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Abstract

The homogeneous Bethe-Salpeter equation for a bound state composed by a fermion and a scalar,
interacting through the exchange of a massive scalar particle, is solved in the physical Minkowski
space within the ladder approximation. The method of solution, based on i) the Nakanishi integral
representation of the Bethe-Salpeter amplitude and ii) the projection of the equation onto the null hy-
perplane x+ = 0, previously applied to bound states of two identical scalars or fermions, is generalized
to the case of unequal constituent spins and masses.

The binding-energy/coupling-constant functional dependence and the valence light-front wave
functions of the bound state are obtained. The low-binding solutions behave non-relativistically,
while the high-binding ones exhibit a new phenomenon of binding saturation. A physical discussion
is presented and some perspectives for future work are outlined.

Riassunto

L’equazione omogenea di Bethe-Salpeter per uno stato legato composto da un fermione ed uno
scalare, interagenti tramite lo scambio di una particella scalare massiva, viene risolta nello spazio fisico
di Minkowski nell’ambito dell’approssimazione ladder. Il metodo di soluzione, basato su i) la rapp-
resentazione integrale di Nakanishi dell’ampiezza di Bethe-Salpeter e ii) la proiezione dell’equazione
sull’iperpiano x+ = 0, applicato in precedenza a stati legati di due scalari o fermioni identici, viene
esteso al caso di costituenti con spin e masse distinte.

Vengono ricavate la dipendenza funzionale energia di legame/costante di accoppiamento e le fun-
zioni d’onda light-front di valenza dello stato legato. Le soluzioni per basse energie di legame esibiscono
un comportamento non relativistico, mentre ad alte energie si manifesta un fenomeno inatteso di sat-
urazione del legame. Si presenta una discussione fisica e si delineano alcune prospettive per lavori
futuri.
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Chapter 1

Introduction

It is not an overstatement to say that, after ninety years since the birth of quantum field theory, our
current understanding of bound states in the relativistic domain is still far from complete. Indeed,
while one can easily grasp, on the formal side, the implications of the existence of a bound state in the
particle spectrum (i.e. the presence of poles in the Green’s functions of the theory), the calculation
of the corresponding physical observables has to confront difficulties both from the theoretical and
computational point of view. This is a quite unpleasant situation if one considers that, e.g., according
to our present knowledge of strong interactions, the entire hadronic spectrum is composed of bound
states. Also in condensed matter physics the issue of realistically describing bound systems, yet
taking properly into account the relativistic effects, is nowadays an alive topic, as shown by the
intense research on graphene.

The main answer to such a problem has been the path integral method, that in high-energy
physics has achieved a very refined standard in order to deal with the highly non linear behavior of
the Quantum Chromo-Dynamics. Nonetheless, the interest in elaborating tools for reaching a full-glory
description of the bound system dynamics in the physical space is still present.

To understand the root of the difficulties, one must realize that a great deal of our current insights
into quantum field theory comes from the perturbative approach. When the coupling constants are
small, the perturbative framework is particularly suitable for describing scattering processes. On the
other hand, bound states are by nature a totally non-perturbative phenomenon, as clearly indicated
by the need of reconstructing a pole in the relevant Green’s function. This qualitative difference
might be understood as follows: while scattering particles interact for a small amount of time, during
which they may exchange only a few virtual mediators, the constituents of a bound state interact
indefinitely. In the former case, the scattering cross section can be calculated from a few relevant
Feynman diagrams. In the latter case, one needs to consider, loosely speaking, a diagram with an
infinite number of virtual exchanges, which results on the formal level in the bound state amplitude
satisfying an homogeneous integral equation.

In 1951, Salpeter and Bethe [1] and Gell-Mann and Low [2] set the basis for a rigorous field
theoretical description of bound states, with what has come to be known as the Bethe-Salpeter equation
(BSE). As Salpeter put it in the late 2008 [3]:

«The Bethe-Salpeter equation was an attempt to put bound states between two or
more elementary particles on a fully covariant relativistic footing.»

This was achieved by writing down a four-dimensional homogeneous integral equation for a quantity,
the Bethe-Salpeter (BS) amplitude, which Bethe and Salpeter suggested to be the relativistic analogue
of the Schrödinger wave-function of a bound system. The solution of the BSE allowed one to calculate
the mass of the bound state for a fixed coupling constant (or vice-versa), and was applied in Bethe-
Salpeter’s original paper to obtain the mass/coupling-constant relation for the deuteron’s ground
state.
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The field-theoretical definition of the BS amplitude was immediately clarified by Gell-Mann and
Low [2], which gave its modern definition in terms of an elementary correlation function. Subsequently,
the BS formalism was greatly extended to cope with the calculation of bound-state dynamical observ-
ables and S-matrix elements, due, in particular, to the work of Mandelstam [4] and Zimmermann
[5]1.

As one can realize from Salpeter’s historical note [3], the computational difficulty posed by the
BSE was immediately understood by the authors of the equation themselves. To cope with one of
the hardest issues, namely how to deal with the singularity structure of both the BS amplitude and
the interaction kernel, Wick proposed an analytic continuation of the BS amplitude [7], which became
famous as the Wick-rotation. The Wick-rotated BSE was a far more manageable problem, to the point
that it was even possible to exhibit analytic solutions for a very simplified version of the equation, the
so-called Wick-Cutkosky model, after Refs. [7, 8]. This model was elaborated for describing a bound
state composed by two massive scalars exchanging a massless scalar, involving the interaction kernel
in ladder approximation, i.e. when the exchanged quanta do not cross each other. In spite of its very
simplified nature, the analytic solution of Wick and Cutkosky still provides a precious guide in the
investigation of the BSE within more refined models.

Unfortunately, the Wick-rotation of the BS amplitude had also serious drawbacks. First of all, the
analytic continuation in the whole BSE was rigorously shown to be possible only for a ladder kernel.
More importantly, the Wick-rotated BS amplitude was not directly applicable to the calculation of
dynamical quantities, such as form factors, so that the four-dimensional BSE was downgraded to a
tool to compute the bound-state mass spectrum.

Shortly, one should also mention the attempts based on suitable three-dimensional reductions,
the first of which was proposed by Salpeter himself [9]. These reductions enabled to overcome the
difficulties preventing the direct treatment in Minkowski space, but also had undesired features (such
as the loss of covariance in Salpeter’s equation, which involved an instantaneous interaction kernel).

During approximately the same years, the Japanese physicist Noboru Nakanishi was developing an
integral representation for general Feynman diagrams [10], called in what follows the Nakanishi Integral
Representation (NIR), which allowed to formally sum up the infinite set of diagrams contributing to
a given n-leg transition amplitude. The author himself proposed to extend his representation to the
BS amplitude, for which he rigorously proved its validity in the case of a scalar ladder kernel [11].
Nakanishi also wrote an authoritative review on the BSE [12], in which however the NIR did not play
a central role.

Apparently, Nakanishi’s work on integral representations did not have much impact on the field of
the BSE, until 1995, when the NIR was resumed by K. Kusaka and A. G. Williams [13] and applied
to the numerical solution of the scalar ladder BSE in Minkowski space, i.e. without resorting to the
Wick-rotation. The use of NIR allowed to transform the four-dimensional momentum space BSE into
an equivalent two-dimensional integral equation for a weight function of two real variables, which
could be solved numerically by standard methods. Some years later, the technique was refined by J.
Carbonell and V. A. Karmanov [14, 15] within the context of light-front (LF) quantum field theory.
The same authors applied their NIR solution to the calculation of electromagnetic form factors [16],
thereby clarifying some issues related to the Wick-rotation of the BS amplitude, and performed a first
exploration of the BSE for a two-fermions bound state [17].

The NIR-LF approach was subsequently improved by T. Frederico et. al, which confirmed and
extended the previous results on the scalar ladder BSE [18, 19], and indicated the correct treatment of
singularities in the fermion ladder BSE [20, 21]. The same authors also performed a first exploration
of the scattering BSE [22, 23], which is the inhomogeneous analogue of the bound state BSE and
allows a non-perturbative computation of the elastic scattering amplitude.

1With respect to Zimmermann’s work, the thorough analysis of asymptotic conditions performed by Haag [6] is also
relevant, although Haag did not make direct use of Bethe-Salpeter amplitudes in his work.
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At this point, it is worth to emphasize that the state of art in the solution of the Minkowski
space BSE is still at an infant stage. In fact, adopting free propagators and retaining only the
ladder contribution to the interaction kernel for getting numerical solutions, as discussed in detail
in what follows, still prevents the Minkowskian BSE from being a tool for wide investigations in
the phenomenological realm. Nonetheless, as is well known, the solution of models with simple but
non trivial ingredients provides valuable insights into a field which is, to the present date, relatively
unexplored. This is the spirit which guided the investigations to be described in what follows.

In this Thesis, we shall present the results of a quantitative study on the ladder BSE in Minkowski
space for a bound system composed by a fermion and a scalar, freely propagating inside the system
but interacting through the exchange of a massive scalar.

The interest in the fermion-scalar problem is two-fold. In the first place, this is a natural extension
of the previous investigations, with the additional feature that the constituents are necessarily distin-
guishable particles. As it will become clear in the following, the spoiling of the particle-permutation
symmetry makes the actual solution of the BSE somewhat trickier. On the other hand, this is an im-
portant step to be performed, before being able to move to more realistic situations. In this respect,
it is worth to mention that we have solved the BSE through NIR for generally unequal masses, which
has never been done before. Indeed, such a new degree of freedom allows one to better understand the
interplay between different dynamical regimes (e.g. low binding/strong binding). In second instance,
the fermion-scalar system might be regarded as a primitive version of a quark-diquark baryon model,
so that this kind of investigations could turn out useful, allowing to increase our physical intuition
on the issue, for driving the elaboration of more refined descriptions, where the self-energy of the
constituents will play a fundamental role.

The Thesis is organized as follows. In Chapter 2 we review the basic formalism of the Bethe-
Salpeter equation. In Chapter 3 we introduce the main ingredients of our numerical approach to
the BSE, namely: (i) the NIR of the BS amplitude and (ii) the light-front projection of the BSE.
Moreover, we quote some first relevant results. In Chapter 4 we present our formal elaboration for
the fermion-scalar BSE. In Chapter 5 we present our numerical results. Finally, in Chapter 6 we draw
our conclusions and discuss the perspectives for future work.

In order to avoid too lengthy and obscure discussions in Chaps. 4 and 5 but, at the same time,
to present our method in the most transparent way, we have chosen to report our full calculations
in Appendix C. The three other appendices contain: (A) a formal derivation of the NIR of the BS
amplitude, starting from the one of the bound state vertex, (B) a discussion of some technicalities
related to the Poincaré group in the LF formalism, which are necessary in order to deal with a system
with spin and (D) a brief review of the non-relativistic Yukawa potential, whose consideration allowed
to give a more organized presentation of our results.
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Chapter 2

The Bethe-Salpeter Equation

In this Chapter we introduce the standard formalism of Bethe-Salpeter amplitudes for the description
of bound states in quantum field theory. In Sec. 2.1 we study the analytic structure of the four-points
Green’s function and derive the Bethe-Salpeter equation for the bound state amplitude. In Sec. 2.2
we discuss some developments of the formalism, including the Wick-rotation and the calculation of
form factors from the BS amplitude.

For the sake of simplicity, in what follows we shall consider only scalar field theories. The necessary
generalizations for the fermion-scalar case will be discussed in Chapter 4.

Throughout this Thesis, we shall set ~ = c = 1 and adopt the signature (+,−,−,−) for the
Minkowski metric.

2.1 Bound states in quantum field theory

The existence of a bound state in a quantum field theory is revealed by the presence of poles in the
Fourier transform of the relevant Green’s functions. In particular, for a two particles bound state
we find poles in the four-points Green’s function of the constituent fields, with residues determined
by the Bethe-Salpeter amplitudes (BS amplitudes) of the bound state. These amplitudes satisfy a
four-dimensional homogeneous integral equation, the Bethe-Salpeter equation (BSE) [1], which is the
subject of this Thesis.

In the following Subsections, we shall review the field-theoretic derivation [2, 4, 24] of the celebrated
result of Salpeter and Bethe.

2.1.1 The BS amplitude and the four-points Green’s function

Following Refs. [12, 24], we consider the four-points Green’s function of two interacting scalar fields1:

G(x1, x2; y1, y2) ≡ 〈0|T{φ1(x1)φ2(x2)φ†1(y1)φ†2(y2)}|0〉

= θ(min(x1, x2)−max(y1, y2))〈0|T{φ1(x1)φ2(x2)}T{φ†1(y1)φ†2(y2)}|0〉+
+ other orderings, (2.1.1)

where the omitted part is irrelevant to our present discussion, as we shall clarify below.
To study the analytic structure of G, we proceed in a manner similar to the Källén-Lehmann

decomposition of the propagator. We insert a complete set of eigenstates of the four-momentum

Pµ|n〉 = Pµn |n〉,
∑
n

|n〉〈n| = 1 (2.1.2)

1In what follows, unless otherwise stated, field operators are always understood in the Heisenberg picture.
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between the two time-ordered products in the second line of Eq. (2.1.1):

G(x1, x2; y1, y2) = θ(min(x1, x2)−max(y1, y2))
∑
n

χn(x1, x2)χn(y1, y2) + · · · , (2.1.3)

where we have defined:

χn(x1, x2) ≡ 〈0|T{φ1(x1)φ2(x2)}|n〉, (2.1.4)

χn(y1, y2) ≡ 〈n|T{φ†1(y1)φ†2(y2)}|0〉. (2.1.5)

It is convenient to introduce global and relative coordinates:

X ≡ η1x1 + η2x2, x ≡ x1 − x2, (2.1.6)

where η1,2 are real numbers satisfying η1 + η2 = 1. The inverse relations are:

x1 = X + η2x, x2 = X − η1x. (2.1.7)

From the translational invariance of the theory, it follows that:

χn(x1, x2) = e−iPnXχn(x), (2.1.8)
χn(x) ≡ 〈0|T{φ1(η2x)φ2(−η1x)}|n〉, (2.1.9)

and similarly:

χn(y1, y2) = eiPnY χn(y), (2.1.10)

χn(y) ≡ 〈n|T{φ†1(η2y)φ†2(−η1y)}|0〉. (2.1.11)

For the Green’s function G, we have:

G(x1, x2; y1, y2) = G(x1 + a, x2 + a; y1 + a, y2 + a), (2.1.12)

which allows to write its Fourier transform as:

G(x1, x2; y1, y2) =
ˆ d4P

(2π)4
d4k

(2π)4
d4q

(2π)4 e
−iP (X−Y )−ikx+iqyG(k, q;P ), (2.1.13)

G(k, q;P ) ≡
ˆ

d4x d4y d4Reikx−iqy+iPRG(R+ η2x,R− η1x; η2y,−η1y). (2.1.14)

We summarize in Table 2.1.1 our conventions for the transformations to and from global and relative
variables. The ordinary four-variables Fourier transform of G is related to G(k, q;P ) by:

G(k1, k2; q1, q2) ≡
ˆ

d4x1d4x2d4y1d4y2e
ik1x1+ik2x2−iq1y1−iq2y2G(x1, x2; y1, y2)

= (2π)4δ4(k1 + k2 − q1 − q2)G(k, q;P ), (2.1.15)

where P = k1 + k2. Notice that the same symbol is used for the Green’s function in both coordinates
and momentum spaces, without ambiguity, given the dependence upon the proper variables.

