
the chip where the current flows through the longest wires and greatest resistance. C4
solder bumps distributed across the die are much better for power distribution because

13.3 Power Distribution 557

they can deliver the current from the low-resistance power plane in the package directly to
the area of the chip where the current is needed. Thus, less on-chip metal resources are
needed for power distribution.

13.3.2 IR Drops
The resistance of the power supply network includes the resistance of the on-chip wires
and vias, the resistance of the bond wires or solder bumps to the package, the resistance of
the package planes or traces, and the resistance of the printed circuit board planes. Because
the package and printed circuit board typically use copper that is much thicker and wider
than on-chip wires, the on-chip network dominates the resistive drop.

IR drops arise from both average and instantaneous current requirements. The instan-
taneous current may be much larger than the average drop because current draw tends to
locally spike near the clock edge when many registers and gates switch simultaneously.
Bypass capacitance near the switching gates can supply much of this instantaneous cur-
rent, so a well-bypassed power supply network only needs low enough resistance to deliver
the average current demand, not necessarily the peak.

n-well

Cell Row 1

Metal 2 VDD Metal 2 GND

n-well

Cell Row 2

Metal 2 VDD Metal 2 GND

n-well

Cell Row 2

Cell Row 1 (Mirrored)

(a)

(b)

Metal 1 GND

Metal 1 GND

Metal 1 GND

Metal 1 GND

Metal 1 VDD

Metal 1 VDD

Metal 1 VDD

Metal 1 VDD

FIGURE 13.7 Power distribution for standard cell layout

Chapter 13 Special-Purpose Subsystems558

Example 13.3

Suppose a row of 64 repeaters share a common metal2 power bus like that shown in
Figure 13.7(a). The bus is 320 m long and 1 m wide. The metal2 has a sheet resis-
tance of 0.05 / . If the repeaters drive 0.4 pF wire loads with 200 ps transition times,
estimate the power supply droop seen by the repeater for a 1.8 V nominal supply.

SOLUTION: Each repeater draws a current of approximately

(13.7)

The power and ground busses each have a length of 320 squares and thus a resis-
tance of R = 16 . The supply droop at the end of the wire caused by the 64 repeaters is
64 IR/2 = 1.85 V, or more than VDD, which is obviously impossible. Instead, as the
power supply begins to droop, the repeaters deliver less current, reducing the droop, but
increasing the transition time and delay. One way to alleviate this problem is to use a
power grid so that each repeater obtains its current from its own vertical wire rather
than sharing the single horizontal wire with all of the simultaneously switching neigh-
bors. Figure 13.8 shows a simulation of one of the repeaters. It compares the two power
bus layouts. When all the repeaters share a single power wire, the power supply droops
by nearly 30% and the propagation delay is more than doubled. When each repeater
has its own power wire so the supply noise is negligible, the output is crisper.

13.3.3 L di/dt Noise
The inductance of the power supply is typically dominated by the inductance of the bond
wires or C4 bumps connecting the die to the package. A typical bond wire has an induc-
tance of about 1 nH/mm, while a C4 ball is on the order of 100 pH. Recall that the induc-
tance of multiple inductors in parallel is reduced. Modern packages devote many (often
50% or more) of their pins or bumps to power and ground to minimize supply inductance.
The two largest sources of current transients are switching I/O signals and changes
between idle and active mode in the chip core.

I C
V
t

= = () =0 4
1 8
200

3 6.
.

.pF
V

ps
mA

VDD GND
Vin

Repeaters

Load
Capacitance

x 0.0

0.5

1.0

1.5

2.0

0 100 200 300 400 500 600 700 800 900

t (ps)

Vin

x

x (With No Supply Noise)

VDD2

VDD2

FIGURE 13.8 Power supply droop

13.3 Power Distribution 559

Example 13.4

A 1 GHz chip transitions from idle to full power operation in a single cycle. The idle
mode draws 20 A and the full power mode draws 60 A. If the power supply has 20 pH
of series inductance, estimate the power supply noise caused by this transition if the
chip has no internal bypass capacitance.

SOLUTION: The current transient is

(13.8)

The inductive noise is L I/ t = 0.8 V. This is clearly unacceptable in a low-voltage
system. Once again, the chip needs internal bypass capacitance to supply the instanta-
neous current, reducing the transient seen by the I/O pins.

L di/dt noise is becoming enough of a problem that some high-power systems must
resort to microarchitectural solutions that prevent the chip from transitioning between
minimum and maximum power in a single cycle. For example, a pipeline may enter or exit
idle mode one stage at a time rather than all at once to spread the current change over
many cycles.

13.3.4 On-Chip Bypass Capacitance
As we have seen, chips need a substantial amount of capacitance between power and ground
to provide the instantaneous current demands of the chip. This is called bypass or decoupling
capacitance. The bypass capacitance is distributed across the chip so that a local spike in cur-
rent can be supplied from nearby bypass capacitance rather than through the resistance of
the overall power grid. It also greatly reduces the di/dt drawn from the package.

Example 13.5

How much bypass capacitance is needed to supply a sudden current spike of 40 A for
1 ns with no more than a 200 mV supply droop?

SOLUTION: We solve

(13.9)

Fortunately, the inherent gate capacitance of quiescent transistors provides a signifi-
cant amount of symbiotic bypass capacitance [Dally98]. For example, Figure 13.9 shows
one inverter driving another. The gate-to-source capacitances of the load inverter are
shown explicitly. When A = 1 and B = 0, M1 is ON, charging up Cgs4. Similarly, when
A = 0 and B = 1, M2 is ON, charging up Cgs3. The charged capacitor stores energy that
can be released to supply sudden current demands. At any given time, approximately half
of the gate capacitance of any quiescent circuit behaves as symbiotic bypass capacitance.
Moreover, because only a small fraction of the gates are likely to be switching at any given
time, nearly half of the entire gate capacitance on the chip will serve as bypass capacitance.

I
t
=
()

=
60 20

1
40

A A

ns
GA/s

I C
V
t

C= =
()()

=
40

0 2
200

A 1 ns

V
nF

.

BA

Cgs3

Cgs4

M1

M2

M3

M4

FIGURE 13.9
Symbiotic bypass
capacitance

Chapter 13 Special-Purpose Subsystems560

Example 13.6

Estimate the symbiotic bypass capacitance per square millimeter for a chip with feature
size f if gate capacitance is 1 fF/ m of transistor width and transistor gates occupy 9%
of chip area.

SOLUTION: The capacitance density of a 1 m wide transistor of length f is 1/f fF/ m2.
At 9% utilization, this corresponds to 0.09/f nF/mm2. Half of that, or 0.045/f nF/mm2,
serves as symbiotic bypass capacitance on average. In an f = 65 nm process, this means
the symbiotic bypass capacitance is approximately 0.7 nF/mm2.

In most low- and medium-power chips, this symbiotic capacitance provides adequate
bypassing to filter instantaneous IR drops and L di/dt noise. In high-power chips, addi-
tional explicit capacitance is necessary. For example, the Sun Niagra2 processor added 700
nF of on-chip decoupling capacitance [Nawathe08]. The only dielectric available in a
standard CMOS process to build compact high-capacitance structures is gate oxide, so the
extra bypass capacitance is commonly built with an nMOS transistor with the gate tied to
VDD and the source and drain tied to GND. Decoupling capacitor layout should maximize
the capacitance per unit area. [Meng08] describes bypass capacitor layout techniques.

In some nanometer processes, gate leakage is significant for thin-oxide transistors.
Thicker-oxide transistors may be preferable to save leakage at the cost of lower capacitance
density. Sun used thick-oxide transistors in the Rock processor with a 20% loss in capaci-
tance density [Konstadinidis09].

13.3.5 Power Network Modeling
Figure 13.10 shows a lumped model of the power distribution network for a system
including the voltage regulator, the printed circuit board planes, the package, and the chip.
The network also includes bypass capacitors near the voltage regulator, near the chip pack-
age, possibly inside the chip package, and definitely on chip. The external capacitors are
modeled as an ideal capacitor with an effective series resistance (ESR) and effective series
inductance (ESL) representing the parasitics of the capacitor package. Larger capacitors
have bigger effective series inductances.

The voltage regulator seeks to produce a constant output voltage independent of the
load current. It is modeled as an ideal voltage source in series with a small resistance and
the inductance of its pins. Near the regulator is a large bulk capacitor (typically electrolytic
or tantalum). Power and ground planes on the printed circuit board carry the supply

Voltage
Regulator

Printed Circuit
Board Planes

Package
and Pins

Solder
Bumps

Bulk
Capacitor

Ceramic
Capacitor

Package
Capacitor

On-Chip
Capacitor

On-Chip
Current DemandVDD

Chip

PackageBoard

FIGURE 13.10 Power distribution system model

13.3 Power Distribution 561

current to the package, contributing some resistance and inductance. Typically, the board
designer places several small ceramic capacitors near the package. The package and its pins
again contribute resistance and inductance. High-frequency packages often contain small
capacitors inside the package for further decoupling. Finally, the chip connects to the
package through solder bumps or bond wires with additional resistance and inductance.
The dynamic and static current demands of the chip are modeled as a variable current
source with a waveform that might resemble Figure 13.6. The on-chip bypass capacitance
consists of the symbiotic capacitance and possibly some explicit decoupling capacitance. It
typically has negligible inductance because it is located so close to the switching loads.

As one moves from the chip toward the voltage regulator, each capacitor typically
increases by about an order of magnitude. However, each series inductance increases by a
similar amount. [Budnik06] illustrates a representative power delivery network for a high-
performance 90 nm microprocessor. The capacitance is on the order of 1 F on the die,
10’s of F in the package, and 100’s of F on the board, and 1 mF at the voltage regulator.
The inductance is on the order of 1 pH between the die and package, 10 pH between the
package and board, and 100 pH along the board to the voltage regulator. The resistance is
a fraction of an m at each link.

13.3.5.1 Power Supply Impedance A good power distribution network should offer a
low impedance at all frequencies of interest so that the supply voltage remains steady inde-
pendent of the changing chip current demands. If the system draws P watts of power and
the maximum allowable power supply ripple is r × VDD (e.g., r = 0.1 for 10% supply noise),
then the supply impedance must be less than

(13.10)

This relationship shows that required supply impedance is dropping quadratically
with voltage scaling. It is also dropping as power consumption increases. This impedance
requirement has driven the adoption of improved packages and flip-chip bonding with
solder bumps instead of bond wires. It means chips need to use more metal and on-chip
bypass capacitance. For example, a 1.0 V system dissipating 100 W of power draws 100 A.
To keep supply noise down to 10% of VDD, the power supply impedance must be 1 m .

If the system had no bypass capacitance, the distribution network would consist of
only the resistance and inductance, so it would have an impedance of Z = R + j L. This
impedance increases with frequency and becomes unacceptably high for most systems
by about 1 MHz.

The bypass capacitors in parallel with the supply provide an alternative low-
impedance path at higher frequencies. An ideal capacitor has impedance that decreases
with frequency as Z = 1/j C. Unfortunately, the effective series inductance of the capaci-
tors limits the useful frequency range of the real capacitor. The impedance of a capacitor C
with effective series resistance R and inductance L is

 (13.11)

This impedance has a minimum of Z = R at the self-resonant frequency of

 (13.12)

Z
rV

P
DD=
2

Z
j C

R j L= + +1

f
LC

resonant
resonant= =
2

1

2

Chapter 13 Special-Purpose Subsystems562

Figure 13.11 plots the magnitude of the impedance of a 1 F capacitor with 0.25 nH
of series inductance and 0.03 of series resistance. The capacitor has low impedance near
its resonant frequency of 10 MHz, but higher impedance elsewhere.

Larger capacitors tend to have higher effective series inductances and therefore have
lower self-resonant frequencies beyond which they are not useful. Thus, the system uses
many capacitors of different sizes to provide low impedance over all the frequencies of
interest. Also, capacitors closer to the chip are more useful at high frequencies because
they have less inductance in the board and package between them and the chip. The bulk
and ceramic capacitors are most effective over the 1–10 MHz range. Capacitors in the
package tend to be useful in the 10–200 MHz range. Above a few hundred MHz, the
inductance of the solder bumps or bond wires renders all but the on-chip decoupling
capacitors ineffective.

Figure 13.12 shows the simulated impedance of the Pentium 4 power distribution
network as a function of frequency, illustrating the resonances caused by the package,
socket, board, and regulator [Xu08]. Note the large increase in impedance near 100 MHz
caused by the package.

13.3.5.2 Power Supply Step Response Another way to think
about the need for nearby bypass capacitance is to imagine a
sudden step in current on the chip. Some round-trip propaga-
tion delay must occur before the spike reaches the power supply,
the supply adjusts the current it is delivering, and that current
returns to the chip. A lower bound on this delay is the speed of
light. Therefore, when a gate switches, the voltage regulator
will not know about the event until sometime after the transi-
tion has completed. In the meantime, the charge must be
drawn from the bypass capacitors. This results in a series of
droops as each capacitor becomes depleted before the next one
kicks in. Yet another perspective is to remember that an induc-
tor does not like to change its current instantaneously. Thus,
larger inductors introduce a longer lag.

104 105 106 107 108 109 1010
10−2

10−1

100

101

102

Frequency (Hz)

Im
pe

da
nc

e
(Ω

)

1 μF

0.03 Ω

0.25 nH

FIGURE 13.11 Impedance of bypass capacitor

FIGURE 13.12 Pentium 4 simulated power supply impedance
(© 2008 IEEE.)

13.3 Power Distribution 563

Figure 13.13 shows the simulated response to an abrupt
increase in current demand on the Pentium 4 illustrating a
sequence of three droops characteristic of power distribution
networks [Wong06]. Before the step, the voltage regulator
delivers some amount of current sufficient to meet the average
needs of the chip. When the current demand suddenly
increases, the extra charge is initially drawn out of the on-chip
bypass capacitors. As these capacitors discharge, the supply volt-
age drops precipitously. This is called the first droop. Soon the
current through the solder bumps increases to recharge the on-
chip capacitors. The delay depends on the inductance of the
bumps. Moreover, this inductance may cause the supply voltage
to overshoot and oscillate. Meanwhile, the capacitors in the
package supplying this current start to discharge and the voltage droops again. This second
droop occurs on a longer time scale determined by the package capacitance. Eventually, the
current through the package pins and socket increases to begin recharging the package
capacitors. Meanwhile, the capacitors on the printed circuit board discharge, leading to a
third droop before the voltage regulator catches up with the increased current demand. The
second and third droops are minimized by providing an adequate number of high-quality,
low ESL capacitors at each stage in the power distribution network [Smith99].

Designers typically assume that adding on-chip bypass capacitance to reduce supply
droop improves operating frequency. While more capacitance certainly does reduce the
droop, the frequency does not necessarily improve. In a striking experiment, [Wong06]
fabricated several wafers of Pentium 4 processors with and without decoupling capacitors.
Without capacitors, the first droop increased by 8% of VDD, but the operating frequency
only slowed by 1%. The anomaly was explained by showing that under certain conditions
the noise modulates the clock period in a way that tracks the critical path delay.

13.3.5.3 Distributed Power Supply Models The model presented so far is a lumped
approximation that is convenient for analysis and facilitates gaining intuition about chip
behavior. Chip designers also are concerned about the variation in supply voltage across the
chip. This requires a distributed model, which we can approximate with a mesh of small ele-
ments as shown in Figure 13.14. The mesh represents the resistance and inductance of the

FIGURE 13.13 Pentium 4 simulated voltage droops
(© 2006 IEEE.)

VDD
VDD

VDDVDD

FIGURE 13.14 Impedance of bypass capacitor

Chapter 13 Special-Purpose Subsystems564

on-chip power supply grid. Symbiotic or explicit decoupling capacitors are distributed across
the chip. At each node, a current source represents the local current demand of the circuitry.
The solder bumps or bond wires to the package are modeled with additional resistance and
inductance. In this model, the package is treated as a perfect VDD connected to the corners of
the grid. In a more complex model, you also could add the distributed resistance, inductance,
and bypass capacitance of the package itself.

For high-power chips, the designer can extract a mesh model as a SPICE netlist
based on the power grid wiring and the amount of local decoupling capacitance. Different
current waveforms can be applied at different nodes; for example, the current signatures of
synthesized logic, SRAM, repeater banks, and domino logic are all quite different. The
full-chip power grid simulation often takes many days to run and results in a map of volt-
age vs. time for the current pattern applied. Figure 7.2 shows a snapshot of the voltage
droop on the Itanium 2 microprocessor. The droop was greatest in the integer execution
unit, where several power-hungry domino adders all contribute to the IR drop.

13.3.6 Power Supply Filtering
Certain structures such as the phase-locked loop (PLL), clock buffers, and analog circuits
are particularly sensitive to power supply noise. For example, supply noise on the clock
buffers can directly increase clock jitter. Figure 13.15 shows an RC power supply filter cir-
cuit that eliminates the high-frequency noise on the local supply. The local filtered power
supply is typically connected to the power grid through a single wire or solder bump. The
resistance of this wire must be low enough to carry the current demand of the local cir-
cuitry without excessive IR drop, yet low enough to produce an RC time constant that will
filter noise at frequencies of interest. Typically, this requires a huge filter capacitor as well,
making power supply filtering expensive in terms of chip area.

For example, the Pentium 4 uses a power supply filter on the clock buffers to reduce
clock jitter [Kurd01]. The filter attenuates typical supply noise from 10 to 2% of VDD
using a pMOS transistor as the resistor. It has an RC time constant of 2.5 ns with an IR
drop of 70 mV.

13.3.7 Charge Pumps
Many circuits require a positive voltage exceeding VDD or a negative voltage. For example,
a Flash memory may require 20 V to erase floating-gate transistors. Reverse body bias
techniques need a negative voltage. Extra external voltage regulators add to the system
cost. If the current requirements are not too high, these voltages can be generated on-chip
using a charge pump.

Figure 13.16 shows a Dickson charge pump [Dickson76]. The pump uses two non-
overlapping clock phases. Initially, node V1 is charged up to VDD – Vt through N1. When

1 rises, the capacitor drives V1 up. When V1–V2 > Vt , N2 turns ON and begins charging
V2 toward 2(VDD – Vt). When 1 falls, the capacitor drags node V1 back down. N2 turns
OFF, leaving V2 at the elevated voltage. Next, 2 rises, pushing up V2 and V3 toward

3(VDD – Vt). The pumping continues down the line. With enough stages,
Vout can be driven arbitrary high, subject to limitations such as breakdown.
The pumping capacitors C can be constructed out of nMOS transistors with
their source and drain connected to the clock and the gate tied to the node
being pumped. Larger capacitors pumped at higher frequency f increase the
available output current. If the each of the pumped nodes has a stray capac-

Noisy VDD Filtered VDD

Cbig

FIGURE 13.15
Power supply filter

φ1 φ2 φ1 φ2

V1 V2 V3 Vout
N1 N2 N3 N4

CLC C C C

FIGURE 13.16 Dickson charge pump

13.3 Power Distribution 565

itance Cs (such as the gate and diffusion capacitance of the transistors to the right and left)
then the output voltage is approximately

(13.13)

A large load capacitor CL helps smooth out the ripple on Vout.
Figure 13.17 shows a charge pump for negative voltages. The pump

operates in a similar fashion, but the pMOS transistors pull the voltage
down on the falling transition of the clock. The pMOS bodies can be tied
to GND to reduce the body effect.

13.3.8 Substrate Noise
The body terminal of a bulk CMOS transistor is connected to the substrate or well. The
p-type substrate for an nMOS transistor is normally connected to GND and the n-well
for a pMOS transistor is normally connected to VDD. The connection is made through a
relatively high-resistance substrate or well contact. Current flow in the substrate causes
noise on the body terminal. This current may come from capacitive coupling through the
reverse-biased source/drain to substrate diodes or from impact ionization as current flows
through an ON transistor. The substrate noise modulates threshold voltages by means of
the body effect.

Substrate noise is also a problem for mixed-signal designs where separate power sup-
plies are used for noisy digital circuits and quiet analog circuits. The large number of rap-
idly switching digital circuits creates noise on the digital ground that propagates to the
sensitive analog circuitry via the common substrate.

The substrate and well should use plenty of contacts to guarantee a low-resistance
path to the power network. Guard rings, described in Section 7.3.6, provide some protec-
tion against noise caused by currents in the nearby substrate. Analog circuits should be
physically separated from digital circuits and protected by guard rings connected to a quiet
analog supply. Twin-tub or triple-well processes and SOI also experience much less sub-
strate coupling because transistors are isolated in their own wells.

Modeling and analyzing substrate noise is beyond the scope of this book. See
[Donnay03] for extensive coverage of the subject.

13.3.9 Energy Scavenging
Energy sources are a chronic challenge for portable systems. Most systems use batteries,
which eventually require replacement. This ranges from annoying (remembering to
change the battery in your fire alarm each year) to downright difficult (changing the bat-
tery in an implanted pacemaker). Energy scavenging is an emerging field with tremendous
promise for ultra-low power systems. The idea is to extract enough energy from the envi-
ronment to operate the device. The technique is particularly attractive when combined
with subthreshold circuits operating at microwatt or nanowatt average power levels. The
power demand typically varies with time, so the energy may be stored in a capacitor or
microbattery until it is needed.

Micropower generators can take advantage of many sources of energy. Solar cells are
the best known [Guilar09]; solar calculators are among the oldest and best-known

V N
CV

C C
V

DD
I

f

s
tout

out

=
+

φ1 φ2 φ1 φ2

V1 V2 V3 Vout
CL

FIGURE 13.17 Negative charge pump

Chapter 13 Special-Purpose Subsystems566

applications of energy scavenging. Thermoelectric microgenerators use thermocouples to
produce a voltage proportional to the temperature difference across the elements
[Lhermet08]. Piezoelectric microgenerators convert mechanical vibration into electricity
[Le06, Ramadass10]. Radio-frequency identification (RFID) tags use a coil to collect RF
energy radiated by the reader, then broadcast their ID back. Power output for these
sources depends on the amount of energy available for scavenging and the size of the gen-
erator, but tens to hundreds of microwatts per square centimeter are commonly achieved.

Microbattery manufacturing is also evolving. Microbatteries are made from layers of
thin films that can be deposited on top of an integrated circuit after the standard steps are
completed. A 10- m thick lithium-based battery presently achieves an energy density of
100 W-hr/cm2 [Lhermet08].

13.4 Clocks
Synchronous systems use a clock to distinguish one step in a computation from the previ-
ous or next step. Ideally, this clock should arrive at all clocked elements in the system
simultaneously so that the system shares a common time reference. These elements
include latches and flip-flops, memories, and dynamic gates. In practice, the arrival time
differs somewhat from one point to another; this difference is called clock skew. The central
challenge in clock system design is to deliver the clock to all the clocked elements on the
chip while finding an acceptable compromise among skew, power consumption, metal
resource usage, and design effort.

13.4.1 Definitions
A system is designed to use one or more logical clocks. The logical clocks are idealized sig-
nals with no skew used by the logic designer when describing the system with a hardware
description language. For example, a system with flip-flops requires a single logical clock,
usually called clk. A system using two-phase transparent latches requires two logical clocks

1 and 2 (or ph1 and ph2 in a hardware description language). Unfortunately, mis-
matched clock network paths and processing and environmental variations make it impos-
sible for all clocks to arrive at their ideal times, so the designer must settle for actually
receiving a multitude of skewed physical clocks.

Distributing a single clock across the entire chip in a low-skew fashion is challenging.
Distributing more than one is nearly impossible. Therefore, most systems distribute a sin-
gle global clock even though they may need multiple logical clocks. Local clock gaters located
near the clocked elements produce the physical clocks and drive them to the elements over
short wires. Examples of clock gaters include buffers, AND gates to stop the clock to
unused units, inverters to produce complementary clocks, and pulse generators for pulsed
latches.

The term clock skew has been used informally in many ways. We define skew as the
difference between the nominal and actual interarrival time of a pair of physical clocks. For
example, Figure 13.18(a) shows a system with two flip-flops. Both should receive the log-
ical clock clk with zero interarrival time, but they actually receive physical clocks clk1 and
clk2. Because of differences in the delay of the clock distribution wires and the local clock
buffers, clk1 arrives 25 ps before clk2. Therefore, we say the clock skew is 25 ps. Figure
13.18(b) shows a system with three transparent latches. The latches use complementary
logical clocks 1 and 2 with a nominal interarrival time of Tc /2 between rising edges.

13.4 Clocks 567

They actually receive physical clocks 1a, 1b, and 2a. We see the clock skews are

Sometimes designers intentionally delay clocks to solve setup or hold time problems.
For example, suppose that a critical path existed between F1 and F2 in Figure 13.18(a).
The designer might intentionally delay the clock to F2 by 30 ps to give the path more time
by using the slower local clock buffer on clk2. In this case, the nominal interarrival time of
clk1 and clk2 is 30 ps. The actual interarrival time is 25 ps, so the clock skew is 5 ps. Some
designers call this 30 ps delay intentional skew. We prefer to call it intentional delay and
reserve the term clock skew to account for unintentional differences in clock arrival times.

Clock skew can also be measured between different edges of the clock or between dif-
ferent cycles. For example, Figure 13.19 shows two physical clock waveforms in which the
edges differ from their nominal timing. The clock skews are defined based on the edge
(rising/falling) and the number of intervening cycles as well as the physical clock:

For a path between two flip-flops, the hold time constraint depends on the skew
between the same rising edges of both physical clocks. The setup time constraint depends
on the skew between the rising edge of one physical clock and the subsequent rising edge
of the other. We will see that clock distribution networks tend to introduce more skew
from one cycle to the next so setup and hold time con-
straints can budget different amounts of skew.

The actual clock skew between two clocked elements
varies with time and is different from one chip to another.
Moreover, it is unknowable at design time. From the engi-
neering perspective, a more useful parameter is the clock
skew budget. The clock skew budget should be larger than
the actual skew encountered on any long or short path on
any working chip, yet no larger than necessary lest the chip
be overdesigned.

t t ta b a a b
skew skew skewps; ps;1 1 1 2 15 15, , ,= = 22 10a = ps

t tclk clk r r clk clk r
skew skewps1 1 1 10 0, ,(, ,) , ,(,;= f clk clk r r

c

t

t

,) , ,(, ,);0 130 701 1= =ps psskew

skew
llk clk r r clk clk r ft1 2 1 20 00, ,(, ,) , ,(, ,);= =ps skew 0 401 2 1

ps psskew; , ,(, ,)t clk clk r r =

F
2

L 2

200 ps

φ1a

195 ps

F
1

60 ps

90 ps

clk1

clk2

gclk

(a)

190 ps

205 ps

65 ps

40 ps
gclk

(b)

L 3
L 1

200 ps

60 ps

φ1b

φ2a

FIGURE 13.18 Clock skew example

clk1

clk2

500 ps

530 ps

0 1000 ps

1070 ps

960 ps

Cycle 1 Cycle 2

FIGURE 13.19 Skewed clock waveforms

Chapter 13 Special-Purpose Subsystems568

While in principle designers could tabulate clock skew budgets between physical clocks
at every pair of clocked elements on the chip, the table would be unreasonably large and
unwieldy. Instead, they group physical clocks into clock domains and use a single skew budget
to describe the entire domain. For example, you could define two latches to be in a local
clock domain if their physical distance is no more than 500 m. Then you could just define
local and global skews, with the local skew being smaller than the global skew. If the clock
period is long compared to the maximum skew, you can define only a single global skew
budget and pessimistically assume all clocked elements might see this worst-case skew.

Clock skew sources can be classified as systematic,
random, drift, and jitter. Figure 13.20 illustrates these
sources in a simple clock distribution network. The glo-
bal clock is distributed along wires to two gaters. One
wire is 3 mm, while the other is 3.1 mm. The gaters are
nominally identical, but one drives a lumped load of
1.3 pF while the other drives a load of 0.8 pF distrib-
uted along a 0.5 mm wire. The systematic clock skew is
the portion that exists even under nominal conditions;
this component can be predicted by simulation. By

adjusting the size of one of the gaters, the systematic skew between clk1 and clk2 could be
driven to zero. However, some systematic skew will always exist between clk2 and clk3
because of the flight time along the wire after the gater.

The random component of skew is caused by manufacturing variations that could
affect the wire width, thickness, or spacing and the transistor channel length, threshold
voltage, or oxide thickness. These cause unpredictable changes in resistance, capacitance,
and transistor current, introducing additional skew. In principle, the actual random skew
could be measured during chip test or on startup, and adjustable delay elements could be
calibrated to compensate for the random skew.

Drift is caused by time-dependent environmental variations that occur relatively
slowly. For example, after the chip turns on, it will heat up. The temperature affects gate
and wire delay differently. Also, a temperature gradient across the chip leads to skew. Drift
can also be nulled out with adjustable delay elements. Unlike random skew, compensating
for drift must take place periodically rather than just once at startup. The frequency of cal-
ibration depends on the thermal time constant of the chip.

Jitter is caused by high-frequency environmental variation, particularly power supply
noise. This noise leads to delay variation in the clock buffers and gaters in both time and
space. Jitter is particularly insidious because it occurs too rapidly for compensation circuits
to be able to counter it.

Some engineers do not report jitter as part of the skew. In such a case, they must
include both jitter and skew in the setup and hold time budgets.

13.4.2 Clock System Architecture
Figure 13.21 shows an overview of a typical clock sub-
system. The chip receives an external clock signal
through the I/O pads. The clock generation unit may
include a phase-locked loop (PLL) or delay-locked loop
(DLL) to adjust the frequency or phase of the global
clock, as shall be discussed in Section 13.5. This global
clock is then distributed across the chip to points near

3 mm

1.3 pF

3.1 mm
gclk

clk1

0.5 mm

clk2
clk3

0.4 pF 0.4 pF

FIGURE 13.20 Simple clock distribution network

External
Clock

Chip

Clock
Generation

gclk

clk1

Gaters

Clocked
Elements

Clock Distribution

clk2

clk3

exclk

FIGURE 13.21 Clock subsystem

13.4 Clocks 569

all of the clocked elements. The clock distribution network must be carefully designed to
minimize clock skew. Local clock gaters receive this global clock and drive the physical
clock signals along short wires to small groups of clocked elements.

13.4.3 Global Clock Generation
The global clock generator receives an external clock signal and produces the global clock
that will be distributed across the die. In the simplest case, the clock generator is simply a
chain of buffers to drive the large capacitance load on the clock distribution network.
However, such a simple clock generator may suffer from a number of issues.

First, the input pad, buffers, wires, and clock gaters add significant delay that can
cause a large delay (often 0.5 to 1 ns across a large chip) between the external clock and
the internal clocks distributed to the clocked elements on the chip. This delay can also
vary with process variation and environment conditions, and fluctuate rapidly over time
due to supply or substrate noise present on the chip. Due to this uncontrolled amount of
skew and jitter, the clock domains inside the chip become unsynchronized with the exter-
nal clock domain, making reliable communication difficult. This is particularly problem-
atic at high frequencies where the skew becomes a significant portion of the clock period.

To mitigate these issues, more sophisticated clock generators use either phase-locked
loops (PLLs) or delay-locked loops (DLLs) to regulate the delay to a constant value in the
presence of variation and noise. Note that if this delay is equal to an integer multiple of the
clock period, the delayed clock is indistinguishable from the original clock with no delay.
This way, the external and internal clock domains remain synchronized in spite of the
delays introduced by the additional elements in the clock distribution network. For this
reason, the PLLs and DLLs used in this purpose are often called zero-delay buffers.

Figure 13.22 illustrates the use of a PLL or a DLL to compensate for the on-chip
clock delays. The circuits contain a phase detector (PD) that produces a signal propor-
tional to the phase difference between the input and output clocks. The loop filter (LF)

PD LF

Oscillator

Input
Clock

Output
Clock

Frequency Control

Clock Buffers

PD LF

Input
Clock

Output
Clock

Delay Control

Clock Buffers

Delay Line

(a)

(b)

FIGURE 13.22 Zero-delay buffers using (a) a PLL, (b) a DLL

Chapter 13 Special-Purpose Subsystems570

converts this phase error into a control signal adjusting the frequency of an oscillator or the
delay of a delay line. Section 13.5 examines the design of each of these elements. The out-
put is then buffered to drive the large output clock load. PLLs and DLLs share the same
principle of feedback control; they both monitor the distributed clocks and correct them if
they are in misalignment with the external input clock. The only difference is that upon
the detection of misalignment, a PLL adjusts the frequency of the clock (subsequently its
phase) while a DLL adjusts the delay of the clock. Nonetheless, both types of feedback
loops strive to distribute the clocks whose edge positions are aligned with those of the
external clock.

13.4.3.1 PLLs vs. DLLs The main difference between a PLL and a DLL is that the PLL
uses an oscillator that creates a new clock whereas the DLL uses a variable delay line that
simply delays the input clock. While both can serve as the actuator element that adjusts
the edge position of the clock, the oscillator is more versatile in a sense that it can also vary
the frequency of the clock. This property makes it easy for PLLs to multiply the clock fre-
quency by an integer or even by a fractional amount when desired. However, a PLL loop
filter is generally more complicated than the DLL counterpart because it has to control
two quantities (i.e., the frequency and phase of the oscillator clock) instead of just one
(i.e., the delay).

13.4.3.2 Bandwidth and Stability A key metric for feedback loops is how quickly they
can respond to various disturbances and adjust the output clock. For example, if the dis-
turbance is supply noise, we would want the PLL or DLL to counteract the disturbance as
soon as possible. However, if the disturbance is the input clock jitter, we may want the
loop to respond slowly, so that the output clock will track the average position of the input
clock and thus have lower jitter. The most used quantity that describes this promptness in
the response is bandwidth. Another critical metric is stability, which describes how reliably
the feedback loop converges to the locked condition. Generally, PLLs require more atten-
tion than DLLs in order to achieve good stability.

13.4.3.3 Frequency Multiplication In some applications, it may be necessary to generate
an on-chip clock that has a different frequency than the external clock. For example, one
may want to use a low-frequency quartz clock source that is less expensive than a high-
frequency one. The frequency multiplication can be easily achieved with PLLs by insert-
ing a frequency divider in the feedback path, as illustrated in Figure 13.23. As the phase
detector now compares the output clock divided by a factor N with the input reference
clock divided by a factor of M, when the PLL reaches a lock and those two clocks are in

M

fout/N

fout = fin
PD LF

Oscillator
Input
Clock
(fin)

Output
Clock

Frequency Control

Clock Buffers

N

fin/M

N
M

FIGURE 13.23 Frequency multiplication using a PLL

13.4 Clocks 571

alignment, the output clock from the oscillator should have a frequency that is N/M times
the input clock frequency. Thus, the PLL can produce an output that is any rational mul-
tiple of the input frequency.

13.4.4 Global Clock Distribution
The global clock must be distributed across the chip in a way that reaches all of the
clocked elements at nearly the same time. In antiquated processes with slow transistors
and fast wires, the clock wire had negligible delay and any convenient routing plan could
be used to distribute the clock. In nanometer processes, the RC delay of the resistive clock
wire driving its own capacitance and the clock load capacitance tends to be close to 1 ns
for a well-designed distribution network covering a 15 mm square die. If the clock were
routed randomly, this would lead to a clock skew of about 1 ns between physical clocks
near and far from the clock generator. This could be several times the cycle time of the sys-
tem. Thus, the clock distribution system must be carefully designed to equalize the flight
time between the clock generator and the clocked receivers. Global clock distribution net-
works can be classified as grids, H-trees, spines, ad hoc, or hybrid [Restle98].

Random skew, drift, and jitter from the clock distribution network are proportional to
the delay through the network because they are caused by process or environmental varia-
tions in the distribution elements. Therefore, the designer should try to keep this distribu-
tion delay low. Unfortunately, as chips are getting larger, wires are getting slower, and
clock loads are increasing, the distribution delay tends to go up even as cycle times are
going down. In the past, systematic clock skew was the dominant component. Now, good
clock distribution networks achieve low systematic skews, but the random, drift, and jitter
components are becoming an increasing fraction of the cycle time.

13.4.4.1 Grids A clock grid is a mesh of horizontal and vertical wires driven from the
middle or edges. The mesh is fine enough to deliver the clock to points nearby every
clocked element. The resistance is low between any two nearby points in the mesh so the
skew is also low between nearby clocked elements. This reduces the chance of hold-time
problems because such problems tend to occur between nearby elements where the prop-
agation delay between elements is also small. Grids also compensate for much of the ran-
dom skew because shorting the clock together makes variations in delays irrelevant. The
grids can be routed early in the design without detailed knowledge of latch placement.
However, grids do have significant systematic skew between the points closest to the
drivers and the points farthest away. They also consume a large amount of
metal resources and hence have a high switching capacitance and power
consumption.

13.5.4.2 H-Trees An H-tree is a fractal structure built by drawing an H
shape, then recursively drawing H shapes on each of the vertices, as shown
in Figure 13.24. With enough recursions, the H-tree can distribute a clock
from the center to within an arbitrarily short distance of every point on the
chip while maintaining exactly equal wire lengths. Buffers are added as nec-
essary to serve as repeaters. If the clock loads were uniformly distributed
around the chip, the H-tree would have zero systematic skew. Moreover, the
trees tend to use less wire and thus have lower capacitance than grids
[Restle98].

A B

FIGURE 13.24 H-tree

Chapter 13 Special-Purpose Subsystems572

In practice, the H-tree still shows some skew because the clock loads are not uniform,
loading some leaves of the tree more than others. Moreover, the tree often must be routed
around obstructions such as memory arrays. The leaves of the H do not reach every point
on the chip, so some short physical clock wires are required after the local clock gater.
Nevertheless, with careful tapering of the wires and sizing of the clock gaters, H-trees can
deliver nearly zero systematic skew. A drawback of H-trees is that they may have high
random skew, drift, and jitter between two nearby points that are leaves of different legs of
the tree. For example, the points A and B in Figure 13.24 might experience large skews.
As the points are close, this is a particular problem for hold times.

Figure 13.25 shows a modified H-tree used on the Itanium 2. The primary clock
driver in the center of the chip sends a differential output to four differential repeaters on
the leaves of the H. These repeaters drive a somewhat irregular pattern of wiring to
second-level clock buffers (SLCBs) serving units all across the chip. The wiring and
SLCB placement is determined by the nonuniform clock loads and obstructions on the
chip. A custom clock router automatically generated the tree based on the actual clock
loads so that the tree could be easily rerouted when loads change late in the design process.
The SLCBs drive local clock gaters, producing the multitude of clock waveforms used on
the microprocessor. Some of these waveforms were shown in Section 10.9.2.

Figure 13.26 shows the differential driver used as a primary clock buffer and repeater
on the Itanium 2 [Anderson02]. The input stage is a differential amplifier sensitive to the
point where the differential inputs cross over. The repeater pulses either p1 or n1 and p2 or
n2 to switch the internal nodes y and y. The small tristate keeper prevents these nodes from
floating after the pulse terminates. The SLCB uses the same structure, but produces only a
single-ended output. It also provides a current-starved adjustable delay line to compensate
for systematic skew and to help locate critical paths during debug. The repeater provides a

Typical SLCB
Locations

Primary Buffer

Repeaters

FIGURE 13.25 Itanium 2 modified H-tree

13.4 Clocks 573

high drive capability with a low input capacitance.
Thus, few stages of clock buffering are needed in
the network. With so few repeaters, the area over-
head of providing a filtered power supply is mod-
est. Although the repeaters are relatively slow,
their jitter is controlled with supply filtering.

13.4.4.3 Spines Figure 13.27 shows a clock dis-
tribution scheme using a pair of spines. As with
the grid, the clock buffers are located in a few
rows across the chip. However, instead of driving
a single clock grid across the entire die, the spines
drive length-matched serpentine wires to each
small group of clocked elements. If the loads are
uniform, the spine avoids the systematic skew of
the grid by matching the length of the clock wires. Each serpentine is driven individually
so gaters can be used to save power by not switching certain wires. The serpentine is also
easy to design and each load can be tuned individually. However, a system with many
clocked elements may require a large number of serpentine routes, leading to high area
and capacitance for the clock network. Like trees, spines also may have large local skews
between nearby elements driven by different serpentines.

The Pentium II and III use a pair of clock spines [Geannopoulos98]. The Pentium 4
adds a third clock spine to reduce the length of the final clock wires [Kurd01]. Figure
13.28(a) shows the global clock buffers distributing the clock to the three spines on the
Pentium 4 with zero systematic skew while Figure 13.28(b) shows a photograph of the
chip annotated with the clock spine locations. The spines drive 47 independent clock
domains, each of which can be gated individually. The clock domain gaters also contain
adjustable delay buffers used to null out systematic and random skew and even to force
deliberate clock delay to improve performance.

13.4.4.4 Ad Hoc Many ASICs running at relatively low frequencies (hundreds of MHz)
still get away with an ad hoc clock distribution network in which the clock is routed
haphazardly with some attempt to equalize wire lengths or add buffers to equalize delay.

in

in in

in

in

y out

y

y

out

out

x

x

x
p1

n1
p1

n1

p2

n2

p2

n2

in

x

out

y

FIGURE 13.26 Itanium 2 repeater

Spine 1

Spine 2

Length-matched
Serpentine
Wires

FIGURE 13.27 Clock spines with serpentine routing

Chapter 13 Special-Purpose Subsystems574

Such ad hoc networks can have reasonably low systematic skews because the buffer sizes
can be adjusted until the nominal delays are nearly equal. However, they are subject to
severe random skew when process variations affect wire and gate delays differently. This is
the level that most commonly available tools support. Most design teams using ad hoc
clock networks also lack the resources to do a careful analysis of random skew, jitter, and
drift. Therefore, they should be conservative in defining a skew budget and must be careful
about hold time violations.

13.4.4.5 Hybrid A hybrid combination of the H-tree and grid offers lower skew than
either an H-tree or grid alone. In the hybrid approach, an H-tree is used to distribute the
clock to a large number of points across the die. A grid shorts these points together. Com-

Gaters

PLL

(a)

(b)

Clock Spines

FIGURE 13.28 Pentium 4 clock spines (© 2001 IEEE.)

13.4 Clocks 575

pared to a simple grid, the hybrid approach has lower systematic skew because the grid is
driven from many points instead of just the middle or edge. Compared to an H-tree, the
hybrid approach is less susceptible to skew from nonuniform load distributions. The grid
also reduces local skew and brings the clock near every location where it is needed. Finally,
the hybrid approach is regular, making layout of well-controlled transmission line struc-
tures easier.

IBM has used such a hybrid distribution network on a variety of microprocessors
including the Power4, PowerPC, and S/390 [Restle01]. A primary buffered H-tree drives
16–64 sector buffers arranged across the chip. Each sector buffer drives a smaller tree net-
work. Each tree can be tuned to accommodate nonuniform load capacitance by adjusting
the wire widths. Together, the tunable trees drive the global clock grid at up to 1024
points. IBM uses a specialized tool to perform the tuning.

13.4.4.6 Layout Issues High-speed clock distribution networks require careful layout to
minimize skew. The two guiding principles are that the network should be as uniform and
as fast as possible. In a uniform network, chip-wide process or environmental variations
should affect all clock paths identically. In a fast network, localized variations that cause a
fractional difference between two clock path delays lead only to modest amounts of skew.
For example, voltage noise that causes a 10% delay variation between two paths through
an H-tree will lead to 80 ps of jitter if the tree delay is 800 ps, but 160 ps of jitter if the tree
delay is 1600 ps.

Building a fast clock network requires low-resistance global clock wires with proper
repeater insertion. The thick, top-level metal layer is well-suited to clock distribution. The
wide wires should be shielded on both sides with VDD or GND lines to prevent capacitive
coupling between the clock and signal lines. The clock can even be shielded on a lower
metal layer to form a microstrip waveguide [Anderson02].

Wide, low-resistance wires also have significant inductive effects, including faster
than expected edge rates and overshoot. The fast edges are desirable, but overshoot should
be minimized to prevent overvoltage damage. High-performance clock networks must be
extracted with a field solver and modeled as transmission lines [Huang03]. Uniformity is
again important: Even if the RC delays appear to be matched in a nonuniform layout, the
RLC delays can be significantly different. As discussed in Section 6.3.4, wide wires should
be split into multiple narrower traces interdigitated with VDD/GND wires that provide a
low-inductance current return path and minimize skin effect.

13.4.5 Local Clock Gaters
Local clock gaters receive the global clock and produce the physical clocks required by the
clocked elements. The output of the gaters typically run a short distance (< 1 mm) to the
clocked elements. Clock gaters are often used to stop or gate the clock to unused blocks of
logic to save power. As discussed in Chapter 10, they can produce a variety of modified
clock waveforms including pulsed clocks, delayed clocks, stretched clocks, nonoverlapping
clocks, and double-frequency pulsed clocks. When used to modify the clock edges, they
are sometimes called clock choppers or clock stretchers. Figure 13.29 shows a variety of clock
gaters.

Most systems require a large number of clock gaters, so it is impractical to filter the
power supply at every one. Variations in clock gater delay caused by voltage noise, cross-
die process variation, and nonuniform temperature distribution cause skew between clocks
produced by different gaters. The best way to limit this skew is to make the gater delay as

Chapter 13 Special-Purpose Subsystems576

short as possible. Variations in the input threshold of the clocked elements also causes
skew. The best way to limit this skew is to produce crisp rise/fall times at the clock gaters.
The final stage should have a fanout of no more than about 4.

Clock gaters may introduce some systematic delay between phases. For example, if
clkb is produced with three inverters while clk is produced with only two,
clkb may be delayed slightly from clk. The designer can either choose to
carefully size the inverters such that the net delay is equal or accept that
the delays are unequal and simply roll the systematic difference into tim-
ing analysis.

 Figure 13.30 shows a circuit in which the delay of two inverters is
matched against the delay of three when driving a fanout of F. The
inverters are annotated with their size. The two inverters have electrical
efforts of h1 and h2, respectively, while the three inverters have electrical
efforts of ha , hb, and hc . The electrical efforts should be chosen so that

Clock Buffer

gclk clk

gclk
en clk

Enabled, Qualified, or Gated Clock

gclk

gclk

clkb

clkb

Complementary Clock

Pulsed Clocks

Stretched Clocks gclk clkd

Delayed Clocks

Nonoverlapping Clocks

gclk

gclk φ1

φ2

gclk

gclk

gclk
en

φp

φp

φp

gclk

gclk

dclk

dclkb

gclk

φp

dclk

dclkb

clk

clkd

clkb

φ1

φ2

gclk clkbd

clkbd

Clock Doubler

clk2x

gclk

clk2x

FIGURE 13.29 Clock gaters

gclk

clk

clkb

F = hahbhc

F = h1h2

1 h1

1 ha

hahb

FIGURE 13.30 2- and 3-inverter paths

13.4 Clocks 577

the delays of the chains are equal:

 (13.14)

Even if the inverters have equal rise and fall delays in the TT corner, they will have
unequal delays in the FS or SF corner. This can lead to skew between clk and clkb in these
corners. However, if the delay of the second inverter in each chain is equal (h2 = hb), the
two gaters will have equal delay in all process corners [Shoji86].

We can solve for the best electrical efforts that satisfy this constraint while giving least
delay through the path. Recall that a path has least delay when its stage efforts are equal.
Thus, choose ha = hc = h*. This implies h1 = h*2. The delay of the first inverter in the clk
path must equal the sum of the delays of the first and third inverter in the clkb path:

 (13.15)

This gives a quadratic equation that can be solved for h*:

 (13.16)

For pinv = 1, this implies the best stage efforts are

 (13.17)

In this case, the rise/fall times of the different stages may be rather different, so the
Logical Effort delay model is not especially accurate. These efforts make a good starting
point, but further tuning should be done with a circuit simulator. The same approach
can be used when the gater uses a NAND gate in place of one of the inverters.

Another approach is to try to match the delay of two inverters against one inverter
and a transmission gate, as shown in Figure 13.31. This matching will not be perfect
across all process corners. However, the gater may have less overall delay and hence
produce less jitter from power supply noise.

13.4.6 Clock Skew Budgets
Developing an appropriate clock skew budget for design is a tricky process. The designer
has a number of choices, including ignoring clock skew, budgeting worst-case clock skew
everywhere, or budgeting different amounts of clock skew between different clock
domains. Ultimately, the designer’s objective is to build a system that achieves perfor-
mance targets and has no hold time failures while consuming as little area, power, and
design effort as possible. The performance target can be a fixed number set by a standard
or can simply be “as fast as possible.”

It is possible to ignore clock skew if you are conservative about hold times and simply
want the system to run as fast as possible. You must take reasonable care in the clock dis-
tribution network so that the skew between back-to-back flip-flops is unlikely to be too
large. Many ASIC and FPGA flip-flops are designed with long contamination delays so
they can tolerate significant skew before violating hold times. Build the system to run as
fast as possible. When it is manufactured, clock skew will cause it to run slower than
expected. The advantage of this methodology is that designers can be more productive
because they do not need to think about clock skew. A disadvantage is that it uses slow

D h h p h h h pa b c= + + = + + +1 2 2 3inv inv

h p h p* *2 2 2+ = +inv inv

h p* = + +1 1 inv

h h
F

h h
F

ha b c

1 25 8
5 8

2 4
5 8

2 4

= =

= = =

.
.

.
.

.

gclk

clk

clkb

FIGURE 13.31
2- and 1-inverter paths

Chapter 13 Special-Purpose Subsystems578

flip-flops. Another drawback is that some paths really will have more skew than others. If
all paths are designed to have equal delay, the paths with more skew will limit perfor-
mance, while the other paths will be overdesigned and will consume more area and power
than necessary. Moreover, if skew-tolerant circuit techniques are used in some places but
not others, the nontolerant circuits will tend to form the critical paths.

A related approach is to estimate the worst-case clock skew and budget it everywhere.
In systems using only flip-flops, this can be done by designing to a shorter clock period.
For example, if an ASIC must meet a 4 ns clock period and is predicted to have 500 ps of
skew, it can be designed to meet a 3.5 ns clock period with no skew. This method requires
work on the part of the clock designer to predict the clock skew, but still protects most of
the designers from worrying about skew.

As cycle times get shorter than about 25 FO4 inverter delays, budgeting worst-case
skew everywhere makes design impossible. Instead, multiple skew budgets must be devel-
oped that reflect smaller amounts of skew between elements in a local clock domain. This
method entails more thought on the part of designers to take advantage of locality and
requires a static timing analyzer that applies the appropriate skew. A good timing analyzer
also properly handles skew-tolerant techniques such as transparent latches and domino
gates with overlapping clocks [Harris99].

13.4.6.1 Clock Skew Sources As discussed earlier, clock skew comes from many sources.
The output of the phase-locked loop has some jitter because of noise in the PLL and jitter
in the external clock source. The clock distribution network introduces more skew from
variations in the buffers and wire. The buffers may have different delays because of differ-
ences in VDD and temperature, as well as random variations in their channel length and
threshold voltages. The wire length and loading between buffers may not be perfectly
matched. Each gater drives a physical clock along a wire, so clocked elements at different
ends of the wire will see different RC delays. As mentioned in Section 2.3.2, the effective
gate capacitance of the clocked loads depends on the switching activity of the source and
drain. For some clocked elements, this causes significant data dependence in the clocked
capacitance and the local wire delay.

For hold time checks, we are concerned with the skew between two consecutive
clocked elements at a particular moment in time. For setup time checks, we are concerned
with the skew between elements from one cycle to the next. Jitter in the clock distribution
network can affect the instantaneous clock period, so setup time skew budgets must
include the cycle-to-cycle jitter of the entire clock distribution system even for elements in
the same local clock domain. Hence, we can define separate clock skew budgets for setup
time and hold time analyses.

The sources can be categorized as systematic, random, drift, and jitter. Recall that
systematic skews can be modeled as extra delay and taken out of the skew budget if you are
willing to do the modeling. Good clock distribution networks have close to zero system-
atic skew. Systematic and random skews can also be eliminated by calibrating delay lines,
as will be discussed in Section 13.4.7. Drift occurs slowly enough that it can be eliminated
by periodic recalibration of the delay lines. Ultimately, jitter is the most serious source of
skew because it changes too rapidly to predict and counteract.

13.4.6.2 Statistical Clock Skew Budgeting The most conservative approach to estimat-
ing clock skew is to find the worst-case value of each skew source and sum these values. A
real chip is unlikely to simultaneously see all of these worst cases, so such a sum is pessi-
mistic and makes design of high-speed chips nearly impossible.

13.4 Clocks 579

Most skew sources do not have Gaussian distributions, so taking the root sum square
of the sources is inappropriate. A better approach is to perform a Monte Carlo simulation
of the different skew sources to find the likely distribution of skews. The skew budget is
selected at some point in this distribution. For hold times, the skew must be budgeted
conservatively because the chip will not work if a hold time is violated. For example, the
hold time skew budget can be selected so that 95–99% of chips will have no hold time
violations.

If the goal is to build a chip that operates as fast as possible, any fixed amount of skew
that affects all paths equally is irrelevant to the designer because there is nothing to do
about it from the point of view of meeting setup times. However, if different paths experi-
ence different amounts of skew, a path that sees less skew can contain more logic than a
path that sees a larger skew. Moreover, a path using skew-tolerant sequencing elements
can contain more logic than a path between flip-flops. Hence, it is useful to predict the
median skew seen in various clock domains for the purpose of setup time analysis.

As the systematic clock skew tends to be low, most clock skew sources occur from
random process variations and noise. However, critical paths also experience random pro-
cess variation and noise, so some will be slower than simulation predicts while others will
be faster. If the chip is tuned until many critical paths have nearly the same cycle time in
simulation, it is likely that a few paths will be slower than expected in the fabricated part
and will limit the chip speed. It is improbable that the paths with worst-case variations in
data delay are also those affected by the worst clock skew. Hence, a Monte Carlo simula-
tion considering both variations in delay of the data paths and clock network will predict a
smaller and more realistic clock skew budget [Harris01b]. [Agarwal04] describes an effi-
cient method of directly determining the probabilistic skew.

Overall, choosing the appropriate clock skew budget is an ongoing source of research
and debate among designers. In practice, many design teams seem to perform some calcu-
lations, and then fudge the numbers until the clock skew budget is about 10% of the cycle
time. This strategy has historically led to functional chips most of the time, but becomes
more risky as cycle times decrease. Measured clock skew numbers reported in publications
are notoriously optimistic; for example, [Mule02] finds an average reported skew of 3.2%
of the cycle time in recent microprocessors. Part of the reason is that measuring the worst
case skew is difficult. Measurements tend to be made at only a few clocked elements for a
small number of clock cycles, while the chip must be designed to operate correctly for the
largest skew seen anywhere on the chip anytime during its ~1017 cycle life span.

13.4.7 Adaptive Deskewing
Just as a PLL or a DLL can compensate for the overall clock distribution delay, additional
adjustable delay buffers can compensate for mismatches in clock distribution delay along
various paths. For example, the Pentium II and 4 use such buffers at the leaves of the clock
spine to eliminate systematic and random variations in the clock distribution network.
Figure 13.32 shows an example of a digitally adjustable delay line with eight levels of
adjustment. The select signals use a thermometer code 2 to produce a monotonically decreas-
ing propagation delay as more pass transistors are turned on.

In the Pentium II, a phase comparator checks the arrival times of the physical clocks
and adjusts the digitally controlled delay lines to make all clocks arrive simultaneously.

2In an N-bit thermometer code, a number n [0, N] is represented with n 1s in the least significant posi-
tions. For example, the number 3 is represented in an 8-bit thermometer code as 00000111.

Chapter 13 Special-Purpose Subsystems580

The loop bandwidth is low enough to ignore jitter, but
high enough to compensate for temperature drift. This
technique is sometimes called adaptive deskewing
[Geannopoulos98]. In the Pentium 4, the delay line is
adjusted using a scan chain through the boundary scan
test access port. 46 phase comparators measure the phase
of the clock gaters. Their results can be shifted out
through the TAP. The delay lines can be adjusted to
reduce systematic and random skew to ±8 ps, as com-
pared to approximately 64 ps before adjustment. The
delay lines can also deliberately delay certain clocks to
improve performance or assist with debug [Kurd01]. The
Itanium series of microprocessors uses similar deskew

techniques [Tam00, Anderson02, Stinson03, Tam04]. In the 1.5 GHz Itanium 2, deskew
takes place during manufacturing test; on-chip fuses are blown to eliminate the systematic
and random skew without needing calibration upon reset or during normal operation.

A drawback of adaptive deskewing is that the buffers introduce extra delay. Voltage
noise on the buffers appears as jitter. Unless all of the deskew buffers use well-filtered
power supplies, the extra jitter from the deskew buffers can overwhelm the improvement
in systematic and random skew.

13.5 PLLs and DLLs
As introduced in Section 13.4.3, phase-locked loops and delay-locked loops are widely
used in clock generation and in clock-data recovery for high-speed I/O. A PLL adjusts an
oscillator until it produces an output clock matching the frequency and phase of an input
clock. A DLL adjusts a delay line until it produces an output clock delayed by the desired
amount (typically one cycle) from the input clock. This section examines the operating
principles of the PLL and DLL in further detail. We explore circuit designs and linear sys-
tem models for each component.

13.5.1 PLLs
A phase-locked loop is a dynamical system that produces an output clock in response to
the frequency and phase of the input clock. To understand its characteristic behaviors such
as bandwidth and stability, it is a common practice to build a simple linear continuous-
time system model for the PLL. The model describes the deviations from the lock point.

We can model clocks as ideal square waves alternating between 0 and 1. The key to
analyzing PLLs is learning to think about variables representing phase rather than voltage.
Each clock is described by its phase (t)

(13.18)

The phase is the integral of the instantaneous frequency f (t)

(13.19)

If the frequency is constant, the phase is a linear ramp and the clock is periodic as shown

clk =
() <

()
1 2

0 2

t

t

mod

mod

t f t dt
t

() = ()2
0

S0

S1

S7

S0

S1

S7

gclk clken

FIGURE 13.32 Digitally adjustable delay line

13.5 PLLs and DLLs 581

in Figure 13.33 for a 250 MHz clock. However, if the clock has jitter, the
instantaneous frequency will vary and the phase will cease to be a straight
line.

Suppose a multiply-by-N PLL receives an input clock with a nominal
phase (t). The actual clock may have some jitter, causing a small time-
varying change in phase in(t). When the PLL is locked, the output clock
should oscillate N times as fast. However, it may also have some phase offset

out(t). Thus, the actual input and output clock phases can be written as

(13.20)

Figure 13.34 shows a linear system model for a multiply-by-N PLL
under these assumptions. The model describes the time-varying phase offsets
from the nominal locked operating point. The input and output variables are

in and out, the small changes in the input and output clock phases
from their nominal values, respectively. The variables are expressed in the
s-domain (i.e., after Laplace transformation) rather than the time domain to compactly
express operations such as differentiation (multiply by s) and integration (divide by s).

Be sure to remember the assumptions that underlie such a linear system model:

� A linear system model describes how the PLL responds to a small change in the
input clock phase (in) when the PLL is near the locked condition. The
response is also expressed by the small change in the output clock phase (out)
from the nominal locked position.

� A PLL may exhibit highly nonlinear behavior when it is far from the locked condi-
tion. This lock-acquisition behavior cannot be explained by a linear system model
and special attention is required to ensure that the PLL can always reach the
desired locked condition (see Section 13.5.3).

� PLLs are typically discrete-time systems that perform phase detection once per
cycle. However, we assume that the bandwidth is sufficiently low compared to the
input frequency (e.g., < 1/10 of the input frequency) so that the PLL can be well
approximated as a continuous-time system. If the bandwidth is too high, the phase
detection delay may destabilize the feedback loop.

The remainder of this section discusses each component’s function and CMOS imple-
mentation.

in in

out out

t t t
t N t t
() = () + ()
() = () + ()

t (ns)

Φ(t)

0 2 4 6 8 10 12
0

2π

4π

6π

t (ns)
0 2 4 6 8 10 12

0

1

cl
k

FIGURE 13.33 250 MHz clock phase and
waveform

ΔΦin(s) ΔΦout(s)

ΔΦfb(s)

ΔVctrl(s)Φerr(s) 2π × Kvco
sKP +

KI
s

1
N

Phase Detector Loop Filter Oscillator

Divider

Kpd

FIGURE 13.34 Linear system model of a PLL

Chapter 13 Special-Purpose Subsystems582

13.5.1.1 Oscillator The oscillator in a PLL generates a clock whose frequency is adjusted
based on a control input. For example, a voltage-controlled oscillator (VCO) generates a
clock whose frequency varies with an input voltage. There are also current-controlled oscilla-
tors (ICOs) and digitally controlled oscillators (DCOs) whose control inputs are a current or
a digital number, respectively. We will consider the case of a VCO in this discussion but
the analyses and models for other types of oscillators are essentially the same except the
different units for the control input.

The VCO control voltage Vctrl can be written as the sum of the value during lock,
Vctrl0, and some small offset Vctrl.

(13.21)

As the VCO’s clock frequency fout changes with the control voltage, the offset from the
locked frequency is

(13.22)

This small-deviation assumption allows us to express their relationship with a single gain
factor, Kvco, which is often referred to as the VCO gain. When fout is expressed in Hertz
and Vctrl is in Volts, the VCO gain has a unit of Hz/V. The above equation also assumes
that the frequency responds to the input change almost instantaneously, which is the case
for most practical VCO implementations and is also the requirement for the PLL to be
stable. Because phase is the integral of frequency, the resulting change in the output clock
phase out can be expressed in the s-domain:

(13.23)

Acute readers may notice that the change in the control voltage does not immediately
shift the clock phase of a VCO. The phase rather changes with the time-integration of the
control voltage. In other words, it takes time to change the phase of a VCO. This charac-
teristic leads to an often-cited phenomenon called jitter accumulation. That is, phase error
in a PLL does not get corrected immediately after it has been detected by the phase detec-
tor and acted on by the loop filter. For a short duration, the phase error may even keep
growing! For the same reason, PLLs are also more sensitive to stability issues than DLLs.

Figure 13.35 shows an example circuit implementation of a VCO using a ring oscilla-
tor. Recall that a ring oscillator consists of an odd
number of inverting stages. The clock period is
determined by the delay for a clock edge to circle
around the ring twice. In this design, the delay ele-
ment is a CMOS inverter with an adjustable supply
voltage. The frequency of this ring oscillator is con-
trolled by varying the delay of each stage by adjust-
ing the supply voltage. A voltage regulator sets the
supply voltage Vreg. A level converter restores the
output to full-swing levels.

Figure 13.36 plots the voltage-to-frequency
characteristics of a 9-stage supply-regulated VCO.

V t V V tctrl ctrl0 ctrl() = + ()

f
V

Kvco
out

ctrl

=

out

ctrl

s

V s

K
s

vco()
() =

2

Vctrl

Vreg

Output
Clock

+

Level
Converter

Vreg

A Y
Regulator

Ring Oscillator

FIGURE 13.35 Voltage-controlled oscillator

13.5 PLLs and DLLs 583

For example, under TT conditions, the VCO gain Kvco = 12 GHz / V around
a 3 GHz operating point. Observe that the curve is not a straight line across
the entire range, implying that Kvco varies depending on the locked fre-
quency. Moreover, the curve shifts significantly with process and temperature
variations. Therefore, one of the difficulties in VCO design is to achieve a
wide enough tuning range that can always encompass the desired frequency
range across all possible process/environment conditions. Another difficulty
lies with the variation in the VCO gain value, which makes it hard to achieve
predictable PLL bandwidth and stability.

Of course, there are alternative ways of varying the delay of the stages.
Since delay is a function of the load capacitance and drive resistance, it can be
varied by adjusting either one. Figure 13.37 illustrates these options, using
either a control voltage, a control current, or a digital control value. The
adjustable resistance method is called a current-starved inverter. These methods tend to pro-
vide a smaller range of achievable delays than the adjustable power supply of Figure 13.35.

Some oscillators are based on resonant structures such as inductor-capacitor (LC)
tanks and quartz crystals rather than rings oscillators [Razavi03]. While resonance-based
oscillators have superior noise performance, ring oscillators are still popular choices for
many practical applications because of their wide tuning ranges and ease of integration
with other digital CMOS circuits.

13.5.1.2 Divider PLLs that produce clocks with the different frequencies than the input
clock may have a frequency divider in their feedback paths, as was shown in Figure 13.23.
The frequency divider simply divides its input frequency and phase by a factor N:

(13.24)
f

f
N

N

fb
out

fb
out

=

=

0 0.2 0.4 0.6 0.8 1.0
Vctrl

F
vc

o
(G

H
z)

0

2

4

6

8

10

TT

FF

SS

FIGURE 13.36 VCO voltage-to-frequency char-
acteristics over different process conditions

A Y

Vctrl

C

A Y

S0

C 2C 4C

S1 S2

Voltage Control Digital Control Current Control

A

Vctrln

Vctrlp

Y A YIctrl

C
ap

ac
ita

nc
e

R
es

is
ta

nc
e

A Y

S0

S0 S1 S2

S1 S21 2 4

2 4 8

FIGURE 13.37 Alternative delay elements

Chapter 13 Special-Purpose Subsystems584

where N is the division ratio which also corresponds to the frequency multiplication factor.
f fb and fb denote the changes in the frequency and phase of the clock that is fed back

to the phase detector, respectively.
Frequency dividers are most commonly realized as modulo-N counters as described in

Section 11.5. It is important to keep in mind that the frequency divider has to correctly
operate at well beyond the nominal frequency because the VCO may produce higher fre-
quencies during its start-up transients. Otherwise, the PLL may be trapped into a dead-
locked condition. See Section 13.5.3 for more details on this pitfall.

13.5.1.3 Phase Detector A phase detector (PD) measures the phase difference between
two clocks. In a PLL, it compares the input clock against the feedback clock. The phase
error is err = in – fb.

Although numerous phase detectors have been invented, the two most common are
the XOR phase detector and the phase-frequency detector (PFD), shown in Figure
13.38(a, d). These phase detectors produce an output with a duty cycle proportional to the
phase difference. If the loop filter bandwidth is much lower than the input clock fre-
quency, the phase detector output can be treated as the average value.

YclkA
clkB

r

r

clkA

clkB

UP

DN

reset

clkA

clkB

Y

clkA

(d)

clkB

UP

DN

(a)

O
ut

pu
t

D
ut

y
C

yc
le

0

Input Phase Difference err

360° 180° 360°

1.0

0.5

0.0
Locking Points

0.0

1.0

Locking Point1.0

(b)

(c) (f)

180°

N
et

 O
ut

pu
t

D
ut

y
C

yc
le

(U
P

-D
N

)

(e)

0

Input Phase Difference err

720° 360° 720°360°

FIGURE 13.38 Phase detector implementations and operation (a) XOR phase detector,
(d) phase-frequency detector

13.5 PLLs and DLLs 585

The XOR PD produces a high output whenever the two input clocks are at different
levels. An example output pulse waveform for various input phase differences is plotted in
Figure 13.38(b). A common way to describe the characteristic response of a PD is to plot
the output duty cycle (the fraction of the time the output is 1) as a function of the input
phase difference, as shown in Figure 13.38(c). Assuming both clocks have 50% duty
cycles,3 the PD produces a full low-pulse (0% duty cycle, interpreted as –1) when the
input clocks have identical pulses and a full high-pulse (100% duty cycle, interpreted as
+1) when they are out of phase (radians apart). The duty cycle varies linearly between
the two points, crossing 50% (interpreted as 0) for input phase differences at (1/2 + n)
for any integer n. However, notice that the PD has positive gains for a half of those zero-
level points while it has negative gains for the other half. A PLL can converge only to the
points where the PD gain results in the negative feedback. If such PD gain is positive,
then an XOR PD can be said to have locking points at (1/2 + 2n). The XOR PD pro-
duces an average voltage output

(13.25)

The PFD in Figure 13.38(d) belongs to a class of sequential PDs with internal state.
The waveforms in Figure 13.38(e) illustrate the operation of this PD. Sequential PDs may
produce different outputs for the same input phase difference depending on the past his-
tory, which can help extend the linear range in the characteristic curve as plotted in Figure
13.38(f). Assume that initially both outputs of the PD, UP and DN, are at 0s. When the
reference clock rises first, the flip-flop triggered by the clock asserts UP high. When the
feedback clock rises later, the other flip-flop asserts DN as well. But then, the AND logic
connected to the asynchronous reset input of the flip-flops deasserts both UP and DN sig-
nals to 0 as soon as they both reach 1s, returning the PD to the original state. The result-
ing difference in the UP and DN pulse widths corresponds to the timing difference
between the two clocks’ rising edges.

A PFD typically uses a charge pump to convert the UP and DN pulses into a current
output, as shown in Figure 13.39. Near the point of lock, the PFD and charge pump
together have a transfer function

(13.26)

Sequential PDs have a number of advantages over combinational PDs such as the
XOR PD. First, they can be insensitive to the variations in the input clock duty cycles, by
being triggered by either the rising edges or falling edges of the input clocks, but not by
both. Second, notice that the characteristic curve in Figure 13.38(f) does not alternate its
sign every radians as it did in Figure 13.38(c). Rather, it maintains its sign to indicate
the correct polarity of the phase difference. This property makes the PFD serve as a fre-
quency detector as well, when the two input clocks have sizeable frequency difference. If
the PLL starts up at the wrong frequency, the PFD will adjust the frequency up or down
as required. PFDs are preferred in clock generation PLLs because they help PLLs acquire
locks reliably and quickly. However, misuse of PFDs in DLLs may result in intermittent

3One problem with the XOR PD is that the output duty cycle may vary depending on the duty cycles of
the input clocks.

V s

s

V
K

pd DD
pd

()
()

= =
err

I s

s

I
K

pd cp
pd

()
() = =

err 2

UP

DN

Icp

Icp

Ipd

FIGURE 13.39
Charge pump

Chapter 13 Special-Purpose Subsystems586

dead-lock problems (see Section 13.5.3). Moreover, clock-data recovery (CDR) circuits
require XOR-based PDs for reasons discussed in Section 13.7.6.

13.5.1.4 Loop Filter A loop filter (LF) is the central element of any PLLs because it
determines how much adjustment should be made on the VCO control voltage based on
the phase error. Understanding the loop filter dynamics is the key to designing a high-
performance PLL.

A typical loop filter produces a control voltage that is proportional to both the phase
error and the integral of the phase error. Assuming a PFD and charge pump producing a
current output, this can be expressed as

(13.27)

where KI/s term implies the time integration of the phase error. In essence, the integral
control term adjusts Vctrl0 so that the VCO oscillates at the desired frequency when the
phase error is zero. If Vctrl0 is at a wrong value, then the nonzero phase error will shift
Vctrl0 toward the direction to reduce the error. The integral term will settle to a final value
only when the phase error becomes zero.

In conventional analog PLLs with PFDs, this LF is usually implemented with an RC
filter, as shown in Figure 13.40. C2 is much smaller than C and can be disregarded for ini-
tial analysis. The RC filter converts the current to the voltage Vctrl:

(13.28)

Any low-frequency phase error produces a current that is integrated on the capacitor C
until Vctrl reaches Vctrl0 such that the PLL is in lock with no phase error. If high-frequency
noise introduces a phase error disturbing the lock, the resistor R produces a control voltage
proportional to the error to correct for the noise.

A realistic loop filter has some additional capacitance C2 between Vctrl and GND due
to parasitics and the load presented by the VCO. This capacitance smooths out ripples on
Vctrl caused by the charge pump turning ON and OFF, reducing jitter. However, it can
destabilize the loop if it is too large. Typically, C is selected to be at least an order of mag-
nitude larger than C2 so that C2 can be ignored.

13.5.1.5 Loop Dynamics Now that we have analyzed the behaviors of the individual
components in the PLL, we can discuss how the overall PLL will respond to the input
clock phase when we close the feedback loop. Specifically, the linear system analysis using
the models derived in the previous subsections will help us understand how the key PLL
characteristics such as bandwidth and stability are determined by the component parame-
ters such as VCO gain (Kvco), charge pump current (Icp), and loop filter resistance (R) and
capacitance (C). Some backgrounds on linear systems and control theory may be required
to fully understand the material in this subsection.

The response of the PLL’s output clock phase out to the input reference clock
phase in is given by the closed-loop transfer function of the PLL:

(13.29)

V s

I s
K
s

K
pd

I
P

ctrl ()
() = +

V s

I s sC
R

pd

ctrl ()
() = +1

H s
s

s

K R
sC

K
s

N
K

pd
vco

() = ()
() =

+

+

out

in

1 2

1
1

pd
vcoR

sC
K
s

+ 1 2

Vctrl
R

C

Ipd

C2

FIGURE 13.40 Loop fil-
ter implementation based
on a charge pump fol-
lowed by an RC filter

13.5 PLLs and DLLs 587

The transfer function can be rewritten as a standard second-order system with a natural
frequency n and a damping factor . The gain is N, corresponding to frequency multipli-
cation by a factor of N.

(13.30)

(13.31)

(13.32)

The natural frequency is a measure of the loop bandwidth. Loops with greater band-
width track input changes more rapidly. The bandwidth is typically selected to minimize
output clock jitter. If the output jitter is dominated by on-chip noise disturbing Vctrl , high
bandwidth is desirable to rapidly correct the control voltage. However, if output jitter is
dominated by input clock jitter, then low bandwidth is preferable to reject the input clock
noise. In any event, the natural frequency should be at least an order of magnitude below
the input clock frequency so that the continuous-time model is valid.

The damping factor is a measure of the loop stability. If the damping factor is less
than , the PLL will ring in response to a step change in phase. This is often consid-
ered undesirable because it can increase jitter, so is usually selected in the range of 0.7–1.

13.5.1.6 Validation The second-order analysis in the previous section is only an approxi-
mation of the behavior of the nonlinear system. The nonlinearities can lead to locking
problems. Moreover, lag in the response can lead to instability. After drafting a reasonable
paper design, simulation is essential to ensure the loop locks and is stable in all process
corners.

Designers typically simulate the closed-loop response of the PLL to a known set of
input patterns in SPICE. Popular choices of those input patterns are steps, impulses, or
sinusoids, with which one can estimate the closed-loop transfer function H(s) and subse-
quently evaluate the bandwidth and stability. A clever strategy is to use the small-signal
AC analysis capabilities of SPICE to analyze the response in the phase domain, enabling
direct characterization of the transfer function [Kim07].

13.5.1.7 Advanced PLL Architectures PVT variations make it difficult to design a stable
PLL that meets performance requirements with good yield. Moreover, the loop band-
width that minimizes jitter depends on the operating frequency. Self-biased PLLs adjust
parameters such as charge pump current and loop filter resistance to track operating fre-
quency and compensate for process variations [Maneatis03, Kim03b].

Analog components are troublesome to build in nanometer CMOS processes. All-
digital PLLs (ADPLLs) are a growing field of interest. A typical approach uses a DCO
and a digital loop filter [Tierno08].

13.5.2 DLLs
A delay-locked loop aims at the same goal of aligning the output clock to the input refer-
ence clock but operates on a slightly different principle. It adjusts the delay of a buffer
chain instead of the frequency of an oscillator. As stated earlier, this difference makes the

H s N
s

s s
n n

n n

() = +
+ +
2

2

2

2 2

n
cp vcoI K

NC
=

= n RC
2

1 2

Chapter 13 Special-Purpose Subsystems588

loop filter design for DLLs simpler and less prone to stability problems than in PLLs.
This section explores the components of a DLL and the loop characteristics.

Recall that Figure 13.22(b) showed the architecture of a DLL. The input clock is fed
into a variable delay line which also includes the buffers to drive the on-chip load. The
output clock distributed to the final load is compared back to the input clock. If their
edges are not aligned, the phase detector generates error information upon which the loop
filter makes appropriate actions to the delay line to reduce the error.

Figure 13.41 shows a linear system model. Compare and contrast this diagram with
the PLL in Figure 13.34. Now the state variables are time (T) rather than phase (). The
input is ideally periodic with a period Tc . When the DLL is locked, the output is delayed
by exactly Tc . The model again describes the effect of small variations T from the operat-
ing point for the input cycle time and output delay. The same caveats apply that the linear
model is only valid for small deviations from lock and when the bandwidth is less than
1/10 of the input clock frequency. The DLL uses a delay line in place of a VCO and an
integrator in place of a PI loop filter. The DLL is a first-order system, so it avoids many of
the stability risks of the second-order PLL.

A DLL can produce multiple clock outputs with known phase relationships by tap-
ping from several points along the delay line. For example, if the delay line has eight
stages, tapping every other stage yields clocks delayed by 1/4, 1/2, and 3/4 of a cycle as
well as a full cycle.

13.5.2.1 Delay Line The variable delay line adjusts the delay between its input and output
clocks as directed by the control input. The control input may be a voltage, current, digital
number, etc. A voltage-controlled delay line (VCDL) is commonly used. For VCDLs, the
voltage-to-delay characteristics can be modeled by the following linear equation between
the small deviations in the delay and the control voltage (Vctrl) from their respective
locked values:

(13.33)

As in the VCO case, the conversion factor Kvcdl is called the VCDL gain and has a unit of
seconds/V. Unlike VCOs that adjust the clock timing via the time integration of the con-
trol input, VCDLs can shift the clock timing almost instantaneously by changing the con-
trol voltage. Therefore, DLLs do not typically exhibit jitter accumulation.

Any of the variable delay elements discussed in Section 13.5.1 can be used for a
VCDL as well. For example, the delay line in Figure 13.42(a) is built from four stages of
current-starved inverters. The bias voltage varies the current and therefore the delay.

T s

V s
K vcdl

out

ctrl

()
() =

Kvcdl

Phase Detector Loop Filter Delay Line

Kpd

Terr(s)
Tin(s) Tout(s)

VCTRL(s)KI
s

FIGURE 13.41 DLL linear system model

13.5 PLLs and DLLs 589

Figure 13.42(b) plots the voltage-to-delay characteristic curves for a 16-
stage line under various process conditions. The delay tuning range must be
wide enough for the delay line to provide the delay shift that can align the
clocks for all possible conditions. However, the wide tuning range of a
VCDL may make a DLL vulnerable to false locking problems, to be dis-
cussed in Section 15.5.3.

13.5.2.2 Phase Detector A DLL can use the same types of phase detectors
as a PLL. A PFD followed by a charge pump is a common option. It pro-
duces an output current with the following transfer function

(13.34)

13.5.2.3 Loop Filter The loop filter for a DLL has the similar role to that of
a PLL, controlling the delay based on the detected phase error. The loop filter
design for DLLs is simpler as an integral control alone is typically sufficient to
stabilize the feedback loop. Figure 13.43 shows a loop filter consisting of a
single capacitor that integrates the current out of the phase detector.

The integral control adjusts the control voltage until the phase error
reaches 0. As discussed in the case for PLLs, this integral control is essential
in maintaining a low skew between the external and internal clocks in the
presence of process and environmental variations. Expressed in the
s-domain, the loop filter behavior can be modeled as

(13.35)

13.5.2.4 Loop Dynamics The DLL has a closed loop transfer function of

(13.36)

with a time constant

(13.37)

Observe that the transfer function has a magnitude of 1 at low frequencies, indicating
that the DLL tracks changes in the input cycle time. The time constant indicates how
long the DLL needs to respond to abrupt changes in frequency. should be at least 10Tc
so that the continuous-time approximation is valid.

Note that the DLL simply delays the input clock. Any jitter propagates directly to the
output. If the input is noisy, a PLL is a better way to filter the noise.

13.5.3 Pitfalls
So far we have used linear system analysis to understand how PLLs and DLLs react to
input changes and how the design parameters such as charge pump current or loop filter

I s

T s

I

T
pd cp

c

()
()

=
err

V s

I s
K
s sCpd

Ictrl ()
() = =

1

H s
T s

T s s
() = ()

() = +
out

in

1
1

= =
1

K K K
CT

I Kpd I vcdl

c

cp vcdl

Vctrl

0 0.5 1.0
Vctrl

T
vc

dl
(p

s)

0

TT

FF

SS

200

400

600

A Y

(b)

(a)

FIGURE 13.42 An example of a voltage-
controlled delay line (VCDL) (a) a current-
starved inverter chain, (b) its voltage-to-delay
characteristics for various process conditions

Vctrl
C

Ipd

FIGURE 13.43 Charge-
pump based loop filter imple-
mentation for a DLL

Chapter 13 Special-Purpose Subsystems590

capacitance influence the key loop dynamics such as bandwidth and stability. While this is
the most prevailing methodology to design PLL/DLLs today, it is important to keep in
mind that the linear system analysis relies on the assumptions stated in Section 13.5.1.
One of them is that the linear system model describes the system behavior only at the
vicinity of its locked condition. In other words, even if the linear system analysis says that
a PLL is stable, it cannot guarantee that the PLL will always converge when it starts from
an arbitrary condition far from the desired locking point. Many of the design pitfalls can
be attributed as convergence failures. Unfortunately, there is no systematic way of validat-
ing the global convergence yet. The best practice is to try not to repeat the bugs that are
discovered so far. A few representative cases are listed in this subsection.

One failure example for a PLL is when its frequency divider does not have an operat-
ing range as wide as the VCO. Suppose that the PLL starts in a condition where the VCO
is oscillating at a frequency higher than the maximum operating frequency of the divider.
This condition is difficult to avoid unless the circuits are checked for all possible global
and local variations. In this case, the usual response of the divider is that it misses the clock
edges intermittently. As a net result, the divider produces a lower-frequency clock than it
is supposed to. When the phase detector compares this clock to the reference clock, it can
erroneously determine that the VCO frequency is too low and direct the loop filter to
increase it even higher. The PLL cannot escape from this dead-lock condition because all
the forces in the feedback loop are toward the wrong directions. A possible fix is to reset
the initial value of the VCO control voltage so that the VCO can be guaranteed to start at
a low enough frequency for the divider to operate correctly.

A DLL may also have a convergence failure even though it
does not have a frequency divider. The DLL tries to lock its delay
to an integer multiple of the clock period so that the external and
internal clock edges become aligned. A problem is that the DLL
does not care which integer multiple it is to lock to. Therefore,
the DLL has potentially more than one locking point. If the
DLL locks to a delay of more than one cycle, it will have more
jitter. A more serious problem may occur because the delay line
has a finite delay range. This case is illustrated in Figure 13.44.
The points A, B, and C are potential lock points while A and C
are not within the delay range and therefore cannot be realized.
However, depending on the initial condition of the DLL, the
phase detector may drive the delay toward A or C, putting the
DLL into a dead-lock state chasing a fictitious locking point.

As discussed in Section 13.5.1.3, phase-frequency detectors
(PFDs) have certain advantages over phase-only detectors when

used for PLLs. However, for DLLs, PFDs can be detrimental. PFDs have internal states
that enable them to distinguish 0° from 360 or 720° and DLLs with PFDs can lock only at
one particular locking point out of all the possibilities. If the internal states are not prop-
erly initialized, the PFD may direct the DLL to lock to a point outside the delay range,
forcing it to a dead-locked condition.

13.6 I/O
The input/output (I/O) subsystem is responsible for communicating data between the
chip and the external world. A good I/O subsystem has the following properties:

Delay

Clock
Skew

0

−180°

180°

A B C

Valid Delay Range

Problematic Initial Points

FIGURE 13.44 Illustration of convergence failure examples
in a DLL

13.6 I/O 591

� Drives large capacitances typical of off-chip signals
� Operates at voltage levels compatible with other chips
� Provides adequate bandwidth
� Limits slew rates to control high-frequency noise
� Protects chip against damage from electrostatic discharge (ESD)
� Protects against over-voltage damage
� Has a small number of pins (low cost)

I/O pad design requires specialized analog expertise and knowledge of process-
specific ESD structures. Process and library vendors normally supply well-characterized
pad libraries tailored to a given manufacturing process. This section summarizes some of
the basic design options in I/O subsystems.

A pad consists of a square of top-level metal of approximately 100 m on a side that is
either soldered to a bond wire connecting to the package or coated with a lead solder ball.
The term pad sometimes refers to just the metal square and other times to the complete
cell containing the metal, ESD protection circuitry, and I/O transistors. Input and output
pads usually contain built-in receiver and driver circuits to perform level conversion and
amplification.

13.6.1 Basic I/O Pad Circuits
Basic I/O pads include VDD and GND, digital input, output, and bidirectional pads, and
analog pads.

13.6.1.1 VDD and GND Pads Power and ground pads are simply squares of metal con-
nected to the package and the on-chip power grid. Most high-performance chips devote
about half of their pins to power and ground. This large number of pins is required to
carry the high current and to provide low supply inductance.

One of the largest sources of noise in many chips is the ground bounce caused when
output pads switch. The pads must rapidly charge the large external capacitive loads, caus-
ing a big current spike and high L di/dt noise. The problem is especially bad when many
pins switch simultaneously, as could be the case in a 64-bit off-chip data bus. Such busses
should be interdigitated with many power and ground pins to supply the output current
through a low-inductance path. In many designs, the dirty power and ground lines serving
the output pads are separated from the main power grid to reduce the coupling of I/O-
related noise into the core.

Many chips use separate pads for the I/O power supply and for the core. This is
essential if the I/O runs at a different voltage than the core, but it also serves to isolate the
noisy I/O power from the quieter core.

13.6.1.2 Output Pads First and foremost, an output pad must have sufficient drive capa-
bility to deliver adequate rise and fall times into a given capacitive load. If the pad drives
resistive loads, it must also deliver enough current to meet the required DC transfer char-
acteristics. Given a load capacitance (typically 2–50 pF) and a rise/fall time specification,
the output transistor widths can be calculated or determined through simulation. Typi-
cally, these transistors must be very wide and are folded into many legs.

Output pads generally contain additional buffering to reduce the load seen by the on-
chip circuitry driving the pad. The method of Logical Effort tells us that the fastest buffers

Chapter 13 Special-Purpose Subsystems592

are built from strings of inverters with fanouts of about 4. In practice, a
higher fanout (e.g., 6–8) gives nearly as good delay while reducing the
area and power consumption of the buffer. The final stage may have an
especially high fanout because the edge rates in the external world are
normally an order of magnitude longer than those on chip. However, the
final stage must be large enough to source or sink reasonable amounts of
current with a small voltage drop.

Latchup, introduced in Section 7.3.6, is a particular problem near
output pads, especially when the pads experience voltage transients
above VDD or below GND. These transients are likely to occur because
of ringing from the bond wire inductance and/or from driving improp-
erly terminated transmission lines. These transients cause the drain-
to-body diodes to become forward-biased, forcing current to flow into
the substrate or well and potentially causing latchup.

To avoid latchup, the nMOS and pMOS transistors should be
separated by substantial distances and surrounded by guard rings. If
possible, the output transistors (i.e., those whose drains connect
directly to external circuitry) should be doubly guard-ringed, as shown

in Figure 13.45. This means that an n-transistor should be encircled with p+ substrate
contacts connected to GND, and then further encircled with n+ well contacts in an n-well
connected to VDD. The rings should be continuous in diffusion with frequent contacts to
metal. Furthermore, dummy collectors consisting of p+ connections to GND and n+ in n-
well connections to VDD should be placed between the output transistors and any internal
circuitry. These dummy collectors and guard rings serve to capture most of the stray carri-
ers injected into the substrate when the diodes are forward-biased.

The output transistors also often have gates longer than normal to prevent avalanche
breakdown damage when overvoltage is applied to the drains. Nonsilicided gates are also
preferable because the polysilicon gate resistance better distributes overvoltage across the
legs of the output transistor, preventing damage.

13.6.1.3 Input Pads Input pads also contain an inverter or buffer to convert the signal
from the noisy external world into a valid logic level for the core circuitry. The input pad
also contains electrostatic discharge protection circuitry, described in Section 13.6.2. The

buffer may perform level conversion, as will be discussed in Section
13.6.4. In a high-speed system, the buffer typically drives a clocked
input register. Section 13.7.4 discusses the timing in depth. Pads can
include pullup or pulldown resistors to place an unconnected pad in a
known state.

Some input pads also contain Schmitt triggers, as shown in Figure
13.46 [Schmitt38]. A Schmitt trigger has hysteresis that raises the
switching point when the input is low and lowers the switching point
when the input is high. This helps filter out glitches that might occur if
the input rises slowly or is rather noisy.

13.6.1.4 Bidirectional Pads Figure 13.47 shows a bidirectional pad with an output driver
that can be tristated and an input receiver. The output driver consists of independently con-
trolled nMOS and pMOS transistors. When the enable is 1, one of the two transistors
turns ON. When the enable is 0, both transistors are OFF so the pad is tristated. This
design is preferable to the four-transistor “totem pole” tristate from Section 1.4.7 when

FIGURE 13.45 Double guard rings around folded
nMOS output transistor

A Y

Weak

Weak

A

Y

FIGURE 13.46 Schmitt trigger

13.6 I/O 593

driving large capacitances because it has only two rather than four huge transis-
tors in the final stage and the transistors need only be half as wide. Figure 13.48
shows a clever variation on this design in which the NAND and NOR are
merged together into a single six-transistor network with two outputs. Such a
tristate buffer is smaller and presents less input capacitance on the Dout terminal.

Many pad libraries provide only a bidirectional pad. By hardwiring the
enable signal to 1 or 0, the pad can be used as an output or input.

13.4.1.5 Analog Pads Analog inputs and outputs connect to simple metal pads
and then directly to the on-chip analog circuitry without any digital buffer or driver. Ana-
log pads still require ESD protection circuitry.

13.6.2 Electrostatic Discharge Protection
On a dry day, you have probably experienced a shock when you walk across a carpet and
then touch a metal object because you have built up so much charge on your body. Such
shocks can destroy integrated circuits. Input pads have transistor gates connected directly
to the external world. These gates are subject to damage from electrostatic discharge
(ESD) that can puncture and break down the oxide. The breakdown voltage was 40–100
V for older processes with thick (> 100 Å) oxides but now is 5 V or less for modern thin
oxides. High ESD voltage on transistor drains can also cause punchthrough, in which the
source and drain depletion regions meet, allowing large amounts of current to flow
through an OFF transistor until overheating and permanent damage occur. ESD voltage
outside the power rails also raises the risk of latchup. ESD events cause billions of dollars
of losses in the semiconductor industry annually.

The essence of ESD protection is to provide a controlled path to discharge high volt-
ages without damaging the gate oxides [Dabral98]. The path consists of extra circuit ele-
ments that clamp the I/O pins to safe levels. The elements are divided into breakdown and
nonbreakdown devices. Nonbreakdown devices are diodes, MOSFETs, and bipolar transis-
tors operating in conventional ways. Breakdown devices include silicon-controlled rectifi-
ers (SCRs), thick field oxide (TFO) transistors, spark gaps, and other devices that break
down before the I/O transistors. Breakdown devices are smaller to provide the same level
of protection, but are much more difficult to model and design. Therefore, nonbreakdown
protection devices are used when possible.

Figure 13.49 shows a typical ESD input protection circuit consisting of diode clamps
and a current-limiting resistor. The primary diode clamps turn on if the pad voltage
becomes greater than about VDD + 0.7 V or less than –0.7 V, shunting ESD current into the
robust VDD or GND networks. A good protection diode has an ON resistance of approxi-
mately 1 . A large ESD event may result in 10–20 Å of current flowing, producing a

PAD

Din

Dout

En

ESD Protection

FIGURE 13.47 Bidirectional pad circuitry

Dout

En Y

Dout

NAND

NOR

FIGURE 13.48 Improved tristate buffer

Chapter 13 Special-Purpose Subsystems594

voltage across the diode large enough to damage transistors. Thus, the protection circuit
adds a current limiting resistor and smaller secondary diode clamps to further limit the
voltage seen by the transistors. Resistor values anywhere from 100 to 3 k are used. This
resistance, in conjunction with any input capacitance C, will lead to an RC time constant
that can be important for high-speed circuits. The resistors are sometimes made from sev-
eral squares of unsilicided p+ diffusion in an n-well. Clamping diodes are formed using n+
diffusion to the substrate and p+ diffusion to n-wells. As with output transistors, these
diodes and resistors should be double guard-ringed so that they do not inject charge into
the substrate and cause latchup.

ESD protection circuits are tested by zapping the pin with an external high voltage.
Engineers use standard test circuits shown in Figure 13.50 to characterize ESD robust-
ness. The capacitor is charged to a high voltage, then a switch is closed to connect the

capacitor to the pin through a resistor and/or
inductor. The human body model (HBM) repre-
sents the discharge that takes place when an
ungrounded person touches a pin of the chip. The
charged device model (CDM) represents the pin tri-
boelectrically charging during manufacturing (i.e.,
charging through contact with a different mate-
rial) and then rapidly discharging when it comes in
contact with a grounded conductor. The CDM
zap is more difficult to protect against, but is also

more difficult to perform precisely in the lab. The ESD robustness of the pad is measured
as the maximum voltage that the pad can endure. For example, ±15 kV is good for parts
such as serial port transceivers that might be exposed to ESD by an end user handling a
cable. Parts in an enclosed system are only subject to damage during assembly and can
allow limits in the 2–4 kV range.

Analog pad protection circuitry must be carefully designed so it does not degrade the
bandwidth or signal integrity of the analog components. This is achieved by minimizing
the protection diode area. RF pads are extremely demanding because any extra load can
compromise performance.

13.6.3 Example: MOSIS I/O Pads
Figure 13.51 shows a layout of a bidirectional pad from the MOSIS service for a 1.6 m
two-metal layer process illustrating the general principles of pad design (see also the inside
front cover). The overall cell is about 200 m on a side. The pad is the large (100 × 75 m)
rectangle consisting of a sandwich of metal1 and metal2 connected with many vias. The
SiO2 overglass covering the metal2 is etched away over the pad so the bond wire can be
connected directly to the pad. Two large metal2 rectangles cover most of the pad. The
upper one with the legs sticking up is GND, while the lower is VDD.

The bidirectional pad schematic is shown in Figure 13.52. The input protection cir-
cuitry consists of some resistance, a thick oxide transistor, and the drain diffusion diodes of
the wide output transistors. The resistors are n+ and p+ diffusion wires, each 3.5 squares
long. They have nominal sheet resistances of 53 and 75 / , so the parallel combination
of resistance is 109 . To the left and right of the metal pad are thick oxide nMOS tran-
sistors consisting of interdigitated fingers. They consist of a source and drain separated by
3 , but have no gate. They help protect the pad from ESD because high voltages will
punch through the channel and dissipate. The effectiveness of thick oxide transistors is

PAD
R

Current
Limiting
Resistor

Thin
Gate

Oxides

Secondary
Diode

Clamps

Primary
Diode

Clamps

FIGURE 13.49 Input protec-
tion circuitry

Device
Under
Test

Device
Under
Test

1500 Ω

100 pF

8.5 Ω

200 pF

0.5 nH

Human Body Model Charged Device Model

FIGURE 13.50 ESD test circuits

13.6 I/O 595

process-dependent. The pad uses many substrate/well contacts and is surrounded by dou-
ble guard rings to prevent latchup during ESD events. The tristate driver and receiver use
extensively folded transistors to fit in the space available.

200 m

100 m

Pad

Overglass
Cut

75 m

nMOS Field
Oxide Voltage
Clamp

n+ Resistor p+ Guard Ring

GND

VDD

GND

ln ln b En p+ Guard Ring Out p+ Resistor n+ Guard Ring

ln unbuffered Output Transistors

FIGURE 13.51 MOSIS 1.6 m bidirectional pad. Color version on inside front cover.

Chapter 13 Special-Purpose Subsystems596

13.6.4 Mixed-Voltage I/O
Many chips require a low core voltage for the logic transistors, yet must interface with
other chips operating at higher voltages. The I/O pads thus can include level converter
circuits to translate between different voltage standards. If Vds of a transistor becomes too
large, punchthrough occurs, possibly causing excessive current flowing until the intercon-
nect melts. Transistors with smaller dimensions have a lower punchthrough voltage. As
introduced in Section 3.2.7, I/O circuits often use transistors with longer channels and
thicker oxides to endure the higher voltages. Transistors can also be stacked to increase
their voltage tolerance.

Table 13.2 summarizes typical logic levels for single-ended drivers. Beware that the
logic levels definitions vary somewhat between vendors. The popular 74-series logic gates
of the 1970s and 1980s used the 5 V transistor-transistor logic (TTL) standard with highly
asymmetric logic levels because outputs are pulled down by a strong transistor but pulled
up by a weaker resistor. The 5 V CMOS standard was more symmetric. In the 1990s, low-
voltage (3.3 V) flavors of TTL and CMOS were introduced. Bipolar circuits perform
poorly below 3.3 V, so CMOS standards prevailed as voltage continued to decrease. The 5
V CMOS and TTL standards are now completely obsolete, but 3.3 V LVCMOS is still
widely supported for compatibility even when the core operates at a much lower voltage.
Section 13.7.3 describes differential signaling.

Figure 13.53 shows some simple level converters for chips using a low VDDL core volt-
age and higher VDDH I/O voltage. Figure 13.53(a) is an output driver that takes a low-
swing input voltage and produces a higher-swing output voltage. It uses a CVSL structure
consisting of four high-voltage transistors indicated in bold. The inverter uses low-voltage

TABLE 13.2 Single-Ended I/O Standards

Standard VDD VIL VIH VOL VOH

TTL 4.75–5.25 0.8 2.0 0.4 2.4
CMOS 4.5–6 1.35 3.15 0.33 3.84
LVTTL 3.0–3.6 0.8 2.0 0.4 2.4

LVCMOS33 3.0–3.6 0.8 2.0 0.36 2.7
LVCMOS25 2.3–2.7 0.7 1.7 0.4 VDD–0.4
LVCMOS18 1.65–1.95 0.35 VDD 0.65 VDD 0.45 VDD–0.45
LVCMOS15 1.4–1.6 0.35 VDD 0.65 VDD 0.25 VDD 0.75 VDD
LVCMOS12 1.1–1.3 0.35 VDD 0.65 VDD 0.25 VDD 0.75 VDD

Out

En

Out

PAD

In

264 Ω 185 Ω

In_bIn_unbuffered

600/3

240

160

90

4020

48

FIGURE 13.52 MOSIS bidirectional pad schematic

13.7 High-Speed Links 597

transistors and the low-voltage power supply. The output Y can be followed by a
high-voltage inverter or buffer to deliver more uniform rise/fall times. Figure
13.53(b) is an input receiver that takes a high-swing input voltage and produces a
lower-swing voltage for core circuits. It consists of a simple inverter using high-
voltage transistors that can withstand the large gate voltages.

To avoid the need for high-voltage transistors, some output drivers use
stacked transistors. For example, Figure 13.54 shows a cascoded driver for a 3.3 V
output in a 2.5 V process [Greenhill97]. The inner (cascode) transistors are tied
to supplies in such a way that Vgs and Vds across an individual transistor never
exceed 2.5 V even though the output has a larger swing. If the voltages on the
cascode transistors are provided externally rather than generated internally, the
system must apply them in the proper sequence to avoid momentarily exposing
the I/O circuitry to damaging electric fields.

13.7 High-Speed Links
As chips integrate more functions on a single die and process more data, the
demand for high communication bandwidth between chips continues to rise.
While adding more pins is a simple way to increase the I/O bandwidth, it may
increase the package cost and chip area significantly. An alternative is to increase the speed
of communication per pin. This section discusses the fundamentals of high-speed I/O
design.

The basic digital I/O described in Section 13.6 faces a number of challenges as one
tries to increase the rate at which the bits are transmitted. The following subsections will
discuss these challenges and address the currently established solutions that enable high-
speed I/O operation. The challenges are namely:

� Designing high-speed circuits that can generate fast pulses and reliably detect
them as digital 1s and 0s

� Propagating signals through a lossy, finite-latency medium (referred to as transmis-
sion lines)

� Distinguishing one bit from another when they are transmitted successively

13.7.1 High-Speed I/O Channels
In a basic I/O configuration shown in Figure 13.55, a transmitter (or driver) sends an elec-
trical signal to a receiver via a conducting wire. At low transmission speeds, this conductor
acts as an ideal wire (or at worst, a resistance in series) that keeps the voltage potentials on
both of its ends equal. For example, when the transmitter generates a 1 V signal to repre-
sent a Boolean symbol of 1, the same voltage appears on
the other side and the receiver interprets it as 1.

