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Abstract

Introduces life-cycle models and shows how to solve them and build more realistic versions. Covers

most of the main concepts in ’one-asset’ life-cycle models with consumption-leisure and consumption-

savings decisions. Proceed by a series of models, with the intention that you can read the pdf

description of a model, then look through the codes that show how to implement it. By the end you

can easily solve one-asset finite-horizon problems, including plotting life-cycle profiles and simulating

panel data. A few of the models are dedicated to describing key concepts of borrowing constraints,

precautionary savings, and incomplete markets.
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1 Introduction

We gradually build up a life-cycle model that can be used to look at income, hours worked, consumption, and

assets over the life-cycle. We will start with a deterministic life-cycle model in which people live for J periods and

make decisions on how much to work. Our second model will then add a decision about how much to save (assets).

Our third model will just use this model to draw a life-cycle profile. We will then step-by-step make additions to

the model to understand how these help us create more realistic life-cycle profiles including idiosyncratic shocks.

This pdf explains the models one-by-one, and the codes implementing each of them are all on github. We make

use of the VFI Toolkit (vfitoolkit.com). The intention is that you can go through the models one-by-one, first

reading the pdf explanation of the model and then running the codes and seeing how to implement it.

By the end we will have a life-cycle model in which people make consumption-savings and consumption-leisure

choices, which has working age and retirement, which is capable of capturing that earnings are hump-shaped over
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age (peaking around ages 45-55), the variance of both income and consumption increase with age, incomes grow

in line with deterministic economic growth of the economy as a whole, people have some assets left when they die,

people face the risk of substantial medical costs when old, and where borrowing constraints and precautionary

savings play an important role. And we will be able to use these to plot life-cycles, including mean, variance, and

gini coefficients conditional on age, and even on 5 year age-bins. We will also be easily able to simulate panel data

sets from the model on which we could run regressions.

These life-cycle models can be used easily requiring very little knowledge of numerical methods; all you need

is Matlab and a gpu.1 They are intended as a simple way to understand and use life-cycle models. Follow-up

documents will then build on these to explain how to extend them to general equilibrium OLG (overlapping-

generation) models, and how to solve general equilibrium transition paths for OLG models. The codes are an

’introduction’ to life-cycle models, not the final word. If you find this interesting and want to start working with

models that have two or three assets you will need to learn to write (much faster) code yourself; I recommend looking

up the EGM (endogenous grid method) for solving finite-horizon models and starting from there.2 Obviously from

the perspective of the codes there is no need to stick to ’hours worked’, ’assets’, and ’labor productivity shocks’ as

the decision variable, endogenous state, and exogenous state, they can be anything you want to call them/interpret

them as.

Note that the calibration of the model parameters has not be taken seriously in these example models. If

you do any work with life-cycle models it is very important that you take very seriously the question of what

the appropriate parameter values are (whether by calibration, simulationed method of moments estimation, or

anything else). I have not done so as I wish to focus on the concepts around setting up and solving life-cycle

models.

I have put in enough grids points on assets to make the solutions reasonably accurate, but I recommend you

use more to get full accuracy in practice, especially if looking at things like the tails of distributions, inequality,

subpopulations, or correlations in panel data. I have erred on the low side while still having enough points

to illustrate concepts simply so that the codes can be run on less powerful gpus and therefore be more widely

accessible.

If you have any questions about the material, or spot a typo in the codes, or would just like to ask a clarifying

question, etc., please use the forum: discourse.vfitoolkit.com

1The codes make automatic use of the gpu via the VFI Toolkit for Matlab; the gpu must be an NVIDIA gpu. I tested
all of these codes on a gpu with 8gb of ram, vast majority of them would work with less gpu memory but no promises :)

2The VFI Toolkit just uses pure discretization (discretize all decision variables, next period endogenous state, this period
endogenous state, and the exogenous states), this is simple and robust, but not nearly as good a combination of speed and
accuracy and more sophisticated methods.
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2 Building up Life-Cycle Models

2.1 Life-Cycle Model 1: Consumption-Leisure

Households live for J periods and solve the life-cycle problem,

J∑
j=1

βj−1

[
c1−σj

1− σ
− ψ

h1+ηj

1 + η

]
cj = whj

0 ≤ hj ≤ 1

where j indexes age, cj is consumption, hj is hours worked,3 w is the wage per hour worked. So a household

that works hj hours receives an hourly wage of w, giving them a pre-tax labor income of whj . Notice that all the

parameters are just a single number.4

We can rewrite this recursively as a value function problem,

V (j) = max
c,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ βV (j + 1)

c = wh

0 ≤ h ≤ 1, aprime ≥ 0

notice that the value function V depends on the age j, so households face different problems and make different

decisions (different optimal policies) at different ages.5 There is one of these problems for each j = 1, 2, ..., J ; one

problem for each period of the agents life. We assume V (J +1) = 0.6 Notice also from the budget constraint that

once the household chooses one of c or h, it is implicitly choosing the other. The codes take advantage of this and

just has one decision of h.

To solve this we need parameter values for β, σ, ϕ, η and w. In the codes we will create these. We also

need to let the codes know what the ’return function’ is: essentially this combines the period-utility function

( c
1−σ

1−σ − ψ h
1+η

1+η ) with the constraints (c = wh and 0 ≤ h ≤ 1).7 The only other thing the codes need is the ’grid’

on h, and it needs to know which parameter is the discount factor —the parameter that discounts the next period

3h is actually ’fraction of time worked’, but I will call it hours worked throughout simply as it is easier to think of in
this way. 0 ≤ h ≤ 1 is showing us that this ’fraction of time worked’ is from 0 to 1.

4In principle we could write the budget constraint as cj ≤ whj , but it would anyway bind every period as otherwise the
agent is essentially throwing income away by not consuming it all (there is nothing else to do with it in this model).

5While true of these models in general this is actually not true in this most simple example. In this first simple example
the problems for each age are completely seperate as there is nothing connecting them, that is, there is no way (such as
savings) to move resources between periods. Put another way, nothing the household does in one period can have any
influence on any other period. As a result, for this simple example the household actually faces a seperate problem in each
period, and because all the constraints, utility function and parameters are the same it is even the same problem at every
age and so the household will make the same decisions at every age.

6V (J + 1) is effectively the utility received upon dying.
7In practice we will enforce 0 ≤ h ≤ 1 via the grid on h, so only the budget constraint appears inside the code for the

return function.
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value function V (j + 1)— which in our case is β.

We will set this up in the code and then use the command ’ValueFnIter FHorz Case1()’ to solve to get both the

value function and the policy function. The value function tells us the value at each point on the grid (currently

the only variable the value function depends on is j). It also gives us the ’policy function’, which is the optimal

decision the agent makes, in our case this will just be the choice of h (by default the policy is the choice of grid

point for h, rather than the value of h, the codes will make this clearer).

2.2 Life-Cycle Model 2: Retirement

Let’s make just about the simplest change we can. Currently households live J periods, specifically they live 81

periods intended to represent ages 20 to 100 years old, inclusive. In reality we know many people retire at age 65

and receive a pension. We will add this to our codes. We need to tell the codes how to detect retirement (which

we will make automatic at age 65) and how much the pension is. Let Jr = 46 be the retirement age (46=65-19,

19 is years before the first model period of age 20 years old). The life-cycle value function of the household is now,

V (j) = max
c,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ βV (j + 1)

if j < Jr : c = wh

if j >= Jr : c = pension

0 ≤ h ≤ 1, aprime ≥ 0

notice that j < Jr is pre-retirement (working age), and j >= Jr is retirement during which the household can no

longer earn money by working, but does receive a pension. Notice that the codes will need to know age j, which

in the code we will call agej.

In terms of the codes this will mean creating the parameters (Jr, agej and pension) and passing them into

the return function.

2.3 Life-Cycle Model 3: Assets

We will now add assets to the household problem. This will give households a way to save from one period to

the next. We denote assets as a, and next period assets we call aprime. Households decisions depend on the

(endogenous) state variable a, and one of those decisions is aprime. Because decisions now depend on assets, as
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well as age, we have V (a, j). The life-cycle value function of the household is now,

V (a, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ βV (aprime, j + 1)

if j < Jr : c+ aprime = (1 + r)a+ wh

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

Notice that current assets a are added to the ’resources’ in the budget constraint, as well as interest rate r which is

paid on the asset holdings. aprime, next period assets subtract from present period assets, and so aprime appears

on the left-hand-side of the budget constraint: every dollar saved (aprime) is a dollar not spent (c).

In terms of the codes this will mean creating a grid for the assets, and adding them into the return function.

2.4 Life-Cycle Model 4: Life-Cycle Profiles

We make no change to the model. Instead we will look at ’life-cycle profiles’, which are graphs of how variables

change with age. So our value function is still the same,

V (a, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ βV (aprime, j + 1)

if j < Jr : c+ aprime = (1 + r)a+ wh

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

What we want to do is to start households off at age j =1 with zero assets, and watch what they do over their

lifetime. Notice that what they do at age 1 is determined by the policy function at age 1, and part of what it tells

use is aprime, which in age 2 will become current assets a. So wherever the household starts at age 1, the policy

at age 1 tells us where the household is at 2, and then the policy at age 2 tells us where the household is at age 3,

etc. We can then draw a graph of what happens to the household over the life-cycle (given how they start) and

this will be what we call a ’life-cycle profile’. More precisely, the life-cycle profile of a given variable, say hours

worked, shows the mean value of that variable conditional on age (so hours worked at age 1, hours worked at age

2, etc.).8

To be able to create life-cycle profiles we need to make an assumption about how agents are ’born’ at age j = 1.

We will assume that they start with zero assets. The codes refer to this as the jequaloneDist, the distribution of

8Later, in more sophisticated models this distinction will matter and the correct interpretation of the life-cycle profile for
a variable is as the age-conditional mean value of that variable (there are also life-cycle profiles for age-conditional standard
deviations, etc.). Because the present model has no uncertainty (no idiosyncratic shocks) and all agents are identical at
birth (at age j = 1) it just so happens that in this model all households will exactly follow this life-cycle profile; there is no
variance so everyone is exactly at the age-conditional mean.

8



agents at age 1.

Because of how the codes work, before we can calculate the life-cycle profiles we have to create something

called the ’stationary distribution’.9 We will not explain the concept of the stationary distribution here, but will

cover it later on. To compute the stationary distribution we need one other piece of information, namely how

many households are of each age, we will just assume there is an equal fraction of each age, so 1/J agents of each

age; it is almost always assumed that the total population is normalized to have a mass of 1.10

We want to draw three life-cycle profiles: fraction of time worked (h), earnings (wh), and assets (a). To do

this we first set up three ’FnsToEvaluate’. And then just run the life-cycle profile command. We then plot these.

Note that we are creating ’Mean’ life cycle profiles.11

2.5 Assignment 1: Add a tax on labor income

Now is a good chance to see if you can make some changes yourself. Try and modify the fourth life-cycle model

by adding a tax on labor income, τl. So the value function you should implement is,

V (a, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ βV (aprime, j + 1)

if j < Jr : c+ aprime = (1 + r)a+ (1− τl)wh

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

where the only change is the inclusion of (1−τl) multiplying the wh, note that (1−τlwh) is after-tax labor income.

You will need to add the parameter τl, which you can give the value τl = 0.2 (a 20% tax rate). You will need

to modify the value function. You can also try to draw the life-cycle profile of tax paid (τlwh).

A code implementing this can be found in the assignments folder: Assignment1 LifeCycleModel.m and the

related return fn code.

2.6 Life-Cycle model 5: Earnings are hump-shaped

If we plotted the life-cycle of earnings using real-world data we would see a clear ’hump-shape’. Earning increase

when young, peak around age 45-55, and then fall slightly until retirement. We want to capture this fact with our

model. To do this we will introduce deterministic labor productivity units as a function of age. The basic idea is

9The stationary distribution is not needed for the specific life-cycle profiles we need in this model, but is necessary for
other life-cycle profiles in more sophisticated models.

10How households are distributed is needed to compute the stationary distribution, but is not relevant to the life-cycle
profiles themselves (the life-cycle profile command essentially ignores them). This looks a bit silly in this simple example
as we have to set up information we don’t need, but it will make sense in more advanced models.

11As mentioned life-cycle profiles are more accurately called ’value conditional on age’. We can think of conditional mean,
or conditional variance, etc. In the present model because all agents of a given age are identical (because the model is
deterministic and all agents start with the same assets, namely zero) only the conditional mean is relevant.
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that when young people work one hour, they are less productive/efficient, and so get paid less. This ’hourly labor

efficiency’ will increase until around 45-55 years old and then decrease.12

We will introduce a parameter, κj (’kappa’), that is the labor productivity units. Note that this parameter

depends on age, so it is a vector of length J , rather than just a single number like all of our previous parameters.

The codes will recognise that the parameter is of size J-by-1 and automatically understand that this parameter

depends on age and use it appropriately.13

The households value function problem becomes,

V (a, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ βV (aprime, j + 1)

if j < Jr : c+ aprime = (1 + r)a+ wκjh

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

notice that labor earnings is now wκjh, ’wage time hourly productivity times hours’.

To implement this we need to create the parameter κj , modify the return function, and also change the

FnsToEvaluate for earnings.

If you compare the hours worked profile from this model with that of life-cycle model 4 you can see how this

changing hourly wage (wκj) has impacted households decisions to work more/less at different ages.

The purpose of this particular model is really about showing how you can set parameters to depend on age.

You can make any parameter depend on age by making it of size J-by-1, and the codes will automatically recognise

that the parameter is of this size and treat it as a parameter that depends on age.

2.7 Life-Cycle model 6: Chance of dying

Currently everyone in the model lives to age 100 (period j=81). In reality of course some people die at age 70,

and others at age 93, and we would like to add this possibility of dying to our model.14

From the perspective of the household we do this by introducing a ’conditional survival probability’, sj , that is

the probability of surviving to age j+1 given you are age j (or equivalently, it is 1−dj , where dj is the conditional

probability of death, the probability of dying this year given you are of age j. We can get these from real world

data (many countries calculate them), and we use those for the US from 2010.15

12The equivalent in the data to find realistic numbers would be to look at how hourly wages change with age.
13The codes do not care if it is J-by-1 or 1-by-J , both work fine.
14Partly because uncertainty about how long they will live means people save more assets for old age in a manner that is

more realistic (relative to just dying earlier, not relative to dying later which is how it will look in our codes relative to the
previous life-cycle model), partly because if we want to later turn this model into a model of the economy as a whole, rather
than just of a household, then we want a more realistic age distribution (you have probable seen ’demographic pyramid’s).

15We are calling our agents ’households’, but the data is for individuals. We will ignore this distinction here and deal
with it in later models where we can think about individuals as distinct from households within the model.
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To put the conditional survival probability into the model we assume that households only care about next

period if they are alive next period. So they only care about next period with probability sj . We do this by

including sj as an additional discount factor (that depends on age).

The households problem thus becomes,

V (a, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ sjβV (aprime, j + 1)

if j < Jr : c+ aprime = (1 + r)a+ wκjh

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

notice that sj appears alongside β as an additional discount factor.

We need to add the parameter sj to the codes (it will be J-by-1 as it depend on age). We also need to tell the

codes that sj should be used as an additional discount factor. Note that there is no change to the return function.

If you compare the asset profiles you will see that people have changed the amount of assets they keep for

retirement because there is a chance they will die before getting to consume them.

2.8 Life-Cycle model 7: Warm-glow of bequests

Households in our model currently aim to die with zero assets; this was possible to acheive exactly until we

introduced the conditional survival probabilities, you can see it in the life-cycle profiles of assets. In reality many

people leave assets behind when they die, and not just people leaving bequests/inheritances to their children, even

people without children leave assets, often to charities. One way to deal with this would be to model children

explicitly, such ’dynastic OLG’ models exists, but are more complex. We will instead model a ’warm glow of

bequests’: households get utility from leaving assets behind when they die. As a result households with aim to

die with non-zero assets, which is realistic.

The warm glow of bequests from leaving behind assets a is, warmglow(a) = warmglow1 (a−warmglow2)1−warmglow3

1−warmglow3 ;

where warmglow2 is the ’bliss point’, which can be thought of as the ideal/target amount of assets to leave behind

when dying, and warmglow1 determines the importance of the warm glow of bequests (relative to, e.g., consump-

tion or leisure). Notice how the functional form is almost exactly the same as the utility of consumption, and

warmglow3 acts like the curvature parameter. By using the same functional form it is much easier to choose an

appropriate calibration of the parameters for the warm-glow of bequests.

We want agents to only receive the warm glow of bequests when they die. The easiest way to do this would

be to only given the warm glow of bequests with assets left at the end of the last period (j = J). In this case we

would just add a term Ij=Jwarmglow(aprime) to the return function.16 Alternatively we could give the warm

16Ij=J is the ’indicator function’ for j = J : it takes a value of 1 when j = J and a value of zero otherwise.
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glow of bequests whenever agents die —note that the conditional survival probabilities mean they could die at

’any’ time— in which case we could add a term (1− sj)warmglow(aprime) (to all ages), with (1− sj) being the

probability of dying and therefore receiving the warm glow of bequest from the assets left at the end of the period,

aprime. We will in fact use β(1− sj)warmglow(aprime) as households don’t die until the end of the period, but

notice that this is really just changing the precise interpretation/value of warmglow, nothing meaningful changes

when introducing β here. Because agents of all ages have a risk of dying the warm glow would impact asset choices

rather directly at all ages, so we will just restrict it to when agents are 75 years or older (retirement age plus 10),

which we do by using β(1− sj)I(j>=Jr+10)warmglow(aprime)

So our households problem is now

V (a, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβV (aprime, j + 1)

if j < Jr : c+ aprime = (1 + r)a+ wκjh

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

notice that the (1− sj)βwarmglow(aprime) term is going into the return function.

Implementing this requires us to create the warm glow parameters and then pass these (and β and sj) into the

return function which needs to be modified to include the warm glow of bequests. The warm glow is only given

when age j is at years into retirement, this is just done for convenience as otherwise it distorts assets decisions at

young ages too much because the risk of dying is non-zero at yound ages; it is close to zero, but not zero.

We will set warmglow2 = 3, so the target assets when dying are 3. You can see the impact this has on assets

when old by looking at the life-cycle profile of assets.

2.9 Life-Cycle model 8: Idiosyncratic shocks and heterogeneity

Until now the only way households could differ is if they started with different assets at ’birth’ (j = 1). Everything

about the model is deterministic, and people in the same state always make the same decisions. We will add

’idiosyncratic shocks’, which essentially means that each household will be hit with a shock that affects just them

(rather than the economy as a whole; since we do not yet model the economy as a whole the distinction is not

yet important, but will be later). We will start with the simplest thing we can, an unemployment shock. The

unemployment shock will take two possible values, employed and unemployed. If a household currently has the

employed value then they can choose to work just as before. If a household currently has the unemployed value

then they are unable to earning income by working (their labor supply, h, must equal zero).17

17Note that for the retired households these unemployment shocks are irrelevant; we will still model them as that is easier
to set up, but we will see in a later model how to change the shocks depending on age (in this case get rid of them when
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We will assume that the value of the unemployment shocks next period depend on the value of the unemploy-

ment shock today; that the unemployment shocks are a (first-order) markov process.18 Let z be the unemployment

shock. Let z = 1 be employment state and z = 0 be the unemployment state. So we could think of the possible

values of z as [1, 0]. We can define the ’markov transition function’ as the matrix

πz =

pee peu
pue puu


where pee is the probability of employment state next period given employment state this period; that is, the

probability of transitioning from employment this period to employment next period. peu is the probability of

transitioning from employment this period to unemployment next period. Notice then that the first row is the

probabilities of the possible outcomes next period, and so the first row must add to one (because tomorrow

happens with probability one).19 The bottom row is the transition probabilities from unemployment this period

to employment next period and unemployment next period, respectively.

Because the unemployment shocks are markov the expectations about tomorrow depend on the state today,

and as a result the value function will depend on the value of the unemployment shocks.

The household value fn problem is,

V (a, z, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjzh

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

zprime = πz(z), is a two-state markov

Notice that z is now a state, and also notice that next period value function is now calculated in expectation, the

E[] in E[V (aprime, zprime, j + 1)|z], because the future is uncertain (it depends on the idiosyncratic shock).

In the codes we will need to let the code know that there is an exogenous state, z, which takes two values,

and give the grid and the transition probabilities for z. We also need to modify the return function. Almost

everything else is unchanged, the codes recognise the exogenous shock and treat it appropriately when solving the

value function, stationary distribution, and life-cycle profiles. We need to make a minor change to jequaloneDist

as we need to specify whether ’newborns’ start in the employed or unemployed state; we will make it 0.7 employed

age is of retirement age).
18A (first-order) Markov process is one in which Pr(yt+1|yt, yt−1, yt−2, ...) = Pr(yt+1|yt), that is, to predict the value of

the markov process next period, yt+1, the only useful information is yt (if we didn’t know the value of yt other things would
be useful, but as long as we know yt that is all that matters).

19This is true of any markov transition matrix: for each row, the sum of the elements in that row much sum to one.
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and 0.3 unemployed (remember the total mass of newborns should be 1).

Notice that while both a and z are states, the household can choose a, which is therefore an endogenous state.

While z cannot be chosen by the household, so it is an exogenous state. For exogenous states we have to say how

they change over time, which is the role of πz.

Because adding an idiosyncratic shock z changes the ’size’ of the value function and policy function the codes

repeat our earlier exercises of plotting these.

2.10 Life-Cycle model 9: Idiosyncratic shocks again, AR(1)

We introduced a shock z that takes two possible values: employed or unemployed. Now let’s change z to being

about labor productivity. We already have κj as deterministic labor productivity depending on age. We will

make z an AR(1) process on labor productivity units.20 The code allows for exogenous shock variables to be

any discrete markov process, so we have to convert the AR(1) process z into a markov process. There are many

ways to do this, we will use Farmer-Toda; if you are interested in the alternatives like Rouwenhorst, Tauchen and

Tauchen-Hussey, see Life-Cycle model A1.

Our household value function is essentially unchanged,

V (a, z, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjzh

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

with the only difference being the definition of z (and implicitly πz). We could rewrite log(zprime) = ρzlog(z)+ ϵ

as log(zprime) = πlog(z)(log(z)), which is how we can see that an AR(1) is just a specific kind of markov process.