Coordinates Conjugate momenta
x = x1 − x2 p = η2p1 − η1p2

X = η1x1 + η2x2 P = p1 + p2
x1 = X + η2x p1 = p+ η1P

x2 = X − η1x p2 = −p+ η2P

Table 2.1.1. Transformation to and from global and relative variables. Notice that p1x1 + p2x2 = PX + px.
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Let us now consider the contribution of a bound state to the decomposition (2.1.3). We assume,
for simplicity, that there exists a single bound state |b;P 〉, with mass P 2 = M2 and spin zero, such
that the BS amplitudes:

χ(x1, x2;P ) ≡ 〈0|T{φ1(x1)φ2(x2)}|b;P 〉, (2.1.16)

χ(y1, y2;P ) ≡ 〈b;P |T{φ†1(y1)φ†2(y2)}|0〉, (2.1.17)

are non-zero (the case of spin degeneracy is treated in detail in Subsec. 2.2.3). This state contributes
to the sum in Eq. (2.1.3) as2:

Gb(x1, x2; y1, y2) ≡ θ(min(x1, x2)−max(y1, y2))×

×
ˆ d3P

(2π)32E(P)e
−iE(P)(X0−Y 0)+iP·(X−Y)χ(x;E(P),P)χ(y;E(P),P), (2.1.18)

where E(P) =
√
M2 + P2. Using the Fourier transform of the step function:

θ(t) =
∞̂

−∞

dω
2π

ie−iωt

ω + iε
, (2.1.19)

and noticing that:

min(x0
1, x

0
2)−max(y0

1, y
0
2) = X0 − Y 0 −

∣∣x0∣∣− (η2 − η1)x0

2 +
∣∣y0∣∣− (η2 − η1)y0

2

we obtain:

Gb(x1, x2; y1, y2) =
ˆ d4P

(2π)4 e
−iP (X−Y ) iξ(x;P )ξ(y;P )

2E(P)(P 0 − E(P) + iε) , (2.1.20)

where we have made the change of variables ω = P 0 − E(P) and defined the auxiliary quantities:

ξ(x;P ) ≡
ˆ d4k

(2π)4 e
−ikxξ(k;P ) ≡ exp

[
+i(P 0 − E(P))(

∣∣x0∣∣
2 + η1 − η2

2 x0)
]
χ(x;E(P),P), (2.1.21)

ξ(y;P ) ≡
ˆ d4k

(2π)4 e
+iqxξ(q;P ) ≡ exp

[
−i(P 0 − E(P))(

∣∣y0∣∣
2 + η1 − η2

2 y0)
]
χ(y;E(P),P). (2.1.22)

Comparing Eq. (2.1.14) with (2.1.18), we obtain:

G(k, q;P ) = iξ(k;P )ξ(q;P )
2E(P)(P 0 − E(P) + iε) + regular terms. (2.1.23)

We adopt the following conventions for the Fourier transforms of the BS amplitude and its conjugate:

χ(k;P ) ≡
ˆ

d4x eikxχ(x;P ), (2.1.24)

χ(q;P ) ≡
ˆ

d4x e−iqyχ(y;P ). (2.1.25)

2We adopt throughout this Thesis the covariant normalization of states:

〈b;P ′|b;P 〉 = (2π)32E(P)δ3(P−P′).
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Figure 2.1.1. Diagrammatic representation of the four-points Green’s function near the pole P 0 ' E(P) (see
Eq. (2.1.28)).

Since [24]:

lim
P 0→E(P)

ξ(k;P ) = χ(k;E(P),P), (2.1.26)

lim
P 0→E(P)

ξ(q;P ) = χ(q;E(P),P), (2.1.27)

we see from Eq. (2.1.23) that the four-points Green’s function has a pole at P 0 = E(P), with residue
given by:

lim
P 0→E(P)

P 2 −M2

i
G(k, q;P ) = χ(k;E(P),P)χ(q;E(P),P), (2.1.28)

which is the sought relation between the BS amplitude and the four-points Green’s function, depicted
in Figure 2.1.1.

It is worth to emphasize that the appearance of a pole in the Green’s function G is a purely
non-perturbative phenomenon. Indeed, the only poles which can occur from a finite sum of Feynman
diagrams are those corresponding to the masses of the elementary fields in the theory. This makes
apparent why the bound state problem is a very challenging one.

We conclude this Subsection with a few remarks:

1. We have considered only the contributions coming from the first time-ordering in Eq. (2.1.1).
It is not difficult to realize that contributions from other orderings can never give rise to a pole
at P 0 → E(P), as in Eq. (2.1.28). For instance, the contributions from the CPT conjugated
state of |b〉, which has a non-vanishing scalar product with 〈0|T{φ†1(y1)φ†2(y2)} (and could as
well correspond to |b〉), give rise to a pole at P 0 → −E(P).

2. The BS amplitude does not have a direct probabilistic interpretation, as is revealed by the
presence of a “relative time” x0 in the reduced amplitude χ(x;P ). On the other hand, the
bilocal operator φ1(x1)φ2(x2) plays, in the BS formalism, a somewhat analogous role to the
interpolating fields of LSZ scattering theory, as we shall illustrate in Subsec. 2.2.2. Moreover, a
probabilistic content can be recovered from the BS amplitude by explicitly fixing a Fock-basis
in the Hilbert space of the theory. This point will be illustrated in Subsec. 3.2.3, in the context
of the light-front formulation of QFT.

2.1.2 Derivation of the BSE

From the relation between the BS amplitude and the four-points Green’s function, Eq. (2.1.28), we
can immediately derive the homogeneous Bethe-Salpeter equation (BSE) satisfied by χ [1, 2]. To this
end, we need to introduce the concept of irreducible Feynman diagrams.

Bethe and Salpeter call a diagram irreducible if it can not be disconnected by removing exactly two
internal lines corresponding to a φ1 and a φ2 constituent respectively. Some examples of reducible and
irreducible diagrams are shown in Fig. 2.1.2. Loosely speaking, a diagram is irreducible if it does not
contain any internal two-particle state. A reducible diagram is evidently built of several irreducible
blocks, linked together by two-particle propagations.
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Figure 2.1.2. Examples of irreducible (upper row) and reducible (lower row) Feynman diagrams.

By removing propagators (together with self-energy corrections) from the external lines of an
irreducible diagram, we obtain the general term of the so-called irreducible kernel iK (see Fig. 2.1.3
). From the above discussion, it follows that the Green’s function G, which may be formally regarded
as the sum of all Feynman diagrams with four external legs, satisfies the integral equation:

G(x1, x2; y1, y2) = i∆′1(x1 − y1)i∆′2(x2 − y2)+

+
ˆ

d4w1d4w2d4z1d4z2i∆′1(x1 − w1)i∆′2(x2 − w2)iK(w1, w2; z1, z2)G(z1, z2; y1, y2),

(2.1.29)

where i∆′1,2 denote the fully dressed propagators:

i∆′i(x) = 〈0|T{φi(x)φ†i (0)}|0〉. (2.1.30)

Strictly speaking, Eq. (2.1.29) should be regarded as the non-perturbative definition of the irre-
ducible kernel iK (see also Eq. (2.1.32) below). The purpose of the previous remarks is to emphasize
the diagrammatic content of the equation, which is clarified in Fig. 2.1.4. Indeed, the key observation
in the work of Salpeter and Bethe [1] is that the integral equation (2.1.29) generates, by iteration, the
infinite set of Feynman diagrams contributing to G.

If we regard G, G0 ≡ i∆′1i∆′2 and K as the matrices Gx1x2
y1y2 ≡ G(x1, x2; y1, y2) etc., we may rewrite

Eq. (2.1.29) symbolically as:
G = G0 +G0(iK)G, (2.1.31)

which we may formally solve for G or iK:

G = (G−1
0 − iK)−1, iK = G−1

0 −G
−1. (2.1.32)

The translational invariance of the vacuum implies that G and G0, as well as their functional inverses,
satisfy Eq. (2.1.12) and, by Eq. (2.1.32), the same property is shared by the irreducible kernel iK.
We may thus write the analogues of the Fourier transforms (2.1.13)-(2.1.14) for G0 and iK. With
these definitions, we may transform the convolution integral in coordinate space of Eq. (2.1.29) in the
momentum space integral:

G(k, q;P ) = G0(k, q;P ) +
ˆ d4k′′

(2π)4
d4k′

(2π)4G0(k, k′′;P )iK(k′′, k′;P )G(k′, q;P ). (2.1.33)

Figure 2.1.3. Perturbative expansion of the irreducible kernel iK.
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Figure 2.1.4. The inhomogeneous equation (2.1.29) satisfied by the four-points Green’s function, which defines
the irreducible kernel iK. The black dots denote the fully dressed propagators (2.1.30).

Also, noticing that the disconnected Green’s function G0 conserves the relative momentum, i.e.:

G0(k, q;P ) = (2π)4δ4(k − q)G0(k;P ), (2.1.34)
G0(k;P ) ≡ i∆′1(η1P + k)i∆′2(η2P − k), (2.1.35)

we obtain the result:

G(k, q;P ) = G0(k;P )
[
(2π)4δ4(k − q) +

ˆ d4k′

(2π)4 iK(k, k′;P )G(k′, q;P )
]
, (2.1.36)

which is the inhomogeneous equation satisfied by the four-point Green’s function in momentum space.
The symbolic form (2.1.31) is equally valid in momentum space, if we observe that (2π)4δ4(k − k′) is
the identity with respect to the “product” defined by the integration over

´ d4k′

(2π)4 .
By taking the residue at the pole P 2 = M2 in both sides of Eq. (2.1.28), we can immediately

derive the homogeneous equation satisfied by the bound state amplitude χ (see Fig. 2.1.5):

χ(k;P ) = G0(k;P )
ˆ d4k′

(2π)4 iK(k, k′;P )χ(k′;P ), (2.1.37)

or, in symbolic form:
χ = G0iKχ. (2.1.38)

Equation (2.1.37) is the celebrated result of Bethe and Salpeter. Its intuitive content can be
understood by recalling the definition of iK, as the sum of all irreducible Feynman diagrams. Indeed,
iteration of Eq. (2.1.37) reproduces all the possible virtual exchanges which can occur between the
constituent during the (infinite) life-time of the bound state. This immediately brings to light one of
the difficulties at the core of the BS formalism, namely the absence of a closed form for the irreducible
kernel iK. This means that if, on one side, we are able to take into account the infinite exchange
produced by replicating a primitive Feynman diagram (this is the virtue of the integral equation),
on the other side one should consider, in principle, all the possible irreducible diagrams, in order to
reproduce the exact BS amplitude.

The BSE (2.1.37) is an homogeneous equation, contrary to the equation (2.1.36) satisfied by the
Green’s function G, which makes clear the non-perturbative character of the BS amplitude. Fur-
thermore, we see that the BSE is a quite singular equation, because of the presence of the double

Figure 2.1.5. The homogeneous Bethe-Salpeter equation (cf. Eq. (2.1.37)).
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Figure 2.1.6. A ladder kernel BSE (see Eq. (2.1.39)).

propagator G0 and also of the singular kernel iK. These two features make the solution of the BSE
in Minkowski space a quite formidable task.

Due to these difficulties, most of the present studies of the BSE in Minkowski space are limited to
so-called ladder kernels (see Fig. 2.1.6), and employ free propagators for the constituents. In these
approximations, the BSE (2.1.37) reads:

χ(k;P ) = 1[
(η1P + k)2 −m2

1 + iε
] [

(η2P − k)2 −m2
2 + iε

] ˆ d4k′

(2π)4
iλ1λ2

(k − k′)2 − µ2 + iε
χ(k′;P ),

(2.1.39)
where µ is the mass of the exchanged scalar and λ1,2 are the couplings between the exchanged and the
constituent fields. Note that, once the mass M of the bound state is fixed, the ladder BSE (2.1.39)
becomes an eigenvalue problem for the coupling constant λ2 ≡ λ1λ2. It is thus customary, in order to
study the functional relation M = M(λ2), e.g., for the ground state, to fix M and solve numerically
for λ2, rather than the opposite choice, which could appear more natural.

Notice that the ladder kernel:

iKlad(k, k′;P ) = iλ1
i

(k − k′)2 − µ2 + iε
iλ2, (2.1.40)

is actually independent of P . This feature simplifies greatly the discussion of the normalization of the
BS amplitude, to which we turn now.

2.1.3 Normalization of the amplitude

Since the BSE for the bound state amplitude is homogeneous, it needs a normalization condition to
fix the overall scale of χ. A correct normalization is required, for instance, to obtain the so-called
valence light-front wave function (and, in particular, the valence probability) of the bound state, as
discussed in Sec. 3.2, as well as for the computation of physical observables, like decay constants and
electromagnetic form factors, by the methods outlined in Subsec. 2.2.2.

We may find the normalization condition as follows [25] (see [12] for further discussion). Employing
Eq. (2.1.31), we write:

G(G−1
0 − iK)G = G.

By taking the residue at P 0 → E(P), we obtain:

lim
P 0→E(P)

i
χ(G−1

0 − iK)χ
P 2 −M2 = lim

P 0→E(P)
i
χ(G−1

0 − iK)χ
(P 0)2 − E(P)2 = 1 (2.1.41)

or, equivalently :

χ
i

2
∂(G−1

0 − iK)
∂Pµ

∣∣∣∣∣
P

χ = Pµ, (2.1.42)

where P 2 = M2. Explicitly, Eq. (2.1.42) means:
ˆ d4q′′

(2π)4
d4q′

(2π)4χ(q′′;P )Nµ(q′′, q′;P )χ(q′;P ) = Pµ, (2.1.43)
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where the normalization kernel Nµ is given by:

Nµ ≡
i

2
∂(G−1

0 − iK)
∂Pµ

∣∣∣∣∣
P

. (2.1.44)

As a matter of fact, the peculiar structure of the normalization condition (2.1.41) has a strict
analogy with the elementary particle amplitude normalization, usually written as:

〈0|φ(x)|p〉 =
√
Ze−ipx. (2.1.45)

The full propagator of the scalar field φ is given by:

i∆′(p) = i

p2 −m2 + Σ(p) + iε
,

or:
(i∆′(p))−1 = (i∆(p))−1 − iΣ(p)

where i∆(p) = i(p2 −m2 + iε)−1 is the free propagator and iΣ is the 1PI self-energy, defined by:

i∆′(p) = i∆(p) + i∆(p) iΣ(p) i∆′(p).