At high frequencies, however, the conductor can no
longer be treated as an ideal wire. Instead, it acts as a
transmission line along which the voltage and current prop-
agate as waves. A conductor should be treated as a trans-
mission line rather than as an equipotential net when the
propagation delay along the conductor becomes compara-
ble to the signal rise/fall times.

A
Y

(a)

VDDH

VDDL A Y

VDDL

(b)

FIGURE 13.53 Level converters

A

EN
Y

3.3

2.5

1.2

0–2.5

0.8–3.3

Predriver &
Level

Shifter

FIGURE 13.54 Cascoded high volt-
age output driver

Data In

clk clk

Data Out

Transmitter Chip

Channel

Receiver Chip

FIGURE 13.55 Basic digital I/O

Chapter 13 Special-Purpose Subsystems598

Example 13.7

Above what frequency must a 10 cm trace on a printed circuit board be treated as a
transmission line?

SOLUTION: A typical PCB consists of copper wires embedded in a flame-retardant epoxy
material called FR4. FR4 has a dielectric constant of approximately = 4.35 0, so sig-
nals propagate at a velocity of

(13.38)

Thus, the signal takes 700 ps to propagate along the trace. The rise/fall time of a signal
should be no more than about one-quarter of the cycle time so that the high and low
states are recognizable. Thus, if signals have a period of less than 2.8 ns (i.e., a fre-
quency exceeding 350 MHz), they should be modeled as waves propagating along a
transmission line.

Another implication of the finite propagation time is that the transmitter can-
not see what is connected at the receiving end at the time it launches a pulse down
the conducting channel. Instead, it only sees the load impedance presented by the
channel itself. This impedance is called characteristic impedance, Z0, of the channel
and typical values are around 50 . The initial pulse amplitude is thus determined
by the characteristic impedance, not by the load impedance at the receiving end.
The characteristic impedance also indicates the ratio between the voltage and cur-
rent waves that travel down the channel.

To obtain well-controlled impedance and predictable current return paths,
high-speed printed circuit boards normally allocate half of the metal layers to power
or ground planes. Figure 13.56 shows two common ways in which signals are routed
on a PCB. A signal running on an outer layer is called a microstrip. It sees a ground
plane on one side and free space on the other. The characteristic impedance of a
microstrip is approximately [Mears96]

(13.39)

A signal running on an inner layer between planes is called a stripline and has a character-
istic impedance of approximately

(13.40)

Example 13.8

A four-layer PCB contains power and ground planes on the inner layers and signal
traces on the outer two layers. The layers use 1 ounce copper.4 The FR4 dielectric
between the layers is 8.7 mils thick. How wide should the signal traces be to achieve 50

 characteristic impedance?

4Printed circuit boards describe copper thickness in the obscure unit of ounces, describing the weight of a
1 foot square sheet of metal foil of a particular thickness. 1 ounce Cu is 1.4 mils thick. 1 mil = 10-3 inches.

v
c= =

×
=

4 35

3 10

2 086
14 4

8

. .
.

m
s cm

ns

Z
h

w t0
60

0 475 0 67

4
0 67 0 8

=
+ +(). .

ln
. .k

Z
h

w t0
60 4

0 67 0 8
=

+()k
ln

. .

t

h

w

t h

w

Signal

Ground Plane

Dielectric

Ground Plane

Dielectric

Signal

Ground Plane

Dielectric

(a)

(b)

kε0

kε0

FIGURE 13.56 Transmission lines
(a) microstrip, (b) stripline

13.7 High-Speed Links 599

SOLUTION: Solve EQ (13.39) numerically with h = 8.7 mils, t = 1.4 mils for w = 15 mils.
This is relatively wide compared to the typical minimum trace width of 6–7 mils. The
width can be reduced by selecting a thinner dielectric.

If the waves propagate through the channel according to its characteristic impedance,
what happens when they reach the end and find that the final load impedance is actually
different from Z0? The energy that has been traveling down the line cannot be fully
absorbed or dissipated by the final load. This is called impedance mismatch. If the energy
cannot be fully absorbed at the receiving end, the remaining energy must go back toward
the transmitter. In other words, the waves are reflected. The reflection coefficient is the
ratio of the incident to the reflected wave. According to transmission line theory [Hall00],
the reflection coefficient can be expressed in terms of the load impedance ZL and the char-
acteristic impedance Z0:

(13.41)

Reflections are undesirable for several reasons. First, the
receiver does not receive the full energy of the signal sent by the
transmitter. In other words, the reflected energy is simply
wasted. Second, the reflected waves can interfere with other sig-
nals that are later sent by the transmitter. The phenomenon of
one signal energy spilling over into other signals’ energy is in
general referred to as inter-symbol interference (ISI).

Therefore, in order to suppress such reflections, high-speed
I/Os use channels that are properly “terminated” at either end of
the channel, as illustrated in Figure 13.57. Terminating a chan-
nel means matching the load impedance to the characteristic
impedance, therefore achieving zero reflection according to
EQ (13.41). As we will see in Section 13.7.3, the channel can be
terminated either at the transmitter or at the receiver. However,
many industrial standards require both ends be terminated because some unwanted signals
may get coupled into the middle of the channel and reflected from the unterminated end
to interfere with the desired signal. Terminating both ends reduces the voltage swing by
50% for the same amount of drive current because the equivalent load resistance is Z0/2
rather than Z0.

Notice that with properly terminated channels, the transmitter can send the next bit
before the current bit reaches the receiver because the bits propagate through the channel at
the same speed and do not interfere with each other. Without terminations, the transmitter
would need to wait until the reflections caused by the current bit transmission disappear,
which can take multiple round-trip times of the channel. For example, if the bits are trans-
mitted at 100 ps intervals (i.e., 10 Gb/s) via a 10 cm FR4 trace which has one-way propaga-
tion delay of 700 ps, seven bits concurrently propagate along the channel at any given time.
On the other hand, if the reflections are severe and settle only after two round-trips (2.8ns),
then the maximum bit rate would be limited to 350 Mb/s. A properly terminated channel
that avoids reflections is therefore the first requisite for high-speed I/O operation.

Device I/Os can be connected in various configurations and the bus and point-to-
point configurations shown in Figure 13.58 are the representative examples. While the
multidrop bus in Figure 13.58(a) has been the popular choice for low data rates as it

=
+

Z Z
Z Z

L

L

0

0

No
Reflection

Channel, Z0

Channel, Z0

(a)

(b)

Terminated

Open

Z0

Reflection

FIGURE 13.57 Transmission line reflections and
termination

Chapter 13 Special-Purpose Subsystems600

requires fewer wires to be routed, the point-to-point links in Figure 13.58(b)
are finding widespread use in high-speed applications because they can con-
nect two points without any splitting junctions in the middle. The splitting
junctions in the bus configurations cause discontinuities in the characteristic
impedance, resulting in reflections. In comparison, point-to-point links are
much easier to engineer for minimal reflections.

13.7.2 Channel Noise and Interference
In the previous section, we discussed reflection as one cause for inter-symbol
interference limiting reliable data transmission. This section discusses other
types of noise and interference that may corrupt the signal propagating
through the channel, including dispersion, crosstalk, and return path noise.

13.7.2.1 Dispersion The channel may attenuate certain parts of the signal
energy due to resistance along the conductor and dielectric loss through an
imperfect insulator. The attenuation is frequency-dependent, generally with
low-pass behavior. For example, Section 6.2.4 describes skin effect, where the
conductor loss increases with frequency as the current crowds toward the sur-
face of the conductor. The dielectric loss also increases with frequency. This
frequency-dependent attenuation causes dispersion; i.e., distortion and widen-
ing of the signal shape. Suppose that a transmitter sends a lone one-bit pulse
between the strings of 0s. As illustrated in Figure 13.59, the pulse emerges
from the transmission line with lower amplitude and greater width such that
its energy extends beyond its assigned bit period. The smaller amplitude
makes the pulse harder to detect. Worse yet, the 0-bit immediately following
the one-bit experiences the remnant of the energy from the previous bit, so the
receiver is less certain about it being a 0. Therefore, dispersion leads to inter-
symbol interference (ISI). In Section 13.7.3.3, we will discuss how equalizers are
used to undo such dispersion.

13.7.2.2 Crosstalk Capacitive or inductive coupling causes interference called crosstalk
between nearby I/O channels in which energy from one channel propagates into another,
as discussed in Section 6.3.3. Crosstalk is more challenging than dispersion because the
effects cannot be undone unless the coupling mechanisms and the aggressors’ bit patterns
are known to the victims [Zerbe01]. Instead, crosstalk is usually suppressed by designing
the channels to minimize coupling. For example, shielding the channels from one another
with ground lines is one approach. Using differential signaling also helps if the aggressor
signals affect both the lines equally. While not prevalent in high-speed I/Os, advanced
digital communication systems may use error-correcting/detecting codes, sequence detec-
tion, or multi-input/multioutput (MIMO) estimation to detect the digital bits reliably in
the presence of crosstalk [Barry03, Proakis08].

13.7.2.3 Return Path Effects Figure 13.57 is sometimes misleading because it does not
show the path through which the current returns from the receiver back to the transmitter.
Conservation of charge dictates that any current leaving a system must come back. Provid-
ing a good return path is as important as a good signal path; in fact, many of the signal
integrity problems stem from overlooking the return paths. Any voltage drop across the
return path due to its finite impedance will appear as additional noise to the transmitted

0 2 4 6 8 10
0

1

Time in Unit Intervals

V
o

ta
ge

Transmitted

Received

0.8

0.6

0.4

0.2

FIGURE 13.59 Pulse dispersion due to
frequency-dependent attenuation

(a)

(b)

Chip A Chip B Chip C

Chip B

Chip CChip A

FIGURE 13.58 (a) multidrop bus vs.
(b) point-to-point links

13.7 High-Speed Links 601

signal. If the return path impedance changes with frequency, then the resulting noise will
also vary with frequency.

An example of the return path problem is ground bounce. In the single-ended link
example shown in Figure 13.60(a), the return paths are the ground nodes shared by the
two chips. The transmitter generates the signal voltage in reference to its local ground, but
the receiver reads the arrived voltage in reference to its local ground. While these two local
grounds should nominally be at the same potentials, the return current may cause tempo-
rary difference between them. For example, if the return path is inductive (e.g., due to
bonding wires or package leads that connect the grounds of the chip to the die and circuit
board), then the voltage difference will vary with the time-derivative of the current.
Therefore, the resulting noise that the signal experiences is frequency-dependent and can
cause another form of ISI.

When multiple I/O links share a common return path (e.g., the same ground nodes)
as illustrated in Figure 13.60(b), the return current from one I/O link can develop a volt-
age difference between the two ground levels which can interfere with all the other I/O
link operations. This is called simultaneous switching noise (SSN). Differential signaling,
described in Section 13.7.3.2, can be regarded as a way of providing a dedicated return
path to each signal path; hence, alleviating many of the SSN and ground bounce issues.

13.7.3 High-Speed Transmitters and Receivers
Besides channels that can propagate signals with minimum reflection and interference,
high-speed I/O requires transmitters and receivers that can generate and detect signal
pulses at very high rates. This subsection explores the circuit issues for building such high-
speed transmitters and receivers. Recall that the simple I/O link in Figure 13.55 uses a
CMOS inverter as the transmitter and a flip-flop as the receiver. As we seek higher data
rates, we face various challenges with this basic link. This subsection focuses particularly
on the issues related to the inverter as the transmitter. The next subsection will focus on
how to maintain the correct timing to trigger the receiver flip-flop.

13.7.3.1 Single-Ended Transmitters The basic problem with the CMOS inverter as a
high-speed transmitter is that its output impedance can vary significantly across its output
range. When the output voltage is near the supply or ground, either its pMOS or nMOS
operates in linear region, making the output impedance low. On the other hand, when the
output voltage is in the middle between the supply and ground, both transistors are in sat-
uration and have high output impedance. Due to this wide variation, one can never design
an inverter whose output impedance is matched to the channel’s characteristic impedance.

Transmitter (TX) Receiver (RX)

RX Local
GroundTX Local

Ground

Return Path

Shared Return Path

(a) (b)

Zreturn

Zreturn

FIGURE 13.60 Simultaneous switching noise mechanism (a) ISI, (b) crosstalk

Chapter 13 Special-Purpose Subsystems602

Without a proper termination at the receiving end, the signal
waves can be reflected back at the transmitter side and cause
inter-symbol interference.

Figure 13.61 shows several methods of building a single-
ended transmitter with more uniform impedance than a simple
inverter. The current-mode driver in Figure 13.61(a) uses an
open-drain transistor operated in saturation with a high output
impedance. The parallel termination at the far end of the trans-
mission line converts the current to voltage. Gunning Transceiver
Logic (GTL) [Gunning92] uses this style of driver, with
VT = 1.2 V and a low output of 0.4 V. It employs a differential
receiver (see Figure 12.28(a)) to compare the output against a
0.8 V reference. The voltage-mode driver in Figure 13.61(b)
uses wide transistors operated in their linear regime with low
output impedance. It adds a series resistor to match the channel
impedance. Building a precise resistor is difficult in CMOS
because of process variation. An alternative, called digitally con-
trolled impedance, builds the driver out of multiple parallel tran-
sistors of binary-weighted widths and turns on the proper set to
achieve the desired output impedance [Gabara92, DeHon93].
In Figure 13.61(c), the line is parallel terminated at both ends.
This eliminates reflections at both ends, but cuts the output
swing by a factor of two.

Another way to classify the transmitter circuits is to see if
the driver is a push-pull type or a pull-only type. While both
types of drivers generate binary signals, a push-pull type creates
bipolar signals centered around 0 and a pull-only type uses 0
(i.e., no signal) as one of the signal levels. The transmitters pre-

viously shown in Figures 13.61(a) and (b) are examples of the pull-only and push-pull
drivers, respectively. While pull-only drivers are in general a bit easier to design (fewer
active switches), push-pull drivers may consume less power for the same voltage/current
swing because it uses half the current of the pull-only driver.

13.7.3.2 Differential Transmitters Differential signaling is a widely adopted way of
improving the noise immunity by representing the signal with a difference between two
voltages or currents. Even in the presence of external noise or interference, the difference
is unaffected as long as the disturbance influences both the signals equally. Two differen-
tial transmitter circuits are illustrated in Figure 13.62. As with single-ended drivers, dif-
ferential drivers can be either voltage- or current-mode and either push-pull or pull-only
type. Most differential drivers are made of differential pairs, which steer the current
between two outputs while keeping their sum nearly constant. The driver circuit in Figure
13.62(a) generates pull-down currents only while the one in Figure 13.62(b) uses two dif-
ferential pairs to generate both pull-up and pull-down currents.

Low-voltage differential signaling (LVDS) [National08] switches a 3.5 mA current
into a 100 load providing a differential termination between the two transmission lines.
Thus, it produces a 350 mV output swing that is detected by a differential receiver. It is
suitable for operation up to 3.125 Gb/s and is popular because of the low power consump-
tion. Current mode logic (CML) is not a formal standard; the switching current and volt-
age levels vary widely. Using higher currents and wider swings, CML can operate beyond

VT

VSW

R = Z0

R = Z0

R = Z0 R = Z0

Channel, Z0

Isw
Vsw = Isw × R

+

−

VT

Vsw = Isw × R/2
+

−

Channel, Z0

Channel, Z0

(a)

(b)

(c)

FIGURE 13.61 Transmission line drivers (a) current-mode
driver (parallel termination at the receiving end), (b) voltage-
mode driver (series termination at the transmitting end), (c)
double-terminated driver (distinction between voltage and
current is irrelevant)

D−

IswVbias

D+

Z0

D−

IswVbiasn

D+

Vbiasp

D+D−
Z0

Z0

(a)

(b)

Z0

FIGURE 13.62 Differential
drivers (a) current-mode logic
(CML) (b) low-voltage differential
signaling (LVDS)

13.7 High-Speed Links 603

10 Gb/s at the expense of more power. Low-voltage positive-emitter-coupled logic
(LVPECL) is a closely related system with similar trade-offs.

13.7.3.3 Transmitter Variations Some applications may require additional features from
the transmitter, such as AC coupling, slew rate control, or programmable swing. AC cou-
pling (or DC blocking), as shown in Figure 13.63, is a convenient way to connect a trans-
mitter and a receiver that have different signal ranges. An example is a receiver that
operates with multiple signaling standards. A series capacitor inserted in the channel
blocks the DC content and propagates only the high-frequency content of the signal.
Since the capacitor turns the channel into an open circuit at DC, the signal ranges can be
set independently at the transmitter and the receiver sides. However, one must ensure that
no data is lost by these DC blocking capacitors. One way is to encode the data with
redundancy so that they contain no information in low-frequency spectrums. 8b/10b
[Widmer83] encoding is widely used. It recodes 8-bit bytes into 10-bit symbols such that
no more than five consecutive 0s and 1s appear and the number of 0s and 1s are roughly
balanced. 64b/66b codes are used in 10 Gb Ethernet because they have a lower overhead.

In many cases, it is desired that the transmitter swing be programmable. Figure 13.64
illustrates a transmitter with segmented driver devices designed for this purpose. The
select signals determine how many devices turn on to pull the currents and hence how
large the signal swing is at the output.

In addition to the swing, drivers may control how fast the signal
transitions (i.e., slew rate). While ideal pulses may have infinitely
sharp edges, such sharp edges may have adverse effects in real appli-
cations. For example, signals with sharp edges can cause more severe
crosstalk, suffer more from reflections, and excite ringing due to par-
asitic resonance in packages or connectors. If the transmitter creates
too fast a signal, one can deliberately slow its transitions down by first
dividing the driver device into multiple pieces and then turning them
on sequentially, as shown in Figure 13.65. The rate at which these
devices are switched on determines the slew rate of the transmitted
signal.

Section 13.7.2 discussed how channels may
have frequency-dependent attenuation that causes
dispersion and intersymbol interference. Equalizers
are circuits that can compensate such undesirable
effects. Equalizers are basically filtering circuits that
try to make the combined channel response “flat”
over the entire frequency range. There are two ways

AC-Coupling/
DC Blocking
Capacitors

D

IswVbias

D+

Channel, Z0 +

Channel, Z0

R = Z0 R = Z0

FIGURE 13.63 AC coupling

Z0

D

EN3

W/4

EN2EN1EN0

W/4 W/4 W/4

FIGURE 13.64 Programmable drive current

W/4

D
Delay Line

W/4 W/4 W/4

FIGURE 13.65 Slew rate control

Chapter 13 Special-Purpose Subsystems604

that one can achieve this: either amplifying the signal spectrum being attenuated by the
channel, or attenuating the other parts of the signal spectrum so that the whole spectrum
sees the same level of attenuation. While the former should sound like a better idea, many
high-speed I/O circuits adopted the latter mostly because it is easier to implement. Figure
13.66 depicts a so-called de-emphasizing transmitter that is commonly used for this pur-
pose. This transmitter is a combination of two sub-transmitters: one for the main data
pulses and the other for the inverted, scaled-down pulses of the same data delayed by one
bit period. In essence, this transmitter generates the smaller swings for the bits that repeat
the preceding ones and larger swings for those that change. It is equivalent to a high-pass
filter that counteracts the low-pass responses of the I/O channels.

13.7.3.4 Higher Data Rates One may wonder what determines the maximum speed of
the transmitter circuits described so far. It turns out that the transmitter itself is not the
major limiter for the speed. Most high-speed I/O circuits rely on precise clock signals to
generate the data pulses at constant intervals and the maximum data rate is often dictated
by the highest clock frequency that can be propagated on the chip. The shortest clock
period can be estimated as 8 times the delay of each clock buffer stage, which gives rise
and fall times each occupying about 25% of the period. Pushing for higher frequency
results in clock waveforms that do not reach full swings.

Example 13.9

Suppose clock buffers are built from FO4 inverters with a delay of 15 ps in a 65 nm
process. What is the maximum rate at which data can be transmitted if one bit is sent
per clock cycle?

SOLUTION: 8 FO4 inverter delays is 120 ps, corresponding to a maximum data rate of
8.3 Gb/s.

It is possible to achieve higher data rates using time interleaving or multilevel signaling.
In time-interleaved transceivers (Figure 13.67), N drivers connected in parallel can gener-
ate a data stream N times greater than that of a single driver. The timing to select each
transmitter in sequence is derived from different phases of the clock. Most high-speed
I/Os use two-way interleaving because it requires only two clock phases (true and comple-
mentary). In multilevel transmitters (Figure 13.68), more than two levels may be used to

D

IswVbias

D+

R = Z0

Isw
clk Vbias

0 2 4 6 8 10
0

1

Time in Unit Intervals

V
o

ta
ge

Transmitted

Received

(a) (b)

0.8

0.6

0.4

0.2

FIGURE 13.66 De-emphasizing transmitter (a) circuit, (b) de-emphasized pulses

13.7 High-Speed Links 605

represent more than one bit. Multilevel transmitters rely on greater precision in voltage
rather than time. The effectiveness of these options generally depend on the attenuation
and noise of the channel. For example, time-interleaving is preferred to multilevel signal-
ing when the attenuation in the channel is benign.

13.7.3.5 Receivers The receiver is typically a simple flip-flop that samples the data at the
correct time. For differential signaling, a differential flip-flop such as the SA-F/F from
Figure 10.29 is required to detect the small swing signal. Time-interleaved signaling uses
multiple receivers activated at staggered times. The timing typically comes from a PLL or
DLL with multiple outputs tapped from the VCO or VCDL. Multilevel signaling uses a
small A/D converter in the receiver. The central challenge of receiver design is to sample
the data at the correct time; various solutions are discussed in Sections 13.7.4–13.7.7.

13.7.3.6 Bit Error Rate The main performance metric for any I/O link is bit error rate
(BER), the probability of transferring an erroneous bit. One may find that the typical bit
error rate target for high-speed I/Os is extremely low, ranging from 10–10 to 10–12. It is
because the high-speed I/Os have evolved from traditional digital I/Os which cannot tol-
erate any bit errors (e.g., no redundancy coding). In comparison, some other communica-
tion links such as wireless systems may aim at the higher rates of 10–6. The stringent BER
requirement makes the BER modeling, simulation, and measurement difficult and time-
consuming because each error event is rare.

TX TX TX TX

Wired OR
Multiphase Clocks

1·D1+ 1·D1

Shared
Vbias

2

Isw

D

2

3

0

1

FIGURE 13.67 Time-interleaved transmitter

D0+ D1+ D1−D0−

00 11 01 10 11

O
ut

pu
t

Time

Vbias 1 2Vbias

FIGURE 13.68 Multilevel transmitter

Chapter 13 Special-Purpose Subsystems606

13.7.4 Synchronous Data Transmission
When transmitting a stream of bits from one chip to another, both sides need to agree on
a convention that allows them to distinguish one bit from another. For example, suppose
that the transmitter sends ten consecutive 1s. How can the receiver recognize that the
string contained ten 1s rather than nine or eleven? Recall from Section 10.6.3 that, at
slower speeds, the system can use handshaking: The transmitter notifies the receiver every
time it is about to send a new bit and will only do so after the receiver acknowledges it and
signals back to the transmitter that it is ready. One problem with handshaking, however, is
that the data rate becomes limited by the channel delay. Thus, it cannot exploit the chan-
nel being a transmission line that can propagate the next pulse before the previous one
reaches the far end.

Most high-speed I/Os instead use the time as the marker to tell the bits apart. In
other words, the bits are transmitted at constant time intervals. For example, a 1 Gb/s link
transmits a bit every 1 nanoseconds. Since no signals have to be exchanged between the
transmitter and receiver for each bit, the signaling rate is no longer limited by the channel
delay. However, this synchronous transmission poses a critical requirement on both the
transmitter and receiver sides: the timing of each bit pulse being generated and detected
must be precisely controlled. Since the uniform bit intervals are the only way to tell one bit
from another, any deviation in the timings can cause data transmission errors.

For example, assume that logic 1 is represented by a high voltage level and
logic 0 is by a low voltage level. (This is called non-return-to-zero, NRZ, signal-
ing.) Figure 13.69 plots the signal as a function of its time offset within each bit
period. This plot is called an eye diagram because if the bits are transmitted at
constant bit intervals, the plot should have an opening in the middle where the
signal never makes any transitions. Any nonuniformity in the bit intervals will
reduce the opening in horizontal direction and narrow the time period in which
the bits can be detected reliably. The receiver, on the other hand, must make the
decision about each bit by sampling the signal at the position where the eye dia-
gram has the largest opening. The central challenge of high-speed receiver
design is to precisely identify the best time to sample the data stream.

The transmitter clock is typically generated by a PLL or DLL. As discussed
in Section 13.5.1.5, the timing error (jitter) depends on the jitter of the input
clock, the power supply noise, and the loop bandwidth. All the design consider-
ations previously described to reduce the clock jitter apply here as well. However,

design choices can differ depending on what type of jitter is being minimized. For example,
in high-speed I/Os, the main interest is to minimize the deviation of each clock edge posi-
tion from its nominal position in absolute time (i.e., absolute jitter). On the other hand, in
many digital logic systems, the main interest is to reduce the change in the clock periods
from one cycle to another (i.e., cycle-to-cycle jitter). For example, the jitter accumulation
behavior of PLLs may make their cycle-to-cycle jitter low but the absolute jitter high.

The receiver must synchronize with the transmitter to sample the bit stream in the
middle of the eye. The next three sections explore three different techniques for receiver
clocking.

13.7.5 Clock Recovery in Source-Synchronous Systems
In source-synchronous systems, the transmitter sends a clock signal properly aligned with
the data, as shown in Figure 13.70. Because such a source-synchronous clock consumes an
additional I/O channel, it is often shared across multiple parallel data channels using the

Bit Interval

Best Sampling Point

FIGURE 13.69 Eye diagram illustrating
bit interval and best sampling point

13.7 High-Speed Links 607

same timing. Any discrepancy in the transmis-
sion delays between channels shows up as timing
error at the receiver. The parallel I/O interface
for double-data rate (DDR) memory is a good
example of source-synchronous clocking.

The data may be transmitted at the same
rate or at twice the rate of the clock, as shown in
Figure 13.71. In single-data-rate (SDR) systems,
the receiver samples the data on the rising edge
of the source-synchronous clock. The clock tran-
sitions at least twice as often as the data. If the
transmitter or channel sets the maximum num-
ber of transitions per second and the clock oper-
ates at this rate, the data is carried at only half
the system capacity. In double-data-rate systems,
the receiver samples the data on both the rising
and falling edges of the clock. DDR systems
have a compelling advantage that the number of
transitions per second is equal for the clock and
data. Both can operate at the maximum band-
width of the channel. However, the clock duty
cycle must be maintained at 50%.

In principle, the receiver could simply sam-
ple the data using the source-synchronous clock. However, the clock often needs to be
buffered, especially when controlling multiple parallel data channels. The buffer delay
introduces skew, moving the clock away from the middle of the eye. Moreover, variations
in the buffer delay caused by supply or substrate noise appear as further jitter. A common
solution is to use a PLL or DLL to produce a receiver clock aligned with the source-
synchronous clock, as shown in Figure 13.72.

Source-synchronous clocks may not always be aligned with the center of the data eye.
In fact, any phase relationship between the clock and data is possible as long as it is fixed
and known. For example, in some applications, the transmitter may transmit a clock
whose edges are aligned to those of the data. In this case, the PLL or DLL buffering the
clock should also shift its phase by 90° to recenter the clock on the data eye. Figure 13.73
shows an example of a PLL that performs such 90° phase shift. The VCO generates four
phases of the clock that are spaced by 90°. If one of the VCO clocks are aligned to the
input clock, then the other clocks will have phases that are spaced by 90, 180, and 270°.

D0

tclk

Transmitter Chip

Channel

Receiver Chip

DN − 1 QN − 1

rclk

Channel

Q0

Channel

FIGURE 13.70 Source-synchronous system configuration

clk

D D

Samples
clk

Samples

(a) (b)

FIGURE 13.71 Clocking (a) single data rate, (b) double data rate

D

Qeven

Qodd

PLL / DLLclk rclk

Zero-Delay Buffer

clk

D

rclk
Samples

FIGURE 13.72 Clock recovery using zero-delay buffer

Chapter 13 Special-Purpose Subsystems608

13.7.6 Clock Recovery in Mesochronous Systems
As one seeks higher speeds, it becomes more difficult to keep the clock and data aligned in
source-synchronous systems. For example, a small difference in delay may exist between
the clock and data channels due to random or systematic variations in their trace lengths,
propagation velocities, characteristic impedances, etc. Moreover, there may be difference
in delay between the circuits that drive the clock and data signals. As speeds increase and
the bit interval becomes shorter, the difference in delay occupies a larger portion of the bit
interval. At some point, we might as well consider that the clock and data have the same
frequency but unknown phase. Such systems are called mesochronous.

In mesochronous systems, the receiver must realign the phase of the incoming clock
before using it as a timing reference that triggers the data samplers. Since the clock still
has the correct frequency, a circuit that can calibrate only its phase is sufficient. Figure
13.74 illustrate such a clock recovery loop. It is a feedback control loop which monitors
the timing difference between the data and the recovered clock and adjusts the clock phase
according to the difference. This is similar to the PLL and DLL architectures described in
Section 13.5, except that the reference timing is embedded in a random data stream rather
than indicated by a periodic clock. So, first we will examine the phase detectors that can
compare timing between a clock and a data stream.

PD LF
clk

VCO

Vctrl

rclk

90°

clk

rclk

FIGURE 13.73 Clock recovery using PLL to shift phase by 90°

PHASE
ADJUSTER

clk

D

Q

rclk

PD Loop
Filter

Phase
Error

Phase
Control

D

clk

rclk

FIGURE 13.74 Phase calibration loop for mesochronous timing recovery

Phase detectors used in clock recovery loops are different from those discussed in Sec-
tion 13.5.1.3 in that they operate on random data streams. One well-known implementa-
tion shown in Figure 13.75 is called Hogge detector [Hogge85]. The detector produces two
outputs, UP and DN, whose net pulse width is proportional to the timing difference
between the clock and data. Because this type of phase detector can detect the magnitude

13.7 High-Speed Links 609

of the timing error as well as its polarity, it is called linear phase detector. It is
contrasted to a different type of phase detectors which can detect the polarity
only, called binary or bang-bang phase detectors.

In the Hogge detector, one of the outputs (DN) produces a pulse with a
fixed width equal to a half of the bit interval while the other one (UP) pro-
duces a pulse whose width varies with the clock-to-data timing error. The UP
pulse has the same width with DN when the clock and data phases are 90°
apart, giving a net zero for the difference between the two pulse widths.
These UP and DN pulses drive a charge pump, which adjusts the control
voltage to a VCO. The Hogge detector will then align the clock to the center
of the data eye.

At high data rates, the Hogge detector face some limitations. First, the
UP and DN pulses may become too narrow to be propagated to the charge
pump. Remember that the typical bit intervals are already some fraction of
the shortest period of a clock that can be fully propagated on the chip. Sec-
ond, the Hogge detector may have skew between the nominal 90° locking
point and the actual locking point. While such skews exist for any phase
detectors, the problem lies in that the skew is likely to be different from those
of the data samplers simply because they are different circuits.

Bang-bang phase detectors, on the other hand, use the exact same circuits
for both timing and data detection, which makes them ideal for matching the
skews. For these reasons, many clock recovery loops adopt bang-bang phase
detectors. The Alexander or bang-bang phase detector shown in Figure 13.76
measures only the polarity of the timing error [Alexander75]. While it has the
same UP and DN outputs with the Hogge detector, their pulse widths are fixed
at the clock period and do not vary with the timing error. For each clock cycle,
the UP signal is asserted when the clock is late compared to the data and the
DN signal gets asserted when it is early. Neither output will be asserted if there
is no transition in the data. The Alexander detector compares the clock and
data timings by sampling the data stream twice within each bit interval. One
sample is to read the data bit (data sample) and the other is to detect whether
the transition between two adjacent bits has occurred or not (edge sample). By
comparing the edge sample with the neighboring data samples, the phase
detector can make a decision about the polarity of the timing error.

While binary phase detectors have advantages over the linear counter-
parts in that their output pulses are no narrower than the data signals them-
selves and that the systematic timing skews between the data and edge
sampling circuits can be minimized, they lose all the magnitude information
about the timing error. Because of this, the clock recovery loops with binary
phase detectors cannot make timing adjustments that are proportional to the
timing error. Instead, they can only make fixed-step adjustments based on the
polarity. Choosing the right step size can be tricky. It should be large enough
to reach lock quickly, yet small enough to limit jitter caused by dithering
around the lock point.

Oversampling receivers sample the data more than twice during each bit
interval [Yang96]. This provides more information to precisely adjust the
receiver clock. The digital output can be processed by a digital loop filter. Fine
sampling resolution, however, comes at the expense of area and power for all
the samplers.

D

rclk

UP DN

AVG(UP-DN)

0.5UI +0.5UI
Phase
Error

D

rclk

UP

DN

(a)

(b)

(c)

FIGURE 13.75 Hogge detector (a)
circuit, (b) waveforms, (c) transfer
curve

D

rclk

UP (Late)

DN (Early)

AVG(UP-DN)

0.5UI +0.5UI
Phase
Error

(a)

Latch

(b)

FIGURE 13.76 (a) Alexander detector,
(b) transfer curves

Chapter 13 Special-Purpose Subsystems610

13.7.7 Clock Recovery in Pleisochronous Systems
In some applications, adding another channel for the source-synchronous clock may incur
too much cost and it may be preferable to use a local clock reference for the receivers.
While the local clock frequency can be accurately matched to the transmitted data rate, it
may still have tiny errors (e.g., less than 200 ppm for quartz crystal oscillators). In compar-
ison to the source-synchronous and mesochronous systems, the clock reference for the
receiver not only have uncertain phase but also a small error in frequency. These types of
systems are called pleisiochronous. In such systems, the clock recovery loop must be able to
correct the frequency of the clock as well as its phase. The humble RS-232 serial port is a
classic example of pleisochronous link in which the sender and receiver must agree on a
baud rate.

A pleisochronous receiver commonly uses a PLL to generate a sampling clock centered
on the eye of the data. The PLL may use a linear or binary phase detector as described in
Section 13.7.6. One difference with the conventional PLLs, however, is that the phase
detector can compare the timing only when the data has transitions and therefore large tim-
ing errors may result if the data stays at one value for a long period. To mitigate this, the data
streams in pleisiochronous systems are often encoded with redundancy in order to maintain
a minimum density in data transitions and constrain the timing error.

Another difference with a conventional PLL that operates on a periodic clock input is
that the clock recovery PLL typically requires a frequency acquisition aid because its phase
detector cannot detect a large error in frequency. For example, the phase detectors
described in Section 13.7.6 cannot distinguish between the repeating patterns of 1010 at 1
Gb/s and 11001100 at 2 Gb/s. Therefore, it is necessary to use another means to ensure
that the VCO is generating a correct frequency. One approach is to first lock the VCO
clock to the local reference clock using a phase-frequency detector and then switch the
loop to track the data timing. Once the VCO frequency is brought close enough to the
desired frequency, the phase detector can keep the clock recovery loop in the locked state,
as long as the data transitions often enough.

13.8 Random Circuits
Many security and authentication algorithms depend on randomness. For example, a Web
browser encrypts your credit card number with a randomly generated key before sending
the information over the Internet. Section 11.5.4 describes using linear feedback shift reg-
isters to generate pseudo-random bit sequences, but these are not good enough for strong
security. Fortunately, nature provides various sources of random noise and variation on a
chip. This section discusses true random number generators. It also examines chip identi-
fication using random variations.

13.8.1 True Random Number Generators
A true random number generator (TRNG) converts some source of physical random-
ness such as thermal noise into a random sequence of bits. Figure 13.77 shows a
simple random number generator using thermal noise. The voltage across a resistor
varies randomly with time due to the thermal excitation of electrons [Razavi03].
The amplified noise drives a voltage-controlled oscillator. The oscillator output is
periodically sampled and stored in a shift register. The Sun Niagra2 processor
includes a true random number generator with three independent thermal noise

clk

VCO shift reg
+
−

FIGURE 13.77 Thermal noise-based
TRNG

13.8 Random Circuits 611

modules XORed together [Nawathe08]. Other hardware implementations are described
by [Kinniment02, Brederlow06, Tokunaga08].

Some hardware random number generators produce a biased pattern with an unequal
probability of 0s and 1s. If the bits are uncorrelated, they can still be converted into an
unbiased pattern at a lower data rate by applying von Neumann’s algorithm [von
Neumann51] to pairs of consecutive bits. The algorithm is summarized in Table 13.3.

Evaluating the quality of a random sequence is subtle. The National Institute of Stan-
dards and Technologies publishes a standard statistical test method in the Federal Infor-
mation Processing Standard (FIPS) 140.2 [NIST02].

13.8.2 Chip Identification
A chip identification (ID) number is a nonalterable bit sequence used to uniquely identify
an integrated circuit or serve as a secret key. The simplest form of chip ID is a serial num-
ber encoded with fuses that are blown in the factory during manufacturing. Chip ID has
many applications. A wireless sensor node or network interface card uses a unique address
to differentiate itself from others. Manufacturers can use chip ID to detect rebranding or
counterfeiting. Some cryptographic protocols use an ID for authentication. However, chip
ID also raises serious privacy issues that tend to benefit governments and corporations at
the expense of civil liberties, especially if the ID can be read by software without the con-
sent of the user. For example, a textbook publisher might be able to use a chip ID to track
the identity of a student using a pirated copy of an electronic book. A government might
use the chip ID to identify an individual who visited censored Web sites.

Writing a chip ID at manufacturing time incurs some expense. Moreover, a counter-
feiter could write the same ID for another chip. An alternative is to take advantage of pro-
cess variation to provide a unique fingerprint for each chip. [Su08] identifies four
characteristics of such a chip ID:

� The ID circuit must generate a binary ID code.
� The ID code must be repeatable and reliable over supply,

temperature, aging, and thermal noise.
� The ID code length and stability must allow a high probability

of correct identification of each die.
� The ID circuit must exhibit low power consumption and require

no calibration.

Figure 13.78 shows an example of a bit cell in a chip ID array from
[Su08]. When the cell is reset, nodes A and B are pulled to 0. When
reset is released, the circuit behaves as a pair of cross-coupled inverters.
Depending on the device mismatch and thermal noise, one node will be
pulled high and the other low. The cell is tiled to form an array like an

TABLE 13.3 von Neumann’s algorithm

Bit 1 Bit 2 Output

0 0 None
0 1 1
1 0 0
1 1 None

bit

Word

A B

Reset bit_b

FIGURE 13.78 Chip identification bit cell

Chapter 13 Special-Purpose Subsystems612

SRAM and the bits are read from the array in the same fashion. For example, an 8 × 16-
bit array produces a 128-bit chip ID.

Each time the ID is read, noise may disturb some of the bits. If the noise is small
compared to the typical mismatch, the number of differing bits (the Hamming distance)
between the ID read and the true ID will be small. Therefore, two IDs are considered to
correspond to the same chip if their IDs differ by up to d bits. d should be large enough
that the probability of correctly identifying a chip is high, yet small enough that the prob-
ability of a different chip matching the same ID is low. Using a longer ID makes this eas-
ier. Other methods of chip identification involve measuring random differences in current
[Lofstrom00] or delay [Lim05].

13.9 Pitfalls and Fallacies
Neglecting package parasitics
The resistance, capacitance, and inductance of the package have enormous impact on the

power and I/O signal integrity of high-speed digital chips. They must be incorporated into mod-

eling.

Using an inadequate power grid
A power grid should use generous amounts of the top two metal layers running in orthogonal

directions. A mesh that mostly runs in only one direction is subject to excessive IR drops when

many gates on a single wire switch simultaneously. It can also lead to serious inductive prob-

lems because of the huge current loops. The power grid should use many narrow wires inter-

digitated with the signals to provide a low S:R ratio rather than a few wide wires forming large

current return loops. The grid should also avoid slots and other discontinuities that might lead

to large current loops and high inductance.

Goofing your PLL/DLL
Phase-locked loops are notoriously difficult to design correctly. If poorly designed, they can os-

cillate at the wrong frequency, fail to acquire lock, or have excessive jitter. Careful circuit de-

sign is necessary to ensure they work across process variation and reject power supply noise.

If the PLL does not work, testing the rest of the chip can be difficult or impossible. Most suc-

cessful companies either have an in-house team that specializes in PLLs or they license their

loops from a reputable supplier.

Top six ways to fool the masses about clock skew
1) Calculate clock skew without using process variation data

Random skew depends entirely on the mismatch of transistors (especially Le) and wires on

a chip. This mismatch varies with distance and layout technique. The process corners

model worst-case variation from chip to chip, which can be far greater than between two

nearby transistors; this results in unacceptably conservative skew budgets. But reliable

data for on-chip variation can be hard to obtain, especially for small ASIC design teams

and universities. Unless this data is used, clock skew budgeting is largely a matter of

guesswork.

2) Claim “zero skew”
Many papers state that a system has zero skew when the writers really mean that it has

zero systematic skew. These systems may have significant random skew as well as drift

and jitter. The term zero skew is deceptive and is best avoided.

 Summary 613

3) Report only systematic skew
Many papers report only the systematic skew. In a well-balanced clock distribution net-

work, systematic skew is often smaller than random skew and jitter.

4) Ignore jitter
Jitter depends on time and space and is difficult to model or estimate. Unsophisticated

clocking strategies sometimes ignore jitter. This results in unrealistic skew budgets. In

particular, active deskew buffers increase clock distribution delay. Voltage noise on the

buffers appears as jitter. Unless the supplies are unusually quiet, the buffers can increase

jitter more than they decrease systematic or random skew.

5) Report measured skew at only two elements over a brief period of time in a quiet
environment
Measuring skew on a chip is difficult. Some papers measure clock interarrival times at

only two or a few points on the chip for a brief period of time and report those as the skew.

As a chip has many clocked elements, you are unlikely to find the worst-case skew by

measuring just a few points. Moreover, measurements over a brief time interval are un-

likely to capture worst-case jitter. The chip should be exercised through a variety of

modes that cause large fluctuations in supply current to cause maximum power supply

noise and clock jitter.

6) Don’t report the skew budget used during design
Designers often choose rather conservative clock skew budgets during design because

they must ensure the design will operate correctly. Reporting a “measured” skew rather

than a skew budget will give a smaller number.

Summary
This chapter has surveyed package, power distribution, clock, I/O, and random subsystem
design. While each topic is a book in itself and a specialty design area, the short fat VLSI
designer must understand enough about each area to optimize the system as a whole.

Packages connect the chip to the board or module, protect the chip, and are the first
link in removing heat. They should offer plenty of connections, low thermal resistance,
and low parasitics, while still being inexpensive to manufacture and test. Flip-chip pack-
aging using solder bumps distributed across the die has become popular because of the
large number of connections and low inductance.

The power distribution network consists of elements on the chip, package, and board.
It must deliver a stable voltage across the chip under fluctuating current demands. Noise is
caused by both average and peak current requirements. Multiple bypass capacitors offer
low impedance to help filter high-frequency IR and L di/dt noise, but the DC supply
resistance must be low enough to deliver the average current. VDD and GND lines should
be interdigitated in both directions with signal wires to provide small current return loops
and low inductance. The supply wires must also have enough cross-sectional area to avoid
electromigration problems. These requirements imply large amounts of metal and bypass
capacitance, yet cost constraints dictate no more chip area than necessary.

A clocking subsystem includes clock generation, distribution, and gater elements.
The clock generator can use a PLL to align the on-chip clock to an external reference for
synchronous communication and to perform frequency multiplication. The clock distribu-
tion network should send the global clock to all clocked elements with low skew, yet not

Chapter 13 Special-Purpose Subsystems614

consume excessive power or area. The gaters perform local clock stopping or can produce
multiple phases from the single global clock.

I/O signals include inputs, outputs, bidirectional signals, and analog signals. The I/O
pads must deliver adequate bandwidth to large off-chip capacitances at voltage levels com-
patible with other chips. They must also protect the core circuitry against overvoltage and
electrostatic discharge. High-speed parallel and serial links must account for the transmis-
sion line characteristics of the wires between chips. Their ultimate performance is limited
by the ability to sample the received data at precisely the right time.

Chips are increasingly exploiting randomness for security applications. True random
number generators can produce unguessable encryption keys. Random variations can also
be used to uniquely identify an individual integrated circuit to serve as a serial number or
to combat counterfeiting.

Exercises
 13.1 A ceramic PGA package with a good heat sink and fan has a thermal resistance to

the ambient of 10 °C/W. The thermal resistance from the die to the package is
2 °C/W. If the package is in a chassis that will never exceed 50 °C and the maxi-
mum acceptable die temperature is 110 °C, how much power can the chip dissi-
pate?

 13.2 Explain how an electrostatic discharge event could cause latchup on a CMOS chip.

 13.3 Comment on the advantages and disadvantages of H-trees and clock grids. How
does the hybrid tree/grid improve on a standard grid?

14

615

Design Methodology
and Tools

14.1 Introduction
The manner in which you go about designing a particular system, chip, or circuit can have
a profound impact on both the effort expended and the outcome of the design. IC design-
ers have developed and adapted strategies from allied disciplines such as software engi-
neering to form a cohesive set of principles to increase the likelihood of timely, successful
designs. We will explore these principles in this chapter. While the broad principles of
design have not changed in decades, the details of design styles and tools have evolved
along with advances in technology and increasing levels of productivity. This chapter rep-
resents current CMOS design methods and provides an overview of a complex subject
that could fill many books on its own. We encourage you to actively monitor the compa-
nies discussed and literature cited in the chapter to track the latest developments in this
rapidly changing field.

As introduced in Section 1.6, an integrated circuit can be described in terms of three
domains: (1) the behavioral domain, (2) the structural domain, and (3) the physical domain.
The behavioral domain specifies what we wish to accomplish with a system. For instance,
at the highest level, we might want to build an ultra-low-power radio for a distributed
sensor network. The structural domain specifies the interconnection of components
required to achieve the behavior we desire. Again, by way of example, our sensor radio
might require a sensor, a radio transceiver, a processor and memory (with software), and a
power source connected in a particular manner. Finally, the physical domain specifies how
to arrange the components in order to connect them, which in turn allows the required
behavior. Our example might start with the specification for an enclosure to hold the
device, followed by a succession of physical drawings or specifications that may culminate
in descriptions of geometry to be used to define a chip. Design flows from behavior to
structure and ultimately to a physical implementation via a set of manual or automated
transformations. At each transformation, the correctness of the transformation is tested by
comparing the pre- and post-transformation design. For instance, if a power level is speci-
fied in the original behavioral description of the sensor radio, a test is run on the design in
the structural domain with feedback from the physical domain to ensure this design goal is
met.

In each of these domains there are a number of design options that can be selected to
solve a particular problem. For instance, at the behavioral level, we can choose the wireless
standard and the format in which data is transmitted by the sensor radio. In the structural
domain, we can select which particular circuit style, logic family, or clocking strategy to
use. At the physical level, we have many options about how the circuit is implemented in

Chapter 14 Design Methodology and Tools616

terms of chips, boards, and enclosures. These domains can further be hierarchically
divided into different levels of design abstraction. Classically, these have included the fol-
lowing for digital chips:

� Architectural or functional level

� Logic or Register Transfer Level (RTL)

� Circuit level

For analog and RF circuits, the block diagram level replaces the logic level.
The relationship between description domains and levels of abstraction is elegantly

shown by the Gajski-Kuhn Y chart in Figure 14.1 that was first introduced in Section 1.6.3.
In this diagram, the three radial lines represent the behavioral, structural, and physical
domains. Along each line are enumerated types of objects in that domain. In the behav-
ioral domain, we have represented conventional software and hardware description lan-
guage categories. As we move out along any of the radial axes, the increasing level of
design abstraction is able to represent greater complexity. Thus, in the behavioral domain,
the lowest level of abstraction is an instruction or a statement in software or HDL descrip-
tions, respectively. Circles represent levels of similar design abstraction: the architectural,
RTL, logic, and circuit levels. The particular abstraction levels and design objects may dif-
fer slightly depending on the design method.

Structural DomainBehavioral Domain

Physical Domain

Instructions

Subroutines

Programs

Cells

Modules

Chips

Systems

Applications

Boards, Systems

Rectangles

Transistors

Gates, Flip-Flops

ALUs, Registers

Hardware Modules

Processor, SOC

Statements

Logic

Register Transfer

Algorithms

Operating Systems

Architectural Abstraction

RTL Abstraction

Logic Abstraction

Circuit Abstraction

FIGURE 14.1 Gajski-Kuhn Y chart

14.2 Structured Design Strategies 617

In this chapter, we will examine how to transform a description from one domain into
another while maintaining the integrity of the design. It is only in this way that we can
start with a behavior and successfully build a product.

We begin by discussing some of the guiding principles that apply to most engineering
projects. Then we survey the various design strategies available to the CMOS IC designer;
these range from rapid prototyping or small-volume approaches to those suitable for high-
volume digital, analog, or RF design. We then examine the economics of design, which
can guide us to the right selection of an implementation strategy, and review documenta-
tion requirements.

14.2 Structured Design Strategies
The viability of an IC is in large part affected by the productivity that can be brought to
bear on the design. This in turn depends on the efficiency with which the design can be
converted from concept to architecture, to logic and memory, to circuit, and ultimately to
physical layout. A good VLSI design system should provide for consistent descriptions in
all three description domains (behavioral, structural, and physical) and at all relevant levels
of abstraction (e.g., architecture, RTL/block, logic, and circuit). The means by which this
is accomplished can be measured in various terms that differ in importance based on the
application. These parameters can be summarized in terms of the following:

� Performance––speed, power, function, flexibility

� Size of die (hence, cost of die)

� Time to design (hence, cost of engineering and schedule)

� Ease of verification, test generation, and testability (hence, cost of engineering and
schedule)

Design is a continuous trade-off to achieve adequate results for all of the above
parameters. As such, the tools and methodologies used for a particular chip will be a func-
tion of these parameters. Certain end results have to be met (i.e., the chip must conform to
certain performance specifications), but other constraints may depend on economics (i.e.,
size of die affecting yield) or even subjectivity (i.e., what one designer finds easy, another
might find incomprehensible).

Given that the process of designing a system on silicon is complicated, the role of
good VLSI-design aids is to reduce this complexity, increase productivity, and assure the
designer of a working product. A good method of simplifying the approach to a design is
by the use of constraints and abstractions. By using constraints, the tool designer has some
hope of automating procedures and taking a lot of the “legwork” (effort) out of a design.
By using abstractions, the designer can collapse details and arrive at a simpler object to
handle.

In this chapter, we will examine design methodologies that allow a variation in the
freedom available in the design strategy. The choice, assuming all styles are equally avail-
able, should be entirely economic. According to function, suitable design methods are
selected. Following these steps, the required chip cost is estimated and the quickest means
of achieving that chip should be chosen. We will focus on structured approaches to design
since they offer the most appropriate method of dealing with design complexity.

The successful implementation of almost any integrated circuit requires attention to
the details of the engineering design process. Over the years, a number of structured

Chapter 14 Design Methodology and Tools618

design techniques have been developed to deal with complex hardware and software projects.
Not surprisingly, the techniques have a great deal of commonality. Rigorous application of
these techniques can drastically alter the amount of effort that has to be expended on a given
project and also, in all likelihood, the chances of successful conclusion.

14.2.1 A Software Radio––A System Example
To guide you through the process of structured design, we will use as an example a hypo-
thetical “software radio,” as illustrated in Figure 14.2. This device is used to transmit and
receive radio frequency (RF) signals. Information is modulated onto an RF carrier to
transmit data, voice, or video. The RF carrier is demodulated to receive information. An
ideal software radio could receive any frequency and decode or encode any type of infor-
mation at any data rate. Some day, this might be possible, but given the limitations of cur-
rent processes, there are some bounds. To understand the impact of design methods on
system solutions, we will examine the software radio in more detail. This system will then
form the basis for discussion about structured approaches to design.

Figure 14.3 illustrates a typical transmit path for a generic radio transmitter, which is
called an IQ modulator. An input data stream is encoded into inphase (I) and quadrature (Q)

Software Defined
Modulation/Demodulation Data IORF

Analog DigitalADC
or

DAC

FIGURE 14.2 Software radio block diagram

Q

I

90º

Modulator

I(t)

Q(t)

Data In DAC
LPF

Analog Outputω = 2πFosc

I(t) � sin(ωt)

Q(t) � cos(ωt)

I(t) � sin(ωT) +
Q(t) � cos(ωT)

Oscillator IF

LO

LO + IF

LO − IF

RF

AnalogDigital

Digital to
Analog

Conversion

FIGURE 14.3 Software radio transmit path

14.2 Structured Design Strategies 619

signals. The I and Q represent signal amplitudes of a (voltage) vector that vary instanta-
neously in time as shown in the bottom of Figure 14.3. For appropriate I and Q values, any
form of modulated carrier can be synthesized. I is multiplied by an oscillator (sine) operating
at a frequency of Fosc. The quadrature (Q) signal is multiplied by the cosine of this frequency.
The resultant signals are summed and passed to a digital-to-analog converter (DAC). In the
design shown, this generates what we term an Intermediate Frequency or IF.

Typical IQ constellations are shown in Figure 14.4. Amplitude Modulation (AM),
depicted in Figure 14.4(a), varies only in the magnitude of the carrier that varies in accor-
dance with the amplitude of the modulation waveform. This is shown as a signal with an
arbitrary phase angle (which we don’t care about) and a vector that travels from the origin
to a point on a circle that represents the maximum value of the carrier. In the case of an
AM radio, the carrier frequency might be 800 KHz (in the AM band) and the modulation
frequencies range from roughly 300 Hz to 6 KHz (voice and music frequencies). Phase
Modulation is shown in Figure 14.4(b). Here, the vector travels around the maximum car-
rier amplitude circle varying the phase angle () as the modulation changes. This is a con-
stant amplitude modulation, which might be used with a carrier frequency of 100 MHz
(in the FM broadcast band––we are loosely associating phase modulation with frequency
modulation (FM) as they are closely related) and could have modulation frequencies of 200
Hz to 20 KHz (hi-fi audio). Finally, Figure 14.4(c) shows Quadrature Phase Shift Keying
(QPSK) modulation, which is typical of data transmission systems. Two bits of data are
encoded onto four phase points, as shown in the diagram. A typical carrier frequency
might be 2.4 GHz in the Industrial Scientific and Medical (ISM) band and the modula-
tion data rate might be 10 Mb/s.

Clearly, the ranges of carrier and modulation frequencies vary considerably. Generally,
for high carrier frequencies, the modulation can be performed at a moderate frequency
and then “mixed” up to a higher frequency by analog multiplication. This is completed in
the analog domain and is illustrated by the blue components on the right side of Figure
14.3. An analog multiplier (called a mixer in RF terminology) takes an analog Local
Oscillator (LO) and the Intermediate Frequency (IF) signal that we have generated and
produces sum and difference frequencies. (It is also possible to generate the desired RF
frequency directly, but in this design we will use an intermediate frequency approach.)

Q

I

Amplitude Modulation Phase Modulation Quadrature Phase Shift Keying (QPSK)

(a) (b) (c)

Q Q

I I

FIGURE 14.4 Examples of IQ modulation

Chapter 14 Design Methodology and Tools620

Analog bandpass filtering or a slightly more sophisticated mixer can be used to select the
mixing component (LO + IF or LO IF) that we desire. For instance, if we generate a
data signal on a 20 MHz IF and mix it with a 2.4 GHz LO, we can generate a 2.42 or 2.38
GHz data signal. This is called upconversion.

To complete the software radio, the receive path is shown in Figure 14.5. It is roughly
the reverse of the transmit path. As in the transmit case, higher frequencies can be down-
converted to lower IF frequencies that are suitable for processing by practical ADCs. The
RF signal is mixed with the LO and low pass filtered to produce the difference frequency.
For example, if a 2.4 GHz LO is mixed with the 2.42 GHz RF signal, the 20 MHz IF
signal is restored. An analog-to-digital converter (ADC) converts the modulated IF car-
rier into a digital stream of data. This data is mixed (multiplied) in the digital domain by
an oscillator operating at the IF frequency. After digital low pass filtering (LPF), the orig-
inal I and Q signals can be reconstructed and passed to a demodulator. For further details
on digital radio, consult a communications theory text such as [Haykin00].

In summary, we see that multiplication, sine wave generation, and filtering are impor-
tant for a software radio. While the modulation and demodulation have not been
described in detail, operations can include equalization (multiplication), time to frequency
conversion (fast Fourier transform), correlation, and other specialized coding operations.
In the subsequent sections we will explore the design principles of hierarchy, regularity,
modularity, and locality with concrete examples applied to the software radio.

14.2.2 Hierarchy
The use of hierarchy, or “divide and conquer,” involves dividing a system into modules,
then repeating this process on each module until the complexity of the submodules is at an
appropriately comprehensible level of detail. This may entail stopping at a level where a
prebuilt component is available for the particular function. The process parallels the soft-
ware strategy in which large programs are split into smaller and smaller sections until sim-
ple subroutines with well-defined behavior and interfaces can be written. In the case of
predefined modules, the design task involves using library code intended for the required
function. The notion of “parallel hierarchy” can be used to aggregate descriptions in each
of the behavioral, structural, and physical domains that represent a design (parallel hierar-
chy means a hierarchy––not necessarily identical––is used in each domain). Furthermore,
equivalency tools can ensure the consistency of each domain. Because these tools can be

LPF

90°

LPF

Demodulator

I(t)

Q(t)

Data OutADC
Analog Input

RF

LO

RF-LO

LPF

Analog to
Digital

Conversion

FIGURE 14.5 Software radio receive path

14.2 Structured Design Strategies 621

applied hierarchically, you can progress in verification from the bottom to the top of a
design, checking each level of hierarchy where domains are intended to correspond. For
instance, a RISC processor core can have an HDL model that describes the behavior of
the processor; a gate netlist that describes the type and interconnection of gates required to
produce the processor; and a placement and routing description that describes how to
physically build the processor in a given process. Later in the chapter, we will see how
domain-to-domain comparisons are used to ensure consistency between domains.

Hierarchy allows the use of virtual components, soft versions of the more conventional
packaged IC. Virtual components are placed into a chip design as pieces of code and come
with support documentation such as verification scripts. They can be supplied by an inde-
pendent intellectual property (IP) provider or can be reused from a previous product devel-
oped in your organization. Virtual components are discussed further in Section 14.5.7.

Example 14.1

The digital operations in the transmit path of the software radio (Figure 14.3) can be
performed in software. Hence, a microprocessor can form the basis for the design. In
this case, the design might have the hierarchy of a typical microprocessor, as shown in
Figure 14.6. At the top level, the microprocessor contains an arithmetic logic unit
(ALU), program counter (PC), register file, instruction decoder, and memory. The
ALU can be further decomposed into an adder, a Boolean logic unit, and a shifter. The
shifter and adder can together perform multiplication. The diagram illustrates how a
relatively complex component can be rapidly decomposed into simple components
within a few levels of hierarchy. Each level only has a few modules, which aids in the
understanding of that level of the hierarchy.

Software Radio
= Microprocessor

Instruction
Decode PC ALU

Register
File Memory

Adder
Boolean

Unit Shifter

Mux Xor Inverter

FIGURE 14.6 Possible hierarchy of software radio using a single microprocessor

Chapter 14 Design Methodology and Tools622

Example 14.2

We can roughly estimate the performance required in the transmit path by noting that
we require at least two multiplications, one addition, and two table lookups (sine and
cosine). Another addition would be required to maintain a loop counter. An iterative
multiply takes N cycles for an N-bit word, so for a 16-bit word width, the total number
of cycles for the steps described would be approximately 16 + 16 + 1 + 2 + 2 + 1 (if table
lookups take two clock cycles). This yields a total of roughly 40 clock cycles. For a 1
GHz processor, the fastest we could perform the IQ conversion would be approxi-
mately 40 ns, which, according to Nyquist’s criteria (Fanalog_max = Fsample/2), would be
capable of generating a 12.5 MHz IF signal. This is, of course, without any extra pro-
cessing for modulating the carrier. While we could add another processor, this may be
wasteful of area and power, given the operation that has to be performed.

A more power-efficient approach is to use dedicated hardware for the computation-
ally intensive fixed-function blocks. The trick is to notice that the IQ modulator por-
tion of the software radio transmit and receive path for a given DAC and ADC
resolution has a relatively fixed architecture. For the transmit path, the hierarchy shown
in Figure 14.7 can be used where the blue sections have been converted to fixed func-
tion blocks. This is a relatively safe bet because the IQ upconversion is a generic com-
munications building block. In addition to the multipliers, a device called a Numerically
Controlled Oscillator (NCO) has been introduced [Lu93, Lu93b, Hwang02]. The
NCO, described in detail in the next section, generates sine or cosine waveforms at a
speed determined by the delay through an N-bit adder where N is in the range of 16 to
32 for typical NCOs. The move to dedicated hardware for the IQ upconversion allows
the circuit to produce a new value once every clock cycle. If we conservatively say that
the arithmetic blocks operate at the same speed that the microprocessor ALU does,
then the circuit will now operate at 1 GHz. Taking into account sampling theory, this
means that we can generate analog frequencies up to almost 500 MHz with a suitable
DAC. The microprocessor now only has to respond at the modulation data rate, pro-
viding IQ values to the IQ upconverter.

Microprocessor
Low Pass

Filter

Sine
TableALU Multiplier

Adder

Adder

Software Radio
 Microprocessor

+ Special Hardware

Numerically
Controlled
Oscillator

FIGURE 14.7 Transmit chain with dedicated IQ upconverter

14.2 Structured Design Strategies 623

14.2.3 Regularity
Hierarchy involves dividing a system into a set of submodules. However, hierarchy alone
does not solve the complexity problem. For instance, we could repeatedly divide the hier-
archy of a design into different submodules but still end up with a large number of differ-
ent submodules. With regularity as a guide, the designer attempts to divide the hierarchy
into a set of similar building blocks. Regularity can exist at all levels of the design hierar-
chy. At the circuit level, uniformly sized transistors can be used, while at the gate level, a
finite library of fixed-height, variable-length logic gates can be used. At the logic level,
parameterized RAMs and ROMs could be used in multiple places. At the architectural
level, multiple identical processors can be used to boost performance.

Regularity aids in verification efforts by reducing the number of subcomponents to
validate and by allowing formal verification programs (see Section 14.4.1.3) to operate
more efficiently. Design reuse depends on the principle of regularity to use the same vir-
tual component in multiple places or products.

Example 14.3

In an example of regularity applied to the software radio, we first look inside two of the
blocks used in the designs shown in Figures 14.3 and 14.5 to assess what kinds of func-
tions are required.

The NCO is shown in Figure 14.8(a). It is composed of a registered adder that is
incremented every clock cycle by a phase increment register. This implements a phase
counter, which is used to step through a ROM lookup table that provides phase-to-
amplitude conversion. A phase offset can be added to the phase incrementer to perform
phase modulation. With this structure, we are able to generate a digital sine wave.

(a) Numerically Controlled Oscillator (NCO) Structure

h1 h2 h3 h4 h5

Output

(b) Finite Impulse Response (FIR) Filter Structure

clk

Fclk

Phase
Increment

Sine
ROM

Phase
Offset

Sine Output

Y

Fclk
Fclk

lda
ldc

X
Input

FIGURE 14.8 Structure of numerically controlled oscillator and low-pass filter
(implemented as a finite impulse response (FIR) filter)

Chapter 14 Design Methodology and Tools624

Turning to the low-pass filter shown in Figure 14.5, Figure 14.8(b) shows the struc-
ture for a commonly used low-pass filter implementation that is called a Finite Impulse
Response (FIR) filter [Edwards93, Choi97]. The structure computes the function

 (14.1)

where X [n] is the sampled input, h[k] are the filter coefficients that characterize the
particular filter, and Y [n] is the output. As the structure indicates, the filter is com-
posed of registers, multipliers, and an adder. Filters are characterized by the number of
taps (coefficients). More taps yield better filters approaching an ideal “brick wall” filter
with steeper cutoff and low ripple. This, in turn, requires more registers and more mul-
tipliers.

Having examined the detail of these blocks, we notice that the common functions
are registers, adders, and multipliers with precisions as yet undefined. Parallel N-bit
adders can be composed of N single-bit full adders. Multipliers are also built from full
adders. N-bit registers are built from 1-bit flip-flops. Thus, one form of regularity
might be to use the same full adder for all parallel adders and multipliers. Similarly, the
same flip-flop would be used in all locations.

Typically, the phase counter adder in the NCO would be of the order of 16–32 bits
wide. The phase increment adder might be 8–16 bits wide. The sizes of the multipliers
and adders in the FIR filter vary widely, but depend on the input data width. This typ-
ically varies from 1–12 bits.

Example 14.4

As illustrated in the previous section, IQ upconversion and downconversion can be
converted to fixed hardware, as highlighted in blue in Figure 14.9. Whether the hard-
ware is shared (i.e., the NCO and the multipliers) is a determination that can be made
at the time of design. Once this is decided, the IQ modulation and demodulation is still
undefined. These blocks tend to be highly variable depending on the particular system.
Software radios have been proposed in areas where the standards are likely to evolve as
time progresses. Rather than have any product fixed to an old standard, a software radio
allows the product to be updated in the field via a firmware update. Thus, in our quest
for a software radio architecture, we still want programmability.

A solution to maintaining programmability while increasing processing power
might be to use a multiprocessor, as shown in Figure 14.10. Here, the hardware IQ
up-and-down conversion has been retained and the IQ modulation/demodulation is
performed by the four processors. The number of processors is arbitrary and would be
ascertained by a detailed analysis of the required computational power.

Y n X n k h k[] [] []=

FIGURE 14.9 Common IQ blocks

14.2 Structured Design Strategies 625

Imagine that the computational power required slightly exceeds that provided by the
four processors shown in Figure 14.10. Because multiplication is a frequently required
operation in signal processing operations, it makes sense to build a multiplier into each
microprocessor, as shown in Figure 14.11. Hence, we maintain regularity and improve
processing power.

If the multiplication is a one-cycle operation, the throughput for multiplication-
intensive operations can improve by a factor of up to M as compared to an M-bit pro-
cessor with an iterative multiplication operation. This style of acceleration can be
repeated for any operation that is computationally intensive. The application code is
profiled, timing bottlenecks are identified, and custom hardware is added with appro-
priate instructions to access the hardware. In this manner, the overall solution remains
programmable while the speed of processing increases markedly. Tensilica sells extensi-
ble processors using such an approach. However, adding functional units increases die
size and power dissipation, so trade-offs are necessary.

14.2.4 Modularity
The tenet of modularity states that modules have well-defined functions and interfaces. If
modules are “well-formed,” the interaction with other modules can be well characterized.
The notion of “well-formed” may differ from situation to situation, but a good starting

Microprocessor

Memory

Microprocessor

Memory

Microprocessor

Memory

Bus

IQ Conversion Microprocessor

Memory

Software Radio
 Multiprocessor
+ IQ Conversion

FIGURE 14.10 Software radio as a multiprocessor

Microprocessor

Memory Memory Memory Memory

Bus

IQ Conversion

mult

Microprocessor
mult

Microprocessor
mult

Microprocessor
mult

FIGURE 14.11 Enhanced multiprocessor for software radio

Chapter 14 Design Methodology and Tools626

point is the criteria placed on a “well-formed” software subroutine. First of all, a clearly
defined interface is required. In the case of software, this is an argument list with typed
variables. In the IC case, this corresponds to a clearly defined behavioral, structural, and
physical interface that indicates the function as well as the name, signal type, and electrical
and timing constraints of the ports on the design. Reasonable load capacitance and drive
capability should be required for I/O ports. Too large a fanin or too small a drive capability
can lead to unexpected timing problems that take effort to solve, where we are trying to
minimize effort. For noise immunity and predictable timing, inputs should only drive
transistor gates, not diffusion terminals. The physical interface specification includes such
attributes as position, connection layer, and wire width. In common with HDL descrip-
tions, we usually classify ports as inputs, outputs, bidirectional, power, or ground. In addi-
tion, we would note whether a port is analog or digital. Modularity helps the designer
clarify and document an approach to a problem, and also allows a design system to more
easily check the attributes of a module as it is constructed (i.e., that outputs are not
shorted to each other). The ability to divide the task into a set of well-defined modules
also aids in System-On-Chip (SOC) designs where a number of IP sources have to be
interfaced to complete a design.

14.2.5 Locality
By defining well-characterized interfaces for a module, we are effectively stating that other
than the specified external interfaces, the internals of the module are unimportant to other
modules. In this way we are performing a form of “information hiding” that reduces the
apparent complexity of the module. In the software and HDL world, this is paralleled by a
reduction of global variables to a minimum (hopefully to zero). Increasingly, locality often
means temporal locality or adherence to a clock or timing protocol. This is addressed in
Chapter 10, where different clocking strategies are examined. One of the central themes
of temporal locality is to reference all signals to a clock. Thus, input signals are specified
with required setup and hold times relative to the clock, and outputs have delays related to
the edges of the clock.

Example 14.5

In the example of the software radio, locality would probably be most evident in the
floorplan of the chip. One example floorplan is shown in Figure 14.12. The analog
blocks (ADC and DAC) are placed adjacent to the I/O pads. This is an example of
physical locality because the analog blocks draw significant DC current and therefore
the power busses have to be short and exhibit low resistance. Furthermore, the analog
input and analog output signals can be routed to the pads without interference from
digital signals. If necessary, the left edge of the chip can be guard-ringed and placed in
a deep n-well if this process option is available. The digital IQ upconversion module is
placed near the DAC and ADC, and the four programmable processor/memory com-
posites are arrayed across the chip.

An alternative floorplan is shown in Figure 14.13. Here, the analog blocks and IQ
conversion module are placed at the top of the chip. The four processor/memory blocks
are then arrayed around a centrally located bus. The area for both array possibilities is
roughly the same, but the second floorplan is better because the bus connecting the
processors is shorter and hence faster and potentially dissipates less power. This is an
example of physical locality used to obtain good temporal performance.

14.3 Design Methods 627

μProc

Memory

μProc

Memory

μProc

Memory

μProc

Memory

Bus

IO IO

IO

IO

DAC ADCIQ
Conv.

FIGURE 14.13
Alternate floorplan
for software radio

14.2.6 Summary
There are strong parallels between the methods of design for soft-
ware and hardware systems. Table 14.1 summarizes some of these
parallels for the principles outlined above.

14.3 Design Methods
In this section, we will examine a range of design methods that can be used to implement
a CMOS system. This section will concentrate on the target of the design method, in con-
trast to the design flow used to build a chip. Design flows, which deal with how a design
progresses through a set of tools, will be dealt with in the subsequent section. The base
design methods are arranged roughly in order of “increased investment,” which loosely
relates to the time and cost it takes to design and implement the system. It is important to
understand the costs, capabilities, and limitations of a given implementation technology to
select the right solution. For instance, it is futile to design a custom chip when an off-the-
shelf solution that meets the system criteria is available for the same or lower cost.

14.3.1 Microprocessor/DSP
Many times, the most practical method to solve a system design problem is to use a standard
microprocessor or digital signal processor (DSP). There are many single-chip microproces-
sors with built-in RAM and EEROM/EPROM available in the market. For example, the
PIC family of processors from Microchip offers a wide range of clock speeds, memory sizes,
and analog I/O capability (ADCs) in a small package. For more signal-intensive problems,
classical DSPs from vendors such as Analog Devices and Texas Instruments can be

TABLE 14.1 Structure software and VLSI hardware design

Design Principle Software Hardware

Hierarchy Subroutines, libraries Modules
Regularity Iteration, code sharing, object-oriented

procedures
Datapaths, module reuse, regular arrays, gate arrays, stan-
dard cells

Modularity Well-defined subroutine interfaces Well-defined module interfaces, timing and loading data
for modules, registered inputs and outputs

Locality Local scoping, no global variables Local connections through floorplanning

μProc

Memory

μProc

Memory

μProc

Memory

μProc

Memory

Bus

IO IO

IO

IO

DAC

ADC

IQ
Conv.

FIGURE 14.12 A possible floorplan for software radio

Chapter 14 Design Methodology and Tools628

employed. Microprocessors provide great flexibility because systems can be upgraded in the
field through software patches. Do not underestimate the cost of software development for
microprocessor-based systems.

Even when you decide to build a system with an off-the-shelf microprocessor, you
should consider the possibility of eventual integration. For example, if your product
becomes very successful and you want to reduce costs by integrating it into a single
system-on-chip rather than building it as a board with a microprocessor and various sup-
port chips, you will need a microprocessor that is available in embedded form so that you
can keep your software. Examples of embedded commercial processor cores include
ARM, MIPS, and IBM’s PowerPC.

14.3.2 Programmable Logic
Often, the cost, speed, or power dissipation of a microprocessor may not meet system
goals and an alternative solution is required. A variety of programmable chips are available
that can be more efficient than general purpose microprocessors yet faster to develop than
dedicated chips:

� Chips with programmable logic arrays
� Chips with programmable interconnect
� Chips with reprogrammable logic and interconnect

The system designer should be familiar with these options for two reasons:

1. It allows the designer to competently assess a particular system requirement for an
IC and recommend a solution, given the system complexity, the speed of opera-
tion, cost goals, time-to-market goals, and any other top-level concerns.

2. It familiarizes the IC designer with methods of making any chip reprogrammable
at the hardware level and hence both more useful and more widely applicable.

14.3.2.1 Programmable Logic Devices The devices covered in this section are descended
from chips that implement two-level sum-of-product programmable logic arrays (PLAs)
discussed in Section 12.7. They differ from the field-programmable gate arrays described
in the next section in that they have limited routing capability. Historically, process densi-
ties did not allow the transistor count and routing resources found in modern field-
programmable gate arrays. Programmable logic devices based on PLAs allowed a useful
product to be fielded and well-established techniques allowed logic optimization to target
PLA structures, so the associated CAD tools were relatively simple. They are still occa-
sionally used because the regular array and interconnect make timing very predictable.

A PLA consists of an AND plane and an OR plane to compute any function
expressed as a sum of products. Each transistor in the AND and OR plane must be capa-
ble of being programmed to be present or not. This can be achieved by fully populating
the AND and OR plane with a NOR structure at each PLA location. Each node is pro-
grammed with a floating-gate transistor, a fusible link, or a RAM-controlled transistor, as
illustrated in Figure 14.14. The first two versions were the way these types of devices were
programmed when device densities were low. These devices, such as the Texas Instruments
PAL16 family, are generally used for legacy applications.

14.3.2.2 Field-Programmable Gate Arrays (FPGAs) Field-Programmable Gate Arrays
(FPGAs) use the high circuit densities in modern processes to construct ICs that, as their

14.3 Design Methods 629

name suggests, are completely programmable even after a product is shipped or “in the
field.” Two basic versions exist. The first uses a special process option such as a fuse or
antifuse to permanently program interconnect and personalize logic. These are one-time
programmable. The second type uses static RAM or flash memory to configure routing
and logic functions. In general, an FPGA chip consists of an array of logic cells sur-
rounded by programmable routing resources.

As an example of the first type of FPGA, devices manufactured by Actel embed an
array of logic modules within an interconnect matrix that is formed on the top metal lay-
ers. Successive routing channels run vertically or horizontally. A special one-time pro-
grammable contact, called an antifuse, is placed at the intersection of routing traces. These
normally have high resistance (effectively an open circuit). Upon application of a special
programming voltage across the contact, the resistance permanently drops to a few ohms.
CMOS switches allow the programming voltage to be directed to any antifuse in the chip.
The advantage of this type of routing is that the size of the programmable interconnect is
tiny––the intersection area of two metal traces. Moreover, the on-resistance is low com-
pared to a CMOS switch, so the circuit speed is not compromised. The disadvantage is
that the interconnect is not reprogrammable, so once a chip is programmed, its function is
fixed to the extent that the interconnect has been personalized.

Figure 14.15 shows the floorplan of a simplified FPGA. The chip is composed of an
array of configurable logic blocks (CLBs). Metal routing tracks run vertically and horizon-
tally between the array of CLBs. These terminate at the gray blocks, which are routing
switches that can be implemented using antifuses, CMOS transmission gates, or tristate
buffers. The routing resources can also be connected to the inputs and outputs of the adja-
cent CLBs. CLBs use programmable lookup tables to compute any function of several
variables. Configurable I/O cells that can be used as input, output, or bidirectional pads
surround the core array of CLBs.

A simple SRAM-based FPGA logic cell is shown in Figure 14.16. It is composed of a
16 × 1 static RAM as the logic element. This provides for any logic function of four vari-
ables merely by loading the RAM with the appropriate contents. Table 14.2 illustrates
how the table should be loaded to perform various logic functions. A full adder can be
implemented in two CLBs (one for carry and one for sum). The CLB shown also provides
an optional output register. While it may seem inefficient or slow to use a RAM to per-
form logic, specially designed single-data line RAMs are small and fast in current pro-
cesses, and resources such as the routing tend to dominate modern designs from a density
and speed viewpoint.

FPGAs have matured to the stage where they boast millions of logic gate equivalents
supported by megabits of RAM. I/Os can operate in excess of 10 GHz. FPGAs frequently

NOR Output

EEROM Transistor Fuse Ram Cell

FIGURE 14.14 PLA NOR structure (one plane shown)

Chapter 14 Design Methodology and Tools630

have embedded microprocessor cores and DSP accelerator hardware. Their low up-front
cost and ease of correcting design errors makes them the best choice now for many low- to
medium-volume custom logic applications.

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

IO IO IO IO IO IO IO IO IO IO IO IO

IO IO IO IO IO IO IO IO IO IO IO IO

Routing Switch

Routing

Configurable Logic Block
(CLB)

IO
IO

IO
IO

IO
IO

IO
IO

IO
IO

IO
IO

IO
IO

IO
IO

IO
IO

IO
IO

IO
IO

IO
IO

FIGURE14.15 Simplified FPGA floorplan

16 � 1 RAMADDRESS

DIN

DOUT

WE

Global Data Bus

4
CLB Inputs
(A,B,C,D)

0

1

1 � 1RAM

Global Clock

CLB Write Enable

Mux RAM Write Enable

CLB Output (Z)

FIGURE 14.16 Simple FPGA logic cell

14.3 Design Methods 631

Note that (after sorting out the intellectual property rights with the appropriate
patent holders) it is possible to implement FPGA blocks on any CMOS chip to provide
some degree of programmability at the gate level.

14.3.3 Gate Array and Sea of Gates Design
The chips described in the previous section do not require a fabrication run. Designers
typically strive to keep the non-recurring engineering cost (NRE, see Section 14.5.1) as
low as possible. One method of doing this is to construct a common base array of tran-
sistors and personalize the chip by altering the metallization (metal and via masks) that
is placed on top of the transistors. This style of chip is called a Gate Array (GA). A par-
ticular subclass of a gate array is known as a Sea-of-Gates (SOG) chip. Gate arrays used
to be popular methods of designing semicustom ASICs.

It is still worthwhile understanding SOG techniques because they can also be used
on custom chips to provide an area of reprogrammable logic on an otherwise fixed func-
tion chip. The system-on-chip can be comprised of a set of fixed functions (e.g., a pro-
cessor, RAM, and dedicated accelerators), and an SOG area. Rows of nMOS and
pMOS transistors are arrayed in the SOG portion of the chip. Each logic row consists
of an n row and p row. Figure 14.17(a) shows an SOG structure, which features contin-
uous rows of transistors. Grounding the gate of the nMOS transistor or connecting the
gate of the pMOS transistor to the VDD rail provides isolation between gates. Figure
14.17(b) shows a gate array structure that uses groups of three transistor pairs.

Figure 14.17(c) shows a portion of an SOG structure programmed to be a 3-input
NAND gate. Note that the nMOS and pMOS transistors at each end isolate the gate,
as described previously. Personalization of this SOG structure commences at contact
and metal1 masks, and can continue up for all metal layers available in the process.

CAD tools have advanced to the point that reprogramming an SOG is barely easier
than regenerating a cell-based layout. However, a small SOG area remains useful for

TABLE 14.2 RAM CLB functions

Address ABCD A · B · C · D ~A SUM(A,B,C)

0 0000 0 1 0
1 1000 0 0 1
2 0100 0 1 1
3 1100 0 0 0
4 0010 0 1 1
5 1010 0 0 0
6 0110 0 1 0
7 1110 0 0 1
8 0001 0 1 0
9 1001 0 0 1
10 0101 0 1 1
11 1101 0 0 0
12 0011 0 1 1
13 1011 0 0 0
14 0111 0 1 0
15 1111 1 0 1

Chapter 14 Design Methodology and Tools632

correcting simple logic errors with metal-only fixes during debug and even during late
design [Stolt08]. Moreover, process variability is driving designers toward restrictive
design rules with regular structures that begin to resemble SOGs.

14.3.4 Cell-Based Design
Cell-based design uses a standard cell library as the basic building blocks of a chip. The
cells are placed in appropriate positions, then their interconnections are routed. Cell-based
design can deliver smaller, faster, and lower-power chips than FPGAs but has high NRE
costs to produce the custom mask set. Therefore, it is only economical for high volume
parts or when the performance commands a lucrative sales price. As compared to full-
custom design, cell-based design offers much higher productivity because it uses prede-
signed cells with layouts. Foundries and library vendors supply cells with a wide range of
functionality. These include the following:

� Small-scale integration (SSI) logic (NAND, NOR, XOR, AOI, OAI, inverters,
buffers, registers)

� Memories (RAM, ROM, CAM, register files)
� System level modules such as processors, protocol processors, serial interfaces, and

bus interfaces
� Possibility of mixed-signal and RF modules

(a)

A B C Y

(c)

(b)

FIGURE 14.17 SOG cell layouts

14.3 Design Methods 633

Whereas Medium Scale Integration (MSI) functions
such as adders, multipliers, and parity blocks used to be sup-
plied as cells, synthesis engines commonly construct these
from base-level Small Scale Integration (SSI) gates in current
design systems.

A typical standard cell library is shown in Table 14.3. A
1x (normal power) cell commonly is defined to use the widest
transistors that fit within the vertical pitch of the standard
cell. 2x and larger (high power) cells use wider transistors to
deliver more current. They must fold the transistors to fit
within the cell; this comes at the expense of increased cell
width. Gates are often available in low power versions as well.
These cells use minimum-width transistors to reduce capaci-
tance. Low-power cells tend to be slow because of the wire
capacitance they must drive. Although they do not save area,
they do reduce power consumption on noncritical paths.

Sophisticated libraries also generate memories of assorted
sizes from a graphical user interface. The generators yield not
only the physical layout but also a complete data sheet indicat-
ing access times, cycle times, and power dissipation.

In the event that a standard cell library may not be avail-
able for a process, it is worthwhile to review some of the
approaches to standard cell design. Usually, standard cells are
a fixed height with power and ground routed respectively at
the top and bottom of the cells, as shown on the inside front
cover. This allows the cells to be abutted end to end and to
have the supply rails connect. A single row of nMOS transis-
tors adjacent to GND (ground) and a single row of pMOS
transistors adjacent to VDD (power) are normally used. The
polysilicon gate is connected from nMOS transistor to pMOS
transistor and, in the case of multiplexers and registers, the

TABLE 14.3 Typical standard cell library

Gate Type Variations Options

Inverter/Buffer/
Tristate Buffers

Wide range of power options, 1x, 2x, 4x, 8x,
16x, 32x, 64x minimum size inverter

NAND/AND 2–8 inputs High, normal, low power
NOR/OR 2–8 inputs High, normal, low power
XOR/XNOR High, normal, low power
AOI/OAI 21, 22 High, normal, low power
Multiplexers Inverting/noninverting High, normal, low power
Adder/Half Adder High, normal, low power
Latches High, normal, low power
Flip-Flops D, with and without synch/asynch set and

reset, scan
High, normal, low power

I/O Pads Input, output, tristate, bidirectional, bound-
ary scan, slew rate limited, crystal oscillator

Various drive levels (1–16 mA) and logic levels

VDD Bus Width

Metal to Metal Spacing

P Transistor Width

N to P diffusion spacing
or enough space for poly
contact and metal routing
for most complex cell
(usually a flip flop)

N Transistor Width

Metal to Metal Spacing

GND Bus Width

Contact to
Gate Spacing

Contacted
metal2
Pitch A Y

FIGURE 14.18 Typical standard cell layout with some of the
constraints

Chapter 14 Design Methodology and Tools634

polysilicon connection has to be crossed between vertically coincident nMOS and pMOS
transistors. Decisions about the sizes of transistors have to be made. Following this deci-
sion, the cells are almost completely defined by the process design rules. Figure 14.18
illustrates this point. The height of the cell is defined by the sum of the nMOS and
pMOS transistor widths, the separation on n and p regions, the spacing to VDD and GND
busses, and the width of these busses. The horizontal pitch is defined by the poly-to-
metal2 contacted pitch, as shown in the figure. It is relatively easy to construct a software
program to automatically generate cells like the one shown in Figure 14.18. Cell delay is
characterized through simulation to good agreement with silicon. Fabrication of such
cells to prove performance is rarely required. Options to standard cells include routing the
clock with the power and ground busses and routing multiple supply voltages to each cell.
The latter technique is sometimes used to reduce power by connecting gates that are not in
the critical path to a lower than normal supply voltage. Recall that the power drops with
the square of the supply voltage.

14.3.5 Full Custom Design
A number of techniques can be used to design standard cells or larger circuit blocks at the
mask level. The oldest and most traditional technique is termed custom mask layout, in
which a designer sits in front of a graphics display running an interactive editor and pieces
designs together at the geometry level one rectangle at a time. This work is sometimes
called polygon pushing. A variation of custom mask design is called symbolic layout. Rather
than dealing with rectangles and polygons on various mask levels, the primitives are tran-
sistors, contacts, wires, and ports (points of connection). These primitives can also be
manipulated by a graphics editor. Some systems allow for a “design rule free” placement of
symbolic entities. The actual placement occurs after a spacing process that compacts each
primitive as close to its neighbor as possible according to the design rules of the process in
use. By using a symbolic layout system, layout topologies can be transported from process
to process without a huge amount of effort.

In these times of cell-based design, digital CMOS ICs use custom mask design only
for the highest of volume parts such as microprocessor datapaths. However, analog and
RF designs, cell libraries, memories, and I/O cells still frequently use custom design.
There are a variety of custom MOS layout hints in Section 14.7. Custom design is also
worthwhile pedagogically because it completes the link from transistors to systems.

From time to time, we have mentioned software generators as a method of generating
physical layout. This kind of idea has been around for a long time and was often referred
to as silicon compilation. Complete microprocessors were typical of layouts that were gener-
ated. A “correct by construction” method was used to build the layouts hierarchically. In
other words, only the mask description was generated, with perhaps a high-level instruc-
tion level simulator being the behavioral model. Generators are the most common method
used today for library generation.

With modern design flows, many different “views” of a design are required to inte-
grate with the regular path through the design system. For instance, in addition to the
behavioral model, a timing view would be needed for timing verification, a logic view
might be required for simulation, and a circuit view for layout versus schematic or netlist
comparisons would be needed. Software generators can be used to provide all of these
views automatically.

Modern versions of the venerable “silicon compiler” can be built in a structured hier-
archical manner to generate memories, register files, and other special-purpose structures
that can benefit from a customized layout. One of the most straightforward approaches is

14.3 Design Methods 635

to write custom placement routines that in essence “hand place” certain standard cells
within the row structure of a standard cell design. For instance, you may prefer a certain
adder design and have a datapath layout for the adder. An algorithm can be written to
place the cells on the standard cell grid. In addition, a linked algorithm can be written to
generate a gate netlist in an HDL. In this way, both the physical and structural design are
captured. The behavior can be represented by an HDL function or module call. Such cus-
tom placement can shorten wire lengths and thus improve speed and power.

Custom-designed microprocessors routinely exceed 2 GHz in nanometer processes,
while synthesized ASICs typically operate closer to 200–350 MHz. [Chinnery02] made a
fascinating study of the differences between design methods that account for this gap. He
identified microarchitecture, sequencing overhead, circuit families, logic design, cell
design, layout, and design margining as the major differences. Since that study, CAD tools
have improved, especially in the integration of synthesis and placement. Custom designs
have become more conservative and now use static CMOS circuits and cell libraries simi-
lar to their ASIC cousins. Nevertheless, a wide gap still exists.

In a followup study, [Chinnery07] examines the gap between ASIC and custom design
for power dissipation. Major factors for ASICs consuming more power than custom designs
include microarchitecture, clock gating, logic style, logic design, technology mapping, cell
and wire sizing, voltage scaling, floorplanning, process technology, and process variation.
The study concludes that synthesizable designs typically consume 3–7× more power than
custom designs but that better tools and cell libraries can close this gap to 2.6×.

14.3.6 Platform-Based Design––System on a Chip
As systems have become more complex, the use of predefined intellectual property (IP)
blocks has become commonplace. Designs frequently use a number of common blocks
such as RISC processors, memory, and I/O functions attached to common busses. A plat-
form can be used to implement a design by using common structures such as busses and
common high-level languages (such as C) to program the processors. To a large extent, the
RISC processor and memories can be interchanged and the number and type of peripher-
als can be changed while maintaining good design and verification times because the mod-
ules have been predesigned and the test and verification scripts come with the IP blocks.
The design task is to put the blocks together, design any application-specific blocks, and
place and route a correctly operational chip. Note that the last step, while automated, still
takes considerable engineering effort.

As many current chips feature one or more embedded microprocessors, the task of
writing software is added to the task of designing logic. Moreover, platform-based design
poses the problem of partitioning the complete solution between hardware (HDL, gates)
and software (programmed on the processor/s). This tends to remain a somewhat manual
task, but is increasingly automated by CAD tools.

Platform-based systems typically consist of a basic RISC processor, which can be
extended with multipliers, floating point units, or specialized DSP units. In addition (e.g.,
in Tensilica’s Xtensa system), by profiling the executable code, special hardware can be
added that corresponds to hardware-assisted instructions, which are introduced into the
instruction set. In theory, additional hardware or extra processors can deal with a wide
range of computational loads.

Manual techniques for hardware-software codesign mirror this approach. That is, the
design begins with a software simulation (ideally on the embedded processor). Timing
estimates are gathered, and manual decisions about what to commit to hardware are made.
Special simulators to deal with embedded processors and logic have been developed.

Chapter 14 Design Methodology and Tools636

With platform-based design, we have in essence come full circle from the first design
method suggested: programming a microprocessor. This is the reason processor selection
is important when starting out on a product design that may eventually be integrated. As
the software effort will often exceed the hardware effort, you don’t want to repeat that
effort.

14.3.7 Summary
In this section, we have summarized a range of CMOS design options ranging from a
software-based microprocessor to full custom design. Table 14.4 summarizes these options
in terms of a variety of criteria. Each category is ranked in relation to each design method
from low to high.

The most cost-effective approach should be taken to hardware (or software) design
given speed, power, and cost targets (occasionally, size will count as well). You should always
use an off-the-shelf solution if system constraints are met, because the non-recurring engi-
neering (NRE) costs are amortized over many units. The next most likely prospect is an
FPGA design, especially for low-volume (100,000’s) applications. Power and cost are the
most likely attributes to be challenged in medium- to high-volume applications, and this is
where standard cell designs will be used. Mixed-signal, RF, and high-speed digital designs
require a cell-based or custom approach.

The NRE cost (predominantly mask cost) has reached a level where even industry pro-
totypes must be done using multiproject chips, amortizing the mask cost over multiple
designs. Designs must be as reprogrammable or adaptable as possible.

In 2006, there were an estimated 3000 to 5000 custom designers and 50,000 to 100,000
ASIC designers employed worldwide [Chinnery07]. The number of FPGA designers is
even larger, and the number of designers using microcontrollers is greater still. CAD tool
vendors cater to the most profitable markets, so most VLSI design tools are aimed at ASICs.
Synopsys, Cadence, Mentor Graphics, and Magma are the largest suppliers, though many
smaller companies offer specialty tools. The next section examines the design flows using
these tools.

14.4 Design Flows
A design flow is a set of procedures that allows designers to progress from a specification
for a chip to the final chip implementation in an error-free way. In the previous section, we
discussed the basic CMOS design methods without mentioning how we actually design

TABLE 14.4 Comparison of CMOS design methods

Design Method Non-Recurring
Engineering

Unit Cost Power
Dissipation

Complexity of
Implementa-

tion

Time to
Market

Perfor-
mance

Flexibility

Microprocessor/DSP Low Medium High Low Low Low High
PLD Low Medium Medium Low Low Medium Low
FPGA Low Medium Medium Medium Low High High
Cell-Based High Low Low High High High Low
Custom Design High Low Low High High Very High Low
Platform-Based High Low Low High High High Medium

14.4 Design Flows 637

an FPGA, gate array, or cell-based system. In this section, we
will summarize the main design flows in use today.

A general design flow is shown in Figure 14.19. Design
starts at the behavioral level and then proceeds to the structural
level (gates and registers). This step is called behavioral or Reg-
ister Transfer Level (RTL) synthesis because the designs are
captured at the RTL (memory elements and logic) level in an
HDL. The description is then transformed to a physical
description suitable for chip fabrication. This step is called
physical synthesis (or layout generation). Normally, the synthesis
steps are automated, albeit guided by human judgment. The
verification steps are also shown.

In Figure 14.19, the design has been partitioned into the
front end stage at the behavioral level and the back end at the
structural and physical levels. This is important because it
illustrates a partitioning that is used to build Application Specific
Integrated Circuits (ASICs). In an ASIC, the design can be
developed at the HDL level and then passed to a company that
completes the transition to an actual chip. In this way, the
original design company does not have to invest the personnel
or tools required to translate an HDL specification into a
physical chip. Theoretically, in an ASIC flow, only a behavioral
HDL needs to be designed and simulated (at the behavioral
level). All subsequent operations can be completed by a third-
party design service with only the final timing having to be
verified by the back-end process. This is sometimes referred to
as a “throw it over the wall” approach. While it works for mod-
erately complex designs, the interaction between logic and lay-
out is so important in more demanding circuits that such a flow becomes a schedule risk.
Primarily, this occurs because the iteration time between logic design and physical place-
ment takes too long when spread over two organizations. Multiple iterations are necessary
because the prelayout timing estimates available to the HDL designer correlate poorly
with the true postlayout timing because wire lengths are unpredictable before layout. Con-
sider the case where the design cycle from logic to layout takes two hours when completed
as an integrated task or one week if split into front-end and back-end tasks, as shown in
the figure. If there are 100 iterations for the design, the integrated approach takes roughly
25 working days or five weeks, while the split approach takes two years (without vaca-
tions!). Having said this, companies are in business to make this approach work. If there
are only 10 iterations, the times are much more reasonable.

The next two sections summarize each of the tools required to perform the automatic
transformation. We also will examine the verification tools required to guarantee the cor-
rectness of the transformation and look at specific design flows. Then, we will describe a
manual flow that is typical of a mixed-signal or RF design. Finally, we will outline a
method of transforming directly from the behavioral to the physical level.

14.4.1 Behavioral Synthesis Design Flow (ASIC Design Flow)
At the behavioral level, the operation of the system is captured without having to specify
the implementation. This level provides the most independence from implementation
details and is the most dependent on the tool flow for a good design.

Front End

Back End

Physical
Specification

To CMOS Fab.

Check OK

Check OK

Check OK

Product
Requirement

Behavioral/Functional
Specification

Behavioral (RTL)
Synthesis

Structural
Specification

Physical
Synthesis

FIGURE 14.19 Generalized design flow

Chapter 14 Design Methodology and Tools638

The most popular style of tools for behavioral synthesis are those that directly trans-
form a behavioral RTL description to a structural gate-level netlist. A typical behavioral
flow for an ASIC is shown in Figure 14.20. Tool suppliers include Synopsys, Cadence
Design Systems, Mentor Graphics, and Synplicity.

14.4.1.1 Logic Design and Verification The design starts with a specification, which
might be a text description or a description in a system specification language. The
designer(s) convert this to an RTL behavioral description in an HDL such as Verilog, or
VHDL. A set of test benches are then constructed and the HDL is simulated to verify the
correct behavior as defined by the specification and product requirements. Typical interac-
tive design environments and simulators include NC-Verilog/SystemC/VHDL or Desk-
top Verilog/VHDL from Cadence Design Systems, VCS from Synopsys, ModelSim from
Mentor Graphics and ActiveHDL from Aldec. Bear in mind that functional verification
via simulation is usually carried out hierarchically. That is, after the overall architecture is
defined, modules are successively built from the bottom up, verifying at each step. The
design is iterated at this level until the correct behavior is evident. Test benches are covered
further in Section 15.3.

Behavioral Verilog for an 8-bit implementation of the NCO previously introduced is
presented below.

module nco #(parameter size = 8,
counter_size = 16,
table_size = 64)
(input fclock, reset,
input [counter_size-1:0] initial_phase, phase_increment,
output [size-1:0] q);

 reg [counter_size-1:0] phase;

RTL Behavioral
Description

RTL Synthesis

To Physical
Synthesis

Specification Test Logic Insertion

Netlist

Verification by
Description

OK

Results

OK

OK

Simulation or
Formal Verification

OK

Power Analysis

OK

Debug

Re architect

n

n

n

n

n

y

y

y

y

Gate Level
Description

Timing Analysis

Simulation or
Formal Verification

Library Mapping

Netlist

Debug
y

Floorplan and
Library Data

Library Data

FIGURE 14.20 RTL synthesis flow

14.4 Design Flows 639

 wire [size-3:0] phase_part, inverted_adr, ROM_adr;
 wire [size-2:0] ROM_data;
 wire [size-1:0] wave_out;

 // numerically controlled oscillator
 // note that some constants are hardwired in the code below

 // phase counter
 always @(posedge fclock)
 if (reset) phase <= initial_phase;
 else phase <= phase + phase_increment;

 // add offset and determine ROM address
 assign phase_part = phase[counter_size-3:counter_size-8];
 assign inverted_adr = 7’3f - phase_part;
 assign ROM_adr = phase[counter_size-2] ? inverted_adr : phase_part;

 // look up data in ROM and negate if appropriate
 quarter_wave sine_table(ROM_adr, ROM_data);
 assign wave_out = phase[counter_size-1] ? ~ROM_data : ROM_data;
 assign q = wave_out + 8’h80 + phase[counter_size-1];
endmodule

14.4.1.2 RTL Synthesis The next step is to synthesize the behavioral description. This
involves converting the RTL to generic gates and registers, optimizing the logic to
improve speed and area, and mapping the generic gates to a standard cell library. Other
steps involved at this stage are state machine decomposition, datapath optimization, and
power optimization. Typical products include Design Compiler from Synopsys, RTL
Compiler from Cadence, and Synplify Pro from Synplicity. The following description is a
portion of the mapped generic Verilog for the NCO shown above.

module nco_struct_mapped(input fclock, reset,
 input [15:0] initial_phase, phase_increment,
 output [7:0] q);
 .
 .
 BUFX4 i_506(.A(n_355), .Y(q[7]));
 .
 MX2X1 i_00(.S0(reset), .B(initial_phase[15]), .A(nbus_1[15]),
 .Y(phase_0[15]));
 NAND2BX1 i_8(.AN(n_102), .B(n_101), .Y(n_104));
 XOR2X1 i_6(.A(phase[15]), .B(ROM_Table[6]), .Y(n_103));
 .
 .
 DFFHQX1 phase_reg_0(.D(phase_0[15]), .CK(fclock), .Q(phase[15]));
 .
 .
 .
endmodule

14.4.1.3 Functional or Formal Verification We must now prove that the structural netlist
performs the same function as the original behavioral HDL. Ideally, the netlist would be
correct-by-construction, but ambiguities in HDLs sometimes cause the synthesizer to
produce incorrect netlists from poorly written behavioral code. One verification strategy is
to rerun the logic test benches and check that they produce exactly the same output for the
behavioral and structural descriptions.

