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Abstract—Postural sway is a critical measure for evaluating
postural control, and its analysis plays a vital role in preventing
falls among the elderly. Typically, physiotherapists assess an
individual’s postural control using tests such as the Berg Balance
Scale, Tinetti Test, and time up-and-go test. Sensor-based analysis
is available based on devices such as force plates or inertial
measurement units. Recently, machine learning methods have
demonstrated promising results in the sensor-based analysis
of postural control. However, these models are often complex,
slow, and energy-intensive. To address these limitations, this
study explores the design space of lightweight machine learning
models deployable to microcontrollers to assess postural stability.
We developed an artificial neural network (ANN) model and
compare its performance to that of random forests, gaussian
naive bayes, and extra tree classifiers. The models are trained
using a sway dataset with varying input sizes and signal-to-noise
ratios. The dataset comprises two feature vectors extracted from
raw accelerometer data. The developed models are deployed to an
ARM Cortex M4-based microcontroller, and their performance
is evaluated and compared. We show that the ANN model has
99.03 % accuracy, higher noise immunity, and the model performs
better with a window size of one second with 590.96 us inference
time.

Index Terms—TinyML, postural sway, fall prevention, real-
time postural assessment, embedded systems, machine learning

I. INTRODUCTION

Postural stability, or the ability to maintain the position of
the body within specific boundaries of space known as stability
limits, is essential for maintaining balance and controlling
individual mobility [1]. Postural sway, the movement of the
center of mass (COM) in a standing position, is minimized
through the maintenance of postural control [2]. Individuals
who have difficulty with balance and coordination tend to have
increased postural sway [3]. Falls, often caused by balance
impairments, are the leading cause of accidental death in older
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adults, with 28.7% of US adults over 65 years experiencing
a fall each year, resulting in over 300,000 hip fractures [4]
and $50 billion in medical costs [5]. Falls can lead to loss of
mobility, anxiety, and reduced quality of life. Annual fall risk
assessments become a standard part of care for older adults
having diseases such as Alzheimer, Parkinson’s disease, autism
spectrum disorder, or multiple sclerosis. By analyzing the
postural sway involved in postural control, it may be possible
to develop more effective interventions to prevent falls and
improve quality of life [6].

Traditional methods for assessing postural stability include
physiotherapist- or neurologist-supervised tests such as the
Berg balance test [7], Tinetti test [8], and time up-and-go test
[9]. These tests are observation-based analyses and require ex-
pertise in the field. Another approach is to use force plates [10]
to analyze the time variation of the body’s center of pressure
(COP). These assessments are usually conducted periodically
in a structured environment, such as a medical clinic or hospi-
tal, under supervision and are therefore costly. To enable real-
time, continuous monitoring of postural instability, a different
approach is necessary. In [11], a vision-based approach using
a Kinect depth camera is used to assess postural sway by
localizing the center of mass and constructing its trajectories.
Wearable devices based on inertial measurement units (IMU)
have become increasingly common and can be used to detect
user movement and extract information about postural sway
[12]-[14]. For example, [13] presents a pendant-mounted
wearable sensor for the assessment of postural sway, and the
ability of the pendant sensor to discriminate between different
balance conditions is evaluated. A comprehensive review for
IMU usage in the assessment of standing balance can be found
in [15]. The IMU-based postural assessment methods include
statistical analysis of extracted time-based features such as the