From the Källén-Lehmann decomposition, we know that:

lim
p2→m2

p2 −m2

i
i∆′(p) = Z.

Hence, the normalization condition (2.1.45) can be rewritten as:

lim
p0→E(p)

i
〈p|φ(0)|0〉

[
(i∆(p))−1 − iΣ(p)

]
〈0|φ(0)|p〉

p2 −m2 = 1, (2.1.46)

We thus see that the condition (2.1.42) has its exact analogue in the one-particle case, where the
irreducible kernel iK is replaced by the 1PI self-energy iΣ.

2.2 Developments of the BS formalism

In this Section, we discuss some developments of the basic formalism outlined in Sec. 2.1. Subsec.
2.2.1 deals with the Wick-rotation, mainly in view of its importance as a cross-check for our numerical
solution of the Minkowski space BSE. In Subsec. 2.2.2 we review the Mandelstam formalism for the
computation of bound-state dynamical observables. This presentation should clarify the interest in
solving the BSE directly in Minkowski space. Finally, in Subsec. 2.2.3, we give a simple derivation of
the BSE for the bound-state amplitude in the presence of spin-degeneracy, based on the transformation
property of the BS amplitude under the rotation group SO(3).

2.2.1 Wick rotation: pros and cons

A powerful method to solve the BSE is provided by the Wick rotation [7], which is based on the fact
that the reduced BS amplitude in momentum space, χ(k;P ), can be analytically continued to the first
and third quadrants of the complex k0 plane [12], provided that the stability condition:

M < m1 +m2 (2.2.1)
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is satisfied (which is of course true for a stable bound state, if the constituents appear as physical
particles in the spectrum of the theory). If the same operation can be performed in the RHS of the
BSE, one obtains the Wick-rotated BSE3 in the rest frame PCM = (M,0):

Ĝ0(k;PCM)−1χ̂(k;PCM) =
ˆ d4k′

(2π)4 K̂(k, k′;PCM)χ̂(k′;PCM), (2.2.2)

where

χ̂(k;PCM) = χ(ik4,k;PCM), (2.2.3)
Ĝ0(k;PCM) = −G0(ik4,k;PCM) (2.2.4)

K̂(k, k′;PCM) = K̂(ik4,k, ik′4,k′;PCM). (2.2.5)

In particular, for the ladder kernel (2.1.40), we obtain:

Ĝ0(k;PCM)−1χ̂(k;PCM) =
ˆ d4k′

(2π)4
g2

(k4 − k′4)2 + (k− k′)2 + µ2 χ̂(k′;PCM), (2.2.6)

Ĝ0(k;PCM)−1 =
[
m2

1 + k2 + (k4 − iη1M)2
] [
m2

2 + k2 + (k4 + iη2M)2
]
. (2.2.7)

Note that the pole (k − k′)2 = µ2 of the ladder kernel is no longer present in the Wick-rotated kernel
of Eq. (2.2.6). Also, if we choose η1,2 = m1,2

m1+m2
, the double propagator (2.2.7) is also seen to be

free from poles. The possibility to analytically continue the BS amplitude provides a powerful tool
for obtaining the bound state mass spectrum (the mass M which appears in Eq. (2.2.2) is the same
as in the original BSE). Since Eq. (2.2.2) is free from the singularities arising from denominators
in Feynman diagrams, the Wick-rotated BS amplitude is a regular function of k =

(
k, k4) and one

can apply mathematical theorems to obtain analytic [12, 25, 26], or numerical [27] solutions of the
equation. For instance, exploiting the fact that Eq. (2.2.6) has an Euclidean O(4) symmetry in the
limit M → 0, in Ref. [27] a robust numerical algorithm for the solution of the ladder BSE for the
entire bound state spectrum was developed .

In spite of these advantages, the analytic continuation has also several drawbacks. In the first place,
the possibility to perform the Wick rotation in the RHS integral of the BSE must be investigated case
by case, by studying the analyticity properties of the kernel. For kernels more complicated than the
ladder one, this can be a difficult (and not necessarily successful) task. Hence, the method is not
general.

In the second instance, the Wick-rotated BS amplitude is generally not sufficient for the computa-
tion of physical quantities, e.g. electromagnetic form factors [16]. In the latter case, the shortcoming
arises from two difficulties: (i) the occurrence of residues, not computable from the Wick-rotated
BS amplitude, after rotating the contour of the needed integral for evaluating the form factor (see
the next Subsection); (ii) the need of the Wick-rotated BS amplitude for non zero values of the the
bound-state tri-momentum P, which in turn requires the knowledge of the BS amplitude for general
complex values of its argument k (see Ref. [16] for details). This is clearly an harder task than the
original one in Minkowski space.

Finally, as we shall discuss in the next Chapter, the Minkowskian BS amplitude can be properly
related to the so-called light-front valence wave function of the bound state (see Sec. 3.2.1), but the
relation is lost in the Wick rotation.

With all these limitations in mind, we conclude by observing that, even in the pure Minkowskian
approach, the Wick-rotated BSE plays an important role, through the comparison of the bound state

3We shall avoid the common practice of referring to Eq. (2.2.2) as the “Euclidean” BSE. What we wish to emphasize
is that the analytic continuation is performed only on the relative momentum variable k, so that the Wick-rotation does
not generally lead to a definite metric in the rotated BSE, as is clear from Eqs. (2.2.6)-(2.2.7) in the ladder case.
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masses obtained with the two methods, as well as the comparison of other invariant quantities, such
as the so-called transverse amplitudes [19], which can be obtained both from the Wick-rotated and
Minkowskian BS amplitude.

2.2.2 Form factors and decay constants in the BS formalism

To illustrate the relevance of the BS formalism as a building block for phenomenological investigations,
let us briefly present the work by S. Mandelstam [4], that showed how to use the BS amplitude for
calculating matrix elements of time-ordered products of the form:

〈0|T{O1(z1)O2(z2) · · ·On(zn)}|b;P 〉, 〈b;P ′|T{O1(z1)O2(z2) · · ·On(zn)}|b;P 〉,

where Oi(zi) are general local operators.
Mandelstam’s derivation is essentially a generalization of the analysis for the four-points Green’s

function of Subsec. 2.1.1. We shall treat for definiteness the second kind of matrix elements, that
can be closely related to quantities experimentally observed (e.g. electromagnetic form factors, parton
transverse-momentum distributions, generalized parton distributions, etc.). Consider the (n+4)-points
Green’s function:

G(n+4)(x1, x2| {zi} |y1, y2) = 〈0|T{φ1(x1)φ2(x2)
[
n∏
i=1

Oi(zi)
]
φ†1(y1)φ†2(y2)}|0〉. (2.2.8)

Inserting the completeness for the composite system, one gets the following pole contribution:

G
(n+4)
b (x1, x2| {zi} |y1, y2) ≡ i2

ˆ d4P ′

(2π)4
d4P

(2π)4 e
−iP ′X+iPY×

× iξ(x;P ′)〈b;P ′|T{
∏
iOi(zi)}|b;P 〉ξ(y;P )

[2E(P′)(P ′0 − E(P′)) + iε] [2E(P)(P 0 − E(P)) + iε] ,

where the auxiliary amplitudes ξ and ξ are defined by (2.1.21) and (2.1.22). By Fourier transforming
with respect to the global variables X and Y , we obtain for the full Green’s function:
ˆ

d4Xd4Y eiP
′X−iPYG(n+4)(x1, x2| {zi} |y1, y2) = i2

ξ(x;P ′)〈b;P ′|T{
∏
iOi(zi)}|b;P 〉ξ(y;P )

[2E(P′)(P ′0 − E(P′)) + iε] [2E(P)(P 0 − E(P)) + iε]+

+ regular terms. (2.2.9)

On the other hand, we can define a truncated (n+4)-points Green’s function G(n+4)
trunc (see Figure 2.2.1)

by:

G(n+4)(x1, x2| {zi} |y1, y2) =
ˆ

d4x3d4x4d4y3d4y4G(x1, x2; y3, y4)×

×G(n+4)
trunc (y3, y4| {zi} |x3, x4)G(x3, x4; y1, y2). (2.2.10)

Figure 2.2.1. Definition of the truncated (n+ 4)-points Green’s function (cf. Eq. (2.2.10)).
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Figure 2.2.2. Matrix elements of time-ordered products in terms of the BS amplitude (cf. Eqs. (2.2.12)-
(2.2.13))

Taking into account the pole of G, Eq. (2.1.28), we see that the LHS of (2.2.9) can be expressed as
follows:

LHS = i2
ˆ

d4y3d4y4d4x3d4x4
χ(x;P ′)χ(y3, y4;P ′)

[2E(P′)(P ′0 − E(P′)) + iε]×

×G(n+4)
trunc (y3, y4| {zi} |x3, x4) χ(x3, x4;P )χ(y;P )

[2E(P)(P 0 − E(P)) + iε] + regular terms, (2.2.11)

Comparing Eqs. (2.2.10) and (2.2.11), with the help of the limits (2.1.26) and (2.1.27), one obtains:

〈b;P ′|T{
∏
i

Oi(zi)}|b;P 〉 =
ˆ

d4y3d4y4d4x3d4x4 χ(y3, y4;P ′)G(n+4)
trunc (y3, y4| {zi} |x3, x4)χ(x3, x4;P ),

(2.2.12)

or, passing to momentum space:

〈b;P ′|T{
∏
i

Oi(zi)}|b;P 〉 =
ˆ d4k

(2π)4
d4k′

(2π)4χ(k′;P ′)G(n+4)
trunc (k′, P ′| {zi} |k, P )χ(k;P ), (2.2.13)

where the mixed Fourier transform of G(n+4)
trunc is defined by:

G
(n+4)
trunc (k′, P ′| {zi} |k, P ) =

ˆ
d4Xd4Y d4xd4y e−iPX+iP ′Y−ikx+ik′x′G

(n+4)
trunc (y3, y4| {zi} |x3, x4),

(2.2.14)
with global and relative coordinates referring to the external ones (xi, yj).

A diagrammatic representation of Eqs. (2.2.12) or (2.2.13) is given in Fig. 2.2.2. We remark that
the interpretation of Eq. (2.2.10), which defines the truncated Green’s function, requires some care if
the LHS of Eq. (2.2.10) has contributions from “special” diagrams with some spectator constituent,
of the kind depicted in Fig. 2.2.3. As is clear from Fig. 2.1.4, the four-points Green’s function G
already includes the constituent propagators on its external legs. In order to avoid multiple counting
the lower propagator in Fig. 2.2.3, we should ascribe a factor:

(2π)4δ4(ki − k′i)
i∆i(ki)

Figure 2.2.3. Example of a diagram with a spectator constituent contributing to the truncated (n+ 4)-points
Green’s function. The truncated function is obtained by removing the two external four-points functions G
(cf. Eq. (2.2.10)).
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to the lower line (neglecting self-energy corrections). In case of doubt, one can always refer to Eq.
(2.2.10) to find the correct contribution of a particular diagram to the truncated function.

As an application of Eq. (2.2.13), we illustrate the method of calculation of an electromagnetic
form factor for the two-scalar system considered in this Chapter [16]. The form factor F (q2) is defined
by:

〈b;P ′|jµem(x)|b;P 〉 ≡ (P + P ′)µF (q2)e−iqx, (2.2.15)

where q ≡ P − P ′. Fourier transforming in x, we obtain:

(2π)4δ4(P−P ′−q)(P+P ′)µF (q2) = (2π)4δ4(P−P ′−q)
ˆ d4k

(2π)4
d4k′

(2π)4χ(k′;P ′)Gµtrunc(k′, P ′|k, P )χ(k;P ),

where:

(2π)4δ4(P − P ′ − q)Gµtrunc(k′;P ′|k;P ) ≡
ˆ

d4Xd4xd4Y d4yd4zeiP
′Y+ik′y−ikx−iPX+iqzGµtrunc(y1, y2|z|x1, x2)

Therefore, the form factor is given by:

(P + P ′)µF (q2) =
ˆ d4k

(2π)4
d4k′

(2π)4χ(k′;P ′)Gµtrunc(k′, P ′|k, P )χ(k;P ). (2.2.16)

In the ladder approximation, assuming that only the φ2 particle is charged, the main contributions to
the truncated function arise from the diagram in Figure 2.2.4 (this is the so-called impulse approxi-
mation, see e.g. [4]), which is of the kind discussed above. Applying the Feynman rules of scalar QED
[25], one obtains [16]:

(P + P ′)µF (q2) =
ˆ d4`

(2π)4χ(P
′

2 − `;P
′)(`2 −m2

1)(P + P ′ − 2`)µχ(P2 − `;P ) (2.2.17)

The most appealing feature of Eq. (2.2.17) is that the perturbative and non-perturbative parts of the
problem, i.e. the coupling of a photon to an elementary constituent, and the physics of the bound
state respectively, are neatly separated in the BS formalism. Thus, once the BS amplitude is known,
the computation of a form factor reduces to the evaluation of a few relevant Feynman diagrams.

In a similar fashion, one can derive an exact expression for the decay constant defined by:

〈0|b(x)|b;P 〉 = ifbe
−iPx, (2.2.18)

where b(x) is an interpolating field for the bound state b (e.g. b(x) = ( 1
m2
π
∂µdγ

µγ5u)(x) for a pion
π+). This can be expressed through the BS amplitude as:

ifbe
−iPx =

ˆ
d4x1d4x2 〈0|T{b(x)φ†1(x1)φ†2(x2)}|0〉trunc χ(x1, x2;P ), (2.2.19)

where the truncated function is defined by:

〈0|T{b(x)φ†1(x1)φ†2(x2)}|0〉trunc =
ˆ

d4y1d4y2〈0|T{b(x)φ†1(y1)φ†2(y2)}|0〉G−1(y1, y2;x1, x2). (2.2.20)

Figure 2.2.4. Calculation of the electromagnetic form factor in terms of the BS amplitude.
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2.2.3 BSE for higher-spin bound states

If the composite state has integral spin j 6= 0, Eq. (2.1.1) must be generalized to:

lim
P 0→E(P)

P 2 −M2

i
G(k, q;P ) =

j∑
s=−j

χ(j)
s (k;P )χ(j)

s (q;P ), (2.2.21)

where s denotes the eigenvalue of the third component of the spin operator and:

χ(j)
s (x;P ) ≡ 〈0|T{φ1(η2x)φ2(−η1x)}|b(j);P, s〉. (2.2.22)

It turns out that all the amplitudes χ(j)
s satisfy separately the BSE (2.1.37), as well as the generalized

normalization condition:
χ

(j)
s′

i

2
∂(G−1

0 − iK)
∂Pµ

∣∣∣∣∣
P 0=E(P)

χ(j)
s = δs′sPµ. (2.2.23)

We can give a short proof of the first property as follows (a proof of the normalization condition can
be given along the same lines).