Chapter 14 Design Methodology and Tools640

Another strategy is to use a formal verification program that compares the logical
equivalence of the two descriptions. Formal verification tools are still maturing, but offer
the advantage that they mathematically prove both descriptions have exactly the same
Boolean functions [Anastasakis02, Perry05]. In contrast, simulation only is as good as the
choice of test vectors. Formality from Synopsys and Incisive Conformal from Cadence are
examples of formal verifiers.

Other types of verification that can be run are semantic and structural checks on the
HDL. An example of a semantic check would be ensuring that all bus assignments match
in bit width, while an example of a structural check would include making sure all outputs
are connected.

14.4.1.4 Static Timing Analysis At this point, the functional equivalence of the gate-
level description and the original behavioral description has been established. Now the
temporal requirements of the design have to be checked. For example, the adder may add,
but does it add fast enough? At the behavioral level, clock cycle time is an abstract notion,
but at the structural level, an actual cycle time has to be met by a particular set of gates. A
timing analyzer is used to verify the timing.

The timing analyzer is a critical analytical tool in the arsenal of the modern CMOS
digital designer. Timing can be verified in a cursory manner using a timing simulator; i.e.,
a simulator in which the actual gate timings are used rather than a cycle-based or unit
delay simulator. While useful, this approach is usually neither complete nor rigorous and
can take an extraordinary amount of time to run.

Static timing analysis, on the other hand, runs quickly and exhaustively evaluates all
timing paths. The inputs to the timing analyzer at this point are derived from the basic
timing of the library gates due to intrinsic gate delays and routing loads that can be either
estimated statistically or derived from floorplanning data. (See Section 14.4.2.2 for a
description of floorplanning.) Timing analyzers check for both max-delay (will all flip-
flops meet their setup time at the required cycle time?) and min-delay (will any flip-flop
violate its hold time?).

Static timing analysis can suffer from false path problems. Typical of this problem
might be a reset line in a circuit that has many clock cycles to operate. The timing analyzer
might report that it cannot complete in one cycle. The designer must manually flag such
multicycle paths for the timing analyzer.

Typical timing analyzers include ETS from Cadence and PrimeTime from Synopsys.
Timing analysis reports will list a path from the output of a register to the input of another
register. For each stage of logic, the delay of that stage and output arrival time are summa-
rized. The paths are sorted by slack, with negative slack indicating critical paths that must
be corrected.

14.4.1.5 Test Insertion Logic and registers are then inserted/modified to aid in manufac-
turing tests (see Section 15.6). Two basic techniques are used. One involves inserting
scannable registers so that the state of a circuit can be set and monitored. Accompanying
this option is a technique called Automatic Test Pattern Generation (ATPG), which is used
to generate tests for a scannable design. The other technique, called Built-In Self-Test
(BIST), modifies registers to allow in situ testing within the chip. Figure 14.21 shows the
NCO after a test insertion program has run.

Typical commercially available test programs include DFT Max from Synopsys for
scan insertion and Tetramax for ATPG. LogicVision markets ETLogic and ETMemory
for built-in self-test.

14.4 Design Flows 641

14.4.1.6 Power Analysis The power consumption of the circuit is then estimated. Power
consumption depends on the activity factors of the gates, which in turn depends on the
inputs the chip receives. Power analysis can be performed for a particular set of test vectors
by running a simulator and evaluating the total capacitance switched at each clock transi-
tion at each node. At this stage, if the power is too high, the design must return to the
architectural level to rethink the solution. Commercial power analysis tools include
PrimePower and Powermill from Synopsys.

14.4.1.7 Summary Apart from increasing design productivity, logic synthesis systems are
useful for transforming between technologies. For instance, you might synthesize behav-
ioral HDL onto multiple FPGAs and construct a prototype used to verify the operation of
the circuit under real-world conditions. Then you can compile a single-chip version from
the same HDL using a gate-array library.

14.4.2 Automated Layout Generation
Layout generation is the last step in the process of turning a design into a manufacturable
database. It transforms a design from the structural to the physical domain. This step is
sometimes called physical synthesis when the structural netlist is manipulated as the physi-
cal layout is generated.

Figure 14.22 shows a standard place & route layout generation design flow used in
most ASICs. It begins with the structural netlist describing gates, flip-flops, and their
interconnections. The netlist might be provided in the Design Exchange Format (DEF) as a
Verilog netlist like the one in Section 14.4.1.2. The placement tool also takes a standard
cell library definition describing cell dimensions and port locations, typically in the
Library Exchange Format (LEF).

14.4.2.1 Placement The first step in Figure 14.22 is to place the standard cells. The key
to automation of standard cell layouts is the use of constant-height, variable-width stan-
dard cells that are arrayed in rows across a chip, as shown in Figure 14.23. In contrast to
SOG and gate array chips, standard cell chips can add application-specific custom blocks
such as memories and analog blocks by allowing the standard cell rows to “flow” around
the fixed-shape custom blocks. No separation has been shown between standard cell rows
because routing takes place over the cells using multiple layers of metal. In older processes
with two or three metal layers, a space between rows would be needed to allow routing.
LEF summarizes the salient physical details of cells.

Sine
ROM

rda rdb rdc rde

IObus
ldd

lda

ldc

ldb

lde

rdd

Phase
Counter

Phase
Increment

test
test

test test test

Serial Out

Serial In

FIGURE 14.21 Scan register insertion for testing

Chapter 14 Design Methodology and Tools642

Placement

DEF

Library
Description

Timing
OK

Route

Parasitic
Extract

ESPF

Timing
Analysis

Technology
Constraints

Technology
Parameters

Library
SDF

DEF
Noise and
Reliability

OK Tool error

Netlist

Database to
Manufacturer

n

n

y

y

FIGURE 14.22 Standard cell place and route design flow

IO

IO

IO IO IO IO IO IO IO IO IO IO IO

IO IO IO IO IO IO IO IO IO IO IO IO

Standard Cell Rows

RAM

Custom or Special
Purpose Block

IO
IO

IO
IO

IO
IO

IO
IO

IO
IO

IO
IO

IO
IO

IO
IO

IO

FIGURE 14.23 Standard cell chip layout

14.4 Design Flows 643

The objective of a simple placement algorithm is to minimize the length of wires. In
timing-driven placement, the cost of wires is weighted to meet timing constraints. At the
end of the placement phase, the cells have been fixed in position in the overall array. The
placed design is saved in a standard format (e.g., DEF) for routing.

14.4.2.2 Floorplanning Increasingly a manual floorplanning step is required in the place-
ment process. Rather than place a design “flat” (i.e., all cells at the same level of the hierar-
chy), modules are clustered in areas that are dictated by the need to communicate with
other modules. Example 14.5 illustrated some floorplans for the software radio. This style
of floorplanning might be completed prior to automatic placement.

14.4.2.3 Routing After placement of cells, the signal nets in the circuit need to be routed.
Routing is normally divided into two steps: global routing and detailed routing.

A global router abstracts the routing problem to a notional set of abutting channels
that cover the chip surface through which wires are routed. Routes are added to channels
according to a cost function. Wires can be changed from channel to channel if the density
of wires in a channel becomes too high. The detailed router places the actual geometry
required to complete signal connections. Over time, a selection of detailed routers have
been developed to automatically route signals. Older routers constrained signals to a grid
of tracks, but newer gridless routers are more flexible for variable pitch wires. Moreover,
they allow easy interface to foreign cells that may have I/O pin locations that are not on
any specific routing grid. Routers also can route over the top of cells. LEF definitions are
used to indicate obstructions on various layers in cell definitions. Advanced routers take
into account manufacturability concerns such as redundant vias (more that one via
inserted when space is available) and adjustable spacing (to separate wires and reduce cou-
pling when there is room).

In the example of the flow shown in Figure 14.22, the router uses a technology file to
specify routing layers and pitches for the process technology. It writes the results to
another DEF file.

14.4.2.4 Parasitic Extraction The placed and routed design is then passed to the circuit
parasitic extractor. In the example shown in Figure 14.22, the placed and routed design is
provided to the extractor in DEF format and the output is an Extended Standard Parasitic
Format (ESPF), Reduced Standard Parasitic Format (RSPF), or Standard Parasitic Exchange
Format (SPEF) that describes the R’s and C ’s associated with all nets in the layout. The
extractor uses another technology file defining the interlayer capacitances and layer resis-
tances.

The capacitance extractor can be a 2D, 2.5D, or 3D extractor. Two-dimensional (2D)
extractors look at a cross-section assuming wires extend uniformly outside the section. A
2.5D extractor uses lookup tables to more accurately estimate capacitance near nonunifor-
mities. A 3D extractor solves Maxwell’s equations in three dimensions to precisely
determine capacitance of complex geometries. 3D extraction used to be prohibitively
time-consuming, but new statistical algorithms, such as those in QuickCap from Magma
Design, deliver good accuracy with faster runtimes.

14.4.2.5 Timing Analysis Static timing analysis is now rerun with the actual routing
loads placed on the gates. This is usually the bottleneck in the design process as the full
reality of a physical realization is apparent. Multiple iterations of synthesis and placement
& routing are usually necessary to converge on timing requirements.

Chapter 14 Design Methodology and Tools644

Additionally, if possible (especially where dynamic circuits are used), a transistor-level
timing simulation should be run. While this cannot usually be achieved using a SPICE-
based simulator, a variety of transistor level simulators with “almost SPICE accuracy” have
been in use since the late 1970s. These currently have the capacity to do whole-chip simu-
lations at the transistor level, but at somewhat reduced transistor modeling accuracy.
Nanosim from Synopsys and UltraSim from Cadence are examples of current simulators
of this type.

14.4.2.6 Noise, VDD Drop, and Electromigration Analysis Analyses are now run to check
noise, IR drop in supply lines, and electromigration limits. Noise analysis is run to evalu-
ate crosstalk due to interlayer routing capacitance. SignalStorm, ElectronStorm, and Volt-
ageStorm from Cadence are examples of such tools.

14.4.2.7 Timing-Driven Placement The trouble with a place-then-route strategy is that
after the layout is completed, the parasitic routing capacitance is extracted and the timing

analysis is done to estimate timing. The timing is
not known until the physical layout is complete.
If timing problems are found, the cycle has to be
repeated with some kind of constraint placed on
the problematic paths. With complex designs
this quickly gets out of control, to the point
where changing something on one iteration
could undo something fixed on a previous itera-
tion. There are stories of designs that never were
completed because of this problem.

The solution is to use a technique called
timing-driven placement , which takes into
account the timing (speed) of the circuit as cells
are placed. Cells on critical paths are given prior-
ity to minimize wire delay. This approach, illus-
trated in Figure 14.24, has been successful and
often results in a one-pass approach for many
designs.

14.4.2.8 Clock-Tree Routing Central to mod-
ern high-speed designs is the clock distribution
strategy. In Section 13.4.4, a number of these
approaches are explained. To minimize skew, it is
often best to preroute the clock and its buffers
before the main logic placement and routing is
completed. This task is performed with a clock
tree router.

14.4.2.9 Power Analysis Power estimation can
be repeated for the extracted design now that real
wire capacitances are available. Similar techniques
to those used during RTL synthesis are used.

Placement

Timing OK

Routing Engine

Extract

Timing Analysis

Technology
Constraints

DEF

Technology Attributes
Wire Capacitance
and Resistance

OK

Final Checks

Timing Directed
Placement Engine

Library
LEF

Library
SDF

Finished

FIGURE 14.24 Timing-driven
placement design flow

14.4 Design Flows 645

14.4.3 Mixed-Signal or Custom-Design Flow
In the previous section, we described a flow that would be used for a purely digital chip in
which the procedure for converting from HDL to layout is highly automated. This flow
offers high productivity for most large digital chips with moderate performance require-
ments. But what of smaller analog, RF, and high-speed digital sections of a chip? For
these sections, we use a custom-design flow, which is shown in Figure 14.25.

 The designer begins by drawing a schematic (or possibly writing a netlist). An electrical
rule check (ERC) verifies port connectivity and checks for unconnected inputs or outputs––
the kind of simple connectivity errors that can occur easily in a manually drawn schematic.
When the schematic is deemed correct, circuit simulation is then carried out using a
SPICE-type simulator to verify DC, AC, transient, noise, and/or RF performance.

Once the circuit behavior of the module has been verified, the layout can commence,
starting with the floorplan. Floorplanning can be an iterative process that is refined as actual
module sizes and critical paths become known. Custom layout is a very time-consuming
task; for example, a large microprocessor could keep a hundred mask design technicians busy
for two years. Automating noncritical parts of the layout is essential for productivity. When
the layout for the module is complete, a layout circuit extractor is invoked to determine the
connectivity of primitives (MOS and bipolar transistors, diodes, resistors, capacitors, induc-
tors) in the layout using rules like those illustrated in Section 3.5.2.

In the next step, the extracted netlist is compared to the schematic using a graph iso-
morphism program to determine whether the two netlists are identical in connectivity.
This proceeds by assigning primitives to the nodes of a graph and the connections to the
arcs in the graph. Graph coloring based on the connectivity and circuit parameters (i.e.,

Schematic
or Netlist

Layout vs.
Schematic

Parasitic
Extract

Circuit
Extract

Technology
Definition

Technology
Attributes Wire
Capacitance

and Resistance

Layout
Construction

Technology
Rules

Schematic
Back Annotation

Electrical
Rule Check

Resimulation

Circuit Simulation

Chip or Module OK

Floorplan

Design Rule
Check

Reliability Check

FIGURE 14.25 Mixed-signal or custom-design flow

Chapter 14 Design Methodology and Tools646

transistor type, width, and length) determines the extent of the match. Once connectivity
equivalence has been determined, each primitive attribute is checked for equivalence (i.e.,
capacitor or resistor value, transistor W/L). Discrepancies are reported to the user. Graph-
ical feedback may be provided to help the designer find the source of any mismatch. This
step is commonly called layout versus schematic (LVS).

Once the structural-to-physical equivalence has been established, the parasitic extract
is completed. This adds the parasitic routing capacitance and resistance to the original
primitive elements. In general, inductors are not extracted, but are dealt with by cookie
cutting the inductor out of the layout and substituting a previously generated physical
model. This is sometimes called macro substitution. The parasitic capacitance and resis-
tance can be back annotated onto the schematic and the complete circuit resimulated. It
must be pointed out that this step is extremely important. Matching simulated behavior to
real device behavior is of critical importance in being able to accurately predict perfor-
mance. It is too late when the circuit has been built!

The module layout can then be design-rule checked (DRC). Alternatively, this step
can be completed just as the layout is completed. Normally, the AC performance is more
important than tweaking the last design-rule error because running DRC on a circuit that
does not meet performance goals is a waste of time.

Following this, a set of manufacturability verification steps needs to be completed.
These can be manual or automated. In common with the standard cell design flow, power
bus widths should be checked to ensure that they comply with metal migration and IR
drop constraints. Power consumption can be found directly from circuit simulation. Ade-
quate substrate and well contacts should be present in a bulk CMOS design, and all exter-
nal I/O must be guard-ringed. At this stage, a check can also be made for substrate noise
injection from digital to analog circuits. SubstrateStorm from Cadence performs this task.

This process can be completed hierarchically to build up large modules. Usually, the
ultimate limitation comes from trying to simulate vast numbers of transistors accurately in
SPICE. A variety of fast transistor-level simulators have been developed to deal with this
problem, although there is always some upper limit to what can be simulated at the desired
accuracy.

14.5 Design Economics
It is important for the IC designer to be able to predict the cost and the time to design a
particular IC or sets of ICs. This can guide the choice of an implementation strategy. This
section will summarize a simplified approach to estimate these values.

In this section, we will concentrate on the cost of a single IC, although you should
consider the overall system when making such decisions. System-level issues such as pack-
aging and power dissipation can affect the cost of an IC.

The selling price Stotal of an integrated circuit may be given by

Stotal = Ctotal / (1–m) (14.2)

where

� Ctotal is the manufacturing cost of a single IC to the vendor.
� m is the desired profit margin.
� The margin has to be selected to ensure a profit after overhead (G&A) and the

cost of sales (marketing and sales costs) have been considered.

14.5 Design Economics 647

The costs to produce an integrated circuit are generally divided into the following ele-
ments:

� Non-recurring engineering costs (NREs)
� Recurring costs
� Fixed costs

14.5.1 Non-Recurring Engineering Costs (NREs)
Non-recurring engineering costs are those that are spent once during the design of an
integrated circuit. They include the following:

� Engineering design cost Etotal

� Prototype manufacturing cost Ptotal

These costs are amortized over the total number of ICs sold. Ftotal, the total non-
recurring cost, is given by

Ftotal = Etotal + Ptotal (14.3)

The NRE costs can be amortized over the lifetime volume of the chips. Alternatively,
the non-recurring costs can be viewed as an investment for which there is a required rate
of return. For instance, if $10M is invested in NRE for a chip, then $100M has to be gen-
erated for a rate of return of 10.

14.5.1.1 Engineering Costs The cost of designing the IC Etotal hopefully will happen
once during the chip design process. The costs include

� Personnel cost
� Support costs

The personnel costs might include the labor for

� Architectural design
� Logic capture
� Simulation for functionality
� Layout of modules and chip
� Timing verification
� DRC and tapeout procedures
� Test generation

The support costs amortized over the life of the equipment and the length of the design
project include

� Computer costs
� CAD software costs
� Education or re-education costs

Costs can be drastically reduced by reusing modules or acquiring fully completed
modules from an intellectual property vendor. As a guide the per annum costs might break
down as follows (these figures are in U.S. dollars for engineers in the U.S. circa 2010):

Chapter 14 Design Methodology and Tools648

Salary $50–$100K
Overhead $10–$30K
Computer $10K
CAD Tools (digital front end) $10K
CAD Tools (analog) $100K
CAD Tools (digital back end) $1M

The cost of the back-end tools clearly must be shared over the group designing the
chips.

14.5.1.2 Prototype Manufacturing Costs These costs (Ptotal) are the fixed costs to get the
first ICs from the vendor. They include

� The mask cost
� Test fixture costs
� Package tooling

The photo-mask cost depends on the number of steps used in the process and the
precision required by each step. Masks on the metallization layers can be less
expensive than on the lower layers because the pitch is not as tight. Figure 14.26
shows how mask costs have been exponentially increasing [Donovan02,
LaPedus07]. The cost of a full set of masks in a 45 nm process is approximately
$5M.

A test fixture consists of a printed wiring board probe assembly to probe
individual die at the wafer level and interface to a tester. Costs range from $1000
to $50,000, depending on the complexity of the interface electronics.

If a custom package is required, it may have to be designed and manufac-
tured (tooled). The time and expense of tooling a package depends on the
sophistication of the package. Where possible, standard packages should be used.

An economical way of prototyping chips is to use a multiproject reticle that
combines a number of different chip designs onto one mask set. Thus, if there
were 200 sites available on a mask set and 20 projects were implemented, each
project would get 10 die per wafer and the mask cost per project would be 1/20 of

the cost of a complete mask set. This kind of service is provided by many of the silicon
vendors and also MOSIS. For modest technology this can be quite cheap (~ $1000 per
mm2 for 0.6 m). Some commercial users worry about protection of intellectual property
when they share a mask set.

Example 14.6

You are starting a company to commercialize your brilliant research idea. Estimate the
cost to prototype a mixed-signal chip in a 45 nm process. Assume you have seven digi-
tal designers, three analog designers, and five support personnel and that the prototype
takes two fabrication runs and two years.

SOLUTION: The seven digital designers will cost 7 × ($70K + $30K + $10K + $10K) =
$840K. The three analog designers will cost 3 × ($100K + $30K + $10K + $100K) =
$720K. The five support personnel cost 5 × ($40K + $20K + $10K) = $350K. One fab-
rication run with the back-end tools will cost $6M. Thus, the cost is $7.91M per year

$10M

$1M

$100K

350 250 180 130 90 65 45

Mask Cost

Feature Size (nm)

FIGURE 14.26
Approximate mask set cost

14.5 Design Economics 649

with one fab run. The total predicted cost here is nearly $16M. The venture capitalists
providing this money will want a good return for their risk so you’d better have a
$100M market for your idea. Typical chips at the 45 nm node require larger design
teams and cost $20–$50M to design, so the markets must be even larger.

You may see ways to improve this. Clearly, you can reduce the number of people and
the labor cost. You might reduce the CAD tool cost and the fabrication cost by doing
multiproject chips. However, the latter approach will not get you to a pre-production
version, because issues such as yield and behavior across process variations will not be
proved. Your best bet may be to find a product niche that can be filled using a more
mature and less expensive manufacturing process.

14.5.2 Recurring Costs
Once the development cost of an IC has been determined, the IC manufacturer will arrive
at a price for the specific IC. A few large companies such as Intel, Toshiba, and IBM have
in-house manufacturing divisions, but annual sales need to exceed about $10B to justify
the investments required to do your own manufacturing at the 45 nm node, and this figure
continues to climb as processes advance. Many fabless semiconductor companies out-
source their manufacturing to a silicon foundry such as TSMC, UMC, or IBM. In either
case, manufacturing is a recurring cost; that is, it recurs every time an IC is sold. Another
component of the recurring cost is the continuing cost to support the part from a technical
viewpoint. Finally, there is what is called “the cost of sales,” which is the marketing, sales
force, and overhead costs associated with selling each IC. In a captive situation such as the
IBM microelectronics division selling CPUs to the mainframe division, this might be
zero.

The IC manufacturer will determine a part price for an IC based on the cost to pro-
duce that IC and a profit margin. The margin generally falls as the volume increases. An
expression for the cost to fabricate an IC is as follows:

Rtotal = Rprocess + Rpackage + Rtest (14.4)

where

Rpackage = package cost

Rtest = test cost––the cost to test an IC is usually proportional to the number of vec-
tors and the time to test.

Rprocess = W/(N × Yw × Ypa) (14.5)

where

W = wafer cost ($500–$5000 depending on process and wafer size)

N = gross die per wafer (the number of complete die on a wafer)

Yw = die yield per wafer (should be ~70–90+% for moderate-sized dice in a mature
process)

Ypa = packaging yield (should be ~95–99%)

If a die has area A and is fabricated on a wafer with radius r, the gross number of dice
per wafer is

Chapter 14 Design Methodology and Tools650

 (14.6)

where the second term accounts for wasted area around the edges of a circular wafer.

Example 14.7

Suppose your startup seeks a return on investment of 5. The wafers cost $2000 and
hold 400 gross die with a yield of 70%. If packaging, test, and fixed costs are negligible,
how much do you need to charge per chip to have a 60% profit margin? How many
chips do you need to sell to obtain a five-fold return on your $16M investment?

SOLUTION: Rtotal = Rprocess = $2000/(400 × 0.7) = $7.14. For a 60% margin, the chips
are sold at $7.14/(1 – 0.6) = $17.86 with a profit of $10.72 per unit. The desired ROI
implies a profit of $16M × 5 = $80M. Thus, $80M/$10.72 = 7.4M chips must be sold.

The packaging yield is the number of chips that pass testing after the wafer has been
diced and the parts packaged. The die yield is affected by defects randomly distributed
around the wafer. The probability of a random defect causing a particular die to fail
depends on the size of the die A and average number of defects per unit area D. If defects
are distributed uniformly, then recall from EQ (7.23) that yield Yw obeys a Poisson distri-
bution given by [Seeds67]

 (14.7)

For small dice (AD << 1), Yw is nearly 1 and Rprocess grows linearly with A. For large dice
(AD >> 1), Yw drops off rapidly because most chips will have defects and Rprocess grows
exponentially with A.

Defect densities tend to be closely guarded trade secrets because they give competitors
key information about the cost of manufacturing a chip. Figure 14.27 shows historical
data indicating how manufacturing improvements have steadily improved the defect den-
sities. Thus, chip makers now get better yields on larger chips than they did in the past,
helping drive the incredible growth of the semiconductor market.

Example 14.8

If the defect density is 0.4 defects/cm2, what is the yield on a 1 cm2 die? How large can
the die be if a 10% yield is required on a big new server chip?

SOLUTION: According to EQ (14.7), the yield on a 1 cm2 die is 67%. A chip with an area
of 5.75 cm2 achieves a 10% yield.

14.5.3 Fixed Costs
Once a chip has been designed and put into manufacture, the cost to support that chip
from an engineering viewpoint may have a few sources. Data sheets describing the charac-
teristics of the IC have to be written, even for application-specific ICs that are not sold
outside the company that developed them. From time to time, application notes describing
how to use the IC may be needed. In addition, specific application support may have to be

N
r
A

r

A
=

2 2

2

Yw
AD= e

14.5 Design Economics 651

provided to help particular users. This is especially true for ASICs, where the designer
usually becomes the walking, talking, data sheet and application note. Another ongoing
task may be failure or yield analysis if the part is in high volume and you want to increase
the yield.

As a side comment, every chip or test chip designed should have accompanying docu-
mentation that explains what it is and how to use it. This even applies to chips designed in
the academic environment because the time between design submission and fabricated
chip can be quite large and can tax even the best memory.

14.5.4 Schedule
At the outset of a system design project involving newly designed ICs, it is important to
estimate the design cost and design time for that system. Estimating the cost can help you
determine the method by which the ICs will be designed. Estimating the schedule is
essential to be able to select a strategy by which the ICs will be available in the right time
and at the right price. This second task is usually the least well specified and requires some
experience.

0.001
1960

D
ef

ec
t d

en
si

ty
 (

D
/c

m
2)

0.01

0.1

1.0

0.45-0.6 μm
200mm CMOS logic

0.45-0.5 μm
200mm memory

0.45-0.6 μm
150mm

memory [44]

0.7-0.9 μm
150mm
memory

1.3-1.5 μm
125-150mm CMOS logic

Murphy, 30mils2 chip

Cal-Tex Semiconductor
PMOS, metal gate

AMS, PMOS
metal gate

AMD, NMOS
Sigate

2-3 μm NMOS

1.4-2 μm CMOS

3 μm CMOS

3-4 μm NMOS

Bipolar, NMOS, PMOS

CMOS Logic

Memory

1.0-1.25 μm
125-150mm
CMOS logic

1.0-1.25 μm
150mm
memory

0.33-0.4 μm
200mm
memory

0.25-0.29 μm
200mm
memory

0.35-0.4 μm
200mm CMOS logic

0.25 μm
200mm
CMOS logic

10

100

Undefined

3.0-4.0 μm

2.0-3.0 μm

1.25-2.0 μm

1.0-1.25 μm

0.7-0.9 μm

0.45-0.6 μm

0.33-0.4 μm

0.25-0.29 μm

Year
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

FIGURE 14.27 Defect density trends. Note that this data uses the Murphy Model rather than the Poisson Model:
The Murphy Model predicts better yield at high defect density. (© 2002 IC Knowledge LLC, www.icknowledge.com
reprinted with permission.)

Y
AD

AD

= 1
2

e

Chapter 14 Design Methodology and Tools652

If we assume that fixed costs are kept reasonable and that for a given IC size, Rprocess
is constant, the variables left in determining the cost of an IC are Etotal, the engineering
design cost, and Ptotal, the prototype manufacturing cost. Ptotal depends on the way in
which the IC is implemented. We examined a variety of strategies for the design of
CMOS systems earlier in the chapter. The fixed costs of prototyping Ptotal are relatively
constant, given an implementation technology. The engineering costs depend on the com-
plexity of the chip, the design strategy, and the amount of sustaining engineering needed.
Usually, the design and verification engineering costs dominate. For this reason, it is
important to be able to estimate a schedule for the design of an IC and then manage the
available resources to bring the project to a successful conclusion.

Increased engineering effort can reduce the size of the die, which reduces Rprocess.
Hence, it is important to be able to trade off the reduction in die cost with the increase in
engineering effort. Opinions vary, but it is usually best to get a product first to market and
then shrink the die when the product becomes successful. Optimizing without market feed-
back is usually a recipe for loss of market share or even failure to gain any market share at all.

[Paraskevopoulos87] suggests a number of fairly obvious methods for increasing pro-
ductivity, thereby improving schedules:

� Using a high-productivity design method
� Improving the productivity of a given technique
� Decreasing the complexity of the design task by partitioning

A final caution: Adding people to a project that is already late tends to make it even
later [Brooks95].

Example 14.9

While it is hard to predict the design and test time for a chip, we can at least identify
the main tasks and corresponding fixed periods in a chip design project. A representa-
tive Gantt chart is shown in Figure 14.28 for a project running over one year. The logic
design time is shown as 12 weeks, which would be appropriate for an extremely simple
chip. Double this time would be representative of moderately complex digital chips.
The fixed times tend to be the fabrication time and packaging time, which are shown to
be 10 weeks in the example. The design, debug, and test times will expand or contract
to fit the complexity of the chip. And, if you are meticulous and lucky, you will not have
to respin the chip.

ID Task Name Start Finish Duration
Q1 10 Q2 10 Q3 10 Q4 10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

1 4w1/28/20101/1/2010Specification

2 12w4/21/20101/29/2010Digital Design

3 8w6/16/20104/22/2010Place and Route

4 8w8/11/20106/17/2010Fabrication

5 2w8/25/20108/12/2010Packaging

6 8w10/20/20108/26/2010Lab Test

7 4w11/17/201010/21/2010Respin

8 6w12/29/201011/18/2010Lab Test

FIGURE 14.28 Gantt chart for simple chip

14.5 Design Economics 653

14.5.5 Personpower
To estimate the schedule, you must have some idea of the amount of effort required to
complete the design. As we have seen, typical IC projects will involve the following tasks:

� Architectural design
� HDL capture
� Functional verification
� Place & route
� Timing verification, signal integrity, reliability verification
� DRC and tapeout procedures (ERC, LVS, mask generation)
� Test generation

While some researchers have attempted to derive analytical formulae for productivity,
the best predictor of design schedule for a team is previous performance. Design time for a
given team can be improved by design reuse or component-based design. It would seem
that the time to design is proportional to the number of “modules” that are in the design
raised to some power. That is, a four-module design is more than four times as complex as
a single-module design. A module in this instance refers to a significant section of a chip
such as a microprocessor, serial interface, or special functional unit.

Normally, projects are schedule-driven. In this case, it is important to make maximal
use of design aids to meet the required schedule. Of importance is the cycle time of the so-
called “edit-compile-debug” loop: i.e., the time it takes to make a change to the HDL;
synthesize, place, and route it; and have a timing-verified final design. This can depend
strongly on the efficiency of the design tools used, but if it is more than a day, design pro-
ductivity can suffer. Ideally, the cycle is a few hours so that multiple bugs can be fixed
each day.

Broadly speaking, schedules on the order of 18–24 months for a completely new chip
seem to fit current average-complexity chips and state-of-the-art tools. For respins to
slightly differentiate products, this can be reduced to six months or less, but there are cer-
tain fixed times such as IC fabrication and packaging that set hard limits on the complete
design cycle time. Of course, for technologies such as FPGAs, design turnaround can be
minutes (which is why FPGA verification is so important to ASIC or custom IC designs).
New microprocessors seem to take three to five years, and most experience one or more
schedule slips.

14.5.6 Project Management
Project management is the overall supervision of the project. Tasks include making certain
sufficient resources are available at the appropriate time, ensuring communication between
different groups assigned to the project, and summarizing progress and risks to manage-
ment. The development of processes for the conception, design, and ultimate manufacture
of products is also the purview of the project manager.

There are two main ways to manage a chip design. The first is what might be called the
rapid prototyping approach that is typical of startup companies, where a full-time project
manager may be a luxury (and probably is more aptly named “seat-of-the-pants project man-
agement”). In this approach, a time goal is set and the workload is set to fit the time avail-
able. It is vital to rapidly get to the point where a prototype of the design is working––in
essence, the skeleton––and the meat (detail) is gradually added. This can be risky.

Chapter 14 Design Methodology and Tools654

The more conventional approach, which is appropriate for large companies and the
military, is to preplan everything, estimating task times and putting these into a project
planning tool. This approach, while necessary for large groups, tends to be feature-driven
and rarely delivers products in shorter time scales than the rapid prototyping approaches.
It is suitable when the tasks are well-defined and have been done before (then you know
what the task times should be). The approach is stable and, depending on the team, often
delivers products within budget and on time.

14.5.7 Design Reuse
Rarely is an IC designed as a single event. Rather, companies wish to amortize the develop-
ment effort of a particular IC over several generations of products. This normally means that
the design has to be transferred between several different processes. When design was
mainly manual and at the mask level, a great deal of effort was expended on techniques to
allow porting of designs between processes with the minimum of human intervention. Tech-
niques used here include the use of symbolic layout methods and mask resizing software.

With the emergence of cell-based design, design migration falls into two steps:

1. Acquiring or building a standard cell library in the new technology
2. Retargeting the HDL description to the new cell library

The design and test generation does not have to be redone, although timing analysis and
regression test bench simulation should definitely be completed.

In design flows where these steps cannot be followed, strict use of structured design
techniques and software generator technologies can markedly improve porting times.
Maintaining accurate and clear documentation will alleviate many problems downstream.

With the maturation of cell-based design, especially standard cell libraries and the use
of hardware description languages, the notion of virtual components has become important
as a method of transferring and reusing designs. Virtual components, also called intellectual
property (IP) blocks on an IC are notionally the same as discrete ICs used on a printed wir-
ing board design. Each component has precisely defined behavior and a well-defined inter-
face represented by a set of I/O pins and corresponding specifications for loading, setup and
hold times, and delays. Components can be relatively simple or as complex as a RISC pro-
cessor, MPEG decoder, or Wireless LAN modem. Virtual components can be classified as
hard, firm, or soft. A hard module is normally defined at the mask level in a particular pro-
cess. Thus, it will have a fixed floorplan, size, and a well-known set of timing parameters. A
firm block will normally have a specific or generic netlist that describes each gate or register
that must be used in the design (i.e., a 3-input NAND gate of normal power). This allows
the design to be ported to multiple processes purely by netlist translation. The timing is dic-
tated by the process and the final physical placement, however. A soft block is normally
defined at the RTL level in the HDL. This captures the function of the block, but the
detailed implementation is left to automated tools. Again, timing is dependent on the spe-
cific implementation. The Virtual Socket Interface Alliance monitors and encourages stan-
dards governing the implementation and use of virtual components.

Purchasing IP blocks is more like haggling for a used car than like buying breakfast
cereal. It involves extensive negotiation with the vendors, and relationships are important.
Assessing the quality of the IP block and its test bench is critical: a faulty IP block can sink
your chip just as easily as a blown head gasket can leave you stranded in the Outback.
Price sheets are not published, and licensing terms are generally kept confidential. As a
very rough guideline, expect to pay on the order of $100K for a block such as a USB con-
troller with its software stack and test fixture. Microprocessor cores may be offered on a

14.6 Data Sheets and Documentation 655

1% royalty basis. As a rule, if an IP block is available from a reputable source, purchasing
the IP will normally be less expensive than redesigning it yourself.

14.6 Data Sheets and Documentation
A data sheet for an IC describes what it does and outlines the specifications for making
the IC work in a system, such as power supply voltages, currents, input setup times, output
delay times, and clock cycle times. The data sheet also includes package and pinout
details.

A good habit to acquire is that of compiling a data sheet for any chip you might
design. Not only is it the interface between the chip designer and the board-level designer,
but also it is the interface to other members of the design team. In particular, it is good
practice and is mandatory in industry to compile the data sheet for the chip and give it to
the ultimate customer before the chip is fabricated. This prevents many undesirable sce-
narios that can arise when a perfectly designed chip meets a perfectly designed system. In
this section, an outline of a typical data sheet will be reviewed by way of example.

14.6.1 The Summary
A summary of the chip includes the following details to orient the user:

� The designation and descriptive name of the chip
� A concise description of what the chip does
� A features list (optional for an internal product––but good for your ego!)
� A high-level block diagram of the chip function

14.6.2 Pinout
The pinout section should contain a description of the following pin attributes to docu-
ment the external interface of the chip:

� Name of the pin
� Type of pin (i.e., whether input, output, tristate, digital, analog, etc.)
� A brief description of the pin function
� The package pin number

14.6.3 Description of Operation
This section should outline the operation of the chip as far as the user of the chip is inter-
ested. Programming options, data formats, and control options should be summarized.

14.6.4 DC Specifications
This section communicates the power dissipation and required voltages for the chip to
correctly operate. The absolute maximum ratings should be stated for the following:

� Supply voltage
� Pin voltages
� Junction temperature

Chapter 14 Design Methodology and Tools656

The style of each I/O (i.e., TTL, CMOS, LVDS, ECL) should be summarized and
the following DC specifications should be given over the operating range (temperature
and voltage––i.e., mins and maxes):

� VIL and VIH for each input
� VOL and VIH for each output (at a given maximum drive current level)
� The input loading for each input
� Quiescent current
� Leakage current
� Power-down current (if applicable)
� Any other relevant voltages and currents

14.6.5 AC Specifications
The following timing specifications should be presented:

� Setup and hold times on all inputs
� Clock (and all other relevant inputs) to output delay times
� Other critical timing such as minimum pulse widths

This data should be tabulated in table form and supported by a timing diagram where
necessary. This is probably the most important section and an area where data provided
ahead of the chip fabrication will aid the board designer. Designs are frequently snagged—
for instance, when chip designers assume infinitely fast external memories and do not
allow enough time between outputs changing and the next rising edge of the clock.

14.6.6 Package Diagram
A diagram of the package with the pin names attached should be supplied.

14.6.7 Principles of Operation Manual
Although the data sheet provides enough data to familiarize a user of a particular chip
with the device, it is good practice to provide a Principles of Operation Manual for inter-
nal users that have to test the chip or build support systems.

14.6.8 User Manual
A User Manual should also be provided. This is designed for use outside the group that
designed the chip and can be a “cut down” version of the Principles of Operation Manual.

14.7 CMOS Physical Design Styles
This section is available in the online Web Enhanced chapter at www.cmosvlsi.com.

WEB
ENHANCED

14.8 Pitfalls and Fallacies 657

14.8 Pitfalls and Fallacies
Inadequate design flow
In the past, universities and small companies could build interesting chips using open-source

or inexpensive CAD tools. The MOSIS design rules provided a simple common denominator.

This is no longer practical in nanometer processes where the design rules are so complex that

industrial-strength DRC and extraction are necessary.

Insufficient verification
Synopsys found that 82% of design spins for chips with functional flaws were due to lack of

verification [Schutten03]. Another 47% of respins had incorrect specifications. And 14% had

errors in imported IP. This outlines the need for good specifications and a well-thought-out

verification plan. Verification is further covered in Chapter 15.

Inaccurate parasitic extraction
Parasitic extractions programs output reams of data relating to C and R values in a design.

Unless these are guaranteed by your vendor, it is prudent to do a small design and compare

the values with hand-calculated values. You can never be too careful when it comes to design-

ing a chip. When the chip comes back, compare a known path with what was predicted by the

tool set.

Exercises
14.1 What kind of RAM cell would you use to control a configurable logic block in an

FPGA? Design the cell and outline the reasons for your choice.

14.2 Explain the trade-offs between using a transmission gate or a tristate buffer to
implement an FPGA routing block.

14.3 Estimate the die cost of a 4 × 4 mm die, with Yw = 80% and Ypa = 98% for an 8-inch
wafer costing $2200 each. The die may be shrunk to 3.3 × 3.3 mm in a more
advanced process that costs $3000 per wafer. Is it worth moving to the new process
if the volume is large enough?

14.4 An FIR filter for a GSM receiver with sigma-delta converter as shown in Figure
14.8(b) has a single-bit input. To what structure do the multipliers degenerate? If
the coefficients are a single bit and a 288-tap filter has to operate at 13 MHz, what
architecture would you use for the overall design?

14.5 Sketch a stick diagram for a large inverter with an 80 pMOS transistor and 40
nMOS transistor. Fold the transistors so that no single transistor is wider than 20 .

14.6 Using the Sea of Gates structure from Figure 14.17(a), design the metallization for a
3-input NOR gate.

14.7 A fab house has a 180 nm process with a $500 cost per processed 8-inch wafer. If
you do the design yourself using open-source tools and the mask cost is $250K, esti-
mate the market size required to obtain 50% margin on a chip that is 3 mm on a
side.

This page intentionally left blank

15

659

Testing, Debugging,
and Verification

15.1 Introduction
While in real estate the refrain is “Location! Location! Location!” the comparable advice
in IC design should be “Testing! Testing! Testing!” For many chips, testing accounts for
more effort than does design.

Tests fall into three main categories. The first set of tests verifies that the chip per-
forms its intended function. These tests, called functionality tests or logic verification, are
run before tapeout to verify the functionality of the circuit. The second set of tests are run
on the first batch of chips that return from fabrication. These tests confirm that the chip
operates as it was intended and help debug any discrepancies. They can be much more
extensive than the logic verification tests because the chip can be tested at full speed in a
system. For example, a new microprocessor can be placed in a prototype motherboard to
try to boot the operating system. This silicon debug requires creative detective work to
locate the cause of failures because the designer has much less visibility into the fabricated
chip compared to during design verification. The third set of tests verify that every transis-
tor, gate, and storage element in the chip functions correctly. These tests are conducted on
each manufactured chip before shipping to the customer to verify that the silicon is com-
pletely intact. These are called manufacturing tests. In some cases, the same tests can be
used for all three steps, but often it is better to use one set of tests to chase down logic bugs
and another, separate set optimized to catch manufacturing defects.

In Section 14.5.2, we noted that the yield of a particular IC was the number of good
die divided by the total number of die per wafer. Because of the complexity of the manu-
facturing process, not all die on a wafer function correctly. Dust particles and small imper-
fections in starting material or photomasking can result in bridged connections or missing
features. These imperfections result in what is termed a fault. Later in the chapter, we will
examine a number of fault mechanisms. The goal of a manufacturing test procedure is to
determine which die are good and should be shipped to customers.

Testing a die (chip) can occur at the following levels:

� Wafer level

� Packaged chip level

� Board level

� System level

� Field level

Chapter 15 Testing, Debugging, and Verification660

By detecting a malfunctioning chip early, the manufacturing cost can be kept low. For
instance, the approximate cost to a company of detecting a fault at the various levels
[Williams86] is at least

� Wafer $0.01–$0.10

� Packaged chip $0.10–$1

� Board $1–$10

� System $10–$100

� Field $100–$1000

Obviously, if faults can be detected at the wafer level, the cost of manufacturing is
lower. In an extreme example, Intel failed to correct a logic bug in the Pentium floating-
point divider until more than 4 million units had shipped in 1994. IBM halted sales of
Pentium-based computers and Intel was forced to recall the flawed chips. The mistake and
lack of prompt response cost the company an estimated $450 million.

It is interesting to note that most failures of first-time silicon result from problems
with the functionality of the design; i.e., the chip does exactly what the simulator said it
would do, but for some reason (almost always human error) this functionality is not what
the rest of the system expects.

The remainder of this section will provide an overview of the processes involved in
logic verification, chip debug, and manufacturing test. Section 15.2 discusses the mechan-
ics of testing and test programs. Sections 15.3 through 15.5 address the principles behind
each phase of testing. If testing is not considered in advance, the manufacturing test can be
extremely time consuming and hence expensive. Some chips have even proved impossible
to debug because designers have so little visibility into the internal operation. Sections
15.6 and 15.7 focus on how to design chips to facilitate debug and manufacturing test at
the chip and board level. [Wang08b] offers an entire book dedicated to test.

15.1.1 Logic Verification
Verification tests are usually the first ones a designer might construct as part of the design
process. Does this adder add? Does this counter count? Does this state-machine yield the
right outputs each cycle? Does this modem decode data correctly?

In Section 14.4.1.3, we noted that verification tests were required to prove that a syn-
thesized gate description was functionally equivalent to the source RTL. Figure 15.1
shows that we may want to prove that the RTL is equivalent to the design specification at
a higher behavioral or specification level of abstraction. The behavioral specification might
be a verbal description, a plain language textual specification, a description in some high-
level computer language such as C, a program in a system-modeling language such as Sys-
temC, or a hardware description language such as VHDL or Verilog, or simply a table of
inputs and required outputs. Often, designers produce a golden model in one of the previ-
ously mentioned formats and it becomes the reference against which all other representa-
tions are checked. Functional equivalence involves running a simulator on the two
descriptions of the chip (e.g., one at the gate level and one at a functional level) and ensur-
ing that the outputs are equivalent at some convenient check points in time for all inputs
applied. This is most conveniently done in an HDL by employing a test bench; i.e., a wrap-
per that surrounds a module and provides for stimulus and automated checking. The most
detailed check might be on a cycle-by-cycle basis. Increasingly, verification involves real-
time or near real-time emulation in an FPGA-based system to confirm system-level

15.1 Introduction 661

performance in situ; i.e., in the actual system that
will use the end chip. This is recommended
because of the increasing level of complexity of
chips and the systems they implement. As an
example, in the area of wireless local area network
chips, without a real-time emulation system, it is
virtually impossible to simulate the unseen effects
of an unreliable channel with out-of-band
interferers.

You can check functional equivalence through
simulation at various levels of the design hierarchy.
If the description is at the RTL level, the behavior
at a system level may be able to be fully verified.
For instance, in the case of a microprocessor, you
can boot the operating system and run key pro-
grams for the behavioral description. However,
this might be impractical (due to long simulation
times) for a gate-level model and even harder for a
transistor-level model. The way out of this
impasse is to use the hierarchy inherent within a
system to verify chips and modules within chips.
That, combined with well-defined modular inter-
faces, goes a long way in increasing the likelihood
that a system composed of many VLSI chips will
be first-time functional.

The best advice with respect to writing func-
tional tests is to simulate as closely as possible the way in which the chip or system will be
used in the real world. Often, this is impractical due to slow simulation times and
extremely long verification sequences. One approach is to move up the simulation hierar-
chy as modules become verified at lower levels. For instance, you could replace the gate-
level adder and register modules in a video filter with functional models and then in turn
replace the filter itself with a functional model. At each level, you can write small tests to
verify the equivalence between the new higher-level functional model and the lower-level
gate or functional level. At the top level, you can surround the filter functional model with
a software environment that models the real-world use of the filter. For instance, you can
feed a carefully selected subsample of a video frame to the filter and compare the output of
the functional model with what the designer expected theoretically. You can also observe
the video output on a video frame buffer to check that it looks correct (by no means an
exhaustive test, but a confidence builder). Finally, if enough time is available, you can
apply all or part of the functional test to the gate level and even the transistor level if tran-
sistor primitives have been used.

Verification at the top chip level using an FPGA emulator offers several advantages
over simulation and, for that matter, the final chip implementation. Most noticeably, the
emulation speed can be near if not real time. This means that the actual analog signals (if
used) can be interfaced with the chip. Additionally, to assess system performance, you can
introduce fine levels of observation and monitoring that might not be included in the final
chip. For instance, you could include a bit-error rate circuit in a communication modem to
aid performance optimization.

Behavioral Specification

RTL Specification

Structural Specification

Physical Specification

=

=

=

Formal Verification
Test Vector Equivalence

Timing Analysis
Noise Analysis

Layout vs. Schematic
Power Analysis
DRC
ERC
Parasitic Extraction

FIGURE 15.1 Functional equivalence at various levels of abstraction

Chapter 15 Testing, Debugging, and Verification662

In most projects, the amount of verification effort greatly exceeds the design effort.
Remember the following statement, culled from many years of IC design experience,
whenever you are tempted to minimize verification effort to meet tight schedules: “If you
don’t test it, it won’t work! (guaranteed).”

15.1.2 Debugging
Many times, when a chip returns from fabrication, the first set of tests are run in a lab
environment, so you need to prepare for this event. You can begin by constructing a circuit
board that provides the following attributes:

� Power for the IC with ability to vary VDD and measure power dissipation

� Real-world signal connections (i.e., analog and digital inputs and outputs as
required)

� Clock inputs as required (it is helpful to have a stable variable-frequency clock
generator)

� A digital interface to a PC (either serial or parallel ports for slow data or PCI bus
for fast data interchanges)

You can write software routines to interface with the chip through the serial or paral-
lel port or the bus interface. The chip should have a serial UART port or some other inter-
face that can be used independently of the normal operation of the chip. The lowest level
of the software should provide for peeking (reading) and poking (writing) registers in the
chip. An alternate or complementary approach is to provide interfaces for a logic analyzer.
These are easily added to a PCB design in the form of multipinned headers. Figure 15.2
shows a typical test board, illustrating the zero insertion force (ZIF) socket for the chip (in
the center of the board), an area for analog circuitry interface (on the left), a set of headers
for logic analyzer connection (at the top and bottom) and a set of programmable power
supplies (on the right). In addition, an interface is provided for control by a serial port of a
PC (at the bottom left).

FIGURE 15.2 Typical test board

15.1 Introduction 663

You should start with a “smoke test.” This involves ramping the supply voltages from
zero to VDD while monitoring the current without any clocks running. For a fully static cir-
cuit, the current should remain at zero. Analog circuits will draw their quiescent current.

Following this, you can enable the clock(s); some dynamic current should be evident.
Beware that many CMOS chips appear to operate when the clock is connected but the
power supply is turned off because the clock may partially power the chip through the
input protection diodes on the input pads. If possible, you should initially run the clock at
reduced speed so that setup time failures are not the initial culprit in any debug operation.

In the case of a digital circuit, you should examine various registers for health using PC-
based peek and poke software. This checks the integrity of the signal path from the PC to
the chip. Often, designers place an ID in the register at address zero. Peeking at this register
proves the read path from the chip. If the chip registers are reset to a known state, the regis-
ters can be read sequentially and compared with the design values. In the case of the logic
analyzer, you can download the equivalent test pattern to exercise the chip. Frequently, these
patterns can be automatically generated from the verification test bench. Up to this point, no
functionality of the chip has been exercised apart from register reads and writes.

Where the chip has built-in self-test (see Sections 15.6 and 15.7), you can run the
commercial software that provides for this functionality over a boundary scan interface.
This type of system automatically runs a set of tests on the chip that completely verify the
correct operation of all gates and registers as defined by the original RTL description. If
this kind of a test interface was not used, you should pursue a manual effort in which the
functionality of the chip is checked from the bottom-up. Of course, if you are a gambler,
you can do a top-level test like running a piece of code or trying to boot the operating sys-
tem right away. Experience shows that this often does not work, usually because of prob-
lems with the test fixture, and so you must revert to the bottom-up method to prove that
one piece of the design works at a time.

If you detect anomalous behavior, you must go about debugging. The basic method is
to postulate a method of failure, then test the hypothesis. Debug is an art in itself, but
some pointers for sane debugging are as follows:

� Keep an annotated and dated logbook for all tests done.

� When postulating a cause for the bug and a test, do one change at a time and
observe the result: Changing many things and then seeing if they work will not
logically lead you to the bug and is commonly called the “shotgun approach.”

� Check everything two or three times; never assume anything unless it is measured
and logged in a notebook. Have someone independently check critical measure-
ments.

� Check signals and supply voltages at the pins of the IC; frequently, new test boards
have errors.

� Double-check the specified chip I/O and perform a continuity check from the IC
pins to expected places (i.e., test pins, supplies) on the board.

� Never disregard a possible reason for a bug, however crazy, unless you can prove it
isn’t the cause.

� Use freeze spray or a heat gun to cool down or heat up a circuit to check for tem-
perature problems.

� Check the state of any internal registers against that noted in the documentation.

� Evaluate the timing of any inputs and outputs with respect to the clock; often
setup or hold times can be violated in a new test setup.

Chapter 15 Testing, Debugging, and Verification664

� When a bug is discovered and corrected, hunt for other portions of the design that
might have a similar bug that hasn’t been detected yet. Where there is one rat,
there are many rats!

� Never assume anything––question everything––a slight touch of paranoia helps!!

[Agans06] cites nine “debugging rules” that bear repeating:

� Understand the system. If you are the designer, this should be self-evident. However,
if you have been assigned to the task of debugging, follow this point keenly.

� Make it fail. Find a way to elicit the bug. A repeatable method is preferable.

� Quit thinking and look. Propose a test and investigate. You can start to eliminate
possible sources of problems.

� Divide and conquer. Use hierarchy to eliminate known good parts of the system.

� Change one thing at a time. A very important rule.

� Keep an audit trail. No matter how good your memory is, a written account serves
as a memory jog and something for someone else to look at to propose approaches.

� Check the plug. Check the complete test structure. More problems are found in new
test harnesses than in the actual chip due to the level of verification used in each.

� Get a fresh view. Get a coworker involved. Take a break. Take a nap.

� If you didn’t fix it, it ain’t fixed. Problems do not mysteriously fix themselves. If you
find a problem, verify it with simulation to prove your hypothesis of the failure
mode.

After the chip is demonstrated to be operational, you can measure more subtle aspects
of the design such as performance (power, speed, analog characteristics). This involves
normal lab techniques of configure, measure, and record. Where possible, store all results
as computer readable results (i.e., stored images from digital oscilloscope and screen
dumps from logic analyzer) for communication with colleagues.

For the most part, if a digital chip simulates at the gate level and passes timing analy-
sis checks during design, it will do exactly the same in silicon. Possible deviations from the
simulated circuit occur in the following cases:

� Circuit is slower than predicted––fix—slow clock or raise VDD

� Circuit has a race condition—fix––heat with heat gun if a logic gate caused race

� Circuit has dynamic logic problems––fix––don’t do it again

� Gnarly crosstalk problems—fix––get better tools

� Wrong functionality––fix—do a better job of verification

With analog circuitry, a wide range of issues can affect performance over and above
what was simulated. These include power and ground noise, substrate noise, and tempera-
ture and process effects. However, you can employ the same basic debug approaches.

15.1.3 Manufacturing Tests
Whereas verification or functionality tests seek to confirm the function of a chip as a
whole, manufacturing tests are used to verify that every gate operates as expected. The
need to do this arises from a number of manufacturing defects that might occur during

15.1 Introduction 665

either chip fabrication or accelerated life testing (where the chip is stressed by over-voltage
and over-temperature operation). Typical defects include the following:

� Layer-to-layer shorts (e.g., metal-to-metal)

� Discontinuous wires (e.g., metal thins when crossing vertical topology jumps)

� Missing or damaged vias

� Shorts through the thin gate oxide to the substrate or well

These in turn lead to particular circuit maladies, including the following:

� Nodes shorted to power or ground

� Nodes shorted to each other

� Inputs floating/outputs disconnected

Tests are required to verify that each gate and register is operational and has not been
compromised by a manufacturing defect. Tests can be carried out at the wafer level to cull
out bad dies, or can be left until the parts are packaged. This decision would normally be
determined by the yield and package cost. If the yield is high and the package cost low
(i.e., a plastic package), then the part can be tested only once after packaging. However, if
the wafer yield was lower and the package cost high (i.e., an expensive ceramic package), it
is more economical to first screen bad dice at the wafer level. The length of the tests at the
wafer level can be shortened to reduce test time based on experience with the test sequence.

Apart from the verification of internal gates, I/O integrity is also tested, with the fol-
lowing tests being completed:

� I/O levels (i.e., checking noise margin for TTL, ECL, or CMOS I/O pads)

� Speed test

With the use of on-chip test structures described in Section 15.6, full-speed wafer
testing can be completed with a minimum of connected pins. This can be important in
reducing the cost of the wafer test fixture.

In general, manufacturing test generation assumes the function of the circuit/chip is
correct. It requires ways of exercising all gate inputs and monitoring all gate outputs.

Example 15.1

Consider testing the MIPS microprocessor from Chapter 1. Explain the difference
between the tests you would use for logic verification or silicon debug and the tests you
would use for manufacturing.

SOLUTION: Logic verification should test that each operation can be performed. For
example, a test program might exercise all of the instructions to demonstrate that each
one behaves as intended. Logic verification will not necessarily prove that the instruction
works for all possible addresses and data values. In contrast, manufacturing tests must
prove that every gate operates correctly. They ideally stimulate each gate to produce both
a 0 and a 1 to ensure the gate is not damaged. The manufacturing tests may be the only
tests applied to a microprocessor prior to it being placed in a system and used. Clearly, it
is a challenge to devise a set of tests that is both complete enough that customers receive
very few defective chips and short enough to keep testing economical.

Chapter 15 Testing, Debugging, and Verification666

15.2 Testers, Test Fixtures, and Test Programs
To test a chip after it is fabricated, you need a tester, a test fixture, and a test program.

15.2.1 Testers and Test Fixtures
A tester is a device that can apply a sequence of stimuli to a chip or system under test and
monitor and/or record the results of those operations. Testers come in various shapes and
sizes.

To test a chip, one or more of four general types of test fixtures may be required. These
are as follows:

� A probe card to test at the wafer level or unpackaged die level with a chip tester

� A load board to test a packaged part with a chip tester

� A printed circuit board (PCB) for bench-level testing (with or without a tester)
� A PCB with the chip in situ, demonstrating the system application for which the

chip is used

We will concentrate first on the cases where a general-purpose production tester is to
be used. Production testers are usually expensive pieces of equipment with configurable
I/O ports (drive current, output levels, input levels) and huge amounts of RAM behind
each test pin. The tester drives input pins from this memory on a cycle-by-cycle basis and
samples and stores the levels on output pins. Figure 15.3 shows a typical production tester.
In the background, you can see the four-bay cabinet holding the drive electronics. To the
right in the background is the controlling workstation. The test head is shown on the front
center. This is where the chip is placed in the load board to be tested.

FIGURE 15.3 The Teradyne Catalyst: A typical production tester (Photo: John Haddy,
Cisco Systems.)

15.2 Testers, Test Fixtures, and Test Programs 667

The probe card or load board for the device under test (DUT) is connected to the
tester, as shown in Figure 15.4. The test program is compiled and downloaded into
the tester and the tests are applied to the bare die or packaged chip. The tester samples the
chip outputs and compares the values with those provided by the test program. If there are
any differences, the chip is marked as faulty (with an ink dot) and the failing tests may be
displayed for reference and stored for later analysis. In the case of a probe card, the card is
raised, moved to the next die on the wafer, lowered, and the test procedure repeated. In
the case of a load board with automatic part handling, the tested part is removed from the
board and sorted into a good or bad bin. A new part is fed to the load board and the test is
repeated. In most cases, these procedures take a few seconds for each part tested.

The ability to vary the voltage and timing on a per-pin basis with a tester allows a process
known as “shmooing” to be carried out. For instance, you could sweep VDD from 3 V to 6
V on a 5 V part while varying the tester cycle time. This yields a graph called a shmoo plot
that shows the speed sensitivity of the part with respect to voltage. Another shmoo that is
frequently performed is to skew the timing on inputs with respect to the chip clock to look
for setup and hold variations. Examples of shmoo plots and their interpretations are given
in Section 15.4.

Testers can be very expensive, especially for high-frequency and/or analog/RF chips.
Tester usage is charged by time, so the shorter a test runs, the cheaper a part is to test.
Applying tests to check every node on the chip may be prohibitively costly, so some
designs face a trade-off between test cost and the fraction of defective chips that slip
through testing.

FIGURE 15.4 Tester load board in test head (Photo: John Haddy, Cisco Systems.)

Chapter 15 Testing, Debugging, and Verification668

Example 15.2

Suppose a $5 million tester has an expected useful life of two years before it becomes
inadequate to test faster next-generation parts. How much does the tester cost per
second?

SOLUTION: Dividing the tester cost by the number of seconds in two years gives
$0.08/second.

Testers are available that can be used to test an IC in a laboratory environment. They
mirror large production testers, but generally have less functionality (e.g., slower, less mem-
ory per pin, less expandability) and are markedly less expensive. A probe card that allows
wafer probing or a socketed load board is required for each design. A good logic analyzer
with a pattern generator and a socketed test board can also be used to test a chip. Some
groups effectively design their own logic analyzers by surrounding a chip with FPGAs and
using the logic and RAM within the FPGA to apply and observe test patterns.

15.2.2 Test Programs
The tester requires a test program (in verification and test, this is an overloaded term). This
program is normally written in a high-level language (for instance, the IMAGE language
used by Teradyne is based on C) that supports a library of primitives for a particular tester.
The test program specifies a set of input patterns and a set of output assertions. If an out-
put does not match the asserted value at the corresponding time, the tester will report an
error. Before the patterns and assertions are applied, the test program has to set up the var-
ious attributes of a tester such as the following:

� Set the supply voltages
� Assign mapping between stimulus file signal names and physical tester pins
� Set the pins on the tester to be inputs or outputs and their VOH /VIH levels
� Set the clock on the tester
� Set the input pattern and output assertion timing

And then on a per chip basis:

� Apply supply voltages
� Apply digital stimulus and record responses
� Check responses against assertions
� Report and log errors

A stimulus or pattern file can be derived from running a simulation on the design.
Special vector change descriptions (VCDs) are used to compact simulation results. An exam-
ple of a simple stimulus/pattern file for the case of a full adder follows:

15.2 Testers, Test Fixtures, and Test Programs 669

III OO
SC
UA
MR
 R

 ABC Y
0 000 00
1 001 10
2 010 10
3 011 01
4 100 10
5 101 01
6 110 01
7 111 11

The first line designates the signal directions and shows three inputs (I) and two out-
puts (O). Reading downward, the next five lines designate the signal names (A, B, C,
SUM, CARRY). Thereafter, each line designates a new test vector. The first column is the
test vector number. The next three columns are the binary value of the inputs and the fol-
lowing two columns are the expected output values. Each line represents a certain length
clock cycle that is asserted by the tester. Signals change after a specified period in relation
to an internal clock running at the required test period. Clock generation can be carried
out in two different ways. First, the clock can be treated like any other signal, in which
case, it takes two tester cycles to complete a single clock cycle: one for the clock low and
one for the clock high. Alternatively, a timing generator can be used, which allows the
clock rising edge (for instance) to be placed anywhere in the tester cycle. So for instance, if
the inputs are changed at the start of the tester cycle, the clock might be programmed to
rise at the middle of the cycle.

Each pin on the tester is connected to a function memory, which is used to either drive
an input or check an output at a DUT pin. Multiple bits may be required per pin to control
tristate input pins or mask outputs when they should be ignored.

The clock speed, Tc , is specified, as are supply voltage levels. The
time at which pins are driven and sampled is also specified on a pin-
by-pin basis (Ts). The format of the test data is usually chosen from
Non Return to Zero (NRZ), Return To Zero (RTZ), or other for-
mats such as Surround By Zero (SBZ).

15.2.3 Handlers
An IC handler is responsible for feeding ICs to a test fixture attached
to a tester. Chutes or trays containing packaged chips can be used to
gravity-feed the devices to the handler, which uses a variety of
mechanical means to pick the chips up and place them in the test
socket on the load board. The tester stimulus is then applied and
chips are binned depending on whether or not they passed the test. It
is possible to heat and cool a chuck to test the chip at temperature.
However, package-level testing is not normally carried out at temper-
ature because of the time it takes to temperature-cycle the chuck.

An example of a handler is shown in Figure 15.5. This is the NS-
6040 from Seiko-Epson. The body of the machine holds the
mechanical positioning equipment, while the upper central section

FIGURE 15.5 Photograph of an Epson NS-6040
IC handler (Photo: John Haddy, Cisco Systems.)

Chapter 15 Testing, Debugging, and Verification670

supports the test fixture. The light on top indicates a functioning or stopped machine and
is designed to be visible across a production floor where many machines might be operat-
ing. A screen at the top right provides status information to the operator. The unit has
wheels for easy movement, but also has firm footings, which are lowered when the
machine is in use.

Handlers add a constant time to the test process, typically around 1 second. Thus,
load boards and handlers are often constructed to deal with two or four chips at once to
reduce the cost of testing. Because a load board must be designed to fit to a given handler,
select the handler before starting design of the load board.

15.3 Logic Verification Principles
Figure 15.6(a) shows a combinational circuit with N inputs. To test this circuit exhaus-
tively, a sequence of 2N inputs (or test vectors) must be applied and observed to fully exer-
cise the circuit. This combinational circuit is converted to a sequential circuit with
addition of M registers, as shown in Figure 15.6(b). The state of the circuit is determined
by the inputs and the previous state. A minimum of 2N+M test vectors must be applied to
exhaustively test the circuit. As observed by [Williams83] more than two decades ago,

With LSI, this may be a network with N = 25 and M = 50, or 275 patterns, which is
approximately 3.8 × 1022. Assuming one had the patterns and applied them at an
application rate of 1 s per pattern, the test time would be over a billion years (109).

Clearly, exhaustive testing is infeasible for most systems. Fortunately, the number of
potentially nonfunctional nodes on a chip is much smaller than the number of states. The
verification engineer must cleverly devise test vectors that detect any (or nearly any) defec-
tive node without requiring so many patterns.

15.3.1 Test Vectors
Test vectors are a set of patterns applied to inputs and a set of expected outputs. Both logic
verification and manufacturing test require a good set of test vectors. The set should be

Combinational
Logic

Combinational
Logic

clk

n n

n n

m mRegisters

(a) (b)

FIGURE 15.6 The combinational explosion in test vectors

15.3 Logic Verification Principles 671

large enough to catch all the logic errors and manufacturing defects, yet small enough to
keep test time (and cost) reasonable.

Directed and random vectors are the most common types. Directed vectors are selected
by an engineer who is knowledgeable about the system. Their purpose is to cover the cor-
ner cases where the system might be most likely to malfunction. For example, in a 32-bit
datapath, likely corner cases include the following:

0x00000000 All zeros
0xFFFFFFFF All ones
0x00000001 One in the lsb
0x80000000 One in the msb
0x55555555 Alternating 0’s and 1’s
0xAAAAAAAA Alternating 1’s and 0’s
0x7A39D281 A random value

The circuit could be tested by applying all combinations of these directed vectors to the
various inputs. Directed vectors are an efficient way to catch the most obvious design
errors and a good logic designer will always run a set of directed tests on a new piece of
RTL to ensure a minimum level of quality.

Applying a large number of random or semirandom vectors is a surprisingly good way
to detect more subtle errors. The effectiveness of the set of vectors is measured by the fault
coverage, which is discussed in Section 15.5.6. Automatic test pattern generation tools are
good at producing high fault coverage for manufacturing test and are discussed in Section
15.5.7.

15.3.2 Testbenches and Harnesses
A verification test bench or harness is a piece of HDL code that is placed as a wrapper
around a core piece of HDL to apply and check test vectors. In the simplest test bench,
input vectors are applied to the module under test and at each cycle, the outputs are exam-
ined to determine whether they comply with a predefined expected data set. The expected
outputs can be derived from the golden model and saved as a file or the value can be com-
puted on the fly.

 Simulators usually provide settable break points and single or multiple stepping abili-
ties to allow the designer to step through a test sequence while debugging discrepancies.

15.3.3 Regression Testing
High-level language scripts are frequently used when running large testbenches, especially
for regression testing. Regression testing involves performing a suite of simulations to auto-
matically verify that no functionality has inadvertently changed in a module or set of mod-
ules. During a design, it is common practice to run a regression script every night after
design activities have concluded to check that bug fixes or feature enhancements have not
broken completed modules.

Example 15.3

Figure 14.11 showed a possible software radio architecture that used a combination of
an IQ conversion block and a multiplier-based multiprocessor. The following regres-
sion testing might be done:

Chapter 15 Testing, Debugging, and Verification672

Test IQ Conversion
 Test Upconverter
 Test NCO
 Test Read and Write of All Registers
 Test Phase Incrementer
 Test Phase Adder
 Test Sine ROM (Read Contents)
 Test Overall NCO at a set of frequencies
 Test Multiplier
 Test Downconverter
 Test NCO
 ...
 Test Multiplier
 ...
 Test Low Pass Filter
 ...
Test Microprocessor Memory Core
 Test Microprocessor
 Test ALU
 Test Instruction Decode
 Test Program Counter
 Test Register File Read/Write
 Exhaustive Instruction Test
 Test Memory Read/Write
Test Interprocessor Bus IO
Test IQ Conversion to Processor pathways
Test Overall Software Radio Functionality

Note the way in which the correctness of modules is slowly built up by verifying
lower-level models first. The low-level tests are gradually built up in complexity until
the complete functionality can be verified. At low levels, it is easier to exhaustively ver-
ify that logic is correct. For instance, we can verify that the sine ROM is in fact gener-
ating a sine wave for one frequency. We then use this knowledge to postulate that it
generates correct sine waves for all input frequencies when we verify at the levels above
the NCO. At the chip level, we assume that IQ conversion is correct for all combina-
tions of signal frequency and local oscillator frequency even though we may only check
a small subset. If we started at the top level and ran a simulation for a few frequencies,
we could never have confidence that the lower levels were correct. In addition, if there
is a problem, trying to locate the problem by debugging at the top level is futile. Run-
ning regression tests from the bottom up is designed to overcome this verification
nightmare.

15.3.4 Version Control
Combined with regression testing is the use of versioning, that is, the orderly management of
different design iterations. Unix/Linux tools such as CVS or Subversion are useful for this.

Example 15.4

In the software radio example, the regression testing halts at the ALU test in the exam-
ple given above. Working late, the design leader, Vanessa Eagleeye, examines the CVS

15.4 Silicon Debug Principles 673

history and discovers that Fred Codechanger has made an edit to the ALU design to
try a new adder during the day. She is able to revert the code to what was previously
working and then rerun the regression test and have a peaceful night’s sleep. Fred cor-
rects his mistake the next day and is advised to remember to run the regression verifica-
tion step before submitting such hurried edits.

15.3.5 Bug Tracking
Another important tool to use during verification (and in fact the whole design cycle) is a
bug-tracking system. Bug-tracking systems such as the Unix/Linux based GNATS allow
the management of a wide variety of bugs. In these systems, each bug is entered and the
location, nature, and severity of the bug noted. The bug discoverer is noted, along with the
perceived person responsible for fixing the bug.

Example 15.5

After Example 15.4, Vanessa enters a bug report describing the bug. She cites Fred as
the person responsible and the level as severe. The next day, Fred fixes the problem and
changes the bug status to fixed. The bug report is kept in the system, but does not
appear in any listing of outstanding bugs. It is kept to track the re-introduction of bugs,
as this might give managers an idea of a problem area in the design management.

Tracking the number of bugs can give you an idea of the rate at which a design is
converging toward a finished state. If the trend is downward, the design is converging.
On the other hand, an upward trend tends to indicate a design early in its verification
cycle.

15.4 Silicon Debug Principles
The area of basic digital debugging was introduced in Section 15.1.2. A major challenge in
silicon debugging is when the chip operates incorrectly, but you cannot ascertain the cause
by making measurements at the chip pins or scan chain outputs (see Section 15.6.2).

There are a number of techniques for directly accessing the silicon. First, specific sig-
nals can be brought to the top of the chip as probe points. These are small squares (5–10

m on a side) of top-level metal that connect to key points in the circuit that the designer
has had the foresight to include before debug. The overglass cut mask should specify a
hole in the passivation over the probe pads so the metal can be reliably contacted. Typical
of these kinds of test points might be internal bias points in linear circuits or perhaps key
points in a high-speed signal chain (be careful not to excessively load the circuit to be
probed). The exposed squares can be probed with a picoprobe (fine-tipped probe) in a fix-
ture under a microscope. During design, the load of the picoprobe has to be taken into
account by providing buffers if necessary. The Model 35 probe from GGB Industries
shown in Figure 15.7 has a capacitance of 50 fF, input resistance of 1.25 M , and fre-
quency response from DC to 26 GHz. It can probe down to a 10 × 10 m window.

The die can also be probed electrically or optically if mechanical contact is not feasi-
ble. An electron beam (ebeam) probe uses a scanning electron microscope to produce a

Chapter 15 Testing, Debugging, and Verification674

tightly focused beam of electrons to measure on-chip voltages. Similarly, Laser Voltage
Probing (LVP) [Lasserre99] involves shining a laser at a circuit and observing the reflected
light. The reflections are modulated by the electric fields so switching waveforms can be
deduced. However, the probing can be invasive; the stream of photons may disturb sensi-
tive dynamic nodes. Picosecond Imaging Circuit Analysis (PICA) [Knebel98] captures faint
light emission naturally produced by switching transistors and hence is noninvasive. Sili-
con is partially transparent to infrared light, so both LVP and PICA can be performed
through the substrate from the backside of a chip in a flip-chip package.

On a more coarse scale, infrared (IR) imaging can be used to examine “hot spots” in a
chip, which may be the source of problems (for instance, a resistive short between power
rails). There are also liquid crystal materials, which can be “painted on” to a die to indicate
temperature problems at a coarse resolution.

If the location of the fault is known, a Focused Ion Beam (FIB) can be used to cut wires
or lay new conductors down. Even with plastic-packaged parts, the plastic can be carefully
ground off and these repairs completed. The reason for this kind of tool is that normally in
any chip project, time is of the essence and FIB runs are quicker (and cheaper for a few
parts) than frequent mask changes. Laser cutting is also possible. Commercial providers
such as MEFAS offer these services.

Example 15.6

A short between VDD and GND has rendered a chip just back from tapeout nonfunc-
tional. The position of the fault is known and it can be corrected by a cut to the top
level metal. Several packaged parts are sent to the FIB house with a location from a
given fiducial mark and an accompanying plot of the position of the metal to be cut.
The FIB house exposes the die (i.e., by grinding a plastic package). The operator then
locates the cut position manually using a microscope and runs the FIB machine. The
modified packages are then returned to the designers, where hopefully they celebrate
the successful test of an otherwise useless chip.

FIGURE 15.7 GGB Industries Model 15 picoprobe (© 2009 GGB Industries,
reprinted with permission.)

15.4 Silicon Debug Principles 675

Debugging logic circuits will often involve extremely fast or novel circuits that are
largely analog in nature. In this case, it is advisable to have a model of the circuit in ques-
tion available in SPICE. Debugging analog circuits, as with purely digital circuits, involves
making an assertion and then trying to prove the assertion is correct. This can begin with
a SPICE simulation and then progress to silicon measurement.

Failures causes may be manufacturing, functional, or electrical. Manufacturing failures
occur when a chip has a defect or is outside of the parametric specifications. Debug can
reject chips with manufacturing problems, although circuits sensitive to weaknesses in the
manufacturing process can be changed to improve yield, as will be discussed in Section
15.6.5. Functional failures are logic bugs or physical design errors that cause the chip to
fail under all conditions. They arise from inadequate logic verification and are usually the
easiest to fix. Electrical failures occur when the chip is logically correct, but malfunctions
under certain conditions such as voltage, temperature, or frequency. Section 9.3 addressed
many causes of electrical failures. Some electrical failures can be so severe that they appear
as functional failures, while others occur rarely and are extremely difficult to reproduce and
diagnose.

So-called shmoo plots can help to debug electrical failures in silicon [Baker97]. A
shmoo plot is often made with voltage on one axis and speed on the other. The test vectors
are applied at each combination of voltage and clock speed, and the success of the test is
recorded. Often, only a set of vectors applicable to a particular module is applied to diag-
nose a problem in that module.

Figure 15.8 shows a shmoo from the Intel Atom microprocessor
[Gerosa09]. Dots in the light gray area indicate correct operation, while dif-
ferent letters indicate different failure modes. The chip works at 1.25 GHz at
0.75 V and at 2.5 GHz at 1.15 V.

The shmoo plots shown in Figure 15.9 illustrate a variety of conditions
[Josephson02]. A healthy normal chip should operate at increasing fre-
quency as the voltage increases. The brick wall pattern suggests that the chip
may be randomly initialized in one of two states, only one of which is correct.
For example, a register without a reset signal may randomly have an initial
state of 0 or 1. The wall pattern in which the chip fails to operate at any frequency above
or below a particular voltage can indicate charge sharing, coupling noise, or a race condi-
tion. The reverse speedpath behavior indicates a leakage problem in which a weakly held
node leaks to an invalid level before the end of the cycle. At higher voltage, the leakage is
exacerbated and appears at shorter clock periods. The floor is a variant on the leakage
problem where the part fails at low frequency independent of the voltage. A finger indi-
cates coupling problems dependent on the alignment of the aggressor and victim, where at
certain frequencies the alignment always causes a failure.

A shmoo can also plot operating speed against temperature. At cold temperature,
FETs are faster, have lower effective resistance, and have higher threshold voltages. A nor-
mal shmoo should show speed increasing as temperature decreases. Failures at low tem-
perature could indicate coupling or charge sharing noise exacerbated by faster edge rates.
Failures at high temperature could indicate excessive leakage or noise problems exacer-
bated by the lower threshold voltages. Walls at either temperature could indicate race con-
ditions where the path that wins the race varies with temperature.

FIGURE 15.8 Shmoo for Intel Atom
microprocessor (© IEEE 2009.)

Chapter 15 Testing, Debugging, and Verification676

Clock period in ns on the left, frequency increases going up
Voltage on the bottom, increase left to right

* indicates a failure

 1.0 * * * * * * 1.0 * * *
 1.1 * * * * * 1.1 * * *
 1.2 * * * * 1.2 * * *
 1.3 * * * 1.3 * * *
 1.4 * * 1.4 * * *
 1.5 * 1.5 * * *
 1.0 1.1 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4 1.5

Normal “Brick Wall”
Well-behaved shmoo Bistable

Typical speedpath Initialization

 1.0 * * * 1.0 * * * * *
 1.1 * * * 1.1 * * * *
 1.2 * * * 1.2 * * *
 1.3 * * * 1.3 * *
 1.4 * * * 1.4 *
 1.5 * * * 1.5 *
 1.0 1.1 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4 1.5

“Wall” “Reverse Speedpath”
Fails at a certain voltage Increase in voltage reduces frequency

Coupling, charge share, races Speedpath, leakage

 1.0 1.0
 1.1 1.1
 1.2 1.2 * * * *
 1.3 1.3 * *
 1.4 * * * * * * 1.4
 1.5 * * * * * * 1.5
 1.0 1.1 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4 1.5

“Floor” “Finger”
Works at high but not low frequency Fails at a specific point in the shmoo

Leakage Coupling

FIGURE 15.9 Shmoo plots with symptoms

15.5 Manufacturing Test Principles
As discussed in Section 14.5.2, integrated circuits have a yield of less than 100%. Figure
15.10 shows micrographs of some manufacturing defects.

The purpose of manufacturing test is to screen out most of the defective parts before
they are shipped to customers. Typical commercial products target a defect rate of
350–1000 defects per million (DPM) chips shipped. The customer then assembles

15.5 Manufacturing Test Principles 677

systems from the chips, tests the systems, and discards or repairs defective systems. A high
defect rate leads to unhappy customers.

A critical factor in all VLSI design is the need to incorporate methods of testing cir-
cuits. This task should proceed concurrently with architectural considerations and not be
left until fabricated parts are available (as is a recurring temptation to designers).

15.5.1 Fault Models
To deal with the existence of good and bad parts, it is nec-
essary to propose a fault model; i.e., a model for how faults
occur and their impact on circuits. The most popular
model is called the Stuck-At model. The Short Circuit/
Open Circuit model can be a closer fit to reality, but is
harder to incorporate into logic simulation tools.

15.5.1.1 Stuck-At Faults In the Stuck-At model, a faulty
gate input is modeled as a stuck at zero (Stuck-At-0, S-A-
0) or stuck at one (Stuck-At-l, S-A-l). This model dates
from board-level designs, where it was determined to be
adequate for modeling faults. Figure 15.11 illustrates how
an S-A-0 or S-A-1 fault might occur. These faults most
frequently occur due to gate oxide shorts (the nMOS gate
to GND or the pMOS gate to VDD) or metal-to-metal
shorts.

15.5.1.2 Short-Circuit and Open-Circuit Faults Other
mode l s i n c lude s t u c k - o p e n o r s h o r t e d mode l s
[Jayasumana91]. Two bridging or shorted faults are
shown in Figure 15.12. The short S1 results in an S-A-0

Metal1 Missing Pattern
(open at contact)

Spot DefectsMetal5 Blocked Etch
(patterning defect)

Spongy via2
(infant mortality)

Open DefectsMetal5 Film Particle
(bridging defect)

Metal1 Shelving

FIGURE 15.10 SEM images of manufacturing defects (Courtesy of Intel Corporation.)

SA1

SA0

Stuck-At-1
SA1 Fault

Stuck-At-0
SA0 Fault

FIGURE 15.11 CMOS stuck-at faults

Chapter 15 Testing, Debugging, and Verification678

fault at input A, while short S2 modifies the function
of the gate. It is evident that to ensure the most accu-
rate modeling, faults should be modeled at the transis-
tor level because it is only at this level that the
complete circuit structure is known. For instance, in
the case of a simple NAND gate, the intermediate
node between the series nMOS transistors is hidden by
the schematic. This implies that test generation should
ideally take account of possible shorts and open circuits
at the switch level [Galiay80]. Expediency dictates that
most existing systems rely on Boolean logic representa-
tions of circuits and stuck-at fault modeling.

A particular problem that arises with CMOS is
that it is possible for a fault to convert a combinational
circuit into a sequential circuit. This is illustrated in
Figure 15.13 for the case of a 2-input NOR gate in
which one of the transistors is rendered ineffective. If
nMOS transistor A is stuck open, then the function
displayed by the gate will be

Z = A + B + BZ (15.1)

where Z is the previous state of the gate. As another
example, if either pMOS transistor is missing, the
node would be arbitrarily charged (i.e., it might be
high due to some weird charging sequence) until one of

A

A C

C

B

B

D

D

S2

S1

S2

D

S1

C A B

FIGURE 15.12 CMOS bridging faults

B

A

A

Z

B

Z = ~(A|B)

Z

B

Z = ~(A|B) | (~B&Z′)

A

A

B

Open

Open

A B

Z

Short
to VDD

FIGURE 15.13 A CMOS open fault that causes sequential
faults

FIGURE 15.14 A defect that
causes static IDD current

15.5 Manufacturing Test Principles 679

the nMOS transistors discharged the node. Thereafter, it would remain at zero, barring
charge leakage effects.

It is also possible for transistors to exhibit a stuck-open or stuck-closed state. Stuck-
closed states can be detected by observing the static VDD current (IDD) while applying test
vectors. Consider the fault shown in Figure 15.14, where the drain connection on a
pMOS transistor in a 2-input NOR gate is shorted to VDD. This could physically occur if
stray metal (caused by a speck of dust at the photolithography stage) overlapped the VDD
line and drain connection as shown. If we apply the test vector 01 or 10 to the A and B
inputs and measure the static IDD current, we will notice that it rises to some value deter-
mined by size of the nMOS transistors.

15.5.2 Observability
The observability of a particular circuit node is the degree to which you can observe that
node at the outputs of an integrated circuit (i.e., the pins). This metric is relevant when
you want to measure the output of a gate within a larger circuit to check that it operates
correctly. Given the limited number of nodes that can be directly observed, it is the aim of
good chip designers to have easily observed gate outputs. Adoption of some basic design
for test techniques can aid tremendously in this respect. Ideally, you should be able to
observe directly or with moderate indirection (i.e., you may have to wait a few cycles)
every gate output within an integrated circuit. While at one time this aim was hindered by
the expense of extra test circuitry and a lack of design methodology, current processes and
design practices allow you to approach this ideal. Section 15.6 examines a range of meth-
ods for increasing observability.

15.5.3 Controllability
The controllability of an internal circuit node within a chip is a measure of the ease of set-
ting the node to a 1 or 0 state. This metric is of importance when assessing the degree of
difficulty of testing a particular signal within a circuit. An easily controllable node would
be directly settable via an input pad. A node with little controllability, such as the most
significant bit of a counter, might require many hundreds or thousands of cycles to get it to
the right state. Often, you will find it impossible to generate a test sequence to set a num-
ber of poorly controllable nodes into the right state. It should be the aim of good chip
designers to make all nodes easily controllable. In common with observability, the adop-
tion of some simple design for test techniques can aid in this respect tremendously. Mak-
ing all flip-flops resettable via a global reset signal is one step toward good controllability.

15.5.4 Repeatability
The repeatability of system is the ability to produce the same outputs given the same
inputs. Combinational logic and synchronous sequential logic is always repeatable when it
is functioning correctly. However, certain asynchronous sequential circuits are nondeter-
ministic. For example, an arbiter may select either input when both arrive at nearly the
same time. Testing is much easier when the system is repeatable. Some systems with asyn-
chronous interfaces have a lock-step mode to facilitate repeatable testing.

15.5.5 Survivability
The survivability of a system is the ability to continue function after a fault. For example,
error-correcting codes provide survivability in the event of soft errors. Redundant rows
and columns in memories and spare cores provide survivability in the event of manufactur-

Chapter 15 Testing, Debugging, and Verification680

ing defects. Adaptive techniques provide survivability in the event of process variation.
Some survivability features are invoked automatically by the hardware, while others are
activated by blowing fuses after manufacturing test.

15.5.6 Fault Coverage
A measure of goodness of a set of test vectors is the amount of fault coverage it achieves.
That is, for the vectors applied, what percentage of the chip’s internal nodes were checked?
Conceptually, the way in which the fault coverage is calculated is as follows. Each circuit
node is taken in sequence and held to 0 (S-A-0), and the circuit is simulated with the test
vectors comparing the chip outputs with a known good machine––a circuit with no nodes
artificially set to 0 (or 1). When a discrepancy is detected between the faulty machine and
the good machine, the fault is marked as detected and the simulation is stopped. This is
repeated for setting the node to 1 (S-A-1). In turn, every node is stuck (artificially) at 1
and 0 sequentially. The fault coverage of a set of test vectors is the percentage of the total
nodes that can be detected as faulty when the vectors are applied. To achieve world-class
quality levels, circuits are required to have in excess of 98.5% fault coverage. The Verifica-
tion Methodology Manual [Bergeron05] is the bible for fault coverage techniques.

15.5.7 Automatic Test Pattern Generation (ATPG)
Historically, in the IC industry, logic and circuit designers implemented the functions at the
RTL or schematic level, mask designers completed the layout, and test engineers wrote the
tests. In many ways, the test engineers were the Sherlock Holmes of the industry, reverse
engineering circuits and devising tests that would test the circuits in an adequate manner.
For the longest time, test engineers implored circuit designers to include extra circuitry to
ease the burden of test generation. Happily, as processes have increased in density and chips
have increased in complexity, the inclusion of test circuitry has become less of an overhead
for both the designer and the manager worried about the cost of the die. In addition, as tools
have improved, more of the burden for generating tests has fallen on the designer. To deal

with this burden, Automatic Test Pattern Generation (ATPG)
methods have been invented. The use of some form of
ATPG is standard for most digital designs.

Commercial ATPG tools can achieve excellent fault
coverage. However, they are computation-intensive and
often must be run on servers or compute farms with many
parallel processors. Some tools use statistical algorithms to
predict the fault coverage of a set of vectors without per-
forming as much simulation. Adding scan and built-in
self-test, as described in Section 15.6, improves the observ-
ability of a system and can reduce the number of test vec-
tors required to achieve a desired fault coverage.

15.5.8 Delay Fault Testing
The fault models dealt with until this point have neglected
timing. Failures that occur in CMOS could leave the func-
tionality of the circuit untouched, but affect the timing. For

A

A

A

A

Z

A

A

A

A

Z

Open

Open

A
Z

FIGURE 15.15 An example of a delay fault

15.6 Design for Testability 681

instance, consider the layout shown in Figure 15.15 for an inverter gate composed of par-
alleled nMOS and pMOS transistors. If an open circuit occurs in one of the nMOS tran-
sistor source connections to GND, then the gate would still function but with increased
tpdf. In addition, the fault now becomes sequential as the detection of the fault depends on
the previous state of the gate.

Delay faults may be caused by crosstalk [Paul02]. Delay faults can also occur more
often in SOI logic through the history effect. Software has been developed to model the
effect of delay faults and is becoming more important as a failure mode as processes scale.

15.6 Design for Testability
The keys to designing circuits that are testable are controllability and observability.
Restated, controllability is the ability to set (to 1) and reset (to 0) every node internal to
the circuit. Observability is the ability to observe, either directly or indirectly, the state of
any node in the circuit. Good observability and controllability reduce the cost of manufac-
turing testing because they allow high fault coverage with relatively few test vectors.
Moreover, they can be essential to silicon debug because physically probing internal signals
has become so difficult.

We will first cover three main approaches to what is commonly called Design for Test-
ability (DFT). These may be categorized as follows:

� Ad hoc testing
� Scan-based approaches
� Built-in self-test (BIST)

15.6.1 Ad Hoc Testing
Ad hoc test techniques, as their name suggests, are collections of ideas aimed at reducing
the combinational explosion of testing. They are summarized here for historical reasons.
They are only useful for small designs where scan, ATPG, and BIST are not available. A
complete scan-based testing methodology is recommended for all digital circuits. Having
said that, the following are common techniques for ad hoc testing:

� Partitioning large sequential circuits
� Adding test points
� Adding multiplexers
� Providing for easy state reset

A technique classified in this category is the use of the bus in a bus-oriented system
for test purposes. Each register has been made loadable from the bus and capable of being
driven onto the bus. Here, the internal logic values that exist on a data bus are enabled
onto the bus for testing purposes.

Frequently, multiplexers can be used to provide alternative signal paths during testing.
In CMOS, transmission gate multiplexers provide low area and delay overhead.

Any design should always have a method of resetting the internal state of the chip
within a single cycle or at most a few cycles. Apart from making testing easier, this also
makes simulation faster as a few cycles are required to initialize the chip.

Chapter 15 Testing, Debugging, and Verification682

In general, ad hoc testing techniques represent a bag of tricks developed over the years
by designers to avoid the overhead of a systematic approach to testing, as will be described
in the next section. While these general approaches are still quite valid, process densities
and chip complexities necessitate a structured approach to testing.

15.6.2 Scan Design
The scan-design strategy for testing has evolved to provide observability and controllability
at each register. In designs with scan, the registers operate in one of two modes. In normal
mode, they behave as expected. In scan mode, they are connected to form a giant shift regis-
ter called a scan chain spanning the whole chip. By applying N clock pulses in scan mode,
all N bits of state in the system can be shifted out and new N bits of state can be shifted in.
Therefore, scan mode gives easy observability and controllability of every register in the
system.

Modern scan is based on the use of scan registers, as shown in Figure 15.16. The scan
register is a D flip-flop preceded by a multiplexer. When the SCAN signal is deasserted,
the register behaves as a conventional register, storing data on the D input. When SCAN is
asserted, the data is loaded from the SI pin, which is connected in shift register fashion to
the previous register Q output in the scan chain.

For the circuit to load the scan chain, SCAN is asserted and CLK is pulsed eight times
to load the first two ranks of 4-bit registers with data. SCAN is deasserted and CLK is
asserted for one cycle to operate the circuit normally with predefined inputs. SCAN is then
reasserted and CLK asserted eight times to read the stored data out. At the same time, the

Scan Out

Scan In

Inputs Outputs
Logic
Cloud

Logic
Cloud

Q
D

CLK

SI

SCAN

F
op

F
op

F
op

F
op

F
op

F
op

F
op

F
op

F
op

F
op

F
op

F
op

F
op

FIGURE 15.16 Scan-based testing

15.6 Design for Testability 683

new register contents can be shifted in for the next test. Testing proceeds in this manner of
serially clocking the data through the scan register to the right point in the circuit, run-
ning a single system clock cycle and serially clocking the data out for observation. In this
scheme, every input to the combinational block can be controlled and every output can be
observed. In addition, running a random pattern of 1s and 0s through the scan chain can
test the chain itself.

Test generation for this type of test architecture can be highly automated. ATPG
techniques can be used for the combinational blocks and, as mentioned, the scan chain is
easily tested. The prime disadvantage is the area and delay impact of the extra multiplexer
in the scan register. Designers (and managers alike) are in widespread agreement that this
cost is more than offset by the savings in debug time and production test cost.

15.6.2.1 Parallel Scan You can imagine that serial scan chains can become quite long,
and the loading and unloading can dominate testing time. A fairly simple idea is to split
the chains into smaller segments. This can be done on a module-by-module basis or com-
pleted automatically to some specified scan length. Extending this to the limit yields an
extension to serial scan called random access scan [Ando80]. To some extent, this is similar
to that used inside FPGAs to load and read the control RAM.

The basic idea is shown in Figure 15.17. The figure shows a two-by-two register sec-
tion. Each register receives a column (column<m>) and row (row<n>) access signal along
with a row data line (data<n>). A global write signal (write) is connected to all registers.
By asserting the row and column access signals in conjunction with the write signal, any
register can be read or written in exactly the same method as a conventional RAM. The

Logic
Cloud

column<m>

Customized Register

CLK CLK

CLK CLK

row<n + 1>

write

write

data<n + 1>

column<m + 1>

data<n>
row<n>

write

CLK

data

column

row

D Q

F
lo

p

F
lo

p

F
lo

p

F
lo

p

F
lo

p

FIGURE 15.17 Parallel scan––basic structure

Chapter 15 Testing, Debugging, and Verification684

notional logic is shown to the right of the four registers. Implementing the logic required
at the transistor level can reduce the overhead for each register.

15.6.2.2 Scannable Register Design As we have seen, an ordinary flip-flop can be made
scannable by adding a multiplexer on the data input, as shown in Figure 15.18(a). Figure
15.18(b) shows a circuit design for such a scan register using a transmission-gate multi-
plexer. The setup time increases by the delay of the extra transmission gate in series with
the D input as compared to the ordinary static flip-flop shown in Figure 10.19(b). Figure
15.18(c) shows a circuit using clock gating to obtain nearly the same setup time as the
ordinary flip-flop. In either design, if a clock enable is used to stop the clock to unused
portions of the chip, care must be taken that always toggles during scan mode.

15.6.2.3 Other Scannable Elements
This section is available in the online Web Enhanced chapter at www.cmosvlsi.com.

15.6.3 Built-In Self-Test (BIST)
Self-test and built-in test techniques, as their names suggest, rely on augmenting circuits
to allow them to perform operations upon themselves that prove correct operation. These
techniques add area to the chip for the test logic, but reduce the test time required and
thus can lower the overall system cost. [Stroud02] offers extensive coverage of the subject
from the implementer’s perspective.

One method of testing a module is to use signature analysis [Frowerk77, Nadig77] or
cyclic redundancy checking. This involves using a pseudo-random sequence generator (PRSG)

WEB
ENHANCED

0

1

CLK

D

SI

SCAN

Q

D
φ

φ

φ φ

φ

φ

φφ

φ

X

Q

Q

Q
φ φ

(a) (b)

SCAN

SI

D
φ

X
Q

φ φ

SI

φs

φs

(c)

φ

φd

φd

φd

φs

SCAN

F
lo

p

FIGURE 15.18 Scannable flip-flops

15.6 Design for Testability 685

to produce the input signals for a section of combinational cir-
cuitry and a signature analyzer to observe the output signals.

A PRSG of length n is constructed from a linear feedback
shift register (LFSR), which in turn is made of n flip-flops con-
nected in a serial fashion, as shown in Figure 15.19(a). The
XOR of particular outputs are fed back to the input of the
LFSR. An n-bit LFSR will cycle through 2n–1 states before
repeating the sequence. LFSRs are discussed further in Section
11.5.4. They are described by a characteristic polynomial indicat-
ing which bits are fed back. A complete feedback shift register
(CFSR), shown in Figure 15.19(b), includes the zero state that
may be required in some test situations [Wang86]. An n-bit
LFSR is converted to an n-bit CFSR by adding an n – 1 input
NOR gate connected to all but the last bit. When in state
0…01, the next state is 0…00. When in state 0…00, the next
state is 10…0. Otherwise, the sequence is the same. Alterna-
tively, the bottom n bits of an n + 1-bit LFSR can be used to
cycle through the all zeros state without the delay of the NOR
gate.

A signature analyzer receives successive outputs of a combinational logic block and
produces a syndrome that is a function of these outputs. The syndrome is reset to 0, and
then XORed with the output on each cycle. The syndrome is swizzled each cycle so that a
fault in one bit is unlikely to cancel itself out. At the end of a test sequence, the LFSR
contains the syndrome that is a function of all previous outputs. This can be compared
with the correct syndrome (derived by running a test program on the good logic) to deter-
mine whether the circuit is good or bad. If the syndrome contains enough bits, it is
improbable that a defective circuit will produce the correct syndrome.

15.6.3.1 BIST The combination of signature analysis and the scan technique creates a
structure known as BIST—for Built-In Self-Test or BILBO—for Built-In Logic Block
Observation [Koenemann79]. The 3-bit BIST register shown in Figure 15.20 is a scan-
nable, resettable register that also can serve as a pattern generator and signature analyzer.
C[1:0] specifies the mode of operation. In the reset mode (10), all the flip-flops are syn-
chronously initialized to 0. In normal mode (11), the flip-flops behave normally with
their D input and Q output. In scan mode (00), the flip-flops are configured as a 3-bit
shift register between SI and SO. Note that there is an inversion between each stage. In
test mode (01), the register behaves as a pseudo-random sequence generator or signature
analyzer. If all the D inputs are held low, the Q outputs loop through a pseudo-random
bit sequence, which can serve as the input to the combinational logic. If the D inputs are
taken from the combinational logic output, they are swizzled with the existing state to
produce the syndrome. In summary, BIST is performed by first resetting the syndrome in
the output register. Then both registers are placed in the test mode to produce the
pseudo-random inputs and calculate the syndrome. Finally, the syndrome is shifted out
through the scan chain.

Various companies have commercial design aid packages that automatically replace
ordinary registers with scannable BIST registers, check the fault coverage, and generate
scripts for production testing. As an example, on a WLAN modem chip comprising
roughly 1 million gates, a full at-speed test takes under a second with BIST. This comes
with roughly a 7.3% overhead in the core area (but actually zero because the design was

Q[0] Q[1] Q[2]

CLK

f(x) = 1 + x + x3
(a)

Q[0] Q[1] Q[2]

CLK

(b)

F
lo

p

F
lo

p

F
lo

p

F
lo

p

F
lo

p

F
lo

p

FIGURE 15.19 Pseudo-random sequence generator

Chapter 15 Testing, Debugging, and Verification686

pad limited) and a 99.7% fault coverage level. The WLAN modem parts designed in this
way were fully tested in less than ten minutes on receipt of first silicon. This kind of test
method is incredibly valuable for productivity in manufacturing test generation.

15.6.3.2 Memory BIST On many chips, memories account for the majority of the transis-
tors. A robust testing methodology must be applied to provide reliable parts. In a typical
MBIST scheme, multiplexers are placed on the address, data, and control inputs for the
memory to allow direct access during test. During testing, a state machine uses these
multiplexers to directly write a checkerboard pattern of alternating 1s and 0s. The data is
read back, checked, then the inverse pattern is also applied and checked. ROM testing is
even simpler: The contents are read out to a signature analyzer to produce a syndrome.

15.6.3.3 Other On-Chip Test Strategies On-chip speeds are usually so high that directly
observing internal behavior for testing can be difficult or impossible. Designers have
included on-chip logic analyzers and oscilloscopes to deal with this problem
[Weinlader00, Lee06, Noguchi07]. Such systems typically require a trigger signal to ini-
tiate data collection, a high speed timing generator, analog or digital sampling, and a
buffer to store the results until they can be off-loaded at lower speed. A drawback is that
the nodes to be observed must be selected at design time, and these may not be the prob-
lem circuits. Nevertheless, probing major busses and critical analog/RF nodes can be help-
ful. Also, on-chip scopes have been used to characterize power supply noise [Alon05,
Naffziger06] and clock jitter [Nose06].