range of accelerometer signals in antero-posterior (AP) and
medio-lateral (ML) direction and the root mean square (RMS)
values of the range [16] or frequency-based features such as
frequency dispersion and centroidal frequencies of the signals
[17]. Although statistical analysis of postural assessment is
fast, easy to implement, and explainable, the accuracy of
this method is low and has generalization issues [18]. More
recently, machine learning emerged as a solution to overcome
the limitations of conventional statistical analysis methods. For
example, in [19] the support vector machine (SVM) algorithm
is used to automatically evaluate balance outside of clinical
settings. In [20], the authors developed a deep learning model
based on a long short-term memory (LSTM) network for the
fall risk assessment using raw accelerometer data. In another
work [21], authors proposed a novel neuro-fuzzy algorithm
for the assessment of postural sway, and in [22] authors
compared different methods for detecting unstable behaviors
in postural sway. A comprehensive review of the use of
machine learning for postural assessment can be found in [18].
Even though high accuracies are achieved with these machine
learning-based solutions, they have not yet been deployed to
wearable embedded systems. In a recent study [23], authors
implemented their machine learning algorithm on a Raspberry
Pi for detecting postural behavior. However, this solution has
a high power consumption.

To conduct a comprehensive evaluation of postural behavior
in elderly individuals, it is essential to monitor them within
the comfort of their own homes. In order to address this issue,
the development of cost-effective, dependable, and real-time
monitoring solutions is imperative to accurately monitor pos-
tural behaviors in unstructured settings. Additionally, it is cru-
cial to ensure that such solutions incorporate energy-efficient
algorithms to minimize power consumption on resource-
constrained microcontrollers, which leads to long-term, unat-
tended operation. Therefore, in this paper, we focus on the
development, implementation, and performance comparison of
lightweight machine learning models that are deployable to a
wide range of microcontrollers for the real-time assessment of
postural behaviors. The implemented models are deployed to a
widely available ARM Cortex M4-based microcontroller. We
evaluated the performance of multi-layer perceptron (MLP),
random forest (RF), Gaussian naive bayes (GNB), and extra
tree (ET) classifiers under different input sizes, and different
signal-to-noise ratios (SNR). To explore the trade-off between
different machine learning models and the evaluation metrics,
the implemented models are evaluated and compared in terms
of test accuracy, inference time, and noise immunity. Thus,
enabling machine learning based energy-efficient, real-time
postural stability analysis running on microcontrollers.

The remainder of this paper is structured as follows. Section
II describes the postural sway dataset used for the training, val-
idation and test, and details the development, implementation,
and deployment of the machine learning models. Section III
presents the results of the model evaluation and the comparison
between deployed models. Finally, the conclusion and future
works are given in Section IV.

Fig. 1. (a) The mechanism imitating the behaviors of standing postural sway
(b) The corresponding location of the node and the depiction of key values
that aid in the reconstruction of the AP and ML dynamics. [22]

II. METHOD

In this study, we utilized a postural sway dataset [22] to
develop machine learning models. Specifically, we constructed
an artificial neural network (ANN) model and employed
AutoML to identify the most suitable traditional machine
learning models. From the pool of candidate models, we
selected the three best-performing traditional machine learning
models, namely RF, GNB, and ET classifiers, for comparison
with the ANN. By comparing the performance of the ANN
with these three traditional machine learning methods, we
aim to explore the trade-off between the ANN and the three
selected traditional machine learning models in terms of test
accuracy, inference time, which is a crucial metric for energy
consumption, and noise immunity, which is a critical metric
for robustness.

A. Dataset

The dataset used in this paper was initially described in
[22]. As shown in Fig. 1 the data collection setup consists of
a dedicated structure for emulating postural behaviors, as well
as a sensor node containing an Arm Cortex M4-based STM32
microcontroller and a LIS2DW12 MEMS accelerometer. The
accelerometer has a 16-bit resolution with configurable sam-
pling frequencies ranging from 1.6 Hz to 1600 Hz. For the data
collection, a sampling rate of 100 Hz was used. The struc-
ture was designed to simulate Stable (ST), Antero-Posterior
(AP), Medio-Lateral (ML), and overall unstable (INST) be-
haviors. The node was positioned at a height corresponding
to standard chest positions to acquire a consistent dataset of
various standing postural behaviors without inconveniencing
actual patients during development. Manual manipulation of
the structure allowed for the emulation of different postural
behaviors. Similar to the corresponding human movements
shown in Fig. 2, ML displacement was achieved through tilting
movements around the belt joint, while AP dynamics were
reproduced through tilting movements around the bottom joint.
Displacements exceeding a certain threshold in one direction
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Fig. 2. Corresponding postural behaviors emulated by the mechanism

or AP-ML combinations were labeled as unstable behaviors
while minor displacements were considered stable dynamics.
More information about the setup can be found in [22].