We need a way to discretize log(z), approximating it as a discrete markov process with a grid and transition

matrix. When we come to code this we will use the Farmer-Toda method to discretize log(z) and πlog(z)(log(z)).

We can then set z = exp(log(z)) to get a grid on z, and notice that because we now (after Farmer-Toda method)

have log(z) as discrete if follows that πz = πlog(z); that is we need to take the exponential of the grid, but can just

use the transition matrix.21

So in the code we just need to create the parameters ρz and σϵ,z. Then use the Farmer-Toda method to create

20AR(1) means ’autoregressive process of order 1’. An AR(1) process yt follows yt = (1− ρ)c+ ρ+ ϵt, ϵt ∼ N(0, σ2
ϵ ). It

is a standard model in time-series econometrics. Note that by making the constant (1− ρ)c it follows that E[yt] = c, which
gives a nice easy way to interpret c and ρ.

21Why the log? Because the AR(1) process can be negative, but by taking the exponential of the AR(1) we guarantee
that z is positive (which helps interpret it, what would a negative productivity even mean?).
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the grid and transition matrix based on this. Then take exponential of the grid (we will then also normalize the

grid to mean of 1, this makes choosing parameter values easier, although it will be irrelevant in our case).22 We

need to decide how many states to use when discretizing the AR(1) process: the more states the more accurate

the discretization, but more states will make the code slower. There is no ’correct’ number of states, and you

should probably check your results for their sensitivity to how you discretize shocks. We will use n z = 21, which

is substantially more than the standard in the literature.

The Farmer-Toda method that we use here is recommended for discretizing AR(1) processes, which the sole

exception of those AR(1) processes with very high persistence, ρz ≥ 0.99, for which the Rouwenhorst method is

recommended. The Rouwenhorst method, along with other methods common in the literature like the Tauchen

method and the Tauchen-Hussey method can be easily implemented, see Life-Cycle Model A1, but I recommend

against using them as they are not as accurate.

A very brief explanation of how Farmer-Toda works: in a first step, a grid for z is set using either evenly-spaced

points. The second step is to choose the transition probabilities. For a given grid point today the corresponding

row of the transition matrix is a probability distribution for tomorrows state, so Farmer-Toda choose the transition

probabilities of this row to target the moments of this probability distribution (by default the first two moments,

but code allows up to four). If we have, e.g., five grid points, then this is two restrictions, which would not be

enough (there would be a continuum of possible solutions), so Farmer-Toda add the target of maximizing the

entropy (relative likelihood) which makes the solution unique. Note that this is done row-by-row for the transition

matrix.23

The main weakness of Farmer-Toda is that it takes about 1 second to run, while the alternatives take more

like 1/1000th of a second. For our purposes this is irrelevant but may matter if you want to do, e.g., simulated

likelihood estimation or simulated method of moments estimation of the life-cycle model. (Don’t worry if you

don’t understand what these are, they are much more advanced than our current focus.)

22We discretize the AR(1) and then take the exponential of the grid, and then normalize the grid to have a mean of
one. Notice that we could alternatively just discretize the AR(1) and then use exp(z) in the return function (in the budget
constraint). This would run fine, but it would not have the mean of exp(z) being one. This would be massively complicate
things like trying to calibrate/estimate κj to the data.

23The idea of matching the moments and then using maximum entropy is actually from Tanaka and Toda (2013) who apply
it to i.i.d random variables, Farmer and Toda (2017) is about generalizing to a markov process by doing this row-by-row
for the transition matrix.
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2.11 Life-Cycle model 10: Exogenous labor supply

We solve a version of Life-Cycle model 9 in which the labor supply is exogenous, that is there is no choice of hours

worked,

V (a, z, j) = max
c,aprime

c1−σ

1− σ
+ (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjz

if j >= Jr : c+ aprime = (1 + r)a+ pension

aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

notice that h has disappeared from the ’decision variables’, and so has the disutility of hours worked. z is

now a ’stochastic endowment’ or ’exogenous labor income’ or ’exogenous earnings’ (more precisely wκjz is the

endowment/labor income endowment); just different ways to describe it. This problem is often called the ’income

flucations’ problem in the literature.

Implementing this first sets nd = 0 and is then essentially just setting the ’decision variable grid’ to be empty;

d grid = [], and deleting h from all the formulaes (as well as removing the parameters that related to hours worked

in either the utility function or the budget constraint). You could do the same by setting d grid = 0.

Note that keeping w is slightly odd here, but it makes it easier to compare results to the endogenous labor

supply models. In any case w = 1 so that is irrelevant.

2.12 Life-Cycle model 11: Idiosyncratic shocks again, persistent and transitory

We introduced an idiosyncratic shock to labor productivity units. We modelled that shock as an AR(1) process.

But empirical work suggests we can do better by modelling changes in labor producitivity units as a combination

of two shocks, one persistent and one transitory. The persistent shocks we will model as an AR(1). The transitory

shock we will model as i.i.d. There are two ways you could do this using VFI Toolkit. The first is simply to

treat them as two markov shocks, and this is done in Life-Cycle model 11A. Alternatively, alongside the standard

exogenous state ’z’ variables that are understood to be first-order Markov processes, VFI Toolkit also has exogenous

state ’e’ variables that it understands to be i.i.d., and this is done in Life-Cycle model 11B. Setting up as an ’e’

variable takes an extra line or two of code but has the advantage that the code will then be faster; it is the

recommended way to treat variables that are i.i.d.

2.12.1 Life-Cycle model 11A: transitory i.i.d. as second ’z’ variable

The persistent shocks, z1, we will model as an AR(1). The transitory shock, z2 we will model as i.i.d.
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Our household value function now has z1z2 in place of z to determine idiosyncratic producitivity units,

V (a, z1, z2, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβE[V (aprime, z1prime, z2prime, j + 1)|z1]

if j < Jr : c+ aprime = (1 + r)a+ wκjz1z2h

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

log(z1prime) = ρz1log(z1) + ϵ, ϵ ∼ N(0, σ2
ϵ,z1)

log(z2) ∼ N(0, σ2
z2)

Notice that z1 is AR(1) and z2 is i.i.d. normal (in logs).

Note that to get an exogenous shock (log) z2 which is i.i.d. N(0, σ2
z2), we can simply use the same method as

we did for the AR(1) process and just set ρ = 0.24

How do we let the codes know we have two exogenous shocks? First we have to set n z to be a vector with the

number of grid points of the first and second exogenous shocks, so if we use 21 points for the AR(1) shock and 5

for the iid shock we will set n z = [21, 5]. Second we set z grid = [z1 grid; z2 grid]; (we ’stack’ the column grids

of the two shocks). Third, we set the joint transition matrix pi z = kron(pi z2, pi z1);, by using the kronecker

product, notice that when doing this you must put them in reverse order. We also need to modify the inputs to

the ReturnFn and FnsToEvaluate so that they include both z1 and z2.

2.12.2 Life-Cycle model 11B: transitory i.i.d. as an ’e’ variable

The persistent shocks, z, we will model as an AR(1). The transitory shock, e we will model as i.i.d. Because VFI

Toolkit will know that z is markov and e is i.i.d. it can take advantage of the simplicity of the i.i.d. shock to run

faster. We make no change at all to the household problem from Life-Cycle model 11A, which is just rewritten

here with z and e instead of z1 and z2. Note that the codes use the identical ReturnFn as what matters in the

code is just the ordering of inputs, the names are solely internal to the script (this is a basic programming concept

you are likely familiar with).

24If we wanted any other i.i.d. distribution we just create the transition matrix for z2, πz2, so that it has all rows with
that same distribution. Recall that a row of the transition matrix represents the probabilities of going from the state that
the row represents to each of the other states, so if all the rows are the same it is saying that the current state does not
matter, which means it will be i.i.d. So, e.g., we could make z2 a uniformly distributed variable by making the transition
matrix a matrix of ones, divided by the number of states of z2 (really we just want to divide each row, but dividing the
whole matrix is an easy way of implementing this).
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Our household value function now has ze in place of z to determine idiosyncratic producitivity units,

V (a, z, e, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβE[V (aprime, zprime, eprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjzeh

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

log(e) ∼ N(0, σ2
e)

Notice that z is AR(1) and e is i.i.d. normal (in logs).

Note that to get an exogenous shock (log) z2 which is i.i.d. N(0, σ2
z2), we can simply use the same method as

we did for the AR(1) process and just set ρ = 0, because it is explicitly i.i.d. we then keep only the first row (or

any row) of the transition matrix created to store as a column vector in pi e.

How do we let the codes know we have two exogenous shocks? First we just set up z exactly as we would if it

were the only such shock (because it is the only markov shock). Then we set up e in a similar fashion, except that

it has to go in vfoptions and simoptions (because it is not part of the baseline setup). So we set vfoptions.n e,

vfoptions.e grid and vfoptions.pi e to be the number of points, the grid, and the probability weights, respectively.

We need to put the exact same things into simoptions.n e, simoptions.e grid and simoptions.pi e. The important

difference when setting up an i.i.d. ’e’ variable compared to a markov ’z’ variable is that instead of having a

transition matrix ’pi z’ we instead have probability weights ’pi e’; instead of a matrix we have a column vector.

2.13 Alternative Exogenous Shock Processes (Appendix A)

There are many other things we might want to do with exogenous shocks, both in terms of different kinds of

shock process —VAR(1), AR(1) with non-gaussian shocks, AR(1) with parameters that depend on age—- as

well as different methods for discretizing shocks. A wide variety of these are demonstrated in Life-Cycle Models

Appendix A (models A1 to A9).

In Life-Cycle Model 11 we had two shocks which are independent. It is possible to have them interact.

Two simple cases to illustrate. First, it is possible to use a more sophisticated version of the Tauchen method

to discretize a VAR (vector autoregression) see Life-Cycle Model A7. Second, we could have one shock being

recession/boom, and the other employment/unemployment, and we want unemployment to be more likely during

recessions, so the second shock transitions depend on the state of the first shock. This is just a matter of setting

up the joint transition matrix appropriately, see Life-Cycle Model A8.

There are two main types of idiosyncratic shocks used in the literature that we have not yet addressed,
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permanent (unit-root/random walk) and fixed effects. Permanent (bounded) unit-root shocks are easy to create

as a markov process but require a lot of grid points in the state and so for that reason are difficult to model,

Life-Cycle Model A3 shows how.

If we have multiple shocks that are correlated we might what to use a ’jointly-determined-grid’ instead of a

kronecker (cross-product) grid. Life-Cycle Model A9 shows how to do so.

We will discuss later, starting from Life-Cycle Model 24, the best way to use the code to model a fixed effect.

You could do it by simply setting it up as another exogenous shock which has the identity matrix as the transition

matrix, but the code will be slower and use more memory than the alternative we discuss later using ’permanent

types’.25

We discuss later in Life-Cycle Models 20 and 21 how to allow the idiosyncratic shocks to be age-dependent.

The specific case of an AR(1) process with age-dependent parameters is covered Life-Cycle Model A5.

How do you use empirical data to get the parameter values to use for your model with these kinds of shocks?

The econometrics of how to estimate the combination of fixed effects, persistent AR(1) shocks, and iid shocks,

alongside a deterministic function of age, for the labor producitivity shocks from empirical data, see Kaplan (2012).

For the AR(1) with age-dependent parameters (plus a transitiory iid shock with age-dependent variance), you can

find how to esimate it in Karahan and Ozkan (2013).

Other than the Farmer-Toda methods we have seen there are other ways to discretize AR(1) models, and

Life-Cycle Model A1 looks at these. There are also ways to discretize shocks specifically for life-cycle models

where the shock process changes with age Fella, Gallipoli, and Pan (2019), seen in Life-Cycle model A5. The full

list of the ’appendix models’ is:

Life-Cycle Model A1: AR(1) persistent shocks, alternative quadrature methods.

Life-Cycle Model A2: AR(1) persistent shocks with gaussian-mixture innovations.

Life-Cycle Model A3: Permanent shocks with endogenous labor.

Life-Cycle Model A4: Second-order Markov Processes (implementing an AR(2) persistent shock).

Life-Cycle Model A5: Age-dependent shocks.

Life-Cycle Model A6: Age-dependent shocks: persistent and transitory.

Life-Cycle Model A7: VAR(1) persistent shocks.

Life-Cycle Model A8: Shocks that depend on each other: ’recession’ and ’unemployment’

Life-Cycle Model A9: Correlated shocks with jointly-determined grids.

A1-A6 are variations on Life-Cycle Model 9. They largely just change z (the permanent shocks with exogenous

labor obviously requires more substantial changes). A7-A9 use two exogenous shocks that interact, and so are

variations on Life-Cycle Model 11 (specifically 11A).

25A brief explanation of the two approaches.
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2.14 Assignment 2: Alternative Utility Functions

Because the utility function is coded inside the return function changing it is easy. We will now present a few

different utility functions. It is left as an assignment for you to try and implement the ’non-seperable CES utility

function’ by modifying LifeCylceModel9.m code, and look at how they change the life-cycle profiles. A ’solution’

is provided as Assignment2 LifeCycleModel.m.

We can write a generic utility function of consumption and leisure as u(c, l), where leisure can be defined as

l = 1 − h, is the fraction of time not worked. The advantage of using leisure rather than hours worked in the

utility function is that utility is increasing in leisure, which makes theoretical properties easier to derive; we will

no longer need to subtract the disutiliy of hours worked as we did until now.

Using this generic utility function we can write the value function problem as,

V (a, z, j) = max
c,aprime,l

u(c, l) + (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjz(1− l)

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ l ≤ 1, aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

notice that h = 1− l has been substituted into the budget constraint, and the restriction that 0 ≤ h ≤ 1 has been

replaced with 0 ≤ l ≤ 1; the obvious modifications around replacing h = 1− l in the FnsToEvaluate also need to

be made.

In the Life-Cycle models we have seen until now we used the ’seperable CES’ utility function,

u(c, l) =
c1−σc

1− σc
+ ψ

l1−σl

1− σl

note of course that this is not the exact form of the utility function we used until now, but it has the same

properitie, just that we are now writing it in terms of l instead of h (you could substitute 1− h in place of l here

and the properties of the utility function would be the same).26

The CES refers to ’constant elasticity of substitution’, and the ’seperable’ refers to how the (marginal) utility of

consumption is independent of leisure (and vice-versa the marginal utility of leisure is independent of consumption).

26The exact numbers of utils would differ, but as is well know utility is only defined up to a linear transformation; that is,
the utility functions u() and a+ bu(), where a,b are constants, both represent the same preferences. This can be proven in
very general terms, see any advanced Microeconomic Theory textbook. If you are unconvinced, write out a basic problem,
say one-period lagrangian problem choosing between consumption of two goods, and solve it with both these utility fns,
you will see how a disappears when you take derivatives, and then b cancels out because it is in all the marginal utility
terms.
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One important alternative is ’non-seperable CES’ utility, which is given by,

u(c, l) =
(σ1c

σ2 + (1− σ1)l
1−σ2)1−σ3

1− σ3

which also has constant-elasticity-of-substitution, but now the marginal utility of consumption depends on leisure,

and vice-versa (take the derivatives and you will see they depend on both). σ1 can be understood as a ’share’

parameter, in this case it is the share of consumption (versus leisure) in utility. 1/(1 − σ2) is the elasticity of

substitution between c and l. σ3 is determining the decreasing marginal utility, and will therefore determine

things like risk-aversion. Note that you can obviously set h = 1− l and solve the model in terms of hours worked,

the ’assignment solution’ does this: modify life-cycle model 9 to have non-seperable CES utility function.

An important subcase of the ’non-seperable CES’ utility function, is given in the limit when σ2 → 0, and we

get,

u(c, l) =
(cσ1 l

1−σ1)1−σ3

1− σ3

This is particularly important in models that contain economic growth; see Life-Cycle model 22 for an explanation

of why it matters, and of how to include deterministic growth in a model.27

An alternative non-seperable utility function is GHH preferences.28 They are easier to write in terms of hours

worked,

u(c, l) =

(
c− ψ h

1+η

1+η

)1−σ

1− σ

what matters to labor supply is just the wage. As the marginal rate of substitution is independent of consumption

and only depends on the real wage, there is no wealth effect on the labour supply. They are not consistent with

a balanced growth path (that would result from deterministic growth). A version that extends this to allow a

balanced growth path are Jaimovich-Rebelo preferences.

2.15 Life-Cycle model 12: Epstein-Zin preferences

Epstein-Zin preferences avoids an ’restriction’ implicit in the use of CES utility functions (with von-Neumann

Morgenstern expected utility), namely that a single parameter determines both risk aversion and the intertemporal

elasticity of substitution. Epstein-Zin preferences have an additional parameter than modifies the degree of risk

aversion.

Implementing Epstein-Zin preferences involves a reformulation of the value function problem itself. In this

model we will use ’Epstein-Zin in utility units’, note that traditionally Epstein-Zin was done in ’consumption

units’; Appendix C.1 explains these, and how you can use the consumption-units version by setting vfoptions. The

27You could call this the Cobb-Douglas utility function. It is the same functional form as the Cobb-Douglas production
function, just that the parameters need some rewriting to make it obvious.

28Greenwood-Hercowitz-Huffman preferences.
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other issue with Epstein-Zin preferences is that we have to be careful how we handle warm-glow of bequests.

Starting from Life-Cycle model 9, we make just the change to Epstein-Zin preferences and get the value

function problem,

V (a, z, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η

−βE[−sjV (aprime, zprime, j + 1)1−ϕ − (1− sj)G(aprime)
1+ϕ|z]

1
1+ϕ

if j < Jr : c+ aprime = (1 + r)a+ wκjzh

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

where 1− ϕ is modifying the amount or risk-aversion. The minuses before and inside the expectation are needed

to handle that the utility function is negative. A larger value of ϕ is associated with a higher risk aversion

(ϕ > 0 corresponds to more risk aversion that standard vonNeumann-Morgenstern preferences, when ϕ = 0 we

get standard vonNeumann-Morgenstern preferences). This setup depends on the fact that we have u < 0, if u > 0

the specification is different, see Appendix C.1.

Implementing this in the codes is as simple as naming the additional parameters, and setting,

vfoptions.exoticpreferences =′ EpsteinZin′

You specify the names of the parameters that modifies the Epstein-Zin preferences using vfoptions.EZriskaversion=’phi’.

Because the specification depends on the sign of the utility function, you also need to set vfoptions.EZpositiveutility.

Note that with Epstein-Zin preferences we want to seperate out the conditional survival probabilities from the

discount factor (this is implicit in the above formulation as sj does not appear everywhere β appears). You can

do this when using Epstein-Zin preferences by setting vfoptions.survivalprobability=’sj’ (and not including it in

the DiscountFactorParamNames).

When using Epstein-Zin preferences we have to be careful about how we treat warm-glow of bequests. VFI

Toolkit handles this for you, and you just set up vfoptions.WarmGlowBequestsFn which depends on next-period

endogenous state (on aprime). The idea is to use the same thing as your utility function. In this model the

utility of consumption is c1−σ

1−σ , and so we use the warm-glow of bequests function aprime1−σ

1−σ . We multiply this by

a constant wg to determine the importance of bequests, and we also use a term so that bequests are only received

ten periods after retirement (in line with previous models). Hence our final warm-glow of bequest function is

I(agej≥Jr+10)wg
aprime1−σ

1−σ . Here wg controls the strength of the bequest motive. For an explantion see Appendix

C.1.5 which explains how to set up the bequests for Epstein-Zin preferences, as well exactly what the codes are

doing.
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2.16 Life-Cycle model 13: Simulating Panel Data

We used the FnsToEvaluate to create the life-cycle profiles. We can also use the same FnsToEvaluate to simulate

panel data (now that we have idiosyncratic shocks). Note that a single household can be simulated to create a

time series, and by starting numerous household simulations we get panel data.

We will use the model of Life-Cycle model 9, so we do not repeat that here. And we will simulate the same

FnsToEvaluate as we used in that model.

We can choose the number of time periods for the panel data simulations using simoptions.simperiods (it

cannot be larger than number of model periods in a life-cycle model), and can choose the number of individuals time

series simulations using simoptions.numbersims (1000 by default). Any simulation needs to start from somewhere.

The codes use ’InitialDist’ as a distribution from which the starting state of agents is drawn (seedpoint is what

VFI Toolkit calls it internally), we will just set InitialDist to be equal to the stationary distribution in the current

example, but in principle any distribution could be used.

2.17 Life-Cycle model 14: More Life-Cycle Profiles

Now that our models have idiosyncratic shocks so we can look at life-cycle profiles other than the mean. For

example we will look at the variance conditional on age. We will also see how to group ages together in ’age bins’,

for example we can look at mean income for 5-year age-groupings, or at the labor earnings Gini coefficient for all

’working age’ individuals. This will all take just a few lines of code.

The model is exactly that of Life-Cycle model 9, so we do not repeat that here.

The variance, gini, and much more conditional on age were already being automatically computed, just that

we did not look at them.

To use ’age bins’ we just need to specify them. By default it is assumed that every period is it’s own bin,

this would correspond to setting options.agegroupings = 1 : 1 : Nj . To compute them in 5 year age bins use

options.agegroupings = 1 : 5 : Nj (note, if Nj is not divisible by 5 the last bin will contain less than 5). For

working age as a single bin use options.agegroupings = [1, Params.Jr]. In general, options.agegroupings is a

vector each element of which defines the period at which a new bin starts. So to give a more complex example

options.agegroupings = [1, 7, 10, 11, 15] would create four bins, the first would be periods 1 to 6, the second is

periods 7 to 9, third is 10, fourth is 11 to 14, fourth is 15 on (until Nj , inclusive). We then just add options as

the final input to the Life Cycle Profiles command.
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3 Illustrating some important concepts

3.1 Life-Cycle model 15: Consumption and Borrowing Constraints 1

We will use our models to look at how borrowing constraints impact consumption when young. Households would

like to smooth consumption over their lifetime (based on life-cycle permanent income hypothesis). But earnings

have a hump-shape. So households want to save some income from the ’hump’ to consume in retirement, which

is easy enough. They also want to bring some income from the ’hump’ forward to when they are young, which

requires borrowing. But they are unable to borrow due to borrowing constraints when young. So consumption is

lower when young, and more importantly the marginal utility of consumption when young is higher, and marginal

propensities to consume are also higher when young.

We will use a simple life-cycle model with exogenous labor, no idiosyncratic shocks, and we will make the

life-cycle profile of labor producitivity units very step to really make the borrowing constraint bind strongly when

young.