1

0

D[0] D[1] D[2]

Q[0] Q[1]

Q[2] / SO
SI

C[1]
C[0]

(a)

(b)

PRSG
Logic
Cloud

Signature
Analyzer

F
lo

p

F
lo

p

F
lo

p

MODE
Scan
Test
Reset
Normal

C[1]
0
0
1
1

C[0]
0
1
0
1

FIGURE 15.20 BIST (a) 3-bit register, (b) use in a system

15.6 Design for Testability 687

Analog/digital converter testing requires real-time
access to the digital output of the ADC. Providing parallel
digital test ports by reassigning pins on the chip I/O can
facilitate this testing. If this is impossible, a “capture RAM”
on chip can be used to capture results in real-time and then
the contents can be transferred off-chip at a slower rate for
analysis.

If both ADCs and DACs are present, a loopback strat-
egy can be employed, as shown in Figure 15.21. Both ana-
log and digital signals can loop back. Communication and
graphics systems frequently have I/O systems that can be
configured as shown. It is often worthwhile to add a DAC
and an ADC to a system to allow a level of analog self-test.

Providing on-chip debug circuitry involves quite a bit of imagination and forethought
in terms of what might go wrong. It is often called “defensive design.” Today, transistor
counts and routing resources make it possible to include very sophisticated debug tools
provided thought is given to the matter.

15.6.4 IDDQ Testing
Bridging faults were introduced in Section 15.5.1.2. A method of testing for bridging
faults is called IDDQ test (VDD supply current Quiescent) or supply current monitoring
[Acken83, Lee92]. This relies on the fact that when a CMOS logic gate is not switching,
it draws no DC current (except for leakage). When a bridging fault occurs, then for some
combination of input conditions, a measurable DC IDD will flow. Testing consists of
applying the normal vectors, allowing the signals to settle, and then measuring IDD. As
potentially only one gate is affected, the IDDQ test has to be very sensitive. In addition,
to be effective, any circuits that draw DC power such as pseudo-nMOS gates or analog
circuits have to be disabled. Dynamic gates can also cause problems. As current measuring
is slow, the tests must be run slower (of the order of 1 ms per vector) than normal, which
increases the test time.

IDDQ testing can be completed externally to the chip by measuring the current
drawn on the VDD line or internally using specially constructed test circuits. This tech-
nique gives a form of indirect massive observability at little circuit overhead. However, as
subthreshold leakage current increases, IDDQ testing ceases to be effective because varia-
tions in subthreshold leakage exceed currents caused by the faults.

15.6.5 Design for Manufacturability
Circuits can be optimized for manufacturability to increase their yield. This can be done in
a number of different ways.

15.6.5.1 Physical At the physical level (i.e., mask level), the yield and hence manufactur-
ability can be improved by reducing the effect of process defects. The design rules for par-
ticular processes will frequently have guidelines for improving yield. The following list is
representative:

� Increase the spacing between wires where possible––this reduces the chance of a
defect causing a short circuit.

Data
DAC

Test

ADC

Analog
Loopback

To Wrapper

Digital
Loopback

FIGURE 15.21 Analog and digital loopback

Chapter 15 Testing, Debugging, and Verification688

� Increase the overlap of layers around contacts and vias––this reduces the chance
that a misalignment will cause an aberration in the contact structure.

� Increase the number of vias at wire intersections beyond one if possible––this
reduces the chance of a defect causing an open circuit.

Increasingly, design tools are dealing with these kinds of optimizations automatically.

15.6.5.2 Redundancy Redundant structures can be used to compensate for defective com-
ponents on a chip. For example, memory arrays are commonly built with extra rows. Dur-
ing manufacturing test, if one of the words is found to be defective, the memory can be
reconfigured to access the spare row instead. Laser-cut wires or electrically programmable
fuses can be used for configuration. Similarly, if the memory has many banks and one or
more are found to be defective, they can be disabled, possibly even under software control.

15.6.5.3 Power Elevated power can cause failure due to excess current in wires, which in
turn can cause metal migration failures. In addition, high-power devices raise the die tem-
perature, degrading device performance and, over time, causing device parameter shifts.
The method of dealing with this component of manufacturability is to minimize power
through design techniques described elsewhere in this text. In addition, a suitable package
and heat sink should be chosen to remove excess heat.

15.6.5.4 Process Spread We have seen that process simulations can be carried out at dif-
ferent process corners. Monte Carlo analysis can provide better modeling for process
spread and can help with centering a design within the process variations.

15.6.5.5 Yield Analysis When a chip has poor yield or will be manufactured in high vol-
ume, dice that fail manufacturing test can be taken to a laboratory for yield analysis to
locate the root cause of the failure. If particular structures are determined to have caused
many of the failures, the layout of the structures can be redesigned. For example, during
volume production ramp-up for the Pentium microprocessor, the silicide over long thin
polysilicon lines was found to crack and raise the wire resistance [Needham98]. This in
turn led to slower-than-expected operation for the cracked chips. The layout was modified
to widen polysilicon wires or strap them with metal wherever possible, boosting the yield
at higher frequencies.

15.7 Boundary Scan
Up to this point we have concentrated on the methods of testing individual chips. Many
system defects occur at the board level, including open or shorted printed circuit board
traces and incomplete solder joints. At the board level, “bed-of-nails” testers historically
were used to test boards. In this type of a tester, the board-under-test is lowered onto a set
of test points (nails) that probe points of interest on the board. These can be sensed (the
observable points) and driven (the controllable points) to test the complete board. At the
chassis level, software programs are frequently used to test a complete board set. For
instance, when a computer boots, it might run a memory test on the installed memory to
detect possible faults.

The increasing complexity of boards and the movement to technologies such as sur-
face mount technologies (with an absence of throughboard vias) resulted in system design-

15.8 Testing in a University Environment 689

ers agreeing on a unified scan-based methodology called
boundary scan for testing chips at the board (and system)
level. Boundary scan was originally developed by the Joint
Test Access Group and hence is commonly referred to as
JTAG. Boundary scan has become a popular standard inter-
face for controlling BIST features as well.

The IEEE 1149 bounda r y s c an a rch i t e c tu re
[IEEE1149.1-01, Parker03] is shown in Figure 15.22. All of
the I/O pins of each IC on the board are connected serially in
a standardized scan chain accessed through the Test Access
Port (TAP) so that every pin can be observed and controlled
remotely through the scan chain. At the board level, ICs
obeying the standard can be connected in series to form a
scan chain spanning the entire board. Connections between
ICs are tested by scanning values into the outputs of each
chip and checking that those values are received at the inputs
of the chips they drive. Moreover, chips with internal scan
chains and BIST can access those features through boundary
scan to provide a unified testing framework.

Details of boundary scan operation are available in the
online Web Enhanced chapter at www.cmosvlsi.com.

15.8 Testing in a University Environment
Industry environments are usually well-funded, and the appropriate testability tools are
available to ensure a product-grade test effort. But what do you do in a university environ-
ment when the infrastructure might not be quite as affluent as in the industry setting? Not
only may test tools be unavailable, but also the very act of building a test board can be a
daunting extra amount of work on top of the chip design. The following are some tips that
might help in this situation.

Taking the time to include circuitry to aid in testing on the chip is usually much easier
than adding it at the board level. For a start, the integrated environment available for most
IC design flows allows the designer to simulate the test circuitry. So, while it might seem
superfluous to the task at hand, including test circuitry can save a huge amount of effort
after the chip returns. Moreover, on-chip circuitry can often test at speeds that are impos-
sible off-chip without extremely expensive production test machines. The main point is to
think ahead.

Boundary scan and BIST greatly simplifies testing. If the chip has a standard
boundary scan interface, it can be tested from a PC using a commercial boundary scan
controller. For example, the Corelis NetUSB-1149.1/E can drive the scan chains at up
to 80 MHz.

In the absence of BIST, there are several ways to test a chip. One is to breadboard or
wirewrap a test board with switches for inputs and LEDs for outputs. This is tedious for
all but the simplest chips. A custom-printed circuit board test fixture is even more labor-
intensive, but often necessary for high-performance research chips. Another strategy is to
use a logic analyzer with pattern generator. This approach requires a specialized test fixture
to hold the chip and often has a steep learning curve for students, but it can perform tests
at tens to hundreds of MHz. An increasingly popular method of testing digital chips is to

WEB
ENHANCED

Serial Data In

Serial Data Out

Package Interconnect

I/O Pad and
Boundary Scan

CHIP A

CHIP B CHIP C

CHIP D

FIGURE 15.22 Boundary scan architecture

Chapter 15 Testing, Debugging, and Verification690

design a test board that includes a large FPGA. The FPGA can drive test patterns to the
chip under test and can store or analyze the responses. Figure 15.23 shows a typical setup.

DUT
Clocks

FPGA

Programmable
Power

Digital
Inputs

Digital
Outputs

DAC
Clock

ADC
Clock

Power Control

Main Power Supply

Analog
Out

Analog
In

PC
Interface

FPGA Power

LPF LPFDAC ADC

Variable
Power
Supplies

FIGURE 15.23 FPGA-assisted testing

15.9 Pitfalls and Fallacies
The following “war stories” are collected from real products at a wide variety of companies and

published with permission, often under the condition of anonymity. They are presented to il-

lustrate some of the pitfalls that can happen to smart people who are dealing with complex

systems on a tight schedule. The skilled engineer learns from these mistakes; in most cases,

the company extended their verification flow to ensure that similar problems would be caught

before wreaking havoc on future products. Could one of these happen to you?

A product in the field hangs unpredictably
A microprocessor had been in the field for several years when reports began arriving from ma-

jor customers that certain programs would cause the system to hang at unpredictable times

with intervals of hours to days. The manufacturer appointed a tiger team to resolve the error.

The hang rate proved to be insensitive to power supply voltage, operating temperature, and

clock rate. It was observed on all versions of the chip regardless of foundry, manufacturing

technology, or motherboard. The programs that failed all involved a mix of floating point and

integer operations, not just integer codes.

15.9 Pitfalls and Fallacies 691

After several months of work, the issue was isolated to a particular unit in the processor.

By this point, 30 engineers were involved in chasing the problem. Picoprobing showed that

when the hang occurred, an instruction was left stuck in the pipeline waiting to issue. A logic

simulation of the RTL is much slower than running the actual code, but an engineer developed

a simple test case that could trigger the hang on real hardware in a matter of seconds, and thus

it could trigger the failure in simulation in a practical amount of time. Simulations showed that

the RTL ran flawlessly, suggesting the error involved a circuit that did not match the RTL.

On this processor, the circuits had been verified against the RTL using a technique called

“shadow-mode simulation.” A “circuit understanding” tool parsed the transistor-level netlist

into gates and identified the logic function of each gate. Circuits were verified to match the RTL

by replacing a module of the RTL with the corresponding extracted circuit and simulating to

check that the system produced identical results as the original RTL. The simulation is time-

consuming, so each module is typically checked over tens of thousands of cycles, rather than

the billions of cycles used in primary RTL verification.

A shadow-mode simulation using circuits from the failing unit still ran flawlessly. However,

an engineer observed that a long wire crossing a large schematic was driven from both ends to

reduce the RC delay. The signals X1 and X2 driving each end were intended to be identical

(Figure 15.24). The engineer experi-

mented with splitting the wire and

checking that both drivers produced

identical results, and on certain test

cases they did not. This led to the wire

experiencing contention and being

driven to an indeterminate logic value. The invalid result propagated through other logic and

hung the processor. Unfortunately, the circuit-understanding tool had incorrectly determined

that the logic for the two ends was identical and had never detected the error. Even if the tool

had been correct, the original test cases never would have exercised the patterns that caused

the drivers to produce different results. A simple modification to the driver fixed the problem,

but many units were already in the field. Fortunately, a software patch was developed to pre-

vent the operations that caused the hang from ever being issued.

Hanging is a serious problem, but not as severe as unknowingly calculating the wrong an-

swer. After the problem was corrected, engineers spent several more weeks proving to cus-

tomers that the failure mode would hang the machine but could never result in an incorrect

calculation.

To avoid repeating this problem in the future, engineers have turned to formal verification

tools that prove that RTL and schematics are equivalent in their Boolean function. Such tools

are not susceptible to incomplete test patterns. However, the tools are often expensive, propri-

etary, and difficult to use.

A product fails after the manufacturing process matures
A team designing a data communications product was comfortable with a particular micro-

processor that was at the end of its production run. The team negotiated to order several thou-

sand units of the discontinued microprocessor before production was shut down. The data

communications product became successful and was shipped in large quantity. After it had

been in the field for some time, major customers reported that the product would crash in

large networks. These customers included large financial, government, and Internet service

provider organizations who were adversely affected by the crashes. It took the data communi-

cations company weeks to isolate the problem to hanging of the microprocessor, and then a

team of engineers at the microprocessor company began investigating the issue.

X1 X2
Long Wire

FIGURE 15.24 Long wire driven from both ends

Chapter 15 Testing, Debugging, and Verification692

The microprocessor team investigated potential signal and power supply integrity issues.

Although no signal integrity problems were apparent, a shmoo plot showed unusual sensitivity

of minimum clock period to supply voltage. An engineer had recently read the application note

for the power regulator on the system board and had learned that it had a propensity for os-

cillation if not properly bypassed. The system board lacked the bypass capacitors recommend-

ed in the application note, so the engineer wrote a memo to the product manager suggesting

a change to the board. The memo was misinterpreted as a solution to the problem and cus-

tomers were informed that a fix was on its way. Unfortunately, further testing showed that by-

passing the regulator did not fix the crashes.

When the system crashed, it wrote its state to a core file. An engineer began reading a hexa-

decimal dump of the file and noticed a pattern that led to solving the crash. The pattern was

associated with simultaneous access to many banks in an eight-way associative instruction

cache. The cache had fuses associated with each bank, so banks containing bad blocks could

be disabled during manufacturing test. During original product debug, the manufacturing pro-

cess was relatively immature and most processors only had five operational cache banks.

However, the processors manufactured at the end of the production run were built on a more

mature process and often had all eight banks functional. Simultaneous access to all the banks

tickled a signal integrity problem, resulting in power supply droop from excessive IR drops

caused by poor contacts to the VDD plane. The solution was a software change to disable three

of the banks at system startup.

Better power supply analysis is performed to avoid repeating this problem.

A wasted spin
A microprocessor was taped out and came back nearly fully operational. Minor changes were

made to the layout and documentation was developed; then a second revision (colloquially

called a second spin of the chip) was taped out. The second revision came back completely non-

functional, with a short between power and ground. Optical inspection while manufacturing

the polysilicon layer showed that there was no field oxide on the chip.

Inspection of the masks showed that the active area mask specified active area (i.e., diffu-

sion) for the entire chip rather than just where transistors belonged. The layout tool assigned

each layer––such as active area or metal1––a unique number. However, although the layout

for active area layer was correct, the mask did not appear to match the active layer.

Layout documentation had been annotated on an unused layer by drawing rectangles and

text to indicate functional blocks. A larger rectangle defined the entire chip area. Careful trac-

ing of the mask-generation software found that the “unused” layer had been used for active

area many years ago and that the documentation rectangles were merged with the true active

area to form a blob of active covering the entire chip.

Another microprocessor from a different vendor also failed when it was first built. Visual

inspection of the die showed that the entire cache was missing. The cache had been removed

from the design database to speed up final verification because it had already been checked

separately. An engineer neglected to put it back in before tapeout.

Both of these wasted fabrication runs could have been avoided by using more rigorous ver-

ification methods at both the design and mask fabrication facilities. Validation of dataset size

by the designer would have caught the missing geometries. Use of the industry standard mask

database inspection tools would have caught the error after mask build. Although in the past,

fabrication of a modest number of parts for testing was a small part of the design cost, with

the escalation of mask and wafer fabrication costs, these mistakes can be a multimillion-dollar

error. The extra time to market has a large opportunity cost as well.

15.9 Pitfalls and Fallacies 693

At high voltage, a chip only operates at low frequency
While booting the operating system during silicon debug, a microprocessor operated as expect-

ed at low voltage. At high voltage, the part only functioned at low frequency. The high-voltage

roof is an indication of a potential coupling problem in which the coupling is exacerbated by

the fast edge rates associated with high-voltage operation. Test cases revealed that the prob-

lem resulted from incorrect operation of the register file when certain instructions executed.

When the designers inspected the scan latches, they found that the correct 0 value was sent

to the register file to write, but that an incorrect 1 was read. This indicated that either read or

write operation was failing at high voltage. Trying one operation at high voltage and the other

at low voltage proved the problem was in the write path.

A schematic of the register file write circuitry is shown in Figure 15.25. The register file uses

predischarged write bitlines that are conditionally pulled high, depending on the data. The ap-

propriate cell is written by turning on the corresponding write access transistor. The register

cell is intentionally unstable so that the value on the bitline can overpower the cell and write

the appropriate value. A weak keeper holds the metal2 bitline low when writing a 0. However,

the register file is large and the keeper is at the opposite end from the data transistor. The re-

sistance of the long, thin wire further reduces the effectiveness of the keeper against noise on

the bitline.

When the neighboring bitlines switch high, they couple onto the victim line and tend to pull

it high. The circuit fails if the aggressors introduce too much coupling noise. At high voltage, the

aggressor drivers are stronger and cause a momentary glitch on the victim. At low frequency, the

keeper is sufficient to restore the victim to a low level.

The coupling problem had been flagged during design by an automated noise-checking tool.

However, the tool is conservative and the area of the register file would have increased signif-

icantly if the bitlines were spaced far enough apart to satisfy the tool. Therefore, the designer

checked for excessive coupling with a SPICE simulation. The simulation apparently did not

properly model the combination of circumstances that caused the failure. A second engineer

cross-checked all circuits that waived the noise-checker warning, but also did not discover the

excessive coupling. The problem was solved by placing a second keeper near the write data

transistor to fight against the coupling.

Another funny shmoo
During silicon debug, a microprocessor cache only functioned correctly over the peculiar range

of voltages and frequencies shown in the shmoo1 in Figure 15.26. Test code exercising the

1A shmoo of this type is sometimes called a flying saucer.

Long M2 Write Bitline (victim)

Weak
Keeper

Predischarge

Off

Aggressor Bitline

Aggressor Bitline

Register Cell

Write Access Transistor

Off
On

Write Data

FIGURE 15.25 Register file write circuitry

Chapter 15 Testing, Debugging, and Verification694

cache revealed that failures were caused by bad data being read from the cache. Scan isolated

the problem to a dynamic multiplexer choosing one of the global bitlines, as shown in Figure

15.27.

The multiplexer inputs were the NORs of dynamic metal3 global bitlines and corresponding

select signals. The metal4 select lines were early and did not need to be dynamic, but were im-

plemented as dynamic nodes anyway. All of the

transistors in the dynamic multiplexer were sup-

posed to remain OFF in this particular test case,

leaving the multiplexer output high.

One input of the multiplexer had a low value

on the global bitline, but was not selected, as

shown. Therefore, the transistor should have

been OFF. Nevertheless, the output of the multi-

plexer incorrectly discharged. One neighbor of

the select line was ground; the other fell low.

Coupling from a single neighbor is generally not

enough to cause noise failure. However, many

global bitlines ran over the top of the select line

and also fell low. Laser voltage probing showed

FIGURE 15.26 Flying saucer shmoo

Off

Off

Off

Off

Off

Select Line (M4) 1

Global Bitline (M3) 0

FIGURE 15.27 Dynamic bitline multiplexer

15.9 Pitfalls and Fallacies 695

that the select line was incorrectly pulled low, apparently from coupling caused by these fall-

ing bitlines as well as the neighbor line. The odd shape of the shmoo happened because the

failures only occurred when the neighbor and overhead lines both fell at about the same time;

otherwise, the keeper on the select line was strong enough to recover from one noise event be-

fore the other arrived. Because the bitline and control paths were different, the noise events

only happened simultaneously for certain voltages.

Noise analysis tools usually check only neighbors, and the single switching neighbor was

not sufficient to trigger an error. In this circumstance, so many global bitlines ran over the top

of the select wire that their coupling could not be neglected. The problem was fixed by con-

verting the control line into a static signal more resistant to coupling noise. A better noise an-

alyzer could have considered coupling from neighbors above and below, especially on dynamic

nets. However, it is difficult to extract information about such orthogonal neighbors because

they are often drawn at different levels of the layout hierarchy. Moreover, assuming all neigh-

bors switch in the worst possible direction is usually pessimistic for long wires. Nevertheless,

such a data-dependent failure mechanism is a source of nightmares for designers.

Incorrect operation at low temperature
A floating-point coprocessor was tested by running the LINPACK benchmark. The benchmark

performs a series of floating-point operations and generates a checksum to verify the result.

The chip would occasionally produce the wrong checksum. One of the engineers heated the

coprocessor by removing the heat sink and found that the coprocessor became reliable at

higher temperature.

This suggested that the problem might be caused by coupling, which is generally more se-

rious at lower temperature where the edge rates are faster. The error was tracked to a long on-

chip bus with many wires laid out on a tight pitch. Although the wires were subject to coupling

noise, they were not on a critical path and should have had plenty of time to settle to the cor-

rect value. Unfortunately, they drove the diffusion input of a latch. When crosstalk drove an

input below –Vt, it would turn on the pass transistor and incorrectly discharge the latch (see

Section 9.3.9).

The floating-point unit bug was holding up lucrative product shipments. While a corrected

coprocessor was being fabricated, the old unit was shipped in products with a bolt-on thermo-

stat/heater unit used to guarantee a minimum operating temperature.

An obvious lesson of this experience is to avoid driving diffusion inputs with potentially

noisy signals. More fundamentally, however, this bug demonstrated a marginal design of the

cell library that should have been caught in the library review. Moreover, humans are inher-

ently prone to errors. Electrical rules like no noisy diffusion inputs aren’t worth the paper they

are printed on unless computer code exists to enforce them.

Slower than expected performance
An application-specific integrated circuit (ASIC) was fabricated on a gate array by a third-party

gate array manufacturer. Although static timing analysis predicted that the chip would func-

tion fast enough, the manufacturer found that most of the chips would not operate at the de-

sired frequency and instead had to be derated by about 20%.

The designer examined a die plot, looking for the source of the unexpectedly slow perfor-

mance. The plot showed that the horizontal power and ground lines were only strapped along

the edges of the chip, as shown in Figure 15.28(a). Some rows of gates consumed large amounts

of power, causing large IR drops along their power lines. Measurements showed that the power

supply sometimes drooped below 2 V, despite the nominal 3.3 V power supply. When the wide

vertical power supply straps were added, as shown in Figure 15.28(b), most chips met target

speed.

Chapter 15 Testing, Debugging, and Verification696

Modern chips require low-resistance on-chip power distribution networks and often use

power and ground pads distributed across the die rather than just at the periphery to reduce

the distance and resistance between the pads and the gates. Power integrity analysis should

be performed to verify that the static or dynamic voltage droops remain within their budget

everywhere on the chip.

Class chip failures
One of the authors has supervised a number of class project chips. The following are some of

the reasons that chips have come back partially or completely nonfunctional:

� Insufficient simulation

A ring oscillator was placed on the chip as a test structure to verify that the hardware

was at least partially functional even if the rest of the chip might not work. It didn’t

oscillate. It had not been simulated because it was “too simple.” Inspection during

debug found that the oscillator had an even number of inverters!

 Another chip was designed with a new CAD tool that had a buggy simulator. Most

of the chip operated correctly, but the chip as a whole would not simulate. The prob-

lem was attributed to a bug in the simulator and was taped out anyway. The chip

came back nonfunctional.

� Incomplete top-level verification

One year, a pad frame was used that was incompatible with the normal verification

flow. The chip cores were verified, placed in the pad frame, and then routed to the

pads. DRC and simulation were not performed on the connections to the pads, so stu-

dents carefully scrutinized their routing by hand. Upon testing, three of the four dif-

ferent designs were found to have errors in the routing to the pads. No errors were

found in the cores that had been verified. “If you don’t test it, it won’t work!

(guaranteed).”

— A neural network chip seemed to have a defective scan chain because the scan data

out line never budged from 0 as configuration data was scanned into the chip. Test-

ing found that the chip was correctly configured except in the last bit of the scan

chain. Inspection of the layout revealed that the scan data out line (which came

from the last bit of the scan chain) had been shorted to ground while being routed

to the pads.

VDD GND VDD GND

(a) (b)

FIGURE 15.28 Power supply network

 S 697

— A carry-lookahead adder produced incorrect results on certain input patterns. The

least significant bits were always correct. Inspection of the layout revealed that the

A[4] input was routed from the pad most of the way to the core but part of the wire

was missing, probably because the designer accidentally hit UNDO after finishing

the route.

— A GPS searcher chip had an inverter connected to a pair of pins to verify that the

chip showed basic functionality. The output was stuck low. Inspection of the layout

revealed that the input was attached to an output pad and the output to an input

pad. The GPS searcher itself was fully operational.

While some of these may represent class situations, the same type of reasons for partial failure

also plague industry chips. In particular, when time scales are stressed, the boundary condi-

tions are often overlooked, which leads to problems when the chips are fabricated. Once a good

verification methodology is put in place that includes a known-good pad frame, top-level DRC,

and full-chip simulation, students have had a 100% success rate on class chips.

Summary
This chapter has summarized the important issues in CMOS chip testing and has pro-
vided some methods for incorporating test considerations into chips from the start of the
design. Scan is now an indispensable technique to observe and control registers because
probing signals directly has become extremely difficult. The importance of writing ade-
quate tests for both the functional verification and manufacturing verification cannot be
understated. It is probably the single most important activity in any CMOS chip design
cycle and usually takes the longest time no matter what design methodology is used. If one
message is left in your mind after reading this chapter, it should be that you are absolutely
rigorous about the testing activity surrounding a chip project and it should rank first
among any design trade-offs.

Exercises
15.1 A circuit does not operate at the desired frequency. Cooling the circuit with freeze

spray fixes the problem. A shmoo shows the circuit operates correctly at higher than
nominal VDD. What is the general nature of the likely problem and why?

15.2 You have to test a large die (1 cm × 1 cm) that is housed in a package that costs $5.
Would you do wafer testing? Why?

15.3 A verification script detects a single discrepancy between the golden model and your
design out of 400,000 vectors. Would you proceed to fabrication? Explain your deci-
sion.

15.4 Explain what is meant by a Stuck-at-1 fault and a Stuck-at-0 fault.

15.5 How are sequential faults caused in CMOS? Give an example.

15.6 Explain the different kinds of physical faults that can occur on a CMOS chip and
relate them to typical circuit failures.

Exercises

Chapter 15 Testing, Debugging, and Verification698

 15.7 Explain the terms controllability, observability, and fault coverage.

 15.8 Why is it important to have a high fault coverage for a set of test vectors?

 15.9 Explain how serial-scan testing is implemented.

15.10 Explain the principles of Built-In Self-Test (BIST). What are the advantages and
disadvantages of BIST?

15.11 You have to design an extremely fast divide by eight frequency divider that taxes
the capabilities of the process you are using. What test strategy would you employ
to test the divider? Explain the reasons for your choice.

15.12 Design a register that minimizes transistor count, but allows parallel scan to be
implemented, as outlined in Figure 15.17.

15.13 Explain how a Pseudo-Random Sequence Generator (PRSG) can be used to test a
16-bit datapath. How would the outputs be collected and checked?

15.14 Design a block diagram of a test generator for a 4K × 32 static RAM.

15.15 Research the origin of the term “shmoo.”

A

699

Hardware Description
Languages

APPENDIX

A.1 Introduction
This appendix gives a quick introduction to the SystemVerilog and VHDL Hardware
Description Languages (HDLs). Many books treat HDLs as programming languages, but
HDLs are better understood as a shorthand for describing digital hardware. It is best to
begin your design process by planning, on paper or in your mind, the hardware you want.
(For example, the MIPS processor consists of an FSM controller and a datapath built
from registers, adders, multiplexers, etc.) Then, write the HDL code that implies that
hardware to a synthesis tool. A common error among beginners is to write a program
without thinking about the hardware that is implied. If you don’t know what hardware you
are implying, you are almost certain to get something that you don’t want. Sometimes, this
means extra latches appearing in your circuit in places you didn’t expect. Other times, it
means that the circuit is much slower than required or it takes far more gates than it would
if it were more carefully described.

The treatment in this appendix is unusual in that both SystemVerilog and VHDL are
covered together. Discussion of the languages is divided into two columns for literal side-
by-side comparison with SystemVerilog on the left and VHDL on the right. When you
read the appendix for the first time, focus on one language or the other. Once you know
one, you’ll quickly master the other if you need it. Religious wars have raged over which
HDL is superior. According to a large 2007 user survey [Cooley07], 73% of respondents
primarily used Verilog/SystemVerilog and 20% primarily used VHDL, but 41% needed to
use both on their project because of legacy code, intellectual property blocks, or because
Verilog is better suited to netlists. Thus, many designers need to be bilingual and most
CAD tools handle both.

In our experience, the best way to learn an HDL is by example. HDLs have specific
ways of describing various classes of logic; these ways are called idioms. This appendix will
teach you how to write the proper HDL idiom for each type of block and put the blocks
together to produce a working system. We focus on a synthesizable subset of HDL suffi-
cient to describe any hardware function. When you need to describe a particular kind of
hardware, look for a similar example and adapt it to your purpose. The languages contain
many other capabilities that are mostly beneficial for writing test fixtures and that are
beyond the scope of this book. We do not attempt to define all the syntax of the HDLs
rigorously because that is deathly boring and because it tends to encourage thinking of
HDLs as programming languages, not shorthand for hardware. Be careful when experi-
menting with other features in code that is intended to be synthesized. There are many
ways to write HDL code whose behavior in simulation and synthesis differ, resulting in
improper chip operation or the need to fix bugs after synthesis is complete. The subset of
the language covered here has been carefully selected to minimize such discrepancies.

Appendix A Hardware Description Languages700

A.1.1 Modules
A block of hardware with inputs and outputs is called a module. An AND gate, a multiplexer,
and a priority circuit are all examples of hardware modules. The two general styles for
describing module functionality are behavioral and structural. Behavioral models describe
what a module does. Structural models describe how a module is built from simpler pieces; it
is an application of hierarchy. The SystemVerilog and VHDL code in Example A.1 illustrate
behavioral descriptions of a module computing a random Boolean function, Y = ABC + ABC
+ ABC. Each module has three inputs, A, B, and C, and one output, Y.

Verilog and SystemVerilog
Verilog was developed by Gateway Design Automation as a propri-
etary language for logic simulation in 1984. Gateway was acquired
by Cadence in 1989 and Verilog was made an open standard in
1990 under the control of Open Verilog International. The language
became an IEEE standard in 1995 and was updated in 2001
[IEEE1364-01]. In 2005, it was updated again with minor clarifica-
tions; more importantly, SystemVerilog [IEEE 1800-2009] was intro-
duced, which streamlines many of the annoyances of Verilog and
adds high-level programming language features that have proven
useful in verification. This appendix uses some of SystemVerilog’s
features.

There are many texts on Verilog, but the IEEE standard itself is
readable as well as authoritative.

VHDL
VHDL is an acronym for the VHSIC Hardware Description Language.
In turn, VHSIC is an acronym for the Very High Speed Integrated
Circuits project. VHDL was originally developed in 1981 by the
Department of Defense to describe the structure and function of
hardware. Its roots draw from the Ada programming language. The
IEEE standardized VHDL in 1987 and updated the standard several
times since [IEEE1076-08]. The language was first envisioned
for documentation, but quickly was adopted for simulation and
synthesis.

VHDL is heavily used by U.S. military contractors and Euro-
pean companies. By some quirk of fate, it also has a majority of uni-
versity users.

[Pedroni10] offers comprehensive coverage of the language.

SystemVerilog

module sillyfunction(input logic a, b, c,
 output logic y);

 assign y = ~a & ~b & ~c |
 a & ~b & ~c |
 a & ~b & c;
endmodule

A module begins with a listing of the inputs and outputs. The
assign statement describes combinational logic. ~ indicates NOT,
& indicates AND, and | indicates OR.

logic signals such as the inputs and outputs are Boolean
variables (0 or 1). They may also have floating and undefined values
that will be discussed in Section A.2.8.

The logic type was introduced in SystemVerilog. It super-
sedes the reg type, which was a perennial source of confusion in
Verilog. logic should be used everywhere except on nets with
multiple drivers, as will be explained in Section A.7.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sillyfunction is
 port(a, b, c: in STD_LOGIC;
 y: out STD_LOGIC);
end;

architecture synth of sillyfunction is
begin
 y <= ((not a) and (not b) and (not c)) or
 (a and (not b) and (not c)) or
 (a and (not b) and c);
end;

VHDL code has three parts: the library use clause, the entity
declaration, and the architecture body. The library use
clause is required and will be discussed in Section A.7. The entity
declaration lists the module’s inputs and outputs. The architec-
ture body defines what the module does.

VHDL signals such as inputs and outputs must have a type dec-
laration. Digital signals should be declared to be STD_LOGIC type.
STD_LOGIC signals can have a value of ‘0’ or ‘1,’ as well as floating
and undefined values that will be described in Section A.2.8. The
STD_LOGIC type is defined in the IEEE.STD_LOGIC_1164
library, which is why the library must be used.

VHDL lacks a good default order of operations, so Boolean
equations should be parenthesized.

Example A.1 Combinational Logic

A.1 Introduction 701

The true power of HDLs comes from the higher level of abstraction that they offer as
compared to schematics. For example, a 32-bit adder schematic is a complicated structure.
The designer must choose what type of adder architecture to use. A carry ripple adder has
32 full adder cells, each of which in turn contains half a dozen gates or a bucketful of tran-
sistors. In contrast, the adder can be specified with one line of behavioral HDL code, as
shown in Example A.2.

Example A.2 32-Bit Adder

A.1.2 Simulation and Synthesis
The two major purposes of HDLs are logic simulation and synthesis. Dur-
ing simulation, inputs are applied to a module and the outputs are checked
to verify that the module operates correctly. During synthesis, the textual
description of a module is transformed into logic gates.

A.1.2.1 Simulation. Figure A.1 shows waveforms from a ModelSim
simulation of the previous sillyfunction module demonstrating that
the module works correctly. Y is true when A, B, and C are 000, 100, or
101, as specified by the Boolean equation.

A.1.2.2 Synthesis. Logic synthesis transforms HDL code into a netlist
describing the hardware; e.g., logic gates and the wires connecting
them. The logic synthesizer may perform optimizations to reduce the
amount of hardware required. The netlist may be a text file, or it may be
displayed as a schematic to help visualize the circuit. Figure A.2 shows
the results of synthesizing the sillyfunction module with Synplify
Pro. Notice how the three 3-input AND gates are optimized down to a
pair of 2-input ANDs. Similarly, Figure A.3 shows a schematic for the
adder module. Each subsequent code example in this appendix is fol-
lowed by the schematic that it implies.

SystemVerilog
module adder(input logic [31:0] a,
 input logic [31:0] b,
 output logic [31:0] y);

 assign y = a + b;
endmodule

Note that the inputs and outputs are 32-bit busses.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity adder is
 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);
 y: out STD_LOGIC_VECTOR(31 downto 0));
end;

architecture synth of adder is
begin
 y <= a + b;
end;

Observe that the inputs and outputs are 32-bit vectors. They must
be declared as STD_LOGIC_VECTOR.

un5_y

un8_y

y

yc
b

a

FIGURE A.2 Synthesized silly_function circuit

FIGURE A.1 Simulation waveforms

y_1[31:0]

+ y[31:0]
b[31:0]

a[31:0]

FIGURE A.3 Synthesized adder

Appendix A Hardware Description Languages702

A.2 Combinational Logic
The outputs of combinational logic depend only on the current inputs; combinational
logic has no memory. This section describes how to write behavioral models of combina-
tional logic with HDLs.

A.2.1 Bitwise Operators
Bitwise operators act on single-bit signals or on multibit busses. For example, the inv
module in Example A.3 describes four inverters connected to 4-bit busses.

The gates module in HDL Example A.4 demonstrates bitwise operations acting on
4-bit busses for other basic logic functions.

SystemVerilog
module inv(input logic [3:0] a,
 output logic [3:0] y);

 assign y = ~a;
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity inv is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of inv is
begin
 y <= not a;
end;

y[3:0]

y[3:0]a[3:0]

FIGURE A.4 inv

Example A.3 Inverters

Example A.4 Logic Gates

SystemVerilog
module gates(input logic [3:0] a, b,
 output logic [3:0] y1, y2,
 y3, y4, y5);

 /* Five different two-input logic
 gates acting on 4 bit busses */
 assign y1 = a & b; // AND
 assign y2 = a | b; // OR
 assign y3 = a ^ b; // XOR
 assign y4 = ~(a & b); // NAND
 assign y5 = ~(a | b); // NOR
endmodule

~, ^, and | are examples of SystemVerilog operators, while a, b, and
y1 are operands. A combination of operators and operands, such as
a & b, or ~(a | b) are called expressions. A complete command
such as assign y4 = ~(a & b); is called a statement.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity gates is
 port(a, b: in STD_LOGIC_VECTOR(3 downto 0);
 y1, y2, y3, y4,
 y5: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of gates is
begin
 -- Five different two-input logic gates
 -- acting on 4 bit busses
 y1 <= a and b;
 y2 <= a or b;
 y3 <= a xor b;
 y4 <= a nand b;
 y5 <= a nor b;
end;

A.2 Combinational Logic 703

A.2.2 Comments and White Space
Example A.4 showed how to format comments. SystemVerilog and VHDL are not picky
about the use of white space; i.e., spaces, tabs, and line breaks. Nevertheless, proper
indenting and use of blank lines is essential to make nontrivial designs readable. Be consis-
tent in your use of capitalization and underscores in signal and module names.

SystemVerilog (continued)
assign out = in1 op in2; is called a continuous assignment
statement. Continuous assignment statements end with a semico-
lon. Any time the inputs on the right side of the = in a continuous
assignment statement change, the output on the left side is recom-
puted. Thus, continuous assignment statements describe combina-
tional logic.

VHDL (continued)
not, xor, and or are examples of VHDL operators, while a, b, and
y1 are operands. A combination of operators and operands, such as
a and b, or a nor b are called expressions. A complete com-
mand such as y4 <= a nand b; is called a statement.

out <= in1 op in2; is called a concurrent signal assign-
ment statement. VHDL assignment statements end with a semico-
lon. Any time the inputs on the right side of the <= in a concurrent
signal assignment statement change, the output on the left side is
recomputed. Thus, concurrent signal assignment statements
describe combinational logic.

y1[3:0]

y2[3:0]

y3[3:0]

y4[3:0]

y5[3:0]

y5[3:0]

y4[3:0]

y3[3:0]

y2[3:0]

y1[3:0]

b[3:0]
a[3:0]

FIGURE A.5 Gates

SystemVerilog
SystemVerilog comments are just like those in C or Java. Comments
beginning with /* continue, possibly across multiple lines, to the
next */. Comments beginning with // continue to the end of the
line.

SystemVerilog is case-sensitive. y1 and Y1 are different sig-
nals in SystemVerilog. However, using separate signals that only dif-
fer in their capitalization is a confusing and dangerous practice.

VHDL
VHDL comments begin with -- and continue to the end of the line.
Comments spanning multiple lines must use -- at the beginning of
each line.

VHDL is not case-sensitive. y1 and Y1 are the same signal in
VHDL. However, other tools that may read your file might be case-
sensitive, leading to nasty bugs if you blithely mix uppercase and
lowercase.

A.2.3 Reduction Operators
Reduction operators imply a multiple-input gate acting on a single bus. For example,
Example A.5 describes an 8-input AND gate with inputs a0, a1, ..., a7.

Appendix A Hardware Description Languages704

A.2.4 Conditional Assignment
Conditional assignments select the output from among alternatives based on an input called
the condition. Example A.6 illustrates a 2:1 multiplexer using conditional assignment.

y

y

a[7:0]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7][7:0]

FIGURE A.6 and8

SystemVerilog
module and8(input logic [7:0] a,
 output logic y);

 assign y = &a;

 // &a is much easier to write than
 // assign y = a[7] & a[6] & a[5] & a[4] &
 // a[3] & a[2] & a[1] & a[0];
endmodule

As one would expect, |, ^, ~&, and ~| reduction operators are
available for OR, XOR, NAND, and NOR as well. Recall that a multi-
input XOR performs parity, returning TRUE if an odd number of
inputs are TRUE.

VHDL
VHDL does not have reduction operators. Instead, it provides the
generate command (see Section A.8). Alternately, the operation
can be written explicitly:

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity and8 is
 port(a: in STD_LOGIC_VECTOR(7 downto 0);
 y: out STD_LOGIC);
end;

architecture synth of and8 is
begin
 y <= a(7) and a(6) and a(5) and a(4) and
 a(3) and a(2) and a(1) and a(0);
end;

Example A.5 8-Input AND

SystemVerilog
The conditional operator ?: chooses, based on a first expression,
between a second and third expression. The first expression is
called the condition. If the condition is 1, the operator chooses the
second expression. If the condition is 0, the operator chooses the
third expression.

?: is especially useful for describing a multiplexer because,
based on a first input, it selects between two others. The following
code demonstrates the idiom for a 2:1 multiplexer with 4-bit inputs
and outputs using the conditional operator.

module mux2(input logic [3:0] d0, d1,
 input logic s,
 output logic [3:0] y);

 assign y = s ? d1 : d0;
endmodule

If s = 1, then y = d1. If s = 0, then y = d0.

VHDL
Conditional signal assignments perform different operations
depending on some condition. They are especially useful for
describing a multiplexer. For example, a 2:1 multiplexer can use
conditional signal assignment to select one of two 4-bit inputs.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
 port(d0, d1:in STD_LOGIC_VECTOR(3 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture synth of mux2 is
begin
 y <= d0 when s = '0' else d1;
end;

Example A.6 2:1 Multiplexer

A.2 Combinational Logic 705

Example A.7 shows a 4:1 multiplexer based on the same principle.

y[3:0]

0

1
y[3:0]

s

d1[3:0]

d0[3:0]

FIGURE A.7 mux2

SystemVerilog
A 4:1 multiplexer can select one of four inputs using nested condi-
tional operators.

module mux4(input logic [3:0] d0, d1, d2, d3,
 input logic [1:0] s,
 output logic [3:0] y);

 assign y = s[1] ? (s[0] ? d3 : d2)
 : (s[0] ? d1 : d0);
endmodule

If s[1] = 1, then the multiplexer chooses the first expression,
(s[0] ? d3 : d2). This expression in turn chooses either d3 or
d2 based on s[0] (y = d3 if s[0] = 1 and d2 if s[0] = 0). If
s[1] = 0, then the multiplexer similarly chooses the second expres-
sion, which gives either d1 or d0 based on s[0].

VHDL
A 4:1 multiplexer can select one of four inputs using multiple else
clauses in the conditional signal assignment.

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux4 is
 port(d0, d1,

d2, d3: in STD_LOGIC_VECTOR(3 downto 0);
 s: in STD_LOGIC_VECTOR(1 downto 0);

y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth1 of mux4 is
begin
 y <= d0 when s = "00" else
 d1 when s = "01" else
 d2 when s = "10" else
 d3;
end;

VHDL also supports selected signal assignment statements to pro-
vide a shorthand when selecting from one of several possibilities.
They are analogous to using a case statement in place of multiple
if/else statements in most programming languages. The 4:1
multiplexer can be rewritten with selected signal assignment as

architecture synth2 of mux4 is
begin
 with s select y <=
 d0 when "00",
 d1 when "01",
 d2 when "10",
 d3 when others;
end;

Example A.7 4:1 Multiplexer

SystemVerilog (continued)
?: is also called a ternary operator because it takes three

inputs. It is used for the same purpose in the C and Java program-
ming languages.

VHDL (continued)
The conditional signal assignment sets y to d0 if s is 0. Otherwise it
sets y to d1.

Appendix A Hardware Description Languages706

Figure A.8 shows the schematic for the 4:1 multiplexer produced by Synplify Pro.
The software uses a different multiplexer symbol than this text has shown so far. The mul-
tiplexer has multiple data (d) and one-hot enable (e) inputs. When one of the enables is
asserted, the associated data is passed to the output. For example, when s[1] = s[0] = 0,
the bottom AND gate un1_s_5 produces a 1, enabling the bottom input of the multiplexer
and causing it to select d0[3:0].

A.2.5 Internal Variables
Often, it is convenient to break a complex function into intermediate steps. For example, a
full adder, described in Section 11.2.1, is a circuit with three inputs and two outputs
defined by the equations

(A.1)

If we define intermediate signals P and G

(A.2)

S A B C

C AB AC BC

=
= + +

in

out in in

P A B

G AB

=
=

un1_s_2

un1_s_3

un1_s_4

un1_s_5

y[3:0]

e
d

e
d

e
d

e
d

y[3:0]

s[1:0]
[1:0]

d3[3:0]

d2[3:0]
d1[3:0]

d0[3:0]

[0]

[1]

[1]

[0]

[0]

[1]

[0]

[1]

FIGURE A.8 mux4

A.2 Combinational Logic 707

we can rewrite the full adder as

(A.3)

P and G are called internal variables because they are neither inputs nor outputs but are
only used internal to the module. They are similar to local variables in programming lan-
guages. Example A.8 shows how they are used in HDLs.

S P C

C G PC

=
= +

in

out in

SystemVerilog
In SystemVerilog, internal signals are usually declared as logic.

module fulladder(input logic a, b, cin,
 output logic s, cout);

 logic p, g;

 assign p = a ^ b;
 assign g = a & b;

 assign s = p ^ cin;
 assign cout = g | (p & cin);
endmodule

VHDL
In VHDL, signals are used to represent internal variables whose val-
ues are defined by concurrent signal assignment statements such
as p <= a xor b.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
 port(a, b, cin: in STD_LOGIC;
 s, cout: out STD_LOGIC);
end;

architecture synth of fulladder is
 signal p, g: STD_LOGIC;
begin
 p <= a xor b;
 g <= a and b;

 s <= p xor cin;
 cout <= g or (p and cin);
end;

Example A.8 Full Adder

p

g s

un1_cout
cout

cout

s

cin

b
a

FIGURE A.9 fulladder

HDL assignment statements (assign in SystemVerilog and <= in VHDL) take place
concurrently. This is different from conventional programming languages like C or Java in
which statements are evaluated in the order they are written. In a conventional language, it
is important that comes after because the statements are exe-
cuted sequentially. In an HDL, the order does not matter. Like hardware, HDL assign-
ment statements are evaluated any time the signals on the right-hand side change their
value, regardless of the order in which they appear in a module.

S P C= in P A B=

Appendix A Hardware Description Languages708

A.2.6 Precedence and Other Operators
Notice that we parenthesized the cout computation to define the order of operations as
Cout = G + (P · C in), rather than Cout = (G + P) · C in. If we had not used parentheses, the
default operation order is defined by the language. Example A.9 specifies this operator
precedence from highest to lowest for each language.

SystemVerilog

The operator precedence for SystemVerilog is much like you would
expect in other programming languages. In particular, as shown in
Table A.1, AND has precedence over OR. We could take advantage
of this precedence to eliminate the parentheses.

assign cout = g | p & cin;

VHDL

As shown in Table A.2, multiplication has precedence over addition
in VHDL, as you would expect. However, all of the logical operations
(and, or, etc.) have equal precedence, unlike what one might
expect in Boolean algebra. Thus, parentheses are necessary; other-
wise cout <= g or p and cin would be interpreted from left
to right as cout <= (g or p) and cin.

TABLE A.1 SystemVerilog operator precedence

Op Meaning

H
i
g
h
e
s
t

L
o
w
e
s
t

~ NOT

*, /, % MUL, DIV, MOD

+, - PLUS, MINUS

<<, >> Logical Left / Right Shift

<<<, >>> Arithmetic Left / Right Shift

<, <=, >, >= Relative Comparison

==, != Equality Comparison

&, ~& AND, NAND

^, ~^ XOR, XNOR

|, ~| OR, NOR

?: Conditional

TABLE A.2 VHDL operator precedence

Op Meaning

H
i
g
h
e
s
t

L
o
w
e
s
t

not NOT

*, /,
mod, rem

MUL, DIV,
MOD, REM

+, -,
&

PLUS, MINUS,
CONCATENATE

rol, ror,
srl, sll,
sra, sla

Rotate,
Shift logical,
Shift arithmetic

=, /=,
<, <=,
>, >=

Comparison

and, or,
nand, nor,

xor

Logical
Operations

Example A.9 Operator Precedence

Note that the precedence tables include other arithmetic, shift, and comparison oper-
ators. See Chapter 11 for hardware implementations of these functions. Subtraction
involves a two’s complement and addition. Multipliers and shifters use substantially more
area (unless they involve easy constants). Division and modulus in hardware is so costly
that it may not be synthesizable. Equality comparisons imply N 2-input XORs to deter-
mine equality of each bit and an N-input AND to combine all of the bits. Relative com-
parison involves a subtraction.

A.2.7 Numbers
Numbers can be specified in a variety of bases. Underscores in numbers are ignored and
can be helpful to break long numbers into more readable chunks. Example A.10 explains
how numbers are written in each language.

A.2 Combinational Logic 709

A.2.8 Zs and Xs
HDLs use z to indicate a floating value. z is particularly useful for describing a tristate
buffer, whose output floats when the enable is 0. A bus can be driven by several tristate
buffers, exactly one of which should be enabled. Example A.11 shows the idiom for a
tristate buffer. If the buffer is enabled, the output is the same as the input. If the buffer is
disabled, the output is assigned a floating value (z).

SystemVerilog
As shown in Table A.3, SystemVerilog numbers can specify their
base and size (the number of bits used to represent them). The for-
mat for declaring constants is N'Bvalue, where N is the size in bits,
B is the base, and value gives the value. For example 9'h25 indi-
cates a 9-bit number with a value of 2516 = 3710 = 0001001012.
SystemVerilog supports 'b for binary (base 2), 'o for octal (base 8),
'd for decimal (base 10), and 'h for hexadecimal (base 16). If the
base is omitted, the base defaults to decimal.

If the size is not given, the number is assumed to have as
many bits as the expression in which it is being used. Zeros are
automatically padded on the front of the number to bring it up to full
size. For example, if w is a 6-bit bus, assign w = 'b11 gives w
the value 000011. It is better practice to explicitly give the size. An
exception is that '0 and '1 are SystemVerilog shorthands for filling
a bus with all 0s and all 1s.

VHDL
In VHDL, STD_LOGIC numbers are written in binary and enclosed in
single quotes. '0' and '1' indicate logic 0 and 1.

STD_LOGIC_VECTOR numbers are written in binary or hexa-
decimal and enclosed in double quotes. The base is binary by
default and can be explicitly defined with the prefix X for hexadeci-
mal or B for binary, as shown in Table A.4.

TABLE A.3 SystemVerilog numbers

Numbers Bits Base Val Stored
3'b101 3 2 5 101

'b11 ? 2 3 000...0011

8'b11 8 2 3 00000011

8'b1010_1011 8 2 171 10101011

3'd6 3 10 6 110

6'o42 6 8 34 100010

8'hAB 8 16 171 10101011

42 ? 10 42 00...0101010

'1 ? n/a 11...111

TABLE A.4 VHDL numbers

Numbers Bits Base Val Stored
"101" 3 2 5 101

B"101" 3 2 5 101

X"AB" 8 16 161 10101011

Example A.10 Numbers

SystemVerilog
module tristate(input logic [3:0] a,
 input logic en,
 output tri [3:0] y);

 assign y = en ? a : 4'bz;
endmodule

Notice that y is declared as tri rather than logic. logic signals
can only have a single driver. Tristate busses can have multiple
drivers, so they should be declared as a net. Two types of nets in Sys-
temVerilog are called tri and trireg. Typically, exactly one driver
on a net is active at a time, and the net takes on that value. If no driver
is active, a tri floats (z), while a trireg retains the previous value.
If no type is specified for an input or output, tri is assumed.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity tristate is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 en: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of tristate is
begin
 y <= "ZZZZ" when en = '0' else a;
end;

Example A.11 Tristate Buffer

Appendix A Hardware Description Languages710

Similarly, HDLs use x to indicate an invalid logic level. If a bus is simultaneously
driven to 0 and 1 by two enabled tristate buffers (or other gates), the result is x, indicating
contention. If all the tristate buffers driving a bus are simultaneously OFF, the bus will
float, indicated by z.

At the start of simulation, state nodes such as flip-flop outputs are initialized to an
unknown state (x in SystemVerilog and u in VHDL). This is helpful to track errors caused
by forgetting to reset a flip-flop before its output is used.

If a gate receives a floating input, it may produce an x output when it can’t determine
the correct output value. Similarly, if it receives an illegal or uninitialized input, it may
produce an x output. Example A.12 shows how SystemVerilog and VHDL combine these
different signal values in logic gates.

y_1[3:0]

y[3:0]

en

a[3:0]

FIGURE A.10 tristate

SystemVerilog
SystemVerilog signal values are 0, 1, z, and x. Constants starting
with z or x are padded with leading zs or xs (instead of 0s) to reach
their full length when necessary.

Table A.5 shows a truth table for an AND gate using all four
possible signal values. Note that the gate can sometimes determine
the output despite some inputs being unknown. For example 0 & z
returns 0 because the output of an AND gate is always 0 if either
input is 0. Otherwise, floating or invalid inputs cause invalid outputs,
displayed as x.

VHDL
VHDL STD_LOGIC signals are '0', '1', 'z', 'x', and 'u'.

Table A.6 shows a truth table for an AND gate using all five
possible signal values. Notice that the gate can sometimes deter-
mine the output despite some inputs being unknown. For example,
'0' and 'z' returns '0' because the output of an AND gate is
always '0' if either input is '0'. Otherwise, floating or invalid
inputs cause invalid outputs, displayed as 'x' in VHDL. Uninitial-
ized inputs cause uninitialized outputs, displayed as 'u' in VHDL.

TABLE A.5 SystemVerilog AND
gate truth table with z and x

& A

0 1 z x

0 0 0 0 0

1 0 1 x x

B z 0 x x x

x 0 x x x

TABLE A.6 VHDL AND gate truth
table with z, x, and u

AND A

0 1 z x u

0 0 0 0 0 0

1 0 1 x x u

B z 0 x x x u

x 0 x x x u

u 0 u u u u

Example A.12 Truth Tables with Undefined and Floating Inputs

Seeing x or u values in simulation is almost always an indication of a bug or bad cod-
ing practice. In the synthesized circuit, this corresponds to a floating gate input or unini-
tialized state. The x or u may randomly be interpreted by the circuit as 0 or 1, leading to
unpredictable behavior.

A.2 Combinational Logic 711

A.2.9 Bit Swizzling
Often, it is necessary to operate on a subset of a bus or to concatenate, i.e., join together,
signals to form busses. These operations are collectively known as bit swizzling. In Exam-
ple A.13, y is given the 9-bit value c2c1d0d0d0c0101 using bit swizzling operations.

SystemVerilog
assign y = {c[2:1], {3{d[0]}}, c[0], 3'b101};

The {} operator is used to concatenate busses.
{3{d[0]}} indicates three copies of d[0].
Don’t confuse the 3-bit binary constant 3'b101 with bus b.

Note that it was critical to specify the length of 3 bits in the constant;
otherwise, it would have had an unknown number of leading zeros
that might appear in the middle of y.

If y were wider than 9 bits, zeros would be placed in the most
significant bits.

VHDL
y <= c(2 downto 1) & d(0) & d(0) & d(0) &
 c(0) & "101";

The & operator is used to concatenate (join together) busses. y
must be a 9-bit STD_LOGIC_VECTOR. Do not confuse & with the
and operator in VHDL.

Example A.13 Bit Swizzling

Example A.14 shows how to split an output into two pieces using bit swizzling and
Example A.15 shows how to sign extend a 16-bit number to 32 bits by copying the most
significant bit into the upper 16 positions.

SystemVerilog
module mul(input logic [7:0] a, b,
 output logic [7:0] upper, lower);

 assign {upper, lower} = a*b;
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity mul is
 port(a, b: in STD_LOGIC_VECTOR(7 downto 0);
 upper, lower:
 out STD_LOGIC_VECTOR(7 downto 0));
end;
architecture behave of mul is
 signal prod: STD_LOGIC_VECTOR(15 downto 0);
begin
 prod < a * b;
 upper <= prod(15 downto 8);
 lower <= prod(7 downto 0);
end;

Example A.14 Output Splitting

lower_1[15:0]

*

lower[7:0]
[7:0]

upper[7:0]
[15:8]

b[7:0]

a[7:0] [15:0]

FIGURE A.11 Multipliers

Appendix A Hardware Description Languages712

A.2.10 Delays
HDL statements may be associated with delays specified in arbitrary units. They are help-
ful during simulation to predict how fast a circuit will work (if you specify meaningful
delays) and also for debugging purposes to understand cause and effect (deducing the
source of a bad output is tricky if all signals change simultaneously in the simulation
results). These delays are ignored during synthesis; the delay of a gate produced by the
synthesizer depends on its tpd and tcd specifications, not on numbers in HDL code.

Example A.16 adds delays to the original function from Example A.1: Y = ABC + ABC
+ ABC. It assumes inverters have a delay of 1 ns, 3-input AND gates have a delay of 2 ns,
and 3-input OR gates have a delay of 4 ns. Figure A.13 shows the simulation waveforms,
with y lagging 7 ns of time after the inputs. Note that y is initially unknown at the begin-
ning of the simulation.

SystemVerilog
module signextend(input logic [15:0] a,
 output logic [31:0] y);

 assign y = {{16{a[15]}}, a[15:0]};
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity signext is -- sign extender
 port(a: in STD_LOGIC_VECTOR (15 downto 0);
 y: out STD_LOGIC_VECTOR (31 downto 0));
end;
architecture behave of signext is
begin
 y < X"0000" & a when a (15) '0' else X"ffff" & a;
end;

Example A.15 Sign Extension

y[31:0]

a[15:0]
[15:0]

[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15:0]

FIGURE A.12 Sign extension

A.3 Structural Modeling 713

A.3 Structural Modeling
The previous section discussed behavioral modeling, describing a module in terms of the
relationships between inputs and outputs. This section examines structural modeling,
describing a module in terms of how it is composed of simpler modules.

Example A.17 shows how to assemble a 4:1 multiplexer from three 2:1 multiplexers.
Each copy of the 2:1 multiplexer is called an instance. Multiple instances of the same mod-
ule are distinguished by distinct names. This is an example of regularity, in which the 2:1
multiplexer is reused three times.

SystemVerilog
`timescale 1ns/1ps

module example(input logic a, b, c,
 output logic y);

 logic ab, bb, cb, n1, n2, n3;

 assign #1 {ab, bb, cb} = ~{a, b, c};
 assign #2 n1 = ab & bb & cb;
 assign #2 n2 = a & bb & cb;
 assign #2 n3 = a & bb & c;
 assign #4 y = n1 | n2 | n3;
endmodule

SystemVerilog files can include a timescale directive that indicates
the value of each time unit. The statement is of the form `time-
scale unit/step. In this file, each unit is 1ns, and the simula-
tion has 1 ps resolution. If no timescale directive is given in the file,
a default unit and step (usually 1 ns for both) is used. In System-
Verilog, a # symbol is used to indicate the number of units of delay.
It can be placed in assign statements, as well as nonblocking (<=)
and blocking (=) assignments that will be discussed in Section
A.5.4.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity example is
 port(a, b, c: in STD_LOGIC;
 y: out STD_LOGIC);
end;

architecture synth of example is
 signal ab, bb, cb, n1, n2, n3: STD_LOGIC;
begin
 ab <= not a after 1 ns;
 bb <= not b after 1 ns;
 cb <= not c after 1 ns;
 n1 <= ab and bb and cb after 2 ns;
 n2 <= a and bb and cb after 2 ns;
 n3 <= a and bb and c after 2 ns;
 y <= n1 or n2 or n3 after 4 ns;
end;

In VHDL, the after clause is used to indicate delay. The units, in
this case, are specified as nanoseconds.

Example A.16 Logic Gates with Delays

FIGURE A.13 Example simulation waveforms with delays

Appendix A Hardware Description Languages714

SystemVerilog
module mux4(input logic [3:0] d0, d1, d2, d3,
 input logic [1:0] s,
 output logic [3:0] y);

 logic [3:0] low, high;

 mux2 lowmux(d0, d1, s[0], low);
 mux2 highmux(d2, d3, s[0], high);
 mux2 finalmux(low, high, s[1], y);
endmodule

The three mux2 instances are called lowmux, highmux, and
finalmux. The mux2 module must be defined elsewhere in the
SystemVerilog code.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4 is
 port(d0, d1,

d2, d3: in STD_LOGIC_VECTOR(3 downto 0);
s: in STD_LOGIC_VECTOR(1 downto 0);
y: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture struct of mux4 is
 component mux2
 port(d0,

d1: in STD_LOGIC_VECTOR(3 downto 0);
s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(3 downto 0));

end component;
signal low, high: STD_LOGIC_VECTOR(3 downto 0);

begin
lowmux: mux2 port map(d0, d1, s(0), low);
highmux: mux2 port map(d2, d3, s(0), high);
finalmux: mux2 port map(low, high, s(1), y);

end;

The architecture must first declare the mux2 ports using the compo-
nent declaration statement. This allows VHDL tools to check that the
component you wish to use has the same ports as the component that
was declared somewhere else in another entity statement, preventing
errors caused by changing the entity but not the instance. However,
component declaration makes VHDL code rather cumbersome.

Note that this architecture of mux4 was named struct, while
architectures of modules with behavioral descriptions from Section
A.2 were named synth. VHDL allows multiple architectures (imple-
mentations) for the same entity; the architectures are distinguished
by name. The names themselves have no significance to the CAD
tools, but struct and synth are common. However, synthesizable
VHDL code generally contains only one architecture for each entity,
so we will not discuss the VHDL syntax to configure which architec-
ture is used when multiple architectures are defined.

Example A.17 Structural Model of 4:1 Multiplexer

mux2

lowmux

mux2

highmux

mux2

finalmux

y[3:0]

s[1:0]
[1:0]

d3[3:0]

d2[3:0]

d1[3:0]

d0[3:0]

[0]
s

d0[3:0]

d1[3:0]

y[3:0]

[0]
s

d0[3:0]

d1[3:0]

y[3:0]

[1]
s

d0[3:0]

d1[3:0]

y[3:0]

FIGURE A.14 mux4

A.3 Structural Modeling 715

Example A.19 shows how modules can access part of a bus. An 8-bit wide 2:1 multi-
plexer is built using two of the 4-bit 2:1 multiplexers already defined, operating on the low
and high nibbles of the byte.

SystemVerilog
module mux2(input logic [3:0] d0, d1,
 input logic s,
 output tri [3:0] y);

 tristate t0(d0, ~s, y);
 tristate t1(d1, s, y);
endmodule

In SystemVerilog, expressions such as ~s are permitted in the port
list for an instance. Arbitrarily complicated expressions are legal, but
discouraged because they make the code difficult to read.

Note that y is declared as tri rather than logic because it
has two drivers.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
 port(d0, d1: in STD_LOGIC_VECTOR(3 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture struct of mux2 is
 component tristate
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 en: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(3 downto 0));
 end component;
 signal sbar: STD_LOGIC;
begin
 sbar <= not s;
 t0: tristate port map(d0, sbar, y);
 t1: tristate port map(d1, s, y);
end;

In VHDL, expressions such as not s are not permitted in the port map
for an instance. Thus, sbar must be defined as a separate signal.

Example A.18 Structural Model of 2:1 Multiplexer

Similarly, Example A.18 constructs a 2:1 multiplexer from a pair of tristate buffers.
Building logic out of tristates is not recommended, however.

tristate

t0

tristate

t1

y[3:0]
s

d1[3:0]

d0[3:0]

en

a[3:0]
y[3:0]

en

a[3:0]
y[3:0]

FIGURE A.15 mux2

Appendix A Hardware Description Languages716

In general, complex systems are designed hierarchically. The overall system is described
structurally by instantiating its major components. Each of these components is described
structurally from its building blocks, and so forth recursively until the pieces are simple
enough to describe behaviorally. It is good style to avoid (or at least minimize) mixing
structural and behavioral descriptions within a single module.

SystemVerilog
module mux2_8(input logic [7:0] d0, d1,
 input logic s,
 output logic [7:0] y);

 mux2 lsbmux(d0[3:0], d1[3:0], s, y[3:0]);
 mux2 msbmux(d0[7:4], d1[7:4], s, y[7:4]);
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2_8 is
 port(d0, d1:in STD_LOGIC_VECTOR(7 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(7 downto 0));

end;

architecture struct of mux2_8 is
 component mux2
 port(d0, d1: in STD_LOGIC_VECTOR(3
 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(3 downto 0));

 end component;
begin

 lsbmux: mux2
 port map(d0(3 downto 0), d1(3 downto 0),

s, y(3 downto 0));
 msbhmux: mux2
 port map(d0(7 downto 4), d1(7 downto 4),

s, y(7 downto 4));
end;

Example A.19 Accessing Parts of Busses

mux2

lsbmux

mux2

msbmux

y[7:0]
[7:0]

s

d1[7:0]
[7:0]

d0[7:0]
[7:0]

s
[3:0]

d0[3:0]
[3:0]

d1[3:0]

[3:0]
y[3:0]

s
[7:4]

d0[3:0]
[7:4]

d1[3:0]

[7:4]
y[3:0]

FIGURE A.16 mux2_8

A.4 Sequential Logic 717

A.4 Sequential Logic
HDL synthesizers recognize certain idioms and turn them into specific sequential circuits.
Other coding styles may simulate correctly, but synthesize into circuits with blatant or
subtle errors. This section presents the proper idioms to describe registers and latches.

A.4.1 Registers
The vast majority of modern commercial systems are built with registers using positive
edge-triggered D flip-flops. Example A.20 shows the idiom for such flip-flops.

SystemVerilog
module flop(input logic clk,
 input logic [3:0] d,
 output logic [3:0] q);

 always_ff @(posedge clk)
 q <= d;
endmodule

A Verilog always statement is written in the form

always @(sensitivity list)
 statement;

The statement is executed only when the event specified in the sensi-
tivity list occurs. In this example, the statement is q <= d (pro-
nounced “q gets d”). Hence, the flip-flop copies d to q on the positive
edge of the clock and otherwise remembers the old state of q.

<= is called a nonblocking assignment. Think of it as a regular
= sign for now; we’ll return to the more subtle points in Section
A.5.4. Note that <= is used instead of assign inside an always
statement.

As will be seen in subsequent sections, always statements
can be used to imply flip-flops, latches, or combinational logic,
depending on the sensitivity list and statement. Because of this flex-
ibility, it is easy to produce the wrong hardware inadvertently. Sys-
temVerilog introduces always_ff , always_latch , and
always_comb to reduce the risk of common errors. always_ff
behaves like always, but is used exclusively to imply flip-flops and
allows tools to produce a warning if anything else is implied.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flop is
 port(clk: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of flop is
begin
 process(clk) begin
 if clk'event and clk = '1' then
 q <= d;
 end if;
 end process;
end;

A VHDL process is written in the form

process(sensitivity list) begin
 statement;
end process;

The statement is executed when any of the variables in the sensitiv-
ity list change. In this example, the if statement is executed when
clk changes, indicated by clk'event. If the change is a rising
edge (clk = '1' after the event), then q <= d. Hence, the flip-
flop copies d to q on the positive edge of the clock and otherwise
remembers the old state of q.

An alternative VHDL idiom for a flip-flop is

process(clk) begin
 if RISING_EDGE(clk) then
 q <= d;
 end if;
end process;

RISING_EDGE(clk) is synonymous with clk'event and clk
= '1'.

Example A.20 Register

Appendix A Hardware Description Languages718

In SystemVerilog always statements and VHDL process statements, signals keep
their old value until an event takes place that explicitly causes them to change. Hence,
such code, with appropriate sensitivity lists, can be used to describe sequential circuits with
memory. For example, the flip-flop only includes clk in the sensitivity list. It remembers
its old value of q until the next rising edge of the clk, even if d changes in the interim.

In contrast, SystemVerilog continuous assignment statements and VHDL concurrent
assignment statements are reevaluated any time any of the inputs on the right-hand side
changes. Therefore, such code necessarily describes combinational logic.

A.4.2 Resettable Registers
When simulation begins or power is first applied to a circuit, the output of the flop is
unknown. This is indicated with x in SystemVerilog and 'u' in VHDL. Generally, it is
good practice to use resettable registers so that on power up you can put your system in a
known state. The reset may be either synchronous or asynchronous. Recall that synchro-
nous reset occurs on the rising edge of the clock, while asynchronous reset occurs immedi-
ately. Example A.21 demonstrates the idioms for flip-flops with synchronous and
asynchronous resets. Note that distinguishing synchronous and asynchronous reset in a
schematic can be difficult. The schematic produced by Synplify Pro places synchronous
reset on the left side of a flip-flop and synchronous reset at the bottom.

Synchronous reset takes fewer transistors and reduces the risk of timing problems on
the trailing edge of reset. However, if clock gating is used, care must be taken that all flip-
flops reset properly at startup.

q[3:0]d[3:0]
clk

Q[3:0]D[3:0]

FIGURE A.17 flop

SystemVerilog
module flopr(input logic clk,
 input logic reset,
 input logic [3:0] d,
 output logic [3:0] q);

 // synchronous reset
 always_ff @(posedge clk)
 if (reset) q <= 4'b0;
 else q <= d;
endmodule

module flopr(input logic clk,
 input logic reset,
 input logic [3:0] d,
 output logic [3:0] q);

 // asynchronous reset
 always_ff @(posedge clk, posedge reset)
 if (reset) q <= 4'b0;
 else q <= d;
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopr is
 port(clk,
 reset: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synchronous of flopr is
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then
 q <= "0000";
 else q <= d;
 end if;
 end if;
 end process;
end;

Example A.21 Resettable Register

A.4 Sequential Logic 719

A.4.3 Enabled Registers
Enabled registers only respond to the clock when the enable is asserted. Example A.22
shows a synchronously resettable enabled register that retains its old value if both reset
and en are FALSE.

SystemVerilog (continued)
Multiple signals in an always statement sensitivity list are sepa-
rated with a comma or the word or. Notice that posedge reset
is in the sensitivity list on the asynchronously resettable flop, but not
on the synchronously resettable flop. Thus, the asynchronously
resettable flop immediately responds to a rising edge on reset, but
the synchronously resettable flop only responds to reset on the
rising edge of the clock.

Because the modules above have the same name, flopr, you
must only include one or the other in your design.

VHDL (continued)
architecture asynchronous of flopr is
begin
 process(clk, reset) begin
 if reset = '1' then
 q <= "0000";
 elsif clk'event and clk = '1' then
 q <= d;
 end if;
 end process;
end;

Multiple signals in a process sensitivity list are separated with a
comma. Notice that reset is in the sensitivity list on the asynchro-
nously resettable flop, but not on the synchronously resettable flop.
Thus, the asynchronously resettable flop immediately responds to a
rising edge on reset, but the synchronously resettable flop only
responds to reset on the rising edge of the clock.

Recall that the state of a flop is initialized to ‘u’ at startup dur-
ing VHDL simulation.

As mentioned earlier, the name of the architecture (asynchro-
nous or synchronous, in this example) is ignored by the VHDL tools
but may be helpful to someone reading the code. Because both
architectures describe the entity flopr, you should only include
one or the other in your design.

FIGURE A.18 flopr (a) synchronous reset, (b) asynchronous reset

q[3:0]d[3:0]
reset

clk
Q[3:0]D[3:0]

R

(a)

R

q[3:0]d[3:0]

reset

clk
Q[3:0]D[3:0]

(b)

Appendix A Hardware Description Languages720

A.4.4 Multiple Registers
A single always / process statement can be used to describe multiple pieces of hard-
ware. For example, consider describing a synchronizer made of two back-to-back flip-
flops, as shown in Figure A.20. Example A.23 describes the synchronizer. On the rising
edge of clk, d is copied to n1. At the same time, n1 is copied to q.

SystemVerilog
module flopenr(input logic clk,
 input logic reset,
 input logic en,
 input logic [3:0] d,
 output logic [3:0] q);

 // synchronous reset
 always_ff @(posedge clk)
 if (reset) q <= 4'b0;
 else if (en) q <= d;
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopenr is
 port(clk,
 reset,
 en: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synchronous of flopenr is
-- synchronous reset
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then
 q <= "0000";
 elsif en = '1' then
 q <= d;
 end if;
 end if;
 end process;
end;

Example A.22 Resettable Enabled Register

R

q[3:0]d[3:0]
en

reset

clk
Q[3:0]D[3:0]

E

FIGURE A.19 flopenr

clk clk

D Q
N1

FIGURE A.20
Synchronizer circuit

A.4 Sequential Logic 721

A.4.5 Latches
Recall that a D latch is transparent when the clock is HIGH, allowing data to flow from
input to output. The latch becomes opaque when the clock is LOW, retaining its old state.
Example A.24 shows the idiom for a D latch.

SystemVerilog
module sync(input logic clk,
 input logic d,
 output logic q);

 logic n1;

 always_ff @(posedge clk)
 begin
 n1 <= d;
 q <= n1;
 end
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sync is
 port(clk: in STD_LOGIC;
 d: in STD_LOGIC;
 q: out STD_LOGIC);
end;

architecture synth of sync is
 signal n1: STD_LOGIC;
begin
 process(clk) begin
 if clk'event and clk = '1' then
 n1 <= d;
 q <= n1;
 end if;
 end process;
end;

Example A.23 Synchronizer

SystemVerilog
module latch(input logic clk,
 input logic [3:0] d,
 output logic [3:0] q);

 always_latch
 if (clk) q <= d;
endmodule

always_latch is equivalent to always @(clk, d) and is the
preferred way of describing a latch in SystemVerilog. It evaluates any
time clk or d changes. If clk is HIGH, d flows through to q, so this
code describes a positive level sensitive latch. Otherwise, q keeps its
o ld va lue. SystemVer i log can generate a warn ing i f the
always_latch block doesn’t imply a latch.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity latch is
 port(clk: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of latch is
begin
 process(clk, d) begin
 if clk = '1' then q <= d;
 end if;
 end process;
end;

The sensitivity list contains both clk and d, so the process evalu-
ates any time clk or d changes. If clk is HIGH, d flows through to q.

Example A.24 D Latch

n1 q

qd
clk

QD QD

FIGURE A.21 sync

Appendix A Hardware Description Languages722

Not all synthesis tools support latches well. Unless you know that your tool supports
latches and you have a good reason to use them, avoid them and use edge-triggered flip-
flops instead. Furthermore, take care that your HDL does not imply any unintended
latches, something that is easy to do if you aren't attentive. Many synthesis tools warn you
if a latch is created; if you didn’t expect one, track down the bug in your HDL. And if you
don’t know whether you intended to have a latch or not, you are probably approaching
HDLs like programming languages and have bigger problems lurking.

A.4.6 Counters
Consider two ways of describing a 4-bit counter with synchronous reset. The first scheme
(behavioral) implies a sequential circuit containing both the 4-bit register and an adder.
The second scheme (structural) explicitly declares modules for the register and adder.
Either scheme is good for a simple circuit such as a counter. As you develop more complex
finite state machines, it is a good idea to separate the next state logic from the registers in
your HDL code. Examples A.25 and A.26 demonstrate these styles.

lat

q[3:0]

q[3:0]
d[3:0]

clk
D[3:0]

Q[3:0]
C

FIGURE A.22 latch

SystemVerilog
module counter(input logic clk,
 input logic reset,
 output logic [3:0] q);

 always_ff @(posedge clk)
 if (reset) q <= 4'b0;
 else q <= q+1;
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity counter is
 port(clk: in STD_LOGIC;
 reset: in STD_LOGIC;
 q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of counter is
 signal q_int: STD_LOGIC_VECTOR(3 downto 0);
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then q_int <= "0000";
 else q_int <= q_int + "0001";
 end if;
 end if;
 end process;
 q <= q_int;
end;

In VHDL, an output cannot also be used on the right-hand side in an
expression; q <= q + 1 would be illegal. Thus, an internal stat sig-
nal q_int is defined, and the output q is a copy of q_int. This is
discussed further in Section A.7.

Example A.25 Counter (Behavioral Style)

A.4 Sequential Logic 723

un3_q[3:0]

+ q[3:0]

reset

clk

1 Q[3:0]D[3:0]
R

FIGURE A.23 Counter (behavioral)

Example A.26 Counter (Structural Style)

SystemVerilog
module counter(input logic clk,
 input logic reset,
 output logic [3:0] q);

 logic [3:0] nextq;

 flopr qflop(clk, reset, nextq, q);
 adder inc(q, 4'b0001, nextq);
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity counter is
 port(clk: in STD_LOGIC;
 reset: in STD_LOGIC;
 q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture struct of counter is
 component flopr
 port(clk: in STD_LOGIC;
 reset: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: out STD_LOGIC_VECTOR(3 downto 0));
 end component;
 component adder
 port(a, b: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(3 downto 0));
 end component;
 signal nextq, q_int: STD_LOGIC_VECTOR(3 downto 0);
begin
 qflop: flopr port map(clk, reset, nextq, q_int);
 inc: adder port map(q_int, "0001", nextq);
 q <= q_int;
end;

flopr

qflop

adder

inc

q[3:0]

reset
clk

clk
reset

d[3:0]

q[3:0]
a[3:0]

0001
b[3:0]

y[3:0]

FIGURE A.24 Counter (structural)

Appendix A Hardware Description Languages724

A.4.7 Shift Registers
Example A.27 describes a shift register with a parallel load input.

SystemVerilog
module shiftreg(input logic clk,
 input logic reset, load,
 input logic sin,
 input logic [3:0] d,
 output logic [3:0] q,
 output logic sout);

 always_ff @(posedge clk)
 if (reset) q <= 0;
 else if (load) q <= d;
 else q <= {q[2:0], sin};

 assign sout = q[3];
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity shiftreg is
 port(clk, reset,
 load: in STD_LOGIC;
 sin: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: out STD_LOGIC_VECTOR(3 downto 0);
 sout: out STD_LOGIC);
end;

architecture synth of shiftreg is
 signal q_int: STD_LOGIC_VECTOR(3 downto 0);
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then q_int <= "0000";
 elsif load = '1' then q_int <= d;
 else q_int <= q_int(2 downto 0) & sin;
 end if;
 end if;
 end process;

 q <= q_int;
 sout <= q_int(3);
end;

Example A.27 Shift Register with Parallel Load

0

1 R

sout

q[3:0]

d[3:0]

sin

load

reset
clk

[2:0]

[3:0]
Q[3:0]D[3:0]

[3]

FIGURE A.25 Synthesized shiftreg

A.5 Combinational Logic
with Always / Process Statements
In Section A.2, we used assignment statements to describe combinational logic behavior-
ally. SystemVerilog always statements and VHDL process statements are used to

A.5 Combinational Logic with Always / Process Statements 725

describe sequential circuits because they remember the old state when no new state is pre-
scribed. However, always / process statements can also be used to describe combina-
tional logic behaviorally if the sensitivity list is written to respond to changes in all of the
inputs and the body prescribes the output value for every possible input combination. For
example, Example A.28 uses always / process statements to describe a bank of four
inverters (see Figure A.4 for the schematic).

SystemVerilog
module inv(input logic [3:0] a,
 output logic [3:0] y);

 always_comb
 y = ~a;
endmodule

always_comb is equivalent to always @(*) and is the preferred
way of descr ibing combinat ional logic in SystemVeri log.
always_comb reevaluates the statements inside the always
statement any time any of the signals on the right-hand side of <=
or = inside the always statement change. Thus, always_comb is
a safe way to model combinational logic. In this particular example,
always @(a) would also have sufficed.

The = in the always statement is called a blocking assign-
ment, in contrast to the <= nonblocking assignment. In SystemVer-
i log, i t is good pract ice to use blocking assignments for
combinational logic and nonblocking assignments for sequential
logic. This will be discussed further in Section A.5.4.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity inv is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture proc of inv is
begin
 process(a) begin
 y <= not a;
 end process;
end;

The begin and end process statements are required in VHDL
even though the process only contains one assignment.

Example A.28 Inverter (Using always / process)

HDLs support blocking and nonblocking assignments in an always / process state-
ment. A group of blocking assignments are evaluated in the order they appear in the code,
just as one would expect in a standard programming language. A group of nonblocking
assignments is evaluated concurrently; all of the expressions on the right-hand sides are
evaluated before any of the left-hand sides are updated. For reasons that will be discussed
in Section A.5.4, it is most efficient to use blocking assignments for combinational logic
and safest to use nonblocking assignments for sequential logic.

SystemVerilog
In an always statement, = indicates a blocking assignment and <=
indicates a nonblocking assignment.

Do not confuse either type with continuous assignment using
the assign statement. assign statements are normally used out-
side always statements and are also evaluated concurrently.

VHDL
In a VHDL process statement, := indicates a blocking assignment
and <= indicates a nonblocking assignment (also called a concur-
rent assignment). This is the first section where := is introduced.

Nonblocking assignments are made to outputs and to signals.
Blocking assignments are made to variables, which are declared in
process statements (see the next example).

<= can also appear outside process statements, where it is
also evaluated concurrently.

Example A.29 defines a full adder using intermediate signals p and g to compute s
and cout. It produces the same circuit from Figure A.9, but uses always / process
statements in place of assignment statements.

Appendix A Hardware Description Languages726

These two examples are poor applications of always / process statements for
modeling combinational logic because they require more lines than the equivalent
approach with assign statements from Section A.2.1. Moreover, they pose the risk of
inadvertently implying sequential logic if the sensitivity list leaves out inputs. However,
case and if statements are convenient for modeling more complicated combinational
logic. case and if statements can only appear within always / process statements.

A.5.1 Case Statements
A better application of using the always / process statement for combinational logic is
a 7-segment display decoder that takes advantage of the case statement, which must
appear inside an always / process statement.

The design process for describing large blocks of combinational logic with Boolean
equations is tedious and prone to error. HDLs offer a great improvement, allowing you to
specify the function at a higher level of abstraction, then automatically synthesize the
function into gates. Example A.30 uses case statements to describe a 7-segment display
decoder based on its truth table. A 7-segment display is shown in Figure A.26. The

SystemVerilog
module fulladder(input logic a, b, cin,
 output logic s, cout);

 logic p, g;

 always_comb
 begin
 p = a ^ b; // blocking
 g = a & b; // blocking

 s = p ^ cin;
 cout = g | (p & cin);
 end
endmodule

In this case, always @(a, b, cin) or always @(*) would
have been equivalent to always_comb. All three reevaluate the
contents of the always block any time a, b, or cin change. How-
ever, always_comb is preferred because it is succinct and allows
SystemVerilog tools to generate a warning if the block inadvertently
describes sequential logic.

Notice that the begin / end construct is necessary
because multiple statements appear in the always statement. This
is analogous to { } in C or Java. The begin / end was not
needed in the flopr example because if / else counts as a
single statement.

This example uses blocking assignments, first computing p,
then g, then s, and finally cout.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
 port(a, b, cin: in STD_LOGIC;
 s, cout: out STD_LOGIC);
end;

architecture synth of fulladder is
begin
 process (a, b, cin)
 variable p, g: STD_LOGIC;
 begin
 p := a xor b; -- blocking
 g := a and b; -- blocking

 s <= p xor cin;
 cout <= g or (p and cin);
 end process;
end;

The process sensitivity list must include a, b, and cin because
combinational logic should respond to changes of any input. If any
of these inputs were omitted, the code might synthesize to sequen-
tial logic or might behave differently in simulation and synthesis.

This example uses blocking assignments for p and g so that
they get their new values before being used to compute s and
cout that depend on them.

Because p and g appear on the left-hand side of a blocking
assignment (:=) in a process statement, they must be declared to
be variable rather than signal. The variable declaration
appears before the begin in the process where the variable is
used.

Example A.29 Full Adder (Using always / process)

a

b

c

d

e

f

g

FIGURE A.26
7-segment display

A.5 Combinational Logic with Always / Process Statements 727

decoder takes a 4-bit number and displays its decimal value on the segments. For example,
the number 0111 = 7 should turn on segments a, b, and c.

The case statement performs different actions depending on the value of its input. A
case statement implies combinational logic if all possible input combinations are consid-
ered; otherwise it implies sequential logic because the output will keep its old value in the
undefined cases.

SystemVerilog
module sevenseg(input logic [3:0] data,
 output logic [6:0] segments);

 always_comb
 case (data)
 // abc_defg
 0: segments = 7'b111_1110;
 1: segments = 7'b011_0000;
 2: segments = 7'b110_1101;
 3: segments = 7'b111_1001;
 4: segments = 7'b011_0011;
 5: segments = 7'b101_1011;
 6: segments = 7'b101_1111;
 7: segments = 7'b111_0000;
 8: segments = 7'b111_1111;
 9: segments = 7'b111_1011;
 default: segments = 7'b000_0000;
 endcase
endmodule

The default clause is a convenient way to define the output for all
cases not explicitly listed, guaranteeing combinational logic.

In SystemVerilog, case statements must appear inside
always statements.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity seven_seg_decoder is
 port(data: in STD_LOGIC_VECTOR(3 downto 0);
 segments: out STD_LOGIC_VECTOR(6 downto 0));
end;

architecture synth of seven_seg_decoder is
begin
 process(data) begin
 case data is
-- abcdefg
 when X"0" => segments <= "1111110";
 when X"1" => segments <= "0110000";
 when X"2" => segments <= "1101101";
 when X"3" => segments <= "1111001";
 when X"4" => segments <= "0110011";
 when X"5" => segments <= "1011011";
 when X"6" => segments <= "1011111";
 when X"7" => segments <= "1110000";
 when X"8" => segments <= "1111111";
 when X"9" => segments <= "1111011";
 when others => segments <= "0000000";
 end case;
 end process;
end;

The case statement checks the value of data. When data is 0,
the statement performs the action after the =>, setting segments
to 1111110. The case statement similarly checks other data
values up to 9 (note the use of X for hexadecimal numbers). The
others clause is a convenient way to define the output for all cases
not explicitly listed, guaranteeing combinational logic.

Unlike Verilog, VHDL supports selected signal assignment
statements (see Section A.2.4), which are much like case state-
ments but can appear outside processes. Thus, there is less reason
to use processes to describe combinational logic.

Example A.30 Seven-Segment Display Decoder

Synplify Pro synthesizes the 7-segment display decoder into a read-only memory
(ROM) containing the seven outputs for each of the 16 possible inputs. Other tools might
generate a rat’s nest of gates.

Appendix A Hardware Description Languages728

If the default or others clause were left out of the case statement, the decoder
would have remembered its previous output whenever data were in the range of 10–15.
This is strange behavior for hardware, and is not combinational logic.

Ordinary decoders are also commonly written with case statements. Example A.31
describes a 3:8 decoder.

rom

segments_1[6:0]

segments[6:0]data[3:0] DOUT[6:0]A[3:0]

FIGURE A.27 sevenseg

SystemVerilog
module decoder3_8(input logic [2:0] a,
 output logic [7:0] y);

 always_comb
 case (a)
 3'b000: y = 8'b00000001;
 3'b001: y = 8'b00000010;
 3'b010: y = 8'b00000100;
 3'b011: y = 8'b00001000;
 3'b100: y = 8'b00010000;
 3'b101: y = 8'b00100000;
 3'b110: y = 8'b01000000;
 3'b111: y = 8'b10000000;
 endcase
endmodule

No default statement is needed because all cases are covered.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder3_8 is
 port(a: in STD_LOGIC_VECTOR(2 downto 0);
 y: out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture synth of decoder3_8 is
begin
 process(a) begin
 case a is
 when "000" => y <= "00000001";
 when "001" => y <= "00000010";
 when "010" => y <= "00000100";
 when "011" => y <= "00001000";
 when "100" => y <= "00010000";
 when "101" => y <= "00100000";
 when "110" => y <= "01000000";
 when "111" => y <= "10000000";
 when others => y <= (OTHERS => 'X');
 end case;
 end process;
end;

Some VHDL tools require an others clause because combinations
such as "1zx" are not covered. y <= (OTHERS => 'X') sets all
the bits of y to X; this is an unrelated use of the keyword OTHERS.

Example A.31 3:8 Decoder

A.5 Combinational Logic with Always / Process Statements 729

A.5.2 If Statements
always / process statements can also contain if statements. The if may be followed
by an else statement. When all possible input combinations are handled, the statement
implies combinational logic; otherwise it produces sequential logic (like the latch in Sec-
tion A.4.5).

Example A.32 uses if statements to describe a 4-bit priority circuit that sets one out-
put TRUE corresponding to the most significant input that is TRUE.

y41

y34

y35

y36

y37

y38

y39

y40

y[7:0]

a[2:0]
[2:0]

[0]
[1]
[2]

[0]
[1]
[2]

[0]
[1]
[2]

[1]
[0]
[2]

[0]
[1]
[2]

[2]
[0]
[1]

[0]
[2]
[1]

[1]
[2]
[0]

FIGURE A.28 3:8 decoder

Appendix A Hardware Description Languages730

SystemVerilog
module priorityckt(input logic [3:0] a,
 output logic [3:0] y);

 always_comb
 if (a[3]) y = 4'b1000;
 else if (a[2]) y = 4'b0100;
 else if (a[1]) y = 4'b0010;
 else if (a[0]) y = 4'b0001;
 else y = 4'b0000;
endmodule

In SystemVerilog, if statements must appear inside always
statements.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity priorityckt is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of priorityckt is
begin
 process(a) begin
 if a(3) = '1' then y <= "1000";
 elsif a(2) = '1' then y <= "0100";
 elsif a(1) = '1' then y <= "0010";
 elsif a(0) = '1' then y <= "0001";
 else y <= "0000";
 end if;
 end process;
end;

Unlike Verilog, VHDL supports conditional signal assignment state-
ments (see Section A.2.4), which are much like if statements but
can appear outside processes. Thus, there is less reason to use pro-
cesses to describe combinational logic.

Example A.32 Priority Circuit

un1_a_1

y23

un1_a_3

y24

y25

y[3:0]

a[3:0]
[3:0]

[3]

[2]
[3]

[2]
[3]

[1]

[1]

[0]

FIGURE A.29 Priority circuit

A.5 Combinational Logic with Always / Process Statements 731

A.5.3 SystemVerilog Casez
(This section may be skipped by VHDL users.) SystemVerilog also provides the casez
statement to describe truth tables with don’t cares (indicated with ? in the casez state-
ment). Example A.33 shows how to describe a priority circuit with casez.

SystemVerilog
module priority_casez(input logic [3:0] a,
 output logic [3:0] y);

 always_comb
 casez(a)
 4'b1???: y = 4'b1000;
 4'b01??: y = 4'b0100;
 4'b001?: y = 4'b0010;
 4'b0001: y = 4'b0001;
 default: y = 4'b0000;
 endcase
endmodule

Synplify Pro synthesizes a slightly different circuit for this mod-
ule, shown in Figure A.30, than it did for the priority circuit in Figure
A.29. However, the circuits are logically equivalent.

Example A.33 Priority Circuit Using casez

y23[0]

y24[0]

y25

y[3:0]a[3:0]
[3:0] [3]

[2]

[3]

[1]

[2]

[3]

[0]

[1]

[2]

[3]

FIGURE A.30 priority_casez

A.5.4 Blocking and Nonblocking Assignments
The following guidelines explain when and how to use each type of assignment. If these
guidelines are not followed, it is possible to write code that appears to work in simulation,
but synthesizes to incorrect hardware. The optional remainder of this section explains the
principles behind the guidelines.

VHDL
1. Use process(clk) and nonblocking assignments to model

synchronous sequential logic.

process(clk) begin
 if clk'event and clk = '1' then
 n1 <= d; -- nonblocking
 q <= n1; -- nonblocking
 end if;
 end process;

2. Use concurrent assignments outside process statements to
model simple combinational logic.

y <= d0 when s = '0' else d1;

SystemVerilog
1. Use always_ff @(posedge clk) and nonblocking

assignments to model synchronous sequential logic.

 always_ff @(posedge clk)
 begin
 n1 <= d; // nonblocking
 q <= n1; // nonblocking
 end

2. Use continuous assignments to model simple combinational
logic.

 assign y = s ? d1 : d0;

Appendix A Hardware Description Languages732

A.5.4.1 Combinational Logic
The full adder from Example A.29 is correctly modeled using blocking assignments. This
section explores how it operates and how it would differ if nonblocking assignments had
been used.

 Imagine that a, b, and cin are all initially 0. p, g, s, and cout are thus 0 as well. At
some time, a changes to 1, triggering the always / process statement. The four block-
ing assignments evaluate in the order shown below. Note that p and g get their new value
before s and cout are computed because of the blocking assignments. This is important
because we want to compute s and cout using the new values of p and g.

Example A.34 illustrates the use of nonblocking assignments (not recommended).

1 1 0 1
2 1 0 0
3 1 0 1
4 0 1 0 0

.
. ·
.
. ·

p

g

s

cout

=
=
=
+ =

SystemVerilog (continued)
3. Use always_comb and blocking assignments to model more

complicated combinational logic where the always statement is
helpful.

 always_comb
 begin
 p = a ^ b; // blocking
 g = a & b; // blocking
 s = p ^ cin;
 cout = g | (p & cin);
 end

4. Do not make assignments to the same signal in more than one
always statement or continuous assignment statement. Excep-
tion: tristate busses.

VHDL (continued)
3. Use process(in1, in2, ...) to model more compli-

cated combinational logic where the process is helpful.
Use blocking assignments to internal variables.

process(a, b, cin)
 variable p, g: STD_LOGIC;
 begin
 p := a xor b; -- blocking
 g := a and b; -- blocking
 s <= p xor cin;
 cout <= g or (p and cin);
 end process;

4. Do not make assignments to the same variable in more
than one process or concurrent assignment statement.
Exception: tristate busses.

Example A.34 Full Adder Using Nonblocking Assignments

SystemVerilog
// nonblocking assignments (not recommended)
module fulladder(input logic a, b, cin,
 output logic s, cout);

 logic p, g;

 always_comb
 begin
 p <= a ^ b; // nonblocking
 g <= a & b; // nonblocking

 s <= p ^ cin;
 cout <= g | (p & cin);
 end
endmodule

VHDL
-- nonblocking assignments (not recommended)
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
 port(a, b, cin: in STD_LOGIC;
 s, cout: out STD_LOGIC);
end;

architecture nonblocking of fulladder is
 signal p, g: STD_LOGIC;
begin
 process (a, b, cin, p, g) begin
 p <= a xor b; -- nonblocking
 g <= a and b; -- nonblocking

A.5 Combinational Logic with Always / Process Statements 733

 Consider the same case of a rising from 0 to 1 while b and cin are 0. The four non-
blocking assignments evaluate concurrently as follows:

Observe that s is computed concurrently with p and hence uses the old value of p, not
the new value. Hence, s remains 0 rather than becoming 1. However, p does change from
0 to 1. This change triggers the always / process statement to evaluate a second time as
follows:

This time, p was already 1, so s correctly changes to 1. The nonblocking assignments
eventually reached the right answer, but the always / process statement had to evalu-
ate twice. This makes simulation more time consuming, although it synthesizes to the
same hardware.

Another drawback of nonblocking assignments in modeling combinational logic is
that the HDL will produce the wrong result if you forget to include the intermediate vari-
ables in the sensitivity list, as shown below.

p g s cout= = = + =1 0 1 1 0 0 0 0 0 0 0 0 0· ·

p g s cout= = = + =1 0 1 1 0 0 0 0 0 01 1 1· ·

VHDL (continued)
 s <= p xor cin;
 cout <= g or (p and cin);
 end process;
end;

Because p and g appear on the left-hand side of a nonblocking
assignment in a process statement, they must be declared to be
signal rather than variable. The signal declaration appears
before the begin in the architecture, not the process.

SystemVerilog
If the sensitivity list of the always statement were written as
always @(a, b, cin) rather than always_comb or always
@(*), then the statement would not reevaluate when p or g
change. In the previous example, s would be incorrectly left at 0,
not 1.

VHDL
If the sensitivity list of the process were written as process (a,
b, cin) rather than always process (a, b, cin, p, g),
then the statement would not reevaluate when p or g change. In the
previous example, s would be incorrectly left at 0, not 1.

Worse yet, some synthesis tools will synthesize the correct hardware even when a
faulty sensitivity list causes incorrect simulation. This leads to a mismatch between the
simulation results and what the hardware actually does.

A.5.4.2 Sequential Logic
The synchronizer from Example A.23 is correctly modeled using nonblocking assign-
ments. On the rising edge of the clock, d is copied to n1 at the same time that n1 is copied
to q, so the code properly describes two registers. For example, suppose initially that d = 0,
n1 = 1, and q = 0. On the rising edge of the clock, the following two assignments occur
concurrently, so that after the clock edge, n1 = 0 and q = 1.

n d q n1 0 1 1= =

Appendix A Hardware Description Languages734

Example A.35 incorrectly tries to describe the same module using blocking assign-
ments. On the rising edge of clk, d is copied to n1. This new value of n1 is then copied to
q, resulting in d improperly appearing at both n1 and q. If d = 0 and n1 = 1, then after the
clock edge, n1 = q = 0.

Because n1 is invisible to the outside world and does not influence the behavior of q,
the synthesizer optimizes it away entirely, as shown in Figure A.31.

1 1 0
2 1 0
.
.
n d

q n

=
=

Example A.35 Bad Synchronizer with Blocking Assignment

SystemVerilog
// Bad implementation using blocking assignments

module syncbad(input logic clk,
 input logic d,
 output logic q);

 logic n1;

 always_ff @(posedge clk)
 begin
 n1 = d; // blocking
 q = n1; // blocking
 end
endmodule

VHDL
-- Bad implementation using blocking assignment

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity syncbad is
 port(clk: in STD_LOGIC;
 d: in STD_LOGIC;
 q: out STD_LOGIC);
end;

architecture bad of syncbad is
begin
 process(clk)
 variable n1: STD_LOGIC;
 begin
 if clk'event and clk = '1' then
 n1 := d; -- blocking
 q <= n1;
 end if;
 end process;
end;

q

qd
clk

QD

FIGURE A.31 syncbad

The moral of this illustration is to use nonblocking assignment in always statements
exclusively when modeling sequential logic. With sufficient cleverness, such as reversing
the orders of the assignments, you could make blocking assignments work correctly, but
blocking assignments offer no advantages and only introduce the risk of unintended
behavior. Certain sequential circuits will not work with blocking assignments no matter
what the order.

A.6 Finite State Machines 735

A.6 Finite State Machines
There are two styles of finite state machines. In Mealy machines (Figure A.32(a)), the out-
put is a function of the current state and inputs. In Moore machines (Figure A.32(b)), the
output is a function of the current state only. In both types, the FSM can be partitioned
into a state register, next state logic, and output logic. HDL descriptions of state machines
are correspondingly divided into these same three parts.

clk

Next State
Logic

next
state

inputs
Output
Logic

outputs

(a)

(b)

clk

Next State
Logic

next
state

inputs
Output
Logic

outputs

FIGURE A.32 Mealy and Moore machines

A.6.1 FSM Example
Example A.36 describes the divide-by-3 FSM from Figure A.33. It provides a syn-
chronous reset to initialize the FSM. The state register uses the ordinary idiom for
flip-flops. The next state and output logic blocks are combinational. This is an example
of a Moore machine; indeed, the FSM has no inputs, only a clock and reset.