From Eq. (2.2.21), we derive the equations:

j∑
s=−j

[
χ(j)
s (k;P )−G0(k;P )

ˆ d4k′

(2π)4 iK(k, k′;P )χ(j)
s (k′;P )

]
χ(j)
s (q;P ) = 0. (2.2.24)

The conjugated BS amplitude in the rest frame PCM = (M,0), satisfies (see e.g. [28, Chap. 2]):

χ(j)
s (q;PCM) =

∑
s′

D(j)
s′s(R)∗χ(j)

s′ (q0, Rq;PCM), (2.2.25)

where R ∈ SO(3) and D(j) is the spin-j representation of the rotation group. Notice that, apart from a
change of notation j, s→ l,m, Eq. (2.2.25) is the one satisfied by the conjugated spherical harmonics:

Y m
l (n̂)∗ =

∑
m′

D(l)
m′m(R)∗Y m′

l (Rn̂)∗. (2.2.26)

It follows that: ˆ
d4q χ(j)

s (q;PCM)Fml (q) ∝ δjlδms, (2.2.27)

if Fml is any test function of the form:

Fml (q) = f(q0, |q|)Y m
l (q̂). (2.2.28)

Therefore, in the rest frame of the bound state, any of the terms in square brackets in Eq. (2.2.24)
must separately vanish, viz.:

χ(j)
s (k;PCM) = G0(k;PCM)

ˆ d4k′

(2π)4 iK(k, k′;PCM)χ(j)
s (k′;PCM). (2.2.29)

This is the BSE in the rest frame of the bound state. By Lorentz covariance, it implies the BSE in
any frame.





21

Chapter 3

The NIR-LF approach to the
Bethe-Salpeter equation

In this Chapter we introduce the two principal ingredients of our numerical approach to the Minkowski
space BSE, namely the Nakanishi Integral Representation (NIR) of the BS amplitude and the light-
front (LF) projection onto the null hyperplane.

The theory of NIR and its applications within the context of the BSE are discussed in Sec. 3.1.
In Sec. 3.2 we give a brief formal introduction to the description of bound states in LF quantum field
theory, focusing on those aspects which have a direct connection with the BS formalism. Finally, in
Sec. 3.3, we present the numerical method for solving the BSE, and quote some first relevant results.

As in the previous Chapter, for the sake of simplicity, we consider purely scalar field theories,
postponing the due generalizations for the fermion-scalar case to Chapter 4.

3.1 The Nakanishi Integral Representation

The cornerstone of our numerical approach to the Minkowskian BSE is an integral representation of
the BS amplitude, known as the Nakanishi Integral Representation (NIR). Nakanishi himself proposed
the NIR for the investigation of analytic solutions of the BSE (see e.g. [11]), generalizing in some sense
the integral representation proposed in the older works of Wick and Cutkosky [7, 8], where the analytic
approach was based on the Wick-rotation.

The first numerical application of the NIR to the BSE for a scalar system can be found in Ref.
[13], where the NIR was applied both to the bound-state amplitude and to the ladder kernel, in
order to obtain an integral equation involving only the so-called Nakanishi weight function, exploiting
its uniqueness stated by a theorem [29]. Later [14], the NIR was elaborated within the light-front
framework, to be discussed in the next Sections. This step allowed for a much simpler treatment of
the kernel, overcoming the need to invoke the uniqueness theorem.

Before introducing the integral representation of the BS amplitude, it is perhaps useful to briefly
recall its history, in order to clarify the status of the NIR in the non-perturbative context of the BSE.

The representation which we adopt for the BS amplitude was investigated by many authors in
the fifties-sixties [30, 31], and was formerly known as the DGSI representation (after Deser, Gilbert,
Sudarshan and Ida). However, the proofs given by these authors, which were in the context of
axiomatic field theory, relied on an integral representation for the double commutator proposed by
Dyson [32], which eventually turned out to be incorrect [33].

During the same years, N. Nakanishi obtained, in the context of perturbation theory, an integral
representation for general Feynman diagrams [29], which coincided with the DGSI representation for
the three-legs amplitude with one leg on the mass-shell. Noteworthy, in connection with the BSE,
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the same author gave a rigorous proof of validity of the representation in the case of a ladder kernel
interaction in a scalar theory [11].

At this point it must be emphasized that, to the present date, there exists no general proof
of the NIR for the solutions of both the homogeneous and inhomogeneous BSE. Its validity has
been numerically checked: (i) for a two-scalars bound system with a scalar-exchange ladder kernel
[13, 14, 18, 19]; (ii) same as before, but with the cross-ladder kernel [15, 34]; (iii) for a two-fermions
bound system with scalar, pseudoscalar and vector-exchanges ladder kernels [17, 20, 21]. Also, the
inhomogeneous case has been investigated in Refs. [22, 23]. The first aim of this Thesis is to extend
these investigations to the case of fermion-scalar constituents.

3.1.1 NIR of the BS amplitude

In the simplest case of a spinless bound-state of scalar constituents, with masses m1 and m2 respec-
tively, the NIR of the BS amplitude reads [11]:

χ(k;P ) = i

1ˆ

−1

dz
∞̂

0

dγ g(γ, z)[
(k + z P2 )2 − (1− z2)κ2 − (zm−∆)2 − γ + iε

]3 , (3.1.1)

where g is a real function, known as the Nakanishi weight function, and:

m = m1 +m2
2 , ∆ = m2 −m1

2 , κ2 = m2 − M2

4 . (3.1.2)

For the sake of concreteness, in the NIR (3.1.1) it is assumed that the coefficients η1,2 in the definition
of the reduced BS amplitude (see Eqs. (2.1.8)-(2.1.9)) are chosen to be η1 = η2 = 1

2 . We shall assume
throughout, whenever employing a NIR, that this choice has been made.

The most appealing feature of the NIR is that it explicitly displays the momentum dependence
and the analytic structure of the BS amplitude, thus allowing to perform the needed integrations to
make the BSE (2.1.37) a numerically tractable problem. Indeed, as shown in what follows, once the
NIR (3.1.1) is assumed, one can plug it into the BSE to obtain an integral equation for the Nakanishi
weight function g.

Let us now describe into a bit more detail how Eq. (3.1.1) is formally obtained from the analysis of
transition amplitudes within a perturbative framework. In summary, Nakanishi obtained an integral
representation for a general connected Feynman diagram with n-external legs1 (some of them possibly
off mass-shell), which is essentially a clever change of variables into the celebrated Feynman’s para-
metric formula [35]. In the NIR, the dependence upon the particular diagram considered appears only
in the numerator, while the denominator is common to the whole set of diagrams contributing to the
same transition amplitude. Noteworthy, it contains only the independent scalars obtained from the
external momenta. Hence, one can formally sum up all such diagrams, achieving an integral represen-
tation for the full transition amplitude, with the same denominator pertaining to a single diagram.
Such an expression is exact to any finite order of perturbation theory.

To concretize these statements, we consider a particularly relevant example: the NIR of the three-
legs vertex iΓ(k;P ) (see Fig. (3.1.1)). This is given by2:

iΓ(k;P ) = i

1ˆ

0

dζ
∞̂

0

dν ϕ(ζ, ν)
ζ(P2 + k)2 + (1− ζ)(P2 − k)2 − ν + iε

. (3.1.3)

1Technically, the NIR in Nakanishi’s original formulation applies to amputated diagrams, i.e. diagrams where the
external legs have been removed. This remark is actually relevant to our discussion, since it implies that the NIR of the
BS amplitude should be obtained from the one of the bound state vertex (see below).

2It is worth noticing that the representation (3.1.3) is equally valid for both the connected vertex and its proper, i.e.
1PI, part (see e.g. [25]).
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Figure 3.1.1. Three-legs vertex iΓ(k;P ). The external legs are amputated, i.e. their expression is replaced by
a factor of one.

For the scalar theories which we are considering here, the weight function ϕ is independent from
the external momenta. In the general case, ϕ has a polynomial dependence on the external momenta
(see e.g. [35, Chap. 18]; Bjorken & Drell focus on Feynman’s parametric formula, but the same
remarks apply to the NIR, since the latter is obtained from the former by a simple rewriting of the
Feynman parametric integral).

The contribution to iΓ from a particular three-legs diagram G is also given by the same expression
(3.1.3), with a weight function ϕG which encloses the structure of G and can be computed, if requested,
from perturbation theory (see [10] for details). It is clear that, to any finite order in the coupling
constants of the theory, one has:

ϕ ≡
∑
G

ϕG ,

where the sum extends to all the three-legs diagrams of order less than or equal to the prescribed one.
In the attempt to extend the NIR to the non-perturbative regime, needed for describing a bound

state, one can write the BS amplitude in terms of a bound state vertex:

χ(k;P ) = i∆′1(k1)i∆′2(k2)iΓ(k;P ), (3.1.4)

where k1,2 = P
2 ±k. The NIR of the BS amplitude, Eq. (3.1.1), can be derived by assuming Eq. (3.1.3)

for the bound state vertex. This is a non-trivial assumption, though, since the vertex defined by Eq.
(3.1.4) is by nature a non-perturbative object, while Eq. (3.1.3) was obtained from perturbation
theory. Of course, the validity of this ansatz is verified when a solution of the BSE in the form (3.1.1)
is found. Also, it is worth recalling that Eq. (3.1.1) was rigorously proved by Nakanishi for the
solutions of the scalar ladder BSE [11].

Let us make some final considerations on the support of g. Under the simplifying assumption of
free propagators, applying the standard Feynman trick and redefining properly the weight function
(cf. Appendix A for details), one obtains from Eqs. (3.1.4) and (3.1.3):

χ(k;P ) = i

1ˆ

−1

dz
∞̂

−∞

dγ g(γ, z)[
(k + z P2 )2 − (1− z2)κ2 − (zm−∆)2 − γ + iε

]3 . (3.1.5)

The support of g, which is left implicit in Eq. (3.1.5), depends on the particular kernel adopted for
the BSE. For the scalar ladder BSE, Nakanishi has proved that g(γ, z) = 0 if γ < 0 [11], in which case
Eq. (3.1.5) coincides with (3.1.1), but one must keep in mind that the rigorous proof of this result (as
well as of the NIR itself) exists only for this particular case (in the general case, a lower bound for the
γ variable can be determined by other physical arguments, see e.g. Subsec. 3.2.4).



24 CHAPTER 3. THE NIR-LF APPROACH TO THE BETHE-SALPETER EQUATION

3.2 Bound states on the light front

Light-Front (LF) quantum field theory offers a powerful and physically transparent framework for
the description of relativistic bound states. In fact, in the LF framework, the bound state vector
is represented by an infinite set of frame independent wave-functions, which describe the internal
motion of the constituents in the bound state. This representation provides a clear-cut separation
of the internal dynamics from the center-of-mass motion of the composite particle, in a way which
closely resembles the non-relativistic description of bound states, but incorporates, at the same time,
the necessity of dealing with an indefinite number of particles, as required by relativistic field theory.

In connection with the BSE, the LF framework provides a tool to explore the physical content of
its solutions, e.g. through the LF distributions, in turn related with parton distributions. Moreover,
the modern approach to the Minkowski space BSE is based on a LF projection of the BS amplitude,
which finds its natural physical interpretation in the context of LF quantum field theory, as illustrated
in what follows.

3.2.1 LF quantized field theories

In his seminal 1949 paper [36], Dirac made the insightful suggestion that a consistent form of relativistic
dynamics could be obtained by choosing to evolve states in space-time starting from a general initial
space-like hypersurface Σ, which intersects the worldlines of physical particles only once. In non-
relativistic physics, where speeds are unbounded, there exists only one hypersurface with the above
mentioned property, namely the “instant” ΣI ≡

{
x|x0 = const.

}
. On the other hand, in special

relativity, one has much greater freedom in the choice of Σ, which results in the possibility to have
manifold-different descriptions of relativistic dynamics.

In particular, Dirac brought attention to the partition of the generators of the Poincaré group
induced by the choice of Σ: the “Hamiltonians”, i.e. those generators that evolve the system from
the initial hypersurface, and the remaining generators, which leave Σ invariant. Noteworthy the
Hamiltonians contain the dynamics of the system, as the name chosen to indicate these generators
suggests.

The LF form of Hamiltonian dynamics is probably the best realization of Dirac’s idea. In the LF
approach to quantum field theory [37, 38], one imposes canonical commutation rules (CCRs) to the
fields on the null hyperplane3 (see Fig. 3.2.1):

ΣLF ≡
{
x|x+ ≡ x0 + x3 = 0

}
. (3.2.1)

Correspondingly, the initial state vector is defined on ΣLF, where the interacting (Heisenberg) fields
coincide with the free fields. The coordinate x+ plays, in the LF formalism, the role of an evolution
parameter, exactly like the time x0 in the usual instant form, and is thus called the LF-time.

This choice has several advantages. In the first place, the hypersurface (3.2.1) has the largest
possible kinematical group, namely the subgroup of the Poincaré transformations which leaves Σ
invariant4. In fact, it is seven-dimensional, in contrast to the kinematical group of the familiar “instant”
ΣI, which is six-dimensional. As already recognized by Dirac, the generators of the kinematical group,
or shortly kinematical generators, play a special role, since they are independent of interactions, i.e.

3It should be noted that ΣLF is not genuinely space-like, since it has a light-like tangent direction v = (1, 0, 0,−1). In
the presence of massless particles, say photons, this means that ΣLF contains entirely the worldline of a photon which
moves along the −ẑ direction. In D + 1-dimensions, with D ≥ 2, this is one out of ∞D−1 possible spatial orientations,
and thus is not expected to lead to any serious complication. On the other hands, for 1+1-dimensional QFT, the validity
of the LF approach is still under debate [37].

4In order to have all points of Σ to be kinematically equivalent, one requires that any two points are connected by
a kinematical transformation, i.e. the kinematical group acts transitively on Σ [39]. This implies that the kinematical
group must be at least three-dimensional.
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Figure 3.2.1. 2 + 1-dimensional representation of the light-front x+ = 0.

they are simply given by sums of free one-particle generators. In the context of Lagrangian QFT, this
can be checked directly from the expressions5:

Pµ ≡
ˆ

ΣLF

dσ+T
+µ, Mµν ≡

ˆ

ΣLF

dσ+(xµT+ν − xνT+µ),

where Tµν = ∂L
∂(∂µφ)∂

νφ−gµνL is the energy-momentum tensor, Pµ andMµν are the four-momentum
vector and angular momentum tensor, dσ+ denotes the infinitesimal element of ΣLF (for more details
on the LF notation, see Subsec. 3.2.2).