From the collected accelerometer data, displacements in AP
(DAP) and ML (DML) are calculated and used to populate
the dataset. The trajectories of the sensor node’s COM can be
reconstructed using these displacements. Equations (1) and (2)
describe the calculation of DAP and DML parameters, where
Az, are the acceleration in each direction, H; and Hy are
the distances described in Fig. 1.

DAP = HlL (1)
\ AL+ A2

DML = HQL 2)
\/AZ + A2

Each file in the dataset contains DAP and DML values
with varying numbers of samples. The dataset contains 1000
emulated postural behaviors, ranging between 4.55s - 8.69s,
with around 250 for each behavior namely, ST, ML, AP, and
INST. The dataset contains five different cases of H; and H
distances, representing different individuals. Examples of DAP
and DML signals in the dataset for each postural behavior type
are shown in Fig. 3.

The dataset is split into training, validation, and testing
datasets with a ratio of 70%, 15%, and 15%, resulting in
different numbers of samples for different input sizes.

B. Artificial Neural Network Model Design

Artificial neural networks (ANNs) are a form of machine
learning that takes inspiration from the way biological neurons
work. These networks are made up of layers of interconnected
neurons, with each neuron serving as a node in the network.
ANNS are typically composed of an input layer, one or more
hidden layers, and an output layer. Each layer, except for the
input layer, takes inputs from the previous layer, calculates
the weighted sum of the inputs, adds a bias, and applies an
activation function such as ReLU, sigmoid, or ELU to produce
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Fig. 3. Examples of DAP and DML signals for each postural behavior type
in the dataset with 100 Hz sample rate.
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Fig. 4. a) Atrtificial neural network model structure b) Perceptron block

the output. Fig. 4(b) illustrates the calculation performed by
each node, and its transfer function is given as

x)=o0 iwixi +b
i=1

where x; are the inputs of the node, w; are the weights, b
is the bias, m is the number of inputs and finally o is the
nonlinear activation function.

The proposed ANN model is depicted in Fig. 5. It consists
of an input layer with different input sizes, two hidden layers
consisting of 12 and 4 neurons with ReLU activation functions
respectively, and an output layer consisting of 4 neurons for the
four different postural sway states with a respective softmax
activation function for each output node. When selecting the
ANN, a preference is given to the network with the fewest
number of layers and neurons that still achieves the highest
level of accuracy. This approach aims to ensure that the
network remains as simple as possible, thereby allowing for a
faster inference time and lower energy consumption.

3)

C. AutoML: Building a classification model

Automated Machine Learning (AutoML) streamlines the
application of machine learning to real-world problems by au-
tomating the entire process. AutoML enables users to rapidly
identify the optimal neural network architecture for their data



TABLE I
AN EXAMPLE OUTPUT FROM PYCARET AUTOML LIBRARY WITH 1X900 INPUT SIZE

Model Accuracy AUC Recall Prec F1 Kappa MCC TT (sec)
NB Naive Bayes 0.9971 0.9995 09971 09973 0.9971 0.9962  0.9962 0.0200
RF  Random Forest Classifier 0.9957 1.000  0.9957 0.9959  0.9957 0.9943  0.9964 0.0550
ET Extra Tree Classifier 0.9957 1.000  0.9957 0.9959  0.9957 0.9943  0.9944 0.0350
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Fig. 5. Developed ANN model structure
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and task, reducing completion time from hours to minutes. In
this study, we used the PyCaret AutoML library [24] to search
for the best classifiers for the given dataset automatically.