V (a, j) = max
c,aprime

c1−σ

1− σ
+ βV (aprime, j + 1)

if j < Jr : c+ aprime = (1 + r)a+ wκj

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1

aprime ≥ borrowingconstraint

notice that labor earnings is now wκj , which is exogenous so you could equally call it ’endowment’ or exogenous

income.

The code sets a parameter called ’borrowconstraint’ that you can change to see how the borrowing constraint

matters. There are life-cycle profiles of consumption and marginal utility consumption and you can see how the

borrowing constraint causes a ’jump’ in consumption because people cannot borrow and consume as much as they

would like. You can also see that the borrowing constrained have a very high marginal utility of consumption.

As a result there are large welfare gains for the household from anything that loosens the borrowing constraint

(whether it is being able to borrow more, lump-sum transfers, etc.). The borrowing constrained household would

also consume any extra income and so has a high marginal propensity to consume (how high depends on how long

borrowing constraint is expected to continue binding).

Note that all of our models until now have had a borrowing constraint, namely aprime ≥ 0. This was enforced

via the grid on assets which had a minimum value of zero, meaning that choosing less than zero assets was simply

not possible. To implement the present model we have to set a lower minimum point on the grid on assets, and we

could either use that implicitly, or do as the codes have here and add a parameter called ’borrowconstraint’ that
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imposes a tighter borrowing contraint via the return function (note that the parameter must be greater than or

equal to the minimum point on the asset grid else it is not relevant). It is worth mentioning that it is ’not possible’

to have a model without a borrowing constraint, in the sense that in the absence of a borrowing constraint optimial

behaviour would be to borrow an infinite amount, consume it all, and die in infinite debt; mathematically this is

of course possible, I say not possible in the sense you would never actually want to use that model.

3.2 Life-Cycle model 16: Consumption and Borrowing Constraints 2

We will look at how stochastic shocks mean borrowing contraints can sometimes bind when shocks are ’bad’, and

what this means for consumption. We use Life-Cycle Model 9, which had an AR(1) idiosyncratic shock process,

except we will use just 5 states to discretize it so as to make it easier to see ’bad’ shocks.29

In stochastic models borrowing constraints often bind after a series of ’bad’ shocks. They don’t bind most of

the time, nor for most households, so looking at life-cycle profiles is not a good way to see them. Two options

are possible: (i) we could simulate households that get a series of bad shocks and see them run up against the

borrowing constraints, or (ii) we could run regressions. We will take the first approach here.

For the panel data, we first simulate a panel data set and then look for candidate households for whom the

borrowing constraints are likely to bind, that is, households who have a run of bad shocks. To make it clearer we

first look for households that have median or better shocks in the first 15 periods, so that they mostly get away

from the borrowing constraints, and then narrow our search to those who have 7 or more bad shocks in periods

16-25. This defines our candidate households. We plot the first 30 periods for ten of these candidate households

(the ten are arbitrarily selected from among all candidate households) and for these we plot the consumption,

the marginal utility of consumption, and next period assets. You can see in Figure 3 how the households during

periods 16-25 run into the borrowing constraint as a result of the bad shocks, and as a result their consumption

is low and their marginal utility of consumption is high.

Note that the reason households do not like running into borrowing constraints —because it forces them to cut

consumption more than they would otherwise like— is exactly the same in this model as in the previous Life-Cycle

Model 15, what differs is just the reason that the borrowing constraints bind.

To emphasise that the borrowing constraints bind for a different reason to what happened in Life-Cycle Model

15 we flatten the earnings profile to largely eliminate what drove them in that model.

3.3 Life-Cycle model 17: Precautionary Savings (with exogenous earnings)

We have already seen how the binding of borrowing constraints can force households to reduce consumption, and

in particular how this leads to a large increase in the marginal utility of consumption. Households want to avoid

29Just 5 points will provide a poor approximation to the AR(1) process, we use just five points purely to make it easier
to illustrate.
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this situation of binding borrowing constraints, and so they engage in ’precautionary savings’: savings that are

’higher’ than they would otherwise be so as to avoid the probability of the borrowing constraints binding.30

We use the exact same model from Life-Cycle Model 10, and then solve it a second time, which we call the

’no shock’ version, in which z = 1 (rather than an AR(1) process in logs). We will use just 3 states to discretize

it so as to make it easier to see how the savings policies differ.31

How to see precautionary savings? We take three approaches: (i) savings policy functions, (ii) life-cycle profiles,

(iii) aggregate assets.

We start with the savings policies. Figure 1 shows how households in the model with the median shock value

and low asset holdings32 choose to save more, for precautionary reasons, than households in the model without

shocks. This is true even though the median shock is actually slightly lower earnings than the model without

shocks (0.9976 vs 1). The top panel of Figure 2 shows the period before retirement in which there are no future

shocks and so no precautionary savings motive,33 you can see that now the households with the median shock

actually save less than those with no shocks (because of the 0.9976 vs 1 earnings mentioned before). The other

panels of Figure 2 show that in retirement, because shocks are now irrelvant the households all make the exact

same decisions (multiple lines are plotted, but you can only see one as they are all on top of each other).

We look at life-cycle profiles in Figure 3. Those on the left are with shocks, on the right are without shocks;

except the bottom row that shows those with shocks minus those without shocks. Looking at the bottom-left panel

we confirm that there is no difference in mean earnings for households in the models with and without shocks (is

just the left panel of top row minus the right panel of top row); this is just to confirm that any savings differerences

are not coming from differences in mean earnings. In the bottom-right panel we see the precautionary savings:

households with shocks have higher assets than households without shocks. We can also see how the precautionary

savings interact with the life-cycle consumption-smoothing motives we discussed in Life-Cycle Model 15. When

households are young the life-cycle consumption-smoothing motives dominate and no households save any assets

(see panels in second row); the precautionary savings motives are there, but they are overwhelmed. Later in

working age the life-cycle consumption-smoothing motives largely disappear (in sense of keeping assets at zero)

and we can see the precautionary savings in the bottom-right panel with households that face earnings risk holding

more assets tha households that do not face any shocks.

Our final look at precautionary savings comes from looking at aggregate assets —the total assets held by all

30Note that precautionary savings is a phenomenon of stochastic models: precautionary savings are savings to avoid the
chance of a borrowing constraint binding that the household. In a deterministic model households know for a fact that
borrowing constraints will or will not bind. In a stochastic model a household can do precautionary savings, get good shock
outcomes that means the household never end up in a situation where the borrowing constraint would bind, and now have
ended up saving more than they would would like ex-post. In a deterministic model it is not possible to choose savings
optimally ex-ante that you end up regretting as overly cautious ex-post.

31Just 3 points will provide a poor approximation to the AR(1) process, we use just three points purely to make it easier
to illustrate. We do make one other change from Life-Cycle Model 10, namely we make the initial age j=1 distribution
of agents have zero assets (as before) and the stationary distribution of shocks (previously just the median), this is so the
life-cycle profile of mean earnings is exactly equal in the models with and without shocks; the difference is very small.

32Note that the graph zooms in on low asset holdings, as seen by the x-axis.
33Shocks are only relevant during working age as they are to labor producitivity units, and retirees never work.
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households added up across the stationary distribution— where we can see that assets are higher for the households

with shocks than for the households without shocks. We don’t use these ’aggregates’ much in life-cycle models

as they make more sense when thinking about the economy as a whole, but this idea that households will with

precautionary savings save up more assets is very important in general equilibrium models of incomplete markets,

an idea we will discuss later. The aggregate assets are printed to the screen when you run the codes.

3.4 Life-Cycle model 18: Precautionary Savings with Endogenous labor

Precautionary savings are one way to avoid the binding of borrowing constraints. An alternative is to adjust labor

supply; working more to avoid hitting borrowing constraints. So models with endogenous labor supply have lower

amounts of precautionary savings. We will use Life-Cycle Model 9, but discretizing AR(1) process on z using just

three shocks values to make things clearer.

Note that while endogenous labor will reduce precautionary savings this is not the only effect it will have on

savings, because it will also interact with life-cycle motives for savings; for example, households can choose to

work more when they reach higher earnings levels during middle age and do all their saving for retirement then,

which would do some combination of reducing assets when young (although most households don’t save when

young and are already up against their borrowing constraints) and increasing the asset levels in middle-age that

they carry over into retirement. As a result whether endogenizing labor supply results in higher or lower levels of

assets overall depends on various factors; especially, the utility of leisure and the form of the utility function.

Too see all of this we will solve the model four times. First we solve the model with endogenous labor and

exogenous shocks, second we solve the model with endogenous labor and no shocks, third we solve the model with

exogenous labor and exogenous shocks, and fourth we solve the model with exogenous labor and no shocks.

Comparing the model with endogenous labor and shocks to the model with endogenous labor without shocks we

can see that there are precautionary savings as a result of shocks, seen, e.g., in the higher aggregate capital/income

ratio in the model with shocks (see the numbers printed to screen). We can also see how agents near the borrowing

constraint (low assets) chose to work more hours as a way to avoid the budget constraint. In period j = 1 households

are trying to escape the borrowing constraint mostly for life-cycle reasons, so there is little difference between the

models with and without shocks in the top panel of Figure 4. By constrast by age j = 20 the borrowing constraints

are mostly about bad shocks, and so we can see how the model with shocks alway results in more labor supply at

low assets levels compared to the model without shocks (life-cycle motives also play a role). You can see how this

use of precautionary labor supply is often enough to actually reduce savings relative to the model without shocks;

top panels of Figures 1, 2 and 3. This is partly because precautionary labor reduces demand for precautionary

savings, and partly because of how it changes life-cycle motives.

If we now compare the model with endogenous labor and exogenous shocks to the model with exogenous labor

and exogenous shocks we can see that in our current calibration endogenizing labor leads to an increase in savings;

e.g., by comparing capital/income ratios. Note that this varies over the life-cycle, you can see how endogenous
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labor supply decreases savings at ages j = 1 (bottom panel of Figure 1) and j = 20 (bottom panel of Figure 2),

but for life-cycle motives actually increases savings at age j = 40 (bottom panel of Figure 4). This is because the

reduced precautionary savings are more than offset by the increased saving for life-cycle motives at young ages,

but then the life-cycle motives go towards higher savings, adding to the precautionary savings motive, at middle

age. This provides a good example of how there are often various effects of any model changes working in different

directions and it is rarely clear beforehand which will dominate.

To ease the comparison of results between the model with endogenous labor supply and that with exogenous

labor supply we have normalized earnings in the later so that both have the same aggregate (mean) earnings. The

reason is as follows: note that for exogenous labor earnings is wκjz, while with endogenous labor earnings is wκjzh,

and 0 ≤ h ≤ 1, so earnings will be lower in the model with exogenous savings.34 We can do this be simply adding

a parameter to earnings in the exogenous labor model, so that earnings are now ϕnormalizemeanearningswκjz. By

setting ϕnormalizemeanearnings equal to the mean earnings in the model with endogenous labor divided by the mean

earnings in the model with exogenous labor we will give both the models the same mean earnings.35

This exercise of endogenous labor supply reducing precautionary savings is much cleaner in an infinite-horizon

(and general equilibrium) model (Pijoan-Mas, 2006), where there are no life-cycle considerations.

3.5 Life-Cycle model 19: Incomplete Markets

We saw how borrowing constraints and idiosyncratic shocks together lead to precautionary savings. There is

an important third aspect to this that was ’hidden’ in the background: incomplete markets. Loosely speaking,

complete markets is the presence of perfect insurance which all households buy and therefore the idiosyncratic

shocks they later receive are irrelavant as they are perfectly insured against them. With complete markets, because

households perfectly insure themselves, there is no meaningful inequality; no meaningful distribution of households.

If we wanted to create a life-cycle model in which there was an exogenous shock that takes two values we

would need two assets (one of which pays out in the case the shock takes the first value, the second asset pays out

in the case the shock takes the second value), and so we won’t attempt to do that here.

Instead we will solve a two period model and show how briefly the idea of how complete and incomplete

markets relate. We start with a deterministic two-period model, then add shocks in the second period. We end

with a brief discussion of how Representative Agents are related to complete markets models. Note that all the

models being solved elsewhere in this document (and more generally, in essentially all of the heterogenous agent

model literature) are incomplete markets models.

Let’s start with a simple two-period deterministic model. The household solve the following maximization

34We could try and deal with this by looking at aggregate capital/income ratios, but this is not a full fix as there would
still be income effects that may be playing a substantial role. By normalizing mean earnings we substantially reduce these
other channels.

35Because we are doing this to the model with exogenous labor supply we don’t need to worry about how people
react in determining mean earnings. To find this ϕnormalizemeanearnings we would first just solve both models with
ϕnormalizemeanearnings = 1 and then calculate the appropriate ϕnormalizemeanearnings.
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problem,

max
{c1,c2,a}

u(c1) + βu(c2)

s.t. c1 + a = y1

c2 = (1 + r)a+ y2

We can solve this using the Lagrangian method. First write the Lagrangian,

L(c1, c2, a, λ1, λ2) = u(c1) + βu(c2) + λ1(y1 − c1 − a) + λ2((1 + r)a+ y2 − c2)

The first-order conditions of this are

∂L
∂c1

= 0; u′(c1) + λ1(−1) = 0

∂L
∂c2

= 0; βu′(c2) + λ2(−1) = 0

∂L
∂a

= 0; λ1(−1) + λ2(1 + r) = 0

∂L
∂λ1

= 0; c1 + a = y1

∂L
∂λ2

= 0; c2 = (1 + r)a+ y2

From the first three of these we get

u′(c1) = β(1 + r)u′(c2)

Purely to make it easier to see how this compares to what we will do next let β(1 + r) = 1 to get,36

u′(c1) = u′(c2)

Because there is one asset it is possible to shift consumption between the two periods and equate the marginal

utitlities. Complete markets are key to this as we will see in the next two examples.

Now, we will introduce a shock, z, in the second period that takes on of two possible values z1 or z2. Let p be

the probability of z = z1, so then 1− p is the probability of z = z2. What we are about to solve is an incomplete

36In a Representative Agent model it is typically true that β(1 + r) = 1 in general equilibrium.
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market model; we will explain later why this is incomplete markets. The household problem is,

max
{c1,c2(z1),c2(z2),a}

u(c1) + β[pu(c2(z1)) + (1− p)u(c2(z2))]

s.t. c1 + a = y1

c2(z1) = (1 + r)a+ y2(z1)

c2(z2) = (1 + r)a+ y2(z2)

where c2(z1) is consumption in the second period when z = z1, c2(z2) is consumption in the second period when

z = z2. Notice that the difference caused by the shock is that the income/endowment is y2(z1) vs y2(z2); so we can

think of the shock as being low/high earnings. We will assume, without loss of generality, that y2(z1) < y2(z2).

Notice how the asset a allows us to shift consumption between period one and period two, but there is no way

to shift consumption between the two states/shocks in period two; this is the incomplete markets. Writing the

Lagrangian we get,

L(c1, c2(z1), c2(z2), a, λ1, λ2, λ3) = u(c1) + β[pu(c2(z1)) + (1− p)u(c2(z2))] + λ1(y1 − c1 − a)

+λ2((1 + r)a+ y2(z1)− c2(z1)) + λ3((1 + r)a+ y2(z2)− c2(z2))

The first-order conditions of this are

∂L
∂c1

= 0; u′(c1) + λ1(−1) = 0

∂L
∂c2(z1)

= 0; pβu′(c2(z1)) + λ2(−1) = 0

∂L
∂c2(z2)

= 0; (1− p)βu′(c2(z2)) + λ3(−1) = 0

∂L
∂a

= 0; λ1(−1) + λ2(1 + r) + λ3(1 + r) = 0

∂L
∂λ1

= 0; c1 + a = y1

∂L
∂λ2

= 0; c2(z1) = (1 + r)a+ y2(z1)

∂L
∂λ3

= 0; c2(z2) = (1 + r)a+ y2(z2)

From the first, second, third and fourth, we get,

u′(c1) = (1 + r)β[pu′(c2(z1)) + (1− p)u′(c2(z2))]

Again, purely to simplify to something easier to look at, let β(1 + r) = 1, to get,

u′(c1) = pu′(c2(z1)) + (1− p)u′(c2(z2))
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so with incomplete markets we have that the household is able to shift between period one and period two

consumption using the asset, a, and so it sets the marginal utility of consumption in period one equal to the

expected marginal utility of consumption in period two (expected=sum weighted by probabilities). Note that we

had y2(z1) < y2(z2) and so it follows from the period 2 budget constraints that c2(z1) < c2(z2) (as a must be the

same for both), from which if follows that u′(c2(z1)) > u′(c2(z2)) (because u is increasing and concave; standard

assumptions that u′ > 0 and u′′ < 0; note that the later says that there is decreasing marginal utility). Combining

u′(c2(z1)) > u′(c2(z2)) with u′(c1) = pu′(c2(z1)) + (1 − p)u′(c2(z2)) we get that u′(c2(z2)) < u′(c1) < u′(c2(z1))

(take the ’weighted sum’/’average’ of any two positive numbers and you will get something that is inbetween

them).

Now we will look at the two period model with a shock in the second period that can take two values, again.

But this time we will solve the complete markets version. For complete markets we will need two assets, with

different returns depending on states, and the easiest way to do this will be to have asset a1 which returns (1+r)a1

when z = z1 and zero when z = z2, as well as asset a2 which returns zero when z = z1 and (1+r)a2 when z = z2.
37

The household problem is,

max
{c1,c2(z1),c2(z2),a1,a2}

u(c1) + β[pu(c2(z1)) + (1− p)u(c2(z2))]

s.t. c1 + a1 + a2 = y1

c2(z1) = (1 + r)a1 + y2(z1)

c2(z2) = (1 + r)a2 + y2(z2)

Note that, e.g., the zero return of a2 is implicit in the period 2 state 1 budget contraint (you could write it explicity

as 0 ∗ a2). The Lagrangian is,

L(c1, c2(z1), c2(z2), a1, a2, λ1, λ2, λ3) = u(c1) + β[pu(c2(z1)) + (1− p)u(c2(z2))] + λ1(y1 − c1 − a1 − a2)

+λ2((1 + r)a1 + y2(z1)− c2(z1)) + λ3((1 + r)a2 + y2(z2)− c2(z2))

37These are essentially the ’Arrow-Debreu securities’ (essentially as normally would have prices, rather than rate of return
r). What matters is that we have enough assets with different returns to ’span’ the space of the shocks (and time periods).
An intuitive way to think about it is that we need to be able to trade between all the states independently of the others,
in this model we have three states: period one, period two with shock one, and period two with shocks two. To be able to
shift between all of these we need one less asset than there are states; or you can think of it as as many assets as there are
states, not counting the state we are already in.

31



The first-order conditions of this are

∂L
∂c1

= 0; u′(c1) + λ1(−1) = 0

∂L
∂c2(z1)

= 0; pβu′(c2(z1)) + λ2(−1) = 0

∂L
∂c2(z2)

= 0; (1− p)βu′(c2(z2)) + λ3(−1) = 0

∂L
∂a1

= 0; λ1(−1) + λ2(1 + r) = 0

∂L
∂a2

= 0; λ1(−1) + λ3(1 + r) = 0

∂L
∂λ1

= 0; c1 + a = y1

∂L
∂λ2

= 0; c2(z1) = (1 + r)a1 + y2(z1)

∂L
∂λ3

= 0; c2(z2) = (1 + r)a2 + y2(z2)

From various combinations of the first five we get,

u′(c1) = (1 + r)βpu′(c2(z1))

u′(c1) = (1 + r)β(1− p)u′(c2(z2))

pu′(c2(z1)) = (1− p)u′(c2(z2))

Complete markets make it possible to trade independently between any two states (we have three, period 1, period

2 shock 1, period 2 shock 2; note that, e.g., one more unit of a1 and one less unit of a2 ’trades’ between period 2

shock 1 and period 2 shock 2, with no impact on period 1). So complete markets mean we equalize the (discounted)

marginal utility between any two states, adjusted for the probability of the state and for the ’price’ of transfering

between states (1 + r between period one and either of the period two states, 1 between the two period 2 states).

The most important difference to notice between the incomplete markets and complete markets models we just

solved is that in the complete markets economy we had that we equate (with adjustments for prices, discounting,

and probability) the marginal utility for each and every state. By contrast in the incomplete markets model it was

not always possible to equate between some states, in our case the two period 2 states, and so agents are in this

sense more ’exposed’ to the risk of bad shocks that arise in some states; they are less able to insure against them.

Because agents cannot insure so well against the shocks it follows that they are more ’affected’ by the shocks and

end up very different to each other based on which shocks hit them over their lifetime. The idiosyncratic shocks

that hit a household in a complete markets model are largely irrelevant as households are perfectly insured agains

them; so different shocks do not give rise to differences between agents in a complete markets model.
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3.5.1 Representative Agent

Complete Markets are not the same thing as a Representative Agent. But complete markets are a prerequisite (a

necessary condition) for the existence of a Representative Agent. We won’t attempt to fully explain the concept of

a Representative Agent here as it involve competitive equilibrium, while none of the life-cycle models considered

in this document are general equilibrium models (see the companion document on OLG models for the extension

of life-cycle models to general equilibrium, linked in Section 7).

The basic idea is that instead of solving a model with lots of different households (whether due to ex-ante

differences, or simply ex-post different due to receiving different idiosyncratic shocks) we can just solve a model

with a Representative Agent38 and get the same answer. Since Representative Agent models are easier to solve,

if they give the same answer we are better off just using Representative Agents. The intuition for creating a

Representative Agent is that any competitive equilibrium of a model containing lots of different households can

be recreated (in terms of the aggregates, like total consumption, or total assets) as the competitive equlibrium of

a model with a Representative Agent as long as we choose the preferences appropriately (as a weighted sum of the

individual households, with the weights based on the lagrange multipliers of their maximization problem); and as

long as markets are complete.

Obviously the idea that heterogeneity does not matter is a strong assumption, and one that often fails to be

realistic. Representative Agent models are ’simpler’ and more parsimonious than heterogenous agent models, and

for that reason are still useful for some things where either heterogeneity is unimportant, or where it would simply

be impossible to solve the incomplete markets version of the model. But Representative Agents models should be

treated with caution where they differ from heterogenous agent models. It is worth knowing that while you can

create a Representative Agent that recreates all the same model aggregates, like consumption and assets, as would

occur in a complete markets competitive equilibrium, you cannot create a Representative Agent for the welfare of

these agents, and so all welfare analysis in Representative Agent models is actually not well microfounded. Just

like it is still useful to teach very simple models in first-year undergraduate economics classes, it is still useful to

use Representative Agent models in teaching.