Particularly important elements of the kinematical group are the so-called LF boosts, which form
themselves a subgroup, and act transitively on the positive mass-shell

{
P 2 = M2, P 0 > 0

}
. As we

shall see shortly, this particular fact implies that the LF wave-functions (LFWFs) of a bound state,
which describe the internal motion of the constituents, are frame independent quantities.

The second important feature is that the expression of the exact vacuum in terms of Fock states is
much simpler in the LF form than in the instant form. Indeed, for a theory without massless fields, it
exactly coincides with the free vacuum [37, 38]. This feature allows one to establish a simple relation
between the BS amplitude and the valence LFWF (see Subsec. 3.2.3).

Lastly, the Klein-Gordon equation is of the first order in the LF-time x+, and thus the inverse
propagator is of first order in the LF-energy. We anticipate that this latter feature plays a relevant
role in the so-called LF projection of the BSE, which we shall introduce later on.

5With the usual caveat of non-derivative interactions [38], which, at any rate, also alter the CCRs. Moreover, the
expression given for Mµν is valid for scalar field theories.
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3.2.2 Summary of LF notation

Tensorial algebra conventions. We define the LF coordinates by:

x± ≡ x0 ± x3, x⊥ ≡
(
x1, x2

)
, (3.2.2)

and denote more generally the ± components of a tensor by:

T±µνρ··· ≡ T 0µνρ··· ± T 3µνρ···. (3.2.3)

The scalar product between two four vectors A and B takes the form:

A ·B = 1
2A

+B− + 1
2A
−B+ −A⊥ ·B⊥ (3.2.4)

so that the metric tensor is given by:

gLF ≡

+ 1 2 −
0 0 0 1

2
0 −1 0 0
0 0 −1 0
1
2 0 0 0

. (3.2.5)

The raising and lowering of indices is defined as usual by Aµ = gµνA
ν , i.e.:

A± = 1
2A
∓, A⊥i = −Ai⊥ (3.2.6)

The covariant components of the gradient are:

∂± ≡
∂

∂x±
, ∂⊥i ≡

∂

∂xi⊥
. (3.2.7)

The space-time volume and ΣLF surface elements are given by6:

d4x = 1
2dx

+dx−d2x⊥, (3.2.8)

dσ+ = 1
2dx

−d2x⊥. (3.2.9)

We also indicate LF position and momentum three-vectors by the following notation:

x̃ ≡
(
x−,x⊥

)
, p̃ ≡

(
p+,p⊥

)
, (3.2.10)

with scalar product:
p̃x̃ ≡ 1

2p
+x− − p⊥ · x⊥. (3.2.11)

The mass-shell Lorentz invariant measure satisfies:ˆ
d4p δ(p2 −m2)θ(p0)f(p) =

ˆ d3p̃

2p+ θ(p
+)f(p), (3.2.12)

where f(p) is any function defined on the positive mass-shell
{
p2 = m2, p0 > 0

}
, d3p̃ = dp+d2p⊥, and

the dispersion relation on the RHS of (3.2.12) is:

p− = p2
⊥ +m2

p+ . (3.2.13)
6The surface element is obtained from the geometrical definition:

dσµ = 1
3!εµνρσdx

ν ⊗ dxρ ⊗ dxσ,

which implies Eq. (3.2.9) since ε+12− = 1
2 .
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LF decomposition of the Poincaré algebra. Following Ref. [40], we employ the following con-
ventions for the Poincaré algebra7:

[Pµ, P ν ] = 0, (3.2.14)
[Mµν , P ρ] = i(gνρPµ − gµρP ν), (3.2.15)

[Mµν ,Mρσ] = i(gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ), (3.2.16)

and define:
J i = 1

2εijkM
jk, Ki = M0i. (3.2.17)

With these conventions, the operators e−iθ·J and e−iω·K generate active rotations and boosts of the
system respectively. For instance:

eiθJ
3
(
P 1

P 2

)
e−iθJ

3 =
(

cos θP 1 − sin θP 2

sin θP 1 + cos θP 2

)
, (3.2.18)

eiωK
3
(
P 0

P 3

)
e−iωK

3 =
(

coshωP 0 + sinhωP 3

sinhωP 3 + coshωP 3

)
. (3.2.19)

The LF components of Pµ and Mµν are:

Pµ =
(
P+, P 1, P 2, P−

)
(3.2.20)

Mµν =

ν
99K

+ 1 2 −
0 B1 B2 −2K3

−B1 0 J3 −S1

−B2 −J3 0 −S2

2K3 S1 S2 0

, (3.2.21)

where:

B1 = K1 + J2, B2 = K2 − J1, (3.2.22)
S1 = K1 − J2, S2 = K2 + J1, (3.2.23)

or, more compactly:

B⊥ = K⊥ − z× J. (3.2.24)
S⊥ = K⊥ + ẑ× J, (3.2.25)

The generators Bi and Si are called transverse LF boosts and rotations, respectively. The three
dynamical generators are P− and S⊥. In particular, P− generates translations in the + space-time
direction (LF-time):

e
i
2 cP

−O(x)e−
i
2 cP

− = O(x+ + c, x−,x⊥),

and therefore it is called the LF-energy. The kinematical generators include the translations parallel
to the null hyperplane (P⊥ and P+), the rotations and boosts in the ẑ-direction (J3 and K3) and the
transverse LF boosts B⊥. As mentioned above (see Appendix B for details), the LF boosts, i.e. the
boosts generated by K3 and B⊥, form a subgroup of the Lorentz group, which acts transitively on the
positive mass shell

{
P 2 = M2, P 0 > 0

}
. Together with their kinematical character, this fact implies

that the LFWFs are frame independent.
For more details on the LF decomposition of the Poincaré algebra and, in particular, on the

commutation rules of the LF generators, we address the interested reader to Refs. [40, 41].
7Notice that Kogut and Soper [40] define the ±-components as x± ≡ x0±x3

√
2 , differently from us (cf. Eq. (3.2.2)).
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QFT conventions. We write the real scalar field at x+ = 0 as:

ϕ(x̃) =
ˆ d3p̃ θ(p+)√

(2π)32p+

{
a(p̃)e−ip̃x̃ + a†(p̃)eip̃x̃

}
, (3.2.26)

a(p̃) =
√

(2π)32p+
ˆ d3x̃

2 eip̃x̃ϕ(x̃) (p+ > 0). (3.2.27)

The CCRs read [42]: [
ϕ(x̃), ∂+ϕ(ỹ)

]
= iδ2(x⊥ − y⊥)δ(x− − y−), (3.2.28)[

a(p̃), a†(q̃)
]

= δ3(p̃− q̃). (3.2.29)

Notice that, contrary to the annihilation operators in the instant form t = 0, the LF annihilation oper-
ators (3.2.27) are simply given by a Fourier transform of the field on the LF surface, as a consequence
of the halved domain [0,+∞) of p+.

The Fock vacuum is defined by:
a(p̃)|0〉LF = 0 ∀p̃ (3.2.30)

and we will assume throughout that it coincides with the exact vacuum (see the discussion in Subsec.
3.2.1)8:

|0〉LF ≡ |0〉. (3.2.31)

The interacting field is related to the field at x+ = 0 by the Heisenberg equation:

φ(x) ≡ e
i
2P
−x+

ϕ(x̃)e−
i
2P
−x+

. (3.2.32)

The free field satisfies the Klein-Gordon equation:

(∂−∂+ − ∂2
⊥ +m2)φ = 0, (3.2.33)

which is, as mentioned above, of first order in the time variable x+, implying that the number of
degrees of freedom is, in the present formulation, reduced by one-half with respect to the standard
(instant) formulation (see Ref. [42] for further discussion).

3.2.3 The LFWF and its relation with the BS amplitude

The bound state |b;P 〉 can be expanded in the complete Fock basis defined by the creation operators
in (3.2.26). The expansion is usually written [22]:

|b;P 〉 =
1ˆ

0

dξ
(2π)2ξ(1− ξ)

ˆ d2k⊥
(2π)2 |2/P ; ξk⊥〉Ψ2(ξ,k⊥) + · · · , (3.2.34)

where we have displayed explicitly only the so-called valence component of the state. The two particles
states |2/P ; ξk⊥〉 are defined by:

|2/P ; ξk⊥〉 ≡
√

(2π)32p+
1 a
†
1(p̃1)

√
(2π)32p+

2 a
†
2(p̃2)|0〉, (3.2.35)

8The simplicity of the vacuum stems from the fact that, according to the basic postulates of field theory, |0〉 must be
a (proper) eigenvector of P̃ with eigenvalue p̃ = 0. For a theory with only massive quanta, every eigenstate |n〉 of P+

with n ≥ 1 particles has an eigenvalue:

p+ =
n∑
i=1

p+
i =

n∑
i=1

(p0
i + p3

i ) > 0,

so that its overlap with the vacuum must vanish, 〈n|0〉 = 0.
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where:

p+
1 ≡ ξP

+, p1⊥ ≡ ξP⊥ + k⊥, (3.2.36)
p+

2 ≡ (1− ξ)P+, p2⊥ ≡ (1− ξ)P⊥ − k⊥. (3.2.37)

The scalar products between two such states is (assuming distinguishable particles):

〈2/P ′; ξ′k′⊥|2/P ; ξk⊥〉 = (2π)32P+δ3(P̃ − P̃ ′)(2π)32ξ(1− ξ)δ(ξ − ξ′)δ2(k⊥ − k′⊥), (3.2.38)

so that:
〈2/P ′; ξ′k′⊥|b;P 〉 = (2π)32P+δ3(P̃ − P̃ ′)Ψ2(ξ′,k′⊥). (3.2.39)

It should be remarked that Ψ2, like any LFWF, is a frame independent quantity, as we prove in
Appendix B.4. In fact, the quantities ξ and k⊥ are invariant with respect to the LF boosts generated
by K3 and B⊥ and describe therefore the intrinsic motion in the two-particles component of the
state |b〉. As an inspection of Eq. (3.2.36) reveals, they are respectively the fraction of longitudinal
momentum carried by particle 1, and its transverse momentum in a reference frame where P⊥ = 0.

We can now establish a simple relation between the BS amplitude and the valence wave function
Ψ2, which provides a physical interpretation for the LF projection of the BS amplitude. We start by
writing the time-ordered product appearing in the definition of the BS amplitude as a LF time-ordered
product:

χ(x;P ) = θ(x+)〈0|φ1(η2x)φ2(−η1x)|b;P 〉+ θ(−x+)〈0|φ2(−η1x)φ1(η2x)|b;P 〉. (3.2.40)

The intuitive justification for this procedure is to regard the LF surface ΣLF as the limit of a flat space-
like surface. However, it must be recognized that the identity (3.2.40) is nontrivial. It is well known,
for instance, that the T+-ordered propagator of a free Dirac field differs from the T-ordered one by a
non-covariant term, proportional to δ(x+)δ(x⊥) [40], [43]. Indeed, it follows from the assumption of
microcausality that the T+ and T product of two local fields can differ at most by a term concentrated
on the light-like line

{
x|x+ = 0,x⊥ = 0

}
contained in ΣLF (the green line in Fig. 3.2.1).

We are not aware of any reference in the literature addressing this particular issue. In what follows,
we shall simply ignore the issue and regard (3.2.40) as a valid relation. However, it is worth to recall
that, in Ref. [43], the equivalence of T+ and T products was proved perturbatively (i.e. order by
order) for the Dyson series, viz.:

T+ exp
{
−i
ˆ

d4xH +
I

}
= T exp

{
−i
ˆ

d4xHI

}
,

where the subscript I denotes operators in the interaction representation. The LF interaction H +
I

coincides with HI = −LI for a scalar theory with non-derivative interactions. In the presence of
Dirac fields, H +

I −HI contains non-covariant terms, needed to cancel the corresponding non-covariant
contributions arising from T+-ordered fermion propagators.

We can directly check that when x+ = 0 the two amplitudes on the RHS of (3.2.40) coincide, so
that, at least on the formal level, we have:

χ(x+ = 0, x̃;P ) = lim
ε→0±

χ(x+ = ε, x̃;P ) = 〈0|φ1(η2x̃)φ2(−η1x̃)|b;P 〉. (3.2.41)

Notice that putting x+ = 0 corresponds, in momentum space, to an integration of χ(k;P ) over the
minus component of the relative momentum. Indeed, using the plane wave expansion (3.2.26), the
CCRs (3.2.29) and the bound state LF expansion (3.2.34), after some formal manipulations on Eq.
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(3.2.41) (see Ref. [22] for details), we find9:

+∞ˆ

−∞

dq−

2π χ(q;P ) = 1
P+ξ(1− ξ)Ψ2(ξ,k⊥), (3.2.42)

where the variables in (3.2.42) are related by:

ξ = η1 + q+

P+ , (3.2.43)

k⊥ = q⊥ −
q+

P+ P⊥. (3.2.44)

It is thus seen that the LF projection of the BS amplitude is, apart from a kinematical factor,
nothing but the valence LFWF of the bound state. In particular, the integration over q− in Eq.
(3.2.42), which in coordinate space amounts to set to zero the relative LF-time x+, allows one to
recover a probabilistic interpretation which, as discussed in Section 2.1, does not pertain to the BS
amplitude.

Valence probability

A simple quantity which can be directly extracted from the LFWF is the so-called valence probability,
which is defined as the probability to find the system in a state with two constituents. Roughly
speaking, the valence probability can be regarded as a measure of the deviation from the non-relativistic
picture of the bound state, as composed by two constituents in a bounded region of space.

To obtain the valence probability of the bound state, in order to deal with a physical (normalizable)
state, let us consider a wave-packet:

|b; Φ〉 =
ˆ d3P̃

(2π)32P+ |b;P 〉Φ(P ), (3.2.45)

1 = 〈b; Φ|b; Φ〉 =
ˆ d3P̃

(2π)32P+ |Φ(P )|2 . (3.2.46)

From the normalization (3.2.38) of 2-particle states, we see that the projector on the 2-particle sector
of the Hilbert space may be written as:

Π2 =
ˆ d3P̃

(2π)32P+
d2k⊥dξ

(2π)32ξ(1− ξ) |2/P ; ξk⊥〉〈2/P ; ξk⊥|. (3.2.47)

Therefore, the valence probability is:

Pval = 〈b; Φ|Π2|b; Φ〉 =
ˆ d2k⊥dξ

(2π)32ξ(1− ξ) |Ψ2(ξ,k⊥)|2 . (3.2.48)

It is worth to stress that Pval is an intrinsic quantity, independent from the arbitrary wave-packet Φ,
as a consequence of the frame independence of the LFWF.