PyCaret is a low-code, open-source machine learning library
written in Python that simplifies the automation of machine
learning workflows [24]. PyCaret is a wrapper in Python that
integrates several machine learning libraries and frameworks
such as scikit-learn, XGBoost, LightGBM, CatBoost, spaCy,
Optuna, Hyperopt, Ray, and more. It supports models that
are available within these libraries. Example models include
RF, ET, support vector machines (SVM), GNB, K-nearest
neighbors classifier (KNN), etc. The three best-performing
models from the PyCaret library applied to the postural sway
dataset are shown in Table I. The three best-performing models
are RF, ET, and GNB models and their performances will
be compared to the developed ANN model. RF is a widely
used machine learning algorithm that aggregates the predic-
tions of multiple decision trees to produce a single outcome.
It is capable of handling both classification and regression
tasks. ET is an ensemble learning method that combines the
results of multiple de-correlated decision trees in a “forest” to
generate its classification prediction. Gaussian Naive Bayes is
a classification algorithm that applies Bayes’ theorem with
strong independence assumptions. It is particularly useful
for continuous data and assumes that the features follow a
Gaussian distribution.

D. Model Training

The TensorFlow library is used to train the ANN model
because it can be conveniently deployed to different microcon-
trollers using the TensorFlow Lite Micro (TFLM) framework
[25]. The model is trained using sparse categorical cross-
entropy loss as its loss function and the Adam optimizer for
100 epochs. The best learning rate and batch size are found to
be 0.0005 and 32 respectively using the Weights & Biases [26]
hyperparameter sweep interface. A fixed random seed is used
for reproducibility so that the network can be retrained with the
same results. The same model was trained with different input
sizes using the same hyperparameters to find the optimum
input window for the ANN. The used input sizes are 1x200,
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Fig. 6. Validation accuracy of the ANN models with different input sizes
developed and implemented in Tensorflow
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Fig. 7. TinyML model deployment workflow

1x400, 1x600 and 1x900 corresponding to 1s, 2s, 3s and 4.5s
of concatenated DAP and DML signals sampled at 100 Hz
respectively.

Similarly, different input sizes are used for training the three
best performing models identified by the PyCaret AutoML
library. These models, namely RF, ET, and GNB models,
and their hyper-parameters are extracted using the PyCaret
library. The models are retrained with the scikit-learn library
and converted to microcontroller deployable format using the
emlearn [27] library.

The validation results for the ANN models with different
input sizes are shown in Fig. 6. The model achieves 99.58%
validation accuracy with the 1x200 input size and 90.66%
validation accuracy with an input of 1x900.

E. Model Deployment

The open-source TensorFlow Lite Micro (TFLM) [25] in-
ference framework is utilized to deploy the ANN model to the



TABLE 11
USED MCU SPECIFICATIONS

MCU Core CPU Frequency = SRAM Flash  FPU  Current Consumption per MHz  Voltage Compiler
nRF52840  ARM Cortex M4 64 MHz 256 KB 1 MB v 52 uA* 3.3V arm-none-eabi-g++
*Bluetooth and Wi-Fi are disabled