S0

out = 0

S1

out = 0

S2

out = 1

reset

FIGURE A.33 Divide-by-3
counter state transition diagram

Example A.36 Divide-by-3 Finite State Machine

SystemVerilog
module divideby3FSM(input logic clk,
 input logic reset,
 output logic y);

 logic [1:0] state, nextstate;

 // State Register
 always_ff @(posedge clk)
 if (reset) state <= 2'b00;
 else state <= nextstate;

 // Next State Logic
 always_comb
 case (state)
 2'b00: nextstate = 2'b01;
 2'b01: nextstate = 2'b10;
 2'b10: nextstate = 2'b00;
 default: nextstate = 2'b00;
 endcase

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity divideby3FSM is
 port(clk, reset: in STD_LOGIC;
 y: out STD_LOGIC);
end;

architecture synth of divideby3FSM is
 signal state, nextstate:
 STD_LOGIC_VECTOR(1 downto 0);
begin
 -- state register
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then state <= "00";
 else state <= nextstate;
 end if;
 end if;
 end process;

(continues)

Appendix A Hardware Description Languages736

Synplify Pro just produces a block diagram and state transition diagram for state
machines; it does not show the logic gates or the inputs and outputs on the arcs and states.
Therefore, be careful that you have correctly specified the FSM in your HDL code.
Design Compiler and other synthesis tools show the gate-level implementation. Figure
A.34 shows a state transition diagram; the double circle indicates that S0 is the reset state.

SystemVerilog (continued)
// Output Logic
 assign y = (state == 2'b00);
endmodule

Notice how a case statement is used to define the state transition
table. Because the next state logic should be combinational, a
default is necessary even though the state 11 should never arise.

The output y is 1 when the state is 00. The equality compari-
son a == b evaluates to 1 if a equals b and 0 otherwise. The
inequality comparison a != b does the inverse, evaluating to 1 if a
does not equal b.

VHDL (continued)
 -- next state logic
 nextstate <= "01" when state = "00" else
 "10" when state = "01" else
 "00";

 -- output logic
 y <= '1' when state = "00" else '0';
end;

The output y is 1 when the state is 00. The equality comparison
a = b evaluates to true if a equals b and false otherwise. The
inequality comparison a /= b does the inverse, evaluating to true
if a does not equal b.

statemachine

state[2:0]

y
reset
clk C

Q[2:0]
R

S0

S1

S2

[2]

FIGURE A.34 divideby3fsm

Note that each always / process statement implies a separate block of logic.
Therefore, a given signal can be assigned in only one always / process. Otherwise, two
pieces of hardware with shorted outputs will be implied.

A.6.2 State Enumeration
SystemVerilog and VHDL supports enumeration types as an abstract way of representing
information without assigning specific binary encodings. For example, the divide-by-3
finite state machine described in Example A.36 uses three states. We can give the states
names using the enumeration type rather than referring to them by binary values. This

A.6 Finite State Machines 737

makes the code more readable and easier to change. Example A.37 rewrites the divide-by-
3 FSM using enumerated states; the hardware is not changed.

Example A.37 State Enumeration

SystemVerilog
module divideby3FSM(input logic clk,
 input logic reset,
 output logic y);

 typedef enum logic [1:0] {S0, S1, S2} statetype;
 statetype state, nextstate;

 // State Register
 always_ff @(posedge clk)
 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb
 case (state)
 S0: nextstate = S1;
 S1: nextstate = S2;
 S2: nextstate = S0;
 default: nextstate = S0;
 endcase

 // Output Logic
 assign y = (state == S0);
endmodule

The typedef statement defines statetype to be a two-bit
logic value with one of three possibilities: S0, S1, or S2. state
and nextstate are statetype signals.

The enumerated encodings default to numerical order: S0 =
00, S1 = 01, and S2 = 10. The encodings can be explicitly set by
the user. The following snippet encodes the states as 3-bit one-hot
values:

typedef enum logic [2:0] {S0 = 3'b001,
S1 = 3'b010,
S2 = 3'b100} statetype;

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity divideby3FSM is
 port(clk, reset: in STD_LOGIC;
 y: out STD_LOGIC);
end;

architecture synth of divideby3FSM is
 type statetype is (S0, S1, S2);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then state <= S0;
 else state <= nextstate;
 end if;
 end if;
 end process;

 -- next state logic
 nextstate <= S1 when state = S0 else
 S2 when state = S1 else
 S0;

 -- output logic
 y <= '1' when state = S0 else '0';
end;

This example defines a new enumeration data type, statetype,
with three possibilities: S0, S1, and S2. state and nextstate
are statetype signals.

The synthesis tool may choose the encoding of enumeration
types. A good tool may choose an encoding that simplifies the hard-
ware implementation.

If, for some reason, we had wanted the output to be HIGH in states S0 and S1, the
output logic would be modified as follows:

SystemVerilog
 // Output Logic
 assign y = (state == S0 | state == S1);

VHDL
 -- output logic
 y <= '1' when (state = S0 or state = S1) else '0';

Appendix A Hardware Description Languages738

A.6.3 FSM with Inputs
The divide-by-3 FSM had one output and no inputs. Example
A.38 describes a finite state machine with an input a and two
outputs, as shown in Figure A.35. Output x is true when the
input is the same now as it was last cycle. Output y is true
when the input is the same now as it was for the past two
cycles. The state transition diagram indicates a Mealy machine
because the output depends on the current inputs as well as the
state. The outputs are labeled on each transition after the
input.

S0

S3S1

reset

S4S2

a / x = 0, y = 0

a / x = 1, y = 0
a /

x = 0,
y = 0

a / x = 0, y = 0

a / x = 0, y = 0

a / x = 1, y = 0
a /

x = 0,
y = 0

a / x = 1, y = 1 a / x = 1, y = 1

a / x = 0, y = 0

FIGURE A.35 History FSM state transition diagram

Example A.38 History FSM

SystemVerilog
module historyFSM(input logic clk,
 input logic reset,
 input logic a,
 output logic x, y);

 typedef enum logic [2:0]
 {S0, S1, S2, S3, S4} statetype;
 statetype state, nextstate;

 // State Register
 always_ff @(posedge clk)
 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb
 case (state)
 S0: if (a) nextstate = S3;
 else nextstate = S1;
 S1: if (a) nextstate = S3;
 else nextstate = S2;
 S2: if (a) nextstate = S3;
 else nextstate = S2;
 S3: if (a) nextstate = S4;
 else nextstate = S1;
 S4: if (a) nextstate = S4;
 else nextstate = S1;
 default: nextstate = S0;
 endcase

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity historyFSM is
 port(clk, reset: in STD_LOGIC;
 a: in STD_LOGIC;
 x, y: out STD_LOGIC);
end;

architecture synth of historyFSM is
 type statetype is (S0, S1, S2, S3, S4);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then state <= S0;
 else state <= nextstate;
 end if;
 end if;
 end process;

 -- next state logic
 process(state, a) begin
 case state is
 when S0 =>if a = '1' then nextstate <= S3;
 else nextstate <= S1;
 end if;
 when S1 => if a = '1' then nextstate <= S3;
 else nextstate <= S2;
 end if;

A.6 Finite State Machines 739

SystemVerilog (continued)
// Output Logic
assign x = ((state == S1 | state == S2) & ~a) |
 ((state == S3 | state == S4) & a);
assign y = (state == S2 & ~a) | (state == S4 & a);
endmodule

VHDL (continued)
 when S2 => if a = '1' then nextstate <= S3;

else nextstate <= S2;
end if;

 when S3 => if a = '1' then nextstate <= S4;
else nextstate <= S1;
end if;

 when S4 => if a = '1' then nextstate <= S4;
else nextstate <= S1;
end if;

 when others => nextstate <= S0;
 end case;
 end process;

 -- output logic
 x <= '1' when

((state = S1 or state = S2) and a = '0') or
((state = S3 or state = S4) and a = '1')

 else '0';
 y <= '1' when
 (state = S2 and a = '0') or
 (state = S4 and a = '1')
 else '0';
end;

statemachine

state[4:0]

un1 S0[2:0]

e
d

e
d

e
d

e
d

e
d

un1 x

un4 x

un1 y

un5 y

x

y

y

xa
clk

reset

I [4:0]
Q[4:0]C

R

[0]

000

[1]

010

[2]
[2:0]

011

[3]

100

[4]

101

[1]

[2]

[0]
[1]

[0]
[2]

S3

S4

S1

S0

S2

FIGURE A.36 historyFSM

Appendix A Hardware Description Languages740

A.7 Type Idiosyncracies
This section explains some subtleties about SystemVerilog and VHDL types in more
depth.

SystemVerilog
Standard Verilog primarily uses two types: reg and wire. Despite
its name, a reg signal might or might not be associated with a regis-
ter. This was a great source of confusion for those learning the lan-
guage. SystemVerilog introduced the logic type and relaxed some
requirements to eliminate the confusion; hence, the examples in
this appendix use logic. This section explains the reg and wire
types in more detail for those who need to read legacy Verilog code.

In Verilog, if a signal appears on the left-hand side of <= or = in
an always block, it must be declared as reg. Otherwise, it should
be declared as wire. Hence, a reg signal might be the output of a
flip-flop, a latch, or combinational logic, depending on the sensitivity
list and statement of an always block.

Input and output ports default to the wire type unless their
type is explicitly specified as reg. The following example shows how
a flip-flop is described in conventional Verilog. Notice that clk and
d default to wire, while q is explicitly defined as reg because it
appears on the left-hand side of <= in the always block.

module flop(input clk,
 input [3:0] d,
 output reg [3:0] q);

 always @(posedge clk)
 q <= d;
endmodule

SystemVerilog introduces the logic type. logic is a syn-
onym for reg and avoids misleading users about whether it is actu-
ally a flip-flop. Moreover, SystemVerilog relaxes the rules on assign
statements and hierarchical port instantiations so logic can be
used outside always blocks where a wire traditionally would be
required. Thus, nearly all SystemVerilog signals can be logic. The
exception is that signals with multiple drivers (e.g., a tristate bus)
must be declared as a net, as described in Example A.11. This rule
allows SystemVerilog to generate an error message rather than an x
value when a logic signal is accidentally connected to multiple
drivers.

The most common type of net is called a wire or tri. These
two types are synonymous, but wire is conventionally used when a
single driver is present and tri is used when multiple drivers are
present. Thus, wire is obsolete in SystemVerilog because logic is
preferred for signals with a single driver.

When a tri net is driven to a single value by one or more
drivers, it takes on that value. When it is undriven, it floats (z). When
it is driven to different values (0, 1, or x) by multiple drivers, it is in
contention (x).

There are other net types that resolve differently when
undriven or driven by multiple sources. The other types are rarely

VHDL
Unlike SystemVerilog, VHDL enforces a strict data typing system
that can protect the user from some errors but that is also clumsy at
times.

Despite its fundamental importance, the STD_LOGIC type is
not built into VHDL. Instead, it is part of the
IEEE.STD_LOGIC_1164 library. Thus, every file must contain the
library statements we have seen in the previous examples.

Moreover, IEEE.STD_LOGIC_1164 lacks basic operations
such as addition, comparison, shifts, and conversion to integers for
STD_LOGIC_VECTOR data. Most CAD vendors have adopted yet
more libraries containing these functions:

IEEE.STD_LOGIC_UNSIGNED and
IEEE.STD_LOGIC_SIGNED.

VHDL also has a BOOLEAN type with two values: true and
false. BOOLEAN values are returned by comparisons (like s =
'0') and used in conditional statements such as when. Despite the
temptation to believe a BOOLEAN true value should be equivalent
to a STD_LOGIC '1' and BOOLEAN false should mean
STD_LOGIC '0', these types are not interchangeable. Thus, the
following code is illegal:

 y <= d1 when s else d0;
 q <= (state = S2);

Instead, we must write

 y <= d1 when s = '1' else d0;
 q <= '1' when state = S2 else '0';

While we will not declare any signals to be BOOLEAN, they are auto-
matically implied by comparisons and used by conditional state-
ments.

Similarly, VHDL has an INTEGER type representing both posi-
tive and negative integers. Signals of type INTEGER span at least
the values –231 … 231-1. Integer values are used as indices of bus-
ses. For example, in the statement

 y <= a(3) and a(2) and a(1) and a(0);

0, 1, 2, and 3 are integers serving as an index to choose bits of the a
signal. We cannot directly index a bus with a STD_LOGIC or
STD_LOGIC_VECTOR signal. Instead, we must convert the signal
to an INTEGER. This is demonstrated in Example A.39 for an 8:1
multiplexer that selects one bit from a vector using a 3-bit index.
The CONV_INTEGER func t i on i s defined in the
STD_LOGIC_UNSIGNED library and performs the conversion from
STD_LOGIC_VECTOR to integer for positive (unsigned) values.

A.7 Type Idiosyncracies 741

SystemVerilog (continued)
used, but can be substituted anywhere a tri net would normally
appear (e.g., for signals with multiple drivers). Each is described in
Table A.7:

Most operations such as addition, subtraction, and Boolean
logic are identical whether a number is signed or unsigned. How-
ever, magnitude comparison, multiplication and arithmetic right
shifts are performed differently for signed numbers.

In Verilog, nets are considered unsigned by default. Adding the
signed modifier (e.g., logic signed a [31:0]) causes the net
to be treated as signed.

TABLE A.7 net resolution

Net Type No Driver Conflicting Drivers
tri z x

triand z 0 if any are 0

trior z 1 if any are 1

trireg previous value x

tri0 0 x

tri1 1 x

Example A.39 8:1 Multiplexer with Type Conversion

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity mux8 is
 port(d: in STD_LOGIC_VECTOR(7 downto 0);
 s: in STD_LOGIC_VECTOR(2 downto 0);
 y: out STD_LOGIC);
end;

architecture synth of mux8 is
begin
 y <= d(CONV_INTEGER(s));
end;

VHDL is also strict about out ports being exclusively for output. For
example, the following code for 2- and 3-input AND gates is illegal
VHDL because v is used to compute w as well as to be an output.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity and23 is
 port(a, b, c: in STD_LOGIC;
 v, w: out STD_LOGIC);
end;

architecture synth of and23 isun1 s 3

un1 s 4

un1 s 5

un1 s 6

un1 s 7

un1 s 8

un1 s 9

un1 s 10

y

e
d
e
d
e
d
e
d
e
d
e
d
e
d
e
d

s[2:0] [2 0]

d[7:0]

y

[7 0]

[0]
[1]
[2]

[0]
[1]
[2]

[0]
[1]
[2]

[1]
[0]
[2]

[0]
[1]
[2]

[2]
[0]
[1]

[0]
[2]
[1]

[1]
[2]
[0]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

FIGURE A.37 mux8

Appendix A Hardware Description Languages742

A.8 Parameterized Modules
So far, all of our modules have had fixed-width inputs and outputs. For example, we had
to define separate modules for 4- and 8-bit wide 2:1 multiplexers. HDLs permit variable
bit widths using parameterized modules. Example A.40 declares a parameterized 2:1 mul-
tiplexer with a default width of 8, and then uses it to create 8- and 12-bit 4:1 multiplexers.

Example A.39 8:1 Multiplexer with Type Conversion (continued)

begin
 v <= a and b;
 w <= v and c;
end;

VHDL defines a special port type called buffer to solve this
problem. A signal connected to a buffer port behaves as an out-
put but may also be used within the module. Unfortunately, buffer
ports are a hassle for hierarchical design because higher level out-
puts of the hierarchy may also have to be converted to buffers. A
better alternative is to declare an internal signal, and then drive the
output based on this signal, as follows:

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity and23 is
 port(a, b, c: in STD_LOGIC;
 v, w: out STD_LOGIC);
end;

architecture synth of and23 is
 signal v_int: STD_LOGIC;
begin
 v_int <= a and b;
 v <= v_int;
 w <= v_int and c;
end;

Example A.40 Parameterized N-bit Multiplexers

SystemVerilog
module mux2
 #(parameter width = 8)
 (input logic [width-1:0] d0, d1,
 input logic s,
 output logic [width-1:0] y);

 assign y = s ? d1 : d0;
endmodule

SystemVerilog allows a #(parameter ...) statement before the
inputs and outputs to define parameters. The parameter state-
ment includes a default value (8) of the parameter, width. The
number of bits in the inputs and outputs can depend on this param-
eter.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
 generic(width: integer := 8);
 port(d0,

d1: in STD_LOGIC_VECTOR(width-1 downto 0);
s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture synth of mux2 is
begin
 y <= d0 when s = '0' else d1;
end;

V W

w

v

c

b
a

FIGURE A.38 and23

A.8 Parameterized Modules 743

SystemVerilog (continued)
module mux4_8(input logic [7:0] d0, d1, d2, d3,
 input logic [1:0] s,
 output logic [7:0] y);

 logic [7:0] low, hi;

 mux2 lowmux(d0, d1, s[0], low);
 mux2 himux(d2, d3, s[0], hi);
 mux2 outmux(low, hi, s[1], y);
endmodule

The 8-bit 4:1 multiplexer instantiates three 2:1 multiplexers using
their default widths.

In contrast, a 12-bit 4:1 multiplexer mux4_12 would need to
override the default width using #() before the instance name as
shown below.

module mux4_12(input logic [11:0] d0, d1, d2, d3,
 input logic [1:0] s,
 output logic [11:0] y);

 logic [11:0] low, hi;

 mux2 #(12) lowmux(d0, d1, s[0], low);
 mux2 #(12) himux(d2, d3, s[0], hi);
 mux2 #(12) outmux(low, hi, s[1], y);
endmodule

Do not confuse the use of the # sign indicating delays with the use
of #(...) in defining and overriding parameters.

VHDL (continued)
The generic statement includes a default value (8) of width.
The value is an integer.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4_8 is
 port(d0, d1, d2,
 d3: in STD_LOGIC_VECTOR(7 downto 0);
 s: in STD_LOGIC_VECTOR(1 downto 0);
 y: out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture struct of mux4_8 is
 component mux2
 generic(width: integer := 8);
 port(d0,

d1: in STD_LOGIC_VECTOR(width-1 downto 0);
s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;
 signal low, hi: STD_LOGIC_VECTOR(7 downto 0);
begin
 lowmux: mux2 port map(d0, d1, s(0), low);
 himux: mux2 port map(d2, d3, s(0), hi);
 outmux: mux2 port map(low, hi, s(1), y);
end;

The 8-bit 4:1 multiplexer instantiates three 2:1 multiplexers using
their default widths.

In contrast, a 12-bit 4:1 multiplexer mux4_12 would need to
override the default width using generic map as shown below.

 lowmux: mux2 generic map(12)
 port map(d0, d1, s(0), low);
 himux: mux2 generic map(12)
 port map(d2, d3, s(0), hi);
 outmux: mux2 generic map(12)
 port map(low, hi, s(1), y);

mux2_12

lowmux

mux2_12

himux

mux2_12

outmux

y[11:0]

s[1:0]
[1:0] [0]

[0]

d3[11:0]

d2[11:0]

d1[11:0]

d0[11:0]

s

d0[11:0]

d1[11:0]

y[11:0]

s

d0[11:0]

d1[11:0]

y[11:0]

s

d0[11:0]

d1[11:0]

y[11:0]

[1]

FIGURE A.39 mux4_12

Appendix A Hardware Description Languages744

Example A.41 shows a decoder, which is an even better application of parameterized
modules. A large N:2N decoder is cumbersome to specify with case statements, but easy
using parameterized code that simply sets the appropriate output bit to 1. Specifically, the
decoder uses blocking assignments to set all the bits to 0, and then changes the appropri-
ate bit to 1. Figure A.28 showed a 3:8 decoder schematic.

Example A.41 Parameterized N:2N Decoder

SystemVerilog
module decoder #(parameter N = 3)
 (input logic [N-1:0] a,
 output logic [2**N-1:0] y);

 always_comb
 begin
 y = 0;
 y[a] = 1;
 end
endmodule

2**N indicates 2N.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity decoder is
 generic(N: integer := 3);
 port(a: in STD_LOGIC_VECTOR(N-1 downto 0);
 y: out STD_LOGIC_VECTOR(2**N-1 downto 0));
end;

architecture synth of decoder is
begin
 process (a)
 variable tmp: STD_LOGIC_VECTOR(2**N-1 downto 0);
 begin
 tmp := CONV_STD_LOGIC_VECTOR(0, 2**N);
 tmp(CONV_INTEGER(a)) := '1';
 y <= tmp;
 end process;
end;

2**N indicates 2N.
CONV_STD_LOGIC_VECTOR(0, 2**N) produces a

STD_LOGIC_VECTOR of length 2N containing all 0s. It requires the
STD_LOGIC_ARITH library. The function is useful in other parame-
terized functions such as resettable flip-flops that need to be able to
produce constants with a parameterized number of bits. The bit
index in VHDL must be an integer, so the CONV_INTEGER function
is used to convert a from a STD_LOGIC_VECTOR to an integer.

HDLs also provide generate statements to produce a variable amount of hardware
depending on the value of a parameter. generate supports for loops and if statements
to determine how many of what types of hardware to produce. Example A.42 demon-
strates how to use generate statements to produce an N-input AND function from a
cascade of 2-input ANDs.

A.9 Memory 745

Use generate statements with caution; it is easy to produce a large amount of hard-
ware unintentionally!

A.9 Memory
Memories such as RAMs and ROMs are straightforward to model in HDL. Unfortu-
nately, efficient circuit implementations are so specialized and process-specific that most
tools cannot synthesize memories directly. Instead, a special memory generator tool or
memory library may be used, or the memory can be custom-designed.

A.9.1 RAM
Example A.43 describes a single-ported 64-word × 32-bit synchronous RAM with sepa-
rate read and write data busses. When the write enable, we, is asserted, the selected
address in the RAM is written with din on the rising edge of the clock. In any event, the
RAM is read onto dout.

Example A.42 Parameterized N-input AND Gate

SystemVerilog
module andN
 #(parameter width = 8)
 (input logic [width-1:0] a,
 output logic y);

 genvar i;
 logic [width-1:1] x;

 generate
 for (i=1; i<width; i=i+1) begin:forloop
 if (i == 1)
 assign x[1] = a[0] & a[1];
 else
 assign x[i] = a[i] & x[i-1];
 end
 endgenerate
 assign y = x[width-1];
endmodule

The for statement loops through i = 1, 2, ..., width–1 to produce
many consecutive AND gates. The begin in a generate for
loop must be followed by a : and an arbitrary label (forloop, in
this case).

Of course, writing assign y = &a would be much easier!

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity andN is
 generic(width: integer := 8);
 port(a: in STD_LOGIC_VECTOR(width-1 downto 0);
 y: out STD_LOGIC);
end;

architecture synth of andN is
 signal x: STD_LOGIC_VECTOR(width-1 downto 1);
begin
 AllBits: for i in 1 to width-1 generate
 LowBit: if i = 1 generate
 A1: x(1) <= a(0) and a(1);
 end generate;
 OtherBits: if i /= 1 generate
 Ai: x(i) <= a(i) and x(i-1);
 end generate;
 end generate;
 y <= x(width-1);
end;

The generate loop variable i does not need to be declared.

x[1] x[2] x[3] x[4] x[5] x[6] x[7]

[7]

[7:0]
[0]

[1]
[1]

[2]
[2]

[1]

[3]
[3]

[2]

[4]
[4]

[3]

[5]
[5]

[4]

[6]
[6]

[5]

[7]
[7]

[6]

a[7:0]

y

FIGURE A.40 andN

Appendix A Hardware Description Languages746

Example A.44 shows how to modify the RAM to have a single bidirectional data bus.
This reduces the number of wires needed, but requires that tristate drivers be added to
both ends of the bus. Usually point-to-point wiring is preferred over tristate busses in
VLSI implementations.

Example A.43 RAM

SystemVerilog
module ram #(parameter N = 6, M = 32)
 (input logic clk,
 input logic we,
 input logic [N-1:0] adr,
 input logic [M-1:0] din,
 output logic [M-1:0] dout);

 logic [M-1:0] mem[2**N-1:0];

 always @(posedge clk)
 if (we) mem[adr] <= din;

 assign dout = mem[adr];
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ram_array is
 generic(N: integer := 6; M: integer := 32);
 port(clk,

we: in STD_LOGIC;
adr: in STD_LOGIC_VECTOR(N-1 downto 0);
din: in STD_LOGIC_VECTOR(M-1 downto 0);
dout: out STD_LOGIC_VECTOR(M-1 downto 0));

end;

architecture synth of ram_array is
 type mem_array is array((2**N-1) downto 0)
 of STD_LOGIC_VECTOR(M-1 downto 0);
 signal mem: mem_array;
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if we = '1' then
 mem(CONV_INTEGER(adr)) <= din;
 end if;
 end if;
 end process;

 dout <= mem(CONV_INTEGER(adr));
end;

ram1

mem[15:0]

dout[15:0]
din[15:0]

we
addr[5:0]

clk

RADDR[5:0]

DATA[15:0]
DOUT[15:0]WADDR[5:0]

WE
CLK

FIGURE A.41 Synthesized ram

A.9 Memory 747

Example A.44 RAM with Bidirectional Data Bus

SystemVerilog
module ram #(parameter N = 6, M = 32)
 (input logic clk,
 input logic we,
 input logic [N-1:0] adr,
 inout tri [M-1:0] data);

 logic [M-1:0] mem[2**N-1:0];

 always @(posedge clk)
 if (we) mem[adr] <= data;

 assign data = we ? 'z : mem[adr];
endmodule

Notice that data is declared as an inout port because it can be
used both as an input and output. Also, 'z is a shorthand for filling
a bus of arbitrary length with zs.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ram_array is
 generic(N: integer := 6; M: integer := 32);
 port(clk,

we: in STD_LOGIC;
adr: in STD_LOGIC_VECTOR(N-1 downto 0);
data: inout STD_LOGIC_VECTOR(M-1 downto 0));

end;

architecture synth of ram_array is
 type mem_array is array((2**N-1) downto 0)
 of STD_LOGIC_VECTOR(M-1 downto 0);
 signal mem: mem_array;
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if we = '1' then
 mem(CONV_INTEGER(adr)) <= data;
 end if;
 end if;
 end process;

 data <= (OTHERS => 'Z') when we = '1'
 else mem(CONV_INTEGER(adr));
end;

we

ADR

DATA

N

M

FIGURE A.42 Synthesized ram
with bidirectional data bus

A.9.2 Multiported Register Files
A multiported register file has several read and/or write ports. Example A.45 describes a
synchronous register file with three ports. Ports 1 and 2 are read ports and port 3 is a write
port.

Appendix A Hardware Description Languages748

A.9.3 ROM
A read-only memory is usually modeled by a case statement with one entry for each
word. Example A.46 describes a 4-word by 3-bit ROM. ROMs often are synthesized into
blocks of random logic that perform the equivalent function. For small ROMs, this can be
most efficient. For larger ROMs, a ROM generator tool or library tends to be better. Fig-
ure A.27 showed a schematic of a 7-segment decoder implemented with a ROM.

Example A.45 Three-Ported Register File

SystemVerilog
module ram3port #(parameter N = 6, M = 32)
 (input logic clk,
 input logic we3,
 input logic [N-1:0] a1, a2, a3,
 output logic [M-1:0] d1, d2,
 input logic [M-1:0] d3);

 logic [M-1:0] mem[2**N-1:0];

 always @(posedge clk)
 if (we3) mem[a3] <= d3;

 assign d1 = mem[a1];
 assign d2 = mem[a2];
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ram3port is
 generic(N: integer := 6; M: integer := 32);
 port(clk,

we3: in STD_LOGIC;
a1,a2,a3: in STD_LOGIC_VECTOR(N-1 downto 0);
d1, d2: out STD_LOGIC_VECTOR(M-1 downto 0);
d3: in STD_LOGIC_VECTOR(M-1 downto 0));

end;

architecture synth of ram3port is
 type mem_array is array((2**N-1) downto 0)
 of STD_LOGIC_VECTOR(M-1 downto 0);
 signal mem: mem_array;
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if we3 = '1' then
 mem(CONV_INTEGER(a3)) <= d3;
 end if;
 end if;
 end process;

 d1 <= mem(CONV_INTEGER(a1));
 d2 <= mem(CONV_INTEGER(a2));
end;

we3

A1

A2

A3

D3

D1

D2

N

N

N

M

M

M

FIGURE A.43
Three-ported register file

A.10 Testbenches 749

A.10 Testbenches
A testbench is an HDL module used to test another module, called the device under test
(DUT). The testbench contains statements to apply inputs to the DUT and, ideally, to
check that the correct outputs are produced. The input and desired output patterns are
called test vectors.

Consider testing the sillyfunction module from Section A.1.1 that computes Y =
ABC + ABC + ABC. This is a simple module, so we can perform exhaustive testing by
applying all eight possible test vectors.

Example A.47 demonstrates a simple testbench. It instantiates the DUT, and then
applies the inputs. Blocking assignments and delays are used to apply the inputs in the
appropriate order. The user must view the results of the simulation and verify by inspec-
tion that the correct outputs are produced. Testbenches are simulated just as other HDL
modules. However, they are not synthesizable.

Example A.46 ROM

SystemVerilog
module rom(input logic [1:0] adr,
 output logic [2:0] dout);

 always_comb
 case(adr)
 2'b00: dout = 3'b011;
 2'b01: dout = 3'b110;
 2'b10: dout = 3'b100;
 2'b11: dout = 3'b010;
 endcase
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity rom is
 port(adr: in STD_LOGIC_VECTOR(1 downto 0);
 dout: out STD_LOGIC_VECTOR(2 downto 0));
end;

architecture synth of rom is
begin
 process(adr) begin
 case adr is
 when "00" => dout <= "011";
 when "01" => dout <= "110";
 when "10" => dout <= "100";
 when "11" => dout <= "010";
 when others => dout <= (OTHERS => 'X');
 end case;
 end process;
end;

Appendix A Hardware Description Languages750

Checking for correct outputs by hand is tedious and error-prone. Moreover, deter-
mining the correct outputs is much easier when the design is fresh in your mind; if you
make minor changes and need to retest weeks later, determining the correct outputs
becomes a hassle. A much better approach is to write a self-checking testbench, shown in
Example A.48.

Example A.47 Testbench

SystemVerilog
module testbench1();
 logic a, b, c;
 logic y;

 // instantiate device under test
 sillyfunction dut(a, b, c, y);

 // apply inputs one at a time

 initial begin
 a = 0; b = 0; c = 0; #10;
 c = 1; #10;
 b = 1; c = 0; #10;
 c = 1; #10;
 a = 1; b = 0; c = 0; #10;
 c = 1; #10;
 b = 1; c = 0; #10;
 c = 1; #10;
 end
endmodule

The initial statement executes the statements in its body at the
start of simulation. In this case, it first applies the input pattern 000
and waits for 10 time units. It then applies 001 and waits 10 more
units, and so forth until all eight possible inputs have been applied.
Initial statements should only be used in testbenches for simu-
lation, not in modules intended to be synthesized into actual hard-
ware. Hardware has no way of magically executing a sequence of
special steps when it is first turned on.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity testbench1 is -- no inputs or outputs
end;

architecture sim of testbench1 is
 component sillyfunction
 port(a, b, c: in STD_LOGIC;
 y: out STD_LOGIC);
 end component;
 signal a, b, c, y: STD_LOGIC;
begin
 -- instantiate device under test
 dut: sillyfunction port map(a, b, c, y);

 -- apply inputs one at a time
 process begin
 a <= '0'; b <= '0'; c <= '0'; wait for 10 ns;
 c <= '1'; wait for 10 ns;
 b <= '1'; c <= '0'; wait for 10 ns;
 c <= '1'; wait for 10 ns;
 a <= '1'; b <= '0'; c <= '0'; wait for 10 ns;
 c <= '1'; wait for 10 ns;
 b <= '1'; c <= '0'; wait for 10 ns;
 c <= '1'; wait for 10 ns;
 wait; -- wait forever
 end process;
end;

The process statement first applies the input pattern 000 and
waits for 10 ns. It then applies 001 and waits 10 more ns, and so
forth until all eight possible inputs have been applied.

At the end, the process waits indefinitely; otherwise, the pro-
cess would begin again, repeatedly applying the pattern of test vec-
tors.

A.10 Testbenches 751

Writing code for each test vector also becomes tedious, especially for modules that
require a large number of vectors. An even better approach is to place the test vectors in a
separate file. The testbench simply reads the test vectors, applies the input test vector,
waits, checks that the output values match the output vector, and repeats until it reaches
the end of the file.

Example A.49 demonstrates such a testbench. The testbench generates a clock using
an always / process statement with no stimulus list so that it is continuously reevalu-
ated. At the beginning of the simulation, it reads the test vectors from a disk file and

Example A.48 Self-Checking Testbench

SystemVerilog
module testbench2();
 logic a, b, c;
 logic y;

 // instantiate device under test
 sillyfunction dut(a, b, c, y);

 // apply inputs one at a time
 // checking results

 initial begin
 a = 0; b = 0; c = 0; #10;
 assert (y === 1) else $error("000 failed.");
 c = 1; #10;
 assert (y === 0) else $error("001 failed.");
 b = 1; c = 0; #10;
 assert (y === 0) else $error("010 failed.");
 c = 1; #10;
 assert (y === 0) else $error("011 failed.");
 a = 1; b = 0; c = 0; #10;
 assert (y === 1) else $error("100 failed.");
 c = 1; #10;
 assert (y === 1) else $error("101 failed.");
 b = 1; c = 0; #10;
 assert (y === 0) else $error("110 failed.");
 c = 1; #10;
 assert (y === 0) else $error("111 failed.");
 end
endmodule

The SystemVerilog assert statement checks if a specified condi-
tion is true. If it is not, it executes the else statement. The $error
system task in the else statement prints an error message describ-
ing the assertion failure. Assert is ignored during synthesis.

In SystemVerilog, comparison using == or != spuriously indi-
cates equality if one of the operands is x or z. The === and !==
operators must be used instead for testbenches because they work
correctly with x and z.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity testbench2 is -- no inputs or outputs
end;

architecture sim of testbench2 is
 component sillyfunction
 port(a, b, c: in STD_LOGIC;
 y: out STD_LOGIC);
 end component;
 signal a, b, c, y: STD_LOGIC;
begin
 -- instantiate device under test
 dut: sillyfunction port map(a, b, c, y);

 -- apply inputs one at a time
 -- checking results
 process begin
 a <= '0'; b <= '0'; c <= '0'; wait for 10 ns;
 assert y = '1' report "000 failed.";
 c <= '1'; wait for 10 ns;
 assert y = '0' report "001 failed.";
 b <= '1'; c <= '0'; wait for 10 ns;
 assert y = '0' report "010 failed.";
 c <= '1'; wait for 10 ns;
 assert y = '0' report "011 failed.";
 a <= '1'; b <= '0'; c <= '0'; wait for 10 ns;
 assert y = '1' report "100 failed.";
 c <= '1'; wait for 10 ns;
 assert y = '1' report "101 failed.";
 b <= '1'; c <= '0'; wait for 10 ns;
 assert y = '0' report "110 failed.";
 c <= '1'; wait for 10 ns;
 assert y = '0' report "111 failed.";
 wait; -- wait forever
 end process;
end;

The assert statement checks a condition and prints the message
given in the report clause if the condition is not satisfied. Assert
is ignored during synthesis.

Appendix A Hardware Description Languages752

pulses reset for two cycles. example.tv is a text file containing the inputs and expected
output written in binary:

000_1
001_0
010_0
011_0
100_1
101_1
110_0
111_0

New inputs are applied on the rising edge of the clock and the output is checked on
the falling edge of the clock. This clock (and reset) would also be provided to the DUT
if sequential logic were being tested. Errors are reported as they occur. At the end of the
simulation, the testbench prints the total number of test vectors applied and the number of
errors detected.

This testbench is overkill for such a simple circuit. However, it can easily be modified
to test more complex circuits by changing the example.tv file, instantiating the new
DUT, and changing a few lines of code to set the inputs and check the outputs.

Example A.49 Testbench with Test Vector File

SystemVerilog
module testbench3();
 logic clk, reset;
 logic a, b, c, yexpected;
 logic y;
 logic [31:0] vectornum, errors;
 logic [3:0] testvectors[10000:0];

 // instantiate device under test
 sillyfunction dut(a, b, c, y);

 // generate clock
 always
 begin
 clk = 1; #5; clk = 0; #5;
 end

 // at start of test, load vectors
 // and pulse reset
 initial
 begin
 $readmemb("example.tv", testvectors);
 vectornum = 0; errors = 0;
 reset = 1; #27; reset = 0;
 end

 // apply test vectors on rising edge of clk
 always @(posedge clk)
 begin
 #1; {a, b, c, yexpected} =
 testvectors[vectornum];
 end

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;
use STD.TEXTIO.all;

entity testbench3 is -- no inputs or outputs
end;

architecture sim of testbench3 is
 component sillyfunction
 port(a, b, c: in STD_LOGIC;
 y: out STD_LOGIC);
 end component;
 signal a, b, c, y: STD_LOGIC;
 signal clk, reset: STD_LOGIC;
 signal yexpected: STD_LOGIC;
 constant MEMSIZE: integer := 10000;
 type tvarray is array(MEMSIZE downto 0) of
 STD_LOGIC_VECTOR(3 downto 0);
 signal testvectors: tvarray;
 shared variable vectornum, errors: integer;
begin
 -- instantiate device under test
 dut: sillyfunction port map(a, b, c, y);

 -- generate clock
 process begin
 clk <= '1'; wait for 5 ns;
 clk <= '0'; wait for 5 ns;
 end process;

 -- at start of test, load vectors
 -- and pulse reset

A.10 Testbenches 753

SystemVerilog (continued)
// check results on falling edge of clk
 always @(negedge clk)
 if (~reset) begin // skip during reset
 if (y !== yexpected) begin

$display("Error: inputs = %b", {a, b, c});
$display(" outputs = %b (%b expected)",

 y, yexpected);
 errors = errors + 1;
 end
 vectornum = vectornum + 1;
 if (testvectors[vectornum] === 'bx) begin

$display("%d tests completed with %d
 errors", vectornum, errors);

 $finish;
 end
 end
endmodule

$readmemb reads a file of binary numbers into an array.
$readmemh is similar, but it reads a file of hexadecimal numbers.

The next block of code waits one time unit after the rising edge
of the clock (to avoid any confusion of clock and data changing
simultaneously), then sets the three inputs and the expected output
based on the 4 bits in the current test vector.

$display is a system task to print in the simulator window.
$finish terminates the simulation.

Note that even though the SystemVerilog module supports up
to 10001 test vectors, it will terminate the simulation after executing
the 8 vectors in the file.

For more information on testbenches and SystemVerilog verifi-
cation, consult [Bergeron05].

VHDL (continued)
process is
 file tv: TEXT;
 variable i, j: integer;
 variable L: line;
 variable ch: character;
 begin
 -- read file of test vectors
 i := 0;
 FILE_OPEN(tv, "example.tv", READ_MODE);
 while not endfile(tv) loop
 readline(tv, L);
 for j in 0 to 3 loop
 read(L, ch);
 if (ch = '_') then read(L, ch);
 end if;
 if (ch = '0') then
 testvectors(i)(j) <= '0';
 else testvectors(i)(j) <= '1';
 end if;
 end loop;
 i := i + 1;
 end loop;

 vectornum := 0; errors := 0;
 reset <= '1'; wait for 27 ns; reset <= '0';
 wait;
 end process;
 -- apply test vectors on rising edge of clk
 process (clk) begin
 if (clk'event and clk = '1') then

 a <= testvectors(vectornum)(0) after 1 ns;
 b <= testvectors(vectornum)(1) after 1 ns;
 c <= testvectors(vectornum)(2) after 1 ns;
 yexpected <= testvectors(vectornum)(3)
 after 1 ns;
 end if;
 end process;

 -- check results on falling edge of clk
 process (clk) begin
 if (clk'event and clk = '0' and reset = '0') then
 assert y = yexpected
 report "Error: y = " & STD_LOGIC'image(y);
 if (y /= yexpected) then
 errors := errors + 1;
 end if;
 vectornum := vectornum + 1;
 if (is_x(testvectors(vectornum))) then
 if (errors = 0) then
 report "Just kidding -- " &
 integer'image(vectornum) &
 " tests completed successfully."
 severity failure;

(continues)

Appendix A Hardware Description Languages754

A.11 SystemVerilog Netlists
As mentioned in Section 1.8.4, Verilog provides transistor and gate-level primitives that
are helpful for describing netlists. Comparable features are not built into VHDL.

Gate primitives include not, and, or, xor, nand, nor, and xnor. The output is de-
clared first; multiple inputs may follow. For example, a 4-input AND gate may be specified as

 and g1(y, a, b, c, d);

Transistor primitives include tranif1, tranif0, rtranif1, and rtranif0.
tranif1 is an nMOS transistor (i.e., one that turns ON when the gate is ‘1’) while
tranif0 is a pMOS transistor. The rtranif primitives are resistive transistors; i.e., weak
transistors that can be overcome by a stronger driver. Logic 0 and 1 values (GND and VDD)
are defined with the supply0 and supply1 types. For example, a pseudo-nMOS NOR
gate of Figure A.44 with a weak pullup is modeled with three transistors. Note that y must
be declared as a tri net because it could be driven by multiple transistors.

module nor_pseudonmos(input logic a, b,
 output tri y);

 supply0 gnd;
 supply1 vdd;

 tranif1 n1(y, gnd, a);
 tranif1 n2(y, gnd, b);
 rtranif0 p1(y, vdd, gnd);
endmodule

Modeling a latch in Verilog requires care because the feedback path turns ON at the
same time as the feedforward path turns OFF as the latch turns opaque. Depending on race
conditions, there is a risk that the state node could float or experience contention. To solve

Example A.49 Testbench with Test Vector File (continued)

VHDL (continued)
 else
 report integer'image(vectornum) &
 " tests completed, errors = " &
 integer'image(errors)
 severity failure;
 end if;
 end if;
 end if;
 end process;
end;

The VHDL code is rather ungainly and uses file reading commands
beyond the scope of this appendix, but it gives the sense of what a
self-checking testbench looks like.

A B
Y

N1 N2

P1
weak

FIGURE A.44
Pseudo-nMOS NOR gate

A.12 Example: MIPS Processor 755

this problem, the state node is modeled as a trireg (so it will not float) and the feed-
back transistors are modeled as weak (so they will not cause contention). The other
nodes are tri nets because they can be driven by multiple transistors. Figure A.45 re-
draws the latch from Figure 10.17(g) at the transistor level and highlights the weak
transistors and state node.

module latch(input logic ph, phb, d,
 output tri q);

 trireg x;
 tri xb, nn12, nn56, pp12, pp56;
 supply0 gnd;
 supply1 vdd;

 // input stage
 tranif1 n1(nn12, gnd, d);
 tranif1 n2(x, nn12, ph);
 tranif0 p1(pp12, vdd, d);
 tranif0 p2(x, pp12, phb);

 // output inverter
 tranif1 n3(q, gnd, x);
 tranif0 p3(q, vdd, x);

 // xb inverter
 tranif1 n4(xb, gnd, x);
 tranif0 p4(xb, vdd, x);

 // feedback tristate
 tranif1 n5(nn56, gnd, xb);
 rtranif1 n6(x, nn56, phb);
 tranif0 p5(pp56, vdd, xb);
 rtranif0 p6(x, pp56, ph);
endmodule

Most synthesis tools map only onto gates, not transistors, so transistor primitives
are only for simulation.

 The tranif devices are bidirectional; i.e., the source and drain are symmetric.
Verilog also supports unidirectional nmos and pmos primitives that only allow a signal
to flow from the input terminal to the output terminal. Real transistors are inherently
bidirectional, so unidirectional models can result in simulation not catching bugs that
would exist in real hardware. Therefore, tranif primitives are preferred for simulation.

A.12 Example: MIPS Processor
To illustrate a nontrivial HDL design, this section lists the code and testbench for the
MIPS processor subset discussed in Chapter 1. The example handles only the LB, SB,
ADD, SUB, AND, OR, SLT, BEQ, and J instructions. It uses an 8-bit datapath and only
eight registers. Because the instruction is 32-bits wide, it is loaded in four successive
fetch cycles across an 8-bit path to external memory.

N1

N2

P2

P1

N5

N6

P6

P5

D
X

Q

X

φ

φ

φ

φ

N4

P4

N3

P3

trireg

weak
weak

FIGURE A.45 latch

Appendix A Hardware Description Languages756

A.12.1 Testbench
The testbench initializes a 256-byte memory with instructions and data from a text file.
The code exercises each of the instructions. The mipstest.asm assembly language file
and memfile.dat text file are shown below. The testbench runs until it observes a mem-
ory write. If the value 7 is written to address 76, the code probably executed correctly. If all
goes well, the testbench should take 100 cycles (1000 ns) to run.

mipstest.asm
9/16/03 David Harris David_Harris@hmc.edu
#
Test MIPS instructions. Assumes little-endian memory was
initialized as:
word 16: 3
word 17: 5
word 18: 12

main: #Assembly Code effect Machine Code
lb $2, 68($0) # initialize $2 = 5 80020044
lb $7, 64($0) # initialize $7 = 3 80070040
lb $3, 69($7) # initialize $3 = 12 80e30045
or $4, $7, $2 # $4 <= 3 or 5 = 7 00e22025
and $5, $3, $4 # $5 <= 12 and 7 = 4 00642824
add $5, $5, $4 # $5 <= 4 + 7 = 11 00a42820
beq $5, $7, end # shouldn’t be taken 10a70008
slt $6, $3, $4 # $6 <= 12 < 7 = 0 0064302a
beq $6, $0, around # should be taken 10c00001
lb $5, 0($0) # shouldn’t happen 80050000

around: slt $6, $7, $2 # $6 <= 3 < 5 = 1 00e2302a
add $7, $6, $5 # $7 <= 1 + 11 = 12 00c53820
sub $7, $7, $2 # $7 <= 12 - 5 = 7 00e23822
j end # should be taken 0800000f
lb $7, 0($0) # shouldn’t happen 80070000

end: sb $7, 71($2) # write adr 76 <= 7 a0470047
.dw 3 00000003
.dw 5 00000005
.dw 12 0000000c

memfile.dat
80020044
80070040
80e30045
00e22025
00642824
00a42820
10a70008
0064302a
10c00001
80050000
00e2302a
00c53820
00e23822
0800000f
80070000
a0470047
00000003
00000005
0000000c

A.12 Example: MIPS Processor 757

A.12.2 SystemVerilog
//---
// mips.sv
// Max Yi (byyi@hmc.edu) and
// David_Harris@hmc.edu 12/9/03
// Changes 7/3/07 DMH
// Updated to SystemVerilog
// fixed memory endian bug
//
// Model of subset of MIPS processor from Ch 1
// note that no sign extension is done because
// width is only 8 bits
//---------------------

// states and instructions

 typedef enum logic [3:0]
 {FETCH1 = 4'b0000, FETCH2, FETCH3, FETCH4,
 DECODE, MEMADR, LBRD, LBWR, SBWR,
 RTYPEEX, RTYPEWR, BEQEX, JEX} statetype;
 typedef enum logic [5:0] {LB = 6'b100000,
 SB = 6'b101000,
 RTYPE = 6'b000000,
 BEQ = 6'b000100,
 J = 6'b000010} opcode;
 typedef enum logic [5:0] {ADD = 6'b100000,
 SUB = 6'b100010,
 AND = 6'b100100,
 OR = 6'b100101,
 SLT = 6'b101010} functcode;

// testbench
module testbench #(parameter WIDTH = 8, REGBITS = 3)();

 logic clk;
 logic reset;
 logic memread, memwrite;
 logic [WIDTH-1:0] adr, writedata;
 logic [WIDTH-1:0] memdata;

 // instantiate devices to be tested
 mips #(WIDTH,REGBITS) dut(clk, reset, memdata, memread,
 memwrite, adr, writedata);

 // external memory for code and data
 exmemory #(WIDTH) exmem(clk, memwrite, adr, writedata, memdata);

 // initialize test
 initial
 begin
 reset <= 1; # 22; reset <= 0;
 end

 // generate clock to sequence tests
 always
 begin
 clk <= 1; # 5; clk <= 0; # 5;
 end

Appendix A Hardware Description Languages758

 always @(negedge clk)
 begin
 if(memwrite)
 assert(adr == 76 & writedata == 7)
 $display("Simulation completely successful");
 else $error("Simulation failed");
 end
endmodule

// external memory accessed by MIPS
module exmemory #(parameter WIDTH = 8)
 (input logic clk,
 input logic memwrite,
 input logic [WIDTH-1:0] adr, writedata,
 output logic [WIDTH-1:0] memdata);

 logic [31:0] mem [2**(WIDTH-2)-1:0];
 logic [31:0] word;
 logic [1:0] bytesel;
 logic [WIDTH-2:0] wordadr;

 initial
 $readmemh("memfile.dat", mem);

 assign bytesel = adr[1:0];
 assign wordadr = adr[WIDTH-1:2];

 // read and write bytes from 32-bit word
 always @(posedge clk)
 if(memwrite)
 case (bytesel)
 2'b00: mem[wordadr][7:0] <= writedata;
 2'b01: mem[wordadr][15:8] <= writedata;
 2'b10: mem[wordadr][23:16] <= writedata;
 2'b11: mem[wordadr][31:24] <= writedata;
 endcase

 assign word = mem[wordadr];
 always_comb
 case (bytesel)
 2'b00: memdata = word[7:0];
 2'b01: memdata = word[15:8];
 2'b10: memdata = word[23:16];
 2'b11: memdata = word[31:24];
 endcase
endmodule

// simplified MIPS processor
module mips #(parameter WIDTH = 8, REGBITS = 3)
 (input logic clk, reset,
 input logic [WIDTH-1:0] memdata,
 output logic memread, memwrite,
 output logic [WIDTH-1:0] adr, writedata);

 logic [31:0] instr;
 logic zero, alusrca, memtoreg, iord, pcen,
 regwrite, regdst;
 logic [1:0] pcsrc, alusrcb;
 logic [3:0] irwrite;

A.12 Example: MIPS Processor 759

 logic [2:0] alucontrol;
 logic [5:0] op, funct;

 assign op = instr[31:26];
 assign funct = instr[5:0];

 controller cont(clk, reset, op, funct, zero, memread, memwrite,
 alusrca, memtoreg, iord, pcen, regwrite, regdst,
 pcsrc, alusrcb, alucontrol, irwrite);
 datapath #(WIDTH, REGBITS)
 dp(clk, reset, memdata, alusrca, memtoreg, iord, pcen,
 regwrite, regdst, pcsrc, alusrcb, irwrite, alucontrol,
 zero, instr, adr, writedata);
endmodule

module controller(input logic clk, reset,
 input logic [5:0] op, funct,
 input logic zero,
 output logic memread, memwrite, alusrca,
 output logic memtoreg, iord, pcen,
 output logic regwrite, regdst,
 output logic [1:0] pcsrc, alusrcb,
 output logic [2:0] alucontrol,
 output logic [3:0] irwrite);

 statetype state;
 logic pcwrite, branch;
 logic [1:0] aluop;

 // control FSM
 statelogic statelog(clk, reset, op, state);
 outputlogic outputlog(state, memread, memwrite, alusrca,
 memtoreg, iord,
 regwrite, regdst, pcsrc, alusrcb, irwrite,
 pcwrite, branch, aluop);

 // other control decoding
 aludec ac(aluop, funct, alucontrol

 // program counter enable
 assign pcen = pcwrite | (branch & zero);
endmodule

module statelogic(input logic clk, reset,
 input logic [5:0] op,
 output statetype state);

 statetype nextstate;

 always_ff @(posedge clk)
 if (reset) state <= FETCH1;
 else state <= nextstate;

 always_comb
 begin
 case (state)
 FETCH1: nextstate = FETCH2;
 FETCH2: nextstate = FETCH3;
 FETCH3: nextstate = FETCH4;

Appendix A Hardware Description Languages760

 FETCH4: nextstate = DECODE;
 DECODE: case(op)
 LB: nextstate = MEMADR;
 SB: nextstate = MEMADR;
 RTYPE: nextstate = RTYPEEX;
 BEQ: nextstate = BEQEX;
 J: nextstate = JEX;
 default: nextstate = FETCH1;
 // should never happen
 endcase
 MEMADR: case(op)
 LB: nextstate = LBRD;
 SB: nextstate = SBWR;
 default: nextstate = FETCH1;
 // should never happen
 endcase
 LBRD: nextstate = LBWR;
 LBWR: nextstate = FETCH1;
 SBWR: nextstate = FETCH1;
 RTYPEEX: nextstate = RTYPEWR;
 RTYPEWR: nextstate = FETCH1;
 BEQEX: nextstate = FETCH1;
 JEX: nextstate = FETCH1;
 default: nextstate = FETCH1;
 // should never happen
 endcase
 end
endmodule

module outputlogic(input statetype state,
 output logic memread, memwrite, alusrca,
 output logic memtoreg, iord,
 output logic regwrite, regdst,
 output logic [1:0] pcsrc, alusrcb,
 output logic [3:0] irwrite,
 output logic pcwrite, branch,
 output logic [1:0] aluop);

 always_comb
 begin
 // set all outputs to zero, then
 // conditionally assert just the appropriate ones
 irwrite = 4'b0000;
 pcwrite = 0; branch = 0;
 regwrite = 0; regdst = 0;
 memread = 0; memwrite = 0;
 alusrca = 0; alusrcb = 2'b00; aluop = 2'b00;
 pcsrc = 2'b00;
 iord = 0; memtoreg = 0;

 case (state)
 FETCH1:
 begin
 memread = 1;
 irwrite = 4'b0001;
 alusrcb = 2'b01;
 pcwrite = 1;
 end

A.12 Example: MIPS Processor 761

 FETCH2:
 begin
 memread = 1;
 irwrite = 4'b0010;
 alusrcb = 2'b01;
 pcwrite = 1;
 end
 FETCH3:
 begin
 memread = 1;
 irwrite = 4'b0100;
 alusrcb = 2'b01;
 pcwrite = 1;
 end
 FETCH4:
 begin
 memread = 1;
 irwrite = 4'b1000;
 alusrcb = 2'b01;
 pcwrite = 1;
 end
 DECODE: alusrcb = 2'b11;
 MEMADR:
 begin
 alusrca = 1;
 alusrcb = 2'b10;
 end
 LBRD:
 begin
 memread = 1;
 iord = 1;
 end
 LBWR:
 begin
 regwrite = 1;
 memtoreg = 1;
 end
 SBWR:
 begin
 memwrite = 1;
 iord = 1;
 end
 RTYPEEX:
 begin
 alusrca = 1;
 aluop = 2'b10;
 end
 RTYPEWR:
 begin
 regdst = 1;
 regwrite = 1;
 end
 BEQEX:
 begin
 alusrca = 1;
 aluop = 2'b01;
 branch = 1;
 pcsrc = 2'b01;
 end

Appendix A Hardware Description Languages762

 JEX:
 begin
 pcwrite = 1;
 pcsrc = 2'b10;
 end
 endcase
 end
endmodule

module aludec(input logic [1:0] aluop,
 input logic [5:0] funct,
 output logic [2:0] alucontrol);

 always_comb
 case (aluop)
 2'b00: alucontrol = 3'b010; // add for lb/sb/addi
 2'b01: alucontrol = 3'b110; // subtract (for beq)
 default: case(funct) // R-Type instructions
 ADD: alucontrol = 3'b010;
 SUB: alucontrol = 3'b110;
 AND: alucontrol = 3'b000;
 OR: alucontrol = 3'b001;
 SLT: alucontrol = 3'b111;
 default: alucontrol = 3'b101;
 // should never happen
 endcase
 endcase
endmodule

module datapath #(parameter WIDTH = 8, REGBITS = 3)
 (input logic clk, reset,
 input logic [WIDTH-1:0] memdata,
 input logic alusrca, memtoreg, iord,
 input logic pcen, regwrite, regdst,
 input logic [1:0] pcsrc, alusrcb,
 input logic [3:0] irwrite,
 input logic [2:0] alucontrol,
 output logic zero,
 output logic [31:0] instr,
 output logic [WIDTH-1:0] adr, writedata);

 logic [REGBITS-1:0] ra1, ra2, wa;
 logic [WIDTH-1:0] pc, nextpc, data, rd1, rd2, wd, a, srca,
 srcb, aluresult, aluout, immx4;

 logic [WIDTH-1:0] CONST_ZERO = 0;
 logic [WIDTH-1:0] CONST_ONE = 1;

 // shift left immediate field by 2
 assign immx4 = {instr[WIDTH-3:0],2'b00};

 // register file address fields
 assign ra1 = instr[REGBITS+20:21];
 assign ra2 = instr[REGBITS+15:16];
 mux2 #(REGBITS) regmux(instr[REGBITS+15:16],
 instr[REGBITS+10:11], regdst, wa);

 // independent of bit width,
 // load instruction into four 8-bit registers over four cycles

A.12 Example: MIPS Processor 763

 flopen #(8) ir0(clk, irwrite[0], memdata[7:0], instr[7:0]);
 flopen #(8) ir1(clk, irwrite[1], memdata[7:0], instr[15:8]);
 flopen #(8) ir2(clk, irwrite[2], memdata[7:0], instr[23:16]);
 flopen #(8) ir3(clk, irwrite[3], memdata[7:0], instr[31:24]);

 // datapath
 flopenr #(WIDTH) pcreg(clk, reset, pcen, nextpc, pc);
 flop #(WIDTH) datareg(clk, memdata, data);
 flop #(WIDTH) areg(clk, rd1, a);
 flop #(WIDTH) wrdreg(clk, rd2, writedata);
 flop #(WIDTH) resreg(clk, aluresult, aluout);
 mux2 #(WIDTH) adrmux(pc, aluout, iord, adr);
 mux2 #(WIDTH) src1mux(pc, a, alusrca, srca);
 mux4 #(WIDTH) src2mux(writedata, CONST_ONE, instr[WIDTH-1:0],
 immx4, alusrcb, srcb);
 mux3 #(WIDTH) pcmux(aluresult, aluout, immx4,
 pcsrc, nextpc);
 mux2 #(WIDTH) wdmux(aluout, data, memtoreg, wd);
 regfile #(WIDTH,REGBITS) rf(clk, regwrite, ra1, ra2,
 wa, wd, rd1, rd2);
 alu #(WIDTH) alunit(srca, srcb, alucontrol, aluresult, zero);
endmodule

module alu #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a, b,
 input logic [2:0] alucontrol,
 output logic [WIDTH-1:0] result,
 output logic zero);

 logic [WIDTH-1:0] b2, andresult, orresult,
 sumresult, sltresult;

 andN andblock(a, b, andresult);
 orN orblock(a, b, orresult);
 condinv binv(b, alucontrol[2], b2);
 adder addblock(a, b2, alucontrol[2], sumresult);
 // slt should be 1 if most significant bit of sum is 1
 assign sltresult = sumresult[WIDTH-1];

 mux4 resultmux(andresult, orresult, sumresult,
 sltresult, alucontrol[1:0], result);
 zerodetect #(WIDTH) zd(result, zero);
endmodule

module regfile #(parameter WIDTH = 8, REGBITS = 3)
 (input logic clk,
 input logic regwrite,
 input logic [REGBITS-1:0] ra1, ra2, wa,
 input logic [WIDTH-1:0] wd,
 output logic [WIDTH-1:0] rd1, rd2);

 logic [WIDTH-1:0] RAM [2**REGBITS-1:0];

 // three ported register file
 // read two ports combinationally
 // write third port on rising edge of clock
 // register 0 hardwired to 0
 always @(posedge clk)
 if (regwrite) RAM[wa] <= wd;

Appendix A Hardware Description Languages764

 assign rd1 = ra1 ? RAM[ra1] : 0;
 assign rd2 = ra2 ? RAM[ra2] : 0;
endmodule

module zerodetect #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a,
 output logic y);

 assign y = (a==0);
endmodule

module flop #(parameter WIDTH = 8)
 (input logic clk,
 input logic [WIDTH-1:0] d,
 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk)
 q <= d;
endmodule

module flopen #(parameter WIDTH = 8)
 (input logic clk, en,
 input logic [WIDTH-1:0] d,
 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk)
 if (en) q <= d;
endmodule

module flopenr #(parameter WIDTH = 8)
 (input logic clk, reset, en,
 input logic [WIDTH-1:0] d,
 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk)
 if (reset) q <= 0;
 else if (en) q <= d;
endmodule

module mux2 #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] d0, d1,
 input logic s,
 output logic [WIDTH-1:0] y);

 assign y = s ? d1 : d0;
endmodule

module mux3 #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] d0, d1, d2,
 input logic [1:0] s,
 output logic [WIDTH-1:0] y);

 always_comb
 casez (s)
 2'b00: y = d0;
 2'b01: y = d1;
 2'b1?: y = d2;
 endcase
endmodule

A.12 Example: MIPS Processor 765

module mux4 #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] d0, d1, d2, d3,
 input logic [1:0] s,
 output logic [WIDTH-1:0] y);

 always_comb
 case (s)
 2'b00: y = d0;
 2'b01: y = d1;
 2'b10: y = d2;
 2'b11: y = d3;
 endcase
endmodule

module andN #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a, b,
 output logic [WIDTH-1:0] y);

 assign y = a & b;
endmodule

module orN #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a, b,
 output logic [WIDTH-1:0] y);

 assign y = a | b;
endmodule

module inv #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a,
 output logic [WIDTH-1:0] y);

 assign y = ~a;
endmodule

module condinv #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a,
 input logic invert,
 output logic [WIDTH-1:0] y);

 logic [WIDTH-1:0] ab;

 inv inverter(a, ab);
 mux2 invmux(a, ab, invert, y);
endmodule

module adder #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a, b,
 input logic cin,
 output logic [WIDTH-1:0] y);

 assign y = a + b + cin;
endmodule

Appendix A Hardware Description Languages766

A.12.3 VHDL

-- mips.vhd
-- David_Harris@hmc.edu 9/9/03
-- Model of subset of MIPS processor described in Ch 1

-- Entity Declarations

library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_UNSIGNED.all;
entity top is -- top-level design for testing
 generic(width: integer := 8; -- default 8-bit datapath
 regbits: integer := 3); -- and 3 bit register addresses (8 regs)
end;

library IEEE; use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.STD_LOGIC_UNSIGNED.all; use IEEE.STD_LOGIC_ARITH.all;
entity memory is -- external memory accessed by MIPS
 generic(width: integer);
 port(clk, memwrite: in STD_LOGIC;
 adr, writedata: in STD_LOGIC_VECTOR(width-1 downto 0);
 memdata: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mips is -- simplified MIPS processor
 generic(width: integer := 8; -- default 8-bit datapath
 regbits: integer := 3); -- and 3 bit register addresses (8 regs)
 port(clk, reset: in STD_LOGIC;
 memdata: in STD_LOGIC_VECTOR(width-1 downto 0);
 memread, memwrite: out STD_LOGIC;
 adr, writedata: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity controller is -- control FSM
 port(clk, reset: in STD_LOGIC;
 op: in STD_LOGIC_VECTOR(5 downto 0);
 zero: in STD_LOGIC;
 memread, memwrite, alusrca, memtoreg,
 iord, pcen, regwrite, regdst: out STD_LOGIC;
 pcsrc, alusrcb, aluop: out STD_LOGIC_VECTOR(1 downto 0);
 irwrite: out STD_LOGIC_VECTOR(3 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity alucontrol is -- ALU control decoder
 port(aluop: in STD_LOGIC_VECTOR(1 downto 0);
 funct: in STD_LOGIC_VECTOR(5 downto 0);
 alucont: out STD_LOGIC_VECTOR(2 downto 0));
end;

A.12 Example: MIPS Processor 767

library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_ARITH.all;
entity datapath is -- MIPS datapath
 generic(width, regbits: integer);
 port(clk, reset: in STD_LOGIC;
 memdata: in STD_LOGIC_VECTOR(width-1 downto 0);
 alusrca, memtoreg, iord, pcen,
 regwrite, regdst: in STD_LOGIC;
 pcsrc, alusrcb: in STD_LOGIC_VECTOR(1 downto 0);
 irwrite: in STD_LOGIC_VECTOR(3 downto 0);
 alucont: in STD_LOGIC_VECTOR(2 downto 0);
 zero: out STD_LOGIC;
 instr: out STD_LOGIC_VECTOR(31 downto 0);
 adr, writedata: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all; use IEEE.STD_LOGIC_UNSIGNED.all;
entity alu is -- Arithmetic/Logic unit with add/sub, AND, OR, set less than
 generic(width: integer);
 port(a, b: in STD_LOGIC_VECTOR(width-1 downto 0);
 alucont: in STD_LOGIC_VECTOR(2 downto 0);
 result: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all; use IEEE.STD_LOGIC_ARITH.all;
entity regfile is -- three-port register file of 2**regbits words x width bits
 generic(width, regbits: integer);
 port(clk: in STD_LOGIC;
 write: in STD_LOGIC;
 ra1, ra2, wa: in STD_LOGIC_VECTOR(regbits-1 downto 0);
 wd: in STD_LOGIC_VECTOR(width-1 downto 0);
 rd1, rd2: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity zerodetect is -- true if all input bits are zero
 generic(width: integer);
 port(a: in STD_LOGIC_VECTOR(width-1 downto 0);
 y: out STD_LOGIC);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flop is -- flip-flop
 generic(width: integer);
 port(clk: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopen is -- flip-flop with enable
 generic(width: integer);
 port(clk, en: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

Appendix A Hardware Description Languages768

library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_ARITH.all;
entity flopenr is -- flip-flop with enable and synchronous reset
 generic(width: integer);
 port(clk, reset, en: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux2 is -- two-input multiplexer
 generic(width: integer);
 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);
 s: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux4 is -- four-input multiplexer
 generic(width: integer);
 port(d0, d1, d2, d3: in STD_LOGIC_VECTOR(width-1 downto 0);
 s: in STD_LOGIC_VECTOR(1 downto 0);
 y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

-- Architecture Definitions

architecture test of top is
 component mips generic(width: integer := 8; -- default 8-bit datapath
 regbits: integer := 3); -- and 3 bit register addresses (8 regs)
 port(clk, reset: in STD_LOGIC;
 memdata: in STD_LOGIC_VECTOR(width-1 downto 0);
 memread, memwrite: out STD_LOGIC;
 adr, writedata: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 component memory generic(width: integer);
 port(clk, memwrite: in STD_LOGIC;
 adr, writedata: in STD_LOGIC_VECTOR(width-1 downto 0);
 memdata: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 signal clk, reset, memread, memwrite: STD_LOGIC;
 signal memdata, adr, writedata: STD_LOGIC_VECTOR(width-1 downto 0);
begin
 -- mips being tested
 dut: mips generic map(width, regbits)
 port map(clk, reset, memdata, memread, memwrite, adr, writedata);
 -- external memory for code and data
 exmem: memory generic map(width)
 port map(clk, memwrite, adr, writedata, memdata);

 -- Generate clock with 10 ns period
 process begin
 clk <= '1';
 wait for 5 ns;
 clk <= '0';
 wait for 5 ns;
 end process;

A.12 Example: MIPS Processor 769

 -- Generate reset for first two clock cycles
 process begin
 reset <= '1';
 wait for 22 ns;
 reset <= '0';
 wait;
 end process;

 -- check that 7 gets written to address 76 at end of program
 process (clk) begin
 if (clk'event and clk = '0' and memwrite = '1') then
 if (conv_integer(adr) = 76 and conv_integer(writedata) = 7) then
 report "Simulation completed successfully";
 else report "Simulation failed.";
 end if;
 end if;
 end process;
end;

architecture synth of memory is
begin
 process is
 file mem_file: text open read_mode is "memfile.dat";
 variable L: line;
 variable ch: character;
 variable index, result: integer;
 type ramtype is array (255 downto 0) of STD_LOGIC_VECTOR(7 downto 0);
 variable mem: ramtype;
 begin

-- initialize memory from file
-- memory in little-endian format
-- 80020044 means mem[3] = 80 and mem[0] = 44

 for i in 0 to 255 loop -- set all contents low
 mem(conv_integer(i)) := "00000000";
 end loop;
 index := 0;
 while not endfile(mem_file) loop
 readline(mem_file, L);
 for j in 0 to 3 loop
 result := 0;
 for i in 1 to 2 loop
 read(L, ch);
 if '0' <= ch and ch <= '9' then
 result := result*16 + character'pos(ch)-character'pos('0');
 elsif 'a' <= ch and ch <= 'f' then
 result := result*16 + character'pos(ch)-character'pos('a')+10;
 else report "Format error on line " & integer'image(index)
 severity error;
 end if;
 end loop;
 mem(index*4+3-j) := conv_std_logic_vector(result, width);
 end loop;
 index := index + 1;
 end loop;
 -- read or write memory
 loop
 if clk'event and clk = '1' then
 if (memwrite = '1') then mem(conv_integer(adr)) := writedata;
 end if;

Appendix A Hardware Description Languages770

 end if;
 memdata <= mem(conv_integer(adr));
 wait on clk, adr;
 end loop;
 end process;
end;

architecture struct of mips is
 component controller
 port(clk, reset: in STD_LOGIC;
 op: in STD_LOGIC_VECTOR(5 downto 0);
 zero: in STD_LOGIC;
 memread, memwrite, alusrca, memtoreg,
 iord, pcen, regwrite, regdst: out STD_LOGIC;
 pcsrc, alusrcb, aluop: out STD_LOGIC_VECTOR(1 downto 0);
 irwrite: out STD_LOGIC_VECTOR(3 downto 0));
 end component;
 component alucontrol
 port(aluop: in STD_LOGIC_VECTOR(1 downto 0);
 funct: in STD_LOGIC_VECTOR(5 downto 0);
 alucont: out STD_LOGIC_VECTOR(2 downto 0));
 end component;
 component datapath generic(width, regbits: integer);
 port(clk, reset: in STD_LOGIC;
 memdata: in STD_LOGIC_VECTOR(width-1 downto 0);
 alusrca, memtoreg, iord, pcen,
 regwrite, regdst: in STD_LOGIC;
 pcsrc, alusrcb: in STD_LOGIC_VECTOR(1 downto 0);
 irwrite: in STD_LOGIC_VECTOR(3 downto 0);
 alucont: in STD_LOGIC_VECTOR(2 downto 0);
 zero: out STD_LOGIC;
 instr: out STD_LOGIC_VECTOR(31 downto 0);
 adr, writedata: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 signal instr: STD_LOGIC_VECTOR(31 downto 0);
 signal zero, alusrca, memtoreg, iord, pcen, regwrite, regdst: STD_LOGIC;
 signal aluop, pcsrc, alusrcb: STD_LOGIC_VECTOR(1 downto 0);
 signal irwrite: STD_LOGIC_VECTOR(3 downto 0);
 signal alucont: STD_LOGIC_VECTOR(2 downto 0);
begin
 cont: controller port map(clk, reset, instr(31 downto 26), zero,
 memread, memwrite, alusrca, memtoreg,
 iord, pcen, regwrite, regdst,
 pcsrc, alusrcb, aluop, irwrite);
 ac: alucontrol port map(aluop, instr(5 downto 0), alucont);
 dp: datapath generic map(width, regbits)
 port map(clk, reset, memdata, alusrca, memtoreg,
 iord, pcen, regwrite, regdst,
 pcsrc, alusrcb, irwrite,
 alucont, zero, instr, adr, writedata);
end;

architecture synth of controller is
 type statetype is (FETCH1, FETCH2, FETCH3, FETCH4, DECODE, MEMADR,
 LBRD, LBWR, SBWR, RTYPEEX, RTYPEWR, BEQEX, JEX);
 constant LB: STD_LOGIC_VECTOR(5 downto 0) := "100000";
 constant SB: STD_LOGIC_VECTOR(5 downto 0) := "101000";
 constant RTYPE: STD_LOGIC_VECTOR(5 downto 0) := "000000";

A.12 Example: MIPS Processor 771

 constant BEQ: STD_LOGIC_VECTOR(5 downto 0) := "000100";
 constant J: STD_LOGIC_VECTOR(5 downto 0) := "000010";
 signal state, nextstate: statetype;
 signal pcwrite, pcwritecond: STD_LOGIC;
begin
 process (clk) begin -- state register
 if clk'event and clk = '1' then
 if reset = '1' then state <= FETCH1;
 else state <= nextstate;
 end if;
 end if;
 end process;

 process (state, op) begin -- next state logic
 case state is
 when FETCH1 => nextstate <= FETCH2;
 when FETCH2 => nextstate <= FETCH3;
 when FETCH3 => nextstate <= FETCH4;
 when FETCH4 => nextstate <= DECODE;
 when DECODE => case op is
 when LB | SB => nextstate <= MEMADR;
 when RTYPE => nextstate <= RTYPEEX;
 when BEQ => nextstate <= BEQEX;
 when J => nextstate <= JEX;
 when others => nextstate <= FETCH1; -- should never happen
 end case;
 when MEMADR => case op is
 when LB => nextstate <= LBRD;
 when SB => nextstate <= SBWR;
 when others => nextstate <= FETCH1; -- should never happen
 end case;
 when LBRD => nextstate <= LBWR;
 when LBWR => nextstate <= FETCH1;
 when SBWR => nextstate <= FETCH1;
 when RTYPEEX => nextstate <= RTYPEWR;
 when RTYPEWR => nextstate <= FETCH1;
 when BEQEX => nextstate <= FETCH1;
 when JEX => nextstate <= FETCH1;
 when others => nextstate <= FETCH1; -- should never happen
 end case;
 end process;

 process (state) begin
 -- set all outputs to zero, then conditionally assert just the appropriate ones
 irwrite <= "0000";
 pcwrite <= '0'; pcwritecond <= '0';
 regwrite <= '0'; regdst <= '0';
 memread <= '0'; memwrite <= '0';
 alusrca <= '0'; alusrcb <= "00"; aluop <= "00";
 pcsrc <= "00";
 iord <= '0'; memtoreg <= '0';

 case state is
 when FETCH1 => memread <= '1';
 irwrite <= "0001";
 alusrcb <= "01";
 pcwrite <= '1';
 when FETCH2 => memread <= '1';
 irwrite <= "0010";

Appendix A Hardware Description Languages772

 alusrcb <= "01";
 pcwrite <= '1';
 when FETCH3 => memread <= '1';
 irwrite <= "0100";
 alusrcb <= "01";
 pcwrite <= '1';
 when FETCH4 => memread <= '1';
 irwrite <= "1000";
 alusrcb <= "01";
 pcwrite <= '1';
 when DECODE => alusrcb <= "11";
 when MEMADR => alusrca <= '1';
 alusrcb <= "10";
 when LBRD => memread <= '1';
 iord <= '1';
 when LBWR => regwrite <= '1';
 memtoreg <= '1';
 when SBWR => memwrite <= '1';
 iord <= '1';
 when RTYPEEX => alusrca <= '1';
 aluop <= "10";
 when RTYPEWR => regdst <= '1';
 regwrite <= '1';
 when BEQEX => alusrca <= '1';
 aluop <= "01";
 pcwritecond <= '1';
 pcsrc <= "01";
 when JEX => pcwrite <= '1';
 pcsrc <= "10";
 end case;
 end process;

 pcen <= pcwrite or (pcwritecond and zero); -- program counter enable
end;

architecture synth of alucontrol is
begin
 process(aluop, funct) begin
 case aluop is
 when "00" => alucont <= "010"; -- add (for lb/sb/addi)
 when "01" => alucont <= "110"; -- sub (for beq)
 when others => case funct is -- R-type instructions
 when "100000" => alucont <= "010"; -- add (for add)
 when "100010" => alucont <= "110"; -- subtract (for sub)
 when "100100" => alucont <= "000"; -- logical and (for and)
 when "100101" => alucont <= "001"; -- logical or (for or)
 when "101010" => alucont <= "111"; -- set on less (for slt)
 when others => alucont <= "---"; -- should never happen
 end case;
 end case;
 end process;
end;

architecture struct of datapath is
 component alu generic(width: integer);
 port(a, b: in STD_LOGIC_VECTOR(width-1 downto 0);
 alucont: in STD_LOGIC_VECTOR(2 downto 0);
 result: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;

A.12 Example: MIPS Processor 773

 component regfile generic(width, regbits: integer);
 port(clk: in STD_LOGIC;
 write: in STD_LOGIC;
 ra1, ra2, wa: in STD_LOGIC_VECTOR(regbits-1 downto 0);
 wd: in STD_LOGIC_VECTOR(width-1 downto 0);
 rd1, rd2: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 component zerodetect generic(width: integer);
 port(a: in STD_LOGIC_VECTOR(width-1 downto 0);
 y: out STD_LOGIC);
 end component;
 component flop generic(width: integer);
 port(clk: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 component flopen generic(width: integer);
 port(clk, en: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 component flopenr generic(width: integer);
 port(clk, reset, en: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 component mux2 generic(width: integer);
 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);
 s: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 component mux4 generic(width: integer);
 port(d0, d1, d2, d3: in STD_LOGIC_VECTOR(width-1 downto 0);
 s: in STD_LOGIC_VECTOR(1 downto 0);
 y: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 constant CONST_ONE: STD_LOGIC_VECTOR(width-1 downto 0) := conv_std_logic_vector(1, width);
 constant CONST_ZERO: STD_LOGIC_VECTOR(width-1 downto 0) := conv_std_logic_vector(0, width);
 signal ra1, ra2, wa: STD_LOGIC_VECTOR(regbits-1 downto 0);
 signal pc, nextpc, md, rd1, rd2, wd, a,
 src1, src2, aluresult, aluout, dp_writedata, constx4: STD_LOGIC_VECTOR(width-1 downto 0);
 signal dp_instr: STD_LOGIC_VECTOR(31 downto 0);

begin
 -- shift left constant field by 2
 constx4 <= dp_instr(width-3 downto 0) & "00";

 -- register file address fields
 ra1 <= dp_instr(regbits+20 downto 21);
 ra2 <= dp_instr(regbits+15 downto 16);
 regmux: mux2 generic map(regbits) port map(dp_instr(regbits+15 downto 16),
 dp_instr(regbits+10 downto 11), regdst, wa);

 -- independent of bit width, load dp_instruction into four 8-bit registers over four cycles
ir0: flopen generic map(8) port map(clk, irwrite(0), memdata(7 downto 0), dp_instr(7 downto 0));
ir1: flopen generic map(8) port map(clk, irwrite(1), memdata(7 downto 0), dp_instr(15 downto 8));
ir2: flopen generic map(8) port map(clk, irwrite(2), memdata(7 downto 0), dp_instr(23 downto 16));
ir3: flopen generic map(8) port map(clk, irwrite(3), memdata(7 downto 0), dp_instr(31 downto 24));

Appendix A Hardware Description Languages774

 -- datapath
 pcreg: flopenr generic map(width) port map(clk, reset, pcen, nextpc, pc);
 mdr: flop generic map(width) port map(clk, memdata, md);
 areg: flop generic map(width) port map(clk, rd1, a);
 wrd: flop generic map(width) port map(clk, rd2, dp_writedata);
 res: flop generic map(width) port map(clk, aluresult, aluout);
 adrmux: mux2 generic map(width) port map(pc, aluout, iord, adr);
 src1mux: mux2 generic map(width) port map(pc, a, alusrca, src1);
 src2mux: mux4 generic map(width) port map(dp_writedata, CONST_ONE,
 dp_instr(width-1 downto 0), constx4, alusrcb, src2);
 pcmux: mux4 generic map(width) port map(aluresult, aluout, constx4, CONST_ZERO, pcsrc, nextpc);
 wdmux: mux2 generic map(width) port map(aluout, md, memtoreg, wd);
 rf: regfile generic map(width, regbits) port map(clk, regwrite, ra1, ra2, wa, wd, rd1, rd2);
 alunit: alu generic map(width) port map(src1, src2, alucont, aluresult);
 zd: zerodetect generic map(width) port map(aluresult, zero);

 -- drive outputs
 instr <= dp_instr; writedata <= dp_writedata;
end;

architecture synth of alu is
 signal b2, sum, slt: STD_LOGIC_VECTOR(width-1 downto 0);
begin
 b2 <= not b when alucont(2) = '1' else b;
 sum <= a + b2 + alucont(2);
 -- slt should be 1 if most significant bit of sum is 1
 slt <= conv_std_logic_vector(1, width) when sum(width-1) = '1'
 else conv_std_logic_vector(0, width);
 with alucont(1 downto 0) select result <=
 a and b when "00",
 a or b when "01",
 sum when "10",
 slt when others;
end;

architecture synth of regfile is
 type ramtype is array (2**regbits-1 downto 0) of STD_LOGIC_VECTOR(width-1 downto 0);
 signal mem: ramtype;
begin
 -- three-ported register file
 -- read two ports combinationally
 -- write third port on rising edge of clock
 process(clk) begin
 if clk'event and clk = '1' then
 if write = '1' then mem(conv_integer(wa)) <= wd;
 end if;
 end if;
 end process;
 process(ra1, ra2) begin

if (conv_integer(ra1) = 0) then rd1 <= conv_std_logic_vector(0, width); -- register 0 holds 0
else rd1 <= mem(conv_integer(ra1));
end if;
if (conv_integer(ra2) = 0) then rd2 <= conv_std_logic_vector(0, width);
else rd2 <= mem(conv_integer(ra2));
end if;

 end process;
end;

A.12 Example: MIPS Processor 775

architecture synth of zerodetect is
 signal i: integer;
 signal x: STD_LOGIC_VECTOR(width-1 downto 1);
begin -- N-bit AND of inverted inputs
 AllBits: for i in width-1 downto 1 generate
 LowBit: if i = 1 generate
 A1: x(1) <= not a(0) and not a(1);
 end generate;
 OtherBits: if i /= 1 generate
 Ai: x(i) <= not a(i) and x(i-1);
 end generate;
 end generate;
 y <= x(width-1);
end;

architecture synth of flop is
begin
 process(clk) begin
 if clk'event and clk = '1' then -- or use "if RISING_EDGE(clk) then"
 q <= d;
 end if;
 end process;
end;

architecture synth of flopen is
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if en = '1' then q <= d;
 end if;
 end if;
 end process;
end;

architecture synchronous of flopenr is
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then
 q <= CONV_STD_LOGIC_VECTOR(0, width); -- produce a vector of all zeros
 elsif en = '1' then q <= d;
 end if;
 end if;
 end process;
end;

architecture synth of mux2 is
begin
 y <= d0 when s = '0' else d1;
end;

architecture synth of mux4 is
begin
 y <= d0 when s = "00" else
 d1 when s = "01" else
 d2 when s = "10" else
 d3;
end;

Appendix A Hardware Description Languages776

Exercises
The following exercises can be done in your favorite HDL. If you have a simulator avail-
able, test your design. Print the waveforms and explain how they prove that the code
works. If you have a synthesizer available, synthesize your code. Print the generated circuit
diagram and explain why it matches your expectations.

A.1 Sketch a schematic of the circuit described by the following HDL code. Simplify
to a minimum number of gates.

A.2 Sketch a schematic of the circuit described by the following HDL code. Simplify
to a minimum number of gates.

A.3 Write an HDL module that computes a 4-input XOR function. The input is A3:0
and the output is Y.

A.4 Write a self-checking testbench for Exercise A.3. Create a test vector file contain-
ing all 16 test cases. Simulate the circuit and show that it works. Introduce an error
in the test vector file and show that it reports a mismatch.

SystemVerilog
module exercise1(input logic a, b, c,
 output logic y, z);

assign y = a & b & c | a & b & ~c | a & ~b & c;
assign z = a & b | ~a & ~b;

endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity exercise1 is
 port(a, b, c: in STD_LOGIC;
 y, z: out STD_LOGIC);
end;

architecture synth of exercise1 is
begin
 y <= (a and b and c) or (a and b and (not c)) or
 (a and (not b) and c);
 z <= (a and b) or ((not a) and (not b));
end;

SystemVerilog
module exercise2(input logic [3:0] a,
 output logic [1:0] y);

 always_comb
 if (a[0]) y = 2'b11;
 else if (a[1]) y = 2'b10;
 else if (a[2]) y = 2'b01;
 else if (a[3]) y = 2'b00;
 else y = a[1:0];
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity exercise2 is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(1 downto 0));
end;

architecture synth of exercise2 is
begin
 process(a) begin
 if a(0) = '1' then y <= "11";
 elsif a(1) = '1' then y <= "10";
 elsif a(2) = '1' then y <= "01";
 elsif a(3) = '1' then y <= "00";
 else y <= a(1 downto 0);
 end if;
 end process;
end;

 Exercises 777

 A.5 Write an HDL module called minority. It receives three inputs, A, B, and C. It
produces one output Y that is TRUE if at least two of the inputs are FALSE.

 A.6 Write an HDL module for a hexadecimal 7-segment display decoder. The decoder
should handle the digits A, B, C, D, E, and F as well as 0–9.

 A.7 Write a self-checking testbench for Exercise A.6. Create a test vector file contain-
ing all 16 test cases. Simulate the circuit and show that it works. Introduce an error
in the test vector file and show that it reports a mismatch.

 A.8 Write an 8:1 multiplexer module called mux8 with inputs S2:0, D0, D1, D2, D3, D4,
D5, D6, D7, and output Y.

 A.9 Write a structural module to compute Y = AB + BC + ABC using multiplexer logic.
Use the 8:1 multiplexer from Exercise A.8.

A.10 Repeat Exercise A.9 using a 4:1 multiplexer and as many NOT gates as you need.

A.11 Section A.5.4 pointed out that a synchronizer could be correctly described with
blocking assignments if the assignments were given in the proper order. Think of
another simple sequential circuit that cannot be correctly described with blocking
assignments regardless of order.

A.12 Write an HDL module for an 8-input priority circuit.

A.13 Write an HDL module for a 2:4 decoder.

A.14 Write an HDL module for a 6:64 decoder using three of the 2:4 decoders from
Exercise A.13 along with 64 3-input AND gates.

A.15 Sketch the state transition diagram for the FSM described by the following HDL
code.

SystemVerilog
module fsm2(input logic clk, reset,
 input logic a, b,
 output logic y);

 typedef enum logic [1:0]
 {S0, S1, S2, S3} statetype;

 statetype state, nextstate;

 always_ff @(posedge clk)
 if (reset) state <= S0;
 else state <= nextstate;

 always_comb
 case (state)
 S0: if (a ^ b) nextstate = S1;
 else nextstate = S0;
 S1: if (a & b) nextstate = S2;
 else nextstate = S0;
 S2: if (a | b) nextstate = S3;
 else nextstate = S0;
 S3: if (a | b) nextstate = S3;
 else nextstate = S0;
 endcase

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fsm2 is
 port(clk, reset: in STD_LOGIC;
 a, b: in STD_LOGIC;
 y: out STD_LOGIC);
end;

architecture synth of fsm2 is
 type statetype is (S0, S1, S2, S3);
 signal state, nextstate: statetype;
begin
 process(clk, reset) begin
 if reset = '1' then state <= S0;
 elsif clk'event and clk = '1' then
 state <= nextstate;
 end if;
 end process;

process (state, a, b) begin
 case state is
 when S0 => if (a xor b) = '1' then
 nextstate <= S1;
 else nextstate <= S0;
 end if; (continues)

Appendix A Hardware Description Languages778

A.16 Sketch the state transition diagram for the FSM described by the following HDL
code. An FSM of this nature is used in a branch predictor on some microprocessors.

SystemVerilog (continued)
assign y = (state == S1) || (state == S2);
endmodule

VHDL (continued)
 when S1 => if (a and b) = '1' then
 nextstate <= S2;
 else nextstate <= S0;
 end if;
 when S2 => if (a or b) = '1' then
 nextstate <= S3;
 else nextstate <= S0;
 end if;
 when S3 => if (a or b) = '1' then
 nextstate <= S3;
 else nextstate <= S0;
 end if;
 end case;
 end process;

 y <= '1' when ((state = S1) or (state = S2))
 else '0';
end;

SystemVerilog
module fsm1(input logic clk, reset,
 input logic taken, back,
 output logic predicttaken);

 typedef enum logic [4:0]
 {S0 = 5'b00001,
 S1 = 5'b00010,
 S2 = 5'b00100,
 S3 = 5'b001000,
 S4 = 5'b10000} statetype;

 statetype state, nextstate;

 always_ff @(posedge clk)
 if (reset) state <= S2;
 else state <= nextstate;

 always_comb
 case (state)
 S0: if (taken) nextstate = S1;
 else nextstate = S0;
 S1: if (taken) nextstate = S2;
 else nextstate = S0;
 S2: if (taken) nextstate = S3;
 else nextstate = S1;
 S3: if (taken) nextstate = S4;
 else nextstate = S2;
 S4: if (taken) nextstate = S4;
 else nextstate = S3;
 default: nextstate = S2;
 endcase

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fsm1 is
 port(clk, reset: in STD_LOGIC;
 taken, back: in STD_LOGIC;
 predicttaken: out STD_LOGIC);
end;

architecture synth of fsm1 is
 type statetype is (S0, S1, S2, S3, S4);
 signal state, nextstate: statetype;
begin
 process(clk, reset) begin
 if reset = '1' then state <= S2;
 elsif clk'event and clk = '1' then
 state <= nextstate;
 end if;
 end process;

 process (state, taken) begin
 case state is
 when S0 => if taken = '1' then
 nextstate <= S1;
 else nextstate <= S0;
 end if;
 when S1 => if taken = '1' then
 nextstate <= S2;
 else nextstate <= S0;
 end if;

(continues)

 Exercises 779

A.17 Write an HDL module for an SR latch.

A.18 Write an HDL module for a JK flip-flop. The flip-flop has inputs clk, J, and K, and
output Q. On the rising edge of the clock, Q keeps its old value if J = K = 0. It sets
Q to 1 if J = 1, resets Q to 0 if K = 1, and inverts Q if J = K = 1.

A.19 Write a line of HDL code that gates a 32-bit bus called data with another signal
called sel to produce a 32-bit result. If sel is TRUE, result = data. Oth-
erwise, result should be all 0s.

SystemVerilog Exercises
The following exercises are specific to SystemVerilog.

A.20 Explain the difference between blocking and nonblocking assignments in
SystemVerilog. Give examples.

A.21 What does the following SystemVerilog statement do?
result = |(data[15:0] & 16'hC820);

A.22 Rewrite the syncbad module from Section A.5.4. Use nonblocking assignments,
but change the code to produce a correct synchronizer with two flip-flops.

A.23 Consider the following two pieces of SystemVerilog code. Do they have the same
function? Sketch the hardware each one implies.
module code1(input logic clk, a, b, c,
 output logic y);
 logic x;

 always_ff @(posedge clk) begin
 x <= a & b;
 y <= x | c;
 end
endmodule

SystemVerilog (continued)
 assign predicttaken = (state == S4) ||
 (state == S3) ||
 (state == S2 && back);
endmodule

VHDL (continued)
 when S2 => if taken = '1' then
 nextstate <= S3;
 else nextstate <= S1;
 end if;
 when S3 => if taken = '1' then
 nextstate <= S4;
 else nextstate <= S2;
 end if;
 when S4 => if taken = '1' then
 nextstate <= S4;
 else nextstate <= S3;
 end if;
 when others => nextstate <= S2;
 end case;
 end process;

 -- output logic
 predicttaken <= '1' when
 ((state = S4) or (state = S3) or
 (state = S2 and back = '1'))
 else '0';
end;

Appendix A Hardware Description Languages780

module code2(input logic a, b, c, clk,
 output logic y);
 logic x;

 always_ff @(posedge clk) begin
 y <= x | c;
 x <= a & b;
 end
endmodule

A.24 Repeat Exercise A.23 if the <= is replaced by = everywhere in the code.

A.25 The following SystemVerilog modules show errors that the authors have seen stu-
dents make in the lab. Explain the error in each module and how to fix it.

module latch(input logic clk,
 input logic [3:0] d,
 output logic [3:0] q);

 always @(clk)
 if (clk) q <= d;
endmodule

module gates(input logic [3:0] a, b,
 output logic [3:0] y1, y2, y3, y4, y5);

 always @(a)
 begin
 y1 = a & b;
 y2 = a | b;
 y3 = a ^ b;
 y4 = ~(a & b);
 y5 = ~(a | b);
 end
endmodule

module mux2(input logic [3:0] d0, d1,
 input logic s,
 output logic [3:0] y);

 always @(posedge s)
 if (s) y <= d1;
 else y <= d0;

endmodule

module twoflops(input logic clk,
 input logic d0, d1,
 output logic q0, q1);

 always @(posedge clk)
 q1 = d1;
 q0 = d0;
endmodule

module FSM(input logic clk,
 input logic a,
 output logic out1, out2);

 logic state;

 Exercises 781

 // next state logic and register (sequential)
 always_ff @(posedge clk)
 if (state == 0) begin
 if (a) state <= 1;
 end else begin
 if (~a) state <= 0;
 end

 always_comb // output logic (combinational)
 if (state == 0) out1 = 1;
 else out2 = 1;
endmodule

module priority(input logic [3:0] a,
 output logic [3:0] y);

 always_comb
 if (a[3]) y = 4'b1000;
 else if (a[2]) y = 4'b0100;
 else if (a[1]) y = 4'b0010;
 else if (a[0]) y = 4'b0001;
endmodule

module divideby3FSM(input logic clk,
 input logic reset,
 output logic out);

 typedef enum logic [1:0] {S0, S1, S2} statetype;

 statetype state, nextstate;

 // State Register
 always_ff @(posedge clk)
 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb
 case (state)
 S0: nextstate = S1;
 S1: nextstate = S2;
 S2: nextstate = S0;
 endcase

 // Output Logic
 assign out = (state == S2);
endmodule

module mux2tri(input logic [3:0] d0, d1,
 input logic s,
 output tri [3:0] y);

 tristate t0(d0, s, y);
 tristate t1(d1, s, y);
endmodule

module floprsen(input logic clk,
 input logic reset,
 input logic set,

Appendix A Hardware Description Languages782

 input logic [3:0] d,
 output logic [3:0] q);

 always_ff @(posedge clk)
 if (reset) q <= 0;
 else q <= d;

 always @(set)
 if (set) q <= 1;
endmodule

module and3(input logic a, b, c,
 output logic y);

 logic tmp;

 always @(a, b, c)
 begin
 tmp <= a & b;
 y <= tmp & c;
 end
endmodule

VHDL Exercises
The following exercises are specific to VHDL.

A.26 In VHDL, why is it necessary to write

q <= '1' when state = S0 else '0';

rather than simply

q <= (state = S0); ?

A.27 Each of the following VHDL modules contains an error. For brevity, only the
architecture is shown; assume the library use clause and entity declaration are cor-
rect. Explain the error and how to fix it.

architecture synth of latch is
begin
 process(clk) begin
 if clk = '1' then q <= d;
 end if;
 end process;
end;

architecture proc of gates is
begin
 process(a) begin
 y1 <= a and b;
 y2 <= a or b;
 y3 <= a xor b;
 y4 <= a nand b;
 y5 <= a nor b;
 end process;
end;

architecture synth of flop is

 Exercises 783

begin
 process(clk)
 if clk'event and clk = '1' then
 q <= d;
end;

architecture synth of priority is
begin
 process(a) begin
 if a(3) = '1' then y <= "1000";
 elsif a(2) = '1' then y <= "0100";
 elsif a(1) = '1' then y <= "0010";
 elsif a(0) = '1' then y <= "0001";
 end if;
 end process;
end;

architecture synth of divideby3FSM is
 type statetype is (S0, S1, S2);
 signal state, nextstate: statetype;
begin
 process(clk, reset) begin
 if reset = '1' then state <= S0;
 elsif clk'event and clk = '1' then
 state <= nextstate;
 end if;
 end process;

 process(state) begin
 case state is
 when S0 => nextstate <= S1;
 when S1 => nextstate <= S2;
 when S2 => nextstate <= S0;
 end case;
 end process;

 q <= '1' when state = S0 else '0';
end;

architecture struct of mux2 is
 component tristate
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 en: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(3 downto 0));
 end component;
begin
 t0: tristate port map(d0, s, y);
 t1: tristate port map(d1, s, y);
end;

architecture asynchronous of flopr is
begin
 process(clk, reset) begin
 if reset = '1' then
 q <= '0';
 elsif clk'event and clk = '1' then
 q <= d;
 end if;
 end process;

Appendix A Hardware Description Languages784

 process(set) begin
 if set = '1' then
 q <= '1';
 end if;
 end process;
end;

architecture synth of mux3 is
begin
 y <= d2 when s(1) else
 d1 when s(0) else d0;
end;

785

References

A majority of references are from IEEE publications and can be obtained from ieeexplore.ieee.org.
An electronic version of this bibliography with hyperlinks is available at www.cmosvlsi.com. The IEEE
Journal of Solid-State Circuits is cited heavily and is abbreviated as JSSC.

[Abdollahi04] A. Abdollahi, F. Fallah, and M. Pedram, “Leakage current reduction in CMOS VLSI circuits by
input vector control,” IEEE Trans. VLSI, vol. 12, no. 2, Feb. 2004, pp. 140–154.

[Acken83] J. Acken, “Testing for bridging faults (shorts) in CMOS circuits,” Proc. Design Automation Conf.,
1983, pp. 717–718.

[Afghahi90] M. Afghahi and C. Svensson, “A unified single-phase clocking scheme for VLSI systems,” JSSC,
vol. 25, no. 1, Feb. 1990, pp. 225–233.

[Agans06] D. Agans, Debugging, New York: Amacon, 2006, www.debuggingrules.com.
[Agarwal01] V. Agarwal, S. Keckler, and D. Burger, “The effect of technology scaling on microarchitectural

structures,” Computer Architecture and Technology Laboratory Technical Report TR2000–02,
University of Texas at Austin, 2001.

[Agarwal04] A. Agarwal, V. Zolotov, and D. Blaauw, “Statistical clock skew analysis considering intra-die
process variations,” IEEE Trans. CAD, vol. 23, no. 8, Aug. 2004, pp. 1231–1242.

[Agarwal07] A. Agarwal, K. Kang, S. Bhunia, J. Gallagher, and K. Roy, “Device-aware yield-centric dual-Vt
design under parameter variations in nanoscale technologies,” IEEE Trans. VLSI, vol. 15, no. 6,
Jun. 2007, pp. 660–671.

[Agarwal07b] K. Agarwal, R. Rao, D. Sylvester, and R. Brown, “Parametric yield analysis and optimization in
leakage dominated technologies,” IEEE Trans. VLSI, vol. 15, no. 6, Jun. 2007, pp. 613–623.

[Agrawal08] B. Agrawal and T. Sherwood, “Ternary CAM power and delay model: extensions and uses,” IEEE
Trans. VLSI, vol. 16, no. 5, May 2008, pp. 554–564.

[Aisaka02] K. Aisaka et al., “Design rule for frequency-voltage cooperative power control and its application to
an MPEG-4 decoder,” Proc. VLSI Circuits Symp., 2002, pp. 216–217.

[Alexander75] J. Alexander, “Clock recovery from random binary signals,” Electronics Letters, vol. 11, no. 22, Oct.
30, 1975, pp. 541–542.

[Allam00] M. Allam, M. Anis, and M. Elmasry, “High-speed dynamic logic styles for scaled-down CMOS
and MTCMOS technologies,” Proc. Intl. Symp. Low Power Electronics and Design, 2000,
pp. 155–160.

[Alon05] E. Alon, V. Stojanovic, and M. Horowitz, “Circuits and techniques for high-resolution
measurement of on-chip power supply noise,” JSSC, vol. 40, no. 4, Apr. 2005, pp. 820–828.

[Alvandpour02] A. Alvandpour, R. Krishnamurthy, K. Soumyanath, and S. Borkar, “A sub-130-nm conditional
keeper technique,” JSSC, vol. 37, no. 5, May 2002, pp. 633–638.

[Amrutur98] B. Amrutur and M. Horowitz, “A replica technique for wordline and sense control in low-power
SRAM’s,” JSSC, vol. 33, no. 8, Aug. 1998, pp. 1208–1219.