Because we need the concept of competitive equilibrium to make sense of the details of Representative Agent

models I won’t attempt it here. A decent ’simple’ example is given in ’Lecture 1: Complete Markets’ by Florian

Scheuer (if you know of a nicer explanation/example please let me know so I can link it here instead)

38Technically it is not one single agent, but a continuum of agents that are all identical, but we can solve it like there was
one agent as all the other agents are identical. The continuum of agents is needed to allow that the model has a competitive
equilibrium, rather than being a monopoly.
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4 Further building up Life-Cycle Models

4.1 Life-Cycle model 20: Idiosyncratic shocks that depend on age

We will now look at how to set up shock that depend on age: both the grid points and the transition matrix can

change with age. There are two ways to do this, either by creating matices z grid J and pi z J which contain

z grid and pi z for each age, or by using a function that takes (age dependent) parameters as inputs and returns

the grid and transition matrix for that age, called ExogShockFn in the codes. Life-Cycle Model A5 shows how

to create z grid J and pi z J for an AR(1) process whose parameters depend on age. Here will will demonstrate

how to use ExogShockFn.

We will use Life-Cycle Model 8, modifying it so that the transiton matrix for shocks depends on age (but

the grid does not). That model has an exogenous shock z that takes two values, representing employment and

unemployment, respectively. Empirically the unemployment rate is higher for the young, and job turnover is

also higher for the young. We will therefore change the transition matrix so that the probability of remaining in

the employment state increases in age; I have not attempted to calibrate the numbers seriously, they are purely

illustrative.

We create an ’ExogShockFn’ which takes in some parameters and returns z grid and pi z; the dependence on

age comes because the parameters themselves (can) depend on age. If you look at the contents of ExogShockFn

you can see how the transition matrix is created to depend on age.

The codes start all households at age j = 1 in the stationary distribution for the transition matrix on z at age

j = 1. So if the transition matrix did not change with age then nor would the distribution of agents over z (the

distribution of agents over a could change, but not over z). We plot the life-cycle profile showing the fraction of

the population in the ’unemployment’ state, and can see how it changes with age because the transition matrix

on z is changing with age.

Note that the number of grid points on z must remain unchanged in age. Of course by making the probability

of transitioning into some of them equal to zero you can effectively remove some.

4.2 Life-Cycle model 21: Idiosyncratic medical shocks in retirement

We just saw how to allow exogenous shock grids and transition path to depend on age. When doing this we can

easily also reinterpret these exogenous shocks to have different meanings at different ages. Notice how we give

significance to the values of z via the return function and the FnsToEvaluate. So if we change the return function

and FnsToEvaluate to interpret z (or any other state) in a different way at different ages then the meaning of z is

different for different ages. We have already seen in Life-Cycle Model 20 (and A5) how to change the grid values

and transition matrix for z for different ages, so this makes it easy to completely repurpose z at different ages.

We will modify Life-Cycle Model 8, which had a shock z that takes two values representing employment and

unemployment, respectively. Notice that in that model retirees never work, and so the shock was irrelevant/ignored

34



for all retirees. So let’s repurpose the shock during retirement. We know retirees often do not run down their

savings as a basic life-cycle model would predict. We have already seen one possible reason, that they want to

leave bequests.39 Another possible reason that the elderly do not run down savings is that they want substantial

savings to pay for potentially large medical expenses. We will repurpose the shock z to be a medical expense shock

during retirement, to create precisely this motive.40

The household value fn problem is,

V (a, z, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjzh

if j >= Jr : c+ aprime = (1 + r)a− z + pension

0 ≤ h ≤ 1, aprime ≥ 0

zprime = πz(z), is a two-state markov

where now z also appears in the retired (j >= Jr) budget constraint (interpreted as substracting a medical

expense).

So we are going to have the exogenous shock z represent employment/unemployment during working age,

and then medical expenses during retirement. We use ExogShockFn to do this, and will just set one grid for

working age and another grid for retirement; likewise we set one transition matrix for working age and another

for retirement.41

Note that the number of grid points on z must remain unchanged in age. Of course by making the probability

of transitioning into some of them equal to zero you can effectively remove some.

If you run this model and Life-Cycle Model 8, the only difference between the two is the medical shocks, and

you will be able to see their impact in increased savings by the elderly in the life-cycle profiles.

4.3 Life-Cycle model 22: Deterministic Economic/productivity growth

The economy grows over time, as do incomes, as productivity rises. We will add a deterministic rate of growth

of producitivity, g, at which incomes rise. The way to solve a model with deterministic growth is to look for a

balanced growth path by converting the model into ’per technology unit’ terms, which makes the model stationary.

39We modelled warm-glow bequests, but there were more a simply way to capture something like wanting to leave model
for descendents (or to charity), and should be understood as a simple way to capture a complex behaviour, rather than the
’warm glow’ being taken too seriously.

40Obviously the importance of medical expense shocks is likely to be much larger in countries with private health systems
vs public health systems. The literature also points to the potentially large costs of elderly-care in nursing homes and the
like as important to the savings of the elderly.

41We could of course set these to change with age —e.g., medical shocks become more likely as households get older— but
to keep things easy to follow we will just keep the same grids and transition matrices except for the change from working
age to retirement.
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Then solve the stationary model, and then if wanted we can add growth back into the simulations of the stationary

model.42 Solving the stationary model can be done in the usual manner.

To be able to do this we need to use a non-seperable utility function.43 Conceptually the reason is simple

enough. If incomes grow (which is the point of our deterministic productivity growth g) then people will consume

more and so the marginal utility of consumption falls. Then seperable utility implies that equating marginal

utilities therefore requires a falling marginal utility of leisure, which means ever increasing leisure. So seperable

utility together with growing incomes drives hours worked to decrease towards zero. With non-seperable utility

the marginal utility of leisure is increasing in consumption (this is meaning of non-seperable) and so (optimal)

leisure does not continually increase as consumption increases, and so hours worked to not tend to zero.

For the renormalization to work we need to be careful about what exactly grows. When using a model

with exogenous labor we would have the endowment income grow at rate g, whereas when using a model with

endogenous labor we need it to be the wage (per unit of labor supply/per hour worked) that grows at rate g.

A brief further discussion of what kinds of utility functions can be used with models that have growth is

appropriate. You are probably familiar with the neoclassical growth model (a.k.a. Solow or Solow-Swan model).

The general characterization of prefererences consistent with the existence of a steady-state in a model with

deterministic producitivity growth are ’Uzawa prefereces’. Two extensions may also be of interest. The first is

the extension of Uzawa preferences to models with endogneous human capital, by Grossman, Helpman, Oberfield,

and Sampson (2017). The second is Boppart and Krusell (2020) which provides preferences consistent with the

combination of both income growth and moderate decrease in hours worked in high income countries over the 20th

century.

We will first do two models without idiosyncratic shocks. Let’s start with the exogenous labor case, as it is

slightly simpler, and then do the endogenous labor case. After these we solve the endogenous labor case with

idiosyncratic shocks. For Assignment 4 you are provided with just the model set up for exogenous labor supply

with idiosyncratic shocks and deterministic income growth; solving the equations to renormalize the the exogenous

labor case is left as Assignment 4 (a code ’solution’ is provided).

4.3.1 Deterministic income growth with exogenous labor supply

I will explain the method using a very simple life-cycle model to make clear the concepts, and then simply write

out what Life-Cycle Model 10 becomes with deterministic growth.

42Notice that this is exactly the same thing as when solving the neoclassical growth model (a.k.a. Solow or Solow-
Swan model); solve the balanced growth path by dividing by the technology level (and population), and then solving for
the steady-state. Note that the difference between stationary equilibrium and steady-state is minor, they are often used
interchangably in conversation.

43Non-seperable utility was discussed Assignment 2 (just after Life-Cycle model 10).
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Consider the following household problem,

J∑
j=1

c1−σj

1− σ

cj + aj+1 = (1 + r)aj + yj

yj = (1 + g)yj−1, y1 given

Notice that yj is growing at rate g; the deterministic income growth.

Trying to compute the solution to this problem in it’s current form is possible (because there is a final period,

there is a maximum amount that income will end up being)44, but we would require very large grids as we would

need to deal with the smallest income in period 1 and the largest income in period J , as well as the wide range

of asset holdings that would result. We will therefore rewrite everything in such a way as to ’remove’ the growth.

The intuition is that yj = (1 + g)j−1y1, and so if we can just divide everything by (1 + g)j−1 then the growth

would ’disappear’.

First, rewrite yj , to get

J∑
j=1

βj−1
c1−σj

1− σ

cj + aj+1 = (1 + r)aj + (1 + g)j−1y1

and now divide the budget constraint through by (1 + g)j−1 to get

J∑
j=1

βj−1
c1−σj

1− σ

cj
(1 + g)j−1

+
aj+1

(1 + g)j−1
= (1 + r)

aj
(1 + g)j−1

+ y1

We want this to be simpler, notice that we could ’get rid’ of the denominator on cj by defining a ’renormalized’

variable ĉj ≡ cj
(1+g)j−1 . We could do the same with aj , defining âj ≡ aj

(1+g)j−1 . We would then get

J∑
j=1

βj−1 (ĉj(1 + g)j−1)1−σ

1− σ

ĉj + (1 + g)âj+1 = (1 + r)âj + y1

44This would not be true in an infinite horizon model, nor if we extended this to an OLG model.
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notice both that we made the substitution in the utility function as well, notice also how we could substitute

aj+1

(1+g)j−1 with (1 + g)âj+1.

We have one more step, and for this step the functional form of the utility function becomes important

(especially in the model with endogenous labor). Right now the utility function ’changes’ every period (there is a

j inside it), but we can pull the (1 + g)j−1 out in front to get

J∑
j=1

βj−1((1 + g)j−1)1−σ
(ĉj)

1−σ

1− σ

ĉj + (1 + g)âj+1 = (1 + r)âj + y1

and with a little bit of rewriting the powers, we get

J∑
j=1

βj−1((1 + g)1−σ)j−1 (ĉj)
1−σ

1− σ

ĉj + (1 + g)âj+1 = (1 + r)âj + y1

The important thing here is that now neither the utility function,
(ĉj)

1−σ

1−σ , nor the budget constraint ĉj + (1 +

g)âj+1 = (1 + r)âj + y1 has parameters that change with the period j (when we started yj changed with j). In

fact the deterministic growth now just appears as an additional discount factor, note that we could group the

discounts factors to get, (β(1 + g)1−σ)j−1. So solving the model with deterministic growth, after renormalizing,

just looks like a model with a different discount factor, and that is easy enough to solve.

Note that if the model had retirement and pensions, then you would either end up with the renormalized

pension decreasing in j, or you could consider pensions which are indexed to the growth (if you are looking at a

specific country you should follow the pension legislation).

Note, no code is provided to solve this model, you can hopefully figure it out based on the code for the model

with deterministic wage growth and endogenous labor supply and idiosyncratic shocks that follows shortly.

4.3.2 Deterministic income growth with endogenous labor supply

Consider the following household problem,

J∑
j=1

βj−1
cσ1
j l

1−σ1
j )1−σ2

1− σ2

cj + aj+1 = (1 + r)aj + wj(1− lj)

wj = (1 + g)wj−1, w1 given
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Notice that wj is growing at rate g; the deterministic wage growth.

There are two key differences with endogenous labor. The first is the utility function which must be non-

seperable. We already discussed the intuition for this and we will see mathematically that the non-seperability is

needed to be able to get the (1 + g)j−1 term out of the (renormalized) utility function so that it just becomes an

additional discount factor. The second is that now we have the deterministic growth in the wage, wj and not in

the labor income wj(1− lj)
45

From here the steps are almost exactly the same as with exogenous labor supply, first we can divide the whole

budget constraint by (1+g)j−1 and define ĉj ≡ cj
(1+g)j−1 and âj ≡ aj

(1+g)j−1 ; note that we do not change lj , because

it multiplies the wj . Substituting we get

J∑
j=1

βj−1
(ĉj(1 + g)j−1)σ1 l1−σ1

j )1−σ2

1− σ2

ĉj + âj+1 = (1 + r)âj + w1(1− lj)

wj = (1 + g)wj−1, w1 given

note the lj and w1. We can now do exactly the same step of taking the growth term out of the utility function

and making it appear as just an extra discount factor,

J∑
j=1

(β(1 + g)σ1(1−σ2))j−1
(ĉj)

σ1 l1−σ1
j )1−σ2

1− σ2

ĉj + âj+1 = (1 + r)âj + w1(1− lj)

wj = (1 + g)wj−1, w1 given

where the discount factor is now β(1 + g)σ1(1−σ2).

Note, no code is provided to solve this model, you can hopefully figure it out based on the code for the model

with deterministic wage growth and endogenous labor supply and idiosyncratic shocks that follows shortly.

4.3.3 Deterministic income growth with endogenous labor supply and exogenous shocks

Let’s extend Life-Cycle Model 9 to include deterministic income growth, as part of which we will have to switch

to a non-seperable utility function. To make things simple I am going to index pensions to the growth of wages.46

45The reason for this is more obvious in an OLG model where things will fail to add up at the aggregate (whole economy)
level unless we put the deterministic growth in the wage. In the present life-cycle it is, roughly speaking, because labor
supply is a decision variable that gets determined endogenously and so is not something that we can renormalize in terms
of.

46This is not necessary, just makes the renormalized model a bit simpler.
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So we start with the household problem,

V (aj , zj , j) = max
cj ,aj+1,hj

cσ1
j (1− hj)

1−σ1)1−σ2

1− σ2
+ (1− sj)βI(j>=Jr+10)warmglow(aj+1)

+sjβE[V (aj+1, zj+1], j + 1)|z]

if j < Jr : cj + aj+1 = (1 + r)aj + wjκjzjhj

if j >= Jr : cj + aj+1 = (1 + r)aj + pensionj

0 ≤ h ≤ 1, aj+1 ≥ 0

log(zj) = ρzlog(zj−1) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

wj = (1 + g)wj−1, w1 given

pensionj = (1 + g)pensionj−1, pensionJr given

notice that both wage, wj , and pension, pensionj grow at deterministic rate g (from w1 and pensionJr, respec-

tively). Note that I have had to change notation slightly from Life-Cycle Model 9, in the sense that we use cj

rather than c, and similarly for the other variables, purely because it makes the renormalization look more like

those we have already seen.

We can do the same renormalization as before, defining ĉj ≡ cj
(1+g)j−1 and âj ≡ aj

(1+g)j−1 , and leaving hj and

zj unchanged. We can substitute these in and then extract the term on the utility function to be an additional

discount factor to get,

V (âj , zj , j) = max
ĉj ,âj+1,hj

ĉσ1
j (1− hj)

1−σ1)1−σ2

1− σ2
+ (1− sj)βI(j>=Jr+10)warmglow(âj+1(1 + g)j)

+sjβE[V (âj+1, zj+1], j + 1)|z]

if j < Jr : ĉj + (1 + g)âj+1 = (1 + r)âj + w1κjzjhj

if j >= Jr : ĉj + (1 + g)âj+1 = (1 + r)âj + pensionJr

0 ≤ h ≤ 1, âj+1 ≥ 0

log(zj) = ρzlog(zj−1) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

note that we now just have w1 and pensionJr. Notice also the warmglow(âj+1(1 + g)j); we could just take the

(1 + g)j out of the warmglow function as really it is just equivalent changing two of the warm-glow parameters,

warmglow1 and warmglow2. When coding we will take advantage of this to rewrite the warm-glow as (1 −

sj)β(1 + g)−1I(j>=Jr+10)warmglow(âj+1(1 + g)), as mentioned this is really just reparametrizing, not changing

anything of substance.
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We will solve this model in the standard way, and simulate some panel data with it. Note that what we

simulate will be â, w1κjzjh, and h. We will then create panel data for the original model, by changing these to a,

wjκjzjh and h; this requires multiplying the first two by (1 + g)j−1 but leaving the third unchanged (we need to

modify to get a and wj).

4.3.4 Assignment 4: Deterministic income growth with exogenous labor supply and ex-

ogenous shocks

Life-Cycle Model 10, with deterministic growth in the stochastic endowment is given by,

V (a, z, j) = max
c,aprime

c1−σ

1− σ
+ (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wjkappajz

if j >= Jr : c+ aprime = (1 + r)a+ pensionj

aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

wj = (1 + g)wj−1, w1 given

pensionj = (1 + g)pensionj−1, pensionJr given

for Assignment 4 you first need to convert this model into one where there is a stationary equilibrium (by normal-

izing by the income growth), and then solve the model with code. Then use the solution to the stationary model

to simulate some panel data, and then put the deterministic income growth back into the panel data.

We mentioned previously that with exogenous labor supply it is income that grows, while with endogenous

labor it is important that it is the wage that grows. So how come we have the growth in the ’wage’ in this

exogenous growth model? Because a ’wage’ is somewhat meaningless for exogenous labor, and notice that there

is no difference between wjkappajz growing and wj growing if they are all constants (or stationary stochastic

processes).

A solution code for Assignment 4 is provided, but try to solve without looking at it.

4.4 Life-Cycle model 24: Permanent Types: Solving fixed-types

We will use permanent types, which is a way to solve N i household models at once. Our first model is just that

of Life-Cycle model 11, with endogenous labor and both persistant and transitory shocks to labor efficiency units.

In this model we add a ’fixed effect’ to the labor efficiency units, denoted αi, something common in the literature.

This is the only change to the model. Permanent types, or PTypes, is how VFI Toolkit handles different types of
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agents, it is much more general than just fixed-types as will be seen in later Life-Cycle models, but for now we

simply use it for this purpose.

We add a parameter, αi, which depends on the permanent types indexed by i. We will use N i different

permanent types of agents, and simply by setting the parameter αi to have N i different values the toolkit will

automatically recognise that this parameter depends on the permanent type and respond appropriately.

Our household value function now includes a fixed-effect αi to determine idiosyncratic producitivity units,

Vi(a, z, e, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβE[Vi(aprime, zprime, eprime, j + 1)|zprime]

if j < Jr : c+ aprime = (1 + r)a+ wκjαizeh

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

log(e) ∼ N(0, σ2
e)

Notice that z is AR(1) and e is i.i.d. normal. Note that the codes use ’e’ variables for i.i.d. shocks, see Life-Cycle

model 11 if you have not previously seen this feature.

Notice that the value function now depends on i: Vi. So we are now essentially solving N i seperate problems.

In the codes we will use N i = 5. We just set parameter αi to be a vector of length N i and the toolkit

will automatically realise that this parameter depends on the permanent type and act appropriately. The other

noteworthy change is that we have to switch all the commands to PType, e.g., ValueFnIter Case1 FHorz PType

instead of ValueFnIter Case1 FHorz, and similarly for all commands around the agent distribution, function

evaluation, etc. Of course the ’shape’ of the results changes: V now becomes a structure, with V.ptype001,...,

V.ptype005 being the value functions for each of the five permanent types.47 Similarly thinks like the agent

distribution will now have one distribution for each permanent type. When we calculate something like life-cycle

profiles the output now provides both a result conditional on each permanent type, and a grouped result.

While it is not necessary for solving the value function problem we do need to state the weights of each of

the different permanent types to solve the stationary distribution. This is a vector-parameter which we will call

alphadist, and we need to put the name of this in PTypeDistParamNames, which we then pass to the stationary

distribution commands. This information gets encoded into the StationaryDist, and so we do not need to include

it seperately later when doing things like life-cycle profiles.

This example plots life-cycle profiles for αi, both for each permanent type, and grouped across the permanent

types. This provides a nice example to show how the toolkit has interpreted αi is a parameter that differs by

47ptype001, etc., are the default ’names’ given to the fixed-types, as later Life-Cycle model examples using permanent
types will make clear we can actually choose our own names.
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permanent type, and how the grouped value is simply the values of αi summed according to their weights in

alphadist.

4.5 Life-Cycle model 25: Using Names for Permanent Types: patient and impatient

We consider a model with two agents who differ by the value of their discount factor parameter, β. We can use

names for the agents, and so call them ’patient’ and ’impatient’. The model is just that of Life-Cycle Model 11,

except that there are now two agents with different values of βi, indexed by i. The main purpose of this example

is to show how we can use names for permanent types of agents in codes.

Our household value function now includes two permanent types that differ by their value of βi, the discount

factor parameter.

Vi(a, z, e, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ (1− sj)βiI(j>=Jr+10)warmglow(aprime)

+sjβE[Vi(aprime, zprime, eprime, j + 1)|zprime]

if j < Jr : c+ aprime = (1 + r)a+ wκjzeh

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

log(e) ∼ N(0, σ2
e)

Notice that z is AR(1) and e is i.i.d. normal. Note that the codes use ’e’ variables for i.i.d. shocks, see Life-Cycle

model 11 if you have not previously seen this feature.

Rather than use N i = 2, like we did in Life-Cycle model 24, we can instead give the agents names using

Names i = {′patient′,′ impatient′}. The PType commands will automatically use these names for all outputs.

We set the different parameter values as Params.beta.patient = 0.96 and Params.beta.impatient = 0.9. After

this, other than using Names i everywhere we had N i in Life-Cycle model 24, there is no other change we need

to make.

The names we give the permanent types are automatically used for output, hence we get V.patient and

V.impatient as the two value functions for the agent types. Commands for things like life-cycle profiles give us

both the two life-cycle profiles conditional on each agent type (e.g., AgeConditionalStats.earnings.patient.Mean

and AgeConditionalStats.earnings.impatient.Mean) and the life-cycle profiles for the whole population (e.g.,

AgeConditionalStats.earnings.Mean).
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4.6 Life-Cycle model 26: More Permanent Types

There are lots of other things you can do with permanent types: different return functions, different number of

periods, different exogenous shock processes, and much much more. Hopefully more examples coming soon :D

If there is a particular thing you think would be good to see, please email or use forum: discourse.vfitoolkit.com.

4.7 Life-Cycle model 28: Two decision variables (dual-earner household)

We solve a model of a household in which there are two people (e.g., a married household). They make a joint

decision about how much each will work. This involves two decisions variables for the two labor supply choices. We

will set up each household member to have effective hours shocks that are a combination of one AR(1) persistent

shock and one i.i.d. shock (as in Life-Cycle model 11), for each person (so two of each for the household). We will

also allow for correlation between the persistent shocks of the two household members, and for correlation between

the transitory shocks of the two household members. We will also allow different deterministic age-dependent labor

efficiency units, κj , for each spouse.