9Notice that, contrary from us, Ref. [22] considers the constituents 1 and 2 as indistinguishable, and has therefore a
factor

√
2 multiplying the RHS of (3.2.42).
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3.2.4 NIR of the valence wave-function

The relation between the LFWF and the BS amplitude, Eq. (3.2.42), together with the NIR of the
BS amplitude (3.1.5), allows to obtain immediately an integral representation for the LFWF.

The integral of (3.1.5) with respect to the relative LF-energy can be carried out explicitly, using
the so-called LF integrals identities (see Appendix C.5.6), with the result:

ˆ dq−

2π χ(q;P ) = 1
P+

∞̂

−∞

dγ′
g(γ′,−2q+

P+ )[
− q+

P+P−q+ − q2
⊥ − z′P⊥ · q⊥ − κ2 −∆2 + 2zm∆− γ′ + iε

]2 .
Comparing with (3.2.42), and using the definitions (3.2.43) and (3.2.44), we finally obtain10:

Ψ2(ξ, γ) = 1− z2

4

∞̂

−∞

dγ′ g(γ′, z)
[γ′ +D0(γ, z)− iε]2

, (3.2.49)

where:
γ ≡ k2

⊥, z ≡ 1− 2ξ (3.2.50)

and
D0(γ, z) ≡ γ + (1− z2)κ2 + (zm−∆)2. (3.2.51)

Notice that D0(γ, z) ≥ 0 for a bound state, since κ2 ≥ 0. Using the distributional identity [13]

1
[x− iε]n = FP 1

xn
+ iπ

(−1)n−1

(n− 1)! δ
(n−1)(x),

where “FP” stands for the Hadamard finite part prescription [44], and the fact that g and Ψ2 are both
real11, one may show that the NIR (3.2.49) implies that the weight function g(γ′, z) vanishes when
γ′ +D0(0, z) ≤ 0 (so that the iε term can be omitted from the denominator of Eq. (3.2.49)).

The inversion problem

As we have discussed, the LF projection of the BS amplitude, i.e. its integral over k−, provides a map:

χ
L7→ Ψ2

which, given the full BS amplitude χ as input, returns the valence wave-function Ψ2 = Lχ as output.
One could wonder if this map is one-to-one, i.e., if there exists a single valued inverse operator L−1.
Quite remarkably, the answer turns out to be positive and, even more interestingly, the bridge between
the two functions is provided by the Nakanishi representation.

The formal existence of the inverse L−1 was already suggested in a series of papers (see Ref. [45]
and references quoted therein) where the BSE was projected on the light-front, yielding an equation
for the LFWF. By applying a formal operator L−1 to the solution Ψ2 of the latter equation, it was
shown that χ = L−1Ψ2 provides a solution of the original BSE. However, no explicit expression of
the operator L−1 was given, so that the possibility to invert the LF projection remained on a purely
formal level. Notice that NIR was not used at all in those works.

Recently, a solution to the inversion issue under the assumption of a NIR for the BS amplitude
has been proposed in Ref. [46], where it was shown that the relation (3.2.49) between Ψ2 and the
Nakanishi weight-function g can actually be inverted, given the knowledge of Ψ2 in the full complex

10Incidentally, we observe that Eq. (3.2.49) explicitly displays the above mentioned frame independence of Ψ2.
11The valence LFWF is real under the assumption of PT invariance, see Appendix B.4.
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χ
LF projection // Ψ2

Inverse Stieltjes transform

��
g

NIR

__

Figure 3.2.2. Relations between the BS amplitude, the valence LFWF and the Nakanishi weight function.

plane of its first argument γ = k2
⊥. Given the weight-function g, the BS amplitude is immediately

recovered from its NIR.
The key observation of Ref. [46] is that the integral representation (3.2.49) is a particular case of

a generalized Stieltjes transform:

F (x) =
∞̂

0

G(y)
(y + x)ρdy. (3.2.52)

One can show that, under very general assumptions on the function G, the LHS of Eq. (3.2.52) is an
analytic function, a part from a cut along the negative real axis, and that (3.2.52) can be analytically
inverted. In the case ρ = 2, the inversion formula is given by:

G(y) = y

2πi

ˆ

C

F (yw)dw. (3.2.53)

Here C is a contour in the w complex plane which starts and ends at w = −1, and has winding number
1 with respect to the origin w = 0. In particular, one has:

G(y) = y

π̂

−π

dφ
2π e

iφF (yeiφ). (3.2.54)

By applying this inversion formula to Eq. (3.2.49), one obtains (in the equal masses case):

g(γ, z) = 4γ
1− z2

π̂

−π

dφ
2π e

iφΨ2(γeiφ −m2z2 − (1− z2)κ2, z). (3.2.55)

Therefore the inverse operator L−1 of the LF projection is given by the composition of the Stieltjes
inversion (Ψ2 7→ g) and of the NIR (g 7→ χ). The relations between χ, Ψ2 and g are summarized in
Fig. 3.2.2.

It should be pointed out that, at least in principle, the knowledge of Ψ2 for complex values of γ
can be completely bypassed. Indeed, assuming only the Lebesgue integrability of G, one can construct
from F a sequence of functions Fk such that:

lim
k→∞

Fk(y) = G(y)

at every Lebesgue point of G [47]. Therefore, the valence wave-function in Minkowski space is, in
principle, sufficient to reproduce the BS amplitude. Unfortunately, the functions Fk are given by a
complicated expression involving the 2k − 1-th derivative of F (see [47, eq. (5)]), so that this kind of
“real” inversion appears practically unfeasible.
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3.3 A NIR-LF based approach to the BSE
In this Section we introduce, in the simple case of scalar constituents, the method based on NIR and
the LF projection for obtaining numerical solutions of the Minkowski space BSE. This approach has
been so far applied: i) in the scalar constituents case, to the scalar exchange ladder [14, 18, 19] and
ladder plus cross-ladder [15] kernels; ii) in the fermion constituents case, to the scalar, pseudoscalar and
vector exchange ladder kernels [17, 20]. We shall illustrate the results for fermion-scalar constituents,
interacting through the exchange of a massive scalar, in the next two Chapters, while the interaction
through a massless vector will be discussed in [48].

It is worth mentioning that Refs. [14, 18, 19, 15, 17, 20] assume the indistinguishability of the
constituent particles (in the vector-exchange case, the two fermions are particle and antiparticle). The
full agreement of these results with those obtained from the Wick-rotated BSE (see, in particular,
Ref. [19]) provides a first strong hint towards the general validity of the NIR-LF approach to the
Minkowski space BSE.

3.3.1 Description of the method

The core of the method is the NIR of the BS amplitude discussed in Sec. 3.1, which we rewrite for
convenience:

χ(k;P ) = i

1ˆ

−1

dz′
∞̂

0

dγ′ g(γ′, z′)[
(k + z′ P2 )2 − (1− z′2)κ2 − (z′m−∆)2 − γ′ + iε

]3 . (3.3.1)

(the support property γ′ > 0 is assumed throughout). Once Eq. (3.3.1) is plugged into the BSE, the
latter becomes a singular integral equation for the weight function g:

χ(k;P ) = i

1ˆ

−1

dz′
+∞ˆ

0

dγ′
∑
j=1,2

Ṽ (k2, Pk, γ′, z′)g(γ′, z′), (3.3.2)

where χ in the LHS is expressed in terms of g through Eq. (3.3.1). For the ladder kernel:

iKlad(k, k′) = iλ
i

(k − k′)2 − µ2 + iε
iλ (3.3.3)

the RHS kernel Ṽ is given by:

Ṽ (k2, Pk, γ′, z′) = λ2

8π2M2

1ˆ

0

v2dv 1[
(1− z)(k− − k−d ) + iε

] [
(1 + z)(k− − k−u )− iε

] [
k−k+

D + lD + iε
]2 .

(3.3.4)
Here v is a Feynman parameter, reminiscent of the four-dimensional integration in k′, and the quan-
tities k−u,d, k

+
D and lD are defined in Appendix C.2 (with mψ/φ → m1/2). The presence of poles in

the various denominators, imply that the integrals in Eq. (3.3.2) have to be interpreted as Hadamard
finite part integrals (see e.g. Ref. [44]; integral equations involving finite part integrals are called, in
the mathematical literature, “hypersingular”).

To obtain a regular equation for g, the whole equation is projected onto the light front, i.e., is
integrated over k−. Recall that, since the LF projection is invertible under the assumption of a NIR,
the LF projected BSE is strictly equivalent to the original one if Eq. (3.3.1) is valid.

The final result is an integral equation of the form:

Bg = V g, (3.3.5)
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where the kernels of the integral operators B and V are both regular. The LHS is, apart from a
kinematical factor, the valence LFWF of the bound state (cf. Subsec. 3.2.49), and is given by:

(Bg)(z, γ) ≡
+∞ˆ

0

dγ′ g(γ′, z)
[γ′ +D0(γ, z)]2

, (3.3.6)

with:
D0(γ, z) ≡ γ + (1− z2)κ2 + (zm−∆)2 (3.3.7)

The operator V in the RHS is determined by the irreducible kernel iK adopted for the original BSE.
For the ladder kernel (3.3.3), in the equal masses case, it takes the form [18, 46]:

V = αA, (3.3.8)

where α ≡ g2

16πm2 and:

(Ag)(γ, z) = m2

2π

+∞ˆ

0

dγ′
1ˆ

−1

dz′
[
θ(z − z′)F (γ, z, γ′, z′) + θ(z′ − z)F (γ,−z, γ′,−z′)

]
g(γ′, z′), (3.3.9)

where:

F (γ, z, γ′, z′) = (1− z)2

γ + z2M2

4 + κ2

1ˆ

0

v2dv 1
D(γ, z, γ′z′)2 , (3.3.10)

D(γ, z, γ′, z′) = v(1− v)(1− z′)γ + v(1− z)γ′ + v(1− z)(1− z′)
[
1 + z(1− v) + vz′

]
κ2+

+ v
[
(1− v)(1− z′)z2 + vz′2(1− z)

]
m2 + (1− v)(1− z)µ2. (3.3.11)

Therefore, once the bound state mass M2 is fixed, Eq. (3.3.5) becomes a generalized eigenvalue
equation:

Ag = λBg, (3.3.12)

where λ = 1
α . The choice of solving Eq. (3.3.12) for λ = 1

α , instead that for α directly, is entirely due
to numerical stability issues, since the routine employed for the numerical solution of the eigenvalue
problem (DGGEV from LAPACK) treats asymmetrically the matrices A and B.

Notice that, if we invert the Stieltjes transform B in (3.3.12), we obtain an ordinary eigenvalue
equation for the operator C = B−1A, which has in general complex solutions (λ, g), since C is not
necessarily symmetric. However, such an inversion was not performed in the literature, in the actual
solutions of (3.3.12).

The bound states correspond to the real, positive eigenvalues. The actual search of the admissible
eigenvalue for a given mass M of the ground state is driven by the request that the strength of the
interaction (i.e. the value of the coupling constant α) is the smallest one giving rise to the bound state
(this is the same pattern one meets in the study of the ground state for a non-relativistic potential
well, where the shallowest well is requested). Therefore, the M vs.α dependence for the ground state
is simply given by α(M) = 1

λmax(M) , where λmax(M) is the greatest real eigenvalue in Eq. (3.3.12) for
the fixed mass M . Excited states can be treated by a slight generalization of the method [19].

The eigenvalue problem (3.3.12) has been extensively investigated by exploiting standard meth-
ods. In Ref. [18], the integral operators A and B were discretized through the introduction of an
orthonormal basis:

uj`(γ, z) = Lj(γ)G`(z) (γ, z) ∈ [0,+∞)× [−1, 1] , (3.3.13)
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where Lj and G` are given in terms of Laguerre Lj and Gegenbauer C(α)
` polynomials respectively:

Lj(γ) =
√
aLj(aγ)e−

aγ
2 , (3.3.14)

G`(z) = 4(1− z2)Γ(5
2)

√
(2`+ 5

2)(2`!)
πΓ(2`+ 5) C

( 5
2 )

2` (z). (3.3.15)

In the indistinguishable particles case, due to permutational symmetry, one has g(γ, z) = g(γ,−z),
hence only even degree polynomials were used in Ref. [18]. The Gegenbauer weight function 1 − z2

ensures the vanishing of the valence LFWF for z → ±1, which corresponds physically to one of the
constituents having an infinite momentum along the ẑ direction. Also, the Laguerre weight function
e−

aγ
2 ensures the vanishing of g for γ → ∞, which is required in order to have a finite value at the

origin for the density in transverse-coordinate space (i.e. Fourier-conjugated to the k⊥ space) [18].
On the other hand, Refs. [14, 17] employ a cubic spline basis to discretize the eigenvalue problem

(3.3.12). The use of a local expansion has the advantage of overcoming the problem related to the
wild oscillating behavior of high-order orthogonal polynomials in a compact interval, such as the
Gegenbauer polynomials. However, the numerical analysis in a non-orthogonal basis is more involved.
The results obtained for the scalar case with the two basis expansions agree with very high accuracy
[18].

It is worth mentioning that the discretized matrices B turn out to be ill-conditioned, that is to
say, to have a large condition number

κ(B) ≡ ‖B‖
∥∥∥B−1

∥∥∥ = βmax
βmin

,

where βmax/min denote the greatest and smallest eigenvalues ofB, respectively. The numerical inversion
of an ill-conditioned matrix is a delicate task, and both Refs. [14, 18] add a small value ε ∼ 10−4÷10−8

to the diagonal entries of B in order to achieve numerical stability.

3.3.2 A first quantitative view

We quote in this Subsection the main results obtained in Refs. [18, 19], using the method described
above, for the scalar ladder BSE in the equal masses case (for a first investigation of the inhomogeneous
BSE, see [22, 23]).

Table 3.3.1 and Figure 3.3.1 show the dependence of both the coupling constant α and the valence
probability Pval from the binding energy B ≡ 2m −M . Notice that µ

m = 0.15 was chosen in the
literature just to call to mind the ratio mπ

mN
, where mπ,N are the masses of the pion and the nucleon

respectively.
As it can be seen, the coupling constant has, for µ > 0, a non-vanishing limit for B

m → 0, which
means that there exists a threshold αmin > 0 below of which the ladder kernel can not support any
bound state. This is in agreement with the non-relativistic result for the Yukawa potential [49]. On the
other hand, for B

m = 2, it is shown a decreasing behavior with µ
m towards its asymptotic value α = 2π,

i.e. the one obtained in the Wick-Cutkosky model [25, pp. 489-490], where a massless exchange is
considered.