TABLE III

MODEL TEST ACCURACIES AND INPUT SIZES

Input Size ANN RF ET GNB  AutoML Max Accuracy Info Dataset Size
1x200 99.03  99.29 99.44 98.76 99.44 1s DAP&DML 4832 cases
1x400 96.84  99.69 99.51 99.38 99.69 2s DAP&DML 2321 cases
1x600 95.89  99.67 99.67 99.56 99.67 3s DAP&DML 1296 cases
1x900 92.66 99.57 99.57 99.71 99.71 4.5s DAP&DML 1000 cases
target microcontroller. TABLE IV
For the deployment of RF, ET, and GNB models the emlearn MODEL INFERENCE TIMES AND INPUT SIZE
[27] library is used. Emlearn [27] is a Python library that Tnput Size  ANN (u5) RF (5) ET (is)  GNB (u5)
facilitates machine learning on microcontrollers and embedded 1x200 590.96 48.05 90.08 2320.98
systems. With emlearn, users can train models using Python 1x400 1017.07 4183 74.45 4751.16
. . . . 1x600 1447.04 37.63 71.18 7151.84
and then run inference on any device equipped with a C99 1x900 2093.30 36.19 61.11 10696.72
compiler. Some of its notable features include being designed
for embedded systems, having portable C99 code, not requir-
ing libc or dynamic allocations, and supporting integer/fixed-
point math (for some methods). Model Test Accuracy with increasing noise ratio
In our implementation, the developed ANN, RF, ET, and KL
GNB models are deployed to an ARM Cortex M4-based ool j’\
NRF52840 microcontroller. The microcontroller’s key prop- '
erties are presented in Table II. The deployed models are > 081
evaluated based on test accuracy, average inference time, and S
. . . . . . . . O 0.7
noise immunity. The noise immunity is tested by adding 2
random uniform noise to the test data. Fig. 7 illustrates the Eu,s
workflow from the design of the models to the performance 3
measurements of the deployed models. 2% vosers
—— ANN
III. RESULTS AND DISCUSSION * RF
— ET
The developed models are tested on the test dataset, and °31 —— GNB

the result of the test accuracies with different input sizes
are presented in Table III. RF, ET, and GNB models have
accuracies of more than 98.5% on the test dataset, regardless of
the input size, while the ANN model test accuracy is dropping
with the increasing input size. This is likely due to the dataset
getting smaller with increasing input size. Additionally, the
models are tested with the DAP and DML inputs having
different SNR values. Fig. 8 shows the model test accuracies
as a function of the noise ratio. It can be seen that RF, ET,
and GNB model test accuracies are dropping to less than 60%
with the 1.53 SNR value, while the ANN model performance
is more stable having 87.03% accuracy with the same noise
ratio.

A. Deployment Results

The models are finally deployed to the ARM Cortex M4-
based NRF52840 microcontroller, and average inference times
are acquired for 1000 samples per model. The result of average
inference time values is shown in Table IV. Inference time is
an important metric for a machine learning model as it is
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Signal-to-Noise Ratio (SNR)

200

Fig. 8. Model test accuracies with increasing signal-to-noise ratio

linearly related to energy consumption [28]. According to the
table, the ANN model inference time is getting slower with
increasing input size due to the fact that the models’ number
of parameters is increasing. The ANN model has an average
inference time of 590.96 ps with 1x200 input size and has an
average inference time of 2093.30us with 1x900 input size.
RF and ET models are getting faster with increasing input
size and the RF model has the fastest inference time among
the four models with 36.19 us average inference time using
1x900 input size. The GNB model has the slowest average
inference time with 2320.98 us with 1x200 input size and has
10696.72 us average inference time with 1x900 input size.
The RF model is faster compared to other models because it
treats each input as a feature and creates a tree of if and else



statements related to each feature and based on the result of
if-else statements the output is acquired.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we compared different machine learning
models using different input sizes for the real-time postural
sway assessment on embedded systems. We developed tiny
ANN, RF, ET, and GNB models for postural stability analysis
using a postural sway dataset. The models are implemented,
tested, and deployed to a microcontroller, and the performance
of each model is evaluated. The four models are compared
with each other in terms of accuracy, noise immunity, and
inference time.

We showed that among the four machine learning models,
RF has the fastest average inference time regardless of the in-
put size, while the ANN model has the highest noise immunity
and has an increasing average inference time with increasing
input size. Additionally, we showed that the GNB model
has the slowest inference time and lowest noise immunity
among the four models deployed. Our findings indicate that
in environments with high levels of noise, the implementation
of artificial neural networks (ANN) proves advantageous due
to the inherent robustness of the model, while the utilization
of the RF model is deemed more suitable for applications in
low-noise environments with limited battery capacity.

These models enable energy-efficient algorithms deployable
on a wide range of embedded microcontrollers for real-time
postural stability analysis applications.

In future work, the real-time performance of the imple-
mented models will be tested on the data collection setup and
on real subjects.
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