References786

[Amrutur00] B. Amrutur and M. Horowitz, “Speed and power scaling of SRAM’s,” JSSC, vol. 35, no. 2, Feb.
2000, pp. 175–185.

[Amrutur01] B. Amrutur and M. Horowitz, “Fast low-power decoders for RAMs,” JSSC, vol. 36, no. 10, Oct.
2001, pp. 1506–1515.

[Anastasakis02] D. Anastasakis, R. Damiano, H. Ma, and T. Stanion, “A practical and efficient method for compare-
point matching,” Proc. Design Automation Conf., Jun. 2002, pp. 305–310.

[Anderson02] F. Anderson, J. Wells, and E. Berta, “The core clock system on the next generation Itanium
microprocessor,” Proc. IEEE Intl. Solid-State Circuits Conf., Feb. 2002, pp. 146–147, 453.

[Ando80] H. Ando, “Testing VLSI with random access scan,” Digest of Papers COMPCON 80, Feb. 1980, pp.
50–52.

[Anis03] M. Anis and M. Elmasry, Multi-Threshold CMOS Digital Circuits, Norwell, MA: Kluwer, 2003.
[Arnaud08] F. Arnaud et al., “32 nm general purpose bulk CMOS technology for high performance applications

at low voltage,” Proc. Intl. Electron Devices Meeting, Dec. 2008, pp. 1–4.
[Artisan02] Artisan Components, TSMC 0.18

μm Process 1.8-Volt SAGE-X Standard Cell Library Databook,
Release 4.0, Feb. 2002.

[Asenov07] A. Asenov, “Simulation of statistical variability in nano MOSFETs,” Proc. VLSI Technology Symp.,
Jun. 2007, pp. 86–87.

[Auth08] C. Auth et al., “45 nm high-k+ metal gate strain-enhanced transistors,” Intel Technology Journal, vol.
12, no. 2, Jun. 2008, pp. 77–85.

[Baghini02] M. Baghini and M. Desai, “Impact of technology scaling on metastability performance of CMOS
synchronizing latches,” Proc. Intl. Conf. VLSI Design, 2002, pp. 317–322.

[Bai04] P. Bai et al., “A 65 nm logic technology featuring 35 nm gate lengths, enhanced channel strain, 8 Cu
interconnect layers, low-k ILD and 0.57

μm2 SRAM cell,” Proc. Intl. Electron Devices Meeting, Dec.
2004, pp. 657–660.

[Bailey98] D. Bailey and B. Benschneider, “Clocking design and analysis for a 600-MHz Alpha
microprocessor,” JSSC, vol. 33, no. 11, Nov. 1998, pp. 1627–1633.

[Baker97] K. Baker and J. van Beers, “Shmoo plotting: the black art of IC testing,” IEEE Design and Test of
Computers, vol. 14, no. 3, Jul.–Sep. 1997, pp. 90–97.

[Bakoglu90] H. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Reading, MA: Addison-Wesley, 1990.
[Barke88] E. Barke, “Line-to-ground capacitance calculation for VLSI: a comparison,” IEEE Trans. Computer-

Aided Design, vol. 7, no. 2, Feb. 1988, pp. 295–298.
[Barry03] J. Barry, E. Lee, and D. Messerschmitt, Digital Communication, 3rd ed., New York: Springer, 2003.
[Barth08] J. Barth et al., “A 500 MHz random cycle, 1.5 ns latency, SOI embedded DRAM macro featuring a

three-transistor micro sense amplifier,” JSSC, vol. 43, no. 1, Jan. 2008, pp. 86–95.
[Baugh73] C. Baugh and B. Wooley, “A two’s complement parallel array multiplication algorithm,” IEEE Trans.

Computers, vol. C-22, no. 12, Dec. 1973, pp. 1045–1047.
[Baumann01] R. Baumann, “Soft errors in advanced semiconductor devices—part I: the three radiation sources,”

IEEE Trans. Device & Materials Reliability, vol. 1, no. 1, Mar. 2001, pp. 17–22.
[Baumann05] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design & Test of Computers, vol. 22,

no. 3, May–Jun. 2005, pp. 258–266.
[Beaumont- A. Beaumont-Smith, N. Burgess, S. Lefrere, and C. Lim, “Reduced latency IEEE floating-point
Smith99] adder architectures,” Proc. IEEE Symp. Computer Arithmetic, Apr. 1999, pp. 35–42.
[Beaumont- A. Beaumont-Smith and C. Lim, “Parallel prefix adder design,” Proc. IEEE Symp. Computer
Smith01] Arithmetic, 2001, pp. 218–225.
[Bedrij62] O. Bedrij, “Carry-select adder,” IRE Trans. Electronic Computers, vol. 11, Jun. 1962, pp. 340–346.
[Belluomini05] W. Belluomini et al., “An 8GHz floating-point multiply,” Proc. Intl. Solid-State Circuits Conf., Feb.

2005, pp. 374–375, 604.
[Bergeron05] J. Bergeron, E. Cerny, A. Hunter, and A. Nightingale, Verification Methodology Manual for

SystemVerilog, New York: Springer, 2005.

References 787

[Bernstein99] K. Bernstein, K. Carrig, C. Durham, P. Hansen, D. Hogenmiller, E. Nowak, and N. Roher, High
Speed CMOS Design Styles, Boston: Kluwer Academic Publishers, 1999.

[Bernstein00] K. Bernstein and N. Rohrer, SOI Circuit Design Concepts, Boston: Kluwer Academic Publishers,
2000.

[Bernstein06] K. Bernstein et al., “High-performance CMOS variability in the 65-nm regime and beyond,” IBM J.
Research and Dev., vol. 50, no. 4/5, Jul./Sep. 2006, pp. 433–449.

[Bewick94] G. Bewick, “Fast Multiplication: Algorithms and Implementation,” Ph.D. thesis, Stanford
University, CSL-TR-94-617, 1994.

[Bhavnagarwala01] A. Bhavnagarwala, Xinghai Tang, and J. Meindl, “The impact of intrinsic device fluctuations on
CMOS SRAM cell stability,” JSSC, vol. 36, no. 4, Apr. 2001, pp. 658–665.

[Bhavnagarwala04] A. Bhavnagarwala et al., “A transregional CMOS SRAM with single, logic VDD and dynamic power
rails,” Proc. VLSI Circuits Symp., Jun. 2004, pp. 292–293.

[Bhavnagarwala05] A. Bhavnagarwala et al., “Fluctuation limits & scaling opportunities for CMOS SRAM cells,” Proc.
Intl. Electron Devices Meeting, Dec. 2005, pp. 659–662.

[Black69] J. Black, “Electromigration—A brief survey and some recent results,” IEEE Trans. Electron Devices,
vol. ED-16, no. 4, Apr. 1969, pp. 338–347.

[Blackburn96] J. Blackburn, L. Arndt, and E. Swartzlander, “Optimization of spanning tree carry lookahead
adders,” Proc. 30th Asilomar Conf. Signals, Systems, and Computers, vol. 1, 1996, pp. 177–181.

[Bohr95] M. Bohr, “Interconnect scaling-the real limiter to high performance ULSI,” Proc. Intl. Electron
Devices Meeting, Dec. 1995, pp. 241–244.

[Bohr96] M. Bohr et al., “A high performance 0.25

μm logic technology optimized for 1.8 V operation,” Proc.
Intl. Electron Devices Meeting, Dec. 1996, pp. 847–850.

[Booth51] A. Booth, “A signed binary multiplication technique,” Quarterly J. Mechanics and Applied
Mathematics, vol. IV, pt. 2, Jun. 1951, pp. 236–240.

[Bowhill95] W. Bowhill et al., “Circuit implementation of a 300-MHz 64-bit second-generation CMOS Alpha
CPU,” Digital Technical Journal, vol. 7, no. 1, 1995, pp. 100–115.

[Bowman02] K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and within-die parameter fluctuations
on the maximum clock frequency distribution for gigascale integration,” JSSC, vol. 37, no. 2, Feb.
2002, pp. 183–190.

[Bowman09] K. Bowman et al., “Energy-efficient and metastability-immune resilient circuits for dynamic
variation tolerance,” JSSC, vol. 44, no. 1, Jan. 2009, pp. 49–63.

[Brederlow06] R. Brederlow, R. Prakash, C. Paulus, and R. Thewes, “A low-power true random number generator
using random telegraph noise of single oxide-traps,” Proc. Intl. Solid-State Circuits Conf., Feb. 2006,
pp. 1666–1675.

[Brent82] R. Brent and H. Kung, “A regular layout for parallel adders,” IEEE Trans. Computers, vol. C-31, no.
3, Mar. 1982, pp. 260–264.

[Brewer08] J. Brewer and M. Gill, eds., Nonvolatile Memory Technology with Emphasis on Flash, Piscataway, NJ:
IEEE Press, 2008.

[Brooks95] F. Brooks, The Mythical Man-Month, Boston: Addison-Wesley, 1995.
[Brown03] A. Brown, “Fast films,” IEEE Spectrum, vol. 40, no. 2, Feb. 2003, pp. 36–40.
[Brunvand09] E. Brunvand, Digital VLSI Chip Design with Cadence and Synopsys CAD Tools, Boston: Addison

Wesley, 2009.
[Brusamarello08] L. Brusamarello, R. da Silva, G. Wirth, and R. Reis, “Probabilistic approach for yield analysis of

dynamic logic circuits,” IEEE Trans. Circuits & Systems, vol. 55, no. 8, Sep. 2008, pp. 2238–2248.
[Budnik06] M. Budnik and K. Roy, “A power delivery and decoupling network minimizing ohmic loss and

supply voltage variation in silicon nanoscale technologies,” IEEE Trans. VLSI, vol. 14, no. 12, Dec.
2006, pp. 1336–1346.

[Burd00] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic voltage scaled microprocessor
system,” JSSC, vol. 35, no. 11, Nov. 2000, pp. 1571–1580.

References788

[Burgess02] N. Burgess, “The flagged prefix adder and its applications in integer arithmetic,” J. VLSI Signal
Processing, 2002, pp. 263–271.

[Burgess09] N. Burgess, “Implementation of recursive Ling adders in CMOS VLSI,” Proc. Asilomar Conf.
Signals, Systems, and Computers, 2009.

[Burks46] A. Burks, H. Goldstine, and J. von Neumann, Preliminary discussion of the logical design of an electronic
computing instrument, part 1, vol. 1, Inst. Advanced Study, Princeton, NJ, 1946.

[Burleson98] W. Burleson, M. Ciesielski, F. Klass, and W. Liu, “Wave-pipelining: a tutorial and research survey,”
IEEE Trans. VLSI, vol. 6, no. 3, Sep. 1998, pp. 464–474.

[Calhoun04] B. Calhoun, F. Honore, and A. Chandrakasan, “A leakage reduction methodology for distributed
MTCMOS,” JSSC, vol. 39, no. 5, May 2004, pp. 818–826.

[Calhoun05] B. Calhoun, A. Wang, and A. Chandrakasan, “Modeling and sizing for minimum energy operation
in subthreshold circuits,” JSSC, vol. 40, no. 9, Sep. 2005, pp. 1778–1786.

[Calhoun06a] B. Calhoun and A. Chandrakasan, “Ultra-dynamic voltage scaling (UDVS) using sub-threshold
operation and local voltage dithering,” JSSC, vol. 41, no. 1, Jan. 2006, pp. 238–245.

[Calhoun06b] B. Calhoun and A. Chandrakasan, “Static noise margin variation for sub-threshold SRAM in
65-nm CMOS,” JSSC, vol. 41, no. 7, Jul. 2006, pp. 1673–1679.

[Calhoun07] B. Calhoun and A. Chandrakasan, “A 256-kb 65-nm sub-threshold SRAM design for ultra-low-
voltage operation,” JSSC, vol. 42, no. 3, Mar. 2007, pp. 680–688.

[Calin96] T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory design for submicron CMOS
technology,” IEEE Trans. Nuclear Science, vol. 43, no. 6, Dec. 1996, pp. 2874–2878.

[Calma84] Calma Corporation, GDS II Stream Format, Jul. 1984.
[Carr72] W. Carr and J. Mize, MOS/LSI Design and Application, New York: McGraw-Hill, 1972.
[Celik02] M. Celik, L. Pileggi, and A. Odabasioglu, IC Interconnect Analysis, Boston: Kluwer Academic

Publishers, 2002.
[Cenker79] R. Cenker, D. Clemons, W. Huber, J. Petrizzi, F. Procyk, and G. Trout, “A fault-tolerant 64K

dynamic random-access memory,” IEEE Trans. Electron Devices, vol. 26, no. 6, Jun. 1979,
pp. 853–860.

[Chan90] P. Chan and M. Schlag, “Analysis and design of CMOS Manchester adders with variable carry-
skip,” IEEE Trans. Computers, vol. 39, no. 8, Aug. 1990, pp. 983–992.

[Chan05] S. Chan, K. Shepard, and P. Restle, “Uniform-phase uniform-amplitude resonant-load global clock
distributions,” JSSC, vol. 40, no. 1, Jan. 2005, pp. 102–109.

[Chan09] S. Chan et al., “A resonant global clock distribution for the cell broadband engine processor,” JSSC,
vol. 44, no. 1, Jan. 2009, pp. 64–72.

[Chandrakasan92] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power CMOS digital design,” JSSC, vol. 27,
no. 4, Apr. 1992, pp. 473–484.

[Chandrakasan01] A. Chandrakasan, W. Bowhill, and F. Fox, ed., Design of High-Performance Microprocessor Circuits,
Piscataway, NJ: IEEE Press, 2001.

[Chaney73] T. Chaney and C. Molnar, “Anomalous behavior of synchronizer and arbiter circuits,” IEEE Trans.
Computers, vol. C-22, Apr. 1973, pp. 421–422.

[Chaney83] T. Chaney, “Measured flip-flop responses to marginal triggering,” IEEE Trans. Computers, vol. C-32,
no. 12, Dec. 1983, pp. 1207–1209.

[Chang05] J. Chang et al., “A 130-nm triple-Vt 9-MB third-level on-die cache for the 1.7-GHz Itanium 2
processor,” JSSC, vol. 40, no. 1, Jan. 2005, pp. 195–203.

[Chang07] J. Chang et al., “The 65-nm 16-MB shared on-die L3 cache for the dual-core Intel Xeon processor
7100 Series,” JSSC, vol. 42, no. 4, Apr. 2007, pp. 846–852.

[Chang08] L. Chang et al., “An 8T-SRAM for variability tolerance and low-voltage operation in high-
performance caches,” JSSC, vol. 43, no. 4, Apr. 2008, pp. 956–963.

[Chao89] H. Chao and C. Johnston, “Behavior analysis of CMOS D flip-flops,” JSSC, vol. 24, no. 5, Oct.
1989, pp. 1454–1458.

References 789

[Chappell91] T. Chappell, B. Chappell, S. Schuster, J. Allan, S. Klepner, R. Joshi, and R. Franch, “A 2-ns cycle,
3.8-ns access 512-kb CMOS ECL SRAM with a fully pipelined architecture,” JSSC, vol. 26, no. 11,
Nov. 1991, pp. 1577–1585.

[Chen96] K. Chen, H. Wann, J. Dunster, P. Ko, C. Hu, and M. Yoshida, “MOSFET carrier mobility model
based on gate oxide thickness, threshold and gate voltages,” Solid-State Electronics, vol. 39, no. 10,
1996, pp. 1515–1518.

[Chen97] K. Chen, C. Hu, P. Fang, M. Lin, and D. Wollesen, “Predicting CMOS speed with gate oxide and
voltage scaling and interconnect loading effects,” IEEE Trans. Electron Devices, vol. 44, no. 11, Nov.
1997, pp. 1951–1957.

[Chen03] T. Chen and S. Naffziger, “Comparison of adaptive body bias (ABB) and adaptive supply voltage
(ASV) for improving delay and leakage under the presence of process variation,” IEEE Trans. VLSI,
vol. 11, no. 5, Oct. 2003, pp. 888–899.

[Chen06] J. Chen, L. Clark, and T. Chen, “An ultra-low-power memory with a subthreshold power supply
voltage,” JSSC, vol. 41, no. 10, Oct. 2006, pp. 2344–2353.

[Chen07] G. Chen, D. Blaauw, T. Mudge, D. Sylvester, and Nam Sung Kim, “Yield-driven near-threshold
SRAM design,” Proc. Intl. Conf. Computer-Aided Design, Nov. 2007, pp. 660–666.

[Cheng99] Y. Cheng and C. Hu, MOSFET Modeling & BSIM3 User’s Guide, Boston: Kluwer Academic
Publishers, 1999.

[Cheng00] Y. Cheng, C. Tsai, C. Teng, and S. Kang, Electrothermal Analysis of VLSI Systems, Boston: Kluwer
Academic Publishers, 2000.

[Chern92] J. Chern, J. Huang, L. Arledge, P. Li, and P. Yang, “Multilevel metal capacitance models for CAD
design synthesis systems,” IEEE Electron Device Letters, vol. 13, no. 1, Jan. 1992, pp. 32–34.

[Childs84] R. Childs, J. Crawford, D. House, and R. Noyce, “A processor family for personal computers,” Proc.
IEEE, vol. 72, no. 3, Mar. 1984, pp. 363–376.

[Chinnery02] D. Chinnery and K. Keutzer, Closing the Gap Between ASIC and Custom: Tools and techniques for high-
performance ASIC design, Boston: Kluwer Academic Publishers, 2002.

[Chinnery07] D. Chinnery & K. Keutzer, Closing the Power Gap Between ASIC and Custom, New York: Springer,
2007.

[Choi97] J. Choi, L. Jang, S. Jung, and J. Choi, “Structured design of a 288-tap FIR filter by optimized partial
product tree compression,” JSSC, vol. 32, no. 3, Mar. 1997, pp. 468–476.

[Chong06] K. Chong, L. McMurchie, and C. Sechen, “A 64b adder using self-calibrating differential output
prediction logic,” Proc. Intl. Solid-State Circuits Conf., Feb. 2006, pp. 1745–1754.

[Chopra06] K. Chopra, C. Kashyap, H. Su, and D. Blaauw, “Current source driver model synthesis and worst-
case alignment for accurate timing and noise analysis,” Intl. Workshop on Timing in Synthesis and
Specification (TAU), Feb. 2006.

[Choudhury97] M. Choudhury and J. Miller, “A 300 MHz CMOS microprocessor with multi-media technology,”
Proc. IEEE Intl. Solid-State Circuits Conf., 1997, pp. 170–171.

[Christiansen06] C. Christiansen, J. Gambino, J. Therrien, D. Hunt, and J. Gill, “Effect of wire thickness on
electromigration and stress migration lifetime of Cu,” Proc. Failure Analysis of Integrated Circuits, Jul.
2006, pp. 349–354.

[Chu86] K. Chu and D. Pulfrey, “Design procedures for differential cascode voltage switch circuits,” JSSC,
vol. SC-21, no. 6, Dec. 1986, pp. 1082–1087.

[Chu87] K. Chu and D. Pulfrey, “A comparison of CMOS circuit techniques: differential cascode voltage
switch logic versus conventional logic,” JSSC, vol. SC-22, no. 4, Aug. 1987, pp. 528–532.

[Clark61] C. Clark, “The greatest of a finite set of random variables,” Operations Research, vol. 9, no. 2,
Mar.–Apr. 1961, pp. 145–162.

[Clark01] L. Clark et al., “An embedded 32-b microprocessor core for low-power and high-performance
applications,” JSSC, vol. 36, no. 11, Nov. 2001, pp. 1599–1608.

References790

[Clark02] L. Clark, S. Demmons, N. Deutscher, and F. Ricci, “Standby power management for a 0.18 μm
microprocessor,” Proc. Intl. Symp. Low Power Electronics and Design, Aug. 2002, pp. 7–12.

[Cobbold66] R. Cobbold, “Temperature effects on M.O.S. transistors,” Electronics Letters, vol. 2, no. 6, Jun. 1966,
pp. 190–192.

[Cobbold70] R. Cobbold, Theory and Application of Field Transistors, New York: Wiley Interscience, 1970.
[Colwell95] R. Colwell and R. Steck, “A 0.6 μm BiCMOS processor with dynamic execution,” Proc. IEEE Solid-

State Circuits Conf., 1995, pp. 176–177.
[Colwell06] R. Colwell, The Pentium Chronicles: The People, Passion, and Politics Behind Intel's Landmark Chips,

New York: Wiley, 2006.
[Cooley07] J. Cooley, “Verilog vs. VHDL,” www.deepchip.com/items/dvcon07-02.html, Apr. 2007.
[Cortadella92] J. Cortadella and J. Llabería, “Evaluation of A + B = K conditions without carry propagation,” IEEE

Trans. Computers, vol. 41, no. 11, Nov. 1992, pp. 1484–1487.
[Crews03] M. Crews and Y. Yuenyongsgool, “Practical design for transferring signals between clock domains,”

EDN Magazine, Feb. 20, 2003, pp. 65–71.
[Curran02] B. Curran et al., “IBM eServer z900 high-frequency microprocessor technology, circuits, and design

methodology,” IBM J. Research and Development, vol. 46, no. 4/5, Jul./Sep. 2002, pp. 631–644.
[Dabral98] S. Dabral and T. Maloney, Basic ESD and I/O Design, New York: John Wiley & Sons, 1998.
[Dadda65] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol. 34, no. 5, May 1965, pp.

349–356.
[Dally98] W. Dally and J. Poulton, Digital Systems Engineering, Cambridge, UK: Cambridge University Press,

1998.
[Das06] S. Das et al., “A self-tuning DVS processor using delay-error detection and correction,” JSSC, vol.

41, no. 4, Apr. 2006, pp. 792–804.
[Das09] S. Das et al., “RazorII: in situ error detection and correction for PVT and SER tolerance,” JSSC, vol.

44, no. 1, Jan. 2009, pp. 32–48.
[Davari99] B. Davari, “CMOS technology: present and future,” Symp. VLSI Circuits Digest Tech. Papers, 1999,

pp. 5–10.
[Davis69] R. Davis, “The ILLIAC IV processing element,” IEEE Trans. Computers, vol. C-18, no. 9, Sep.

1969, pp. 800–816.
[Degalahal05] V. Degalahal, L. Li, V. Narayanan, M. Kandemir, and M. Irwin, “Soft errors issues in low-power

caches,” IEEE Trans. VLSI, vol. 13, no. 10, Oct. 2005, pp. 1157–1166.
[DeHon93] A. DeHon, T. Knight Jr., and T. Simon, “Automatic impedance control,” Proc. Intl. Solid-State

Circuits Conf., Feb. 1993, pp. 164–165, 283.
[Deleganes02] D. Deleganes, J. Douglas, B. Kommandur, and M. Patyra, “Designing a 3GHz, 130nm, Intel

Pentium 4 processor,” Symp. VLSI Circuits Digest Tech. Papers, 2002, pp. 130–133.
[Deleganes04] D. Deleganes et al., “LVS technology for the Intel Pentium 4 processor on 90nm technology,” Intel

Techology Journal, vol. 8, no. 1, Feb. 2004, pp. 43–53.
[Deleganes05] D. Deleganes et al., “Low-voltage swing logic circuits for a Pentium 4 processor integer core,” JSSC,

vol. 40, no. 1, Jan. 2005, pp. 36–43.
[Delgado-Frias00] J. Delgado-Frias and J. Nyathi, “A high-performance encoder with priority lookahead,” IEEE Trans.

Circuits and Systems I, vol. 47, no. 9, Sep. 2000, pp. 1390–1393.
[Dennard68] R. Dennard, “Field-effect transistor memory,” US Patent 3,387,286, 1968.
[Dennard74] R. Dennard et al., “Design of ion-implanted MOSFET’s with very small physical dimensions,”

JSSC, vol. SC-9, no. 5, Oct. 1974, pp. 256–268.
[Dhanesha95] H. Dhanesha, K. Falakshahi, and M. Horowitz, “Array-of-arrays architecture for parallel floating

point multiplication,” Proc. Conf. Advanced Research in VLSI, 1995, pp. 150–157.
[Dickson76] J. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an improved

voltage multiplier technique,” JSSC, vol. 11, no. 3, Jun. 1976, pp. 374–378.

References 791

[Dike99] C. Dike and E. Burton, “Miller and noise effects in a synchronizing flip-flop,” JSSC, vol. 34, no. 6,
Jun. 1999, pp. 849–855.

[Dobbalaere95] I. Dobbalaere, M. Horowitz, and A. El Gamal, “Regenerative feedback repeaters for programmable
interconnect,” JSSC, vol. 30, no. 11, Nov. 1995, pp. 1246–1253.

[Dobberpuhl92] D. Dobberpuhl et al., “A 200-MHz 64-b dual-issue CMOS microprocessor,” JSSC, vol. 27, no. 11,
Nov. 1992, pp. 1555–1567.

[Dobson95] J. Dobson and G. Blair, “Fast two's complement VLSI adder design,” Electronics Letters, vol. 31, no.
20, Sep. 1995, pp. 1721–1722.

[Donnay03] S. Donnay and G. Gielen, eds., Substrate Noise Coupling in Mixed-Signal ASICs, Boston: Kluwer
Academic Publishers, 2003.

[Donovan02] C. Donovan and M. Flynn, “A ‘digital’ 6-bit ADC in 0.25 μm CMOS,” JSSC, vol. 37, no. 3, Mar.
2002, pp. 432–437.

[Doran88] R. Doran, “Variants of an improved carry look-ahead adder,” IEEE Trans. Computers, vol. 37, no. 9,
Sep. 1988, pp. 1110–1113.

[Doyle91] B. Doyle, B. Fishbein, and K. Mistry, “NBTI-enhanced hot carrier damage in p-channel
MOSFETs,” Proc. Intl. Electron Devices Meeting, 1991, pp. 529–532A.

[Drake07] A. Drake et al., “A distributed critical-path timing monitor for a 65nm high-performance
microprocessor,” Proc. Intl. Solid-State Circuits Conf., Feb. 2007, pp. 398–399.

[Draper97] D. Draper et al., “Circuit techniques in a 266-MHz MMX-enabled processor,” JSSC, vol. 32, no. 11,
Nov. 1997, pp. 1650–1664.

[Dunga07] M. Dunga et al., BSIM 4.6.1 MOSFET Model User's Manual, Department of Electrical Engineering
and Computer Sciences, UC Berkeley, 2007.

[Earle65] J. Earle, “Latched carry-save adder,” IBM Tech. Disclosure Bulletin, vol. 7, no. 10, Mar. 1965,
pp. 909–910.

[Edwards93] B. Edwards, A. Corry, N. Weste, and C. Greenberg, “A single-chip video ghost canceller,” JSSC, vol.
28, no. 3, Mar. 1993, pp. 379–383.

[Eichelberger78] E. Eichelberger and T. Williams, “A logic design structure for LSI testability,” J. Design Automation
and Fault Tolerant Computing, vol. 2, no. 2, May 1978, pp. 165–178.

[Elmore48] W. Elmore, “The transient response of damped linear networks with particular regard to wideband
amplifiers,” J. Applied Physics, vol. 19, no. 1, Jan. 1948, pp. 55–63.

[Emma08] P. Emma and E. Kursan, “Is 3D chip technology the next growth engine for performance
improvement?” IBM J. Research & Dev., vol. 52, no. 6, Nov. 2008, pp. 541–552.

[EPA07] US Environmental Protection Agency, Report to Congress on Server and Data Center Energy Efficiency,
Public Law 109-431, Aug. 2, 2007.

[Ercegovac89] M. Ercegovac and T. Lang, “Binary counter with counting period of one half adder independent of
counter size,” IEEE Trans. Circuits & Systems, vol. 36, no. 6, Jun. 1989, pp. 924–926.

[Ernst03] D. Ernst et al., “Razor: a low-power pipeline based on circuit-level timing speculation,” Proc. Intl.
Symp. Microarchitecture, Dec. 2003, pp. 7–18.

[Estreich82] D. Estreich and R. Dutton, “Modeling latch-up in CMOS integrated circuits,” IEEE Trans.
Computer-Aided Design, vol. CAD-1, no. 4, Oct. 1982, pp. 157–162.

[Evans95] R. Evans and P. Franzon, “Energy consumption modeling and optimization for SRAM's,” JSSC, vol.
30, no. 5, May 1995, pp. 571–579.

[Faggin96] F. Faggin, M. Hoff, S. Mazor, and M. Shima, “The history of the 4004,” IEEE Micro, vol. 16, no. 6,
Dec. 1996, pp. 10–20.

[Fetzer02] E. Fetzer, M. Gibson, A. Klein, N. Calick, C. Zhu, E. Busta, and B. Mohammad, “A fully bypassed
six-issue integer datapath and register file on the Itanium-2 microprocessor,” JSSC, vol. 37, no. 11,
Nov. 2002, pp. 1433–1440.

[Fetzer06] E. Fetzer, D. Dahle, C. Little, and K. Safford, “The parity protected, multithreaded register files on
the 90-nm Itanium microprocessor,” JSSC, vol. 41, no. 1, Jan. 2006, pp. 246–255.

References792

[Fischer06] T. Fischer, J. Desai, B. Doyle, S. Naffziger, and B. Patella, “A 90-nm variable frequency clock system
for a power-managed Itanium architecture processor,” JSSC, vol. 41, no. 1, Jan. 2006, pp. 218–228.

[Fishburn85] J. Fishburn and A. Dunlop, “TILOS: A posynomial programming approach to transistor sizing,”
Proc. Intl. Conf. Computer-Aided Design, Nov. 1985, pp. 326–328.

[Flannagan85] S. Flannagan, “Synchronization reliability in CMOS technology,” JSSC, vol. SC-20, no. 4, Aug.
1985, pp. 880–882.

[Foty96] D. Foty, MOSFET Modeling with SPICE: Principles and Practices, Upper Saddle River, NJ: Prentice
Hall, 1996.

[Friedman84] V. Friedman and S. Liu, “Dynamic logic CMOS circuits,” JSSC, vol. SC-19, no. 2, Apr. 1984,
pp. 263–266.

[Frohman69] D. Frohman-Bentchkowsky and A. Grove, “Conductance of MOS transistors in saturation,” IEEE
Trans. Electron Devices, vol. ED-16, no. 1, Jan. 1969, pp. 108–113.

[Frowerk77] R. Frowerk, “Signature Analysis: A New Digital Field Service Method,” Hewlett Packard Journal,
May 1977, pp. 2–8.

[Fujiwara06] E. Fujiwara, Code Design for Dependable Systems: Theory and Practical Applications, New York: Wiley,
2006.

[Gabara92] T. Gabara and S. Knauer, “Digitally adjustable resistors in CMOS for high-performance
applications,” JSSC, vol. 27, no. 8, Aug. 1992, pp. 1176–1185.

[Gago93] A. Gago, R. Escano, and J. Hidalgo, “Reduced implementation of D-type DET flip-flops,” JSSC,
vol. 28, no. 3, Mar. 1993, pp. 400–402.

[Gajski83] D. Gajski and R. Kuhn, “New VLSI tools,” Computer, vol. 16, no. 12, Dec. 1983, pp. 11–14.
[Galiay80] J. Galiay, Y. Crouzet, and M. Verginiault, “Physical versus logical fault models MOS LSI circuits:

impact on their testability,” IEEE Trans. Computers, vol. C-29, no. 6, Jun. 1980, pp. 527–531.
[Gauthier02] C. Gauthier and B. Amick, “Inductance: Implications and solutions for high-speed digital circuits:

the chip electrical interface,” Proc. IEEE Intl. Solid-State Circuits Conf., vol. 2, 2002, pp. 563–565.
[Geannopoulos98] G. Geannopoulos and X. Dai, “An adaptive digital deskewing circuit for clock distribution

networks,” Proc. IEEE Intl. Solid-State Circuits Conf., 1998, pp. 400–401.
[Gelsinger01] P. Gelsinger, “Microprocessors for the new millennium: challenges, opportunities, and new

frontiers,” Proc. IEEE Intl. Solid-State Circuits Conf., 2001, pp. 22–25.
[George96] S. George, A. Ott, and J. Klaus, “Surface chemistry for atomic layer growth,” J. Phys. Chem., vol.

100, 1996, pp. 13121–13131.
[George07] V. George et al., “Penryn: 45-nm next generation Intel Core 2 processor,” Proc. Intl. Solid-State

Circuits Conf., Nov. 2007, pp. 14–17.
[Geppert04] L. Geppert, “Chip making's wet new world,” IEEE Spectrum, vol. 41, no. 5, May 2004, pp. 29–33.
[Gerosa94] G. Gerosa et al., “A 2.2 W, 80 MHz superscalar RISC microprocessor,” JSSC, vol. 29, no. 12, Dec.

1994, pp. 1440–1452.
[Gerosa09] G. Gerosa et al., “A sub-2 W low power IA processor for mobile internet devices in 45 nm high-k

metal gate CMOS,” JSSC, vol. 44, no. 1, Jan. 2009, pp. 73–82.
[Ginosar03] R. Ginosar, “Fourteen ways to fool your synchronizer,” Proc. Intl. Symp. Asynchronous Circuits and

Systems, May 2003, pp. 89–96.
[Glasser85] L. Glasser and D. Dobberpuhl, The Design and Analysis of VLSI Circuits, Reading, MA: Addison

Wesley, 1985.
[Gochman03] S. Gochman et al., “The Intel Pentium M processor: microarchitecture and performance,” Intel

Technology Journal, vol. 7, no. 2, May 2003, pp. 21–36.
[Golden99] M. Golden et al., “A seventh-generation x86 microprocessor,” JSSC, vol. 34, no. 11, Nov. 1999, pp.

1466–1477.
[Golomb81] S. Golomb, Shift Register Sequences, Revised Edition, Laguna Hills, CA: Aegean Park Press, 1981.
[Gonclaves83] N. Gonclaves and H. DeMan, “NORA: a racefree dynamic CMOS technique for pipelined logic

structures,” JSSC, vol. SC-18, no. 3, Jun. 1983, pp. 261–266.

References 793

[Gonzalez96] R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose microprocessors,” JSSC, vol.
31, no. 9, Sep. 1996, pp. 1277–1284.

[Gonzalez97] R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and threshold voltage scaling for low power
CMOS,” JSSC, vol. 32, no. 8, Aug. 1997, pp. 1210–1216.

[Goto92] G. Goto, T. Sato, M. Nakajima, and T. Sukemura, “A 54×54-b regularly structured tree multiplier,”
JSSC, vol. 27, no. 9, Sep. 1992, pp. 1229–1236.

[Goto97] G. Goto et al., “A 4.1-ns compact 54×54-b multiplier utilizing sign-select Booth encoders,” JSSC,
vol. 32, no. 11, Nov. 1997, pp. 1676–1682.

[Grad04] J. Grad and J. Stine, “A hybrid Ling carry-select adder,” Proc. Asilomar Conf. Signals, Systems, and
Computers, Nov. 2004, pp. 1363–1367.

[Gray53] F. Gray, “Pulse code communications,” US Patent 2,632,058, 1953.
[Gray01] P. Gray, P. Hurst, S. Lewis, and R. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed.,

New York: John Wiley & Sons, 2001.
[Greenhill97] D. Greenhill et al., “A 330 MHz 4-way superscalar microprocessor,” Proc. Intl. Solid-State Circuits

Conf., Feb. 1997, pp. 166–167, 449.
[Gregg07] J. Gregg and T. Chen, “Post silicon power/performance optimization in the presence of process

variations using individual well-adaptive body biasing,” IEEE Trans. VLSI, vol. 15, no. 3, Mar. 2007,
pp. 366–376.

[Griffin83] W. Griffin and J. Hiltebeitel, “CMOS 4-way XOR circuit,” IBM Technical Disclosure Bulletin, vol.
25, no. 11B, Apr. 1983, pp. 6066–6067.

[Gronowski96] P. Gronowski et al., “A 433-MHz 64-b quad-issue RISC microprocessor,” JSSC, vol. 31, no. 11,
Nov. 1996, pp. 1687–1696.

[Gronowski98] P. Gronowski, W. Bowhill, R. Preston, M. Gowan, and R. Allmon, “High-performance
microprocessor design,” JSSC, vol. 33, no. 5, May 1998, pp. 676–686.

[Grotjohn86] T. Grotjohn and B. Hoefflinger, “Sample-set differential logic (SSDL) for complex high-speed
VLSI,” JSSC, vol. SC-21, no. 2, Apr. 1986, pp. 367–369.

[Guilar09] N. Guilar, T. Kleeburg, A. Chen, D. Yankelevich, and R. Amirtharajah, “Integrated solar energy
harvesting and storage,” IEEE Trans. VLSI, vol. 17, no. 5, May 2009, pp. 627–637.

[Gunning92] B. Gunning, L. Yuan, T. Nguyen, and T. Wong, “A CMOS low-voltage-swing transmission-line
transceiver,” Proc. Intl. Solid-State Circuits Conf., Feb. 1992, pp. 58–59.

[Guo05] X. Guo and C. Sechen, “High speed redundant adder and divider in output prediction logic,” Proc.
Computer Society Symp. VLSI, May 2005, pp. 34–41.

[Gutierrez01] E. Gutierrez, J. Deen, and C. Claeys (eds.), Low Temperature Electronics: Physics, Devices, Circuits,
and Applications, New York: Academic Press, 2001.

[Gutnik97] V. Gutnik and A. Chandrakasan, “Embedded power supply for low-power DSP,” IEEE Trans. VLSI,
vol. 5, no. 4, Dec. 1997, pp. 425–435.

[Guyot87] A. Guyot, B. Hochet, and J. Muller, “A way to build efficient carry-skip adders,” IEEE Trans.
Computers, vol. 36, no. 10, Oct. 1987, pp. 1144–1152.

[Guyot97] A. Guyot and S. Abou-Samra, “Modeling power consumption in arithmetic operators,”
Microelectronic Engineering, vol. 39, 1997, pp. 245–253.

[Hall00] S. Hall, G. Hall, and J. McCall, High-Speed Digital System Design, New York: Wiley, 2000.
[Hamada98] M. Hamada et al., “A top-down low power design technique using clustered voltage scaling with

variable supply-voltage scheme,” Proceedings of the IEEE, May 11–14, 1998, pp. 495–498.
[Hamming50] R. Hamming, “Error Detecting and Error Correcting Codes,” Bell Systems Technical Journal, vol. 29,

pp. 147–160.
[Hamzaoglu02] F. Hamzaoglu and M. Stan, “Circuit-level techniques to control gate leakage for sub-100 nm

CMOS,” Proc. Intl. Symp. Low Power Electronics and Design, 2002, pp. 60–63.

References794

[Hamzaoglu09] F. Hamzaoglu et al., “A 3.8 GHz 153 Mb SRAM design with dynamic stability enhancement and
leakage reduction in 45 nm high-k metal gate CMOS technology,” JSSC, vol. 44, no. 1, Jan. 2009,
pp. 148–154.

[Han87] T. Han and D. Carlson, “Fast area-efficient VLSI adders,” Proc. IEEE Symp. Computer Arithmetic,
1987, pp. 49–56.

[Hanson06] S. Hanson et al., “Ultralow-voltage minimum-energy CMOS,” IBM J. Research & Dev., vol. 50,
no. 4/5, Jul./Sep. 2006, pp. 469–490.

[Hanson09] S. Hanson et al., “A low-voltage processor for sensing applications with picowatt standby mode,”
JSSC, vol. 44, no. 4, Apr. 2009, pp. 1145–1155.

[Harame01a] D. Harame and B. Meyerson, “The early history of IBM’s SiGe mixed signal technology,” IEEE
Transactions on Electron Devices, vol. 48, no. 11, Nov. 2001, pp. 2555–2567.

[Harame01b] D. Harame et al., “Current status and future trends of SiGe BiCMOS technology,” IEEE
Transactions on Electron Devices, vol. 48, no. 11, Nov. 2001, pp. 2575–2594.

[Haring96] R. Haring et al., “Self-resetting logic register and incrementer,” Symp. VLSI Circuits Digest Tech.
Papers, 1996, pp. 18–19.

[Harris97] D. Harris and M. Horowitz, “Skew-tolerant domino circuits,” JSSC, vol. 32, no. 11, Nov. 1997,
pp. 1702–1711.

[Harris99] D. Harris, M. Horowitz, and D. Liu, “Timing analysis including clock skew,” IEEE Trans.
Computer-Aided Design, vol. 18, no. 11, Nov. 1999, pp. 1608–1618.

[Harris01a] D. Harris, Skew-Tolerant Circuit Design, San Francisco, CA: Morgan Kaufmann, 2001.
[Harris01b] D. Harris and S. Naffziger, “Statistical clock skew modeling with data delay variations,” IEEE Trans.

VLSI, vol. 9, no. 6, Dec. 2001, pp. 888–898.
[Harris03] D. Harris, “A taxonomy of prefix networks,” Proc. 37th Asilomar Conf. Signals, Systems, and

Computers, 2003, pp. 2213–2217.
[Harris04] D. Harris, “Logical effort of higher valency adders,” Proc. Asilomar Conf. Signals, Systems, and

Computers, Nov. 2004, pp. 1358–1362.
[Harris07] D. Harris and S. Harris, Digital Design and Computer Architecture, San Francisco: Morgan Kaufmann

Publishers, 2007.
[Hart06] J. Hart et al., “Implementation of a fourth-generation 1.8-GHz dual-core SPARC V9

microprocessor,” JSSC, vol. 41, no. 1, Jan. 2006, pp. 210–217.
[Hashemian92] R. Hashemian and C. Chen, “A new parallel technique for design of decrement/increment and two’s

complement circuits,” Proc. IEEE Midwest Symp. Circuits and Systems, vol. 2, 1992, pp. 887–890.
[Hashimoto02] T. Hashimoto et al., “Integration of a 0.13-μm CMOS and a high performance self-aligned SiGe

HBT featuring low base resistance,” Proc. Intl. Electron Devices Meeting, Dec. 2002, pp. 779–782.
[Hatamian86] M. Hatamian and G. Cash, “A 70-MHz 8-bit × 8-bit parallel pipelined multiplier in 2.5-μm

CMOS,” JSSC, vol. 21, no. 4, Aug. 1986, pp. 505–513.
[Haykin00] S. Haykin, Digital Communications, New York: John Wiley & Sons, 2000.
[Hazucha00] P. Hazucha, C. Svensson, and S. Wender, “Cosmic-ray soft error rate characterization of a standard

0.6-μm CMOS process,” JSSC, vol. 35, no. 10, Oct. 2000, pp. 1422–1429.
[Hazucha04] P. Hazucha et al., “Measurements and analysis of SER-tolerant latch in a 90-nm dual-Vt CMOS

process,” JSSC, vol. 39, no. 9, Sep. 2004, pp. 1536–1543.
[Heald93] R. Heald and J. Holst, “A 6-ns cycle 256 kb cache memory and memory management unit,” JSSC,

vol. 28, no. 11, Nov. 1993, pp. 1078–1083.
[Heald98] R. Heald et al., “64-Kbyte sum-addressed-memory cache with 1.6-ns cycle and 2.6-ns latency,”

JSSC, vol. 33, no. 11, Nov. 1998, pp. 1682–1689.
[Heald00] R. Heald et al., “A third-generation SPARC v9 64-b microprocessor,” JSSC, vol. 35, no. 11, Nov.

2000, pp. 1526–1538.
[Hedenstierna87] N. Hedenstierna and K. Jeppson, “CMOS circuit speed and buffer optimization,” IEEE Trans.

Computer-Aided Design, vol. CAD-6, no. 2, Mar. 1987, pp. 270–281.

References 795

[Heikes94] C. Heikes, “A 4.5mm2 multiplier array for a 200MFLOP pipelined coprocessor,” Proc. IEEE Intl.
Solid-State Circuits Conf., 1994, pp. 290–291.

[Heller84] L. Heller, W. Griffin, J. Davis, and N. Thoma, “Cascode voltage switch logic: a differential CMOS
logic family,” Proc. IEEE Intl. Solid-State Circuits Conf., 1984, pp. 16–17.

[Hennessy90] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, San Mateo, CA:
Morgan Kaufmann Publishers, Inc., 1990.

[Heo02] S. Heo, K. Barr, M. Hampton, and K. Asanovic, “Dynamic fine-grain leakage reduction using
leakage-biased bitlines,” Proc. Intl. Symp. Computer Architecture, 2002, pp. 137–147.

[Hess94] C. Hess and L. Weiland, “Drop-in process control checkerboard test structure for efficient online
process characterization and defect problem debugging,” Proc. IEEE Int. Conf. Microelectronic Test
Structures, vol. 7, Mar., 1994, pp. 152–159.

[Hicks08] J. Hicks, “45nm transistor reliability,” Intel Technology Journal, vol. 12, no. 2, Jun. 2008, pp. 131–144.
[Hidaka89] H. Hidaka, K. Fujishima, Y. Matsuda, M. Asakura, and T. Yoshihara, “Twisted bit-line architectures

for multi-megabit DRAM’s,” JSSC, vol. 24, no. 1, Feb. 1989, pp. 21–27.
[Hilewitz04] Y. Hilewitz, Z. Shi, and R. Lee, “Comparing fast implementations of bit permutation instructions,”

Proc. Asilomar Conf. Signals, Systems, and Computers, Nov. 2004, pp. 1856–1863.
[Hilewitz07] Y. Hilewitz and R. Lee, “Performing advanced bit manipulations efficiently in general-purpose

processors,” Proc. Computer Arithmetic Symp., June 2007, pp. 251–260.
[Hill68] C. Hill, “Noise margin and noise immunity in logic circuits,” Microelectronics, vol. 1, Apr. 1968,

pp. 16–21.
[Hinton01] G. Hinton et al., “A 0.18-μm CMOS IA-32 processor with a 4-GHz integer execution unit,” JSSC,

vol. 36, no. 11, Nov. 2001, pp. 1617–1627.
[Hisamoto98] D. Hisamoto et al., “A folded-channel MOSFET for deep-sub-tenth micron era,” Tech. Digest Intl.

Electron Devices Meeting, San Francisco, Dec. 1998, pp. 1032–1034.
[Ho01] R. Ho, K. Mai, and M. Horowitz, “The future of wires,” Proc. IEEE, vol. 89, no. 4, Apr. 2001, pp.

490–504.
[Ho03a] R. Ho, K. Mai, and M. Horowitz, “Efficient on-chip global interconnects,” Symp. VLSI Circuits

Digest Tech. Papers, 2003, pp. 271–274.
[Ho03b] R. Ho, K. Mai, and M. Horowitz, “Managing wire scaling: a circuit perspective,” Proc. IEEE

Interconnect Technology Conf., 2003, pp. 177–179.
[Ho07] R. Ho, “Dealing with issues in VLSI interconnect scaling,” Intl. Solid-State Circuits Conf. Tutorial,

Feb. 2007.
[Hoeneisen72] B. Hoeneisen and C. Mead, “Fundamental limitations in Microelectronics-I. MOS technology,”

Solid-State Electronics, vol. 15, 1972, pp. 819–829.
[Hogge85] C. Hogge Jr., “A self correcting clock recovery circuit,” IEEE Trans. Electron Devices, vol. 32, no. 12,

Dec. 1985, pp. 2704–2706.
[Hook03] T. Hook et al., “Lateral ion implant straggle and mask proximity effect,” IEEE Trans. Electron

Devices, vol. 50, no. 9, Sep. 2003, pp. 1946–1951.
[Horowitz83] M. Horowitz and R. Dutton, “Resistance extraction from mask layout data,” IEEE Trans. Computer-

Aided Design, vol. CAD-2, no. 3, Jul. 1983, pp. 145–150.
[Horowitz87] M. Horowitz et al., “MIPS-X: a 20-MIPS peak, 32-bit microprocessor with on-chip cache,” JSSC,

vol. SC-22, no. 5, Oct. 1987, pp. 790–799.
[Horowitz04] M. Horowitz and W. Dally, “How scaling will change processor architecture,” Proc. Intl. Solid-State

Circuits Conf., Feb. 2004, pp. 132–133.
[Horstmann89] J. Horstmann, H. Eichel, and R. Coates, “Metastability behavior of CMOS ASIC flip-flops in

theory and test,” JSSC, vol. 24, no. 1, Feb. 1989, pp. 146–157.
[Hrishikesh02] M. Hrishikesh et al., “The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays,” Proc.

Intl. Symp. Computer Architecture, 2002, pp. 14–24.

References796

[Hsiao70] M. Hsiao, “A class of optimal minimum odd-weight-column SEC-DED codes,” IBM J. Research &
Dev., vol. 14, no. 4, Jul. 1970, pp. 395–401.

[Hsu91] W. Hsu, B. Sheu, and S. Gowda, “Design of reliable VLSI circuits using simulation techniques,”
JSSC, vol. 26, no. 3, Mar. 1991, pp. 452–457.

[Hsu92] W. Hsu, B. Sheu, S. Gowda, and C. Hwang, “Advanced integrated-circuit reliability simulation
including dynamic stress effects,” JSSC, vol. 27, no. 3, Mar. 1992, pp. 247–257.

[Hsu06a] S. Hsu et al., “A 110 GOPS/W 16-bit multiplier and reconfigurable PLA loop in 90-nm CMOS,”
JSSC, vol. 41, no. 1, Jan. 2006, pp. 256–264.

[Hsu06b] S. Hsu, A. Agarwal, M. Anders, S. Mathew, R. Krishnamurthy, and S. Borkar, “An 8.8GHz
198mW 16 × 64b 1R/1W variation tolerant register file in 65nm CMOS,” Proc. Intl. Solid-State
Circuits Conf., Feb. 2006, pp. 1785–1797.

[Hu90] Y. Hu and S. Chen, “GM_Plan: A Gate Matrix Layout Algorithm Based on Artificial Intelligence
Planning Techniques,” IEEE Trans. Computer-Aided Design, vol. 9, no. 8, Aug. 1990, pp. 836–845.

[Hu92] C. Hu, “IC Reliability Simulation,” JSSC, vol. 27, no. 3, Mar. 1992, pp. 241–246.
[Hu95] C. Hu, K. Rodbell, T. Sullivan, K. Lee, and D. Bouldin, “Electromigration and stress-induced

voiding in fine Al and Al-alloy thin-film lines,” IBM J. Research and Development, vol. 39, no. 4, Jul.
1995, pp. 465–497.

[Huang00] Z. Huang and M. Ercegovac, “Effect of wire delay on the design of prefix adders in deep-submicron
technology,” Proc. 34th Asilomar Conf. Signals, Systems, and Computers, vol. 2, 2000, pp. 1713–1717.

[Huang02] C. Huang, J. Wang, and Y. Huang, “Design of high-performance CMOS priority encoders and
incrementer/decrementers using multilevel lookahead and multilevel folding techniques,” JSSC, vol.
37, no. 1, Jan. 2002, pp. 63–76.

[Huang03] X. Huang et al., “Loop-based interconnect modeling and optimization approach for multigigahertz
clock network design,” JSSC, vol. 38, no. 3, Mar. 2003, pp. 457–463.

[Huang05] Z. Huang and M. Ercegovac, “High-performance low-power left-to-right array multiplier design,”
IEEE Trans. Computers, vol. 54, no. 3, Mar. 2005, pp. 272–283.

[Huang06] A. Huang et al., “A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with
electronics in 0.13/spl mu/m SOI CMOS,” Proc. Intl. Solid-State Circuits Conf., Feb. 2006,
pp. 922–929.

[Huh98] Y. Huh, Y. Sung, and S. Kang, “A study of hot-carrier-induced mismatch drift: a reliability issue for
VLSI circuits,” JSSC, vol. 33, no. 6, Jun. 1998, pp. 921–927.

[Huitema03] E. Huitema et al., “Plastic transistors in active-matrix displays,” Proc. IEEE Intl. Solid-State Circuits
Conf., Feb. 2003, pp. 380–381.

[Huntzicker08] S. Huntzicker, M. Dayringer, J. Soprano, A. Weerasinghe, D. Harris, and D. Patil, “Energy-delay
tradeoffs in 32-bit static shifter designs,” Proc. Intl. Conf. Computer Design, Oct. 2008, pp. 626–632.

[Hwang89] I. Hwang and A. Fisher, “Ultrafast compact 32-bit CMOS adders in multiple-output domino logic,”
JSSC, vol. 24, no. 2, Apr. 1989, pp. 358–369.

[Hwang99a] W. Hwang, R. Joshi, and W. Henkels, “A 500-MHz, 32-Word × 64-bit, eight-port self-resetting
CMOS register file,” JSSC, vol. 34, no. 1, Jan. 1999, pp. 56–67.

[Hwang99b] W. Hwang, G. Gristede, P. Sanda, S. Wang, and D. Heidel, “Implementation of a self-resetting
CMOS 64-bit parallel adder with enhanced testability,” JSSC, vol. 34, no. 8, Aug. 1999,
pp. 1108–1117.

[Hwang02] D. Hwang, F. Dengwei, and A. Willson Jr, “A 400-MHz processor for the efficient conversion of
rectangular to polar coordinates for digital communications applications,” Symp. VLSI Circuits Digest
Tech. Papers, Jun. 2002, pp. 248–251.

[ICKnowledge02] IC Knowledge, “Defect density trends,” 2002, www.icknowledge.com/trends/defects.pdf.
[IEEE1076-08] IEEE Standard 1076-2008 (Revision of IEEE Standard 1076-2002), VHDL Language Reference

Manual, 2009.
[IEEE1149.1-01] IEEE Standard 1149.1-2001, Test Access Port and Boundary-Scan Architecture, 2001.

References 797

[IEEE1364-01] IEEE Standard 1364-2001, Verilog Hardware Description Language, 2001.
[IEEE 1800-2009] IEEE Standard 1800-2009, System Verilog-Unified Hardware Design, Specification, and Verification

Language, 2009.
[Intel10] Intel Corporation, Microprocessor Quick Reference Guide, www.intel.com/pressroom/kits/

quickreffam.htm, 2010.
[Isaac08] R. Isaac, “The remarkable story of the DRAM industry,” IEEE SSCS News, Winter 2008,

pp. 45–49.
[Ishihara04] F. Ishihara, F. Sheikh, and B. Nikolic, “Level conversion for dual-supply systems,” IEEE Trans.

VLSI, vol. 12, no. 2, Feb. 2004, pp. 185–195.
[Ismail99] Y. Ismail, E. Friedman, and J. Neves, “Figures of merit to characterize the importance of on-chip

interconnect,” IEEE Trans. VLSI, vol. 7, no. 4, Dec. 1999, pp. 442–449.
[Itoh96] K. Itoh, A. Fridi, A. Bellaouar, and M. Elmasry, “A deep sub-V, single power-supply SRAM cell

with multi-Vt, boosted storage node and dynamic load,” Proc. VLSI Circuits Symp., Jun. 1996, pp.
132–133.

[Itoh97] K. Itoh, Y. Nakagome, S. Kimura, and T. Watanabe, “Limitations and challenges of multigigabit
DRAM chip design,” JSSC, vol. 32, no. 5, May 1997, pp. 624–634.

[Itoh01] N. Itoh, Y. Naemura, H. Makino, Y. Nakase, T. Yoshihara, and Y. Horiba, “A 600-MHz 54×54-bit
multiplier with rectangular-styled Wallace tree,” JSSC, vol. 36, no. 2, Feb. 2001, pp. 249–257.

[Itoh01k] K. Itoh, VLSI Memory Chip Design, Berlin: Springer-Verlag, 2001.
[Itoh01n] N. Itoh et al., “A 600-MHz 54 × 54-bit multiplier with rectangular-styled Wallace tree,” JSSC,

vol. 36, no. 2, Feb. 2001, pp. 249–257.
[Itoh09] K. Itoh, “Adaptive circuits for the 0.5-V nanoscale CMOS era,” Proc. Intl. Solid-State Circuits Conf.,

Feb. 2009, pp. 14–20.
[Jackson04] R. Jackson and S. Talwar, “High speed binary addition,” Proc. Asilomar Conf. Signals, Systems, and

Computers, Nov. 2004, pp. 1350–1353.
[Jacoboni77] C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta, “A review of some charge transport

properties of silicon,” Solid-State Electronics, vol. 20, 1977, pp. 77–89.
[Jayasumana91] A. Jayasumana, Y. Malaiya, and R. Rajsuman, “Design of CMOS circuits for stuck-open fault

testability,” JSSC, vol. 26, no. 1, Jan. 1991, pp. 58–61.
[Ji-ren87] Y. Ji-ren, I. Karlsson, and C. Svensson, “A true single-phase-clock dynamic CMOS circuit

technique,” JSSC, vol. SC-22, no. 5, Oct. 1987, pp. 899–901.
[Johnson88] M. Johnson, “A symmetric CMOS NOR gate for high-speed applications,” JSSC, vol. SC-23, no. 5,

Oct. 1988, pp. 1233–1236.
[Johnson91] B. Johnson, T. Quarles, A. Newton, D. Pederson, and A. Sangiovanni-Vincentelli, SPICE3 Version

3e User's Manual, UC Berkeley, Apr. 1991.
[Johnston96] A. Johnston, “The influence of VLSI technology evolution on radiation-induced latchup in space

systems,” IEEE Trans. Nuclear Science, vol. 43, no. 2, Apr. 1996, pp. 505–521.
[Josephson02] D. Josephson, “The manic depression of microprocessor debug,” Proc. Intl. Test Conf., 2002,

pp. 657–663.
[Jung01] S. Jung, S. Yoo, K. Kim, and S. Kang, “Skew-tolerant high-speed (STHS) domino logic,” Proc.

IEEE Intl. Symp. Circuits and Systems, 2001, pp. 154–157.
[Kahng08] A. Kahng and K. Samadi, “CMP fill synthesis: A survey of recent studies,” IEEE Trans. CAD,

vol. 27, no. 1, Jan. 2008, pp. 3–19.
[Kamon94] M. Kamon, J. Tsuk, and J. White, “FASTHENRY: a multipole-accelerated 3-D inductance

extraction program,” IEEE Trans. Microwave Theory and Techniques, vol. 42, no. 9, Sep. 1994,
pp. 1750–1758.

[Kanamoto07] T. Kanamoto et al., “Impact of well edge proximity effect on timing,” Proc. European Solid State
Device Research Conf., Sep. 2007, pp. 115–118.

References798

[Kanda02] K. Kanda, T. Miyazaki, M. Sik, H. Kawaguchi, and T. Sakurai, “Two orders of magnitude leakage
power reduction of low voltage SRAMs by row-by-row dynamic VDD control (RRDV) scheme,”
Proc. Intl. ASIC/SOC Conf., Sep. 2002, pp. 381–385.

[Kang03] S. Kang and Y. Leblebici, CMOS Digital Integrated Circuits, 3rd ed., Boston: McGraw Hill, 2003.
[Kanj06] R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and its application to the analysis of

SRAM designs in the presence of rare failure events,” Proc. Design Automation Conf., 2006,
pp. 69–72.

[Kanno07] Y. Kanno et al., “Hierarchical power distribution with power tree in dozens of power domains for
90-nm low-power multi-CPU SoCs,” JSSC, vol. 42, no. 1, Jan. 2007, pp. 74–83.

[Kantabutra91] V. Kantabutra, “Designing optimum carry-skip adders,” Proc. IEEE Symp. Computer Arithmetic,
1991, pp. 146–153.

[Kantabutra93] V. Kantabutra, “A recursive carry-lookahead/carry-select hybrid adder,” IEEE Trans. Computers,
vol. 42, no. 12, Dec. 1993, pp. 1495–1499.

[Kapur02] P. Kapur, J. McVittie, and K. Saraswat, “Technology and reliability constrained future copper
interconnects. I. Resistance modeling,” IEEE Trans. Electron Devices, vol. 49, no. 4, Apr. 2002,
pp. 590–597.

[Karnik01] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and S. Borkar, “Scaling trends of cosmic rays induced
soft errors in static latches beyond 0.18 m,” Symp. VLSI Circuits Digest Tech. Papers, 2001, pp. 61–62.

[Kavaleros06] J. Kavalieros et al., “Tri-gate transistor architecture with high-k gate dielectrics, metal gates and
strain engineering,” Proc. VLSI Technology Symp., 2006, pp. 50–51.

[Keating07] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power Methodology Manual, New
York: Springer, 2007.

[Keeth07] B. Keeth, J. Baker, B. Johnson, F. Lin, DRAM Circuit Design: Fundamental and High-Speed Topics,
IEEE Press, 2007.

[Keshavarzi01] A. Keshavarzi et al., “Effectiveness of reverse body bias for leakage control in scaled dual Vt CMOS
ICs,” Proc. Intl. Symp. Low Power Electronics and Design, 2001, pp. 207–212.

[Keyes70] R. Keyes, E. Harris, and K. Konnerth, “The role of low temperatures in the operation of logic
circuitry,” Proc. IEEE, vol. 58, no. 12, Dec. 1970, pp. 1914–1932.

[Keys75] R. Keyes, “The effect of randomness in the distribution of impurity atoms on FET thresholds,”
Applied Physics, 8, 1975, pp. 251–259.

[Khalil08] D. Khalil, M. Khellah, Nam-Sung Kim, Y. Ismail, T. Karnik, and V. De, “Accurate estimation of
SRAM dynamic stability,” IEEE Trans. VLSI, vol. 16, no. 12, Dec. 2008, pp. 1639–1647.

[Khare02] M. Khare et al., “A high performance 90nm SOI technology with 0.992 μm2 6T-SRAM cell,”
Proc. Intl. Electron Devices Meeting, 2002, pp. 407–410.

[Khellah06] M. Khellah et al., “Wordline & bitline pulsing schemes for improving SRAM cell stability in low-
Vcc 65nm CMOS designs,” Proc. VLSI Circuits Symp., 2006, pp. 9–10.

[Khellah07] M. Khellah et al., “A 256-Kb dual-VCC SRAM building block in 65-nm CMOS process with
actively clamped sleep transistor,” JSSC, vol. 42, no. 1, Jan. 2007, pp. 233–242.

[Khellah09] M. Khellah et al., “Process, temperature, and supply-noise tolerant 45 nm dense cache arrays with
diffusion-notch-free (DNF) 6T SRAM cells and dynamic multi-Vcc circuits,” JSSC, vol. 44, no. 4,
Apr. 2009, pp. 1199–1208.

[Kielkowski95] R. Kielkowski, SPICE: Practical Device Modeling, Boston: McGraw-Hill, 1995.
[Kilburn59] T. Kilburn, D. Edwards, and D. Aspinall, “Parallel addition in digital computers—a new fast ‘carry’

circuit,” Proc. IEE, vol. 106B, 1959, pp. 460–464.
[Kim00] J. Kim, Y. Jang, and H. Park, “CMOS sense amplifier-based flip-flop with two N-C2MOS output

latches,” Electronics Letters, vol. 36, no. 6, Mar. 16, 2000, pp. 498–500.
[Kim03] C. Kim, K. Roy, S. Hsu, A. Alvandpour, R. Krishnamurthy, and S. Borkar, “A process variation

compensating technique for sub-90 nm dynamic circuits,” Proc. VLSI Circuits Symp., Jun. 2003,
pp. 205–206.

References 799

[Kim03b] J. Kim, M. Horowitz, and Gu-Yeon Wei, “Design of CMOS adaptive-bandwidth PLL/DLLs: a
general approach,” IEEE Trans. Circuits & Systems, vol. 50, no. 11, Nov. 2003, pp. 860–869.

[Kim05] C. Kim, J. Kim, S. Mukhopadhyay, and K. Roy, “A forward body-biased low-leakage SRAM cache:
device, circuit and architecture considerations,” IEEE Trans. VLSI, vol. 13, no. 3, Mar. 2005, pp.
349–357.

[Kim07] J. Kim, K. Jones, and M. Horowitz, “Variable domain transformation for linear PAC analysis of
mixed-signal systems,” Proc. Intl. Conf. Computer-Aided Design, Nov. 2007, pp. 887–894.

[Kim09] T. Kim, J. Liu, and C. Kim, “A voltage scalable 0.26 V, 64 kb 8T SRAM with Vmin lowering
techniques and deep sleep mode,” JSSC, vol. 44, no. 6, Jun. 2009, pp. 1785–1795.

[Kinniment02] D. Kinniment and E. Chester, “Design of an on-chip random number generator using
metastability,” Proc. Intl. Solid-State Circuits Conf., Sep. 2002, pp. 595–598.

[Kio01] S. Kio, L. McMurchie, and C. Sechen, “Application of output prediction logic to differential
CMOS,” Proc. IEEE Computer Society Workshop on VLSI, 2001, pp. 57–65.

[Kitsukawa93] G. Kitsukawa et al., “256-Mb DRAM circuit technologies for file applications,” JSSC, vol. 28,
no. 11, Nov. 1993, pp. 1105–1113.

[Klass99] F. Klass et al., “A new family of semidynamic and dynamic flip-flops with embedded logic for high-
performance processors,” JSSC, vol. 34, no. 5, May 1999, pp. 712–716.

[Klaus98] J. Klaus, A. Ott, A. Dillon, and S. George, “Atomic layer controlled growth of Si3N4 films using
sequential surface reactions,” Surf. Sci., vol. 418, 1998, pp. L14–L19.

[Knebel98] D. Knebel et al., “Diagnosis and characterization of timing-related defects by time-dependent light
emission,” IEEE Intl. Test Conf., 1998, pp. 733–739.

[Knowles01] S. Knowles, “A family of adders,” Proc. IEEE Symp. Computer Arithmetic, 2001, pp. 277–284.
[Koenemann79] B. Koenemann, J. Mucha, and G. Zwiehoff, “Built-in logic block observation techniques,” Proc. Intl.

Test Conf., Oct. 1979, pp. 37–41.
[Koester08] S. Koester et al., “Wafer-level 3D integration technology,” IBM J. Research and Dev., vol. 52, no. 6,

Nov. 2008, pp. 583–597.
[Kogge73] P. Kogge and H. Stone, “A parallel algorithm for the efficient solution of a general class of recurrence

equations,” IEEE Trans. Computers, vol. C-22, no. 8, Aug. 1973, pp. 786–793.
[Koh01] M. Koh et al., “Limit of gate oxide thickness scaling in MOSFETs due to apparent threshold voltage

fluctuation induced by tunnel leakage current,” IEEE Trans. Electron Devices, vol. 48, no. 2, Feb.
2001, pp. 259–264.

[Konstadinidis09] G. Konstadinidis et al., “Architecture and physical implementation of a third generation 65 nm, 16
core, 32 thread chip-multithreading SPARC processor,” JSSC, vol. 44, no. 1, Jan. 2009, pp. 7–17.

[Kozu96] S. Kozu et al., “A 100 MHz 0.4W RISC processor with 200 MHz multiply-adder, using pulse-
register technique,” Proc. IEEE Intl. Solid-State Circuits Conf., 1996, pp. 140–141.

[Krambeck82] R. Krambeck, C. Lee, and H. Law, “High speed compact circuits with CMOS,” JSSC, vol. SC-17,
no. 3, Jun. 1982, pp. 614–619.

[Kuang05] J. Kuang et al., “A double-precision multiplier with fine-grained clock-gating support for a first-
generation CELL processor,” Proc. Intl. Solid-State Circuits Conf., Feb. 2005, pp. 378–605.

[Kulkarni04] S. Kulkarni and D. Sylvester, “High performance level conversion for dual VDD design,” IEEE
Trans. VLSI, vol. 12, no. 9, Sep. 2004, pp. 926–936.

[Kumar94] R. Kumar, “ACMOS: an adaptive CMOS high performance logic,” Electronics Letters, vol. 30, no. 6,
Mar. 1994, pp. 483–484.

[Kumar01] R. Kumar, “Interconnect and noise immunity design for the Pentium 4 processor,” Intel Technology
Journal, vol. 5, no. 1, Q1 2001, pp. 1–12.

[Kumar06] R. Kumar and V. Kursun, “Reversed temperature-dependent propagation delay characteristics in
nanometer CMOS circuits,” IEEE Trans. Circuits & Systems, vol. 53, no. 10, Oct. 2006,
pp. 1078–1082.

References800

[Kumar09] R. Kumar and G. Hinton, “A family of 45nm IA processors,” Proc. Intl. Solid-State Circuits Conf.,
Feb. 2009, pp. 58–59.

[Kuo01] J. Kuo and S. Lin, Low-Voltage SOI CMOS VLSI Devices and Circuits, New York: Wiley Interscience,
2001.

[Kurd01] N. Kurd, J. Barkarullah, R. Dizon, T. Fletcher, and P. Madland, “A multigigahertz clocking scheme
for the Pentium 4 microprocessor,” JSSC, vol. 36, no. 11, Nov. 2001, pp. 1647–1653.

[Kuroda96] T. Kuroda et al., “A 0.9-V, 150-MHz, 10-mW, 4 mm2, 2-D discrete cosine transform core processor
with variable threshold-voltage (VT) scheme,” JSSC, vol. 31, no. 11, Nov. 1996, pp. 1770–1779.

[Kwong06] J. Kwong and A. Chandrakasan, “Variation-driven device sizing for minimum energy sub-threshold
circuits,” Proc. Intl. Symp. Low Power Electronics & Design, Oct. 2006, pp. 8–13.

[Kwong09] J. Kwong, Y. Ramadass, N. Verma, and A. Chandrakasan, “A 65 nm sub-Vt microcontroller with
integrated SRAM and switched capacitor DC-DC converter,” JSSC, vol. 44, no. 1, Jan. 2009, pp.
115–126.

[Kynett88] V. Kynett et al., “An in-system reprogrammable 256k CMOS flash memory,” Proc. Intl. Solid-State
Circuits Conf., Feb. 1988, pp. 132–133, 330.

[Ladner80] R. Ladner and M. Fischer, “Parallel prefix computation,” J. ACM, vol. 27, no. 4, Oct. 1980,
pp. 831–838.

[Lai97] F. Lai and W. Hwang, “Design and implementation of differential cascode voltage switch with pass-
gate (DCVSPG) logic for high-performance digital systems,” JSSC, vol. 32, no. 4, Apr. 1997,
pp. 563–573.

[LaPedus07] M. LaPedus, “Costs cast ICs into Darwinian struggle,” EE Times, Mar. 30, 2007.
[Larsson94] P. Larsson and C. Svensson, “Impact of clock slope on true single phase clocked (TSPC) CMOS

circuits,” JSSC, vol. 29, no. 6, Jun. 1994, pp. 723–726.
[Lasserre99] F. Lasserre et al., “Laser beam backside probing of CMOS integrated circuits,” Microelectronics and

Reliability, Jun. 1999, vol. 39, no. 6, pp. 957–961.
[Le06] T. Le, J. Han, A. von Jouanne, K. Mayaram, and T. Fiez, “Piezoelectric micro-power generation

interface circuits,” JSSC, vol. 41, no. 6, Jun. 2006, pp. 1411–1420.
[Leblebici96] Y. Leblebici, “Design considerations for CMOS digital circuits with improved hot-carrier

reliability,” JSSC, vol. 31, no. 7, Jul. 1996, pp. 1014–1024.
[Lee86] C. Lee and E. Szeto, “Zipper CMOS,” IEEE Circuits and Systems Magazine, May 1986, pp. 10–16.
[Lee92] K. Lee and M. Breuer, “Design and test rules for CMOS circuits to facilitate IDDQ testing of

bridging faults,” IEEE Trans. On CAD of Integrated circuits, vol. 11, no. 5, May 1992, pp. 659–670.
[Lee98] M. Lee, “A multilevel parasitic interconnect capacitance modeling and extraction for reliable VLSI

on-chip clock delay evaluation,” JSSC, vol. 33, no. 4, Apr. 1998, pp. 657–661.
[Lee03] D. Lee, W. Kwong, D. Blaauw, and D. Sylvester, “Analysis and minimization techniques for total

leakage considering gate oxide leakage,” Proc. Design Automation Conf., Jun. 2003, pp. 175–180.
[Lee05] W. Lee et al., “High performance 65 nm SOI technology with enhanced transistor strain and

advanced-low-K BEOL,” Proc. Intl. Electron Devices Meeting, Dec. 2005.
[Lee06] L. Lee, D. Weinlader, and C.K. Yang, “A sub-10-ps multiphase sampling system using redundancy,”

JSSC, vol. 41, no. 1, Jan. 2006, pp. 265–273.
[Lehman61] M. Lehman and N. Burla, “Skip technique for high-speed carry-propagation in binary arithmetic

units,” IRE Trans. Electronic Computers, vol. 10, Dec. 1961, pp. 691–698.
[Leighton92] F. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays; Trees; Hypercubes, San

Francisco: Morgan Kaufmann, 1992.
[Leon07] A. Leon, K. Tam, J. Shin, D. Weisner, and F. Schumacher, “A power-efficient high-throughput 32-

thread SPARC processor,” JSSC, vol. 42, no. 1, Jan. 2007, pp. 7–16.
[Lhermet08] H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, and M. Rosset, “Efficient power

management circuit: from thermal energy harvesting to above-IC microbattery energy storage,”
JSSC, vol. 43, no. 1, Jan. 2008, pp. 246–255.

References 801

[Liew90] B. Liew, N. Cheung, and C. Hu, “Projecting interconnect electromigration lifetime for arbitrary
current waveforms,” IEEE Trans. Electron Devices, vol. 37, no. 5, May 1990, pp. 1343–1351.

[Lih07] Y. Lih, N. Tzartzanis, and W. Walker, “A leakage current replica keeper for dynamic circuits,” JSSC,
vol. 42, no. 1, Jan. 2007, pp. 48–55.

[Lim72] R. Lim, “A barrel switch design,” Computer Design, Aug. 1972, pp. 76–78.
[Lim05] D. Lim, J. Lee, B. Gassend, G. Suh, M. van Dijk, and S. Devadas, “Extracting secret keys from

integrated circuits,” IEEE Trans. VLSI, vol. 13, no. 10, Oct. 2005, pp. 1200–1205.
[Lin83] S. Lin and D. Costello, Error Control Coding: Fundamentals and Applications, Upper Saddle River,

NJ: Prentice Hall, 1983.
[Linderman04] M. Linderman, D. Harris, and D. Diaz, “Bounding bus delay and noise effects of on-chip

inductance,” Proc. Workshop on Signal Propagation on Interconnects, May 2004, pp. 167–170.
[Ling81] H. Ling, “High-speed binary adder,” IBM J. Research and Development, vol. 25, no. 3, May 1981,

pp. 156–166.
[Liu01] X. Liu, C. Lee, C. Zhou, and J. Han, “Carbon nanotube field-effect inverters,” Appl. Phys. Letters,

vol. 79, no. 20, Nov. 2001, pp. 3329–3331.
[Lofstrom00] K. Lofstrom, W. Daasch, and D. Taylor, “IC identification circuit using device mismatch,” Proc. Intl.

Solid-State Circuits Conf., 2000, pp. 372–373.
[Lohstroh79] J. Lohstroh, “Static and dynamic noise margins of logic circuits,” JSSC, vol. SC-14, no. 3, Jun. 1979,

pp. 591–598.
[Lohstroh83] J. Lohstroh, E. Seevinck, and J. de Groot, “Worst-case static noise margin criteria for logic circuits

and their mathematical equivalence,” JSSC, vol. SC-18, no. 6, Dec. 1983, pp. 803–807.
[Lu88] S. Lu, “Implementation of iterative networks with CMOS differential logic,” JSSC, vol. 23, no. 4,

Aug. 1988, pp. 1013–1017.
[Lu91] S. Lu and M. Ercegovac, “Evaluation of two-summand adders implemented in ECDL CMOS

differential logic,” JSSC, vol. 26, no. 8, Aug. 1991, pp. 1152–1160.
[Lu93] F. Lu, H. Samueli, J. Yuan, and C. Svensson, “A 700 MHz 24-b pipelined accumulator in 1.2-μm

CMOS for application as a numerically controlled oscillator,” JSSC, vol. 28, no. 8, Aug. 1993,
pp. 878–886.

[Lu93b] F. Lu and H. Samueli, “A 200-MHz CMOS pipelined multiplier-accumulator using a quasi-
domino dynamic full-adder cell design,” JSSC, vol. 28, no. 2, Feb. 1993, pp. 123–132.

[Lu08] S. Lu, S. Hsu, and D. Somasekhar, “Memory arrays circuits for computer architects,” IEEE Micro
Tutorial, 2008.

[Lynch92] T. Lynch and E. Swartzlander, “A spanning tree carry lookahead adder,” IEEE Trans. Computers,
vol. 41, no. 8, Aug. 1992, pp. 931–939.

[Lyon87] R. Lyon and R. Schediwy, “CMOS static memory with a new four-transistor memory cell,” Proc.
Advanced Research in VLSI, Mar. 1987, pp. 111–132.

[Lyons62] R. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to improve computer
reliability,” IBM Journal, Apr. 1962, pp. 200–209.

[Ma94] S. Ma and P. Franzon, “Energy control and accurate delay estimation in the design of CMOS
buffers,” JSSC, vol. 29, no. 9, Sep. 1994, pp. 1150–1153.

[Mack08] C. Mack, “Seeing double,” IEEE Spectrum, vol. 45, no. 11, Nov. 2008, pp. 46–51.
[MacSorley61] O. MacSorley, “High-Speed arithmetic in binary computers,” Proc. IRE, vol. 49, pt. 1, Jan. 1961,

pp. 67–91.
[Mahalingam85] M. Mahalingam, “Thermal management in semiconductor device packages,” Proc. IEEE Custom

Integrated Circuits Conf., 1985, pp. 46–49.
[Mai05] K. Mai et al., “Architecture and circuit techniques for a 1.1-GHz 16-kb reconfigurable memory in

0.18-μm CMOS,” JSSC, vol. 40, no. 1, Jan. 2005, pp. 261–275.
[Maier97] C. Maier et al., “A 533-MHz BiCMOS superscalar RISC microprocessor,” JSSC, vol. 32, no. 11,

Nov. 1997, pp. 1625–1634.

References802

[Majerski67] S. Majerski, “On determination of optimal distributions of carry skips in adders,” IEEE Trans.
Electronic Computers, vol. EC-16, no. 1, 1967, pp. 45–58.

[Maksimovic′ 00] D. Maksimovic′, V. Oklobdzija, B. Nikolic, and K. Current, “Clocked CMOS adiabatic logic with
integrated single-phase power-clock supply,” IEEE Trans. VLSI, vol. 8, no. 4, Aug. 2000,
pp. 460–463.

[Maluf04] N. Maluf and K. Williams, An Introduction to Microelectromechanical Systems, 2nd ed., Norwood,
MA: Artech House, 2004.

[Maneatis03] J. Maneatis, I. McClatchie, J. Maxey, and M. Shankaradas, “Self-biased high-bandwidth low-jitter
1-to-4096 multiplier clock generator PLL,” JSSC, vol. 38, no. 11, Nov. 2003, pp. 1795–1803.

[Markovic04] D. Markovic, V. Stojanovic, B. Nikolic, M. Horowitz, and R. Brodersen, “Methods for true energy-
performance optimization,” JSSC, vol. 39, no. 8, Aug. 2004, pp. 1282–1293.

[Masuoka84] F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, and S. Tanaka, “A new flash E2PROM cell using
triple polysilicon technology,” Proc. Intl. Electron Devices Meeting, 1984, pp. 464–467.

[Masuoka87] F. Masuoka, M. Momodomi, Y. Iwata, and R. Shirota, “New ultra high density EPROM and flash
EEPROM with NAND structure cell,” Proc. Intl. Electron Devices Meeting, 1987, pp. 552–555.

[Mathew03] S. Mathew, M. Anders, R. Krishnamurthy, and S. Borkar, “A 4-GHz 130-nm address generation
unit with 32-bit sparse-tree adder core,” JSSC, vol. 38, no. 5, May 2003, pp. 689–695.

[Mathew05] S. Mathew, M. Anders, B. Bloechel, Trang Nguyen, R. Krishnamurthy, and S. Borkar, “A 4-GHz
300-mW 64-bit integer execution ALU with dual supply voltages in 90-nm CMOS,” JSSC, vol. 40,
no. 1, Jan. 2005, pp. 44–51.

[Matsui94] M. Matsui et al., “A 200 MHz 13 mm2 2-D DCT macrocell using sense-amplifier pipeline flip-flop
scheme,” JSSC, vol. 29, no. 12, Dec. 1994, pp. 1482–1490.

[May79] T. May and M. Woods, “Alpha-particle-induced soft errors in dynamic memories,” IEEE Trans.
Electron Devices, vol. ED-26, no. 1, Jan. 1979, pp. 2–9.

[McGowen06] R. McGowen et al., “Power and temperature control on a 90-nm Itanium family processor,” JSSC,
vol. 41, no. 1, Jan. 2006, pp. 229–237.

[McMurchie00] L. McMurchie, S. Kio, G. Yee, T. Thorp, and C. Sechen, “Output prediction logic: a high-
performance CMOS design technique,” Proc. Intl. Conf. Computer Design, 2000, pp. 247–254.

[Mead80] C. Mead and L. Conway, Introduction to VLSI Systems, Reading, MA: Addison-Wesley, 1980.
[Mears96] J. Mears, “Transmission line RAPIDDESIGNER operation and applications guide,” National

Semiconductor Application Note 905, May 1996, www.national.com/an/AN/AN-905.pdf.

[Mehta99] G. Mehta, D. Harris, and D. Singh, “Pulsed Domino Latches,” US Patent 5,880,608, 1999.
[Meier99] N. Meier, T. Marieb, P. Flinn, R. Gleixner, and J. Bravman, “In-situ studies of electromigration

voiding in passivated copper interconnects,” AIP Conf. Proc. 491, Fifth Intl. Workshop on Stress-
Induced Phenomena in Metallization, Jun. 1999, p. 180.

[Meijs84] N. van der Meijs, and J. Fokkema, “VLSI circuit reconstruction from mask topology,” Integration,
The VLSI Journal, vol. 2, no. 2, Jun. 1984, pp. 85–119.

[Meindl00] J. Meindl and J. Davis, “The fundamental limit on binary switching energy for terascale integration
(TSI),” JSSC, vol. 35, no. 10, Oct. 2000, pp. 1515–1516.

[Meng08] X. Meng, R. Saleh, and K. Arabi, “Layout of decoupling capacitors in IP blocks for 90-nm CMOS,”
IEEE Trans. VLSI, vol. 16, no. 11, Nov. 2008, pp. 1581–1588.

[Merchant01] S. Merchant, S. Kang, M. Sanganeria, B. van Schravendijk, and T. Mountsier, “Copper
interconnects for semiconductor devices,” JOM: Journal of the Minerals, Metals, and Materials Society,
vol. 53, no. 6, Jun. 2001, pp. 43–48

[Messerschmitt90] D. Messerschmitt, “Synchronization in digital system design,” IEEE J. Selected Areas
Communications, vol. 8, no. 8, Oct. 1990, pp. 1404–1419.

[Min06] K. Min, H. Choi, H. Choi, H. Kawaguchi, and T. Sakurai, “Leakage-suppressed clock-gating
circuit with Zigzag Super Cut-off CMOS (ZSCCMOS) for leakage-dominant sub-70-nm and sub-
1-V-VDD LSIs,” IEEE Trans. VLSI, vol. 14, no. 4, Apr. 2006, pp. 430–435.

References 803

[Misaka96] A. Misaka, A. Goda, K. Matsuoka, H. Umimoto, and S. Odanaka, “A statistical critical dimension
control at CMOS cell level,” Proc. Intl. Electron Devices Meeting, Dec. 1996, pp. 631–634.

[Mistry07] K. Mistry et al., “A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu
interconnect layers, 193nm dry patterning, and 100% Pb-free packaging,” Proc. Intl. Electron Devices
Meeting, Dec. 2007, pp. 247–250.

[Mitra05] S. Mitra, T. Karnik, N. Seifert, and Ming Zhang, “Logic soft errors in sub-65nm technologies
design and CAD challenges,” Proc. Design Automation Conf., Jun. 2005, pp. 2–4.

[Mizuno94] T. Mizuno, J. Okumtura, and A. Toriumi, “Experimental study of threshold voltage fluctuation due
to statistical variation of chanel dopant number in MOSFET’s,” IEEE Trans. Electron Devices, vol.
41, no. 11, Nov. 1994, pp. 2216–2221.

[Moazzami90] R. Moazzami and C. Hu, “Projecting gate oxide reliability and optimizing reliability screens,” IEEE
Trans. Electron Devices, vol. 37, no. 7, Jul. 1990, pp. 1643–1650.

[Monsieur01] F. Monsieur, E. Vincent, D. Roy, S. Bruyre, G. Pananakakis, and G. Ghibaudo, “Time to
breakdown and voltage to breakdown modeling for ultra-thin oxides (Tox<32Å),” Proc. Intl.
Integrated Reliability Workshop, 2001, pp. 20–25.

[Montanaro96] J. Montanaro et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor,” JSSC, vol. 31, no.
11, Nov. 1996, pp. 1703–1714.

[Montoye90] R. Montoye, P. Cook, E. Hokenek, and R. Havreluk, “An 18 ns 56-bit multiply-adder circuit,”
Proc. Intl. Solid-State Circuits Conf., Feb. 1990, pp. 46–47.

[Moon08] P. Moon et al., “Process and electrical results for the on-die interconnect stack for Intel's 45nm
process generation,” Intel Technology Journal, vol. 12, no. 2, Jun. 2008, pp. 87–92.

[Moore65] G. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, Apr.
1965.

[Moore03] G. Moore, “No exponential is forever: but ‘forever’ can be delayed!” Proc. IEEE Intl. Solid-State
Circuits Conf., 2003, pp. 1–19.

[Morgan59] C. Morgan and D. Jarvis, “Transistor logic using current switching routing techniques and its
application to a fast carry-propagation adder,” Proc. IEE, vol. 106B, 1959, pp. 467–468.

[Morgenshtein09] A. Morgenshtein, E. Friedman, R. Ginosar, and A. Kolodny, “Unified logical effort—a method for
delay evaluation and minimization in logic paths with RC interconnect,” to appear in IEEE Trans.
VLSI, 2010.

[Mori91] J. Mori et al., “A 10 ns 54×54 b parallel structured full array multiplier with 0.5 μm CMOS
technology,” JSSC, vol. 26, no. 4, Apr. 1991, pp. 600–606.

[Morita06] Y. Morita et al., “A Vth-variation-tolerant SRAM with 0.3-V minimum operation voltage for
memory-rich SoC under DVS environment,” Proc. VLSI Circuits Symp., 2006, pp. 13–14.

[Morrison61] P. Morrison and E. Morrison, eds., Charles Babbage: On the Principles and Development of the
Calculator, New York: Dover, 1961.

[Morton99] S. Morton, “On-chip inductance issues in multiconductor systems,” Proc. Design Automation Conf.,
1999, pp. 921–926.

[Mou90] Z. Mou and F. Jutand, “A class of close-to-optimum adder trees allowing regular and compact
layout,” Proc. IEEE Intl. Conf. on Computer Design, 1990, pp. 251–254.

[Mukhopadhyay03] S. Mukhopadhyay, C. Neau, R. Cakici, A. Agarwal, C. Kim, and K. Roy, “Gate leakage reduction
for scaled devices using transistor stacking,” IEEE Trans. VLSI, vol. 11, no. 4, Aug. 2003, pp. 716–
730.

[Mukhopadhyay05] S. Mukhopadhyay, A. Raychowdhury, and K. Roy, “Accurate estimation of total leakage in
nanometer-scale bulk CMOS circuits based on device geometry and doping profile,” IEEE Trans.
CAD, vol. 24, no. 3, Mar. 2005, pp. 363–381.

[Mule02] A. Mule, E. Glytsis, T. Gaylord, and J. Meindl, “Electrical and optical clock distribution networks
for gigascale microprocessors,” IEEE Trans. VLSI, vol. 10, no. 5, Oct. 2002, pp. 582–594.

[Muller03] R. Muller, T. Kamins, and M. Chan, Device Electronics for Integrated Circuits, 3rd ed., New York:
John Wiley & Sons, 2003.

References804

[Muller08] M. Muller, “Embedded processing at the heart of life and style,” Proc. Intl. Solid-State Circuits Conf.,
Feb. 2008, pp. 32–37.

[Murabayashi96] F. Murabayashi et al., “2.5 V CMOS circuit techniques for a 200 MHz superscalar RISC processor,”
JSSC, vol. 31, no. 7, Jul. 1996, pp. 972–980.

[Mutoh95] S. Mutoh et al., “1-V power supply high-speed digital circuit technology with multithreshold-
voltage CMOS,” JSSC, vol. 30, no. 8, Aug. 1995, pp. 847–854.

[Mutoh99] S. Mutoh, S. Shigematsu, Y. Gotoh, and S. Konaka, “Design method of MTCMOS power switch
for low-voltage high-speed LSIs,” Proc. Design Automation Conf., Jan. 1999, pp. 113–116.

[Myny09] K. Myny et al., “A 128b organic RFID transponder chip, including Manchester encoding and
ALOHA anti-collision protocol, operating with a data rate of 1529b/s,” Proc. Intl. Solid-State
Circuits Conf., Feb. 2009, pp. 206–207.

[Na02] M. Na, E. Nowak, W. Haensch, and J. Cai, “The effective drive current in CMOS inverters,”
Proc. Intl. Electron Devices Meeting, 2002, pp. 121–124.

[Nabors92] K. Nabors, S. Kim, and J. White, “Fast capacitance extraction of general three-dimensional
structures,” IEEE Trans. Microwave Theory and Techniques, vol. 40, no. 7, Jul. 1992, pp. 1496–1506.

[Nadig77] H. Nadig, “Signature analysis—concepts, examples and guidelines,” Hewlett Packard Journal, vol. 28,
no. 9, May 1977, pp. 15–21.

[Naffziger96] S. Naffziger, “A subnanosecond 0.5μm 64b adder design,” Proc. IEEE Intl. Solid-State Circuits Conf.,
1996, pp. 362–363.

[Naffziger98] S. Naffziger, “High speed addition using Ling's equations and dynamic CMOS logic,” US Patent
5,719,803, 1998.

[Naffziger02] S. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedlinger, T. Sullivan, and T. Grutkowski, “The
implementation of the Itanium 2 microprocessor,” JSSC, vol. 37, no. 11, Nov. 2002, pp. 1448–1460.

[Naffziger06] S. Naffziger et al., “The implementation of a 2-core, multi-threaded Itanium family processor,”
JSSC, vol. 41, no. 1, Jan. 2006, pp. 197–209.

[Naffziger06b] S. Naffziger, “High-performance processors in a power-limited world,” Proc. VLSI Circuits Symp.,
2006, pp. 93–97.

[Nagel75] L. Nagel, SPICE2: a computer program to simulate semiconductor circuits, Memo ERL-M520, Dept. of
Electrical Engineering and Computer Science, University of California at Berkeley, May 9, 1975.

[Najm07] F. Najm, N. Menezes, and I. Ferzli, “A yield model for integrated circuits and its application to
statistical timing analysis,” IEEE Trans. CAD, vol. 26, no. 3, Mar. 2007, pp. 574–591.

[Nakagome03] Y. Nakagome, M. Horiguchi, T. Kawahara, and K. Itoh, “Review and future prospects of low-
voltage RAM circuits,” IBM J. Research and Dev., vol. 47, no. 5/6, Sep./Nov. 2003, pp. 525–552.

[Nalamalpu02] A. Nalamalpu, S. Srinivasan, and W. Burleson, “Boosters for driving long on-chip interconnects—
design issues, interconnect synthesis, and comparison with repeaters,” IEEE Trans. Computer-Aided
Design, vol. 21, no. 1, Jan. 2002, pp. 50–62.

[Nambu98] H. Nambu et al., “A 1.8-ns access, 550-MHz, 4.5-Mb CMOS SRAM,” JSSC, vol. 33, no. 11, Nov.
1998, pp. 1650–1658.

[Narasimha06] S. Narasimha et al., “High performance 45-nm SOI technology with enhanced strain, porous low-k
BEOL, and immersion lithography,” Proc. Intl. Electron Devices Meeting, Dec. 2006, pp. 1–4.

[Narayanan96] V. Narayanan, B. Chappell, and B. Fleischer, “Static timing analysis for self-resetting circuits,”
Proc. Intl. Conf. Computer-Aided Design, 1996, pp. 119–126.

[Narendra99] S. Narendra, D. Antoniadis, and V. De, “Impact of using adaptive body bias to compensate die-to-
die Vt variation on within-die Vt variation,” Proc. Intl. Symp. Low Power Electronics and Design, 1999,
pp. 229–232.

[Narendra01] S. Narendra, S. Borkar, V. De, D. Antoniadis, and A. Chandrakasan, “Scaling of stack effect and its
application for leakage reduction,” Proc. Intl. Symp. Low Power Electronics and Design, 2001,
pp. 195–200.

References 805

[Narendra03] S. Narendra, A. Keshavarzi, B. Bloechel, S. Borkar, and V. De, “Forward body bias for
microprocessors in 130-nm technology generation and beyond,” JSSC, vol. 38, no. 5, May 2003,
pp. 696–701.

[Narendra06] S. Narendra and A. Chandrakasan, Leakage in Nanometer CMOS Technologies, New York: Springer,
2006.

[Natarajan08] S. Natarajan et al., “A 32 nm logic technology featuring 2nd-generation high-k + metal-gate
transistors, enhanced channel strain and 0.171 μm2 SRAM cell size in a 291 Mb array,” Proc. Intl.
Electron Devices Meeting, Dec. 2008, pp. 1–3.

[National08] National Semiconductor, LVDS Owner's Manual, 4th ed., 2008, www.national.com/LVDS.
[Nawathe08] U. Nawathe, M. Hassan, K. Yen, A. Kumar, A. Ramachandran, and D. Greenhill, “Implementation

of an 8-core, 64-thread, power-efficient SPARC server on a chip,” JSSC, vol. 43, no. 1, Jan. 2008,
pp. 6–20.

[Needham98] W. Needham, C. Prunty, and E. Yeoh, “High volume microprocessor test escapes, an analysis of
defects our tests are missing,” Proc. Intl. Test Conf., 1998, pp. 25–34.

[Ng96] P. Ng, P. Balsara, and D. Steiss, “Performance of CMOS differential circuits,” JSSC, vol. 31, no. 6,
Jun. 1996, pp. 841–846.

[Nii04] K. Nii et al., “A 90-nm low-power 32-kB embedded SRAM with gate leakage suppression circuit for
mobile applications,” JSSC, vol. 39, no. 4, Apr. 2004, pp. 684–693.

[Nikolic' 00] B. Nikolic' , V. Oklobdzija, V. Stojanovic' , W. Jia, J. Chiu, and M. Leung, “Improved sense-amplifier-
based flip-flop: design and measurements,” JSSC, vol. 35, no. 6, Jun. 2000, pp. 876–884.

[NIST02] National Institute of Standards and Technology, “Security requirements for cryptographic modules,”
FIPS 140-2, 2001.

[Noguchi07] K. Noguchi and M. Nagata, “An on-chip multichannel waveform monitor for diagnosis of systems-
on-a-chip integration,” IEEE Trans. VLSI, vol. 15, no. 10, Oct. 2007, pp. 1101–1110.

[Noice83] D. Noice, A clocking discipline for two-phase digital integrated circuits, Stanford University Technical
Report, Jan. 1983.

[Northrop99] G. Northrop et al., “609 MHz G5 S/399 microprocessor,” Proc. Intl. Solid-State Circuits Conf., 1999,
pp. 88–89.

[Nose00a] K. Nose and T. Sakurai, “Analysis and future trend of short-circuit power,” IEEE Trans. CAD, vol.
19, no. 9, Sep. 2000, pp. 1023–1030.

[Nose00b] K. Nose, Soo-Ik Chae, and T. Sakurai, “Voltage dependent gate capacitance and its impact in
estimating power and delay of CMOS digital circuits with low supply voltage,” Proc. Intl. Symp. Low
Power Electronics & Design, 2000, pp. 228–230.

[Nose00c] K. Nose and T. Sakurai, “Optimization of VDD and VTH for low-power and high-speed
applications,” Proc. Design Automation Conf., 2000, pp. 469–474.

[Nose06] K. Nose, M. Kajita, and M. Mizuno, “A 1ps-resolution jitter-measurement macro using interpolated
jitter oversampling,” Proc. Intl. Solid-State Circuits Conf., Feb. 2006, pp. 2112–2121.

[Nowka98] K. Nowka and T. Galambos, “Circuit design techniques for a gigahertz integer microprocessor,”
Proc. Intl. Conf. Computer Design, 1998, pp. 11–16.

[Oh06] H. Oh et al., “A fully pipelined single-precision floating-point unit in the synergistic processor
element of a CELL processor,” JSSC, vol. 41, no. 4, Apr. 2006, pp. 759–771.

[Ohbayashi07] S. Ohbayashi et al., “A 65-nm SoC embedded 6T-SRAM designed for manufacturability with read
and write operation stabilizing circuits,” JSSC, vol. 42, no. 4, Apr. 2007, pp. 820–829.

[Ohkubo95] N. Ohkubo et al., “A 4.4 ns CMOS 54 × 54-b multiplier using pass-transistor multiplexer,” JSSC,
vol. 30, no. 3, Mar. 1995, pp. 251–257.

[Oklobdzija96] V. Oklobdzija, D. Villeger, and S. Liu, “A method for speed optimized partial product reduction and
generation of fast parallel multipliers using an algorithmic approach ,” IEEE Trans. Computers, vol.
45, no. 3, Mar. 1996, pp. 294–306.

References806

[Oklobdzija85] V. Oklobdzija and E. Barnes, “Some optimal schemes for ALU implementation in VLSI
technology,” Proc. Computer Arithmetic Symp., 1985, pp. 137–143.

[Oklobdzija86] V. Oklobdzija and R. Montoye, “Design-performancce trade-offs in CMOS-domino logic,” JSSC,
vol. SC-21, no. 2, April 1986, pp. 304–309.

[Oklobdzija05] V. Oklobdzija, B. Zeydel, H. Dao, S. Mathew, and R. Krishnamurthy, “Comparison of high-
performance VLSI adders in the energy-delay space,” IEEE Trans. VLSI, vol. 13, no. 6, Jun. 2005,
pp. 754–758.

[Ortiz-Conde02] A. Ortiz-Conde, F. Sánchez, J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, “A review of recent
MOSFET threshold voltage extraction methods,” Microelectronics Reliability, vol. 42, 2002,
pp. 583–596.

[Osada01] K. Osada et al., “Universal-VDD 0.65-2.0-V 32-kB cache using a voltage-adapted timing-generation
scheme and a lithographically symmetrical cell,” JSSC, vol. 36, no. 11, Nov. 2001, pp. 1738–1744.

[Osada04] K. Osada, K. Yamaguchi, Y. Saitoh, and T. Kawahara, “SRAM immunity to cosmic-ray-induced
multierrors based on analysis of an induced parasitic bipolar effect,” JSSC, vol. 39, no. 5, May 2004,
pp. 827–833.

[Osada06] K. Osada, “Reviews and prospects of nanoscale SRAMs,” Proc. Intl Conf. Integrated Circuit Design &
Tech., 2006, pp. 1–8.

[Pagiamtzis06] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (CAM) circuits and
architectures: a tutorial and survey,” JSSC, vol. 41, no. 3, Mar. 2006, pp. 712–727.

[Paik96] W. Paik, H. Ki, and S. Kim, “Push-pull pass-transistor logic family for low voltage and low power,”
Proc. 22nd European Solid-State Circuits Conf., 1996, pp. 116–119.

[Paik08] P. Paik, V. Pamula, and K. Chakrabarty, “Adaptive cooling of integrated circuits using digital
microfluidics,” IEEE Trans. VLSI, vol. 16, no. 4, Apr. 2008, pp. 432–443.