The valence probability tends to its asymptotic value Pval = 1 when B
m → 0, which can be

interpreted as the extreme non-relativistic limit. Also, when B
m = 2, the valence probability decreases

with µ
m towards Pval = 0.64, which is again the result obtained in the Wick-Cutkosky model [50].
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µ
m

= 0.05
B/m α Pval

0.001 0.1685 0.94
0.01 0.3621 0.89
0.10 1.191 0.75
0.20 1.850 0.72
0.50 3.358 0.68
1.00 5.056 0.66
2.00 6.336 0.65

µ
m

= 0.15
B/m α Pval

0.001 0.3667 0.97
0.01 0.5716 0.94
0.10 1.437 0.80
0.20 2.099 0.75
0.50 3.611 0.70
1.00 5.314 0.67
2.00 6.598 0.66

µ
m

= 0.5
B/m α Pval

0.001 1.167 0.98
0.01 1.440 0.96
0.10 2.498 0.87
0.20 3.251 0.83
0.50 4.900 0.77
1.00 6.711 0.74
2.00 8.061 0.72

Table 3.3.1. Coupling constant α and valence probability Pval vs. binding energy B
m , for µ

m = 0.05, 0.15, 0.5.
After Ref. [18].

0 2 4 6 8

α

0
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1.5
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B
/m

µ/m = 0.05

µ/m = 0.15

µ/m = 0.5

B/m    vs.    α
µ/m = 0.15

Figure 3.3.1. B/m vs. α for µ/m = 0.05, 0.15, 0.5. The lines are Akima spline interpolations of the points in
Table 3.3.1.

Cross-ladder effects and non-relativistic limit

It is well known that the cross-ladder contributions to the binding energy, i.e. those arising from
irreducible diagrams of the form of Figure 3.3.2, are very large and attractive. The first investigation
in Minkowski space was performed in Ref. [15], where the authors find:

αL(B)− αL+CL(B)
αL(B) ∼ 0.1÷ 0.3

for µ
m = 0.5 and 0 ≤ B

m ≤ 1, where “L” and “L+CL” stand respectively for the “Ladder” and
“Ladder+Cross-Ladder” BSE results. Noteworthy, the relative difference does not vanish in the non-
relativistic limit, i.e. B → 0, and increases with B, i.e. when the system becomes more relativistic.
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Figure 3.3.2. Cross-ladder diagram

It is also interesting to compare the results of the ladder and ladder+cross-ladder BSE with those
obtained from the non-relativistic Schrödinger equation with a Yukawa potential. As shown in Ref.
[15]:

αL(B) > αL+CL(B) > αNR(B),

where “NR” stands for the non-relativistic result. The cross-ladder contribution are in the expected
direction, but the difference αL+CL − αNR is still about 10% for B

m = 10−3 and µ
m = 0.5.

To conclude, we address the reader to Ref. [34] for an in-depth analysis of cross-ladder effects
on the valence LFWF and the electromagnetic form factor. All these results indicate that the terms
ignored in the ladder approximation are actually important, both in the non-relativistic and in the
high binding regimes.
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Chapter 4

The fermion-scalar Bethe-Salpeter
equation

We introduce in this Chapter the BSE for a bound state composed by a fermion and a scalar, with
different masses. In Sec. 4.1 we extend the formalism based on the NIR of the BS amplitude and the
LF projection, described for a two-scalar system, and in Sec. 4.2, we describe in detail our method
for getting actual solutions of the fermion-scalar ladder BSE. For the sake of comparison, in Sec. 4.3
the Wick-rotated BSE for the system under scrutiny is introduced.

4.1 The BSE for a fermion-scalar bound state

The generalizations of the formalism developed in Chaps. 2 and 3 to the fermion-scalar case are,
in principle, straightforward. However, as it is usual when one considers higher-spin structures, the
calculations cope with some tricky points and become rather lengthy. For this reason, we shall mainly
list the results needed for our numerical analysis to be presented in Chap. 5, referring to Appendices
B and C for the formal details of the derivations.

4.1.1 General form of the BS amplitude

We consider a bound state of spin j = 1
2 , composed by a spin-1

2 and a spin-0 elementary particles
described by the fields ψ and φ respectively. The corresponding BS amplitude is defined by:

χs(x;P ) ≡
ˆ d4k

(2π)4 e
−ikxχs(k;P ) ≡ 〈0|T {ψ(η2x)φ(−η1x)} |b;P, s〉. (4.1.1)

In the following, we shall choose to indicate with s = ±1
2 the eigenvalue of the LF spin operator (see

Appendix B.1):

j3
LF ≡ J3 + ẑ · (B⊥ ×

P⊥
P+ ). (4.1.2)

Correspondingly, all spinors u(P, s) appearing in what follows are understood to be LF spinors (see
Appendix B.2).

In momentum space, the amplitude (4.1.1) satisfies the BSE (cf. Subsec. 2.1.1 and Table 2.1.1 for
the definitions of the relevant Fourier transforms and of the global and relative variables):

χs(k;P ) = G0(k;P )
ˆ d4k′

(2π)4 iK(k, k′;P )χs(k′;P ), (4.1.3)
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where iK is the irreducible kernel and the two-particles propagator G0 is given by:

G0(k;P ) ≡ iS′(η1P + k)i∆′(η2P − k), (4.1.4)

iS′(q) ≡
ˆ

d4x eiqx〈0|T{ψ(x)ψ(0)}|0〉, (4.1.5)

i∆′(q) ≡
ˆ

d4x eiqx〈0|T{φ(x)φ†(0)}|0〉. (4.1.6)

The proof of (4.1.3), which is valid separately for both spin components of the BS amplitude, goes
through, with some minor modifications, as in Subsec. 2.2.3. Notice that the two-particles propagator
G0, as well as the kernel iK, are 4 × 4 matrices in Dirac space, while the BS amplitude χ is a Dirac
spinor.

The spin components of the BS amplitude are not independent, since they must satisfy (see e.g.
[51]):

χs(k;P ) = S−1(Λ)
∑

s′=± 1
2

χs′(Λk; ΛP )D( 1
2 )
s′s (LLF(Λ, P )), (4.1.7)

where Λ is any (proper, orthochronous) Lorentz transformation, LLF(Λ, P ) the LF Wigner rotation
and S(Λ) the Dirac representation of the homogeneous Lorentz group, which is introduced by the
fermionic-field transformation law. Assuming parity invariance and exploiting the Dirac equation
/Pu(P, s) = Mu(P, s), the BS amplitude can be simply expressed in terms of two Lorentz invariant
amplitudes and independent Dirac structures (see Appendix C.1):

χs(k;P ) =
[
φ1(k2, Pk) + φ2(k2, Pk)

/k

M

]
u(P, s), (4.1.8)

which automatically incorporates Eq. (4.1.7). The amplitudes φ1,2 are functions of the only Lorentz
invariants which one can construct from the two four-vector k and P , i.e. k2 and Pk (P 2 = M2 is
understood).

The parametrization (4.1.8) is valid under the assumption that the intrinsic parity of the bound
state πb equals the product πψπφ, where:

P†ψ(x)P = πψγ
0ψ(x0,−x), (4.1.9)

P†φ(x)P = πφφ(x0,−x). (4.1.10)

Indeed, from a non-relativistic point of view, one expects the two constituents to have relative orbital
angular momentum L = 0 in the lowest lying bound state, which implies πb = πψπφ.

Assuming PT invariance, the conjugated amplitude, defined by:

χs(y;P ) ≡
ˆ d4q

(2π)4 e
iqyχs(q;P ) ≡ 〈b;P, s|T{ψ(η2y)φ†(−η1y)}|0〉 (4.1.11)

satisfies (see Appendix C.1.2 for a derivation):

χs(y;P ) = (−1)
1
2−sγ1γ3χ−s(−y;P ), (4.1.12)

where we employ the following conventions1:

PT |b;P, s〉 = (−1)
1
2−s|b;P,−s〉, (4.1.13)

PT ψ(x1)(PT )† = γ1γ3γ0ψ(−x1), (4.1.14)
PT φ(x2)(PT )† = φ(−x2). (4.1.15)

1Notice that, since the operator PT is antiunitary, any constant phase factor in the RHSs of Eqs. (4.1.13)-(4.1.15)
is unessential, and it can be put equal to one. For example, if PT φ(x)(PT )† = e2iθφ(−x), we define the new field
φ1(x) = eiθφ(x), which satisfies PT φ1(x)(PT )† = φ1(−x) (if the field φ(x) is hermitian, its intrinsic phase can be
absorbed as well in the definition of the Dirac field, without spoiling the validity of Eq. (4.1.12)).
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In momentum space, Eq. (4.1.12) reads:

χs(q;P ) = u(P, s)
[
φ1(q2, P q) + φ2(q2, P q) /

q

M

]
. (4.1.16)

4.1.2 NIR of the BS amplitude

As already mentioned in Subsec. 3.1.1, Nakanishi’s analysis of Feynman diagrams can be generalized
to theories involving higher-spin particles, since the denominator structure of a Feynman diagram is
independent of the spin of the particles involved2. The additional numerator structure brings about
a polynomial dependence in the Nakanishi weight function, which can be dealt with by decomposing
the diagram in its independent tensorial structures allowed by the symmetries of the theory.

By exploiting the analysis of Subsec. 3.1.1 for the scalar case, one can assume, as a natural
generalization of Nakanishi’s result, a NIR for the invariant amplitudes φ1,2 in the decomposition
(4.1.8), viz.:

φi(k2, Pk) = i

1ˆ

−1

dz′
+∞ˆ

0

dγ′ gi(γ′, z′)[
(k + z′ P2 )2 − (1− z′2)κ2 − (z′m−∆)2 − γ′ + iε

]3 . (4.1.17)

As explained in detail in the following, plugging Eq. (4.1.17) into the BSE and performing the
LF projection, we formally obtain a coupled system of integral equations for the Nakanishi weight
functions gi, which is the starting point of our work.

As seen in Subsec. 2.1.3, the actual calculation of physical quantities (in particular, the valence
probabilities to be introduced in the next Subsection) from the BS amplitude requires a proper nor-
malization. The normalization condition for χ takes the form (cf. Subsecs. 2.1.3 and 2.2.3):

χrNµχs = δrsPµ, (4.1.18)

where Nµ is the BS normalization kernel. In turn Eq. (4.1.18) is equivalent to a normalization
condition for the Nakanishi vector g = (g1, g2), which we write in the form:

+∞ˆ

0

dγ′′
+1ˆ

−1

dz′′
+∞ˆ

0

dγ′
+1ˆ

−1

dz′
∑

i,j=1,2
gi(γ′′, z′′)Fij(γ′′, z′′, γ′, z′)gj(γ′, z′) = 1, (4.1.19)

or, more compactly:
(g|F|g) = 1 (4.1.20)

The kernel F is determined by the interaction kernel iK adopted for the BSE, and it is calculated
explicitly in Appendix C.3 for a ladder interaction with a massive scalar exchange.

2One might, for example, employ identities like [52]:

pµ

p2 −m2 + iε
= 1

2

∞̂

m2

dm′2 ∂

∂tµ

∣∣∣∣
t=0

1
(p+ t)2 −m′2 + iε

,

which allow one to replace any propagator appearing in a Feynman diagram with a scalar one. The integration over
the dummy masses m′2 can be shown to be absorbed into the definition of the Nakanishi weight function, while the
differentiations bring about the polynomial dependence mentioned in the text.
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4.1.3 LF Fock decomposition of the bound state

The bound state |b〉 can be expanded in terms of the LF Fock states, which are in turn defined by the
null hyperplane restriction of the elementary fields of the theory. We express the constituent fields at
x+ = 0 as3:

φ(x̃) ≡
ˆ d3p̃ θ(p+)√

(2π)32p+

{
a(p̃)e−ip̃x̃ + ac†(p̃)eip̃x̃

}
, (4.1.21)

ψ(+)(x̃) ≡
∑
λ=± 1

2

ˆ d3p̃ θ(p+)
(2π)

3
2

√
mψ

p+

{
b(p, λ)u(+)(p, λ)e−ip̃x̃ + d†(p, λ)v(+)(p, λ)eip̃x̃

}
, (4.1.22)

where the bosonic annihilation/creation operators satisfy the canonical commutation rules:[
a(p̃), a†(q̃)

]
=
[
ac(p̃), ac†(q̃)

]
= δ3(p̃− q̃), (4.1.23)

all others commutators being zero, while the fermionic operators satisfy canonical anticommutation
rules: {

b(p̃, λ), b†(q̃, µ)
}

=
{
d(p̃, λ), d†(q̃, µ)

}
= δλµδ

3(p̃− q̃), (4.1.24)

all other anticommutators being zero. In Eq. (4.1.22), as explained below (cf. Subsec 4.1.4), the
symbol ψ(+) indicates the “good” component ψ(+) = Λ(+)ψ of the Dirac field, where the orthogonal
projectors Λ(±) are defined by:

Λ(±) ≡ γ∓γ±

4 = 1± γ0γ3

2 (4.1.25)

and satisfy:

Λ(±)† = Λ(±), (4.1.26)
Λ(±)Λ(∓) = 0, (4.1.27)

Λ(+) + Λ(−) = 1. (4.1.28)

The projected LF spinors u(+) and v(+) are given in Appendix B.2, and satisfy the following orthog-
onality condition:

u(+)†(p, λ)u(+)(q, µ) = v(+)†(p, λ)v(+)(q, µ) =
√
p+q+

2mψ
δλµ. (4.1.29)

The Fock expansion of |b〉 starts from the two-particles (one fermion and one scalar) component:

|b;P, s〉 =
∑
λ=± 1

2

1ˆ

0

dξ
(2π)2ξ(1− ξ)

ˆ d2k⊥
(2π)2 |2/P ; ξk⊥λ〉Ψ2/s(ξ,k⊥, λ) + · · · , (4.1.30)

where the two-particle state |2/P 〉 is defined by:

|2/P ; ξk⊥λ〉 ≡
√

(2π)3 p
+
1

mψ
b†(p̃1, λ)

√
(2π)32p+

2 a
†(p̃2)|0〉, (4.1.31)

3For the sake of generality, we consider the scalar field φ as complex, so that ac 6= a in Eq. (4.1.21). Although
this is totally irrelevant to the model considered in our numerical study (see next Section), it is nonetheless necessary
to describe, e.g., a quark and a scalar (color anti-triplet) diquark interacting through the exchange of a gluon (a first
investigation of the massless-vector-exchange ladder interaction will be presented in Ref. [48]).
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with:

p+
1 ≡ ξP

+, p1⊥ ≡ ξP⊥ + k⊥, (4.1.32)
p+

2 ≡ (1− ξ)P+, p2⊥ ≡ (1− ξ)P⊥ − k⊥. (4.1.33)

The valence wave-function Ψ2 is independent of P , due to the invariance of the variables ξ, k⊥ and λ
under LF boosts (see Appendix B.4, Eq. (B.4.3)), but of course depends on both the spins s and λ.