Our household value function now has z1 and e1 for the first spouse, and z2 and e2 for the second spouse.

We also have κj,1 and κj,2. We add a disutility term for each spouses labor supply, but the household has joint

consumption.

V (a, z1, z2, e1, e2, j) = max
c,aprime,h1,h2

c1−σ

1− σ
− ψ

h1+η1

1 + η
− ψ

h1+η2

1 + η
+ (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβE[V (aprime, z1prime, z2prime, e1prime, e2prime, j + 1)|z1, z2]

if j < Jr : c+ aprime = (1 + r)a+ wκj,1z1e1h1 + wκj,2z2e2h2

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

log([z1prime; z2prime]) = ρzlog([z1; z2]) + ϵ, ϵ ∼ N(0,Σ2
ϵ,z)

log([e1, e2) ∼ N(0,Σ2
e)

Notice that [z1, z2] is VAR(1) (in logs) and [e1, e2] is i.i.d. normal (in logs).

We are allowing for z1 and z2 to follow a VAR(1) (so both ρz and Σϵ,z are 2-by-2 matrices). We do not require

that Σϵ,z be diagonal, so the innovations themselves can be correlated. We similarly allow for e1 and e2 to be

correlated (so Σe is not diagonal).

Correlated shocks, which use jointly-determined grids, are explained in Life-Cycle model A9.

This model demonstrates how to use two decision variables, you need to put them as the first two entries to

the ReturnFn and also to all FnsToEvaluate. The model output includes calculating the life-cycle labor supply

for each spouse seperately, as well as the total household labor supply.

A common variation of the model used in practice would add a fixed cost of working (e.g., −Ih2>0 ∗ fc, where
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fc is a constant) to capture that the second spouse in many households will sometimes supply zero labor.48 Note

that implementing this is just a simple modification of the ReturnFn.

Because the household has two labor supply decisions the two spouses are able to insure each other against

poor labor market outcomes. This is known as ’intra-household’ insurance. If you are interested in this kind of

model, see Ortigueira and Siassi (2013).

4.8 Life-Cycle model 30: Semi-exogenous state (fertility and children)

We will modify Life-Cycle model 9 to include a fertility decision and children. This involves adding one decision

variable, the fertility, and two semi-exogenous states, the number of infants and the number of children. A semi-

exogenous state is an exogenous state the transition probabilities of which depend on a decision variable.49 In our

case, the transitions around how many infants the household has will depend on the fertility decision.

The modifications to the state variables from Life-cycle model 9 are thus to add a fertility decision, f , which

takes the values of zero or one. A semi-exogenous state n1, which is the number of infants and takes the values of

zero or one. A second semi-exogenous state n2, which is the number of children and can take the values 0,1,2,3.50

Let’s see the household problem, and after that we will discuss the semi-exogeneity.

Households have children because they like them, that is they get utility directly from the presence of children.

We use the functional form η1
exp(j−η3)

(1+exp(j−η3)) (n̄ + n)η2 , notice that this depends on age and n̄ acts as the desired

number of children. Models of this kind often include things about the time required to look after the infant and

the cost of childcare if working, and these just involve small changes to the return function.

48Because we have 0 ≤ h2 ≤ 1 together with the shape of the utility function it would never be optimal to set h2 = 0 in
the absence of a fixed cost of working non-zero hours.

49Not to be confused with a semi-endogenous state, which is an exogenous state the transitions of which depend on an
endogenous state. The difference is dependence on an endogenous state versus dependence on a decision variable.

50This could go higher than 3. When we define the actual transition probabilities you will see that n2 is actually
exogenous, but because it will depend on n1 and because n1 is semi-exogenous it ’inherits’ this semi-exogeneity from the
perspective of the codes.
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Our household value function is now,

V (a, z, n1, n2, j) = max
c,aprime,h,f

(c/equiv)1−σ

1− σ
− ψ

(h+ infantcaretime)1+η

1 + η
+ η1

exp(j − η3)

(1 + exp(j − η3))
(n̄+ n)η2 +

(1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβE[V (aprime, zprime, n1prime, n2prime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjzh− childcarecosts

if j >= Jr : c+ aprime = (1 + r)a+ pension

equiv = equiv1n1 + equiv2n2

infantcaretime = hcn1

childcarecosts = childcarec(h > 0)n1

0 ≤ h ≤ 1, aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

where equiv is a household consumption equivalence scale (scales down the utility of consumption based on the

number of people in the households). Notice that n1 and n2 are part of the state space, and f is added to the

decision variables. Infants require the household to decicate some of their time (infantcaretime), and if they

work (h > 0) while they have an infant there are child care costs (childcarecosts).

We first discuss semi-exogeneity in terms of this application, and then give a more general mathematical

description. We have two semi-exogenous variables n1 and n2 whose transition probabilities depend on the

fertility decision f . The idea is that n1 is the number of infants, and if it is currently zero later period and the

household is not trying to have a child —the fertility decision f equals zero— then the number of infants next

period is zero. If however the number of infants is zero and the fertility decision equals one, then the household will

succeed in having an infant next period with probability probofbirthj (and remain with zero infants next period

with probability 1− probofbirthj). Hence the transition probabilities for the semi-exogenous state n1 depend on

the value of the decision variable of fertility. Notice that the probability of birth depends on age j. The rest of

relatively exogenous and simply inherits the semi-exogeneity from the part we just described: if the household

already has an infant, n1 = 1, then that infant becomes a child (adding one to n2, and subtracting one from n1)

with probability probofchild. Children, n2, become adults with probability probofadult, which has the effect of

substracting one from n2.

To set up the semiexogenous variables in the code we have a few steps: (i) define in vfoptions the fields n semiz,

semiz grid, and SemiExoStateFn, setting up the first two of these is fairly standard (ii) set up SemiExoStateFn,

which takes the inputs of (semiz, semizprime, d, ...) and returns the transition probability for the next period

semizprime given this period semiz and the decision d as well as any parameters. We only tell the codes about

the semi-exogenous states, here n1 and n2, but not explicitly about the relevant decision variable, here f . VFI
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Toolkit is hard-coded to assume that the ’last’ decision variable is the one that is relevant to the semi-exogenous

states (if these are being used in vfoptions). (iii) We also need to set up the same three fields in simoptions. (iv)

The ordering of the inputs to the return function are: (d, aprime, a, z, semiz, e, ...), although of course the current

problem does not use any e variables, I just mention them to be comprehensive.51

From the mathematical perspective when happends is VFI Toolkit treats semiz variables the same as z vari-

ables for things like evaluating the return function, but then for computing expectations or the agent distribution

it creates a large transition matrix for the semiz corresponding to each possible value of the ’last’ decision vari-

able. Hence from the perspective of solving models, any situation in which you have Pr(semiz′|semiz, d) can be

solved using VFI Toolkit with a semi-exogenous shock. That is, any time you have a ’exogenous variable whose

transition probabilities depend on a decision variable’. The key limitations are that the next period value of the

semi-exogenous variable cannot appear in the return function, and that it is a decision variable (not an endogenous

state variable) on which the transition probabilities depend.52

At the bottom of the codes after the model is solved it shows what the transition matrix that is created

internally, with transition probabilities from semiz to semizprime which depend on d, look like. This might help

you understand exactly what it is and is not capable of.

5 Portfolio-Choice in Life-Cycle Models

5.1 Life-Cycle model 31: Portfolio-Choice

Households saving for retirement face a ’portfolio-choice’ decision about how to allocate their savings; households

can either save in a safe asset that returns r with certainty, or in a risky-asset that has a stochastic return (and

a higher expected return). We build on Life-Cycle model 9, adding the decision on whether to invest in the safe

or risky asset (and switching to exogenous labor for simplicity). We take advantage of the insight that (in the

absence of portfolio-adjustment costs) once we have the returns to each asset we only need to know total assets

next period. This way we can have only one endogenous state (total assets), and then need two decision variables,

savings and the ’share of savings invested in the risky asset’. Note however that this means we cannot choose next

period endogenous state (total assets) directly, as it depends on our two decision variables, but also on the return

to the risky asset which depends on an i.i.d. shock that occurs between this period and next.

Because aprime can no longer be choosen directly, we cannot use a standard endogenous state as we have

done for all the examples until now. Instead we will use a ’riskyasset ’, which is where aprime(d, u), that is the

next period endogenous state, aprime, is a function of the decision variables d and an i.i.d. shock u that occurs

between this period and next period. Until now the return function and any functions to evaluate always had

51The ordering of inputs for any functions to evaluate are the same, (d, aprime, a, z, semiz, e, ...).
52For example, another application would be an employed/unemployed/out-of-labor-force semi-exogenous state, where

the transition probabilties depend both of the previous value of this semi-exogenous state and on a decision variable about
how hard to search for a job.
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(d, aprime, a, z...) as their first arguments, now with a riskyasset they will instead have (d, a, z, ...) as their first

arguments. We also need to set up aprime(d, u), which will be a function that takes d and u as inputs and returns

the value of aprime (the codes will then interpolate this onto the grid on the endogenous state).

Our household value function is thus,

V (a, z, j) = max
c,savings,riskyshare

c1−σ

1− σ
+ sjβE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ savings = a+ wκjz

if j >= Jr : c+ savings = a+ pension

aprime = (1 + r)(1− riskyshare)savings+ (1 + r + u) riskyshare savings

0 ≤ riskyshare ≤ 1, savings ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

u ∼ N(rp, σ2
u)

where r is the return on safe assets, and u is the i.i.d. excess return on risky assets which has mean rp (the risk

premium that will be greater than zero to compensate for the risk).

Implementing the codes is almost all just the same as usual. We need to set up the aprime(d, u) function

(which outputs the value of aprime). Then when calling the value function, agent simulation, etc., we just have

to set vfoptions.riskyasset=1.

Everything else is standard, except of course that the policy function, Policy, is slightly different than before

as it now just contains the decision variables d.

5.2 Life-Cycle model 32: Portfolio-Choice with Epstein-Zin preferences

When saving for retirement and making portfolio-choice decisions households need to distinguish two things: how

much to save for retirement, which will depend on the intertemporal elasticity of substitution, and how what share

of savings to invest in risky assets, which will depend on the level of risk aversion. But in standard (vonNeumann-

Morgenstern) preferences, these are both determined by the same parameter. Epstein-Zin preferences introduce an

additional parameter so that the intertemporal elasticity of substitution and the risk aversion can be determined

seperately. We now resolve Life-Cycle model 31 but this time using Epstein-Zin preferences. We will use Epstein-

Zin preferences in utility-units (see Appendix C.1).
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Our household value function is thus,

V (a, z, j) = max
c,savings,riskyshare

c1−σ

1− σ
− βE[−sjV (aprime, zprime, j + 1)1+ϕ|z]

1
1+ϕ

if j < Jr : c+ savings = a+ wκjz

if j >= Jr : c+ savings = a+ pension

aprime = (1 + r)(1− riskyshare)savings+ (1 + u) riskyshare savings

0 ≤ riskyshare ≤ 1, savings ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

u ∼ N(rp, σ2
u)

where the only differences relate to the preferences. Here ϕ > 0 is a parameter that determines the amount of

’additional’ risk aversion (relative to the standard vonNeumann-Morgenstern risk preferences).

Implementing this in the codes is just a few lines which say that we want to use Epstein-Zin preferences (vfop-

tions.exoticpreferences=’EpsteinZin’;), that the utility function is negative valued (vfoptions.EZpositiveutility=0 ),

and then stating which parameter is the one relating to Epstein-Zin preferences (vfoptions.EZriskaversion=’phi’ ).

For more about Epstein-Zin preferences see the Appendix C.1.

When using Epstein-Zin preferences conditional surivival probabilities have to be treated specially. We there-

fore have to specify the name of the parameter,

vfoptions.survivalprobability=’sj’

and we also remove sj from the discount factors (which is how we treated conditional survival probabilities under

standard vonNeumann-Morgenstern risk preferences).

5.3 Life-Cycle model 33: Portfolio-Choice with Warm-Glow of Bequests

With Epstein-Zin preferences there is an important difference between the discount factor and the conditional

survival probability that we have to take into account when using Warm-Glow of Bequests. We add a Warm-Glow

of Bequests to Life-Cycle model 32 and show how to ensure that this is handled correctly in the presence of

Epstein-Zin preferences.
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Our household problem is,

V (a, z, j) = max
c,savings,riskyshare

c1−σ

1− σ
− βE[−sjV (aprime, zprime, j + 1)1+ϕ − (1− sj)W (aprime)|z]

1
1+ϕ

if j < Jr : c+ savings = a+ wκjz

if j >= Jr : c+ savings = a+ pension

aprime = (1 + r)(1− riskyshare)savings+ (1 + u) riskyshare savings

0 ≤ riskyshare ≤ 1, savings ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

u ∼ N(rp, σ2
u)

where W (aprime) is the warm-glow of bequest function.

The question is then just what we want to use as the warm-glow of bequest function. The most obvious choice

is the utility function, and thus we get,

vfoptions.WarmGlowBequestsFn= wg ∗ aprime1−σ

1−σ

Notice that this is utility function in terms of aprime, but also has a parameter wg multiplying it that we can

use to control the strength of the bequest motive. Any alternative function could be used for the warm-glow of

bequests, which has as inputs the next period endogenous state (aprime) and any parameters.

Because we already had so specify the conditional surivival probabilities when using Epstein-Zin preferences

this warm-glow of bequest function is simply evaluated whenever there is a non-zero risk of death (when the

conditional surivival probability is less than one).

5.4 Life-Cycle model 34: Portfolio-Choice with Endogenous Labor Supply

We will now add endogenous labor supply to Life-Cycle model 33. This just involves adding a decision variable.

Our household problem is,

V (a, z, j) = max
c,savings,riskyshare,h

c1−σ

1− σ
+ ψ

(1− h)1+η

1 + η
− βE[−sjV (aprime, zprime, j + 1)1+ϕ − (1− sj)W (aprime)|z]

1
1+ϕ

if j < Jr : c+ savings = a+ wκjzh

if j >= Jr : c+ savings = a+ pension

aprime = (1 + r)(1− riskyshare)savings+ (1 + u) riskyshare savings

0 ≤ riskyshare ≤ 1, savings ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

u ∼ N(rp, σ2
u)
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where W (aprime) is the warm-glow of bequest function.

Note that if we were using Epstein-Zin preferences in consumption-units we would not be able to have a utility

function, as here, which is seperable in consumption and leisure. With Epstein-Zin preferences in utility-units this

is not a problem.

5.5 Life-Cycle model 35: Portfolio-Choice with Housing

We will now add housing to Life-Cycle model 32. This involves adding a standard endogenous state alongside our

’riskyasset’ state. We will make housing take six values, the smalllest of which is zero and represents not owning

a house.

Households get utility from consumption, c and housing services s. Homeowners get housing services as a

fraction of their house value/size, renters get housing services equal to half the housing services of owning the

smallest house size and have to pay rent. When households buy/sell a house there are housing transaction costs,

htc. Previously we imposed that savings ≥ 0 (implicitly via the grid on savings), now we allow borrowing up

to a fraction, f coll, of the house value (using the house as collateral); when borrowing the borrowed assets are

restricted to be safe assets (a mortgage).

Our household problem is,

V (h, a, z, j) = max
c,savings,riskyshare,hprime

(c1−σhsσh)1−σ

1− σ
− βE[−sjV (hprime, aprime, zprime, j + 1)1+ϕ|z]

1
1+ϕ

if j < Jr : c+ savings = a+ wκjz + (h− hprime)− rentalcosts− htc

if j >= Jr : c+ savings = a+ pension+ (h− hprime)− rentalcosts− htc

if h > 0 : s = housingservices ∗ h, rentalcosts = 0

if h = 0 : s = 0.5 ∗ housingservices ∗minhouse rentalcosts = rentalprice

if hprime = h : htc = 0

if hprime ̸= h : htc = f htc(h+ hprime)

aprime = (1 + r)(1− riskyshare)savings+ (1 + u) riskyshare savings

0 ≤ riskyshare ≤ 1

savings ≥ −f coll ∗ hprime

if savings < 0 : riskyshare = 0

if j >= Jr : savings ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

u ∼ N(rp, σ2
u)

Notice that utility is now based on c1−σhsσh , which is an aggregate of consumption and housing services s.
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minhouse is the smallest (non-zero) house size/value.

There is also a totally arbitrary restriction that assets (savings) have to be greater than zero during retirement.

Not a lot of thought has been put into the constraints of this model, they are rather arbitrary and intended as an

illustration.

Because of how the toolkit works, the riskyasset must be the ’last’ (here second) endogenous state.

6 Behavioural Life-Cycle Models

We now turn to various behavioural models. We look at behavioural models for modelling the concepts of

impatience (Quasi-Hyperbolic Discounting), loss-aversion (Prospect Theory), temptation and self-control (Gul-

Pesendorfer Preferences), unknown unknowns (Ambiguity Aversion). We also already saw Epstein-Zin preferences

in Life-Cycle Model 12, which seperate risk aversion from the intertemporal elasticity of substitution. Most of

these are based off of Life-Cycle Model 10 (exogenous labor and an idiosyncratic markov shock; here without

warm-glow of bequests53), and modify it for a variety of behavioural aspects (the exception is Ambiguity Averion

which is based off of Life-Cycle Model 21). For impatience and tempation we also have a ’Model B’, which has

endogenous labor and is based off of Life-Cycle Model 9 (except without warm-glow of bequests).

6.1 Life-Cycle model 36: Impatience (Quasi-Hyperbolic Discounting)

Quasi-Hyperbolic discounting is a way to model ’impatience’. Impatient households are those that take decisions

today, which put little weight on the future, and which their future-self would not like. Every model until now

has used ’exponential discounting’, with every future period discounted by factor β. The idea of quasi-hyperbolic

discounting is that while you still use β to discount between any two future periods, you use an additional discount

factor β0 to discount between the current period and next period; so you take decisions today that put little weight

on the future.

There are two types of quasi-hyperbolic discounting, called sophisticated and naive, based on whether are

sophisticated and recognise that your future-self will suffer the same impatience problems as you do, or whether

you are naive and simply (incorrectly) assume your future-self will not suffer from the same impatience, respectively.

We will use Life-Cycle Model 10, and simply change to quasi-hyperbolic discounting. This is easy to code as we

essentially just tell vfoptions to use quasi-hyperbolic discounting and add the ’additional’ discount factor. Near

the start of the codes we choose which of naive and sophisticated quasi-hyperbolic discounting to use. Notice that

quasi-hyperbolic discounting affects how the household makes decisions are therefore needs to be in vfoptions,

but it is irrelavant once the policy function is known, and therefore is not in simoptions.

We start with the naive quasi-hyperbolic discounting problem. Notice first that the naive quasi-hyperbolic

53We would have to be careful about how the warm-glow of bequests might interact with the various behavioural aspects
being modelled here, so I just remove it for simplicity.
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discounter (naively) believes their future self will act like an exponential discounter. So we first define the ’con-

tinuation value function’ which is just the exponential discounting value function,

V (a, z, j) = max
c,aprime

c1−σ

1− σ
+ sjβE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjz

if j >= Jr : c+ aprime = (1 + r)a+ pension

aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

we can then define the naive quasi-hyperbolic discounters value function, which we denote Ṽ in terms of this,

Ṽ (a, z, j) = max
c,aprime

c1−σ

1− σ
+ sjβ0βE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjz

if j >= Jr : c+ aprime = (1 + r)a+ pension

aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

There are a few things worth noting. That on the right-hand side we have the ’continuation’ next period value

function V , while on the left we have the naive quasi-hyperbolic discounters value function Ṽ . That the discount

factor is β0β, as we are applying the additional discount factor β0 that captures quasi-hyperbolic discounting.54

Now we can think about the sophisticated quasi-hyperbolic discounter. Again we will need to define a ’con-

tinuation’ value function, but now it is more complex as the sophisticated quasi-hyperbolic discounter knows that

their future self will follow the policy function of a sophisticated quasi-hyperbolic discounter, but discount between

future periods based on the exponential discount factor (see document linked below for explantion). We will go

the reverse order, first defining the value function of the sophisticated quasi-hyperbolic discounter, V̂ ,

V̂ (a, z, j) = max
ĉ,âprime,

ĉ1−σ

1− σ
+ sjβ0βE[V(âprime, zprime, j + 1)|z]

if j < Jr : ĉ+ âprime = (1 + r)a+ wκjz

if j >= Jr : ĉ+ âprime = (1 + r)a+ pension

âprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

notice that I have denoted the policy variables with hats, ĉ, âprime. Note that we have the additional discount

54I also apply β0 to discounting the warm-glow.
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factor β0. The continuation value function is now V which is the policies of the sophisticated quasi-hyperbolic

discounter but evaluated with the exponential discount factor, and is given by

V(k, z, j) =
ĉ1−σ

1− σ
+ sjβ0βE[V(âprime, zprime, j + 1)|z]

where in a slight abuse of notation I am now using ĉ, âprime to signify the optimal policies (the argmax) from the

value function problem of the sophisticated quasi-hyperbolic discounter.

Quasi-hyperbolic preferences are explained in Appendix C.2

6.1.1 Life-Cycle model 36B: Quasi-Hyperbolic Discounting with Endogenous Labor Sup-

ply

Adds Quasi-Hyperbolic discounting to Life-Cycle Model 9 (except without warm-glow of bequests).