[Parameswar96] A. Parameswar, H. Hara, and T. Sakurai, “A swing restored pass-transistor logic-based multiply and
accumulate circuit for multimedia applications,” JSSC, vol. 31, no. 6, Jun. 1996, pp. 804–809.

[Paraskevopoulos87] D. Paraskevopoulos and C. Fey, “Studies in LSI technology economics III: design schedules for
application-specific integrated circuits,” JSSC, vol. SC-22, no. 2, Apr. 1987, pp. 223–229.

[Park00] J. Park, H. Ngo, J. Silberman, and S. Dhong, “470 ps 64-bit parallel binary adder,” Proc. VLSI
Circuits Symp., 2000, pp. 192–193.

[Parker03] K. Parker, The Boundary-Scan Handbook, Boston: Kluwer Academic Publishers, 2003.
[Partovi96] H. Partovi et al., “Flow-through latch and edge-triggered flip-flop hybrid elements,” Proc. IEEE

Intl. Solid-State Circuits Conf., 1996, pp. 138–139.
[Pasternak87] J. Pasternak, A. Shubat, and C. Salama, “CMOS differential pass-transistor logic design,” JSSC,

vol. SC-22, no. 2, Apr. 1987, pp. 216–222.
[Pasternak91] J. Pasternak and C. Salama, “Design of submicrometer CMOS differential pass-transistor logic

circuits,” JSSC, vol. 26, no. 9, Sep. 1991, pp. 1249–1258.
[Patil07] D. Patil, O. Azizi, M. Horowitz, R. Ho, and R. Ananthraman, “Robust energy-efficient adder

topologies,” Proc. Computer Arithmetic Symp., Jun. 2007, pp. 16–28.
[Patil09] N. Patil, Jie Deng, S. Mitra, and H. Wong, “Circuit-level performance benchmarking and scalability

analysis of carbon nanotube transistor circuits,” IEEE Trans. Nanotechnology, vol. 8, no. 1, Jan. 2009,
pp. 37–45.

[Patterson04] D. Patterson and J. Hennessy, Computer Organization and Design, 3rd ed., San Francisco, CA:
Morgan Kaufmann, 2004.

[Paul02] B. Paul and K. Roy. Testing cross-talk induced delay faults in static CMOS circuit through dynamic
timing analysis. Proc. Intl. Test Conf., Oct. 2002, pp. 384–390.

[Paul07] B. Paul, Kunhyuk Kang, H. Kufluoglu, M. Alam, and K. Roy, “Negative bias temperature instability:
estimation and design for improved reliability of nanoscale circuits,” IEEE Trans. CAD, vol. 26,
no. 4, Apr. 2007, pp. 743–751.

[Pedroni10] V. Pedroni, Circuit Design and Simulation with VHDL, 2nd ed., Cambridge, MA: MIT Press, 2010.

References 807

[Pelgrom89] M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching properties of MOS transistors,” JSSC, vol.
24, no. 5, Oct. 1989, pp. 1433–1440.

[Peng02] C. Peng et al., “A 90 nm generation copper dual damascene technology with ALD TaN barrier,”
Tech. Digest Intl. Electron Devices Meeting, Dec. 2002, pp. 603–606.

[Penney72] W. Penney and L. Lau, MOS Integrated Circuits, New York: Van Nostrand Reinhold, 1972.
[Perry05] D. Perry and H. Foster, Applied Formal Verification, New York: McGraw-Hill, 2005.
[Pertijs06] M. Pertijs and J. Huijsing, Precision Temperature Sensors in CMOS Technology, New York: Springer,

2006.
[Petegem94] W. van Petegem, B. Geeraerts, W. Sansen, and B. Graindourze, “Electrothermal simulation and

design of integrated circuits,” JSSC, vol. 29, no. 2, Feb. 1994, pp. 143–146.
[Pfennings85] L. Pfennings, W. Mol, J. Bastiens, and J. van Dijk, “Differential split-level CMOS logic for

subnanosecond speeds,” JSSC, vol. SC-20, no. 5, Oct. 1985, pp. 1050–1055.
[Pham06] D. Pham et al., “Overview of the architecture, circuit design, and physical implementation of a first-

generation cell processor,” JSSC, vol. 41, no. 1, Jan. 2006, pp. 179–196.
[Pihl98] J. Pihl, “Single-ended swing restoring pass transistor cells for logic synthesis and optimization,”

Proc. IEEE Intl. Symp. Circuits and Systems, vol. 2, 1998, pp. 41–44.
[Piña02] C. Piña, “Evolution of the MOSIS VLSI educational program,” Proc. Electronic Design, Test, and

Applications Workshop, 2002, pp. 187–191.
[Plass07] D. Plass and Y. Chan, “IBM POWER6 SRAM arrays,” IBM J. Research and Dev., vol. 51, no. 6,

Nov. 2007, pp. 747–756.
[Pollack99] F. Pollack, “New microarchitectural challenges in the coming generations of CMOS process

technologies,” Intl. Symp. Microarchitecture, Keynote address, 1999.
[Pretorius86] J. Pretorius, A. Shubat, and A. Salama, “Latched domino CMOS logic,” JSSC, vol. SC-21, no. 4,

Aug. 1986, pp. 514–522.
[Price95] D. Price, “Pentium FDIV flaw—lessons learned,” IEEE Micro, vol. 15, no. 2, Apr. 1995, pp. 86–88.
[Proakis08] J. Proakis and M. Salehi, Digital Communications, New York: McGraw Hill, 2008.
[Proebsting91] R. Proebsting, “Speed enhancement technique for CMOS circuits,” US Patent 4,985,643, 1991.
[Quach92] N. Quach and M. Flynn, “High-speed addition in CMOS,” IEEE Trans. Computers, vol. 41, no. 12,

Dec. 1992, pp. 1612–1615.
[Quader94] K. Quader, E. Minami, W. Huang, P. Ko, and C. Hu, “Hot-carrier-reliability design guidelines for

CMOS logic circuits,” JSSC, vol. 29, no. 3, Mar. 1994, pp. 253–262.
[Ramadass10] Y. Ramadass and A. Chandrakasan, “An efficient piezoelectric energy harvesting interface circuit

using a bias-flip rectifier and shared inductor,” JSSC, vol. 45, no. 1, Jan. 2010, pp. 189–204.
[Rao03] R. Rao, A. Srivastava, D. Blaauw, and D. Sylvester, “Statistical estimation of leakage current

considering inter- and intra-die process variation,” Proc. Intl. Symp. Low Power Electronics & Design,
Aug. 2003, pp. 84–89.

[Rao07] R. R. Rao, K. Chopra, D. Blaauw, and D. Sylvester, “Computing the soft error rate of a
combinational logic circuit using parameterized descriptors,” IEEE Trans. CAD, vol. 26, no. 3, Mar.
2007, pp. 468–479.

[Raychowdhury07] A. Raychowdhury and K. Roy, “Carbon nanotube electronics: design of high-performance and low-
power digital circuits,” IEEE Trans. Circuits & Systems, vol. 54, no. 11, Nov. 2007, pp. 2391–2401.

[Razavi03] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2003.
[Reddy02] V. Reddy et al., “Impact of negative bias temperature instability on digital circuit reliability,” Proc.

40th IEEE Intl. Reliability Physics Symp., 2002, pp. 248–254.
[Restle01] P. Restle et al., “A clock distribution network for microprocessors,” JSSC, vol. 36, no. 5, May 2001,

pp. 792–799.
[Restle98] P. Restle and A. Deutsch, “Designing the best clock distribution network,” Symp. VLSI Circuits

Digest Tech. Papers, 1998, pp. 2–5.

References808

[Riordan97] M. Riordan and L. Hoddeson, Crystal Fire: The Invention of the Transistor and the Birth of the
Information Age, New York: W. W. Norton & Co, 1998.

[Rizzolo07] R. Rizzolo, “IBM System z9 eFUSE applications and methodology,” IBM J. Research and Dev.,
vol. 51, no. 1/2, Jan./Mar. 2007, pp. 65–75.

[Rohrer05] N. Rohrer et al., “A 64-bit microprocessor in 130-nm and 90-nm technologies with power
management features,” JSSC, vol. 40, no. 1, Jan. 2005, pp. 19–27.

[Rotella02] F. Rotella, V. Blaschke, and D. Howard, “A broad-band scalable lumped-element inductor model
using analytic expressions to incorporate skin effect, substrate loss, and proximity effect,” Tech. Digest
Intl. Electron Devices Meeting, Dec. 2002, pp. 471–474.

[Roy03] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mechanisms and
leakage reduction techniques in deep-submicrometer CMOS circuits,” Proceedings of the IEEE,
vol. 91, no. 2, Feb. 2003, pp. 305–327.

[Ruehli73] A. Ruehli and P. Brennan, “Efficient capacitance calculations for three-dimensional multiconductor
systems,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-21, no. 2, Feb. 1973, pp. 76–82.

[Rusu00] S. Rusu and G. Singer, “The first IA-64 microprocessor,” JSSC, vol. 35, no. 11, Nov. 2000, pp.
1539–1544.

[Rusu03] S. Rusu, J. Stinson, S. Tam, J. Leung, H. Muljono, and B. Cherkauer, “A 1.5-GHz 130-nm Itanium
2 processor with 6-MB on-die L3 cache,” JSSC, vol. 38, no. 11, Nov. 2003, pp. 1887–1895.

[Rusu07] S. Rusu et al., “A 65-nm dual-core multithreaded Xeon processor with 16-MB L3 cache,” JSSC,
vol. 42, no. 1, Jan. 2007, pp. 17–25.

[Rusu10] S. Rusu et al., “A 45 nm 8-core Enterprise Xeon Processor,” JSSC, vol. 45, no. 1, Jan. 2010, pp. 7–14.
[Rzepka98] S. Rzepka, K. Banerjee, E. Meusel, and C. Hu, “Characterization of self-heating in advanced VLSI

interconnect lines based on thermal finite element simulation,” IEEE Trans. Components, Packaging,
and Manufacturing Technology—Part A, vol. 21, no. 3, Sep. 1998, pp. 406–411.

[Sah64] C. Sah, “Characteristics of the Metal-Oxide-Semiconductor Transistors,” IEEE Trans. Electron
Devices, ED-11, Jul. 1964, pp. 324–345.

[Saint02] C. Saint and J. Saint, IC Mask Design: Essential Layout Techniques, New York: McGraw-Hill, 2002.
[Sakran07] N. Sakran, M. Yuffe, M. Mehalel, J. Doweck, E. Knoll, and A. Kovacs, “The implementation of the

65nm dual-core 64b Merom processor,” Proc. Intl. Solid-State Circuits Conf., Feb. 2007, pp. 106–107,
590.

[Sakurai83] T. Sakurai, “Approximation of wiring delay in MOSFET LSI,” JSSC, vol. SC-18, no. 4, Aug. 1983,
pp. 418–426.

[Sakurai86] T. Sakurai, K. Nogami, M. Kakumu, and T. Iizuka, “Hot-carrier generation in submicrometer VLSI
environment,” JSSC, vol. SC-21, no. 1, Feb. 1986, pp. 187–192.

[Sakurai90] T. Sakurai and R. Newton, “Alpha-Power Law MOSFET Model and its Applications to CMOS
Inverter Delay and Other Formulas,” JSSC, vol. 25, no. 2, April 1990, pp. 584–594.

[Sakurai91] T. Sakurai and A. Newton, “Delay analysis of series-connected MOSFET circuits,” JSSC, vol. 26,
no. 2, Feb. 1991, pp. 122–131.

[Salib04] M. Salib et al., “Silicon photonics,” Intel Technology Journal, vol. 08, no. 2, May 2004, pp. 143–160.
[Samson08] G. Samson, N. Ananthapadmanabhan, S. Badrudduza, and L. Clark, “Low-power dynamic memory

word line decoding for static random access memories,” JSSC, vol. 43, no. 11, Nov. 2008,
pp. 2524–2532.

[Samson09] G. Samson and L. Clark, “Low-power race-free programmable logic arrays,” JSSC, vol. 44, no. 3,
Mar. 2009, pp. 935–946.

[Santoro89] M. Santoro, “Design and Clocking of VLSI Multipliers,” Ph.D. thesis, Stanford University,
CSL-TR-89-397, 1989.

[Sathe07] V. Sathe, J. Chueh, and M. Papaefthymiou, “Energy-efficient GHz-class charge-recovery logic,”
JSSC, vol. 42, no. 1, Jan. 2007, pp. 38–47.

[Schellenberg98] F. Schellenberg, H. Zhang, and J. Morrow, “SEMATECH J111 Project: OPC validation,”
Proc. Optical Microlithography XI, SPIE vol. 3334, 1998, pp. 892–911.

References 809

[Schellenberg03] F. Schellenberg, “A little light magic,” IEEE Spectrum, vol. 40, no. 9, Sep. 2003, pp. 34–39.
[Schmitt38] O. Schmitt, “A thermionic trigger,” J. Scientific Instruments, vol. 15, Jan. 1938, pp. 24–26.
[Schulmann98] W. Schulmann, F. Thimm, and H. Kaiser, “Rotating head for crystal pulling systems for carrying out

the Czochralski process,” US Patent 5766348, 1998.
[Schultz90] K. Schultz, R. Francis, and K. Smith, “Ganged CMOS: trading standby power for speed,” JSSC,

vol. SC-25, no. 3, Jun. 1990, pp. 870–873.
[Schutten03] R. Schutten, T. Fitzpatrick, “Design for verification—blueprint for productivity and product

quality,” Synopsys white paper, 2003.
[Schutz98] J. Schutz and R. Wallace, “A 450 MHz IA32 P6 family microprocessor,” Proc. Intl. Solid-State

Circuits Conf., Feb. 1998, pp. 236–237.
[Seeds67] R. Seeds, “Yield and cost analysis of bipolar LSI,” Intl. Electron Device Meeting, Oct. 1967.
[Seevinck87] E. Seevinck, F. List, and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,” JSSC,

vol. 22, no. 5, Oct. 1987, pp. 748–754.
[Segura04] J. Segura and C. Hawkins, CMOS Electronics: How it Works, How it Fails, Hoboken, NJ: John Wiley

& Sons (IEEE Press), 2004.
[Shahidi02] G. Shahidi, “SOI technology for the GHz era,” IBM J. Research and Development, vol. 46, no. 2/3,

Mar./May 2002, pp. 121–131.
[Sharifkhani09] M. Sharifkhani and M. Sachdev, “SRAM cell stability: a dynamic perspective,” JSSC, vol. 44, no. 2,

Feb. 2009, pp. 609–619.
[She02] M. She et al., “JVD silicon nitride as tunnel dielectric in p-channel flash memory,” IEEE Electron

Device Letters, vol. 23, no. 2, Feb. 2002, pp. 91–93.
[Shepard99] K. Shepard, V. Narayanan, and R. Rose, “Harmony: static noise analysis of deep submicron digital

integrated circuits,” IEEE Trans. Computer-Aided Design, vol. 18, no. 8, Aug. 1999, pp. 1132–1150.
[Sheu87] B. Sheu, D. Scharfetter, P. Ko, and M. Jeng, “BSIM: Berkeley short-channel IGFET model for

MOS transistors,” JSSC, vol. SC-22, no. 4, Aug. 1987, pp. 558–566.
[Shichman68] H. Shichman and D. Hodges, “Modeling and simulation of insulated-gate field-effect transistor

switching circuits,” JSSC, vol. SC-3, no. 3, Sep. 1968, pp. 285–289.
[Shigematsu97] S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe, and J. Yamada, “A 1-V high-speed MTCMOS

circuit scheme for power-down application circuits,” JSSC, vol. 32, no. 6, Jun. 1997, pp. 861–869.
[Shin05] J. Shin, B. Petrick, M. Singh, and A. Leon, “Design and implementation of an embedded 512-KB

level-2 cache subsystem,” JSSC, vol. 40, no. 9, Sep. 2005, pp. 1815–1820.
[Shockley52] W. Shockley, “A unipolar ‘field-effect’ transistor,” Proc. IRE, vol. 40, 1952, pp. 1365–1376.
[Shoji82] M. Shoji, “Electrical design of BELLMAC-32a microprocessor,” Proc. IEEE Intl. Conf. Circuits and

Computers, Sep. 1982, pp. 112–115.
[Shoji86] M. Shoji, “Elimination of process-dependent clock skew in CMOS VLSI,” JSSC, vol. SC-21, no. 5,

Oct. 1986, pp. 875–880.
[SIA97] Semiconductor Industry Association, International Technology Roadmap for Semiconductors, 1997.
[SIA07] Semiconductor Industry Association, International Technology Roadmap for Semiconductors, 2007.
[Silberman98] J. Silberman et al., “A 1.0-GHz single-issue 64-bit PowerPC integer microprocessor,” JSSC, vol. 33,

no. 11, Nov. 1998, pp. 1600–1608.
[Singh08] P. Singh, J. Seo, D. Blaauw, and D. Sylvester, “Self-timed regenerators for high-speed and low-

power on-chip global interconnect,” IEEE Trans. VLSI, vol. 16, no. 6, Jun. 2008, pp. 673–677.
[Sklansky60] J. Sklansky “Conditional-sum addition logic,” IRE Trans. Electronic Computers, vol. EC-9, Jun. 1960,

pp. 226–231.
[Sklar01] B. Sklar, Digital Communications: Fundamentals and Applications, 2nd ed., Upper Saddle River, NJ:

Prentice Hall, 2001.
[Sleight01] J. Sleight et al., “A high performance 0.13 μm SOI CMOS technology with a 70 nm silicon film

and with a second generation low-k Cu BEOL,” Proc. Intl. Electron Devices Meeting, 2001,
pp. 11.3.1–11.3.4.

References810

[Smith99] L. Smith, R. Anderson, D. Forehand, T. Pelc, and T. Roy, “Power distribution system design
methodology and capacitor selection for modern CMOS technology,” IEEE Trans. Advanced
Packaging, vol. 22, no. 3, Aug. 1999, pp. 284–291.

[Sodini84] C. Sodini, Ping-Keung Ko, and J. Moll, “The effect of high fields on MOS device and circuit
performance,” IEEE Trans. Electron Devices, vol. 31, no. 10, Oct. 1984, pp. 1386–1393.

[Solomatnikov00] A. Solomatnikov, D. Somasekhar, K. Roy, and C. Koh, “Skewed CMOS: noise-immune high-
performance low-power static circuit family,” Proc. IEEE Intl. Conf. Computer Design, 2000,
pp. 241–246.

[Somasekhar96] D. Somasekhar and K. Roy, “Differential current switch logic: a low power DCVS logic family,”
JSSC, vol. 31, no. 7, Jul. 1996, pp. 981–991.

[Somasekhar98] D. Somasekhar and K. Roy, “LVDCSL: a high fan-in, high-performance, low-voltage differential
current switch logic family,” IEEE Trans. VLSI, vol. 6, no. 4, Dec. 1998, pp. 573–577.

[Somasekhar00] D. Somasekhar, S. Choi, K. Roy, Y. Ye, and V. De, “Dynamic noise analysis in precharge-evaluate
circuits,” Proc. Design Automation Conf., 2000, pp. 243–246.

[Song96] M. Song, G. Kang, S. Kim, and B. Kang, “Design methodology for high speed and low power
digital circuits with energy economized pass-transistor logic (EEPL),” Proc. 22nd European Solid-
State Circuits Conf., 1996, pp. 120–123.

[Song01] S. Song et al., “On the gate oxide scaling of high performance CMOS transistors,” Proc. Intl.
Electron Devices Meeting, 2001, pp. 3.2.1–3.2.4.

[Sparsø01] J. Sparsø and S. Furber, eds., Principles of Asynchronous Circuit Design: A Systems Perspective, Boston:
Kluwer Academic Publishers, 2001.

[Srinivas92] H. Srinivas and K. Parhi, “A fast VLSI adder architecture,” JSSC, vol. 27, no. 5, May 1992,
pp. 761–767.

[Srinivasan02] V. Srinivasan et al., “Optimizing pipelines for power and performance,” Proc. Intl. Symp.
Microarchitecture, 2002, pp. 333–344.

[Stackhouse09] B. Stackhouse et al., “A 65 nm 2-billion transistor quad-core Itanium processor,” JSSC, vol. 44, no.
1, Jan. 2009, pp. 18–31.

[Stan98] M. Stan, A. Tenca, and M. Ercegovac, “Long and fast up/down counters,” IEEE Trans. Computers,
vol. 47, no. 7, Jul. 1998, pp. 722–735.

[Stan99] M. Stan, “Optimal voltages and sizing for low power [CMOS VLSI],” Proc. Intl. Conf. VLSI Design,
Jan. 1999, pp. 428–433.

[Stelling98] P. Stelling, C. Martel, V. Oklobdzija, and R. Ravi, “Optimal circuits for parallel multipliers,” IEEE
Trans. Computers, vol. 47, no. 3, Mar. 1998, pp. 273–285.

[Stinson03] J. Stinson and S. Rusu, “A 1.5 GHz third generation Itanium processor,” Proc. Design Automation
Conf., 2003, pp. 706–709.

[Stojanovic99] V. Stojanovic and V. Oklobdûija, “Comparative analysis of master-slave latches and flip-flops for
high-performance and low-power systems,” JSSC, vol. 34, no. 4, Apr. 1999, pp. 536–548.

[Stolk98] P. Stolk, F. Widdershoven, and D. Klaassen, “Modeling statistical dopant fluctuations in MOS
transistors,” IEEE Trans. Electron Devices, vol. 45, no. 9, Sep. 1998, pp. 1960–1971.

[Stolt08] B. Stolt et al., “Design and Implementation of the POWER6 microprocessor,” JSSC, vol. 43, no. 1,
Jan. 2008, pp. 21–28.

[Strollo05] A. Strollo, D. De Caro, E. Napoli, and N. Petra, “A novel high-speed sense-amplifier-based flip-
flop,” IEEE Trans. VLSI, vol. 13, no. 11, Nov. 2005, pp. 1266–1274.

[Stroud02] C. Stroud, A Designer's Guide to Built-in Self-Test, Boston: Kluwer Academic Publishers, 2002.
[Su03] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif, “Full chip leakage-estimation considering power

supply and temperature variations,” Proc. Intl. Symp. Low Power Electronics & Design, Aug. 2003,
pp. 78–83.

[Su08] Y. Su, J. Holleman, and B. Otis, “A digital 1.6 pJ/bit chip identification circuit using process
variations,” JSSC, vol. 43, no. 1, Jan. 2008, pp. 69–77.

References 811

[Sun87] J. Sun, Y. Taur, R. Dennard, and S. Klepner, “Submicrometer-channel CMOS for low-temperature
operation,” IEEE Trans. Electron Devices, vol. ED-34, no. 1, Jan. 1987, pp. 19–26.

[Sutherland99] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS Circuits, San
Francisco, CA: Morgan Kaufmann, 1999.

[Suzuki73] Y. Suzuki, K. Odagawa and T. Abe, “Clocked CMOS calculator circuitry,” JSSC, vol. SC-8, no. 6,
Dec. 1973, pp. 462–469.

[Suzuki93] M. Suzuki, N. Ohkubo, T. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki, and Y. Nakagome, “A 1.5-
ns 32-b CMOS ALU in double pass-transistor logic,” JSSC, vol. 28, no. 11, Nov. 1993,
pp. 1145–1151.

[Svensson03] C. Svensson, “Forty years of feature-size predictions (1962–2002),” Proc. Intl. Solid-State Circuits
Conf., 2003, pp. 35–36.

[Swanson72] R. Swanson and J. Meindl, “Ion-implanted complementary MOS transistors in low-voltage
circuits,” JSSC, vol. 7, no. 2, Apr. 1972, pp. 146–153.

[Sweeney02] P. Sweeney, Error Control Coding: From Theory to Practice, New York: John Wiley & Sons, 2002.
[Sylvester98] D. Sylvester and K. Keutzer, “Getting to the bottom of deep submicron,” Proc. IEEE/ACM Intl.

Conf. Computer-Aided Design, 1998, pp. 203–211.
[Takahashi98] M. Takahashi et al., “A 60-mW MPEG4 video codec using clustered voltage scaling with variable

supply-voltage scheme,” JSSC, vol. 33, no. 11, Nov. 1998, pp. 1772–1780.
[Takeuchi94] K. Takeuchi and M. Fukuma, “Effects of the velocity saturated region on MOSFET characteristics,”

IEEE Trans. Electron Devices, vol. 41, no. 9, Sep. 1994, pp. 1623–1627.
[Tam00] S. Tam, S. Rusu, U. Desai, R. Kim, J. Zhang, and I. Young, “Clock generation and distribution for

the first IA-64 microprocessor,” JSSC, vol. 35, no. 11, Nov. 2000, pp. 1545–1552.
[Tam04] S. Tam, R. Limaye, and U. Desai, “Clock generation and distribution for the 130-nm Itanium 2

processor with 6-MB on-die L3 cache,” JSSC, vol. 39, no. 4, Apr. 2004.
[Tang97] X. Tang, V. De, and J. Meindl, “Intrinsic MOSFET parameter fluctuations due to random dopant

placement,” IEEE Trans. VLSI, vol. 5, no. 4, Dec 1997, pp. 369–376.
[Tawfik09] S. Tawfik and V. Kursun, “Low power and high speed multi threshold voltage interface circuits,”

IEEE Trans. VLSI, vol. 17, no. 5, May 2009, pp. 638–645.
[Tharakan92] G. Tharakan and S. Kang, “A new design of a fast barrel switch network,” JSSC, vol. 27, no. 2, Feb.

1992, pp. 217–221.
[Thompson02] S. Thompson et al., “A 90 nm logic technology featuring 50 nm strained silicon channel transistors,

7 layers of Cu interconnects, low k ILD, and 1 μm2 SRAM cell,” Proc. Intl. Electron Devices Meeting,
2002, pp. 61–64.

[Thompson04] S. Thompson et al., “A logic nanotechnology featuring strained-silicon,” IEEE Electron Device
Letters, vol. 25, no. 4, Apr. 2004, pp. 191–193.

[Thorp99] T. Thorp, G. Yee, and C. Sechen, “Design and synthesis of monotonic circuits,” Proc. IEEE Intl.
Conf. Computer Design, 1999, pp. 569–572.

[Tierno08] J. Tierno, A. Rylyakov, and D. Friedman, “A wide power supply range, wide tuning range, all static
CMOS all digital PLL in 65 nm SOI,” JSSC, vol. 43, no. 1, Jan. 2008, pp. 42–51.

[Tobias95] P. Tobias and D. Trindade, Applied Reliability, 2nd ed., New York: Van Nostrand Reinhold, 1995.
[Toh88] K. Toh, P. Ko, and R. Meyer, “An engineering model for short-channel MOS devices,” JSSC,

vol. 23, no. 4, Aug. 1988, pp. 950–958.
[Tokunaga08] C. Tokunaga, D. Blaauw, and T. Mudge, “True random number generator with a metastability-based

quality control,” JSSC, vol. 43, no. 1, Jan. 2008, pp. 78–85.
[Topaloglu07] R. Topaloglu, “Standard cell and custom circuit optimization using dummy diffusions through STI

width stress effect utilization,” Proc. Custom Integrated Circuits Conf., Sep. 2007, pp. 619–622.
[Topol06] A. Topol et al., “Three-dimensional integrated circuits,” IBM J. Research and Dev., vol. 50, no. 4/5,

Jul./Sep. 2006, pp. 491–506.

References812

[Trinh09] C. Trinh et al., “A 5.6MB/s 64Gb 4b/cell NAND flash memory in 43nm CMOS,” Proc. Intl. Solid-
State Circuits Conf., Feb. 2009, pp. 246–247, 247a.

[Troutman86] R. Troutman, Latchup in CMOS Technology: The Problem and its Cure, Boston: Kluwer Academic
Publishers, 1986.

[Tschanz01] J. Tschanz, S. Narendra, Zhanping Chen, S. Borkar, M. Sachdev, and Vivek De, “Comparative delay
and energy of single edge-triggered and dual edge-triggered pulsed flip-flops for high-performance
microprocessors,” Proc. Intl. Symp. Low Power Electronics & Design, 2001, pp. 147–152.

[Tschanz02] J. Tschanz et al., “Adaptive body bias for reducing impacts of die-to-die and within-die parameter
variations on microprocessor frequency and leakage,” JSSC, vol. 37, no. 11, Nov. 2002,
pp. 1396–1402.

[Tschanz03] J. Tschanz, S. Narendra, Y. Ye, B. Bloechel, S. Borkar, and V. De, “Dynamic sleep transistor and
body bias for active leakage power control of microprocessors,” JSSC, vol. 38, no. 11, Nov. 2003,
pp. 1838–1845.

[Tschanz03b] J. Tschanz, S. Narendra, R. Nair, and V. De, “Effectiveness of adaptive supply voltage and body bias
for reducing impact of parameter variations in low power and high performance microprocessors,”
JSSC, vol. 38, no. 5, May 2003, pp. 826–829.

[Tschanz07] J. Tschanz et al., “Adaptive frequency and biasing techniques for tolerance to dynamic temperature-
voltage variations and aging,” Proc. Intl. Solid-State Circuits Conf., Feb. 2007, pp. 292–604.

[Tsividis99] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed., Boston: McGraw-Hill, 1999.
[Tyagi93] A. Tyagi, “A reduced-area scheme for carry-select adders,” JSSC, vol. 42, no. 10, Oct. 1993,

pp. 1163–1170.
[Tyagi00] S. Tyagi et al., “A 130 nm generation logic technology featuring 70 nm transistors, dual Vt transistors

and 6 layers of Cu interconnects,” Proc. Intl. Electron Devices Meeting, 2000, pp. 567–570.
[Tyagi05] S. Tyagi et al., “An advanced low power, high performance, strained channel 65nm technology,”

Proc. Intl. Electron Devices Meeting, Dec. 2005, pp. 245–247.
[Uehara81] T. Uehara and W. van Cleemput, “Optimal layout of CMOS functional arrays,” IEEE Trans.

Computers, vol. C-30, no. 5, May 1981, pp. 305–312.
[Unger86] S. Unger and C. Tan, “Clocking schemes for high-speed digital systems,” IEEE Trans. Computers,

vol. 35, no. 10, Oct. 1986, pp. 880–895.
[Usami95] K. Usami and M. Horowitz, “Clustered voltage scaling for low-power design,” Proc. Intl. Symp. Low

Power Electronics and Design, 1995, pp. 3–8.
[Vadasz66] L. Vadasz and A. Grove, “Temperature dependence of MOS transistor characteristics below

saturation,” IEEE. Trans. Electron Devices, vol. ED-13, no. 13, 1966, pp. 863–866.
[Vadasz69] L. Vadasz, A. Grove, T. Rowe, and G. Moore, “Silicon-gate technology,” IEEE Spectrum, vol. 6,

no. 10, Oct. 1969, pp. 28–35.
[van Berkel99] C. van Berkel and C. Molnar, “Beware the three-way arbiter,” JSSC, vol. 34, no. 6, Jun. 1999,

pp. 840–848.
[Vangal02] S. Vangal et al., “5-GHz 32-bit integer execution core in 130-nm dual-VT CMOS,” JSSC, vol. 37,

no. 11, Nov. 2002, pp. 1421–1432.
[Veendrick80] H. Veendrick, “The behavior of flip-flops used as synchronizers and prediction of their failure rate,”

JSSC, vol. SC-15, no. 2, Apr. 1980, pp. 169–176.
[Veendrick84] H. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of

buffer circuits,” JSSC, vol. SC-19, no. 4, Aug. 1984, pp. 468–473.
[Vittal99] A. Vittal et al., “Crosstalk in VLSI interconnections,” IEEE Trans. Computer-Aided Design, vol. 18,

no. 12, Dec. 1999, pp. 1817–1824.
[Vittoz72] E. Vittoz, B. Gerber, and F. Leuenberger, “Silicon-gate CMOS frequency divider for electronic

wrist watch,” JSSC, vol. 7, no. 2, Apr. 1972, pp. 100–104.
[Volk01] A. Volk, P. Stoll, and P. Metrovich, “Recollections of early chip development at Intel,” Intel

Technology Journal, Q1 2001, pp. 1–12.

References 813

[Vollertsen99] R. Vollertsen, “Burn-in,” IEEE Integrated Reliability Workshop Final Report, 1999, pp. 167–173.
[von Arnim05] K. von Armin, et al., “Efficiency of body biasing in 90-nm CMOS for low-power digital circuits,”

JSSC, vol. 40, no. 7, July 2005, pp. 1549–1556.
[von Neumann51] J. von Neumann, “Various techniques used in connection with random digits,” notes by Forsythe, G.,

National Bureau of Standards Applied Math Series, 1951, vol. 12, pp. 36–38. Reprinted in von
Neumann's Collected Works, vol. 5, Pergamon Press, 1963, pp. 768–770.

[von Neumann66] J. von Neumann, Theory of Self-Reproducing Automata, Urbana, IL: Univ. Illinois Press, 1966.
[Wadell01] B. Wadell, Transmission Line Design Handbook, Norwood, MA: Artech House, 1991.
[Wakerly00] J. Wakerly, Digital Design Principles and Practices, 3rd ed., Upper Saddle River, NJ: Prentice Hall,

2000.
[Wallace64] C. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Electronic Computers, Feb. 1964,

pp. 14–17.
[Wang86] L. Wang and E. McCluskey, “Complete feedback shift register design for built-in self test,”

Proc. Design Automation Conf., Nov. 1986, pp. 56–59.
[Wang89] J. Wang, C. Wu, and M. Tsai, “CMOS nonthreshold logic (NTL) and cascode nonthreshold logic

(CNTL) for high-speed applications,” JSSC, vol. 24, no. 3, Jun. 1989, pp. 779–786.
[Wang93] Z. Wang, G. Jullien, W. Miller, and J. Wang, “New concepts for the design of carry-lookahead

adders,” Proc. IEEE Intl. Symp. Circuits and Systems, vol. 3, 1993, pp. 1837–1840.
[Wang94] J. Wang, S. Fang, and W. Feng, “New efficient designs for XOR and XNOR functions on the

transistor level,” JSSC, vol. 29, no. 7, Jul. 1994, pp. 780–786.
[Wang97] Z. Wang, G. Jullien, W. Miller, J. Wang, and S. Bizzan, “Fast adders using enhanced multiple-

output domino logic,” JSSC, vol. 32, no. 2, Feb. 1997, pp. 206–214.
[Wang00] J. Wang and C. Huang, “High-speed and low-power CMOS priority encoders,” JSSC, vol. 35,

no. 10, Oct. 2000, pp. 1511–1514.
[Wang01] J. Wang, C. Chang, and C. Yeh, “Analysis and design of high-speed and low-power CMOS PLAs,”

JSSC, vol. 36, no. 8, Aug. 2001, pp. 1250–1262.
[Wang02] A. Wang, A. Chandrakasan, and S. Kosonocky, “Optimal supply and threshold scaling for

subthreshold CMOS circuits,” Proc. Computer Society Symp. VLSI, 2002, pp. 5–9.
[Wang06] G. Wang et al., “A 0.127 μm2 high performance 65 nm SOI based embedded DRAM for on-

processor applications,” Proc. Intl. Electron Devices Meeting, Dec. 2006, pp. 1–4.
[Wang07] C. Wang, C. Lee, and W. Lin, “A 4-kb low-power SRAM design with negative word-line scheme,”

IEEE Trans. Circuits & Systems, vol. 54, no. 5, May 2007, pp. 1069–1076.
[Wang08a] A. Wang and S. Naffziger, eds., Adaptive Techniques for Dynamic Processor Optimization: Theory and

Practice, New York: Springer, 2008.
[Wang08b] L. Wang, C. Stroud, and N. Touba, eds., System-on-Chip Test Architectures: Nanometer Design for

Testability, Elsevier, 2008.
[Wanlass63] F. Wanlass and C. Sah, “Nanowatt logic using field effect metal-oxide semiconductor triodes,”

Proc. IEEE Intl. Solid-State Circuits Conf., 1963, pp. 32–33.
[Warnock06] J. Warnock et al., “Circuit design techniques for a first-generation cell broadband engine processor,”

JSSC, vol. 41, no. 8, Aug. 2006, pp. 1692–1706.
[Webb97] C. Webb et al., “A 400-MHz S/390 microprocessor,” JSSC, vol. 32, no. 11, Nov. 1997,

pp. 1665–1675.
[Webb08] C. Webb, “45 nm design for manufacturing,” Intel Technology Journal, vol. 12, no. 2, Jun. 2008,

pp. 121–130.
[Wei98] L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De, “Design and optimization of low voltage high

performance dual threshold CMOS circuits,” Proc. Design Automation Conf., 1998, pp. 489–494.
[Wei00] G. Wei, J. Kim, D. Liu, S. Sidiropoulos, and M. Horowitz, “A variable-frequency parallel I/O

interface with adaptive power-supply regulation,” JSSC, vol. 35, no. 11, Nov. 2000, pp. 1600–1610.

References814

[Weinberger58] A. Weinberger and J. Smith, “A logic for high-speed addition,” System Design of Digital Computer at
the National Bureau of Standards: Methods for High-Speed Addition and Multiplication, National
Bureau of Standards, circular 591, section 1, Feb. 1958, pp. 3–12.

[Weinberger81] A. Weinberger, “4-2 carry-save adder module,” IBM Technical Disclosure Bulletin, vol. 23, no. 8, Jan.
1981, pp. 3811–3814.

[Weinlader00] D. Weinlader, Ron Ho, Chih-Kong Keng Yang, and M. Horowitz, “An eight channel 35
GSample/s CMOS timing analyzer,” Proc. Intl. Solid-State Circuits Conf., 2000, pp. 170–171.

[Weiss02] D. Weiss, J. Wuu, and V. Chin, “The on-chip 3-MB subarray-based third-level cache on an Itanium
microprocessor,” JSSC, vol. 37, no. 11, Nov. 2002, pp. 1523–1529.

[Widmer83] A. Widmer and P. Franaszek, “A DC-balanced partitioned-block 8B/10B transmission code,” IBM
J. Research and Dev., vol. 27, no. 5, Sep. 1983, pp. 440–451.

[Wijeratne07] S. Wijeratne et al., “A 9-GHz 65-nm Intel Pentium 4 processor integer execution unit,” JSSC, vol.
42, no. 1, Jan. 2007, pp. 26–37.

[Williams83] T. Williams and K. Parker, “Design for Testability—A Survey,” Proc. IEEE, vol. 71, no. 1, Jan. 1983,
pp. 98–112.

[Williams86] T. Williams, “Design for testability,” Proc. NATO Advanced Study Inst. Computer Design Aids for VLSI
Circuits, (P. Antognetti et al., eds.), NATO ASI Series, Martinus Nijhoff Publishers, 1986,
pp. 359–416.

[Williams91] T. Williams and M. Horowitz, “A zero-overhead self-timed 160-ns 54-b CMOS divider,” JSSC, vol.
26, no. 11, Nov. 1991, pp. 1651–1661.

[Wilton96] S. Wilton and N. Jouppi, “CACTI: an enhanced cache access and cycle time model,” JSSC, vol. 31,
no. 5, May 1996, pp. 677–688.

[Wing82] O. Wing, “Automated gate matrix layout,” Proc. IEEE Intl. Symp. Circuits and Systems, vol. 2, 1982,
pp. 681–685.

[Wolf00] S. Wolf and R. Tauber, Silicon Processing for the VLSI Era, 2nd ed., Sunset Beach, CA: Lattice Press,
2000.

[Wong03] H. Wong, J. Appenzeller, V. Derycke, R. Martel, S. Wind, and P. Avouris, “Carbon nanotube field
effect transistors—fabrication, device physics, and circuit implications,” Proc. Intl. Solid-State Circuits
Conf., 2003, pp. 370–500.

[Wong06] K. Wong, T. Rahal-Arabi, M. Ma, and G. Taylor, “Enhancing microprocessor immunity to power
supply noise with clock-data compensation,” JSSC, vol. 41, no. 4, Apr. 2006, pp. 749–758.

[Wu91] C. Wu and K. Cheng, “Latched CMOS differential logic (LCDL) for complex high-speed VLSI,”
JSSC, vol. 26, no. 9, Sep. 1991, pp. 1324–1328.

[Xu08] J. Xu et al., “A band-limited active damping circuit with 13 dB power supply resonance reduction,”
JSSC, vol. 43, no. 1, Jan. 2008, pp. 61–68.

[Yabuuchi07] M. Yabuuchi et al., “A 45nm low-standby-power embedded SRAM with improved immunity
against process and temperature variations,” Proc. Intl. Solid-State Circuits Conf., Feb. 2007,
pp. 326–606.

[Yamada95] H. Yamada, T. Hotta, T. Nishiyama, F. Murabayashi, T. Yamauchi, and H. Sawamoto, “A 13.3 ns
double-precision floating-point ALU and multiplier,” Proc. Intl. Conf. Computer Design, 1995,
pp. 466–470.

[Yamaoka04] M. Yamaoka, K. Osada, and K. Ishibashi, “0.4-V logic-library-friendly SRAM array using
rectangular-diffusion cell and delta-boosted-array voltage scheme,” JSSC, vol. 39, no. 6, Jun. 2004,
pp. 934–940.

[Yamaoka04b] M. Yamaoka et al., “A 300MHz 25 μA/Mb leakage on-chip SRAM module featuring process-
variation immunity and low-leakage-active mode for mobile-phone application processor,” Proc. Intl.
Solid-State Circuits Conf., Feb. 2004, pp. 494–542.

[Yamaoka06] M. Yamaoka et al., “90-nm process-variation adaptive embedded SRAM modules with power-line-
floating write technique,” JSSC, vol. 41, no. 3, Mar. 2006, pp. 705–711.

References 815

[Yang96] C. K. Yang and M. Horowitz, “A 0.8-μm CMOS 2.5 Gb/s oversampling receiver and transmitter for
serial links,” JSSC, vol. 31, no. 12, Dec. 1996, pp. 2015–2023.

[Yang98] S. Yang et al., “A high performance 180 nm generation logic technology,” Tech. Digest Intl. Electron
Device Meeting, Dec. 1998, pp. 197–200.

[Yano90] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi, and A. Shimizu, “A 3.8-ns 16 × 16-b
multiplier using complementary pass-transistor logic,” JSSC, vol. 25, no. 2, Apr. 1990, pp. 388–395.

[Yano96] K. Yano, Y. Sasaki, K. Rikino, and K. Seki, “Top-down pass-transistor logic design,” JSSC, vol. 31,
no. 6, Jun. 1996, pp. 792–803.

[Ye98] Y. Ye, S. Borkar, and V. De, “A new technique for standby leakage reduction in high-performance
circuits,” Symp. VLSI Circuits Digest Tech. Papers, 1998, pp. 40–41.

[Ye00] Y. Ye, J. Tschanz, S. Narendra, S. Borkar, M. Stan, and V. De, “Comparative delay, noise and energy
of high-performance domino adders with stack node preconditioning (SNP),” Symp. VLSI Circuits
Digest Tech. Papers, 2000, pp. 188–191.

[Yee00] G. Yee and C. Sechen, “Clock-delayed domino for dynamic circuit design,” IEEE Trans. VLSI,
vol. 8, no. 4, Aug. 2000, pp. 425–430.

[Yoon02] J. Yoon et al., “CMOS-compatible surface-micromachined suspended-spiral inductors for multi-
GHz silicon RF ICs,” IEEE Electron Device Letters, vol. 23, no. 10, Oct. 2002, pp. 591–593.

[Yoshimoto83] M. Yoshimoto et al., “A divided word-line structure in the static RAM and its application to a 64K
full CMOS RAM,” JSSC, vol. SC-18, no. 5, Oct. 1983, pp. 479–485.

[Young00] K. Young et al., “A 0.13 μm CMOS technology with 193 nm lithography and Cu/Low-k for high
performance applications,” Proc. Intl. Electron Devices Meeting, 2000, pp. 563–566.

[Young10] I. Young et al., “Optical I/O technology for tera-scale computing,” JSSC, vol. 45, no. 1, Jan. 2010,
pp. 235–248.

[Yuan82] C. Yuan and T. Trick, “A simple formula for the estimation of the capacitance of two-dimensional
interconnects in VLSI circuits,” IEEE Electron Device Letters, vol. EDL-3, Dec. 1982, pp. 391–393.

[Yuan89] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” JSSC, vol. 24, no. 1, Feb. 1989,
pp. 62–70.

[Zerbe01] J. Zerbe et al., “A 2 Gb/s/pin 4-PAM parallel bus interface with transmit crosstalk cancellation,
equalization, and integrating receivers,” Proc. Intl. Solid-State Circuits Conf., 2001, pp. 66–67, 432.

[Zhai05a] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “The limit of dynamic voltage scaling and
insomniac dynamic voltage scaling,” IEEE Trans. VLSI, vol. 13, no. 11, Nov. 2005, pp. 1239–1252.

[Zhai05b] B. Zhai, S. Hanson, D. Blaauw, and D. Sylvester, “Analysis and mitigation of variability in
subthreshold design,” Proc. Intl. Symp. Low Power Electronics & Design, Aug. 2005, pp. 20–25.

[Zhai08] B. Zhai, S. Hanson, D. Blaauw, and D. Sylvester, “A variation-tolerant sub-200 mV 6-T
subthreshold SRAM,” JSSC, vol. 43, no. 10, Oct. 2008, pp. 2338–2348.

[Zhang05] K. Zhang et al., “SRAM design on 65-nm CMOS technology with dynamic sleep transistor for
leakage reduction,” JSSC, vol. 40, no. 4, Apr. 2005, pp. 895–901.

[Zhang06] K. Zhang et al., “A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-
based dynamic power supply,” JSSC, vol. 41, no. 1, Jan. 2006, pp. 146–151.

[Zhao07] P. Zhao, J. McNeely, P. Golconda, M. Bayoumi, R. Barcenas, and Weidong Kuang, “Low-power
clock branch sharing double-edge triggered flip-flop,” IEEE Trans. VLSI, vol. 15, no. 3, Mar. 2007,
pp. 338–345.

[Zhao09] P. Zhao et al., “Low-power clocked-pseudo-NMOS flip-flop for level conversion in dual supply
systems,” IEEE Trans. VLSI, vol. 17, no. 9, Sep. 2009, pp. 1196–1202.

[Zhou99] X. Zhou, K. Lim, and D. Lim, “A simple and unambiguous definition of threshold voltage and its
implications in deep-submicron MOS device modeling,” IEEE Trans. Electron Devices, vol. 46, no.
4, Apr. 1999, pp. 807–809.

 [Ziegler96] J. Ziegler, “Terrestrial cosmic rays,” IBM J. Research and Development, vol. 40, no. 1, Jan. 1996,
pp. 19–39.

References816

[Ziegler02] J. Ziegler, Ion-Implantation—Science and Technology, 2002 ed., IIT Press, 2002.
[Zimmermann96] R. Zimmermann, “Non-heuristic optimization and synthesis of parallel-prefix adders,” Proc. Intl.

Workshop on Logic and Architecture Synthesis, Dec. 1996, pp. 123–132.
[Zimmermann97] R. Zimmermann and W. Fichtner, “Low-power logic styles: CMOS versus pass-transistor logic,”

JSSC, vol. 32, no. 7, Jul. 1997, pp. 1079–1090.
[Zlatanovici09] R. Zlatanovici, S. Kao, and B. Nikolic, “Energy-delay optimization of 64-bit carry-lookahead adders

with a 240 ps 90 nm CMOS design example,” JSSC, vol. 44, no. 2, Feb. 2009, pp. 569–583.
[Zuras86] D. Zuras and W. McAllister, “Balanced delay trees and combinatorial division in VLSI,” JSSC,

vol. SC-21, no. 5, Oct. 1986, pp. 814–819.

817

Index

ABB (adaptive body-bias), 275
Absolute difference operation, 460–461
Abstraction, levels of

defined, 30
functional equivalence for, 660–661
partitioning design into, 616

AC specifications, data sheets/documentation,
656

Accelerated life testing, reliability, 247
Accelerators, reducing power consumption,

204
Acceptors, and silicon, 99
Accumulation mode, 61–62
Acknowledge (Ack) signal, 416–419
ACM (Area Calculation Method), diffusion

capacitance models, 301
Across-chip linewidth variation (ACLV),

267–268
Across-chip mobility variation, 269
Active mask, CMOS transistors, 114
Active power, 195
Activity factor, 184, 186–188
Ad hoc clock distribution network, 573–574
Ad hoc testing, 681–682
Adaptive body bias (ABB), 275
Adaptive control systems, 275
Adaptive deskewing, 579–580
Adaptive keeper, 345
Adaptive (or variation-tolerant) sequential

elements, 409–411
Adaptive voltage scaling (AVS), 275
Adders. See also addition, datapath

pitfall of reinventing, 494
single-bit addition, 430–434

addition, datapath
carry-propagate. See CPAs (carry-

propagate adders)
column, 485–490
final, 489–490
multiple-input, 458–459
single-bit, 430–434

after clause, VHDL, 713
Aggressor

crosstalk noise effects, 223–224
interconnect simulation, 322

ALD (atomic layer deposition), silicon
oxidation, 106

Alignment mark, 117
ALMOST-EMPTY flag, queues, 534
ALMOST-FULL flag, queues, 534

Alpha 21264, 403
alter statement, 302
ALU (Arithmetic/Logic Unit)

clock skew example, 391
for multicycle MIPS microarchitectures,

36–38
requiring arithmetic and Boolean logic, 468
self-bypass example using flip-flops,

380–383
self-bypass example using latches, 385–386
software radio hierarchy and, 621
time borrowing example, 388–389

Aluminum, 110–111, 211
always statements, SystemVerilog, 717–721.

See also Combinational logic with
always/process statements, HDLs

always_latch block, SystemVerilog, 721
AM (Amplitude Modulation), software radio,

619
AMD K6 differential flip-flop, 400–401
Amplitude Modulation (AM), software radio,

619
Analog

converter testing, 687
debugging circuits, 675
multiplier (or mixer), 619–620
on-chip structure, 48
using power supply filter on circuits, 564

Analysis of variability, statistical, 266–269
Analysis technique

determining effective resistance, 154–155
predicting circuit behavior via, 287

AND function, 329–331
AND operation, 468
AND-OR-INVERT-22 (AOI22) function,

CMOS compound gates, 11–12,
329–331

AND plane, PLAs, 537–540, 628
Anode, 7
Antenna effect, 133
Antenna rules, manufacturing issues, 133–134
Antifuse, 128, 628
AO122 (AND-OR-INVERT-22) function,

CMOS compound gates, 11–12,
329–331

Aperture, 406, 411–412
Application notes, as design cost, 650–651
Application Specific Integrated Circuits

(ASICs), 637–638
Arbiters, 419

Architectural abstraction, 616. See also
Structured design strategies

Architecture
MIPS, 33–34
overview of, 30
simulators, 287
timing optimization at level of, 143

architecture declaration, VHDL code,
700

Arcing, from overvoltage, 252
Area Calculation Method (ACM), diffusion

capacitance models, 301
Area estimation, physical design, 51–53
Area, SRAM, 520–522
Arithmetic Logic Unit. See ALU (Arithmetic/

Logic Unit)
Arithmetic shifts, 472–476
Array multiplication, 478–480
Array shifter, 472–476
Array subsystems, 497–547

categories of memory arrays, 497
content-addressable memory, 535–536
dynamic RAMs, 522–527
historical perspective, 544
Programmable Logic Arrays, 537–541
read-only memory. See ROM (read-only

memory)
review and exercises, 544–547
robust memory design, 541–544
serial access memories, 533–535
static RAM (SRAM). See SRAM (static

RAM)
static vs. dynamic structures, 498

Arrays
on-chip structure, 48
physical design using, 51–52

Arrival times
as cause of error in linear delay model, 161
computing, 142

ASICs (Application Specific Integrated
Circuits), 637–638

Assembly language, 34
assert statement, HDLs, 751
Assertions, test program, 668–669
Assignment statements, HDLs, 707, 718
Asymmetric gates, static CMOS, 332
Asymptotic Waveform Evaluation (AWE), 228
Asynchronous clock domains, 416–417
Asynchronous reset, latches and flip-flops,

396–397

Index818

Asynchronous ripple-carry counter, 464
Atom processor, 283
Atomic layer deposition (ALD), silicon

oxidation, 106
ATPG (Automatic Test Pattern Generation),

640, 680
Automated layout generation, design flow,

641–644
Average current method, power gates, 198
Average power, 182
AVS (adaptive voltage scaling), 275
AWE (Asymptotic Waveform Evaluation), 228

Back end, design flow, 637
Back-End-of-Line (BEOL) phase, CMOS

processing, 100
Back-gate coupling effect, 358–360
Ball Grid Array (BGA) packages, 550–551
Balloon circuits, state retention, 408
Band-to-band tunneling (BTBT), 84–85,

196–197
Bandwidth, and global clock generators, 570
Banks, large SRAM, 516–517
Barrel shifters, 472
Bathtub curve, 247
Battery technology

microbatteries, 566
overview of, 181
power reduction with clock gating, 208

Baugh-Wooley algorithm, 477, 479–480
Behavioral domain

defined, 615
and design partitioning, 31–32
levels of design abstraction, 615–616,

660–661
structured design strategies for. See

Structured design strategies
Behavioral HDL

defined, 41
overview of, 700
writing combinational logic for. See

Combinational logic, writing with HDLs
Behavioral or Register Transfer Level (RTL)

synthesis, design flow, 637–641
BEOL (Back-End-of-Line) phase, CMOS

processing, 100
Berkeley Short-Channel IGFET Models

(BSIM), 300
Beta ratio effects, DC transfers, 90–91
BGA (Ball Grid Array) packages, 550–551
BiCMOS circuits, 366
BILBO (Built-In Logic Block Observation),

685
Binary counters, 464–465
Binary-reflected Gray codes, 470
Binary-to-thermometer decoder, prefix

computation, 492–495
Bipolar transistors

enhancing CMOS circuits, 126
invention of, 2–3
problems of SOI circuits, 362–363

BIST (built-in-self-test)
boundary scans, 689
defined, 640
memory, 686
other on-chip test strategies, 686–687
overview of, 685–686

testing for debugging using, 663
testing in university environment, 689
using signature analysis or cyclic redundancy

checking, 684–685
Bit swizzling, 711–712
Bitline conditioning circuits, DRAMs,

510–511, 525–526
Bitlines

defined, 498
DRAM. See DRAM (dynamic RAM)

Bitlines, SRAMs
large SRAMs, 515–516
overview of, 506
read operation, 500
small-signal sensing a, 512–513

Bitslices, logic design, 39–40
Bitwise operators, HDLs, 702–703
Black cells, adder architecture, 438–440
Block diagrams, logic design, 38–40
Blocking assignments, HDLs, 731–732
Boards, testing, 688–689
Body bias

applying variable threshold voltage, 199–200
improving parametric yield using, 275
limitations of, 208

Body effect, 74, 79–80
Boolean logical operations, datapaths, 468
BOOLEAN type, VHDL, 740
Boosters, interconnect engineering, 236
Booth encoding multiplier

floorplans, 487
higher radix, 484–485
overview of, 480–484
signed multipliers, 484

Bootstrap capacitance, in linear delay model,
162–163

Boules, growing silicon, 100
Boundary scans, 663, 688–689
Branching effort

applying Logical Effort with wires, 236
computing Logical Effort of paths, 164
Logical Effort notation for, 170
sizing for minimum delay, 172

Breadboard, 689
Breakdown voltage, 107, 252
Brent-Kung tree

comparing with other adders, 456–458
higher-valency tree adders, 450–452
overview of, 448–450
spanning-tree adder, 451–453
sparse tree adder, 454

Bridging faults, 677–678
BSIM (Berkeley Short-Channel IGFET

Models), 300
BTBT (band-to-band tunneling), 84–85,

196–197
Bubble pushing, 329
Bug-tracking systems, 673
Built-In Logic Block Observation (BILBO),

685
Built-in potential, MOS gate capacitance, 72
Built-in-self-test. See BIST (built-in-self-test)
Bulk, SOI design, 360
Bumping, 112
Buried polysilicon-active contacts, 115
Burn-in, 247, 344
Butterfly diagram, 502

Bypass (or decoupling) capacitance, 559–560

C-V (capacitance and voltage) characteristics
detailed MOS gate capacitance model,

70–73
simple MOS capacitance models, 68–70

C4 (Controlled Collapse Chip Connection),
551

Cache Access and Cycle Time (CACTI), 522
CACTI (Cache Access and Cycle Time), 522
CAD tools

building chips with, 56
CMOS technology-related issues, 130–133

moment matching technique of, 228
using Logical Effort vs., 170

Calibration test structures, pitfalls of not using,
136

Caltech Interchange Format (CIF), mask
descriptions, 54

CAM (content-addressable memory), 535–536
Canary circuits, 409–410
Capacitance. See also Diffusion capacitance;

Gate capacitance
computing delay using transient response,

143–146
computing Elmore delay, 150–153
detailed MOS gate model of, 70–73
dynamic power and, 188–190
interconnect modeling and, 215–217
on-chip bypass. See On-chip bypass

capacitance
in RC delay model, 153–154
in simple MOS models, 70–73
transformation formula, 165

Capacitance and voltage (C-V) characteristics
detailed MOS gate capacitance model,

70–73
simple MOS capacitance models, 68–70

Capacitance ration, 153
Capacitive coupling, 359–360
Capacitors

DRAM, 522–523
eDRAM, 526
enhancing CMOS circuit elements, 124
power distribution system model, 564–565

Carbon-doped oxide (CDO), enhancing
interconnect, 123–124

Carbon nanotubes, 130
Card, SPICE, 288
Carrier mobility, 75–78, 85
Carries, in carry generation and propagation, 437
Carry-bypass adders. See Carry-skip (or carry-

bypass) adders
Carry generation and propagation, 436–438
Carry-in (Cin), 430–434. See also CPAs (carry-

propagate adders)
Carry-increment adders, 445–446, 456–458
Carry-lookahead adders (CDAs), 443–444
Carry-out (Cout), 430–434. See also CPAs

(carry-propagate adders)
carry-propagate adders. See CPAs (carry-

propagate adders)
Carry-ripple adders

comparison of adder architectures, 456–458
full adder for, 431–432
overview of, 436
PG carry-ripple addition, 438–441

Index 819

Carry-save adders (CSAs)
column addition in multiplication with, 485
compressor implementation with, 486
multiple-input adders and, 458–459
for unsigned array multiplier, 478–479

Carry-save redundant format, 458
Carry-select adder, 444–447, 451–453
Carry-skip (or carry-bypass) adders

carry lookahead adders vs., 443–444
comparison of adder architectures, 456–458
overview of, 441–443

Cascode Voltage Switch Logic (CVSL), 339
Case sensitivity, HDL for comments, 703
Case statements, HDLs, 726–729
case study, Pentium/Itanium 2 sequencing

methodologies, 423
Casez statement, SystemVerilog, 731
Cathode, 7
CCSM (Composite Current Source Model),

174
CDA (carry-lookahead adder), 443–444
CDF (cumulative distribution function), 263
CDO (carbon-doped oxide), enhancing

interconnect, 123–124
Cell-based design

comparing CMOS design methods, 636
overview of, 632–634
virtual components and, 654–655

Cells
gate layouts, 27–28
planning with stick diagrams, 28
SRAM, 499–506
in structured design, 31

Central Limit Theorem, 265
CFSR (complete feedback shift register), built-

in-self tests, 685
Channel length

causes of variation in, 243
estimating inverter delay from, 246
in statistical analysis of variability, 267–268

Channel length modulation, as nonideal I-V
effect, 74, 78

Channels
formation of, 103–105
isolation of, 106–107
MOS transistor modes of operation, 62–63

Characteristic polynomials, LSFRs, 467, 685
Charge compensation, for crosstalk, 233–234
Charge pumps, 564–565
Charge sharing problem, dynamic gates

domino noise budget and, 359–360
overview of, 345–346
as pitfall of circuits, 356

Checkpoint, fault tolerance, 276
Chemical Mechanical Polishing (CMP), 107
Chemical vapor deposition (CVD), 23–24, 104
Chip design

Dennard's Scaling Law, 4–6
Moore's Law, 3–4

Chip-to-package connections, 551–552
CIF (Caltech Interchange Format), mask

descriptions, 54
Circuit boards, testing, 688–689
Circuit characterization

circuit simulation, 313–319
DC transfer, 315
logical effort, 315–318

Monte Carlo simulations, 319
path simulations, 313–315
power and energy, 318–319
simulating mismatches, 319

Circuit element enhancements, 124–129
bipolar transistors, 126
capacitors, 124
embedded DRAM, 126–127
fuses and antifuses, 128
inductors, 125–126
integrated photonics, 128
microelectromechanical systems, 128
non-volatile memory, 127–128
resistors, 124–125
three-dimensional integrated circuits, 129
transmission lines, 126

Circuit elements
instantaneous power consumed by, 182
SPICE, 289–290

Circuit extraction program, CAD, 132–133
Circuit families, 328–349

as alternative CMOS logic configurations,
327

Cascode Voltage Switch Logic, 339
comparing in 2-input multiplexers, 350
dynamic circuits. See Dynamic circuits
historical perspective, 369
online reference for more, 360
overview of, 328
pass-transistor circuits, 349–354
ratioed circuits, 334–338
static CMOS, 329–334

Circuit level
abstraction, 616. See also Structured design

strategies
computing delay using transient response,

143–146
timing optimization at, 143

Circuit simulation, 287–325
circuit characterization, 313–319
device characterization. See Device

characterization, circuit simulation
device models, 298–303
interconnect simulation, 319–322
introduction, 287–288
pitfalls and fallacies, 322–324
review and exercises, 324–325
SPICE. See SPICE (Simulation Program

with Integrated Circuit Emphasis)
Circuit simulators, 287
Circuits

combinational. See Combinational circuits
designing, 30, 42–45
interconnect increasing delay in, 220–221
sequential. See Sequential circuit design

Class chip failures, 696–697
CLBs (configurable logic blocks), FGPAs,

628–630
Clean rooms, for fabrication, 54–55
Clock buffers, 564
Clock chopper (or one-shot), 575–576
Clock delay, 567
Clock distribution, 403, 578
Clock domains, 416–417, 568
Clock frequency, 256, 261
Clock gating

activity factors and, 186

creating enabled latches and flip-flops with,
397–398

defined, 186
reducing power consumption with, 205, 208

Clock grids, 571
Clock skew

adaptive deskewing, 579–580
clock architecture minimizing, 569
conventional CMOS flip-flops with, 19,

394–395
defined, 566
example of, 566–567
H-trees and, 572
measuring, 567
sequencing element methodology for, 403
sequencing static circuits, 389–391

Clock skew budgets
clock skew sources, 578
developing, 577–579
overview of, 567–568, 577–578
statistical, 578–579

Clock stretchers, 575–576
Clock-tree routing, automated layout, 644
Clocked CMOS, 393
Clocked deracer, Itanium 2 processor, 404
Clocked sense amplifiers, 512–513
Clocks, 566–580

adaptive deskewing, 579–580
building sequential circuits, 16–18
definitions, 566–568
developing clock skew budgets, 577–579
for dynamic circuits, 339
global clock distribution, 571–575
global clock generation, 569–571
local clock gaters, 575–577
overview of, 566
resonant circuits in networks, 193–194
sequencing static circuits, 376–379
system architecture, 568–569
temporal locality and, 626
testing for debugging, 664

Clustered voltage scaling (CVS), 191, 208
CMOS (Complementary Metal Oxide

Semiconductor)
conventional flip-flops, 393–395
conventional latches, 392–393
DC transfer for static inverters, 88–89
development of, 3
fabrication and layout. See Fabrication and

layout
feature size of, 4–5
historical perspective on circuits, 207–208
mixing with transmission gates, 351–352
MOS transistors, 6–8
overview of, 6
physical design styles, 656

CMOS gates, 9–11
compound gates, 11–12
inverter, 9
multiplexers, 15–16
NAND gate, 9
NOR gate, 11
pass transistors and transmission gates,

12–14
sequential circuits, 16–19
tristates, 14–15

CMOS logic, 9–19

Index820

CMOS processing technology
contacts and metallization, 110–112
gate and source/drain formations, 108–110
gate oxide, 107–108
historical perspective, 137–138
introduction, 99–100
isolation, 106–107
layout design rules, 113–119
manufacturing issues, 133–135
metrology, 112–113
passivation, 112
photolithography, 101–103
pitfalls and fallacies, 136
review and exercises, 139–140
silicon dioxide (SiO2), 105–106
technology-related CAD issues, 130–133
wafer formation, 100
well and channel formation, 103–105

CMOS processing technology, enhancements,
119–130

beyond conventional CMOS, 129–130
circuit elements, 124–129
interconnect, 122–124
transistors, 119–122

CMPS (Chemical Mechanical Polishing), 107
Coarse-grained power gating, 198
Coding, datapath, 468–472

error-correcting codes, 468–470
Gray codes, 470–471
overview of, 468
parity, 468
XOR/XNOR circuit forms, 471–472

Colossus computer, 207
Column addition, datapath, 485–489

compressor trees, 486–487
hybrid multiplication, 489
overview of, 485
three-dimensional method, 487–489

Column circuitry, DRAMs, 525–526
Column circuitry, SRAMs, 510–514

bitline conditioning, 511
column multiplexing, 514
large-signal sensing, 511–512
overview of, 510–511
small-signal sensing, 512–513

Column decoders, ROM, 529
Column multiplexing, SRAM, 514
Combinational circuit design, 327–373

circuit design pitfalls, 354–360
circuit families. See Circuit families
historical perspective, 367–369
overview of, 327–328
pass-transistor circuits, 349–354
pitfalls and fallacies, 366–367
review and exercises, 369–374
Silicon-on-Insulator (SOI) design,

360–364
subthreshold circuit design, 364–366

Combinational circuits
defined, 16
logic verification principles, 670
sequential circuits vs., 375

Combinational logic with always/process
statements, HDLs, 724–734

blocking and nonblocking assignments,
731–732

case statements, 726–729

combinational logic, 732–733
if statements, 729–730
overview of, 724–726
sequential logic, 733–734
SystemVerilog casez statement, 731

Combinational logic, writing with HDLs,
702–713

bit swizzling, 711–712
bitwise operators, 702–703
comments and white space, 703
conditional assignment, 704–706
defined, 702
delays, 712–713
internal variables, 706–707
nonblocking assignments, 732–733
numbers, 708–709
precedence and other operators, 708
reduction operators, 703–704
z and x, 709–710

Comments, SPICE, 288–289
Comments, writing for HDLs, 703
Common Platform alliance, 138
Comparators, 462–464
Compilers, 34
Complementary CMOS gates, 9, 363
Complementary Metal Oxide Semiconductor.

See CMOS (Complementary Metal
Oxide Semiconductor)

Complementary Pass Transistor Logic (CPL),
352–354, 434–435

Complete feedback shift register (CFSR),
built-in-self tests, 685

Complete logic family, 343
Component declaration statement, VHDL,

713
Composite Current Source Model (CCSM),

174
Compound domino, 342
Compound gates

AND/OR gates vs. efficiency of, 14
CMOS, 11–12
static CMOS handling, 329–331

Compressor trees, 486–487
Concatenation operators, HDLs, 711
Concurrent signal assignment statement,

VHDL, 703
Conditional assignment, HDLs, 704–706
Conditional (or ternary) operator (?:),

SystemVerilog, 704–705
Conditional signal assignments, VHDL,

704–705
Conditional-sum adder, 447
Conduction complements, 11
Configurable logic blocks (CLBs), FGPAs,

628–630
Constant current extrapolation threshold

voltage extraction, 306
Constant field scaling, 255
Constant voltage scaling, 255–256
Contact cuts, 110–112
Contact design rules, 114–115
Contact printing, 101
Contacts

and metallization, 110–112
MOSIS design rules, 118

Contamination delay
computing with Elmore delay, 152–153

definition of, 141–142
in sequencing element delays, 405–408

Content-addressable memory (CAM), 535–536
Contention (crowbarred) X level, logic gates, 10
Contention currents, for static power, 197
Continuous assignment statement, Verilog,

703, 718
Control statements, SPICE, 289
Controllability of internal circuit node,

manufacturing tests, 679
Controlled Collapse Chip Connection (C4),

551
Coplanar waveguides, 126
Copper damascene, interconnect with, 122–123
Copper wires, 211
Core 2 Duo, 282–283
Core, in structured design, 31
Core-limited design, 47
Corners, process, 244
Costs

design. See Design economics
impact of scaling on, 258

Counters, 463–467
binary, 464–465
fast binary, 465–466
features of, 463–464
linear-feedback shift registers (LFSR),

466–467
ring/Johnson (or Mobius), 466
writing sequential logic with HDLs,

722–723
CPAs (carry-propagate adders), 434–458

carry generation and propagation, 436–438
carry-lookahead adder, 443–444
carry-ripple adder, 436
carry-select, carry-increment, and

conditional-sum adders, 444–447
carry-skip adder, 441–443
Domino implementation issues, 456
final addition using, 489–490
higher-valency tree adders, 450–451
Ling adders, 454–456
Manchester carry chain adder, 441
overview of, 434–436
PG carry-ripple addition, 438–441
sparse tree adders, 451–454
summary, 456–458
tree adders, 447–450
for unsigned array multiplier, 478–479
using in multiplication, 477

CPL (Complementary Pass Transistor Logic),
352–354, 434–435

Critical dimension structures, 117
Critical electric field, 76
Critical layers, photolithography, 102
Critical paths, timing optimization for, 142–143
Critical voltage, 76
Crosstalk

arranging wires to cancel, 233
causing delay faults, 681
controlling with interconnect engineering,

232–234
defined, 211, 222
delay effects, 222–223
inductive, 218, 225–227
as noise effect, 223–224

Crowbarred (contention) X level, logic gates, 10

Index 821

Cumulative distribution function (CDF), 263
Current, influence of scaling on, 256
Current source model, 174
Custom-design (or mixed-signal) flow

overview of, 645–646
substrate noise problem in, 565

Custom designs, 634–636
Custom mask layout, 634
Cute logos, pitfalls of, 136
Cutoff region of operation

detailed MOS gate capacitance model,
70–71

MOS transistor, 62–63
MOS transistor with long channel, 64–68

CVD (chemical vapor deposition), 23–24, 104
CVS (clustered voltage scaling), 191, 208
Cyclic redundancy checking, 684–685
Czochralski method, 100

D2D (die-to-die) process variations, 243–244
DAC (digital-to-analog converter), radio, 619
damascene process, 122–123
Data input, 16–19, 376–379
Data output, 16–19, 376–379
Data sheets

design economics and, 650
documentation and, 655–656
extracting logical effort from, 159–160

Datapath subsystems, 429–496
Boolean logical operations, 468
carry-propagate addition. See CPAs (carry-

propagate adders)
coding, 468–472
column addition, 485–490
comparators, 462–464
counters, 463–467
final addition, 489–490
flagged prefix adders, 459–461
multiple-input addition, 458–459
multiplication. See Multiplication, datapaths
one/zero detectors, 461–462
overview of, 429
parallel-prefix computations, 491–493
pitfalls and fallacies, 493–494
review and exercises, 494–496
shifters, 472–476
single-bit addition, 430–434
subtraction, 458

Datapaths
designing slice plans for, 50–51
on-chip structure, 48
operators, 429

.dc command, SPICE, 292
DC sources, SPICE, 290
DC specifications, documentation, 655–656
.dc statement, 315
DC sweeps, plotting current I-V characteristics,

304
DC transfer characteristics, 87–93

beta ratio effects, 90–91
finding, 315
noise margin, 91–92
overview of, 87
pass transistors and transmission gates, 92–93
static CMOS inverters, 88–89

DCVSPG (Differential Cascode Voltage
Switch with Pass Gate Logic), 353–354

Debugging
bug tracking during verification, 673
building design-for-test, 403
overview of, 662–664
principles of silicon, 673–676

Decoders, ROM, 528–529
Decoders, SRAM row circuitry

dynamic, 508–510
predecoding technique, 507–508
in row circuitry, 506–507
sum-addressed, 510

Decoupling (or bypass) capacitance, 559–560
Decrementers, parallel-prefix computations,

492
DEEP design rules, 117
Deep n-well, design rules, 113–114
Defensive design, 687
Degrees of synchrony, 419–420
delay-locked loops. See DLLs (delay-locked

loops)
Delays, 141–179

adaptive deskewing creating, 580
clock gaters creating, 576–577
comparison of adder architectures, 456–457
compensating for on-chip clock, 569–570
crosstalk creating, 222–223
definitions, 141–142
energy-delay optimization, 200–204
estimating by extracting gate capacitance,

308
estimating static RAM or register file,

520–522
fault testing for, 680–681
gate sizing under constraint of, 189
historical perspective on, 175–176
impact of variation on, 270–271, 273–274
intentional clock, 567
interconnect increasing circuit, 220–221
knowing design corners when interpreting,

245–246
linear delay model. See linear delay model
Logical Effort notation for, 170
Logical Effort of paths and. See Logical

Effort of paths
NAND ROM creating, 530–531
as nonideal I-V behavior, 87
pitfalls and fallacies, 174–175, 367
RC delay model. See RC delay model
review and exercises, 176–179
robustness pitfalls, 277
sequencing element, 405–408
in subthreshold regime, 365
timing analysis delay models, 173–174
timing optimization and, 142–143
transient response, 143–145
writing with HDLs, 712–713

Delta operator, 437–438
DeMorgan's law, 329
Dennard's Scaling Law

limitations of, 262
overview of, 4–6
transistor scaling, 255–256

Depletion load, nMOS circuits, 207
Depletion mode transistors, 335
Depletion regions, 61–63, 69
Deposition, 104
Depth of focus, photolithography, 102

Design abstractions. See Abstraction, levels of
Design corners

circuit simulation, 302–303
overview of, 244–246
robustness pitfalls, 277

Design economics, 646–655
design reuse, 654–655
fixed costs, 650–651
non-recurring engineering costs, 647–649
overview of, 646–647
personpower, 653
project management, 653–654
recurring costs, 649–650
schedule, 651–652

Design flows, 636–646
automated layout generation, 641–644
behavioral synthesis ASIC design flow,

637–641
mixed-signal or custom-design flow,

645–646
overview of, 636–637
pitfalls of inadequate, 657

Design for Manufacturability (DFM),
133–135

Design-for-test (DFT), 403
Design for Testability. See DFT (Design for

Testability)
Design margin, 409–411
Design methodology and tools, 615–657

cell-based design, 632–634
CMOS physical design styles, 656
data sheets and documentation, 655–656
design economics. See Design economics
design flows. See Design flows
exercises, 657
full custom design, 634–635
Gate Array and Sea-of-Gates design,

631–632
introduction, 615–617
microprocessor/DSP method, 627–628
pitfalls and fallacies, 657
platform-based design—system on a chip,

635–636
programmable logic method, 628–631
structured design. See Structured design

strategies
summary of options, 636

Design partitioning, 29–32
behavioral, structural and physical domains,

31–32
design abstractions, 30
overview of, 29–30
structured design, 31

Design reuse, 654–655
Design Rule Check (DRC), 53, 131–132
Design rule waiver, 113
Design rules. See Layout (or design) rules
Design verification, 53
DET (dual edge-triggered) flip-flops, 400–401
Detailed routing, automated layout, 643
Device characterization, circuit simulation,

303–314
comparison of processes, 311–313
effective resistance, 310–311
gate capacitance, 308
I-V characteristics, 303–306
parasitic capacitance, 308–310

Index822

process and environmental sensitivity,
313–314

threshold voltage, 306–308
Device models, circuit simulation, 298–303

BSIM models, 300
circuit simulation, 298–303
design corners, 302–303
diffusion capacitance models, 300–302
overview of, 298–299
SPICE Level 1 models, 299
SPICE Level 2 and 3 models, 300

Device under test (DUT), 667
Devices, as CMOS transistors, 7
DFM (Design for Manufacturability), 133–135
DFT (Design-for-test), 403
DFT (Design for Testability), 681–688

ad hoc testing, 681–682
built-in-self test, 684–687
IDDQ testing, 687
overview of, 681
scan design, 682–684

DIBL (drain-induced barrier lowering)
defined, 74
plotting current I-V characteristics, 305
threshold voltage and, 80

DICE (dual-interlocked cell) technique
radiation-hardened flip-flops, 402
radiation-hardened memory design,

543–544
Dickson charge pump, 564–565
Die-to-die (D2D) process variations, 243–244
Dielectric thickness, 195, 248–249
Differential Cascode Voltage Switch with Pass

Gate Logic (DCVSPG), 353–354
Differential flip-flops, 399–400
Differential keeper, 344
Differential Pass Transistor Logic (DPTL),

353–354
Differential (small signal) bitline sensing, 349,

511–513
Diffusion capacitance

circuit simulation and, 300–302, 322
comparing in CMOS processes, 312
computing delay using transient response,

144
computing Elmore delay, 151–152
layout dependence of, 153–154
in RC delay model, 154–155
SOI advantages, 362

Diffusion input noise sensitivity, 358, 392
Diffusion-notch-free cell, SRAMs, 504
Diffusion process, adding dopants in, 23–24
Diffusion regions, creating capacitance, 69–70
Digital cameras, Flash memory cards in, 531
Digital circuits, debugging, 675
Digital converter testing, 687
Digital low pass filtering, software radio, 620
Digital signal processor (DSP), 627–628
Digital-to-analog converter (DAC), software

radio, 619
Digital VLSI Chip Design with Cadence and

Synopsys CAD Tools (Brunvand), 56
Diodes, 7, 84–85
DIP (dual inline packages), 55, 550–551
Direct tunneling, gates, 83
Directed test vectors, 671
Dissipation, sources of power, 184–185

Distributed power supply models, 563–564
Divide-and-conquer trees. See Sklansky (or

divide-and-conquer) trees
Divided (or hierarchical) bitlines, 511–512
Divided (or hierarchical) wordlines, 508
Dividers, PPL, 583–584
DLLs (delay-locked loops)

bandwidth and stability, 570
clock system architecture, 568
defined, 580
delay line of, 588–589
global clock generators using, 569–570
loop dynamics, 589
loop filter, 589
overview of, 587–588
phase detectors, 589
pitfalls, 589–590
PLLs vs., 570, 588

Documentation, design tool, 656
Domains, integrated circuit, 31–32, 615
Domino gates

dual-rail, 342–343
dynamic circuits and, 341–342
dynamic decoders and, 508–510
historical perspective, 368
with keeper circuits, 343–345
Multiple-output domino logic, 347–348
NP Domino or NORA Domino, 348–349
zipper domino, 349

Domino implementation, 456–457
Done signal, differential flip-flops, 400–401
Donors, silicon, 99
Dopants

adding in fabrication process, 21–24
junction leakage and, 84–85
raising conductivity level of silicon, 99
silicon lattice and, 6–7
well formation requiring, 103–105

Dot diagrams
for contents of ROM, 527
for large multiplications, 477
for tree multiplier, 486

Dot (), SPICE control statements, 289
Double Pass Transistor Logic (DPL), 354
Double-patterning, photolithography, 103
Double-pumped register file, SRAMs, 515
Double rail logic, 13
Double Sampling with Time Borrowing

(DSTB), 410–411
DPL (Double Pass Transistor Logic), 354
DPTL (Differential Pass Transistor Logic),

353–354
Drain capacitance, 162–163
Drain-induced barrier lowering. See DIBL

(drain-induced barrier lowering)
Drain saturation voltage, 66
Drains

in detailed MOS gate capacitance model,
70–73

formation of, 108–110
junction leakage in heavily-doped, 84
MOS capacitance, 69–70
MOS transistors and, 8, 62–64

DRAM (dynamic RAM), 522–527
column circuitry in, 525–526
embedded, 526
enhancing CMOS circuit elements, 126

historical perspective, 544–545
minimizing leakage, 356
overview of, 522–523
soft errors, 251–252
SRAMS faster and easier to use than, 499
subarray architectures, 523–525

DRC (Design Rule Check), 53, 131–132
Drift, 267
Drift clock skew sources, 568, 578
Drive, linear delay model, 159
Drivers

defined, 142
low-swing, 235

Dry etching, 111
Dry oxidation, 106
DSP (Digital Signal Processor), 627–628
DSTB (Double Sampling with Time

Borrowing), 410–411
Dual edge-triggered (DET) flip-flops, 400–401
Dual inline packages (DIP), 55, 550–551
Dual-interlocked cell (DICE) technique

radiation-hardened flip-flops, 402
radiation-hardened memory design, 543–544

Dual-port SRAM cells, 505
Dual-rail domino gates, 342–343, 434–435
Dummy resistors, 124–125
DUT (device under test), 667
DVFS (dynamic voltage/frequency scaling),

191–192
DVS (dynamic voltage scaling)

for adaptive sequential elements, 409–411
improving parametric yield using, 275
supporting power/performance trade-offs,

208
types of, 191–192

Dynamic circuits, 339–349
defined, 375
domino logic, 341–342
dual-rail domino logic, 342–343
heyday of, 327
historical perspective, 367–369
keepers, 343–345
Logical Effort of dynamic paths, 346–347
multiple-output domino logic (MODL),

347–348
NP and zipper domino, 348–349
overview of, 339–341
secondary precharge devices, 345–346
sequencing, 411

Dynamic decoders, SRAM row circuitry,
508–510

Dynamic energy, and variation, 271–272
Dynamic gates, 508–509
Dynamic noise margins, 92
Dynamic output, latches, 392
Dynamic PLAs, 538–541
Dynamic power, 185–194

activity factor, 186–188
advantage of SOI, 363
capacitance, 188–190
circuit design and, 43
defined, 184
extracting gate capacitance for estimating,

308
frequency, 192–193
overview of, 185–186
resonant currents, 193–194

Index 823

short-circuit current, 193
voltage, 190–192

Dynamic RAM. See DRAM (dynamic RAM)
Dynamic storage, 375
Dynamic variations, 267
Dynamic voltage/frequency scaling (DVFS),

191–192

Early voltage, 78
Ebeams (electron beams), silicon debugging,

673–674
ECC (error-correcting codes), 468–470,

543–544
ECSM (Effective Current Source Model), 174
Edge rates, 141–142
Edge-triggered flip-flops, 16–19
Edge Triggered Latch (ETL), 396
EDP (energy-delay product), 203, 206
EDX (Energy Dispersive Spectroscopy), 113
EEPROMs (electrically erasable programmable

ROMs)
defined, 498, 530
as non-volatile memory, 127
programming with FN tunneling, 83
reducing demand for mask-programmed

ROMs, 527
Effective capacitance, 185
Effective Current Source Model (ECSM),

174
Effective oxide thickness (EOT), 108
Effective resistance

comparing in CMOS processes, 313
extracting for delay estimation, 310–311
interconnect and, 227–229
in RC delay model, 146–147, 154–155

Effective series inductance (ESL), 560
Effective series resistance (ESR), 560
Effort delay

computing Elmore delay, 153
in linear delay model, 155
Logical Effort notation for, 170

Effort, Logical Effort notation for, 170
80286 Processor, 278–279
Electrical effort

computing Elmore delay, 153
in linear delay model, 155
Logical Effort notation for, 170

Electrical failures, 675
Electrical rule check (ERC), 53, 645–646
Electrically erasable programmable ROMs. See

EEPROMs (electrically erasable
programmable ROMs)

Electromigration
automated layout analysis, 644
failure, causing interconnect wearout, 249

Electron beams (ebeams), silicon debugging,
673–674

Electronic fuses, 128
Electrostatic discharge (ESD), 252–253
Elmore delays

computing, 150–153
estimating parasitic delay of gate, 157
examining delay impact of wires, 220–221
interconnect and, 227–229

Embedded DRAM, 126–127, 526
Embedded Flash, 532
EMPTY flag, queue, 533

Enabled latches and flip-flops, in sequencing,
397–398

Enabled registers, writing with HDLs, 719–720
Endurance, Flash memory reliability, 532
Energy

comparing other adder architectures, 456–457
definition of, 182
harvesting from sun, 181
impact of interconnect on, 222–223
impact of variation on, 271–272
measuring consumption of, 318–319
transformations of, 181

Energy-delay optimization, 200–204
Energy-delay product (EDP), 203, 206
Energy Dispersive Spectroscopy (EDX), 113
Energy scavenging, 565–566
Engineering

costs of, 647–648
interconnect, 229–236

Enhancement mode transistors, 335
entity declaration, VHDL code, 700–701
Enumeration types, HDLs, 736–738
Environmental sensitivity, circuit simulation,

313–314
Environmental variables, robustness, 241–246
EOT (equivalent oxide thickness), 108
EOT (equivalent oxide thickness), long-

channel model, 66
Epitaxy, 104
EPROM (Erasable Programmable ROM),

498, 530
EQ

carry generation and propagation, 437–438
carry-skip adders and, 441–443

Equality comparator, 462
Equivalent oxide thickness (EOT), 108
Equivalent oxide thickness (EOT), long-

channel model, 66
Equivalent RC circuit models, RC delay model,

147–148
Erasable Programmable ROM (EPROM),

498, 530
ERC (electrical rule check), 53, 645–646
Error-correcting codes (ECC), 468–470,

543–544
Error-correcting, double error-detecting

(SEC-DED) codes, 469–470
Error function, normal random variables, 264
Errors, in circuit simulation, 287
ESD (electrostatic discharge), 252–253
ESI (effective series inductance), 564
ESPF (Extended Standard Parasitic Format),

643
ESR (effective series resistance), 564
Estimation, static power, 197
Etch rate, channel length variance, 267–268
ETL (Edge Triggered Latch), 396
Evaluation mode, dynamic circuits, 339, 341
Evaporation, depositing aluminum with, 111
Expressions, writing with HDLs, 702
Extended Standard Parasitic Format (ESPF),

643
Extreme ultraviolet (EUV) light,

photolithography, 103

Fabrication and layout, 19–29
fabrication process, 20–24

gate layouts, 27–28
inverter cross-section, 19–20
layout design rules, 24–26
overview of, 19
stick diagrams, 28–29

Fabrication plants (fabs), 54–55, 99–100
Failures, 246
Failures in time (FIT), and reliability, 247
Fall times, 141–142
False path problems, static timing analysis, 640
Fanout

computing Elmore delay, 153
extracting logical effort from datasheets,

159–160
in linear delay model, 155

Fanout-of-4. See FO4 (fanout-of-4) inverter
delay

Fast binary counters, 465–466
Fast input, compressors, 486
Fast variables, 244–246
FastCap, 217
FastHenry, 219
Fat-metal rules, 115–116
Fault coverage, manufacturing tests, 680
Fault models, manufacturing tests, 677–679
Fault tolerance, 275–277
Faults

delay, 680–681
detecting, 659–660
failures caused by, 246
survivability of system after, 679–680

FBB (forward body bias), 199–200
FD (fully depleted) SOI devices, 361
Feature size

of CMOS, 4–5
comparing in CMOS processes, 311–312
defined, 25
historical perspective, 278
layout rules in terms of, 113
voltage scaling with, 255

Feedback control, PLLs and DLLs, 570
FEOL (Front-End-of-Line) phase, CMOS

processing, 100
FETs. See MOSFETs (Metal Oxide

Semiconductor Field Effect Transistors)
FIB (Focused Ion Beam), 674
Field devices, CMOS process, 106–107
Field oxide, 20
Field-Programmable Gate Arrays. See FPGAs

(Field-Programmable Gate Arrays)
FIFO (First In First Out) queues, 535
Filtering, power supply, 564
Final addition, 489–490
Fine-grained power gating, 198
Finfets, 129–130
Finite impulse response (FIR) filter, 623–624
Finite state machines. See FSMs (finite state

machines), writing with HDLs
Finite state machines (FSMs), multicycle

MIPS microarchitectures, 36–38
FIR (finite impulse response) filter, 623–624
First droop, 563
First In First Out (FIFO) queues, 535
First-order model, 65
FIT (failures in time), and reliability, 247
Fixed costs, 650–651
Flagged prefix adders, datapaths, 459–461

Index824

Flash memory
defined, 530
as non-volatile memory, 127–128
overview of, 531–533
reducing demand for mask-programmed

ROMs, 527
Flattening hierarchies, 40
Flight time, global clock distribution, 571
Flip-chip bonding, 403, 561
Flip-chip connections, 551
Flip-flops

creating clock skew budget, 577–578
defined, 375
failure to report delay in, 422
scannable, 684
as static sequencing element, 16–19, 403

Flip-flops, circuit design
conventional CMOS, 393–395
differential, 399–400
dual edge-triggered, 400–401
enabled, 397–398
Klass Semidynamic Flip-flop (SDFF), 399
radiation-hardened, 401–402
resettable, 396–397
sequencing static circuits. See static circuits,

sequencing
True Single-phase Clock (TSPC), 402

Floating body voltage, SOI, 361–362
Floating gates, 530–532
Floating (high-impedance) Z output state, logic

gates, 10
Floorplanning

applying locality to, 626–627
automated layout, 643
mixed-signal or custom-design flow, 645–646
physical design, 45–48
pitfalls of designing large chip without,

237–238
Fluorosilicate glass, 123–124
FM (frequency modulation), 206, 619
FN (Fowler-Nordheim) tunneling, 83, 530
FO4 (fanout-of-4) inverter delay, 312

comparing in CMOS processes, 312
defined, 151–152
historical perspective, 175–176
in logic gate, 158
measuring in SPICE, 294–296
sequencing element delays, 405

Focused Ion Beam (FIB), 674
Folded bitline subarrays, DRAM, 524–525
Folded layout, for diffusion capacitance, 154
Footed dynamic gates, 340
Forbidden zone (indeterminate region), noise

margins, 91
Formal verification tools, 53, 640
FORTRAN, SPICE developed in, 288
Forward biased diode, 7
Forward body bias (FBB), 199–200
4004 Processor, 278–279
Fourteen Ways to Fool Your Synchronizer, 418
Fowler-Nordheim (FN) tunneling, 83, 530
FPGAs (Field-Programmable Gate Arrays)

comparing CMOS design methods, 636
logic verification in, 660–661
programmable logic using, 628–631
testing in university environment with, 690

Freeze spray, 86

Frequency
chips operating at low, 693
dynamic power and, 192–193
historical perspective, 278
minimizing inductance, 219–220
multiplication, 570–571
software radio design, 619–620

Frequency modulation (FM), 206, 619
Fringing capacitance, computing, 215–217
Front end, design flow, 637
Front-End-of-Line (FEOL) phase, CMOS

processing, 100
FSMs (finite state machines), multicycle MIPS

microarchitectures, 36–38
FSMs (finite state machines), writing with

HDLs, 735–739
example of, 735–736
with inputs, 738–739
overview of, 735
state enumeration, 736–737

Full adders, single-bit addition, 430–434
Full custom design, 634–636
FULL flag, queue, 533
Fully depleted (FD) SOI devices, 361
Fully restored logic gate, 13
Functional blocks, 31
Functional failures, 675
Functional yield, 267
Functionality tests, 659–661
Functionality, variation impacting, 272–273
Fundamental carry operator, 437–438
Funnel shifter, 473–475
Fused multiply-add unit, 490
Fuses, 128

Gain cells, DRAM, 526
Gajski-Kuhn Y chart, 616
Ganged CMOS, 338
Garbage in, garbage out (GIGO), 287
Gate Array (GA) design, 631–632
Gate capacitance

causing error in linear delay model,
162–163

comparing in CMOS processes, 312
computing delay using transient response,

144–146
in detailed MOS model, 70–73
extracting for delay estimation, 308
gate sizing under delay constraint and,

188–190
in RC delay model, 147
scaling influencing, 256
in simple MOS model, 68–69

Gate delays
historical perspective, 368
impact of variation on matched, 273–274
influence of scaling on, 256
pitfalls of circuit simulation, 323

Gate dielectrics, 120–121
Gate extension, 114
Gate-induced drain leakage (GIDL), 84–85,

196–197
Gate leakage

impact of scaling on power design, 261
in nominally OFF transistors, 75
as nonideal I-V effect, 80
overview of, 82–84

as source of static power, 195–196
temperature independence of, 85

Gate-level carry-save adder, 486
Gate-level primitives, SystemVerilog, 754
Gate oxides

CMOS technology, 107–108
defined, 20
isolation and, 106–107
MOS transistors, 61–62
oxide wearout, 247–249
thickness of, 119–120

Gate shrink, 255
Gate stack, 108
Gate tunneling, 83
Gates

CMOS layout, 27–28
CMOS logic, 9–11
expressing delay in terms of drive, 159
extracting logical effort from datasheets,

159–160
formation of, 108–110
measuring logical effort of, 156, 315–318
measuring parasitic delay of, 156–158,

315–318
MOS transistor architecture, 8, 61–62
pitfalls of, 174–175, 206
selecting for subthreshold circuits, 365–366
and source/drain formations, 108–110
testing for debugging, 663
verifying in manufacturing tests, 665

Gateway Design Automation, 700
Gaussian margin, SRAMs, 503
GDS (GDS II Stream Format), mask

descriptions, 54
generate command, VHDL, 704
Generate, single-bit addition, 430–434
generate statements, HDLs, 744–745
generic statement, SystemVerilog, 743–745
Geometric programming, 171
Geometry dependence, as nonideal I-V effect, 86
Germanium, for mobility, 121–122
GIDL (gate-induced drain leakage), 84–85,

196–197
GIGO (garbage in, garbage out), 287
Glitches, and activity factors, 188
Global bitlines, 511–512
Global clocks

clock system architecture, 568–569
defined, 566
distribution of, 571–575
generators, 569–571
local clock gaters receiving, 575–577

Global routing, automated layout, 643
.global statement, SPICE, 295
Global wires, 257–259
Global wordlines, SRAMs, 508
GND (GROUND)

CMOS inverter, 9
CMOS NAND gate, 9
DC transfer for static CMOS inverter, 89
low voltage of MOS transistor, 8
preventing latchup effect, 253–254
strength of signal and, 12

Golden models, 660
Graph isomorphism program, 645–646
Graphs, 667
Gray cells, adder architecture, 438–440

Index 825

Gray codes, 419
Gridless routers, automated layout, 643
Grids, global clock distribution, 571, 574–575
Ground select transistor, NAND Flash, 531
Group generate signals, 437

H-trees, global clock distribution, 571–572,
574–575

Half adders, 430–434
Half-cycles, flip-flops, 377
Half-range, uniform variations as, 242
Halo doping, 110
Hamming distance, 468–470
Han-Carlson tree

comparing adder architectures, 456–458
higher-valency tree adders, 450–452
overview of, 449–450
sparse tree adder, 453–454

Handlers, IC test, 669–670
Handshaking lines, 416–417
Hanging, 690–691
Hard edges in systems, and clock skew, 386
Hard multiple, 481
Hardware Description Languages. See HDLs

(Hardware Description Languages)
Hardware Description Languages (HDLs),

combinational logic
bit swizzling, 711–712
bitwise operators, 702–703
comments and white space, 703
conditional assignment, 704–706
defined, 702
delays, 712–713
internal variables, 706–707
numbers, 708–709
precedence and other operators, 708
reduction operators, 703–704
z and x, 709–710

Hardware Description Languages (HDLs),
combinational logic with always/
process statements, 724–734

blocking and nonblocking assignments,
731–732

case statements, 726–729
combinational logic, 732–733
if statements, 729–730
overview of, 724–726
sequential logic, 733–734
SystemVerilog casez statement, 731

Hardware Description Languages (HDLs),
MIPS processor example

defined, 755
SystemVerilog, 757–765
testbench, 756
VHDL, 766–775

Hardware Description Languages (HDLs),
sequential logic, 717–725

counters, 722–723
enabled registers, 719–720
latches, 721–722
multiple registers, 720–721
registers, 717–718
resettable registers, 718–719
shift registers, 724

Harnesses. See Testbenches
HDLs (Hardware Description Languages),

699–784

ASIC design flow, 637–641
finite state machine (FSM), 735–739
memory, 745–749
modules, 700–701
parameterized modules, 742–745
specifying in logic design, 40–42
structural modeling, 713–716
SystemVerilog netlists, 754–755
testbenches, 749–754
type idiosyncrasies, 740–742
understanding, 699
using logic simulator to verify design of, 287
VDHL, 700
Verilog and SystemVerilog, 700

Heat dissipation, package, 552–553
Heat gun, for temperature dependence, 86
HI-skew gates, 332–333
Hierarchical (or divided) bitlines, 511–512
Hierarchical (or divided) wordlines, 508
Hierarchy

designing complex systems, 716
floorplan, 46
hardware and software design, 627
logic design, 40
structured design, 31, 620–622
using regularity at all levels of design, 623

High-impedance (floating) Z output state, logic
gates, 10

High-k gate dielectrics, 120–121
High-level language, 34
HIGH noise margin, 91–92
High-power design, 556
High-voltage transistors, 122
Higher radix, Booth encoding, 484–485
Higher-valency tree adders, 450–451
Historical perspectives

array subsystems, 544
CMOS processing technology, 137–138
combinational circuit design, 367–369
delay, 175–176
power, 207–208
robustness, 278–283
transistor development, 1–6

Hold margin, SRAM cells, 501–502
Hold times, 383–386, 405–408, 422
Horizontal path, column addition, 485
Hot carriers, oxide wearout from, 248
Hot spots

affecting robustness, 243
as pitfall of circuits, 357
probing using infrared imaging, 674

HSPICE
computing wire capacitances, 217
defined, 288
design corners, 302–303
interconnect simulation, 320
optimization capabilities, 296–298
other commands, 298
subcircuits and measurement, 294–296

Hybrid clock distribution network, 574–575
Hybrid multiplication, column addition, 489
Hydrofluoric acid, in fabrication, 23

I/O (input/output)
chip-to-package connections, 551
clock system architecture, 568
on-chip structure, 48

package options, 550–551
preventing latchup effect in pads, 254

I-V (current and voltage) characteristics
of long channel MOS transistors, 64–68
running set of simulations to plot, 303–306
of transistor DC analysis, 292

I-V (current and voltage), nonideal behavior of,
74–87

channel length modulation, 78
geometry dependence, 86
leakage, 80–85
mobility degradation/velocity saturation,

75–78
overview of, 74–75
temperature dependence, 85–86
threshold voltage effects, 79–80

IDDQ testing, 687–688
Ideal model, 65
Idioms, HDL, 699
IEDM (International Electron Devices

Meeting), 137–138
IF (Intermediate Frequency) signal, software

radio, 619–620
if statements, HDL always/process

statements, 729–730
IMAGE language, 668
Immersion lithography, 102
Impedance, power supply, 561–562
Implantation, 104, 108–109
Impurity atoms. See Dopants
.include command, SPICE, 292, 295
Incrementer (or up counter), 464–465
Incrementer, parallel-prefix computations,

491–492
Indeterminate region (or forbidden zone), noise

margins, 91
Inductance

effects of interconnect, 224–227
interconnect modeling and, 218–219
skin effect minimizing, 219

Inductive crosstalk, 218
Inductors, 125–126
Infant mortality, bathtub curve, 247
Infrared (IR) imaging, probing hot spots, 674
initial statement, SystemVerilog, 750–754
Inphase signal, IQ modulator, 618–619
input. See I/O (input/output)
Input arrival times, linear delay model errors,

161
Input, finite state machines, 738–739
Input ordering delay, static CMOS, 331
Input slope, 161, 407
Input threshold, 88–89
Input vector control, 200
Input waveforms, 323
Instantaneous power, 182–183
INTEGER type, VHDL, 740
Integrated circuits

common packages, 549–551
domains, 615
invention of, 2

Integrated photonics, 128
Intel386 Processor, 278–280
Intel486 Processor, 279–280
Intellectual property (IP) blocks, 621, 654–655
Intentional skew, 567
Intentional time borrowing, 389

Index826

Inter-die process variation, 243
Interconnect, 211–239

circuit simulation, 319–322
crosstalk delay effects, 222–223
crosstalk noise effects, 223–224
defined, 211
effective resistance and Elmore delay,

227–229
impact on energy, 222–223
increasing circuit delay, 220–221
inductive effects, 224–227
Logical Effort limitations, 171
Logical Effort with wires, 236–237
overview of, 211
pitfalls and fallacies, 237–238
pitfalls of circuit simulation, 322
as process enhancement, 122–124
review and exercises, 238–239
scaling and, 257–259
variables effecting robustness, 243
wearout, 249–251
wire geometry, 211–213

Interconnect engineering, 229–236
crosstalk control, 232–234
low-swing signaling, 234–235
overview of, 229
regenerators, 236
repeaters, 230–232
width, spacing and layer, 229–230

Interconnect modeling, 213–220
capacitance, 215–217
inductance, 218–219
overview of, 213–215
skin effect, 219–220

Intermediate Frequency (IF) signal, software
radio, 619–620

Internal circuit node, manufacturing test
principle, 679

Internal variables, writing with HDLs,
706–707

International Electron Devices Meeting
(IEDM), 137–138

International Technology Roadmap for
Semiconductors (ITRS), 258

Intra-die process variation, 243
Intrinsic capacitance, 70
Intrinsic state, silicon, 99
Introduction

circuit design, 42–45
CMOS fabrication and layout. See

fabrication and layout
CMOS logic. See CMOS logic
design partitioning, 29–32
design verification, 53
fabrication, packaging and testing, 54–55
history, 1–6
logic design, 38–42
MIPS processor example, 33–38
MOS transistors, 6–8
physical design. See Physical design
preview, 6
review and exercises, 55–59

Inversion region, MOS transistor, 61–62
Inverters. See also FO4 (fanout-of-4) inverter

delay
choosing number to add for least delay,

166–169

CMOS, 9
cross-section of, 19–20
cross-section of SOI, 361
DC transfer for static CMOS, 88–89
fabrication process, 20–24
gate layouts for, 27
as repeaters, 230–231
as static CMOS logic gate, 9–11
transient analysis using SPICE, 292–294

Inverters, tristate, 15–16
Ion implantation, 23–24, 104
IP (intellectual property) blocks, 621, 654–655
IQ modulator, radio transmitter

applying hierarchy, 622
applying regularity, 624–625
software radio design, 618–619

IR drops
overview of, 557–558
power supply noise caused by, 356–357
preventing in high-power architectures, 556

IR (infrared) imaging, probing hot spots, 674
Isolated polysilicon lines, 267–268
Isolated regions, of contacted diffusion, 70
Isolation, CMOS technology, 106–107
Isolation transistors, 512
Itanium 2 sequencing methodology, case study,

423
Iterative solutions for sizing, 171–173
ITRS (International Technology Roadmap for

Semiconductors), 258

Jamb latches, 393
Jitter, 267
Jitter clock skew sources, 568, 578
Johnson counter, 466
Junction grading coefficient, 72
Junction leakage

as nonideal I-V effect, 80
overview of, 84–85
as source of static power, 196–197

Junction temperatures, 242–243
Junctions

building deep using deposition, 104
building silicon semiconductor, 99

K

= A

+ B comparator, 463–464
Keeper circuit, 343–345
Kilby, Jack, 1–2
Kill, single-bit addition, 430–434
Kill value (logical and arithmetic shifts), 472
Klass Semidynamic Flip-flop (SDFF), 399
Knowles tree, 449–450, 456–458
Kogge-Stone tree

comparison of adder architectures, 456–458
flagged prefix adders using, 460
higher-valency tree adders using, 450–452
overview of, 448–450
sparse tree adders using, 453–454

L di/dt noise, 558–559
L-model wire, 213
L2L (lot-to-lot) process variations, 243
Ladner-Fischer tree

comparison of adder architectures, 456–458
overview of, 449–450
sparse tree adders using, 453

Lambda design rules, 136

Land Grid Array (LGA) packages, 550–552
Large-scale integration (LSI) circuits, 4
Large-signal (single-ended) bitline sensing,

511–512
Large SRAMs, 515–517
Laser Voltage Probing (LVP), silicon

debugging, 674
Last In First Out (LIFO) queues, 535
Latches

defined, 375
metastable state in, 412–415
as sequencing element, 16–18
writing sequential logic with HDLs, 721–722

Latches, in circuit design
conventional CMOS, 392–393
enabled, 397–398
incorporating logic into, 398–399
pulsed, 395–396
radiation-hardened, 402
resettable, 396–397
sequencing static circuits. See static circuits,

sequencing
time borrowing, 386–389
True Single-phase Clock (TSPC), 402

Latchup, as reliability problem, 253–254
Lateral diffusion, 23–24
Lateral scaling, 255–256
Lattice, silicon, 6–7
Layers

density rules for manufacturing, 134
interconnect design using, 260
interconnect engineering and, 229–230

Layout. See also Fabrication and layout
automated layout generation, 641–644
custom mask, 634
decoder, 507–508
full adder, 433–434
gate, 27–28
high-speed clock distribution networks, 575
statistical analysis of variability of, 269
symbolic, 634
timing optimization at level of, 143
typical standard cell, 633
verifying using design rule checker, 53

Layout dependence of capacitance, RC delay
model, 153–154

Layout generation (physical synthesis), design
flow, 637, 641–644

Layout (or design) rules
contact rules, 114–115
introduction to, 24–26
metal rules, 115–116
micron design rules, 118–119
MOSIS scalable CMOS, 117–118
other rules, 116
overview of, 113
pitfalls of waiving, 136
scribe line and other structures, 116–117
summary, 116
transistor rules, 114
via rules, 116
well rules, 113–114

Layout versus schematic (LVS), 53, 646
LCR (leakage current replica) keeper, 345
LDD (lightly doped drain), 108–110
Leakage, 80–85

controlling in dynamic circuits, 343–345

Index 827

controlling in low-power SRAMs, 518–519
controlling problem of subthreshold,

129–130
controlling with clock gating, 208
domino noise budget example of, 359
gate, 82–84
impact of scaling on, 261
impact of variation on, 271–272
junction, 84–85
as nonideal I-V behavior, 87
overview of, 80–81
as pitfall of circuits, 356
pitfall of ignoring, 94, 206
power dissipation through, 195
stress-induced leakage current, 248–249
subthreshold, 81–82

Leakage current replica (LCR) keeper, 345
Lean Integration with Pass Transistors

(LEAP), 352–353
LEAP (Lean Integration with Pass

Transistors), 352–353
LER (line edge roughness), channel length

variance, 267–268
Level 1 models, SPICE circuit simulation, 299
Level 2 and 3 models, SPICE circuit

simulation, 300
Level-converter flip-flops, 408–409
Level converters, 190–191, 408–409
LF (loop filter)

DLL, 589
global clock generators, 569
PPL, 586

LGA (Land Grid Array) packages, 550–552
lib statement, 302
Library of gates, 41, 633
library use clause, VHDL code, 700–701
LIFO (Last In First Out) queues, 535
Lightly doped drain (LDD), 108–110
Line edge roughness (LER), channel length

variance, 267–268
Linear delay model, 155–163

delay in logic gate, 158–159
drive, 159
extracting logical effort from datasheets,

159–160
limitations, 160–163, 171
logical effort, 156
overview of, 155
parasitic delay, 156–158

Linear extrapolation threshold voltage
extraction, 307

Linear-feedback shift register (LFSR),
466–467, 685

Linear region of operation
detailed MOS gate capacitance model,

70–71
MOS transistor, 62–63
MOS transistor with long channel, 64–68

Liner oxide, 107
Ling adder, 454–457
Literals, PLAs, 537
Lithographically friendly 6T SRAM cell,

504–505
LO-skew gates, 332–333
Load board, as test fixture, 666–668
Load, defined, 142
Local bitlines, 511–512

Local clock gaters, 566, 575–577
Local interconnect, 111
Local Oscillator (LO), software radio, 619–620
Local Oxidation of Silicon (LOCOS)

processes, 106
Local voltage dithering, 192
Local wires, interconnect scaling, 257–258
Local wordlines, SRAMs, 508
Locality

in hardware and software design, 627
in structured design, 31, 626–627

Lock choppers, 395–396
LOCOS (Local Oxidation of Silicon)

processes, 106
Log-normal distribution, random variables, 266
Logarithmic adders. See Tree adders
Logarithmic shifters, 472
Logic

abstraction, 616. See also Structured design
strategies

analyzers, 663–664, 668, 686
CMOS. See CMOS logic
fault tolerance, 276–277
incorporating into latches, 398–399

Logic design, 38–42
defining block diagrams, 38–40
defining top-level interfaces, 38
floorplanning influencing, 45
hardware description languages, 40–42
hierarchy, 40
overview of, 30, 38

Logic gates
applying linear delay model to, 158–159
designing adders using, 431
equivalent RC circuits and, 147–148
finding DC transfer characteristics/noise

margins of, 315
history of, 3

Logic level, 143, 493–494
Logic simulators, 41, 287
Logic synthesis tools, 41, 457–458
logic type, standard Verilog, 740
logic type, SystemVerilog, 700–701
Logic verification

defined, 659
MIPS processor example, 665
overview of, 660–662
principles, 670–673

Logical clocks, 566
Logical effort

computing Elmore delay, 153
extracting from datasheets, 159–160
in linear delay model, 155, 156
measuring for each input of gate, 315–318
notation for, 170
of transmission gate circuit, 352
with wires, 236–237

Logical effort of paths, 163–173
choosing number of stages, 166–169
delay in multistage logic networks, 163–166
in dynamic circuits, 346–347
estimating delay of static RAM/register files,

520–522
limitations of, 171
notation for, 170
sizing, 171–173
summary and observations, 169–171

Logical shifts, 472–476
Logos, pitfalls of placing on chip, 136
Long-channel I-V, 64–68. See also I-V (current

and voltage), nonideal behavior of
Long-channel regime, 77
Lookahead adders. See Tree adders
Loop dynamics

DLL, 589
PPL, 586–587

Loop filter. See LF (loop filter)
Lot-to-lot (L2L) process variations, 243
Low-k dialectrics, 123–124, 211–212
LOW noise margin, 91–92
Low power architectures

energy scavenging for, 565–566
microarchitectures, 204
on-chip power distribution network in, 556
overview of, 204–206
parallelism and pipelining, 204–205
power management modes, 205–206
reducing dependence on fossil fuels, 181

Low-power SRAMs, 517–520
Low-swing signaling system, 234–235
LSFR (linear-feedback shift register), 466–467,

685
LSI (large-scale integration) circuits, 4
LVP (Laser Voltage Probing), silicon

debugging, 674
LVS (layout versus schematic), 53, 646

Machine language, 34
Macro substitution, 646
Magnetic fields, in inductance, 218
Magnitude comparator, 462
Majority carriers, MOS transistors as, 61
Majority gates, 431
Manchester carry chain

carry-skip adder stage, 443
MODL design, 347

online reference for, 441
Manufacturability, design for, 646, 687–688
Manufacturing

CMOS processing technology issues, 133–
135

costs of prototype, 648–649
failures, 675
variables affecting robustness, 241–246,

269–270
Manufacturing test principles, 676–681

Automatic Test Pattern Generation, 680
controllability, 679
delay fault testing, 680–681
fault coverage, 680
fault models, 677–679
observability, 679
purpose of manufacturing test, 676–677
repeatability, 679
survivability, 679–680

Manufacturing tests, 659, 664–665
Market, semiconductor, 1–2
Mask database, 130, 132–133
Mask descriptions, chip design, 54
Mask-programmed ROMs, 127, 530
Masks

contact rules, 115
defining wells by separate, 105
metal rules, 116

Index828

in photolithography process, 101–103
scribe line rules, 117
transistor rules, 114
via rules, 116
well design rules, 114

Master-checker configuration, fault tolerance,
276

Masuoka, Fujio, 531
Matched delays, variation effecting, 273–274
Matching, CAM, 535–536
Matchlines, CAM, 535–536
Max-delay constraints, 379–383, 640
Max-time, 142
Maximal-length shift register, 467
Maximum of random variables, 265–266
MCF (Miller Coupling Factor), 222
Mealy FSM machines, 735
Mean time between failures (MTBF), and

reliability, 247
Meander structure, 124
.measure statement, SPICE, 295, 319
Measurement, subcircuit, 294–296
Medium-scale integration (MSI), 4, 633
Mega electron volt levels (MeV), 104
Megahertz Wars, 282
Memory

fault tolerance and, 275–277
multiplexers and, 15–16
power of density of logic vs., 204
sequential circuits and, 16
writing with HDLs, 745–749

Memory BIST, 686
Memory elements, 375
MEMS (microelectromechanical systems), 128
Metal

choosing orientation of, 48
design rules, 115–116
parasitic effects of metal fill, 136
standard cells and, 48
wire geometry and, 211–213

Metal gates, challenges of, 121
Metal Oxide Semiconductor Field Effect

Transistors. See MOSFETs (Metal Oxide
Semiconductor Field Effect Transistors)

Metal-Oxide-Semiconductor transistors. See
MOS transistors

Metal slotting rules, 135
Metal to n-active contact, 114–115
Metal to p-active contact, 114–115
Metal to polysilicon contact, 115
Metal to well or substrate contact, 115
Metallization, 110–112
Metastability

mistakes made with synchronizers, 418
sequencing element delays and, 406
synchronizers and, 412–415

Metrology, 112–113
MeV (mega electron volt levels), 104
Microarchitectures

floorplanning influencing, 45
implementing multicycle MIPS, 34–38
overview of, 30
reducing power consumption with, 204
timing optimization for, 143

Microbatteries, 566
Microelectromechanical systems (MEMS), 128
Micron design rules, 118–119

Microprocessors
comparing CMOS design methods, 636
custom-designed, 635
platform-based, 635–636
solving system design problem with,

627–628
using programmable logic vs., 628

Microstrips, 126
Miller Coupling Factor (MCF), 222
Miller effect, 163
Min-delay constraints

between flip-flops, 394–395
sequencing static circuits, 383–386
timing analyzer checking for, 640

Min-time, 142
minimum energy, 200–203
minimum energy delay-product, 203
minimum energy under delay constraint,

203–204
Minority carrier injection effect, 357–359
Minterms, PLAs, 537
MIPS processor example, 33–38
MIPS architecture, 33–34

multicycle MIPS microarchitectures, 34–38
overview of, 33
testing, 665–666

MIPS processor example, HDLs, 755–775
defined, 755
SystemVerilog, 757–765
testbench, 756
VHDL, 766–775

Mirror adders, 431–432, 434
Mismatches, modeling between currents, 319
Miss signal, CAMs, 536
Mixed-signal (or custom-design) flow

overview of, 645–646
substrate noise problem in, 565

Mobility
defined, 66
enhancing CMOS process with higher, 121

Mobility degradation, 74–78
Mobility ratio, 67
Mobius counter, 466
ModelSim logic simulator, 287
Modified Baugh-Wooley multiplier, 479–480
Modified Booth encoding, 481
MODL (multiple-output domino logic),

347–348
Modularity

defined, 18
hardware and software design, 627
mixed-signal or custom-design flow, 646
structured design, 31, 625–626

Modules, defined in Verilog, 41
Modules, writing with HDLs

modeling testbenches, 749–754
overview of, 700–701
writing parameterized, 742–745

Modulo 2n – 1 addition operation, flagged
prefix adder, 460

Moment matching technique, CAD, 228
Monotonically rising, 341
Monotonicity, 341
Monte Carlo simulations

assessing impact of variations, 269
finding effects of random variations on

circuit, 319

for process spread, 688
SRAM cell stability, 503

Moore FSM machines, 735
Moore’s Law, 3–6
MOS transistors, 61–97

C-V characteristics, 68–73
creating, 6–8
DC transfer characteristics, 87–93
introduction, 61–64
long-channel I-V characteristics, 64–68
nonideal I-V effects. See I-V (current and

voltage), nonideal behavior of
pitfalls and fallacies, 93–94
review and exercises, 94–97

MOSFETs (Metal Oxide Semiconductor Field
Effect Transistors)

CMOS technology and, 7
high-voltage, 122
historical perspective, 207
overview of, 3

MOSIS
layout design rules, 25–26
mask descriptions, 54
scalable CMOS design rules, 117–118

MRCMOS (Multiple Threshold CMOS),
198

MSI (medium-scale integration), 4, 633
MTBF (mean time between failures), and

reliability, 247
Multicycle MIPS microarchitectures, 34–38
Multilevel Flash cells, 532
Multilevel-lookahead adders. See Tree adders
Multiple bank design, 515
Multiple-input addition, datapaths, 458–459
Multiple-output domino logic (MODL),

347–348
Multiple registers, 720–721
Multiple Threshold CMOS (MTCMOS), 198
Multiple threshold voltages, 199, 334
Multiplexers

CMOS, 15–16
creating enabled latches and flip-flops,

397–398
transmission gate full adders forming, 434

Multiplexing, column circuitry in DRAMs,
525–526

Multiplication, datapaths, 476–485
booth encoding accelerating, 480–485
column addition, 485–489
final addition, 489–490
fused multiply-add, 490
hybrid, 489
overview of, 476–477
serial, 490
summary, 490
two’s complement array, 479–480
unsigned array, 478–479

Multiported SRAMs, and register files,
514–515

Multiprocessor, software radio as, 624–625
Multistage logic networks, delay in, 163–166
Mutual inductive coupling, 227
Mux-latch, 399

N-bit adders, 434–436
n-diffusion, fabrication, 23–24
n-select mask, CMOS transistors, 114

Index 829

n-type semiconductors, 6–7
n-type transistors. See nMOS transistors
n-well process

CMOS technology, 103
design rules, 25–26, 113–114
fabrication process, 21–24
gate layouts, 27
inverter cross-section with, 19–20
well structure in triple-well process,

104–105
Naffziger pulsed latch, 396
NAND Flash memories, 531
NAND gates

asymmetric, 332
bubble pushing using, 329
CMOS, 9
input ordering delay effect, 331
layouts, 27–28
measuring logical effort of, 156
predecoding technique, 507–508
as static CMOS logic gate, 9–11

NAND operation, 468
NAND ROMs, 530–531
Nanotechnology, and leakage, 195
Nanotechnology, future of, 130
Nanotubes, 130
Narrow channel effect, 80
NBTI (negative bias temperature instability),

oxide wearout, 248
NCO (Numerically Controller Oscillator),

622–624
Negative bias temperature instability (NBTI),

oxide wearout, 248
Negative-edge triggered flip-flops, 18–19
Negative photoresist, 101
Negative slack, 142
Negative temperature coefficient, 85
Nested polysilicon lines, channel length

variance, 267–268
Netbooks, 283
Netlists, 43–44, 754–755
nMOS transistors

architecture, 8
characteristics of ideal, 67–68
CMOS compound gates, 11–12
CMOS inverter, 9
CMOS logic gates, 9–11
CMOS NAND gate, 9
CMOS NOR gate, 11
CMOS technology and, 7
DC transfer for static CMOS inverter,

88–89
development of, 3
historical perspective, 207
modes of operation, 61–63
pass transistors and transmission gates,

12–14
pitfalls of pass, 94
well structure in triple-well process,

104–105
Width/Length ratio of, 26–27

Noise
automated layout analysis, 644
in crosstalk, 223–224
diffusion input sensitivity of circuits, 358
domino noise budget, 359–360
reducing on dual-rail busses, 343

substrate, 565
using power supply filtering for, 564

Noise feedthrough (or propagated noise), 92,
360

Noise margins (or noise immunity)
addressing in dynamic circuits with keepers,

343–345
DC transfer characteristics, 91–92
determining, 343–345
finding for logic gates, 315

Nominal (typical) variables, 244–246
Non-recurring engineering cost. See NRE

(non-recurring engineering cost)
Nonblocking assignments, HDLs, 717,

731–734
Nonideal I-V effects. See I-V (current and

voltage), nonideal behavior of
Nonlinear delay model, 174
Nonrestoring circuit, tristate buffer, 14
Nonsaturated mode of operation, 63
Nonvolatile memory. See NVM (nonvolatile

memory)
NOR gates

bubble pushing using, 329
CMOS, 11
dynamic decoders and, 509–510
ganged CMOS and, 338
input ordering delay effect, 331
measuring logical effort of, 156

NOR operation, 468, 537–539
NOR ROMs, 527, 530
NOR structure, PLA, 628–629
NORA (NO RAce) Domino, 348–349
NORA (NO RAce) technique, 394
Normal distributions, modeling variations as,

242
Normal random variables

behavior of maximum, 265–266
exponential of, 266
overview of, 264–265
sums of, 264–265

NOT gate, 9
NP Domino, 348–349

npn bipolar transistors, 126
NRE (non-recurring engineering cost)

comparing CMOS design methods, 636
cost of chip and, 56
design economics of, 647–649
using gate arrays to contain, 631–632

Numbers, writing with HDLs, 708–709
Numerical apertures, photolithography, 102
Numerically Controller Oscillator (NCO),

622–624
NVM (nonvolatile memory)

overview of, 127–128
ROM as, 527–529
vs. volatile, 497

Off-axis illumination, photolithography, 103
OFF current, variation of, 270
OFF transistors

CMOS inverter, 9
CMOS logic. See CMOS logic
long-channel model, 65
MOS transistors as, 8, 62–63
sources of leakage in, 74–75

On-chip bypass capacitance
overview of, 559–560

power distribution system model, 565
power supply impedance and, 561–562
power supply step resistance and, 562–563

On-chip power distribution network, 556–557
ON current

CMOS logic. See CMOS logic
impact of variation on, 270
MOS transistors as, 8

ON transistors
CMOS inverter, 9
long-channel model, 65
mobility effect dominating, 75
MOS transistor, 62–63

One-shots, 395–396
One-time programmable (OTP) memory, 127,

530
One/zero detectors, datapaths, 461–462
Online references

boundary scan operations, 689
building simple MIPS microprocessor, 33
CMOS physical design styles, 656
designing own microprocessor chip, 6
Domino implementation issues, 456
Manchester carry chain adder, 441
optional topics for this book, 56
Pentium 4/Itanium 2 sequencing

methodologies, case study, 423
scan design, 684
sequencing dynamic circuits, 411
serial multiplication, 490
timing analysis delay models, 173
True Single-phase Clock (TSPC) latches

and flip-flops, 402
two-phase timing types, 411

Opaque latches, for sequential circuits, 16
OPC (optical proximity correction),

photolithography, 103
Open bitlines, DRAM, 524
Open Circuit fault model, 677–678
Operands, writing HDL, 702, 703
Operating mode, basing voltage on, 190
Operators, HDL

concatenation, 711
precedence, 708
SystemVerilog, 702
VHDL, 703

Opportunistic time borrowing, 389
Optical proximity correction (OPC),

photolithography, 103
optimization capabilities, HSPICE, 296–298
.option post command, SPICE, 292
.option scale settings, 301, 324
OR function, 329–331
OR operation, 468
OR plane, PLAs, 537–539, 628
Orientation effect, channel lengths, 267
Oscillator, PPL, 582–583
Oscilloscopes, 686
others clause, VHDL, 728
OTP (one-time programmable memory), 127,

530
output. See I/O (input/output)
Output loading, in circuit simulation, 323
Output slope, linear delay model error, 161
Overglass cuts (or passivation), 112
Overlap, 113, 118
Overlap capacitances, 70

Index830

Overvoltage failure, 252–253
Oxidation

in fabrication process, 22–23
of silicon, 106

Oxide thickness
controlling leakage in low-power SRAMs,

518–519
static power and, 197
statistical analysis of variability, 269

Oxide wearout
hot carriers creating, 248
overvoltage creating, 252
as reliability problem, 247–248
time-dependent dielectric breakdown

causing, 248–249
Oxides, gate, 83, 119–120
Oxynitride gate dielectrics, 120
Oxynitrided oxide, 108

p-diffusion, fabrication process, 23–25
P/N ratios, logic gates, 333–334
p-select mask, CMOS transistors, 114
p-type, 99
P-type semiconductors, 7
P-type transistors. See pMOS transistors
p-well process

CMOS technology, 103
design rules, 114
in gate and shallow source/drain definition,

109
well structure in triple-well process, 104–105

P6 architecture, 281–282
Package diagrams, 656
Package parasitics, 552
Packages

in power distribution system model,
564–565

of processed wafers, 55
Packaging and cooling, 549–555

chip-to-package connections, 551–552
common integrated circuit packages, 549–551
heat dissipation, 552–553
package parasitics, 552
properties of ideal packages, 549
temperature sensors, 553–555

Pad frame, 46–47, 551
Pad-limited chips, 47, 551
Pad oxide, 107
Parallel hierarchy, structured design, 620–621
Parallel In Serial Out (PISO) memory, 533–534
Parallel plate capacitance, 215
Parallel-prefix adders. See Tree adders
Parallel-prefix computations, 491–493
Parallel scans, 683–684
Parallelism, reducing power consumption,

204–205
.param statement, HSPICE, 293–294
parameter statement, SystemVerilog,

742–745
Parameterized modules, writing with HDLs,

742–745
Parametric yield, 267
Parasitic capacitance

applying Logical Effort with wires, 236
computing Elmore delay, 151–152
defined, 64, 72
for delay estimation, 308–310

Parasitic capacitors, 69
Parasitic delay

computing Elmore delay, 153
computing Logical Effort of paths,

164–166
of dynamic gates, 341
extracting logical effort from datasheets,

159–160
in linear delay model, 155–158
Logical Effort notation for, 170
measuring for each input of gate, 315–318
ratioed circuits and, 336

Parasitic estimator tools, 319–320
Parasitic extraction

automated layout, 643
mixed-signal or custom-design flow, 646
pitfalls of inaccurate, 657

Parasitics, package, 552
Parity, as error-detecting code, 468
Parity-check matrix, 469–470
Partial products

for Booth encoded multiplier, 481–484
comparing XOR levels in multiplier trees,

489
for two's complement multiplier, 479–480

Partial write operation, column multiplexing,
514

Partially depleted (PD) SOI devices, 361–364
Partovi pulsed latch, 396, 399
Pass-gate leakage, SOI circuit, 363
Pass gates. See Transmission gates
Pass-transistor circuits, 349–354

Complementary Pass Transistor Logic,
352–353

Lean Integration with Pass Transistors,
352–353

mixing CMOS with transmission gates,
351–352

other families of, 353–354
overview of, 349–351

Pass transistors
DC characteristics, 92–93
historical perspective, 369
pitfall of ignoring driver resistance in, 367
pitfall of using nMOS, 94
transmission gates and, 12–14

Passivation (or overglass cuts), 112
Paths

computing logical effort of. See Logical effort
of paths

pitfalls of circuit simulation, 323
simulating, 313–315

Pattern-dependent gate leakage, 196
Patterns

fabrication process, 22
test program, 668–669

PBRS (pseudo-random bit sequence), 467
PC (program counter), multicycle MIPS

microarchitectures, 36
PD (partially depleted) SOI devices, 361–364
PDF (probability distribution function), 263
PDP (power-delay product), 200–201, 206
PDs (phase detectors)

DLL, 589
global clock generators using, 569
PPL, 584–586

Pelgrom's model, 267–269

Pentium 4 Processor, 282
Pentium 4 sequencing methodology, case study,

423
The Pentium Chronicles (Colwell), 282
Pentium II Processor, 281
Pentium III Processor, 281–282
Pentium Pro Processor, 281
Pentium Processor, 280–281
Performance

dealing with expected, 695–696
design rules and, 113
impact of scaling on, 258
making outrageous claims about, 367

Perpetrator, crosstalk noise, 223–224
Personpower, design economics, 653
PG carry-ripple addition, 438–441
PG logic

carry generation and propagation, 437–438
carry lookahead adder, 443–444
carry-ripple adder, 438–441
carry-skip adder, 441–442

PGA (Pin Grid Array) packages, 550–551
Phase, 589
phase detectors, DLL. See PDs (phase

detectors)
Phase-locked loops. See PPLs (phase-locked

loops)
Phase shift masks (PSMs), photolithography,

103
Phonon scattering, 120–121
Photolithography, 20–21, 101–103
Photomask (or reticle), in photolithography,

101
Photoresists (PRs), 22–23, 101–103
Physical clocks

clock skew and, 566–567
creating clock skew budget, 568
defined, 566
local clock gaters receiving, 575–577

Physical design, 45–53
area estimation, 51–53
arrays, 51
CMOS styles, 656
design for manufacturability, 688
floorplanning, 45–48
overview of, 30
pitch matching, 50
slice plans, 50–51
standard cells, 48–49

Physical domain
defined, 615
in design partitioning, 31–32
functional equivalence at abstraction levels,

660–661
levels of design abstraction for, 615–616
structured design for. See Structured design

strategies
Physical limits, to scaling, 262
Physical synthesis (or layout generation), design

flow, 637, 641–644
PICA (Picosecond Imaging Circuit Analysis),

silicon debugging, 674
Picosecond Imaging Circuit Analysis (PICA),

silicon debugging, 674
Piecewise linear (PWL) source, SPICE, 290
Piezoelectric microgenerators, 566
Pin Grid Array (PGA) packages, 550–551

Index 831

Pinched off, MOS transistor saturation, 63
Pinout section, data sheets, 655
PIP (poly-insulator-poly) capacitor, 124
Pipelines

difficulties of using pulsed latches in,
404

wave, 420–422
Pipelining, reducing power consumption,

204–205
Pirana etch, fabrication process, 23–24, 111
PISO (Parallel In Serial Out), 533–534
PISO (Parallel In Serial Out) memory,

533–534
Pitch matching, for snap-together cells, 50
Pitch, track, 28
Pitch, wire, 211
Placement of cells, automated layout,

641–644
PLAs (Programmable Logic Arrays)

defined, 497
overview of, 537–541
physical design, 50–51
programmable logic devices based on,

628
Plasma-induced gate-oxide damage (or

antenna effect), 133
Plastic Leadless Chip Carrier (PLCC)

package, 550–551
Plastic transistors, 122
Platform-based design, 635–636
PLCC (Plastic Leadless Chip Carrier)

package, 550–551
.plot command, SPICE, 291–292
pMOS transistors

characteristics of ideal, 67–68
CMOS compound gates of, 11–12
CMOS inverter of, 9
CMOS logic gates of, 9–11
CMOS NAND gates of, 9
CMOS NOR gates of, 11
CMOS technology and, 7
DC transfer for static CMOS inverter

of, 88–89
development of, 3
modes of operation, 63
MOS transistor architecture and, 8
pass transistors and transmission gates

of, 12–14
well structure in triple-well process of,

104–105
Width/Length ratio of, 26–27

pnp bipolar transistors, 126
Point contact transistors, 1–2
Poisson distribution, 270
Poly-insulator-poly (PIP) capacitor, 124
Polycide process, 109–110
Polysilicon mask, CMOS transistors, 114
Polysilicon (polycrystalline silicon)

fabricating transistor gates, 23–24
in gate and shallow source/drain

definition, 108–110
MOS transistor architecture, 8

Ports
accessing memory cells via, 498
debugging, 663

modeling multiported register files in
HDL, 747–748

multiported SRAMs and register files,
514–515

Positive-edge triggered flip-flops, 18–19
Positive photoresist, 101
Positive slack, 142
Posynomials, 171
Power, 181–210

comparing adder architectures for, 457
definitions, 182
designing for manufacturability, 688
dynamic. See Dynamic power
energy-delay optimization and,

200–204
examples, 182–184
extracting gate capacitance for

estimating, 308
historical perspective, 207–208, 278
impacted by scaling, 261
low power architectures, 204–206,

517–520
measuring consumption of, 318–319
overview of, 181–182
pitfalls and fallacies, 206
review and exercises, 209–210
sources of dissipation of, 184–185
SRAM and, 520–522
static power, 194–200

Power analysis
automated layout generation, 644
design flow, 641
mixed-signal or custom-design flow,

646
Power-delay product (PDP), 200–201,

206
Power distribution subsystem, 555–566

charge pumps, 564–565
energy scavenging, 565–566
IR drops, 557–558
L di/dt noise, 558–559
on-chip bypass capacitance, 559–560
on-chip power distribution network,

556–557
overview of, 555–556
power network modeling, 560–564
power supply filtering, 564
substrate noise, 565

Power gating
controlling leakage in low-power

SRAMs, 519
designing, 198
example, 198–199
overview of, 197–198
reducing power consumption with,

205
Power grid, pitfalls of leaving gaps in, 238
Power management modes, low power

architectures, 205–206
Power network modeling

distributed power supply models,
563–564

overview of, 560–561
power supply impedance, 561–562
power supply step response, 562–563

Power supply
analysis, testing, 691–692
distributed models, 563–564
filtering, 564
impedance, 561–562
step response, 562–563

Power supply noise effect, 356–357,
359–360

PPL (Push-Pull Transistor Logic),
353–354

PPLs (phase-locked loops), 580–587
advanced architectures, 587
bandwidth and stability, 570
clock skew from, 578
clock system architecture, 568
defined, 580
divider, 583–584
DLLs vs., 570
frequency multiplication with, 570–571
global clock generators using, 569–570
loop dynamics, 586–587
loop filter, 586
oscillator, 582–583
overview of, 580–581
phase detectors, 584–586
using power supply filter on, 564
validation, 587

Precedence, HDL operator, 708
Precharge mode, dynamic circuits,

339–340
Predecoding circuits, SRAM row circuitry,

507–509
Prefix adders, sparse tree adders, 451–452
Prefix computation, 437–438
Prefix operator, 437–438
Prescaler counter, 465
Principles of Operation manuals, 656
.print statement, SPICE, 291–292
Printed circuit board, 666
Printed circuit board with chip in situ, 666
Priority encoder, parallel-prefix

computations, 491
Probability distribution function (PDF),

263
Probability, switching, 187–188
Probe cards, 666–668
Probe points, silicon debugging, 673
Process characteristics, 313–314
Process check structures, 117
Process corner effects, 360
Process generations (technology node),

4–5
Process sensitivity, in circuits, 358–359
Process simulators, 287
Process spread, designing for, 688
process statements, VHDL, 718–722,

750–754
Process tilt, 244
Process variation

affecting domino keepers, 345
classifying, 243–244
defining design corners, 244–246
effects on robustness, 243

Process, Voltage, and Temperature (PVT)
variation sources, 242

Index832

Processes, characteristics of CMOS, 311–313
Processing technology. See CMOS processing

technology
Productivity, impact of scaling on, 261–262
Products, PLAs, 537
program counter (PC), multicycle MIPS

microarchitectures, 36
Programmable logic, 628–631
Programmable Logic Arrays. See PLAs

(Programmable Logic Arrays)
Programmable ROM (PROM), 498, 529–530
Programming languages, HDLs vs., 699
Project management, design economics,

653–654
Projection printing, 101
PROM (Programmable ROM), 498, 529–530
Propagate, in single-bit addition, 430–434
Propagated noise, 92, 360
Propagation delay

characterizing sequencing element delays
using, 405–408

computing using transient response, 145
definition of, 141–142
metastable state and latch, 414–415

Properties
of ideal packages, 549
of ideal power distribution networks, 55
of random variables, 263–266
SRAM, 498–499

Prototype manufacturing costs, design
economics, 648–649, 653–654

Proximity effect, channel lengths, 267
Proximity printing, 101
PRs (photoresists), 22–23, 101–103
PRSG (pseudo-random sequence generator),

684–685
Pseudo-random bit sequence (PBRS), 467
Pseudo-random sequence generator (PRSG),

684–685
Pseudogenerate (pseudo-carry) signals, Ling

adder, 454–456
Pseudopropagate signals, Ling adder, 454–456
PSMs (phase shift masks), photolithography,

103
PSPICE, 288
Pull-down networks, CMOS gates

Cascode Voltage Switch Logic using, 339
CMOS logic, 9–11
ratioed circuits and, 334–338

Pull-up networks, CMOS gates, 9–11, 334–338
Pulse generators, 395–396
Pulse sources, SPICE, 290–291
Pulsed latches

with adaptive sequencing elements, 411
choosing for static sequencing element, 403
Klass Semidynamic Flip-flop similar to, 399
sequencing element delays, 407
sequencing with, 395–396

Punchthrough problems, from overvoltage, 252
Push-Pull Transistor Logic (PPL), 353–354
PVT (Process, Voltage, and Temperature)

variation sources, 242
PWL (piecewise linear source), SPICE, 290

Quadrature Phase Shift Keying (QPSK)
modulation, software radios, 619

Queues, 533–535

Race conditions, 383–386, 394
Radiation-hardening, 401–402, 543–544
Radio-frequency identification (RFID) tags,

566
Radio frequency (RF) applications, 122,

618–621
Radix-2 (or valency-2) prefix networks,

438–439, 456–458
Rail-to-rail drivers, 234
Rail-to-rail output, 392
Rails, 12–13
RAM (random access memory), 497, 745–747
Random access memory (RAM), 497, 745–747
Random access scan, 683
Random clock skew sources, 568, 578
Random logic, 48
Random test vectors, 671
Random variables, properties of, 263–266
Random variations, 267, 319
Rapid prototyping approach, 653
Ratio failures, in circuits, 355
Ratioed circuits

dynamic circuits circumventing drawbacks
of, 339

historical perspective, 367–368
not working well at low voltage, 366
overview of, 334–338

Razor flip-flops, 410–411
RAZOR II pulsed latches, 411
Razor latches, 402
RBB (reverse body bias), 199–200
RC delay model, 146–155

effective resistance, 146–147, 154–155
Elmore delay, 150–153
equivalent RC circuits, 147–148
estimating parasitic delay of gate, 156–157
gate and diffusion capacitance, 147
layout dependence of capacitance, 153–154
transient response, 148–150

Read assist techniques, low-power SRAMs,
518

Read margin, SRAM cells, 502–503, 505–506
Read-only memory. See ROM (read-only

memory)
Read operation, SRAM cells, 500–502
Read ports, multi-ported RAM and, 514–515
$readmemb, SystemVerilog, 753
$readmemh, SystemVerilog, 753
Receive path, software radio, 620
Rectangular-diffusion cell, SRAMs, 504
Recurring costs, design economics, 649–650
Reduced Standard Parasitic Format (RSPF),

643
Reduction operators, HDLs, 703–704
Redundancy, 541–543, 688
Refractory metal, 109
reg type, standard Verilog, 740
Regenerative feedback, small-signal sensing,

512
Regenerators, interconnect engineering, 236
Register files, and multiported SRAMs,

514–515
Register Transfer Level. See RTL (Register

Transfer Level) abstraction
Registers

designing from transistors, 19
manufacturing tests verifying, 665

modeling multiported files in HDL,
747–748

scan, 682–683
scannable register design, 684
testing for debugging, 664

Registers, writing with HDLs
enabled, 719–720
multiple, 720–721
overview of, 717–718
resettable, 718–719
shift, 724

Regression testing, 671–673
Regularity

in hardware and software design, 627
in structured design, 31, 623–625

Reliability metrics, Flash memory, 532
Reliability problems, 246–254

interconnect wearout, 249–251
latchup, 253–254
overview of, 246
overvoltage failure, 252–253
oxide wearout, 247–249
soft errors, 251–252
terminology, 246–247

Repeatability of system, 679
Repeaters, interconnect engineering, 230–232
Replica delay, sense amplifiers, 513
Request (Req) signal, 416–419
Resettable latches and flip-flops, 396–397
Resettable registers, writing with HDLs,

718–719
Resistance

influence of scaling on, 256
interconnect modeling and, 214–215
mixed-signal or custom-design flow, 646
pitfall of ignoring in pass transistors, 367
reducing with copper wires, 211

Resistive mode of operation, 63
Resistors, 124–125
Resolution enhancement techniques (RETs),

102–103, 134–135
Resonant currents, 193–194
ReSPF (Reduced Standard Parasitic Format),

643
Restrictive design rules, facilitating RET with,

135
Retention time, Flash memory, 532
Reticle, in photolithography, 101
Retrograde wells, 104–105
RETs (resolution enhancement techniques),

102–103, 134–135
Reverse biased diode, 7
Reverse body bias (RBB), 199–200
RF carrier, software radio design, 618–620
RF (radio frequency) applications, 122,

618–621
RFID (radio-frequency identification) tags, 566
Ring counter, 466
Ripple-carry adder, 436, 491–492
Rise times, 141–142
Robustness, 241–285

historical perspective, 278–283
manufacturing and environmental variability,

241–246
memory design for, 541–544
overview of, 241
pitfalls and fallacies, 277

Index 833

reliability problems. See Reliability problems
review and exercises, 284–285
scaling. See Scaling
of static CMOS logic, 327–328
statistical analysis of variability and, 263–274
variation-tolerant design for, 274–277

Rolloff effect, 80
ROM (read-only memory), 527–533

Flash memory, 531–533
modeling in HDL, 748–749
NAND ROMs, 530–531
as nonvolatile memory, 497
overview of, 497, 527–529
programmable ROMs, 529–530

Rotate shifts, 472–476
Routing channels, in physical design, 48–49
Routing, in automated layout, 643–644
Routing track, in stick diagram, 28
Row circuitry, SRAMs

dynamic decoders, 508–510
hierarchical wordlines, 508
overview of, 506–507
predecoding, 507–509
sum-addressed decoders, 510

Row decoders, ROM, 528–529
RTL (Register Transfer Level) abstraction

defined, 38
design flow, 637–641
overview of, 616
structured design. See Structured design

strategies
Rubylith, 137

SA-F/F (sense-amplifier flip-flop), 399–400
Salicide, 110
Sapphire substrate, SOI, 120
Saturation mode of operation

computing delay using transient response,
144–145

in long-channel I-V, 64–68
in MOS transistors, 63
as nonideal I-V effect, 74

Saturation region of operation, 70–71
.scale statement, HSPICE, 293–294
Scaled wires, interconnect, 257–258
Scaling, 254–262

historical perspective, 278–282
impact on design, 259–262
interconnect, 257–258
International Technology Roadmap for

Semiconductors for, 258
overview of, 254
pitfalls of circuit simulation, 323
pitfalls of failing to plan for, 277
SRAM, 505
transistor, 255–257

Scan design, 403, 682–684
Scanning electron microscopy (SEM),

metrology, 113
Schedule, design economics, 651–652
Schichman-Hodges Model, 299
Schockley model, 65, 299
Schottky diode, 20
SCMOS design rules, 117–118
Scribe line, design rules, 116–117
SDFF (Semidynamic Flip-flop), Klass, 399
Sea-of-Gates (SOG) design, 631–632

Searchlines, CAMs, 536
SEC-DED (error-correcting, double error-

detecting) codes, 469–470
Second droop, 563
Second-level clock buffers (SLCBs), 572–573
Secondary precharge transistors, dynamic gates,

345–346
Selected signal assignment statements, VHDL,

705
Self-aligned polysilicon gate process, 108–110
Self-aligned process, fabrication, 23–24
Self-bypass path, ALU

clock skew example, 391
example using flip-flops, 380–383
example using latches, 385–386
example using time borrowing, 388–389

Self-dual function, addition as, 436
Self-heating

controlling reliability problems with, 249–
251

problem of SOI circuits, 363
SEM (scanning electron microscopy),

metrology, 113
Semiconductor Industry Association (SIA),

258
Semiconductors

historical perspective, 137–138
worldwide market for, 1–2

Semidynamic Flip-flop (SDFF), Klass, 399
Semiglobal wires, interconnect scaling,

257–258
Sense-amplifier flip-flop (SA-F/F), 399–400
Sense amplifiers

column circuitry in DRAMs, 525–526
DRAM subarrays and, 523–525
SRAM small-signal sensing and, 512–513

Separations, layout rules as, 113
Sequencing elements

comparison of, 423–424
flip-flops. See flip-flops
latches. See latches
methodology. See Static sequencing element

methodology
Sequencing overhead

defined, 375
of flip-flops, 403
of transparent latches, 404

Sequential circuit design, 375–428
CMOS, 16–19
overview of, 375
Pentium 4/Itanium 2 case study, 423
pitfalls, 422–423
review and exercises, 423–428
sequencing dynamic circuits, 411
sequencing static circuits. See Static circuits,

sequencing
static sequencing elements. See Static

sequencing element methodology
synchronizers. See Synchronizers
wave pipelining, 420–422

Sequential circuit design, latches and flip-flops,
393–402

conventional CMOS flip-flops, 393–395
conventional CMOS latches, 392–393
differential flip-flops, 399–400
dual edge-triggered flip-flops, 400–401
enabled latches and flip-flops, 397–398

incorporating logic into latches, 398–399
Klass Semidynamic Flip-flop (SDFF), 399
overview of, 16–18, 391
pulsed latches, 395–396
radiation-hardened flip-flops, 401–402
resettable latches and flip-flops, 396–397
True Single-phase Clock (TSPC) latches

and flip-flops, 402
Sequential circuits, defined, 16
Sequential logic, writing with HDLs, 717–725

counters, 722–723
enabled registers, 719–720
latches, 721–722
multiple registers, 720–721
nonblocking assignments, 733–734
registers, 717–718
resettable registers, 718–719
shift registers, 724

SER (soft error rate)
defined, 252
domino noise budget example, 359
radiation-hardened flip-flops decreasing,

401–402
reliability problems, 251–252
robust memory design for improving, 543

Serial access memories
defined, 497
queues, 533–535
shift registers, 533

Serial In Parallel Out (SIPO) memory,
533–534

Serial multiplication, 490
Serial/parallel memories, 533–534
Series transistors, 94
SET (single-event transient), 251
Settable latches and flip-flops, 396–397
Setup time, 379–383, 405–408
SEU (single-event upset), 251
Shadow registers, fast binary counters, 465–466
Shallow trench isolation (STI), 106–107, 114
Shared contacted diffusion region, 70
Shielded wires, for crosstalk, 233
Shift registers, 533–534, 724
Shifters

alternative shift functions, 476
barrel shifter, 475–476
funnel shifter, 473–475
overview of, 472–473

Shmoo, pitfalls of, 693–695
Shmoo plots, 667, 675–676
Shmooing process, testers, 667
Short channel effect, 74, 80
Short-circuit current, 193
Short Circuit fault model, 677–678
SIA (Semiconductor Industry Association),

258
Sidewall perimeter PS, 72
Sign-magnitude operation, flagged prefix adder,

460–461
Sign select Booth encoder, 484
Signals, SystemVerilog, 707, 709–710
Signals, VHDL code, 700, 707
Signature analysis, testing modules with, 684–

685
Signed multipliers, Booth encoding, 484
SILC (stress-induced leakage current), 248–249
Silicide block mask, circuits, 124

Index834

Silicide layer, 109
Silicidization, 109–110
Silicon

compilation, 634–635
creating MOS transistors, 7–8
debug, 659, 673–676
in intrinsic state, 99
making integrated circuits from, 6–7
wafer formation, 100

Silicon dioxide (SiO2)
CMOS technology, 105–106
fabrication process, 22
forming gate oxide for transistors, 107–108
inverter cross-section, 20
MOS transistor architecture, 8

Silicon-on-Insulator design. See SOI (Silicon-
on-Insulator) design

Silicon on Insulator (SOI), 120, 138
Silicon wafers

defined, 19
fabrication process, 21–24
MOS transistor architecture, 8

Simulating mismatches, circuits, 319
Simulation

determining effective resistance, 154–155
HDL logic, 701
measuring logical effort, 156

Simulation Program with Integrated Circuit
Emphasis. See SPICE (Simulation
Program with Integrated Circuit
Emphasis)

Simulators, 287
Single-bit addition, 430–434
Single-ended (large signal) bitline sensing,

511–512
Single-event transient (SET), 251
Single-event upset (SEU), 251
SIPO (Serial In Parallel Out) memory,

533–534
6T SRAM cell, lithographically friendly,

504–505
66 MHz Pentium, 283
Sizing

gates under delay constraint, 189
for minimum delay, 171–173
pitfall of oversizing gates, 206
subthreshold circuits, 367
transistors in subthreshold circuits, 365

Sketching, 156
Skew-tolerant latches, 389–391
Skewed gates, 236, 332–333
Skin effect, 219–220
Sklansky (or divide-and-conquer) trees

comparing adder architectures, 456–458
higher-valency tree adders, 450–452
overview of, 448–450
parallel-prefix computations, 491–492
sparse tree adders using, 453–454

Slack, delay and, 142
SLCBs (second-level clock buffers), 572–573
Sleep power

defined, 195
using input vector control in, 200
using power gating in, 197–198, 519

Slice plans, physical design, 50–51
Slope-based linear model, 173–174
Slopes, 142, 161

Slow inputs, compressors, 486
Slow variables, 244–246
Small-scale integration (SSI), 3–4, 632–634
Small-signal (differential) bitline sensing, 349,

511–513
Smoke test, debugging using, 663–664
SMT (surface mount) packages, 551
Snap-together cells, 49
Sneak paths, MODL, 347–348
SNMs (static noise margins), SRAM cells,

501–503
SOC (System-On-Chip) designs, 29–30
Soft error rate. See SER (soft error rate)
Software radio

applying floorplan for, 626–627
applying hierarchy to, 621–622
applying regularity to, 623–625
structured design example, 617–620

SOG (Sea-of-Gates) design, 631–632
SOI (Silicon on Insulator), 120, 138
SOI (Silicon-on-Insulator) design

advantages of, 362
disadvantages of, 362–363
floating body voltage, 361–362
historical perspective, 369
implications for circuit styles, 363–364
overview of, 360–361
processes, 103
summary, 364

Solar cells, 565–566
Source

capacitances, 69–70
in detailed MOS gate capacitance model,

70–73
in drain formation, 108–110
in MOS transistors, 8, 62–64

Spacing
controlling crosstalk by increasing, 233
interconnect engineering and, 229–230
MOSIS design rules, 118

Spanning-tree adders, 451–452
Sparse tree adders, 451–454, 457
Spectre, 287
Speed

Cascode Voltage Switch Logic for, 339
fast binary counters, 465–466
of light set by inductance and capacitance, 218
manufacturing tests verifying, 665
pitfall of disregarding power when designing

for, 206
SPEF (Standard Parasitic Exchange Format),

643
SPICE deck

common errors, 323–324
defined, 288
sources and passive components, 288–289
transient analysis using, 292–294
transistor DC analysis using, 292

SPICE Explorer, 292
SPICE (Simulation Program with Integrated

Circuit Emphasis), 288–298
BSIM models, 300
in circuit design, 44–45
as circuit simulator, 287
common deck errors, 323–324
debugging analog circuits, 675
in diffusion capacitance models, 300–302

HSPICE commands, 298
inverter transient analysis, 292–294
Level 1 models, 299
Level 2 and 3 models, 300
optimization, 296–298
overview of, 288
pitfall of blindly trusting results from, 323
pitfall of replacing thinking with, 323
sources and passive components of, 288–292
subcircuits and measurement, 294–296
transistor DC analysis using, 292

Spines, global clock distribution, 573–574
Split-wordline cells, 514
SPRL (Swing-Restored Pass Transistor Logic),

353–354
Sputtering, 111
Square-law model, 77
SRAM (static RAM), 498–522

area, delay and power of RAMs and register
files, 520–522

CAM vs , 535
cells, 499–506
column circuitry, 510–514
large, 515–517
low-power, 517–520
properties, 498–499
register files and multiported, 514–515
row circuitry, 506–510

SSI (small-scale integration), 3–4, 632–634
Stability

global clock generators and, 570
SRAM cells and, 501–502

Stack effect, reducing subthreshold leakage,
195–196

Stage effort
computing best number of stages, 167–169
defined, 155
sizing for minimum delay, 173

Stages
choosing best number of, 166–169
computing Logical Effort of paths, 163–166
Logical Effort notation for number of, 170

Staggered repeaters, for crosstalk, 233–234
Standard cell library, 173
Standard cells

building random logic and datapaths from,
48

mapping HDL code into, 41
physical design and, 48–49

Standard datapath latch, 393
Standard deviation

normal distributions as, 242
statistical analysis of variability, 263
of threshold voltage, 268–269

Standard Parasitic Exchange Format (SPEF),
643

Standby power, 195
State, in sequential circuits, 375
State retention registers, 198, 408
Statements, HDLs, 702, 703
Static adders, 457
Static circuits, defined, 375
Static circuits, sequencing, 376–391

clock skew, 389–391
max-delay constraints, 379–383
methods, 376–379
min-delay constraints, 383–386

Index 835

overview of, 376
time borrowing, 386–389

Static CMOS, 329–334
asymmetric gates, 332
bubble pushing, 329
compound gates, 329–331
DC transfer characteristics, 88–89
input ordering delay effect, 331
inverters, 332–333
logic, 327–328
logic gates, 9, 363–364
multiple threshold voltages, 334
overview of, 329
P/N ratios, 333–334

Static leakage energy, and variation, 271–272
Static load, ratioed circuits, 334–338
Static noise margins (SNMs), SRAM cells,

501–503
Static power, 194–200

circuit design and, 43
contention current as source of, 197
estimation, 197
gate leakage as source of, 195–196
impact of scaling on design, 261
input vector control, 200
junction leakage as source of, 196–197
multiple threshold voltages and oxide

thicknesses, 199
overview of, 194
power gating and, 197–199
subthreshold leakage as source of, 194–195
variable threshold voltages, 199–200

Static RAM. See SRAM (static RAM)
Static sequencing element methodology,

402–411
characterizing delays, 405–408
choice of elements, 403–405
choosing too late in design cycle, 422–423
design margin and adaptive sequential

elements, 409–411
level-converter flip-flops, 408–409
overview of, 402–403
state retention registers, 408
two-phase timing types, 411

Static storage, 375
Static timing analysis, 640, 643–644
Static variations, 267
Statistical analysis of variability, 266–269
Statistical clock skew budgeting, 578–579
STD_LOGIC signals, VHDL, 710
STD_LOGIC type, VHDL, 700–701, 740
STD_LOGIC_VECTOR numbers, VHDL,

709
Step response, power supply, 562–563
Steppers, in photolithography, 101–103
STI (shallow trench isolation), 106–107, 114
Stick diagrams, 28–29
Strained silicon, 121
Strength of signal, 12
Stress-induced leakage current (SILC), 248–249
String select transistor, NAND Flash, 531
Structural domain

defined, 615
in design partitioning, 31–32
functional equivalence at various levels of

abstraction of, 660–661
levels of design abstraction for, 615–616

structured design for. See Structured design
strategies

Structural HDL, 41
Structural models, 700, 713–716
Structured design strategies, 617–627

hierarchy, 620–622
locality, 626–627
modularity, 625–626
overview of, 30–31
regularity, 623–625
for software and VLSI hardware systems, 627
software radio example, 617–620
understanding, 617–618

Stuck-At fault model, 677–679
Stuck at zero, Stuck-At fault model, 677–679
Subarrays

DRAMs, 523–525
large SRAM, 516–517

Subcircuits, and measurement, 294–296
SUBM design rules, 117
Substrate noise, 565
Subsystems, special purpose, 549–614

clocks. See Clocks
delay-locked loops, 587–590
high-speed links, 597–610
input/output (I/O), 590–597
packaging and cooling. See Packaging and

cooling
phase-locked loops, 580–587
pitfalls and fallacies, 612–613
power distribution. See Power distribution

subsystem
random circuits, 610–612
review and exercises, 613–614

Subthreshold circuit design, 364–367
Subthreshold leakage

controlling in low-power SRAMs, 519
as nonideal I-V effect, 80
overview of, 81–83
as pitfall of circuits, 356
solving problem of, 129–130
as source of static power, 194–195
temperature dependence of, 86

Subthreshold memories, low-power SRAMs,
519–520

Subthreshold regime, 364–365
Subthreshold slope, 82, 362
Subtraction, datapaths, 458
Sum-addressed decoders, SRAM row circuitry,

510
Sum-addressed memory, 510
Sum-of-products canonical form, PLAs, 537
Sum (S), 430. See also CPAs (carry-propagate

adders)
Summary and observations, logical effort of

paths, 169–171
Sums of random variables, 264–265
Supply current monitoring (or IDDQ testing),

687
Supply rails, 27
Supply voltage

controlling leakage in low-power SRAMs,
518–519

impact of scaling, 261
robustness, 242

SUPREME, 287
Surface mount (SMT) packages, 551

Surface potential, 79
Survivability of system, manufacturing tests,

679–680
SWEEP command, 315
Swing-Restored Pass Transistor Logic (SPRL),

353–354
Switching capacitance, 188–190
Switching energy of wire, 222, 256
Switching power, 186, 256
Switching probabilities, and activity factors,

187–188
Symbiotic bypass capacitance, 559
Symbolic layout, 634
Symbols, MOS transistor, 61
Symmetric NORs, 338
Synchronizers, 411–420

arbiters, 419
building faulty, 423
common mistakes, 417–419
communicating between asynchronous clock

domains, 416–417
defined, 412
degrees of synchrony, 419–420
metastability, 412–415
overview of, 411–412
simple, 415–416

Synchronous reset, latches and flip-flops,
396–397

Synchronous up/down counter, 464–465
Synchrony, 419–420
Syndrome, signature analyzer, 685
Synthesis, HDL logic, 701
Synthesizable subsets, of HDL, 699
Synthesized design, 49
System-On-Chip (SOC) designs, 29–30
Systematic clock skew sources, 568, 578
Systematic variations, sources of, 266–267
SystemVerilog

appendix for. See HDLs (Hardware
Description Languages)

casez statement, 731
how to reference in this book, 699
netlists, 754–755
Verilog vs., 700

T-model wire, 213
Tap sequence, 467
TAP (Test Access Port), 689
Tapeout, 54
Tapped delay lines, 533–534
TAT (trap-assisted tunneling), 84–85
TCAM (ternary CAM), 536
TDDB (time-dependent dielectric breakdown),

248–249
TDM (three-dimensional method), column

addition, 487–489
Technology

CMOS. See CMOS processing technology
failing to plan for advances in, 366–367
well-tuned new circuit vs. poor example of,

367
Technology node, 258
TEM (Transmission Electron Microscope),

113
.temp statement, 302
Temperature

controlling interconnect wearout, 249–251

Index836

incorrect operation at low, 695
sequencing element delays and, 407

Temperature dependence
interconnect capacitance and, 220
nonideal I-V effects, 85–86
variables effecting robustness, 242–243

Temperature sensors, for packages, 553–555
Temporal locality, in structured design, 626
Ternary CAM (TCAM), 536
Ternary operator (?:), SystemVerilog, 704–705
Test Access Port (TAP), 689
Test fixtures, 666–668, 689–690
Test programs, 667–669
Test structures

failing to include process calibration, 136
inserting into scribe line structures, 117

Test vectors
defined, 53
fault coverage of, 680
logic verification principles, 670–671
modeling testbenches in HDL, 749–754

Testability. See DFT (Design for Testability)
Testbenches

design verification using, 53
example, overview of, 756
example, writing with SystemVerilog,

757–765
example, writing with VHDL, 766–775
logic verification principles, 671
overview of, 660
writing with HDLs, 749–754

Testers, 666–669
Testing, 659–698

accelerated life, 247
boundary scan, 688–689
building design-for-test into sequencing, 403
debugging, 662–664
design flow, 640–641
Design for Testability. See DFT (Design for

Testability)
design verification via, 53, 55
handlers, 669–670
logic verification via, 660–662, 670–673
manufacturing test principles, 676–681
manufacturing tests, 664–665
overview of, 659–660
pitfalls and fallacies, 690–697
review and exercises, 697–698
silicon debug principles, 673–676
structured design providing, 617
test programs, 668–669
testers and test fixtures, 666–668
in university environment, 689–690

Thermal resistance, 553
Thermal virus, 206
Thermal voltage, 72
Thermoelectric microgenerators, 566
Thermometer code, 579
Third droop, 563
Three-dimensional integrated circuits (3D

ICs), 129
Three-dimensional method (TDM), column

addition, 487–489
3D ICs (three-dimensional integrated circuits),

129
Threshold drops

causing chips to fail, 355

designing circuits with, 494
as nonideal I-V behavior, 87, 92

Threshold implants, 104
Threshold voltage

advantage of SOI, 362
beta ratio effects, 90–91
body effect, 79–80
cause of mismatches, 502
comparing in CMOS processes, 313
controlling leakage in low-power SRAMs,

518–519
defined, 79
drain-induced barrier lowering, 80
effect on robustness, 243
extracting with simulations, 306–308
impact of scaling, 261
in negative bias temperature instability, 248
as nonideal I-V effect, 74
short channel effect of, 80
static power and multiple, 119–120, 199, 334
static power and variable, 199–200
statistical analysis of variability and, 268–269
temperature dependence of, 85

Threshold voltage pinning, high-k dialectrics,
120–121

Through-hole pins, of older packages, 550–551
Time borrowing, 386–389, 404–405
Time-dependent dielectric breakdown

(TDDB), 248–249
Time-multiplexing, SRAMs, 515
Timescale directive, SystemVerilog, 713
Timing analysis

automated layout, 643–644
delay models, 173–174
design flow, 640

Timing analyzer
delay models for, 173–174
design flow, 640
overview of, 142

Timing diagram, sequencing element, 378
Timing notation, sequencing element, 377–378
Timing optimization, delay, 142–143
Timing, varying in tester, 667
TinyChips, 117
TLBs (translation lookaside buffers), CAMs,

535
TMR (triple-mode redundancy), 276–277
Tokens, sequential circuit design, 375
Top-level interfaces, logic design, 38
Topography effect, channel lengths, 268
Transient analysis, SPICE, 291
Transient response, delay, 143–145, 148–150
Transistor primitives, SystemVerilog, 754
Transistors

choosing inappropriate sizes, 175, 323
CMOS. See CMOS (Complementary Metal

Oxide Semiconductor)
DC analysis using SPICE, 292
design rules, 114–115
forming in Front-End-of-Line phase, 100
historical perspective, 1–6, 278
process enhancements, 119–122
scaling, 255–257
sizing in subthreshold circuits, 365

Translation lookaside buffers (TLBs), CAMs,
535

Transmission Electron Microscope (TEM), 113

Transmission gates
creating multiplexer from, 15
DC characteristics, 92–93
defined, 349
implementation of compressor, 487
mixing CMOS with, 351–352
pass transistors and, 12–14
single-bit addition using, 433

Transmission lines, 126
Transmit paths, 619–620, 622
Transparent latches

building sequential circuits, 16
choosing for static sequencing element,

404–405
sequencing element delays, 407

Transposed bitlines, 513
Trap-assisted tunneling (TAT), 84–85
Traps, negative bias temperature instability, 248
Tree adders

carry-propagate adders and, 447–450
higher-valency, 450–451
sparse, 451–454

Trench
capacitors, 523
contact, 135
isolation, 107
overview of, 126–127

Trigate transistors, 130
Triode mode of operation, 63
Triple-mode redundancy (TMR), 276–277
Triple-well processes, 103–105
Tristates, 14–15
True Single-phase Clock (TSPC) latches and

flip-flops, 402
TSPC (True Single-phase Clock) latches and

flip-flops, 402
Tungsten, processing technology, 110–112
Tunneling current, subthreshold leakage, 83
Twin-well processes, 103, 105
Twisted bitlines, 513, 524
Twisted differential signaling, 233–234
Two's complement array multiplication,

479–480, 492
Type declaration, VHDL signals, 700
Type idiosyncrasies, SystemVerilog and

VHDL, 740–742
Typical (nominal) variables, 244–246

UART port, for debugging, 663
UDVS (ultra-dynamic voltage scaling), 192
Ultra-dynamic voltage scaling (UDVS), 192
Unfooted dynamic gates, 340
Uniform distributions, 242
Uniform random variables, 264
Unit transistors, 26
Units, in structured design, 31
University environment, testing in, 689–690
Unsaturated mode of operation, 63
Unsigned array multiplication, 478–479
Up counter (or incrementer), 464–465
Upconversion, 620, 622
Useful operating life, bathtub curve, 247
User Manual, 656

Valency-2 (or radix-2) prefix networks,
438–439, 456–458

Validation, PPL, 587

Index 837

Variability, and scaling, 261
Variability, effects on robustness, 241–246

design corners, 244–246
overview of, 241–242
process variation, 243–244
supply voltage, 242
temperature ranges, 242–243

Variability, statistical analysis of, 263–274
overview of, 263
properties of random variables, 263–266
variation impacts, 269–274
variation sources, 266–269

Variable threshold CMOS (VTCMOS), 199
Variance, statistical analysis, 263–264
Variation impacts, statistical analysis, 269–274
Variation sources, statistical analysis, 266–269
Variation-tolerant design, 274–277
Variation-tolerant (or adaptive) sequential

elements, 409–411
VCDL grain, 588
VCDLs (voltage-controlled delay lines),

588–589
VCDs (vector change descriptions), 668–669
VCS logic simulator, 287
VCS (vertical compressor slice), 488
VDD drop, 644
VDD (POWER)

CMOS inverter, 9
CMOS NAND gate, 9
as nonideal I-V behavior, 87
positive voltage of MOS transistor, 8
preventing latchup effect, 253–254
strength of signal and, 12

Vector change descriptions (VCDs), 668–669
Velocity saturation

creating error in linear delay model, 161–162
defined, 74
as nonideal I-V effect, 75–78
temperature dependence of, 86

Velocity saturation index, 77
Verification. See also Testing

class chip failures, 696–697
in custom-design flow during

manufacturability, 646
design, 53
formal, 640
in general design flow, 637
hierarchy aiding, 620
in logic design, 638–639
personpower costs for, 653
pitfalls of inadequate tools for, 367
pitfalls of insufficient, 657
in platform-based design, 635
regularity aiding, 623
schedule costs for, 652
in structured design, 617
test principles, 670–673
tests, 660–662
virtual components and, 620

Verification Methodology Manual, 680
Verilog

appendix for. See HDLs (Hardware
Description Languages)

how to reference in this book, 699
netlists, 43–44

overview of, 41
understanding, 700

Vernier structures, 117
Version control, 672–673
Vertical compressor slice (VCS), 488
Very High Speed Integrated Circuits. See

VHDL (VHSIC Hardware Description
Language)

Very large-scale integration (VLSI) circuits, 4,
287

VHDL (VHSIC Hardware Description
Language)

appendix for. See HDLs (Hardware
Description Languages)

how to reference in this book, 699
overview of, 41
understanding, 700

Via design rules, 116, 118
Victim

crosstalk noise effects, 223–224
interconnect simulation, 322

Virtual components, 621, 654–655
VLSI (very large-scale integration) circuits, 4,

287
Volatile memory, 497
Voltage. See also Threshold voltage

alternative SRAM cells and, 505–506
chip operating at low frequency, 693
dependence causing error in linear delay

model, 162
dynamic power and, 190–192
gate leakage depending on gate, 195–196
low-power SRAMs using low, 517–518
overvoltage failures, 252–253
scaling with feature size, 255
selecting gates for subthreshold circuits,

365–366
sequencing element delays and, 407
variables effecting robustness, 242
varying in tester, 667

Voltage-controlled delay lines (VCDLs),
588–589

Voltage domains, 190–191, 208
Voltage regulators, 564–565
VTCOMS (variable threshold CMOS), 199

Wafer bumping, 551
Wafer-to-wafer (W2W) process variations, 243
Wafers

formation, 100
photolithography process, 101–103

Wallace trees
column addition, 485
defined, 477
implementing compressor, 487

Wasted spins, 692
Watts (W), 182
Wave pipelining, 420–422
Waveforms, pitfalls of circuit simulation, 323
Weak inversion, subthreshold leakage, 81
Wearout, bathtub curve, 247
Well-edge proximity effect, 105
Well-formed modules, 626
Wells

defining, 104

design rules, 113–114
formation of, 103–105
substrate noise problem in, 565

Wet etching, of metal, 111
Wet oxidation, of silicon, 106
White buffers, adder architecture, 438–440
White space, writing HDLs, 703
Width

interconnect engineering and, 229–230
MOSIS design rules, 118

Width/Length (W/L) ratio
fallacies of, 94
geometry dependence and, 86
transistor dimensions, 26–27

Wire capacitance
applying Logical Effort with wires, 236
computing, 215–217
dynamic power and, 188
gate sizing under delay constraint, 189–190
increasing circuit delay, 220–221

Wire geometry, interconnect, 211–213
Wire pitch, 211
wire type, standard Verilog, 740
Wires. See also Interconnect

building during metallization process,
110–112

building in Back-End-of-Line phase, 100
Within-die (WID) process variations, 243–244
Within-wafer (WIW) process variations, 243
Word line drivers, 511
Wordlines

DRAM. See DRAM (Dynamic RAM)
dynamic decoders and, 508–509
hierarchical (or divided), 508
ROM, 528
split-wordline cells, 514

Wordslices, logic design, 39–40
Writability constraint, SRAM cells, 501
Write assist, low-power SRAMs, 518
Write drivers, DRAMs, 525–526
Write margin, SRAM cells, 502, 505–506
Write operation, SRAM cells, 500–502
Write ports, multi-ported RAM, 514–515

x (invalid logic level), HDLs, 710
XNOR operation, 471–472
XOR operation

carry-ripple adders and, 440–441
carry-skip adders and, 441–443
comparing in multiplier trees, 489
implemented by Boolean unit, 468
linear-feedback shift registers and, 466–467

XOR/XNOR circuit forms, 471–472

Y diagram, design partitioning, 31–32
Yield

design for manufacturability, 688
design rules, 113
enhancement guidelines, 135
fundamentals of, 269–270

z (floating value), HDLs, 709–710
Zero insertion force (ZIF) socket, 663
Zero-mean random variables, 264
Zippers, in wordslices, 39

838

Figure 1.1 © 1997 Semiconductor Industry Association. All
Rights Reserved.

Figure 1.2a Courtesy AT&T.
Figure 1.2b Courtesy Texas Instruments
Figure 1.3a © Copyright 1967 IEEE. All Rights Reserved.
Figure 1.3b Courtesy of Intel Corporation.
Figure 1.48 Copyright © 2003 The McGraw-Hill Companies, Inc.

All Rights Reserved.
Figure 1.71 Courtesy of Intel Corporation.
Figure 3.1 Courtesy of International Business Machines

Corporation. Unauthorized use not permitted.
Figure 3.4 Copyright © 1998 SPIE. All Rights Reserved.
Figure 3.6 © Copyright 2008 IEEE—All Rights Reserved.
Figure 3.12 Courtesy of International Business Machines

Corporation. Unauthorized use not permitted.
Figure 3.13 Courtesy of International Business Machines

Corporation. Unauthorized use not permitted.
Figure 3.14 Courtesy of International Business Machines

Corporation. Unauthorized use not permitted.
Figure 3.18 © Copyright 2007 IEEE—All Rights Reserved.
Figure 3.19 (a)(b) © Copyright 2005 IEEE—All Rights Reserved.
Figure 3.22 Courtesy of International Business Machines

Corporation. Unauthorized use not permitted.
Figure 3.30 © Copyright 2005 IEEE—All Rights Reserved.
Figure 3.31 © Copyright 2006 IEEE—All Rights Reserved.
Figure 3.32 © Copyright 2008 IBM Corporation. All rights

reserved.
Figure 3.34 Courtesy of Intel Corporation.
Figure 3.35 © Copyright 2003 IEEE—All Rights Reserved.
Figure 3.38 Courtesy of Intel Corporation.
Artwork p. 136 © 1995–2010 by Michael W. Davidson and The

Florida State University. All Rights Reserved.
Reproduced with permission.

Figure 4.25 Copyright © ARM. All Rights Reserved.
Figure 4.41 Copyright © ARM. All Rights Reserved
Figure 5.11 © Copyright 2004 IEEE—All Rights Reserved.
Figure 5.19 © Copyright 2007 IEEE—All Rights Reserved.
Figure 5.21 © Copyright 2007 IEEE—All Rights Reserved.
Figure 5.26 © Copyright 2005 IEEE—All Rights Reserved.
Figure 5.27 © Copyright 2002 IEEE—All Rights Reserved.
Figure 5.28 © Copyright 1997 IEEE—All Rights Reserved.
Figure 5.30 © Copyright 2009 IEEE—All Rights Reserved.
Figure 5.33 Courtesy of Intel Corporation.
Figure 6.2 (a) © Copyright 2010 IEEE—All Rights Reserved.

Figure 6 2 (b) Courtesy of Intel Corporation.
Figure 6.3 Courtesy of Intel Corporation.
Figure 7 2 © Copyright IBM Corporation. All Rights Reserved.
Figure 7.3 © Copyright 2001 IEEE—All Rights Reserved.
Figure 7.4 From M. Pelgrom, “Nanometer CMOS: An Analog

Design Challenge!” IEEE Distinguished Lecture,
Denver 2006. Reprinted by permission of the author.
Figure courtesy of Boris Ljevar (NXP). All Rights
Reserved.

Figure 7.7 © Copyright 2010 IEEE—All Rights Reserved.
Figure 7.8 © Copyright 2010 IEEE—All Rights Reserved.
Figure 7.11 © Copyright 2010 IEEE—All Rights Reserved.
Figure 7.15 © Copyright 2010 IEEE—All Rights Reserved.
Figure 7.16 © 1997 Semiconductor Industry Association. All

Rights Reserved.
Figure 7 21 Courtesy Larry Pileggi.
Figure 7 22 Courtesy of Texas Instruments.
Figure 7 23 © Copyright 2006 IBM Corporation. All rights

reserved.
Figure 7 27 © Copyright 2010 IEEE—All Rights Reserved.
Figures 7.30–7.38 Courtesy of Intel Corporation.
Figure 9.62 Courtesy International Business Machines

Corporation. Unauthorized use not permitted.
Figure 10.6 © Copyright 2002 IEEE—All Rights Reserved.
Figure 11.38 © Copyright 2007 IEEE—All Rights Reserved
Figure 11.39 © Copyright 2009 IEEE—All Rights Reserved.
Figure 12.16 (a) © Copyright 2000 IEEE—All Rights Reserved.
Figure 12.16 (b) © Copyright 2002 IEEE—All Rights Reserved.
Figure 12.16 (c) © Copyright 2004 IEEE—All Rights Reserved.
Figure 12.16 (d) © Copyright 2007 IEEE—All Rights Reserved.
Figure 12.16 (e) © Copyright 2008 IEEE—All Rights Reserved.
Figure 12.36 © Copyright 2005 IEEE—All Rights Reserved.
Figure 12.50 © Copyright 2008 IEEE—All Rights Reserved.
Figure 12.62 © Copyright 2009 IEEE—All Rights Reserved.
Figure 13.3 Courtesy of Intel Corporation.
Figure 13.6 © Copyright Sun Microsystems, Inc.
Figure 13.12 © Copyright 2008 IEEE—All Rights Reserved.
Figure 13.13 © Copyright 2006 IEEE—All Rights Reserved.
Figure 14.27 Copyright © 2000–2010 IC Knowledge. All Rights

Reserved.
Figure 15.7 © 2009 GGB Industries, reprinted with permision.
Figure 15.9 © Copyright 2009 IEEE—All Rights Reserved.
Figure 15.10 Courtesy of Intel Corporation.

Credits

MOSIS SUBM design rules (3 metal, 1 poly with stacked vias & alternate contact rules)
Layer Rule Description Rule ()
N-well 1.1 Width 12

1.2 Spacing to well at different potential 18

1.3 Spacing to well at same potential 6

Active (diffusion) 2.1 Width 3

2.2 Spacing to active 3

2.3 Source/drain surround by well 6

2.4 Substrate/well contact surround by well 3

2.5 Spacing to active of opposite type 4

Poly 3.1 Width 2

3.2 Spacing to poly over field oxide 3

3.2a Spacing to poly over active 3

3.3 Gate extension beyond active 2

3.4 Active extension beyond poly 3

3.5 Spacing of poly to active 1

Select
(n or p)

4.1 Spacing from substrate/well contact to gate 3

4.2 Overlap of active 2

4.3 Overlap of substrate/well contact 1

4.4 Spacing to select 2

Contact
(to poly or active)

5.1, 6.1 Width (exact) 2 ×2

5.2b, 6.2b Overlap by poly or active 1

5.3, 6.3 Spacing to contact 3

5.4, 6.4 Spacing to gate 2

5.5b Spacing of poly contact to other poly 5

5.7b, 6.7b Spacing to active/poly for multiple poly/active contacts 3

6.8b Spacing of active contact to poly contact 4

Metal1, Metal2 7.1, 9.1 Width 3

7.2, 9.2 Spacing to same layer of metal 3

7.3, 8.3, 9.3 Overlap of contact or via 1

7.4, 9.4 Spacing to metal for lines wider than 10 6

Via1, Via2 8.1, 14.1 Width (exact) 2 ×2

8.2, 14.2 Spacing to via on same layer 3

Metal3 15.1 Width 5

15.2 Spacing to metal3 3

15.3 Overlap of via2 2

15.4 Spacing to metal for lines wider than 10 6

Overglass Cut 10.1 Width of bond pad opening 60 m

10.2 Width of probe pad opening 20 m

10.3 Metal3 overlap of overglass cut 6 m

10.4 Spacing of pad metal to unrelated metal 30 m

10.5 Spacing of pad metal to active or poly 15 m

Thank you for purchasing a new copy of CMOS VLSI Design A Circuits and Systems Perspective, Fourth
Edition by Neil H.E. Weste, David Money Harris. The information below provides instruction on how to access
the Companion site.

To access the Companion Website:

1. Go to http://www.pearsonhighered.com/weste/

2. From here you can register as a First-Time User or Returning User.

3. Your student access code will be sent to you by CourseSmart. On the registration page, enter your student
access code. Do not type the dashes. You can use lower or uppercase letters.

4. Follow the on-screen instructions. If you need help during the online registration process, simply click on
Need Help?

5. Once your personal Login Name and Password are confirmed, you can begin viewing the Companion Web-
site.

To login to the website for the first time after you’ve registered:

Follow step 1 to return to the Companion Website. Then, follow the prompts for "Returning Users" to enter
your Login Name and Password.

Note to Instructors: For access to the Instructor Resource Center, contact your Pearson Representative.

IMPORTANT: The access code on this page can only be used once to establish a subscription to the Compan-
ion Website for CMOS VLSI Design A Circuits and Systems Perspective, Fourth Edition. If this access code
has already been redeemed, it will no longer be valid. If this is the case, you can purchase a subscription by
going to the http://www.pearsonhighered.com/weste/ website and selecting "Get Access."

	Cover������������
	Title Page
	Copyright
	Contents
	Preface
	Chapter 1 Introduction
	1.1 A Brief History
	1.2 Preview
	1.3 MOS Transistors
	1.4 CMOS Logic
	1.4.1 The Inverter
	1.4.2 The NAND Gate
	1.4.3 CMOS Logic Gates
	1.4.4 The NOR Gate
	1.4.5 Compound Gates
	1.4.6 Pass Transistors and Transmission Gates
	1.4.7 Tristates
	1.4.8 Multiplexers
	1.4.9 Sequential Circuits

	1.5 CMOS Fabrication and Layout
	1.5.1 Inverter Cross-Section
	1.5.2 Fabrication Process
	1.5.3 Layout Design Rules
	1.5.4 Gate Layouts
	1.5.5 Stick Diagrams

	1.6 Design Partitioning
	1.6.1 Design Abstractions
	1.6.2 Structured Design
	1.6.3 Behavioral, Structural, and Physical Domains

	1.7 Example: A Simple MIPS Microprocessor
	1.7.1 MIPS Architecture
	1.7.2 Multicycle MIPS Microarchitecture

	1.8 Logic Design
	1.8.1 Top-Level Interfaces
	1.8.2 Block Diagrams
	1.8.3 Hierarchy
	1.8.4 Hardware Description Languages

	1.9 Circuit Design
	1.10 Physical Design
	1.10.1 Floorplanning
	1.10.2 Standard Cells
	1.10.3 Pitch Matching
	1.10.4 Slice Plans
	1.10.5 Arrays
	1.10.6 Area Estimation

	1.11 Design Verification
	1.12 Fabrication, Packaging, and Testing
	Summary and a Look Ahead
	Exercises

	Chapter 2 MOS Transistor Theory
	2.1 Introduction
	2.2 Long-Channel I-V Characteristics
	2.3 C-V Characteristics
	2.3.1 Simple MOS Capacitance Models
	2.3.2 Detailed MOS Gate Capacitance Model
	2.3.3 Detailed MOS Diffusion Capacitance Model

	2.4 Nonideal I-V Effects
	2.4.1 Mobility Degradation and Velocity Saturation
	2.4.2 Channel Length Modulation
	2.4.3 Threshold Voltage Effects
	2.4.4 Leakage
	2.4.5 Temperature Dependence
	2.4.6 Geometry Dependence
	2.4.7 Summary

	2.5 DC Transfer Characteristics
	2.5.1 Static CMOS Inverter DC Characteristics
	2.5.2 Beta Ratio Effects
	2.5.3 Noise Margin
	2.5.4 Pass Transistor DC Characteristics

	2.6 Pitfalls and Fallacies
	Summary
	Exercises

	Chapter 3 CMOS Processing Technology
	3.1 Introduction
	3.2 CMOS Technologies
	3.2.1 Wafer Formation
	3.2.2 Photolithography
	3.2.3 Well and Channel Formation
	3.2.4 Silicon Dioxide (SiO[sup(2)])
	3.2.5 Isolation
	3.2.6 Gate Oxide
	3.2.7 Gate and Source/Drain Formations
	3.2.8 Contacts and Metallization
	3.2.9 Passivation
	3.2.10 Metrology

	3.3 Layout Design Rules
	3.3.1 Design Rule Background
	3.3.2 Scribe Line and Other Structures
	3.3.3 MOSIS Scalable CMOS Design Rules
	3.3.4 Micron Design Rules

	3.4 CMOS Process Enhancements
	3.4.1 Transistors
	3.4.2 Interconnect
	3.4.3 Circuit Elements
	3.4.4 Beyond Conventional CMOS

	3.5 Technology-Related CAD Issues
	3.5.1 Design Rule Checking (DRC)
	3.5.2 Circuit Extraction

	3.6 Manufacturing Issues
	3.6.1 Antenna Rules
	3.6.2 Layer Density Rules
	3.6.3 Resolution Enhancement Rules
	3.6.4 Metal Slotting Rules
	3.6.5 Yield Enhancement Guidelines

	3.7 Pitfalls and Fallacies
	3.8 Historical Perspective
	Summary
	Exercises

	Chapter 4 Delay
	4.1 Introduction
	4.1.1 Definitions
	4.1.2 Timing Optimization

	4.2 Transient Response
	4.3 RC Delay Model
	4.3.1 Effective Resistance
	4.3.2 Gate and Diffusion Capacitance
	4.3.3 Equivalent RC Circuits
	4.3.4 Transient Response
	4.3.5 Elmore Delay
	4.3.6 Layout Dependence of Capacitance
	4.3.7 Determining Effective Resistance

	4.4 Linear Delay Model
	4.4.1 Logical Effort
	4.4.2 Parasitic Delay
	4.4.3 Delay in a Logic Gate
	4.4.4 Drive
	4.4.5 Extracting Logical Effort from Datasheets
	4.4.6 Limitations to the Linear Delay Model

	4.5 Logical Effort of Paths
	4.5.1 Delay in Multistage Logic Networks
	4.5.2 Choosing the Best Number of Stages
	4.5.3 Example
	4.5.4 Summary and Observations
	4.5.5 Limitations of Logical Effort
	4.5.6 Iterative Solutions for Sizing

	4.6 Timing Analysis Delay Models
	4.6.1 Slope-Based Linear Model
	4.6.2 Nonlinear Delay Model
	4.6.3 Current Source Model

	4.7 Pitfalls and Fallacies
	4.8 Historical Perspective
	Summary
	Exercises

	Chapter 5 Power
	5.1 Introduction
	5.1.1 Definitions
	5.1.2 Examples
	5.1.3 Sources of Power Dissipation

	5.2 Dynamic Power
	5.2.1 Activity Factor
	5.2.2 Capacitance
	5.2.3 Voltage
	5.2.4 Frequency
	5.2.5 Short-Circuit Current
	5.2.6 Resonant Circuits

	5.3 Static Power
	5.3.1 Static Power Sources
	5.3.2 Power Gating
	5.3.3 Multiple Threshold Voltages and Oxide Thicknesses
	5.3.4 Variable Threshold Voltages
	5.3.5 Input Vector Control

	5.4 Energy-Delay Optimization
	5.4.1 Minimum Energy
	5.4.2 Minimum Energy-Delay Product
	5.4.3 Minimum Energy Under a Delay Constraint

	5.5 Low Power Architectures
	5.5.1 Microarchitecture
	5.5.2 Parallelism and Pipelining
	5.5.3 Power Management Modes

	5.6 Pitfalls and Fallacies
	5.7 Historical Perspective
	Summary
	Exercises

	Chapter 6 Interconnect
	6.1 Introduction
	6.1.1 Wire Geometry
	6.1.2 Example: Intel Metal Stacks

	6.2 Interconnect Modeling
	6.2.1 Resistance
	6.2.2 Capacitance
	6.2.3 Inductance
	6.2.4 Skin Effect
	6.2.5 Temperature Dependence

	6.3 Interconnect Impact
	6.3.1 Delay
	6.3.2 Energy
	6.3.3 Crosstalk
	6.3.4 Inductive Effects
	6.3.5 An Aside on Effective Resistance and Elmore Delay

	6.4 Interconnect Engineering
	6.4.1 Width, Spacing, and Layer
	6.4.2 Repeaters
	6.4.3 Crosstalk Control
	6.4.4 Low-Swing Signaling
	6.4.5 Regenerators

	6.5 Logical Effort with Wires
	6.6 Pitfalls and Fallacies
	Summary
	Exercises

	Chapter 7 Robustness
	7.1 Introduction
	7.2 Variability
	7.2.1 Supply Voltage
	7.2.2 Temperature
	7.2.3 Process Variation
	7.2.4 Design Corners

	7.3 Reliability
	7.3.1 Reliability Terminology
	7.3.2 Oxide Wearout
	7.3.3 Interconnect Wearout
	7.3.4 Soft Errors
	7.3.5 Overvoltage Failure
	7.3.6 Latchup

	7.4 Scaling
	7.4.1 Transistor Scaling
	7.4.2 Interconnect Scaling
	7.4.3 International Technology Roadmap for Semiconductors
	7.4.4 Impacts on Design

	7.5 Statistical Analysis of Variability
	7.5.1 Properties of Random Variables
	7.5.2 Variation Sources
	7.5.3 Variation Impacts

	7.6 Variation-Tolerant Design
	7.6.1 Adaptive Control
	7.6.2 Fault Tolerance

	7.7 Pitfalls and Fallacies
	7.8 Historical Perspective
	Summary
	Exercises

	Chapter 8 Circuit Simulation
	8.1 Introduction
	8.2 A SPICE Tutorial
	8.2.1 Sources and Passive Components
	8.2.2 Transistor DC Analysis
	8.2.3 Inverter Transient Analysis
	8.2.4 Subcircuits and Measurement
	8.2.5 Optimization
	8.2.6 Other HSPICE Commands

	8.3 Device Models
	8.3.1 Level 1 Models
	8.3.2 Level 2 and 3 Models
	8.3.3 BSIM Models
	8.3.4 Diffusion Capacitance Models
	8.3.5 Design Corners

	8.4 Device Characterization
	8.4.1 I-V Characteristics
	8.4.2 Threshold Voltage
	8.4.3 Gate Capacitance
	8.4.4 Parasitic Capacitance
	8.4.5 Effective Resistance
	8.4.6 Comparison of Processes
	8.4.7 Process and Environmental Sensitivity

	8.5 Circuit Characterization
	8.5.1 Path Simulations
	8.5.2 DC Transfer Characteristics
	8.5.3 Logical Effort
	8.5.4 Power and Energy
	8.5.5 Simulating Mismatches
	8.5.6 Monte Carlo Simulation

	8.6 Interconnect Simulation
	8.7 Pitfalls and Fallacies
	Summary
	Exercises

	Chapter 9 Combinational Circuit Design
	9.1 Introduction
	9.2 Circuit Families
	9.2.1 Static CMOS
	9.2.2 Ratioed Circuits
	9.2.3 Cascode Voltage Switch Logic
	9.2.4 Dynamic Circuits
	9.2.5 Pass-Transistor Circuits

	9.3 Circuit Pitfalls
	9.3.1 Threshold Drops
	9.3.2 Ratio Failures
	9.3.3 Leakage
	9.3.4 Charge Sharing
	9.3.5 Power Supply Noise
	9.3.6 Hot Spots
	9.3.7 Minority Carrier Injection
	9.3.8 Back-Gate Coupling
	9.3.9 Diffusion Input Noise Sensitivity
	9.3.10 Process Sensitivity
	9.3.11 Example: Domino Noise Budgets

	9.4 More Circuit Families
	9.5 Silicon-On-Insulator Circuit Design
	9.5.1 Floating Body Voltage
	9.5.2 SOI Advantages
	9.5.3 SOI Disadvantages
	9.5.4 Implications for Circuit Styles
	9.5.5 Summary

	9.6 Subthreshold Circuit Design
	9.6.1 Sizing
	9.6.2 Gate Selection

	9.7 Pitfalls and Fallacies
	9.8 Historical Perspective
	Summary
	Exercises

	Chapter 10 Sequential Circuit Design
	10.1 Introduction
	10.2 Sequencing Static Circuits
	10.2.1 Sequencing Methods
	10.2.2 Max-Delay Constraints
	10.2.3 Min-Delay Constraints
	10.2.4 Time Borrowing
	10.2.5 Clock Skew

	10.3 Circuit Design of Latches and Flip-Flops
	10.3.1 Conventional CMOS Latches
	10.3.2 Conventional CMOS Flip-Flops
	10.3.3 Pulsed Latches
	10.3.4 Resettable Latches and Flip-Flops
	10.3.5 Enabled Latches and Flip-Flops
	10.3.6 Incorporating Logic into Latches
	10.3.7 Klass Semidynamic Flip-Flop (SDFF)
	10.3.8 Differential Flip-Flops
	10.3.9 Dual Edge-Triggered Flip-Flops
	10.3.10 Radiation-Hardened Flip-Flops
	10.3.11 True Single-Phase-Clock (TSPC) Latches and Flip-Flops

	10.4 Static Sequencing Element Methodology
	10.4.1 Choice of Elements
	10.4.2 Characterizing Sequencing Element Delays
	10.4.3 State Retention Registers
	10.4.4 Level-Converter Flip-Flops
	10.4.5 Design Margin and Adaptive Sequential Elements
	10.4.6 Two-Phase Timing Types

	10.5 Sequencing Dynamic Circuits
	10.6 Synchronizers
	10.6.1 Metastability
	10.6.2 A Simple Synchronizer
	10.6.3 Communicating Between Asynchronous Clock Domains
	10.6.4 Common Synchronizer Mistakes
	10.6.5 Arbiters
	10.6.6 Degrees of Synchrony

	10.7 Wave Pipelining
	10.8 Pitfalls and Fallacies
	10.9 Case Study: Pentium 4 and Itanium 2 Sequencing Methodologies
	Summary
	Exercises

	Chapter 11 Datapath Subsystems
	11.1 Introduction
	11.2 Addition/Subtraction
	11.2.1 Single-Bit Addition
	11.2.2 Carry-Propagate Addition
	11.2.3 Subtraction
	11.2.4 Multiple-Input Addition
	11.2.5 Flagged Prefix Adders

	11.3 One/Zero Detectors
	11.4 Comparators
	11.4.1 Magnitude Comparator
	11.4.2 Equality Comparator
	11.4.3 K = A + B Comparator

	11.5 Counters
	11.5.1 Binary Counters
	11.5.2 Fast Binary Counters
	11.5.3 Ring and Johnson Counters
	11.5.4 Linear-Feedback Shift Registers

	11.6 Boolean Logical Operations
	11.7 Coding
	11.7.1 Parity
	11.7.2 Error-Correcting Codes
	11.7.3 Gray Codes
	11.7.4 XOR/XNOR Circuit Forms

	11.8 Shifters
	11.8.1 Funnel Shifter
	11.8.2 Barrel Shifter
	11.8.3 Alternative Shift Functions

	11.9 Multiplication
	11.9.1 Unsigned Array Multiplication
	11.9.2 Two’s Complement Array Multiplication
	11.9.3 Booth Encoding
	11.9.4 Column Addition
	11.9.5 Final Addition
	11.9.6 Fused Multiply-Add
	11.9.7 Serial Multiplication
	11.9.8 Summary

	11.10 Parallel-Prefix Computations
	11.11 Pitfalls and Fallacies
	Summary
	Exercises

	Chapter 12 Array Subsystems
	12.1 Introduction
	12.2 SRAM
	12.2.1 SRAM Cells
	12.2.2 Row Circuitry
	12.2.3 Column Circuitry
	12.2.4 Multi-Ported SRAM and Register Files
	12.2.5 Large SRAMs
	12.2.6 Low-Power SRAMs
	12.2.7 Area, Delay, and Power of RAMs and Register Files

	12.3 DRAM
	12.3.1 Subarray Architectures
	12.3.2 Column Circuitry
	12.3.3 Embedded DRAM

	12.4 Read-Only Memory
	12.4.1 Programmable ROMs
	12.4.2 NAND ROMs
	12.4.3 Flash

	12.5 Serial Access Memories
	12.5.1 Shift Registers
	12.5.2 Queues (FIFO, LIFO)

	12.6 Content-Addressable Memory
	12.7 Programmable Logic Arrays
	12.8 Robust Memory Design
	12.8.1 Redundancy
	12.8.2 Error Correcting Codes (ECC)
	12.8.3 Radiation Hardening

	12.9 Historical Perspective
	Summary
	Exercises

	Chapter 13 Special-Purpose Subsystems
	13.1 Introduction
	13.2 Packaging and Cooling
	13.2.1 Package Options
	13.2.2 Chip-to-Package Connections
	13.2.3 Package Parasitics
	13.2.4 Heat Dissipation
	13.2.5 Temperature Sensors

	13.3 Power Distribution
	13.3.1 On-Chip Power Distribution Network
	13.3.2 IR Drops
	13.3.3 L di/dt Noise
	13.3.4 On-Chip Bypass Capacitance
	13.3.5 Power Network Modeling
	13.3.6 Power Supply Filtering
	13.3.7 Charge Pumps
	13.3.8 Substrate Noise
	13.3.9 Energy Scavenging

	13.4 Clocks
	13.4.1 Definitions
	13.4.2 Clock System Architecture
	13.4.3 Global Clock Generation
	13.4.4 Global Clock Distribution
	13.4.5 Local Clock Gaters
	13.4.6 Clock Skew Budgets
	13.4.7 Adaptive Deskewing

	13.5 PLLs and DLLs
	13.5.1 PLLs
	13.5.2 DLLs
	13.5.3 Pitfalls

	13.6 I/0
	13.6.1 Basic I/O Pad Circuits
	13.6.2 Electrostatic Discharge Protection
	13.6.3 Example: MOSIS I/O Pads
	13.6.4 Mixed-Voltage I/O

	13.7 High-Speed Links
	13.7.1 High-Speed I/O Channels
	13.7.2 Channel Noise and Interference
	13.7.3 High-Speed Transmitters and Receivers
	13.7.4 Synchronous Data Transmission
	13.7.5 Clock Recovery in Source-Synchronous Systems
	13.7.6 Clock Recovery in Mesochronous Systems
	13.7.7 Clock Recovery in Pleisochronous Systems

	13.8 Random Circuits
	13.8.1 True Random Number Generators
	13.8.2 Chip Identification

	13.9 Pitfalls and Fallacies
	Summary
	Exercises

	Chapter 14 Design Methodology and Tools
	14.1 Introduction
	14.2 Structured Design Strategies
	14.2.1 A Software Radio—A System Example
	14.2.2 Hierarchy
	14.2.3 Regularity
	14.2.4 Modularity
	14.2.5 Locality
	14.2.6 Summary

	14.3 Design Methods
	14.3.1 Microprocessor/DSP
	14.3.2 Programmable Logic
	14.3.3 Gate Array and Sea of Gates Design
	14.3.4 Cell-Based Design
	14.3.5 Full Custom Design
	14.3.6 Platform-Based Design—System on a Chip
	14.3.7 Summary

	14.4 Design Flows
	14.4.1 Behavioral Synthesis Design Flow (ASIC Design Flow)
	14.4.2 Automated Layout Generation
	14.4.3 Mixed-Signal or Custom-Design Flow

	14.5 Design Economics
	14.5.1 Non-Recurring Engineering Costs (NREs)
	14.5.2 Recurring Costs
	14.5.3 Fixed Costs
	14.5.4 Schedule
	14.5.5 Personpower
	14.5.6 Project Management
	14.5.7 Design Reuse

	14.6 Data Sheets and Documentation
	14.6.1 The Summary
	14.6.2 Pinout
	14.6.3 Description of Operation
	14.6.4 DC Specifications
	14.6.5 AC Specifications
	14.6.6 Package Diagram
	14.6.7 Principles of Operation Manual
	14.6.8 User Manual

	14.7 CMOS Physical Design Styles
	14.8 Pitfalls and Fallacies
	Exercises

	Chapter 15 Testing, Debugging, and Verification
	15.1 Introduction
	15.1.1 Logic Verification
	15.1.2 Debugging
	15.1.3 Manufacturing Tests

	15.2 Testers, Test Fixtures, and Test Programs
	15.2.1 Testers and Test Fixtures
	15.2.2 Test Programs
	15.2.3 Handlers

	15.3 Logic Verification Principles
	15.3.1 Test Vectors
	15.3.2 Testbenches and Harnesses
	15.3.3 Regression Testing
	15.3.4 Version Control
	15.3.5 Bug Tracking

	15.4 Silicon Debug Principles
	15.5 Manufacturing Test Principles
	15.5.1 Fault Models
	15.5.2 Observability
	15.5.3 Controllability
	15.5.4 Repeatability
	15.5.5 Survivability
	15.5.6 Fault Coverage
	15.5.7 Automatic Test Pattern Generation (ATPG)
	15.5.8 Delay Fault Testing

	15.6 Design for Testability
	15.6.1 Ad Hoc Testing
	15.6.2 Scan Design
	15.6.3 Built-In Self-Test (BIST)
	15.6.4 IDDQ Testing
	15.6.5 Design for Manufacturability

	15.7 Boundary Scan
	15.8 Testing in a University Environment
	15.9 Pitfalls and Fallacies
	Summary
	Exercises

	Appendix A: Hardware Description Languages
	A.1 Introduction
	A.1.1 Modules
	A.1.2 Simulation and Synthesis

	A.2 Combinational Logic
	A.2.1 Bitwise Operators
	A.2.2 Comments and White Space
	A.2.3 Reduction Operators
	A.2.4 Conditional Assignment
	A.2.5 Internal Variables
	A.2.6 Precedence and Other Operators
	A.2.7 Numbers
	A.2.8 Zs and Xs
	A.2.9 Bit Swizzling
	A.2.10 Delays

	A.3 Structural Modeling
	A.4 Sequential Logic
	A.4.1 Registers
	A.4.2 Resettable Registers
	A.4.3 Enabled Registers
	A.4.4 Multiple Registers
	A.4.5 Latches
	A.4.6 Counters
	A.4.7 Shift Registers

	A.5 Combinational Logic with Always / Process Statements
	A.5.1 Case Statements
	A.5.2 If Statements
	A.5.3 SystemVerilog Casez
	A.5.4 Blocking and Nonblocking Assignments

	A.6 Finite State Machines
	A.6.1 FSM Example
	A.6.2 State Enumeration
	A.6.3 FSM with Inputs

	A.7 Type Idiosyncracies
	A.8 Parameterized Modules
	A.9 Memory
	A.9.1 RAM
	A.9.2 Multiported Register Files
	A.9.3 ROM

	A.10 Testbenches
	A.11 SystemVerilog Netlists
	A.12 Example: MIPS Processor
	A.12.1 Testbench
	A.12.2 SystemVerilog
	A.12.3 VHDL

	Exercises

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Credits