So for a naive quasi-hyperbolic discounter the continutation value solves,

V (a, z, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ sjβE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjzh

if j >= Jr : c+ aprime = (1 + r)a+ pension

aprime ≥ 0, 0 ≤ h ≤ 1

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

and we can then define the naive quasi-hyperbolic discounters value function, which we denote Ṽ in terms of this,

Ṽ (a, z, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ sjβ0βE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjzh

if j >= Jr : c+ aprime = (1 + r)a+ pension

aprime ≥ 0, 0 ≤ h ≤ 1

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)
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For a sophisticated quasi-hyperbolic discounter the value function is given by,

V̂ (a, z, j) = max
ĉ,âprime,ĥ

ĉ1−σ

1− σ
− ψ

ĥ1+η

1 + η
+ sjβ0βE[V(âprime, zprime, j + 1)|z]

if j < Jr : ĉ+ âprime = (1 + r)a+ wκjzh

if j >= Jr : ĉ+ âprime = (1 + r)a+ pension

âprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

notice that I have denoted the policy variables with hats, ĉ, âprime, ĥ. The continuation value function is now V

which is the policies of the sophisticated quasi-hyperbolic discounter but evaluated with the exponential discount

factor, and is given by

V(k, z, j) =
ĉ1−σ

1− σ
− ψ

ĥ1+η

1 + η
+ sjβE[V(âprime, zprime, j + 1)|z]

6.2 Life-Cycle model 37: Temptation and Self-Control (Gul-Pesendorfer Prefer-

ences)

Under standard preferences, more options is always better. Temptation is the idea that having more options can

make you worse off, and self-control captures that you can resist that temptation at a cost. We

We will use Life-Cycle Model 10, and simply change to temptation and self-control (Gul-Pesendorfer) prefer-

ences.

V (a, z, j) = max
c,aprime

c1−σ

1− σ
+ v(c)−max ĉv(ĉ)

+sjβE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjz

if j >= Jr : c+ aprime = (1 + r)a+ pension

aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

where v(c) is the ’temptation function’. Notice that we add v(c) based on the same choices as for the value

function, and at the same time we subtract the max ĉv(ĉ) (note ĉ, which is entirely independent of c). The

interpretation is that the −max ĉv(ĉ) is the cost of the temptation coming from the most tempting alternative,

and so max ĉv(ĉ)− v(c) is the cost of resisting the temptation.

Implementing this in the codes is just a matter of saying that you are using Gul-Pesendorfer preferences,

vfoptions.exoticpreferences=’GulPesendorfer’, and then defining the temptation function v(c) in the same manner
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as you would define the return function using vfoptions.temptationFn. Note that the return function here remains

just the c1−σ

1−σ (it does not include v(c)).

We set the temptation function to be much the same as the return function, namely v(c) = scaletempt ∗
c1−σtempt

1−σtempt . You could use any function here, it is just easy to use the same as an example.

For an explanation of how Gul-Pesendorfer preferences conceive of and implement temptation and self-control,

see Appendix C.3.

6.2.1 Life-Cycle model 37B: Gul-Pesendorfer Preferences with Endogenous Labor

Adds Gul-Pesendorfer preferences to Life-Cycle Model 9 (except without warm-glow of bequests). Assumes that

temptation is in consumption (and not in leisure).

V (a, z, j) = max
hc,aprime

c1−σ

1− σ
− ψ

h1+η

1 + η
+ v(c)−max ĉv(ĉ)

+sjβE[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjzh

if j >= Jr : c+ aprime = (1 + r)a+ pension

aprime ≥ 0, 0 ≤ h ≤ 1

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

6.3 Life-Cycle model 38: Loss Aversion (Prospect Theory)

Prospect Theory is a way to model loss aversion. With standard preferences people like gains, and dislike losses.

Loss aversion is that people dislike losses more than they like gains. Losses and gains are defined relative to a

’reference point’, and in our model the reference point is the lag of consumption. There are two keys to setting

up loss-aversion: setting up the reference point as a ’residual asset’, and using a specific return function so that

there is loss-aversion relative to the reference point.

First, we need to add the lag of consumption as an endogenous state, but it is a ’residual asset’ in the sense

that once we choose our other decisions and next-period endogenous states we have already residually determined

next period consumption lag (which is of course just this period consumption). The codes take advantage of

setting it up as a residual asset.

Second, for to implementing prospect theory we need a period-utility which incorporates the loss-aversion

relative to the reference point. We use the period-utility U(c, clag). This is built around the CES utility function

u(c) = c1−σ

1−σ . We define ∆ = u(c)−u(clag), so ∆ ≥ 0 is a gain, and ∆ < 0 is a loss.55 We then define period-utility

as U(c, clag) = θu(c)+ (1− θ)v(u(c)−u(clag), where v() implements the loss-aversion as v(∆) = (1− exp−µ∆)/µ

55It is important here that u(c) is strictly monotone in c.
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for ∆ ≥ 0, and v(∆) = −λ(1 − exp (υ/λ)∆)/υ for ∆ < 0. The parameter θ is the (inverse of the) importance of

the loss aversion, relative to the standard utility. µ controls how quickly the sensitivity of gains decreases at the

margin with larger gains (similarly for υ and losses). λ indexes the degree of loss aversion, effectively determining

the importance of losses relative to gains.

V (a, clag, z, j) = max
c,aprime

U(c, clag) + sjβE[V (aprime, c, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjz

if j >= Jr : c+ aprime = (1 + r)a+ pension

aprime ≥ 0

log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z)

note that c is equal to c′lag, hence why it appears in next-period value function.

Implementing this in the codes we need this second endogenous state, clag, but fortunately it is a ’residual asset’.

We therefore set vfoptions.residualasset=1 and simoptions.residualasset=1. The return function and functions to

evaluate take as inputs (d, aprime, a, r, z, ...) (omit d if there isn’t one). We also need to set up rprimeFn, see the

codes for how this works, but the generate concept is that it should output the next period value of the residual

asset, and that it takes as inputs (d, aprime, a, z, ...) (note, it does not depend on it’s own present value).

Note that from the perspective of the toolkit, loss-aversion is really just a specific setup for the return function

(specically the utility function). Hence why we do not need to tell the toolkit that we are using prospect theory to

implement the loss-aversion. We did need to use a residual asset to implement the reference point (that determines

what is a loss/gain), but mathematically we could define the reference point however we like (obviously we want

something economically reasonable); residual assets are not specific to prospect theory and can be used for various

other purposes.

6.4 Life-Cycle model 39: Ambiguity Aversion

Risk is ’known unknowns’, we know all the possible future states and assign a probability to each of them.

Ambiguity aims to capture the idea of ’unknown unknowns’, we still know all the possible future states, but we

cannot assign a specific probability to each of them.

In practice, ambiguity is modelled as ’multiple priors’. Each prior assigns (different) specific probabilities to

each possible future state, and we then behave based on the ’worst case’ (minimum) across our multiple priors.

Notice that ambiguity aversion is solely about the way we form expectations about the future, the way the present

is handled is unchanged.

We will introduce ambiguity aversion to life-cycle model 21. The reason for this choice is that this model has
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a markov shock which is an earnings shock during working age, and then a medical shock during retirement. We

will set it up so that the earnings shock is a risk, while the medical shock is an ambiguity. The trick is that risk is

just one prior, and we can implement this by simply having all the multiple priors be identical. We set the number

of priors for the ambiguity to three (vfoptions.n ambiguity=3), and these priors differ for the medical shock so

that is an ambiguity, but all three priors are identical for the earnings shock so that is a risk (we then show how

you can refine this by setting an age-dependent vector for vfoptions.n ambiguity which speeds the computation).

Our household problem is thus,

V (a, z, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβ min
π(z)∈P

Eπ(z)[V (aprime, zprime, j + 1)|z]

if j < Jr : c+ aprime = (1 + r)a+ wκjzh

if j >= Jr : c+ aprime = (1 + r)a− z + pension

0 ≤ h ≤ 1, aprime ≥ 0

zprime = πz(z), is a two-state markov

Observe how our expecations are now based on the minimum across the multiple priors minπ(z)∈P E
π(z)[V (aprime, zprime, j+

1)|z], where P is the set of multiple priors (in practice, different transition matrices for z). Eπ(z) denotes the

expectation taken using the prior (transition matrix) π(z). Note that during working age (j < Jr) z is an

employment/unemployment shock, while in retirement z is a medical shock (at all ages it can take two values).

Implementing this in the codes we first need to say that we are using ambiguity aversion by setting vfop-

tions.exoticprefererences=’AmbiguityAversion’. Then define the number of multiple priors as vfoptions.n ambiguity.

Lastly define the (different) transition matrices for each of the multiple priors in vfoptions.ambiguity pi z (or vfop-

tions.ambiguity pi z J if they depend on age). Note that you still need to define the ’true’ process for z in the

standard manner (it is not used for the value function, but is used for simulation), and it is required by the codes

that all of the multiple priors use the same grid as the true process.

For an explanation of how Ambiguity Aversion works, see Appendix C.4.

7 What Next?

If you want to learn to solve more complex life-cycle models you will need to learn how to code them yourself, and

the numerical methods used to do so. There are a lot of materials online,56 and a fast method like endogenous grid

points for solving the value function problem is probably a good place to start. If you just want to use one asset

life-cycle models then the VFI Toolkit is good enough for almost everything, with sole exception of ’simulated

56Check https://github.com/KennethJudd/CompEcon2020 for the underlying theory on computation, there are no end
of more applied resources and where you should look depends heavily on what kind of problem you want to solve.
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likelihood estimation’ of the models (typically from panel data).57

If you are interested in building Macroeconomic models then OLG models are the next obvious step. In

life-cycle models we just have individual households. An OLG model combines the life-cycle model of a household

with general equilibrium to create a model of the entire economy. Take a look at: An Introduction to OLG models.

If you have any questions about the material, or spot a typo in the codes, or would just like to ask a clarifying

question, etc., please use the forum: discourse.vfitoolkit.com

57Simulated likelihood estimation requires solving the model a lot of times, say 1 million times. If you take the run time
for the codes here and multiply them by 1 million you will see how long that would take.
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A Alternative exogenous shock processes

These are a variety of life-cycle models that modify Life-Cycle Models 9 and 10 to illustrate a variety of alternative

kinds of exogenous shocks that you could use. The first five have a single exogenous state, and so modify Life-Cycle

Model 9. The models A6 and A7 both use two exogenous shocks that interact, and so modify Life-Cycle Model

10.

A.1 Life-Cycle Model A1: AR(1) persistent shocks, alternative quadrature methods

We revisit Life-Cycle Model 9, which has AR(1) shocks that we discretized using the Farmer-Toda method (Farmer

and Toda, 2017). Methods of discretizing shocks are known as ’quadrature methods’.58 The Farmer-Toda quadra-

ture method is just one approach to turning AR(1) processes into a discrete markov process (a grid and a transi-

tion matrix). In Life-Cycle Model A1 we show how to implement three alternatives: Rouwenhorst, Tauchen, and

Tauchen-Hussey.59 These alternatives have been widely used in the past, but the Farmer-Toda method performs

better so I recommend you always use it, except when the autocorrelation coefficient of your AR(1) is ≥ 0.99 in

which case Rouwenhorst method is recommended.60

Since there is no change in the model itself we will not repeat it here, see Life-Cycle Model 9. As a matter of

good practice I recommend always checking that your results are not overly sensitive to your discretization (e.g.,

if you use 5 grid points, makes sure changing to 7 does not massively impact your results), you should also always

describe in your paper which method you use to discretize shocks (so that other people can understand what you

did; put it in the appendix, but it should be there somewhere).

A.2 Life-Cycle Model A2: AR(1) persistent shocks with gaussian-mixture innova-

tions

The only change we make from Life-Cycle Model 9 is that instead of z being a AR(1) with iid normal innovations,

it is an AR(1) with non-gaussian innovations. Specifically we model z as an AR(1) with ’gaussian mixture

shocks’. You can approximate real-valued functions using polynomials, similarly you can approximate probability

distributions with a ’mixture’ of normal distributions. So an AR(1) with gaussian mixture shocks is a way of

modeling an AR(1) with complicated non-gaussian shocks, which are approximated with gaussian mixture shocks.

58There are two general numerical methods to solve integrals (which we need to calculate expectations) using computers.
The one we use is called ’quadrature’, which involves evaluating the integral at a number of points (in our case the integrals
are stochastic, so it is a number of grids points for the shock). The second is known as Monte Carlo integration and is never
used for life-cycle models (you can find it being used for an economic model in Pál and Stachurski (2013), but quadrature
is better for anything except high-dimensional shocks). There are essentially two aspects to discretizing AR(1) models to
a markov process, the quadrature step of choosing grids, and a second step of choosing the transition matrix probabilities.
Some quadrature methods treat these as seperate steps, like Farmer-Toda and Tauchen, while others treat them jointly,
like Tauchen-Hussey and Rouwenhorst.

59Rouwenhorst (1995), Tauchen (1986) and Tauchen and Hussey (1991); see also Kopecky and Suen (2010) about the
accuracy of Rouwenhorst being better for highly-persisent AR(1) processes.

60The basis for this recommendation are the results reported in Farmer and Toda (2017).
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We will use the method of Farmer and Toda (2017) to discretize it as a markov process. The rest of the model

is unchanged so we do not report the whole model here. Instead we just report the equations for the AR(1) with

gaussian mixture shocks.

A general AR(1) with non-gaussian shocks is given by,

xt = (1− ρ)c+ ρxt−1 + ϵt, ϵt ∼ F

where the innovations ϵt are i.i.d. and their distribution is given by F .

An AR(1) with ’gaussian mixture shocks’ is exactly the same just with the addition that F is a gaussian

mixture. We can have a gaussian mixture of n different normal distributions, but we will start with an example

with a mixture of two normal distributions to get the idea. We have two normal distributions, N(µ1, σ
2
1), and

N(µ2, σ
2
2), a guassian mixture has probability p1 of being drawn from the first of these, and probability p2 of being

drawn from the second (obviously p1 + p2 = 1, so that the total probability is one). So we can write a guassian

mixture of two normal (gaussian) distributions as, F = p1N(µ1, σ
2
1)+ p2N(µ2, σ

2
2). A general gaussian mixture of

n normal distributions can be written as

F =

n∑
i=1

piN(µi, σ
2
i )

You can estimate a gaussian mixture by standard methods like maximum likelihood or moment matching.

Notice that in the code to implement this we are going to have to provide the vector of {pi}ni=1, the vector of

{µi}ni=1 and the vector of {σi}ni=1. The way the code works it will also require the ’unconditional mean’, which is

c in the above formula.61

We model F as a gaussian mixture. A gaussian mixture is flexible, so it can model a complicated F , yet

analytically tractable, as all moments and the moment generating function have closed-form expressions. To give

some intuition on why gaussian mixtures are useful, try to visualize the following 0.5N(2, 0.5) + 0.5N(0, 0.02), it

will have a ’usual’ normal distribution around 2, but also a sharp spike around 0, giving us a distribution with

two peaks. To understand why they are convenient computationally the key is that the normal distributions

is completely defined by just it’s first two moments, the mean and variance; all the higher moments are just

combinations of these. So when we add normal distributions together in a gaussian mixture everything just

becomes weighted sums of these first two moments of each of the normal distributions we are mixing together.

We use the Farmer-Toda method to discretize the AR(1) with gaussian mixture shocks. The Rouwenhorst

and Tauchen-Hussey methods cannot possibly discretize this process as they are designed around just the first

two moments. It is possible to extend the Tauchen method to AR(1) with gaussian mixture shocks, see Civales,

Diez-Catalan, and Fazilet (2017).

61The code can actually discretize an AR(p) with gaussian mixture shocks, (xt − c) = ρ1(xt−1 − c) + ...+ ρp(xt−p − c) +
ϵt, ϵt ∼ F , and F is a gaussian mixture, F =

∑n
i=1 piN(µi, σ

2
i ). It was originally written by Farmer and Toda (2017),

please cite them if you use it.
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A.3 Life-Cycle Model A3: Permanent (unit-root/random-walk) shocks

The only change we make from Life-Cycle Model 9 is that instead of z being a AR(1) with iid normal innovations,

we instead have z follow a random-walk. We won’t rewrite the value function problem itself, we just need to

change the AR(1) process, log(zprime) = ρzlog(z) + ϵ, ϵ ∼ N(0, σ2
ϵ,z), to instead be a (bounded) random walk

process, zprime = z+ ϵz. Modelling permanent states typically requires more states for z to remain accurate and

we use 101, specifically z grid = linspace(0.2, 2, 101)′ (101 points equally spaced from 0.2 to 2, inclusive). We just

need to set the transition matrix πz to be a (bounded) random walk. We will choose ϵz to be have a probability

of 0.5 of staying at the current value of z, a probability of 0.25 of going one grid point lower, and a probability of

0.25 of going one grid point higher. At the minimum grid point we will have a probability of 0.5 of staying, and

a probability of 0.5 of going one point higher. At the maximum grid point we will have a probability of 0.5 of

staying, and a probability of 0.5 of goind one point lower. Notice that this is a random walk, as E[zprime|z] = z,

everywhere except at the maximum and minimum values, hence it acts as a random walk, except when it runs

into the bounds.

The only things we need to change in the code are n z, z grid, and pi z.

A.3.1 Special case: Permanent shocks with exogenous labor

There is a very nice way to implement permanent random walk shocks in models with exogenous labor that means

way fewer grid points are required than if we just took the same naive approach as we did to add permanent shocks

with endogenous labor in Life-Cycle Model A3. The key is in how the permanent shock enters the budget constraint.

We can use a functional form for the shocks in the budget constraint that allows us to simply renormalize the

model endogenous states in terms of the innovations in the permanent shock variable. We therefore only need a

grid on z of the innovations, rather than the actual values of the permanent shock itself; e.g., for yt = yt−1 + ϵt

we would just need a grid on innovations ϵ, rather than a grid on y, and so we can get much higher accuracy from

any given grid size.

Implementing this requires a substantial change to the model (no pensions, no labor productivity units as a

deterministic function of age, etc.) so we will not attempt to explain the model here, you can find the full model

both as a readable code and implementing codes at: discourse.vfitoolkit.com/t/permanent-shocks-to-income/127

The method and model are explained in full detail in Carroll (2021).

Note, the way we have written the code it would be trivial to make the innovations ϵt follow an AR(1) process.

Note, this also shows you how to implement shocks to the discount factor, which are standard in models of

the zero-lower bound as the way to generate the zero-lower bound (you would need to wrap the life-cycle model

in a general equilibrium setting to look at this).

64

http://discourse.vfitoolkit.com/t/permanent-shocks-to-income/127


A.4 Life-Cycle Model A4: Second-Order Markov Processes (implementing an AR(2)

persistent shock)

The VFI Toolkit can only handle first-order Markov processes, which are typically just referred to as markov

processes. But fortunately you can rewrite any second-order Markov process with one state as a first-order Markov

process with two states (the original state and the lag of that state). Using second-order Markovs processes is rare

in economic models, but let’s see how.

Before explaing how to convert the second-order Markov processes into a first-order Markov process we explain

the details of how to change a Markov process with two variables into a single (vector valued) variable Markov

process. We have already done this in the Life-Cycle Models that contain two exogenous shocks (such as Life-Cycle

Model 11), but it will help to see it formally.

How to turn a Markov process with two variables into a single variable Markov process:

Say you have a Markov process with two variables, z & y, we can treat them as a single vector-valued markov

process x = (z, y). Let z take the states z1, ...zn, and y take the states y1, ..., ym. We start with the simple example

of how to combine the two when their transitions are completely independent of each other so as to illustrate the

concepts and then treat the general case.

When z and y are independent Markov processs, Pr(zt+1 = zj) = Pr(zt+1 = zi|zt = zj) = πzij ∀i, j = 1, ...n

and Pr(yt+1 = yj) = Pr(yt+1 = yi|yt = yj) = πyij ∀i, j = 1, ...m, then we can define a new single-variable

Markov process x simply by taking the Kronecker Product of z and y. Thus, x will have n times m states,

[x1, .., xnm]′ = [z1, ...zn]
′ ⊗ [y1, ...ym]′, and it’s transition matrix will be the Kronecker Product of their transition

matrices; Πx = Πz ⊗ Πy. For the definition of the Kronecker product of two matrices see wikipedia. Note that

in the codes you only need to combine the transition matrices to create the joint transition matrix; you simply

include the grids as a ’stacked’ column vector and the rest is done internally by VFI Toolkit.

Note that we can let z and y depend on each other (as in the case that z and y form a bivariate VAR(1),

treated in Life-Cycle Model A7), although obviously the transition matrix becomes more complex. Another case

of potential interest is when one of z and y is ’microeconomic’ and the other is ’macroeconomic’, which we capture

by allowing the microeconomic to depend on the macroeconomic, but not vice-versa. Thus we assume, without

loss of generality, that zt is the microeconomic variable and evolves according to the transformation matrix defined

by Pr(zt|zt−1, yt, yt−1), while yt has the transformation matrix Pr(yt) = Pr(yt|yt−1)
62. The transition matrix

however is now more complicated; rather than provide a general formula you are referred to the example in

Life-Cycle Model A8.

If you have three or more variables in vector of the first-order Markov process you can reduce this to a scalar

first-order Markov process simply by iteratively combining pairs. For example with three variables, (z1, z2, z3),

start by first defining x1 as the combination of z1 & z2 (combining them as described above), and then x as the

62Note that here I switch from describing Markov processs as t+ 1|t to t|t− 1, the difference is purely cosmetic.
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combination of x1 and z3.

How to turn a second-order Markov process into a first-order Markov process:

Suppose that z, with states z1, ...zn is a second-order Markov process, that is Pr(zt+1 = zi) = Pr(zt+1 = zi|zt =

zj , zt−1 = zk) ̸= Pr(zt+1 = zi|zt = zj). Consider now the vector (zt+1, zt). It turns out that this vector is in

fact a vector first-order Markov process (define this periods state (zt+1, zt) in terms of last periods state (zt, zt−1)

by defining this periods zt+1 as a function of last periods zt & zt−1 following the original second-order Markov

process, and define this periods zt as being last periods zt). Now we have a ’vector-valued’ first-order Markov

process on the vector (zt, zt−1).

Obviously this idea can be trivially extended to turn, e.g., a third-order Markov process into a first-order

Markov process with three states.

Life-Cycle Model A4: idiosyncratic shock, AR(2) We will provide an example that takes Life-Cycle

Model 9 and makes the sole change of switching from an AR(1) process for the exogenous shock on (log) labor

productivity units z to instead being an AR(2) process.

zt = ρz,1zt−1 + ρz,2zt−2

We can use the Farmer-Toda method to discretize this, the command we use is actually for a more general

AR(p) process with gaussian mixture innovations, but we will just use an AR(2) with gaussian innovations (we

will have to code it as a ’mixture of one normal’).

The Farmer-Toda method creates a first-order Markov process on (zt, zt−1), which we will refer to in the codes

as (z1, z2). Note that while both z1 and z2 are exogenous state variables the return function will only actually use

the current value z1 (which represents zt); both have to be passed as inputs to the return function as they are both

states, but only one ends up being used in the return function (the other sill matters for things like expectations).

A.5 Life-Cycle Model A5: Age-dependent shocks

Empirical evidence shows that the (age-conditional) variance of income increases with age. One way to model

this is to have shocks that increase in varance as age increases. If the shocks were transitory the age-conditional

variance of consumption would not increase, because households would smooth consumption. So we also want

these shocks to be persistent (so they imply a change in permanent-income and thus the life-cycle consumption

hypothesis means consumption will also shift). How to model persistent shocks with a variance that increases with

age? We can model it as a ’non-stationary AR(1)’ process, and discretize this using the ’generalized-Rouwenhorst’

of Fella, Gallipoli, and Pan (2019). The model is exactly the same as that of Life-Cycle Model 9, except for

changes to the exogenous shock process z on labor productivity units. So we will only describe the new z process

here; see Life-Cycle Model 9 for the full model.
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The ’non-stationary AR(1)’ process for z is given by,

zj = ρjzj−1 + ϵj , ϵj ∼ N(0, σϵ,z,j)

notice the difference from a standard AR(1) because ρj and σϵ,z,j both depend on age. We assume that ρj < 1,

for all j = 1, 2, ..., J . Let, σz,j be the standard deviation of zj , then it follows that it evolves according to

σ2
z,j = ρ2jσ

2
z,j−1 + σ2

ϵ,z,j . A full definition requires us to additionally specify z0, which we do below.

Note that we enforce that the constant term is zero, so there is no ’drift’ in the ’non-stationary AR(1)’ process.

In the original paper (Fella, Gallipoli, and Pan, 2019) implementing the discretization also require one further

assumption, namely that z0 = 0 (it has probability 1 of equaling zero). In the codes this is the default setting,

but other initial distributions for z0 can be implemented using the ’options’ input.

The ’non-stationary AR(1)’ process provides an alternative to the permanent shocks we saw in Life-Cycle

Model A3. Which is better is an empirical question. Note that an extended Tauchen method also exists (it is in

VFI Toolkit, but not used in any of these examples).

A.6 Life-Cycle Model A6: Age-dependent shocks: persistent and transitory

NOT YET IMPLEMENTED

A.7 Life-Cycle Model A7: VAR(1) persistent shocks

In Life-Cycle Model 10 we used two idiosyncratic shocks, z1 and z2, modelling one as an AR(1) and the other

as i.i.d. Normal. It is possible to model two shocks as a VAR(1) and that is what we do here, discretizing them

using the Tauchen method for VAR(1). Since nothing changes in the model except the process on z1 and z2 we

will only describe that here.

Let z = [z1; z2], then we can write the bivariate VAR(1) as

zt = µ+ ρzzt−1 + ϵt, ϵt ∼ N(0,Σ)

where µ is a 2-by-1 vector, ρz is a 2-by-2 matrix, ϵt is a 2-by-1 vector, and Σ is a 2-by-2 variance-covariance matrix.

We could write the same bivariate VAR(1) as the system of equations,

z1,t = µ1 + ρz,1,1z1,t−1 + ρz,1,2z2,t−1 + ϵ1,t

z2,t = µ2 + ρz,2,1z1,t−1 + ρz,2,2z2,t−1 + ϵ2,t

[ϵ1,t, ϵ2,t]
′ ∼ N(0,Σ)

there relationship between the two being µ = [µ1;µ2] and ρz = [ρz,1,1, ρz,1,2; ρz,2,1, ρz,2,2].
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When using (our implementation of) the Tauchen method to discretize this VAR(1) we must also impose that

Σ is diagonal, Σ = [σ2
ϵ,z,1, 0; 0, σ

2
ϵ,z,2].

VAR(1) with three or more variables can be implemented in the obvious manner. For more details see the

discretization codes themselves.

In addition to the Tauchen method for discretizing VAR(1) there are also codes that implement the Farmer-

Toda method for discretizing VAR(1), but these create ’jointly dependent’ grids on z1 and z2 so cannot currently

be used by VFI Toolkit.63

A.8 Life-Cycle Model A8: Shocks that depend on each other: ’recession’ and ’un-

employment’

We will have two shocks each of which can take two values: z1 which is employment/unemployment, just as in Life-

Cycle Model 8, and z2 which is recession/expansion. The idea is that agents care about the microeconomics shocks

(which directly effect them), but they do not directly care about the macroeconomic shocks (that only effect them

indirectly). The macroeconomic shocks influence the microeconomic shocks (a recession makes unemployment

more likely) which we model as the transition probabilities of the microeconomic shocks depending on the state

of the macroeconomic shock.

So we will have two shocks, the macroeconomic shock z2 will have ’its own’ transition matrix, and then the

microeconomic shock z1 will have a transition probability that depends on z2, which we will define using the joint

transition probability matrix on z = (z1, z2).

This modelling technique originates with Imrohoroglu (1989) - ”Cost of business cycles with indivisibilities and

liquidity constraints” You can use ”rational inattention” to provide refinement of this concept so that households

do not react to the macroeconomic variables. See, Maćkowiak and Wiederholt (2015) - “Business Cycle Dynamics

under Rational Inattention.” Or as life-cycle model in Carroll, Crawley, Slacalek, Tokuoka, and White (2020) -

Sticky Expectations and Consumption Dynamics” (sticky expectations is a reduced-form way to model the concept

of rational inattention)

This is essentially an extension of life-cycle model 8, adding macroeconomic shock which will influence the

transition of the microeconomic unemployment shock, but is irrelevant to the household problem directly, it only

matters indirectly because of its influence on expectations of what the microeconomic shock will transition to in

the future.

63We have been using a grid for z1 and a grid for z2, and the get a grid on z = [z1, z2] by taking the kronecker product
(cross product) of the two grids (the obvious way to create a grid on the two dimensions from two single dimension grids;
this is all done internally by the codes so you won’t see it). Farmer-Toda create a jointly-dependent grid on z, which is not
the kronecker product of two seperate grids. Jointly-dependent grids are better, in principle, but require slightly different
code to handle them and VFI Toolkit does not currently handle this.
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The household value fn problem is,

V (a, z1, z2, j) = max
c,aprime,h

c1−σ

1− σ
− ψ

h1+η

1 + η
+ (1− sj)βI(j>=Jr+10)warmglow(aprime)

+sjβE[V (aprime, z1prime, z2prime, j + 1)|z1, z2]

if j < Jr : c+ aprime = (1 + r)a+ wκjz1h

if j >= Jr : c+ aprime = (1 + r)a+ pension

0 ≤ h ≤ 1, aprime ≥ 0

zprime = πz(z), is a four-state markov

which is similar to Life-Cycle Model 8, except for z2 as a state that influences expecations. Note that z has four

states (2 for z1 times 2 for z2).

We have to make a decision about peoples state in terms of the exogenous shock at birth, and we will arbitratily

have them be employed-recession.

A.9 Life-Cycle Model A9: Jointly-determined Grids for Correlated Shocks

When we have two shocks that are correlated it makes sense to use a jointly-determined grid, as opposed to a

kronecker grid (a.k.a. cross-product grid) as we have used until now. In a kronecker grid we choose, e.g., five

points for z1 and five points for z2, and our grid on (z1, z2) will be the cross-product (kronecker product) of these,

that is the 25 points we get from all combinations of the 5 points on z1 with the 5 points on z2. But when the

shocks are correlated this may not make much sense as a grid. Imagine that the two shocks have a strong positive

correlation. Then it is a waste to have a point on the grid which is a small value for z1 and a large value for z2,

as this will essentially never occur; a kronecker grid when the shocks are highly correlated will have many points

with essentially zero weight. We can avoid this problem by using a ’jointly-determined grid’, which in our present

example would involve 25 points on (z1, z2) chosen to reflect the correlation.

We will resolve Life-Cycle Model 11 (specifically 11A), with the only change being that the two shocks are

now both Markov and correlated. Since the only change is to the shocks themselves we will not repeat the model

itself here. The two shocks to idiosyncratic labor productivity units, z1 and z2, are assumed to follow a VAR(1),

z1t
z2t

 =

0.9 0.1

0.1 0.7

z1t−1

z2t−1

+ ϵtwhere ϵt ∼ N

0,

0.0303 0.0027

0.0027 0.0382


Note that this process does not contain large correlation between z1 and z2 so the advantages of a jointly-

determined grid rather than a kronecker grid will be minor (the higher the correlation the bigger the advantages

as the more points would be ’wasted’ by the kronecker grid). We discretize this process using the Farmer-Toda

method for VAR(1) processes which will always produce jointly-determined grids.
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In terms of solving the model there is essentially no change. The shape of ’z grid’ is now product(n z)-by-

length(n z) instead of the standard sum(n z)-by-1 (recall that n z is a row vector containing the number of grid

points for each z variable, e.g., n z=[5,5]). VFI Toolkit recognises this difference and automatically interprets it

as a jointly-determined grid and acts appropriately.

Obviously there is nothing stopping you from using jointly-determined grids when shocks are not correlated,

just that there is no advantage from doing so.
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B Miscellaneous

This appendix covers a variety of things.

B.1 Life-Cycle Model B1: More complicated FnstoEvaluate

We use Life-Cycle Model 9 to show how to handle more complicated functions to evaluate on the agent distribution,

say to get the aggregate value, or the life-cycle profiles. In all the examples so far it has been possible to write the

function to evaluate as a simple formula, such as,

FnsToEvaluate.earnings=@(h,aprime,a,z,e,w,kappa j) w*kappa j*h*z*e;

But for some functions we wish to evaluate it may not be possible to just write them as a one-line function.

The solution is simply to write a seperate script that contains the more complex function that we want to

evaluate and then simply use this as one of our FnsToEvaluate. Our example will be to calculate the consumption.

We can set up the FnsToEvaluate to simply call a script/function, as

FnsToEvaluate.consumption=@(h,aprime,a,z,w,agej,Jr,pension,r,kappa j) LifeCycleModelB1 ConsumptionFn(h,aprime,a,z,w,agej,Jr,pension,r,kappa j);

and then just create a seperate matlab function that calculates the consumption and outputs/returns this. Because

we have a script rather than a single line this can be any kind of complicated function.

LifeCycleModelB1 ConsumptionFn.m contains the calculation of consumption (in this case I simply created a

copy of the return function and then edited it down to just return consumption instead).

Essentially the only changes to the code from Life-Cycle model 9 are to add consumption to the FnsToEvaluate

(approx line 220), and modifying the graph shortly after this so that it includes consumption. We obviously also

have to create LifeCycleModelB1 ConsumptionFn.m.
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C Behavioural Preferences

This appendix provides more explanation both about how some of the non-standard life-cycle models work con-

ceptually, as well as about how they should be used in the codes.
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C.1 Epstein-Zin preferences

This appendix covers some details and options when using Epstein-Zin preferences. The main concepts are that

you can do Epstein-Zin in consumption units (here called ’traditional’) or in utility utils, and that the way in

which bequests are handled when using Epstein-Zin preferences has to be done with care.

The point of Epstein-Zin preferences is that under standard recursive vonNeumann-Morgenstern expected

utility there is just one parameter that is determining both the risk aversion and the elasticity of intertemporal

substitution, which are importantly distinct concepts. See section C.1.3 for an explanation of these concepts.

Using Epstein-Zin preferences with a utility function is as simple as setting vfoptions.exoticpreferences=’EpsteinZin’,

and specifying the name of the parameter that influences the risk aversion, vfoptions.EZriskaversion. Then saying

whether the utility function is positive valued (u ≥ 0) or negative valued (u < 0); negative valued is vfop-

tions.EZpositiveutility=0. Note that the interpretation of the risk aversion parameter depends on whether the

utility function is positive or negative valued.

When using Epstein-Zin preferences the conditional survival probabilities can no longer just be treated like

discount factors. You therefore need to specify them using vfoptions.survivalprobability.

If you plan to use warm-glow of bequests these have to be treated specially. This is explained in Appendix

C.1.5.

Notice that once you have solved the value function problem to get the optimal policy function everything else

about a heterogeneous agent model depends only on the optimal policy and so we don’t need to take account of

Epstein-Zin preferences for things like simulating the model. The exception is any kind of welfare evaluation.

There are two alternatives for how to set up Epstein-Zin preferences. Epstein-Zin in utility units, and the

traditional Epstein-Zin in consumption units.

C.1.1 Epstein-Zin with Utility function

We start with the utility function version. With standard recursive vonNeumann-Morgenstern expected utility we

have a value function problem,

V (a, z, j) = max
d,aprime

u(d, aprime, a, z) + βE[V (aprime, zprime, j + 1)|z]

with some constraints that I omit here as they are not relevant to the concepts around Epstein-Zin preferences.

Epstein-Zin preferences modify this to,

V (a, z, j) = max
d,aprime

u(d, aprime, a, z) + βE[V (aprime, zprime, j + 1)1−ϕ|z]
1

1−ϕ

where ϕ is any real number. Notice that this is the same as the standard case, except that the value function is

now ’twisted’ and ’untwisted’ by the coefficient 1− ϕ. When ϕ = 0 this just reduces to the standard case.
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This formulation works for u > 0. If instead u < 0, then we need to formulate the Epstein-Zin preferences

slightly differently as,

V (a, z, j) = max
d,aprime

u(d, aprime, a, z)− βE[−V (aprime, zprime, j + 1)1+ϕ|z]
1

1+ϕ

where again ϕ is any real number, and ϕ = 0 reduces to the standard case.64

A higher ϕ corresponds to a greater degree of risk aversion (ϕ > 0 means that the preferences are more risk

averse that vonNeumann-Morgenstern preferences would be).65

When using vfoptions.exoticpreferences=’EpsteinZin’ by default the codes assume vfoptions.EZutils=1, which

is that the Epstein-Zin preferences are in utility units. You do still need to specifty vfoptions.EZpositiveutility.

C.1.2 ’Traditional’ Epstein-Zin with consumption units

If you set vfoptions.EZutils=0 you get the ’traditional’ Epstein-Zin preferences used by Epstein and Zin (1989)

and many others. These measure the value function in terms of consumption streams rather than utils, and so are

also refered to as Epstein-Zin preferences in consumption units.

The ’traditional’ setup when using Epstein-Zin preferences in VFI Toolkit is to solve the value function problem,

V (a, z, j) = max
c,aprime

[
u1−1/ψ + β(E[V (aprime, zprime, j + 1)1−γ |z])

1−1/ψ
1−γ

] 1
1−1/ψ

with some constraints that I omit here as they are not relevant to the concepts around Epstein-Zin preferences.

The return function for a model with exogenous labor is just u = c. If we have endogenous labor it will be different,

namely c1−χ(1− h)χ.

In the traditional formulation of Epstein-Zin preferences we have γ which determines the risk aversion, and a

seperate parameter ψ which is the elasticity of intertemporal substitution.66 Epstein-Zin preferences imply that

the agents have preferences for early or later resolution of uncertainty. If γ > 1/ψ they prefer an early resolution

of uncertainty, and if γ < 1/ψ, they prefer a later resolution of uncertainty.

This formulation of Epstein-Zin preferences is known as Epstein-Zin in ’consumption units’ (as u = c). It is

probably the most common formulation. But it lacks one nice property, namely it does not really nest standard

vonNeumann-Morgenstern preferences with CRRA utility (u(c) = c1−γ

1−γ ) as it is missing the 1/(1 − γ).67 This is

64Because of how the codes work it is not possible to let u = 0. To fit with standard ways in which the return function is
used in VFI Toolkit in both cases you can also set the return function to −∞, for example to rule out certain possibilities.

65This is why we use 1−ϕ when u > 0 and 1+ϕ when u < 0. This way the interpretation of ϕ is the same in both cases.
66The original paper of Epstein and Zin (1989) uses ρ and α as the parameters. Relating to the present formulation,

ρ = 1 − 1/ψ and α = 1 − γ. The nicety of the formulation here is that ψ and γ relate directly to the elasticity of
intertemporal substitution and risk aversion, and that we need both parameters to be greater than zero (whereas the
original EZ parameters have to be less than one).

67The traditional EZ preferences do nest vonNeumann-Morgenstern preferences when ψ = 1/γ, but the resulting utility
function is an oddly written one. You instead get V = maxc{c1−γ + βE[V ′1−γ ]}1−γ , to see that this is CRRA imagine
starting in the last period, you get c1−γ and then put this to the inverse power, when you put it into the previous period
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why we also have the utility units formulation of Epstein-Zin preferences described previously.

If you want to use Epstein-Zin preferences with consumption units just set vfoptions.EZutils=0 and vfop-

tions.exoticpreferences=’EpsteinZin’. Then you need to specify the names of the risk aversion and elasticity of

intertemporal substition parameters, γ and ψ in the above equations, using vfoptions.EZriskaversion and vfop-

tions.EZeis.

Sometimes people want a (1 − β) term multiplying the period-return.68 You can do this by setting vfop-

tions.EZoneminusbeta=1, which will use the discount factor to add the appropriate term here.

C.1.3 Epstein-Zin preferences: risk aversion and elasticity of intertemporal substitution

In standard economic models agents expectations about the future are based on ’von-Neumann-Morgenstern’

expected utility. This involves two main aspects, preferences are time-seperable, and the future utilities matter

in terms of their expectation. An unintentional side-effect of this is that both risk aversion and the intertemporal

elasticity of consumption get determined by the same parameter. So for example in a standard two-period model

of consumption-savings decision the ’value’ in the first period is69

u(c1) + βE[u(c2)] (1)

or if we were to use the constant-elasticity-of-substitution (CES) utility function,

c1−γ1

1− γ
+ βE

[
c1−γ2

1− γ

]
(2)

where γ will determine both the risk aversion and the intertemporal elasticity of substitution. −cu′′(c)
u′(c) = γ is the

relative risk aversion (RRA), the CES utility function displays constant RRA, called CRRA.70 ln
(
u′(ct+1)
u′(ct)

)
= 1/γ

is intertemporal elasticity of substitution. Notice how just one parameter γ determines both the risk aversion and

the intertemporal elasticity of substitution.

(Traditional) Epstein-Zin preferences (Epstein and Zin, 1989) seperate the risk aversion from the intertemporal

elasticity of substitution, using a different parameter to determine each of these. In our simple two-period model

using Epstein-Zin preferences the ’value’ in the first period becomes

[
c
1−1/ψ
1 + β

(
E
[
(c

1−1/ψ
2 )1−γ

]
)

1−1/ψ
1−γ

] 1
1−1/ψ

value function you get the power back from the V ′1−γ . So this is CRRA, but the same value of γ is not going to deliver
the same preferences as if we put the CRRA utility into a standard value function with vonNeumann-Morgenstern risk
preferences.

68They want (1 − β)u1−1/ψ instead of u1−1/ψ. I am not sure why people do this, but I have seen it in papers. If you
know why please let me know and I will add explanation here.

69To keep the notation easier I will only describe the utility functions, and skip over the budget constraints and the like.
70Actually this is not really the correct way to measure risk-aversion in models with many time periods and/or many

goods, see Swanson (2012), and it becomes more subtle again when using Epstein-Zin preferences (Swanson, 2018).
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where now γ is the CRRA and ψ is the intertemporal elasticity of substitution. It is important to note that we

cannot write this in the form of von-Neumann-Morgenstern expected utility preferences as in (1). Except for the

case when 1/ψ = γ, in which case both play the role of γ in equation (2); note that with 1/ψ = γ the Epstein-Zin

preferences will be vNM preferences, but they do not just reduce to CES with vNM.

Epstein-Zin preferences with a utility function have a stardard setup in terms of the intertemporal elasticity

of substitution (which will depend on what utility function you use), and then makes risk aversion different to this

by increasing/reducing the amount of risk aversion using the parameter ϕ in the earlier formulation.

Both the utility units and the (traditional) consumption units formulations of Epstein-Zin preferences nest

von-Neumann Morgernstern as a special case. Specifically, if we use the utility units Epstein-Zin preferences

with ϕ = 0 then it simplifies to being a CES utility with von-Neumann Morgenstern. If we use the (traditional)

consumption units Epstein-Zin preferences with γ = 1/ϕ then we get the same preferences as a CES utility with

von-Neumann Morgernstern preferences, except that the units are consumption units instead of utils.71 This was

used to test the implemenations: that Epstein-Zin with utility units, Epstein-Zin with consumption units, and

CES utility with von-Neumann Morgenstern all give the same solution for the policy function (both for the case

of exogenous labor and for the case of endogenous labor); the codes for these six cases are here.

C.1.4 Conditional Survival Probabilities with Epstein-Zin preferences

Conditional survival probabilities are a risk, while the discount factor is about time-preference. Since Epstein-Zin

is about seperating risk from intertemporal substition unsurprisingly we now also need to treat conditional survival

probabilities differently from the discount factor. We simply specify name of the parameter for the conditional

survival probabilities using vfoptions.survivalprobability (e.g., vfoptions.survivalprobability=’sj’ ).

The conditional survival probabilities appear multiplying next period value function inside the expectation

operator. So for example in Epstein-Zin in utility units with positive-valued utility function it will be,

V (a, z, j) = max
d,aprime

u(d, aprime, a, z) + βE[sjV (aprime, zprime, j + 1)1−ϕ|z]
1

1−ϕ

for Epstein-Zin in utility units with negative-valued utility function it will be,

V (a, z, j) = max
d,aprime

u(d, aprime, a, z)− βE[−sjV (aprime, zprime, j + 1)1+ϕ|z]
1

1+ϕ

while for Epstein-Zin in consumption units it will be

V (a, z, j) = max
c,aprime

[
u1−1/ψ + β(E[sjV (aprime, zprime, j + 1)1−γ |z])

1−1/ψ
1−γ

] 1
1−1/ψ

71Utility is only unique up to an affine transformation (if you take any utility function, multiply by a positive constant,
and then add any constant, you just get the same preferences). So the consumption units give the same policy, but different
value function.
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Notice how in all three of these cases it is not possible to simply pull sj out of the expectation next to β (which

can be done with standard vonNeumann-Morgenstern risk preferences).

Using Epstein-Zin preferences instead of standard preferences has important advantages around the ’value of

life’ in life-cycle models (Cordoba and Ripoll, 2017). Note that if you are looking at the value of life, then if

death is associated with zero utility you clearly want to use a positive-valued utility function with the Epstein-Zin

preferences so that life is preferred to death.

Note, how exactly survival probabilities should be treated in Epstein-Zin preferences remains controversial. If

you do want the conditional surivival probability to be treated as just another discount factor, you can do this by

just not specifying vfoptions.survivalprobability, and instead including it in the DiscountFactorParamNames.

For this reason the codes also allow another possible formulation, suggested by Cordoba and Ripoll (2017),

which essentially uses Epstein-Zin twice, once for the uncertainty, and once for the conditional survival probabil-

ities, with a different parameter for each. Epstein-Zin in utility units with positive-valued utility function it will

be,

V (a, z, j) = max
d,aprime

u(d, aprime, a, z) +

β[sj

(
E[V (aprime, zprime, j + 1)1−ϕ|z]

1
1−ϕ

)1−ϕm
+ (1− sj)W (aprime)1−ϕm ]

1
1−ϕm

for Epstein-Zin in utility units with negative-valued utility function it will be,

V (a, z, j) = max
d,aprime

u(d, aprime, a, z)

−β[−sj(−1)
(
E[−V (aprime, zprime, j + 1)1+ϕ|z]

1
1+ϕ

)1+ϕm
− (1− sj)W (prime)1+ϕm ]

1
1+ϕm

while for Epstein-Zin in consumption units it will be

V (a, z, j) = max
c,aprime

[
u1−1/ψ +

β[sj
(
E[V (aprime, zprime, j + 1)1−γ |z]

1
1−γ

)1−γm
+ (1− sj)W (aprime)1−γm ]

1−1/ψ
1−γm

] 1
1−1/ψ

and this can be implemented by setting vfoptions.EZmortalityriskaversion to specify the name of the parameter

here denoted ϕm. W (aprime) is the utility on death (so is just the same as using the warm-glow of bequests

as explained in the next section); if you do not decare it then by default the codes will use W (aprime) = 0.

Importantly, people display a preference for early resolution of financial risk, and delayed resolution of survival

risk, and this formulation permits both of these to occur (under certain paramterizations).
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C.1.5 Bequests with Epstein-Zin preferences

Bequests with Epstein-Zin preferences are subtle, and so VFI Toolkit has been coded to deal with this for you.

Kraft, Munk, and Weiss (2022) show that if you naively use warm-glow of bequests in a model with Epstein-Zin

preferences then it just leads to garbage (the parameters are not related to the strength of the bequest motive).

The key to seeing why and how bequests have to be treated carefully in Epstein-Zin preferences is the expec-

tations term, βE[V (aprime, zprime, j + 1)α|z] 1
α , where I have made the powers a generic α and 1α so that it is

clearer that this covers both the utility-units and consumption-units cases. Notice that adding in bequests, which

occur next period, cannot simply be added after the end of this term, as they would be in standard von-Neumann

Morgenstern risk preferences. This is because the next period warm-glow is going to need to be raised to the power

of α, then added into next period expectation, and then all raised to 1/α. That is, the next period term will be

βE[sjV (aprime, zprime, j + 1)α + (1− sj)W (aprime)α|z] 1
α , where W (aprime) is the warm-glow of bequests.

Implementing this in the codes therefore requires to things, first we have to specify the conditional survival

probability, vfoptions.survivalprobability=’sj’, where ’sj’ is the name of a (likely age dependent) parameter stored in

the standard structure of parameters (called Params in most examples). Second, we need to specify the warm-glow

function W (aprime). We do this by setting up vfoptions.WarmGlowBequestsFn which depends on next-period

endogenous state (on aprime). This just leaves the question of what warm-glow function is appropriate? The key

is just to use the same function as our regular utility function. So if our utility of consumption is c1−σ

1−σ , then we use

the warm-glow of bequests function aprime1−σ

1−σ . We multiply this by a constant wg to determine the importance

of bequests. Hence our final warm-glow of bequest function is wg aprime
1−σ

1−σ .72 If by contrast we use Epstein-Zin

preferences in consumption-units with exogenous labor, then we had the return function being u = c, and so our

warm-glow of bequests function would be c/wg, where again wg is a constant that determines the strength of the

bequest motive (notice that once this is raised to 1− 1ψ, dividing by wg is moving us to the region of the utility

function where marginal utility of consumption is high, and changes fast).

wg controls the strength of the bequest motive, which is monotone in wg. Note that this is not the precise

specification of Kraft, Munk, and Weiss (2022) who wish to impose a precise interpretation on the parameter wg;

you can get their specification by setting vfoptions.WarmGlowBequestsFn appropriately.73 Note that while this is

72An alternative would be to use W (aprime) = (aprime/wg)1−σ

1−σ . This just changes the interpretation of wg and exactly
how it relates to bequests (in both cases the size of the bequest will be monotone in wg. This —different specifications
lead to subtly different interpretations of wg— is the focus of Kraft, Munk, and Weiss (2022) who have a very specific
interpretation in mind.

73To implement the Kraft, Munk, and Weiss (2022) specification set the warm-glow of bequest function when using

consumption units to wg
1

ψ−1 aprime. In the Kraft, Munk, and Weiss (2022) specification for the warm-glow of bequests, wg
(they denote it epsilon) can be interpreted as the target ratio of terminal wealth to terminal consumption (terminal as in end
of the final period J). This is precisely true in simple settings and an accurate approximation in more advanced settings. In
simple settings the ratio of bequest wealth to total lifetime consumption will equal (wg+ J)/J . This remains roughly true
but only as a mediocre approximation in more advanced settings. They also show that if you want to use a CES warm-glow of
bequests in a regular setting with CES preferences (no Epstein-Zin) then you should use warmglow = 1

1−γwg
1−γaprime1−γ

to get their precise interpretation of wg as measuring the relative weight on bequests (most papers would use wg instead
of wg1−γ).
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the warm-glow of bequest because it is ’next period’ you have to use Epstein-Zin to bring it into the final period

which is what the VFI Toolkit is doing when you use vfoptions.WarmGlowBequestsFn.

Note that because we specify the conditional survival probability seperately, you do not include it in Discount-

FactorParamNames (if you do it will just be used in the same way as β in the Epstein-Zin codes).

If you using the utility utils formulation of Epstein-Zin preferences with a positive utility function then the

warm-glow-of-bequests works like,

V (a, z, j) = max
d,aprime

u(d, aprime, a, z) + βE[sjV (aprime, zprime, j + 1)1−ϕ + (1− sj)W (aprime)1−ϕ|z]
1

1−ϕ

If instead u < 0, then warm-glow of bequests with Epstein-Zin preferences is,

V (a, z, j) = max
d,aprime

u(d, aprime, a, z)− βE[(−sjV (aprime, zprime, j + 1))1−ϕ − (1− sj)W (aprime)1−ϕ|z]
1

1−ϕ

If you have Epstein-Zin in consumption-units when using warm-glow-of-bequests the problem being solved is,

V (a, z, j) = max
c,aprime

[
u1−1/ψ + βE[sjV (aprime, zprime, j + 1)1−γ + (1− sj)W (aprime)1−γ |z]

1−1/ψ
1−γ

] 1
1−1/ψ

So with consumption-units and exogenous labor you want vfoptions.WarmGlowBequestsFn= wgaprime1−1/ψ, and

with consumption-units and endogenous labor you want vfoptions.WarmGlowBequestsFn= wg(aprime1−χ(1 −

h̄)χ)1−1/ψ, where h̄ is a constant that denotes the ’typical/reference’ hours worked (if no-one works in retirement,

you will way h̄ = 0).

Note that if you use a setup where aprime is uncertain, like using Case3 to solve portfolio-choice models,

then this just involves changing warmglowα to Eu[warmglow
α] in the general formulation at the beginning of

this section on bequests, and this is automatically done by the codes.

Summing up, using warm-glow-of-bequests in a life-cycle model with Epstein-Zin preferences is as simple as

correctly declaring vfoptions.WarmGlowBequestsFn.
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C.2 Quasi-Hyperbolic Discounting

Quasi-hyperbolic preferences are a tractable way to model ’impatience’, with the present-self taking decisions that

are not in the interest of their own future-self. The standard way to discount the future is exponential discounting,

which uses the same discount factor β between any two consecutive periods. Quasi-hyperbolic discounting involves

two discount factors, β0 which is used as the additional discount factor between the current period and the next

period, and β which is used as the discount factor between any two consecutive periods; so the discount factor

between the current period and the next period is β0β.
74 The concept of hyperbolic discounting has a long heritage,

and the tractable case of quasi-hyperbolic was popularised (not introduced) in Laibson (1997). Let’s introduce

the idea using a four period model. I first will describe quasi-hyperbolic here in a deterministic setting (without

uncertainty), and then switch to a stochastic setting when switching to recursive notation

In a four period model with standard exponential discounting

u(c1) + βu(c2) + β2u(c3) + β3u(c4) (3)

Notice how β is used as the discount rate between periods one-and-two as well as between periods two-and-three

and three-and-four. In contrast quasi-hyperbolic discounting uses β0β between periods one-and-two, but then

uses β between periods two-and-three and three-and-four. Thus our four period model with quasi-hyperbolic

discounting becomes

u(c1) + β0βu(c2) + β0β
2u(c3) + β0β

3u(c4) (4)

Because we have not fully specified the optimization problem (what is being choosen, just c1? or also c2, c3, &

c4?) it is not so obvious in this formulation that there are two types of quasi-hyperbolic discounter: naive and

sophisticated. A naive quasi-hyperbolic discounter assumes that their future self will not be impatient even though

their present self is (their future self is using exponential discounting). A sophisticated quasi-hyperbolic discounter;

one who realises that their future self will also behave impatiently by discounting in a quasi-hyperbolic manner.

This will be much clearer when we now switch to recursive notation and write out the optimization problem in

full.

We now express the same thing in recursive notation, but adding stochastics (z and the expectations). We

have that standard exponential discounting can be expressed as the value function

V (a, z) = maxc,a′∈D(a,z)u(c) + βE[V (a′, z′)] (5)

where a is an endogenous state, and z is an exogenous stochastic state. c and a′ are constrainted to be in some

74We use β0β as the discount rate between this period and next period, rather than just some α ≡ β0β because this
notation becomes much more convenient when we want to look at, e.g., life-cycle models where there is a probability of
dying; especially in terms of writing the codes. Note that papers that look at theory on Quasi-Hyperbolic discounting in
simple models often just use one parameter to control this period to next period, e.g., α ≡ β0β.
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feasible decision space D(a, z). In finite time V (a′, z′) would be next period value function and so not the same

as V (a, z), in infinite time they are the same.

We can express naive quasi-hyperbolic discounting in terms of the exponential discounting solution. Let Ṽ be

the value function of the naive quasi-hyperbolic discounter, then

Ṽ (a, z) = maxc,a′∈D(a,z)u(c) + β0βE[V (a′, z′)] (6)

notice how the expected next-period value function is that of the behavior of the exponential discounter, who the

naive quasi-hyperbolic discounter (incorrectly) believes they will act like. We call V the ’continuation value’ of

the naive quasi-hyperbolic discounter.

The sophisticated quasi-hyperbolic discounter understands that their future self will behave as a quasi-

hyperbolic discounter. Let V̂ be the value function of the sophisticated quasi-hyperbolic discounter, then

V̂ (a, z) = maxc,a′∈D(a,z)u(c) + β0βE[V(a′, z′)] (7)

and the argmax of this same expression gives the (optimal) policies ĉ and â′. Using ĉ and â′ we get the definition

of V(a, z) as

V(a, z) = u(ĉ) + βE[V(â′, z′)] (8)

note that to compute this we will need, given next period V, to first get current period V̂ and ĉ and â′ from

equation (7), and then use these in equation (8) to calculate the current period V. We call V the ’continuation

value’ of the naive quasi-hyperbolic discounter.75

Notice that standard exponential discounting is nested as the case β0 = 1, and quasi-hyperbolic discounting

involves 0 < β0 < 1. For infinite horizon models 0 < β < 1, but for finite horizon models with a probability of

dying it can sometimes be greater than 1.

Quasi-hyperbolic preferences are time-inconsistent preferences.

75One way to see is going on with the continuation value of the sophisticated quasi-hyperbolic discounter is to return our
trivial example of u(c1)+β0βu(c2)+β0β

2u(c3)+β0β
3u(c4), and rewrite this as u(c1)+β0β[u(c2)+βu(c3)+βu(c4)], now we can

see that we have the current problem u(c1)+β0β
′continuation value′, and the continuation value is u(c2)+βu(c3)+βu(c4)

which only uses β and for the sophisticated agent they know that this continuation value, their underbarV , is based on the
actions that an impatient agent will take (the ’hat’ policies).
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C.3 Temptation and Self-Control: Gul-Pesendorfer preferences

Under standard preferences, more options is always better. Temptation is the idea that having more options can

make you worse off, and self-control captures that you can resist that temptation at a cost. Let A be a set of

options, and B be another set of options, and assume A is preffered to B; standard preferences are that A ∪ B

is preferred to both A and B, as more options is always better. The key to Gul-Pesendorfer preferences is the

concept of set betweenness: A is preferred B, but the union is now ’between’ these, that is A is preferred to A∪B

is preferred to B, so adding the option of B to A makes the agent worse off.

First, let’s revisit standard preferences. We can think of the standard utility of a set of options as U(x) =

maxx∈A u(x). This view of preferences over a set of options is how we need to think to introduce Gul-Pesendorfer

preferences.

Before introducing Gul-Pesendorfer preferences we need a two period setting so that we will have distinct

concepts of commitment and self-control. In period 1, we think of the agent as choosing which set of options will

occur in period 2. So in period one we are choosing between, e.g., A, B, and A ∪ B. Then in period 2 we find

ourselves in one of these sets, e.g., A∪B, and have to choose an option from that set, e.g. choose some x ∈ A∪B;

let y be the most tempting element in A ∪ B. Then choosing A over A ∪ B will be understood as commitment.

Whereas, in period 2 if we are choosing a option out of A ∪ B then still selecting an element of x other than the

most-tempting element y, will be understood as self-control. (Note: Nothing about self-control relies on this being

choices from the set A ∪B, it could be A or B.) So commitment can be though of as avoiding temptation, while

self-control is resisting temptation. Gul-Pesendorfer offer the example of whether to eat a Burger or a Sandwich

for lunch (we assume the Burger is the temptation). Commitment is choosing to go for lunch at a Restaurant

that only serves Sandwiches, but no Burgers: we avoid temptation. Self-Control is when we order a Sandwich for

lunch in a restaurant that has both Sandwiches and Burgers on the menu: we resist temptation.76

So we will use a two-period setting: the first-period is a decision over sets, in the second period we choose an

option from the set selected in period one. Gul-Pesendorfer preferences in the first period rank sets according to,

U(A) = max
x∈A

u(x) + w(x)−max
y∈A

v(y)

where both u and w are standard von Neumann-Morgenstern utility functions. Notice that what is being ranked

by these preferences is a set A, not an element of the set. u is the commitment ranking and w is the temptation

ranking. maxy∈A w(y)−w(x) is interpreted as the (utility) cost of temptation (and is always postitive). Choosing

a lottery to maximize u+w represents the optimal compromise between the utility that could have been acheived

under commitment and the cost of self-control. Notice also that only the most tempting element of B matters for

the (dis)utility of temptation, not anything else in B.

Gul-Pesendorfer as described so far is just preferences at period 1, but can be naturally extended to choice

76I don’t personally find Burgers very tempting, but whatever, it is Gul and Pesendorfers example.
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behaviour in the second period, when finding yourself in e.g. set A, of choosing the element in A that maximizes

u+ w; U∗(x;A) = maxx∈A u(x) + w(x).

The amount of commitment is determined by the ’distance’ between u and w: u1 and w1 display greater

commitment that u2 and w2 if the indifference curves for u2 and w2 are a convex combination of the indifference

curves for u1 and w1. The amount of self-control reflects the amount of temptation that can be resisted and is

determined by the ’distance’ between u + w and w: u1 and w1 display greater self-control than u2 and w2 if the

indifference curves for u2 + w2 and w2 are a convex combination of the indifference curves for u1 + w1 and w1.

To say the same thing in a different way, recall that in period 2 the agent maximizes u + w, so if u + w is very

different from the temptation ranking w then the agent frequently exercises self-control.

We can now extend Gul-Pesendorfer preferences to finite-horizon problems. We first do this with general

notation based around the concepts of utility depending on the whole set being chosen. We will then refine it to

something that we can solve. We start by defining a value function (on a different space to usual, here it is on the

space of sets),

V (Bj , j) = max
d∈Bj

[u(d) + w(d) + V (Bj+1(d))]− max
d̂∈Bj

w(d̂)

where d is an action, Bj is the set of possible actions this period. The action d also helps determine next period

set of possible actions Bj+1. Note that when d determines next period state, this appears implicitly as part of

determining Bj+1.

We can interpret u(d) + V (Bj+1(d)) as the commitment utility. [maxd̂∈Bj w(d̂)]− w(d) is the (utility) cost of

temptation.

We now need to rewrite this in a form that looks more like our standard approach, so that we will be able to

compute the solution. This is,

V (a, j) = max
d,a′∈D(a,j)

[u(c) + w(c) + V (a′, j + 1)]− max
d̂,â′∈D(a,j)

w(c)

s.t. a constraint that gives c as a function of d and a′

notice that this now looks like our standard life-cycle problem, but with two differences: (i) the period return is

now u(c) + w(c), and (ii) we need to handle the maxd̂,â′∈D(a,j) w(c) term.

We rewrite this once more into the way the toolkit thinks about this,

V (a, j) = max
d,a′∈D(a,j)

[Fu(d, a
′, a) + Fw(d, a

′, a) + V (a′, j + 1)]− max
d̂,â′∈D(a,j)

Fw(d, a
′, a)

To implement this, we define the temptation function Fw(d, a
′, a, z), everything else we need to know about

the problem is standard. Note that D(a, j) is already implicitly defined in the way the toolkit operates as any

combination of (d, a′) for which the temptation function is finite valued (returning -Inf is saying that (d, a′) ̸∈
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D(a, z)). When setting this up we (re)define the return function to be Fu(d, a
′, a, z).

The extension of this to problems with uncertainty (z and e variables) is trivial,

V (a, z, e, j) = max
d,a′∈D(a,z,e,j)

[Fu(d, a
′, a, z, e) + Fw(d, a

′, a, z, e) + E[V (a′, z′, e′, j + 1)|z]− max
d̂,â′∈D(a,z,e,j)

Fw(d, a
′, a, z, e)
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C.4 Ambiguity Aversion

We can think of two types of uncertainty. Risk, the ’known unknowns’, represents the standard approach where

every possible outcome is assigned a specific probability. An alternative is ambiguity, the ’unknown unknowns’

captures they idea that we might not be able to assign probabilities to all outcomes. The standard way to model

ambiguity is known as multiple priors, and agents act based on the ’worst’ prior. We still conceive of a true

stochastic process for the shocks, as this is needed for simulating the model.

Let’s start by defining risk, and then we will descibe ambiguity. We want to think about a possible state, ω

that occurs next period, and the set of all possible states is Ω. Under standard uncertainty modeled as risk, we

have some probabilities P assigned to all ω ∈ Ω. In a two-period setting the agent aims to maximize,

max
c1,c2

u(c1) + βEP [u(c2)]

where EP indicates that the expectations are taken with respect to the (subjective) belief P , which we can think

of as a prior belief.

For ambiguity we instead consider as set P of probabilities, so the agent has ’multiple priors’ about the future.

We then assume that the agent acts to maximize the worst possible future under their various priors, that is they

maximize,

max
c1,c2

u(c1) + β min
P̂∈P

EP̂ [u(c2)]

So the agent is evaluating the future under each of their priors (each P ∈ P), and then will choose actions that

maximize the worst outcome across their priors.77 It is worth observing that the prior used to evaluate the future

(the argmin) may differ with the value of c2.

The key trick here is taking the minimum over the expection evaluated under multiple priors. We can easily

implement this in a standard finite-horizon value function problem as,

V (a, z, j) = max
d,a′

F (d, a′, a, z) + min
π(z)∈P

Eπ(z)[V (a′, z′, j + 1)]

as in this setup our ’prior belief’ about the future is simply our definition of the markov process z. Hence, alongside

the ’true’ z, we simply define a set of ’multiple priors’ in the form of alternative markov processes.

So in the code we first say that we want to use ambiguity aversion by setting

vfoptions.exoticprefererences=’AmbiguityAversion’. We then define the true markov process for z in the standard

manner, which will involve both a grid and a transition matrix. It is imposed by the code that the grid for the mul-

77Other implementations known as ’smooth ambiguity’ which also use multiple priors, but do something less extreme
that taking the minimum across the multiple priors, do exist but we will not discuss them here.

85



tiple priors is just the same as the grid for the true process (so all of them use the same grid78). We set the number

of the multiple priors as vfoptions.n ambiguity. To set up the multiple priors is about creating numerous different

version of the transition matrix, all of which get stored in vfoptions.ambiguity pi z (or vfoptions.ambiguity pi z J ),

the last dimension of which indexes the multiple priors. That is it, all the trick to using ambiguity aversion is just

about setting up an appropriate choice for vfoptions.ambiguity pi z J. If you want to use i.i.d. shocks these can

be set up with vfoptions.ambiguity pi e (or vfoptions.ambiguity pi e J ).

The codes are essentially going to compute minπ(z)∈P E
π(z)[V (a′, z′, j + 1)] by first using each of the multiple

priors in vfoptions.ambiguity pi z J to evalute each of the Eπ(z)[V (a′, z′, j+1)], and then take the minimum across

these (in the dimension of the priors).

Notice that the ’true’ z is not actually used in the value function problem. The codes still require you to

define it and pass it as an input, but it does not get used (you are required to pass it as an input because the

value function iteration commands expect the process on z as a standard input). The ’true’ z is for simulations

(simulations do not depend on the multiple priors, except via their influence on the policy function). Whether or

not you include the true z as one of the multiple priors is entirely optional.

You can model a mixture of shocks as risk and shocks as ambiguity. The key is just to make it so that the

multiple priors are different for the ambiguous shocks, but that all the multiple priors are identical for the risk

shock.79

This approach to modelling ambiguity aversion was introduced by Gilboa and Schmeidler (1989), and a review

is provided by Ilut and Schneider (2023).

78The underlying theory imposes something in a similar vein about the supports of the stochastic processes.
79If you take the minimum across a bunch of identical priors you will of course just get that prior. This is taking advantage

of the observation that ambiguity averion nests risk aversion as the case where the set of muliple priors has only a single
element. Ambiguity aversion also nests maximin preferences as the case where the set of multiple priors contains each of
the Pω which assign a probability of one to event ω.
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