The four wave functions Ψ2/s(·, λ) are clearly not independent. Let:

k1 + ik2 ≡ √γeiϕ (0 ≤ ϕ < 2π). (4.1.34)

By applying the LF parity PLF ≡ e−iπJ
1P and the LF time-reversal TLF = e−iπJ

3PT operators (which
are both kinematical) to both sides of Eq. (4.1.30), we obtain the following constraints on the valence
WFs (see Eq. (B.3.5))4:

Ψ2/−s(ξ, γ, π − ϕ,−λ) = Ψ2/s(ξ, γ, ϕ, λ) (LF parity), (4.1.35)
Ψ∗2/−s(ξ, γ, ϕ+ π,−λ) = Ψ2/s(ξ, γ, ϕ, λ) (LF time-reversal). (4.1.36)

Notice that, in order to reproduce a state with spin s along the z-axis, the amplitude Ψ2/s(·, λ)
must describe a fermion-scalar pair with orbital angular momentum lz = s−λ, i.e. its dependence from
the azimuthal angle ϕ is given by ei(s−λ)ϕ. Combining these information with Eqs. (4.1.35)-(4.1.36),
we can write:

Ψ2/± 1
2
(ξ, γ, ϕ,±1

2) ≡ Ψnf(ξ, γ), (4.1.37)

Ψ2/± 1
2
(ξ, γ, ϕ,∓1

2) ≡ ∓e±iϕΨf(ξ, γ), (4.1.38)

where the subscripts “nf” and “f” stand for “non-flip” and “flip” amplitudes. By Eqs. (4.1.35)-(4.1.36),
these amplitudes are real:

Ψ∗nf = Ψnf, Ψ∗f = Ψf. (4.1.39)

We can define non-flip and flip valence probabilities by:

Pnf/f =
1ˆ

0

dξ
4πξ(1− ξ)

ˆ dγ
4π Ψ2

nf/f(ξ, γ). (4.1.40)

Hence, the total valence probability is Ptot = Pnf + Pf.
The appearance of |Lz| 6= 0 amplitudes is entirely due to the non-trivial spin structure of the

constituents. The total orbital momentum L2 is not employed in the classification of the two-particles
component of the bound state, since L⊥ = J⊥ − S⊥ is not defined as an operator on the two-particle
sector of the Fock space (J⊥ is a dynamical operator). For the same reason, the conservation of the
ordinary parity and time-reversal can not be checked component by component, as we did for the LF
analogues of these operators.

As shown by Brodsky [53], the electromagnetic form factors of the bound state can be computed
as overlaps of LFWFs. Using the formulas of Ref. [53] (see also Ref. [54] in this context), one can
show that a nonzero spin-flip amplitude is necessary in order to have a valence contribution to the
anomalous magnetic moment of the bound state.

4The conventions (4.1.14) and (4.1.15) correspond to an intrinsic PT -parity ηPT = 1 for both constituents.
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4.1.4 LF projection of the BS amplitude

The valence wave-functions can be obtained from the BS amplitude by a LF projection technique. To
this end, we define a projected BS amplitude:

χ(+)
s (x;P ) ≡ 〈0|T{ψ(+)(η2x)φ(−η1x)}|b;P, s〉. (4.1.41)

The reason for dealing with χ(+), instead of χ directly, is the following: in the LF quantization
formalism, the only independent degree of freedom associated to a Dirac field is the so-called “good”
component ψ(+) = Λ(+)ψ, which has the plane-wave decomposition (4.1.22) at x+ = 0. On the
other hand, the bad component ψ(−) = Λ(−)ψ is determined in terms of ψ(+), as well as of the other
independent fields of the theory, and depends in particular on the interaction. In order to single
out the valence component of |b〉 one has to use LF creation and annihilation operators; hence ψ(+),
restricted to x+ = 0, is the relevant fermionic field to be exploited. This is another instance of the
halving of degrees of freedom in the LF formalism, which we have already encountered in Subsec.
3.2.2 (see Ref. [42] for a more detailed discussion).

We now make the assumption (cf. the discussion in Subsec. 3.2.3) that the T-product in Eq.
(4.1.41) can be replaced by a T+-product. Using Eqs. (4.1.21), (4.1.22) and (4.1.30), and performing
analogous steps as in Subsec. 3.2.3 for the scalar case (see Ref. [22] for a full derivation), one obtains:

+∞ˆ

−∞

dq−

2π χ(+)
s (q;P ) =

√
2mψ

P+ξ(1− ξ)
∑
λ=± 1

2

Ψ2/s(ξ,k⊥, λ)u(+)(p1, λ),

or:

Ψ2/s(ξ,k⊥, λ) =
√

2mψ(1− ξ)
+∞ˆ

−∞

dq−

2π u(+)(p1, λ)†χ(+)
s (q;P ), (4.1.42)

where:

ξ = p+
1
P+ = 1

2 + q+

P+ , (4.1.43)

k⊥ = p1⊥ − ξP⊥ = q⊥ −
q+

P+ P⊥. (4.1.44)

Finally, introducing the representation (4.1.8) of the BS amplitude we obtain, after some algebra:

Ψ2/+ 1
2
(ξ, γ, ϕ,+1

2) = Φ1(ξ, γ) + (ξ − 1
2)Φ2(ξ, γ) (4.1.45)

Ψ2/+ 1
2
(ξ, γ, ϕ,−1

2) = −
√

γ

M2 e
iϕΦ2(ξ, γ) (4.1.46)

Ψ2/− 1
2
(ξ, γ, ϕ,+1

2) =
√

γ

M2 e
−iϕΦ2(ξ, γ) (4.1.47)

Ψ2/− 1
2
(ξ, γ, ϕ,−1

2) = Φ1(ξ, γ) + (ξ − 1
2)Φ2(ξ, γ) (4.1.48)

where:

Φi(ξ, γ) = (1− ξ)ξ
1
2

√
2M

P+
ˆ dq−

2π φi(q2, P q). (4.1.49)

Comparing with Eqs. (4.1.37)-(4.1.38), we identify the non-flip and flip amplitudes as:

Ψnf(ξ, γ) = Φ1(ξ, γ) + (ξ − 1
2)Φ2(ξ, γ), (4.1.50)

Ψf(ξ, γ) =
√

γ

M2 Φ2(ξ, γ). (4.1.51)
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If one assumes the NIR (4.1.17) then the amplitudes Φi are explicitly given by:

Φi(ξ, γ) = ξ
1
2 (1− ξ)√

2M

+∞ˆ

0

dγ′ gi(γ′, z)
[γ′ +D0(γ, z)]2

, (4.1.52)

with z = 1− 2ξ and:
D0(γ, z) = γ + (1− z2)κ2 + (zm−∆)2. (4.1.53)

Notice that the flip (i.e. |Lz| = 1) amplitude (4.1.51) vanishes in the limit γ → 0, which is correct,
since a system with orbital angular momentum Lz 6= 0 can not have transverse momentum k⊥ = 0.
In the non-relativistic limit, one expects the LFWFs to be sharply peaked about ξ ≈ mψ

mφ+mψ and
γ
M2 � 1, so that the |Lz| = 1 components disappear and one has:

Ψnf ≈ Φ1 + 1
2
mψ −mφ

mψ +mφ
Φ2, Ψf ≈ 0.

4.2 Method of solution for the ladder BSE
We present in this Section our method of solution for the fermion-scalar ladder BSE. All detailed
calculations can be found in Appendix C. Numerical results will be presented in the next Chapter.

4.2.1 Ladder BSE

We have solved the following ladder BSE:

χs(k;P ) = i

η1 /P + /k −mψ + iε

i

(η2P − k)2 −m2
φ + iε

ˆ d4k′

(2π)4 iKlad(k, k′;P )χs(k′;P ), (4.2.1)

where self-energy corrections in the propagators are neglected. The kernel is given by the one-scalar
exchange diagram of Fig. 4.2.1, and has the expression:

iKlad(k, k′;P ) = iλψ
i

(k − k′)2 − µ2 + iε
iλφ. (4.2.2)

Notice that a point-like interaction vertex between the constituents and the exchanged boson is as-
sumed. A parity preserving interaction leading to kernel (4.2.2) under our approximations is:

L = ϕ
{
λψψψ + λφφ

†φ
}
, (4.2.3)

Figure 4.2.1. One-scalar exchange diagram (cf. Eq. (4.2.2)).
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where ϕ is the field of the exchanged scalar, and the coupling constants λψ and λφ have mass-dimension
zero and one, respectively.

After introducing the parametrization (4.1.8) of the BS amplitude, the ladder BSE (4.2.1) turns
into a coupled linear system for the invariant amplitudes φ1,2:

φi(k2, Pk) = iλψλφ[
(η1P + k)2 −m2

ψ + iε
] [

(η2P − k)2 −m2
φ + iε

] ˆ d4k′

(2π)4

∑
j=1,2Cij(k, k′, P )φj(k′2, Pk′)

(k − k′)2 − µ2 + iε
,

(4.2.4)
where the coefficients Cij are given in Appendix C.1.

There could be the objection that the Lagrangian (4.2.3) does not lead to a field theory with a well
defined ground state, as shown by Baym for a φ3-theory [55]. However, this does not need to concern
us, since the boson-boson cubic interaction is being used only as a model for the irreducible kernel iK.
In other words, we could always think of adding quartic terms such as L ′ = −gφϕφ2ϕ2−gφφ4−gϕϕ4 to
the Lagrangian, which would lead to a consistent renormalizable field theory, with the same symmetry
φ → −φ of L , but would not affect the form of the ladder BSE (with free propagators) considered
here.

4.2.2 Solution of the Minkowski space BSE

To solve the coupled system (4.2.4), we assume that the invariant amplitudes are expressed through
the following NIR:

φi(k2, Pk) = i

1ˆ

−1

dz′
+∞ˆ

0

dγ′B̃(k2, Pk, γ′, z′)gi(γ′, z′). (4.2.5)

where:
B̃(k2, Pk, γ′, z′) = 1[

(k + z′ P2 )2 − (1− z′2)κ2 − (z′m−∆)2 − γ′ + iε
]3 (4.2.6)

Once Eq. (4.2.5) is plugged into the coupled system (4.2.4), the k′ dependence in the RHS integrand
is made explicit and the integral can be carried out by means of the standard integrals (see Appendix
C.2 for details):

ˆ d4q

(2π)4
1

(q2 − s+ iε)n = i
(−1)n

(4π)2
1

(n− 1)(n− 2)
1

(s− iε)n−2 (n ≥ 3), (4.2.7)
ˆ d4q

(2π)4
qµqν

(q2 − s+ iε)n = i

2
(−1)n−1

(4π)2
1

(n− 1)(n− 2)(n− 3)
gµν

(s− iε)n−3 (n ≥ 4), (4.2.8)

The result is a coupled system of singular equations for the weight functions g1,2, with a residual
parametrical dependence on the invariants k2 and Pk, which takes the form:

1ˆ

−1

dz′
+∞ˆ

0

dγ′B̃(k2, Pk, γ′, z′)gi(γ′, z′) =
1ˆ

−1

dz′
+∞ˆ

0

dγ′
∑
j=1,2

Ṽij(k2, Pk, γ′, z′)gj(γ′, z′), (4.2.9)

where:

Ṽij(k2, Pk, γ′, z′) = λψλφ
8π2M2

1ˆ

0

v2dv
c

(0)
ij + c

(1)
ij k

−[
(1− z)(k− − k−d ) + iε

] [
(1 + z)(k− − k−u )− iε

] [
k−k+

D + lD + iε
]2

(4.2.10)
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(the quantities k−u,d, k
+
D, lD and the coefficients c(n)

ij are defined in Appendix C.2, and the latters are
independent of k−).

To obtain a regular equation for the weight functions gi, we perform a projection onto the null-
hyperplane, i.e. we integrate the whole equation over k−. The mathematical intuition behind such
a procedure stems from the relation between the Nakanishi weight functions and the LFWFs (cf.
Eqs. (4.1.50)-(4.1.52)), which is, we recall, essentially given by a generalized Stieltjes transform [46].
Indeed, the LF variables γ = k2

⊥ and z = 1− 2ξ share the same domain of the arguments γ′ and z′ of
gi, so that, after the LF projection, the kernels acting on gi on the LHS and RHS of the equation can
be formally considered as operators acting on a space of functions. Under mild regularity assumptions
on gi, the equation can thus be discretized and solved by expanding gi on a suitable orthonormal basis.

As a technical remark, let us note that the LF projection of the kernel (4.2.10) could in principle
yield a singular result for k+

D = 0, in which case the k− integral can not be evaluated by contour
integration (if c(1)

ij 6= 0 the integral has a potential logarithmic divergence). Indeed, the required result
is a generalization of the so-called LF singular integral, which we have already employed in the NIR
of the LFWF (cf. Subsec. 3.2.4), namely (see Appendix C.5.6 for a proof):

+∞ˆ

−∞

dβ
2π

1
[βx+ z]2

= − i
z
δ(x) (Imz > 0). (4.2.11)

The correct treatment of such singularities was first indicated in Ref. [20], which dealt with the ladder
BSE for two fermions. In our case, where only the first power of k− appears in the denominator of Eq.
(4.2.10), there is no singularity for k+

D = 0 and the result obtained by applying the residue theorem
can be carried on in the limit k+

D → 0, as shown in detail in Appendix C.5.4.
After performing the LF projection, we obtain a system of regular integral equations for g1,2, which

takes the form:
+∞ˆ

0

dγ′B(γ, z; γ′)gi(γ′, z) = α

∞̂

0

dγ′
+1ˆ

−1

dz′
∑
i′=1,2

Aii′(γ, z; γ′, z′)gi′(γ′, z′), (4.2.12)

or, symbolically:
Bgi = α ·

∑
i′=1,2

Aii′gi′ (4.2.13)

where the integral operators B and Aii′ are explicitly given in Appendix C.2 (B(γ, z; γ′) is a symmetric
kernel for a generalized Stieltjes transform). The coupling constant α is defined by:

α ≡ λφλψ
8πmφ

, (4.2.14)

in order to ensure the correct non-relativistic limit, i.e. the effective Yukawa potential:

V (r) = −αe
−µr

r

(see Appendix D.1). We recall from Subsec. 3.2.4 that B is an invertible operator, although its
analytic inversion is not carried out in this Thesis, but left for future work.

To solve Eq. (4.2.13), as for the two-scalar or two-fermion case, we expand g1,2 over an orthonormal
basis:

gi(γ, z) =
Nγ∑
j=0

Nz∑
`=0

cj`i Lj(γ)G(i)
` (z), (4.2.15)
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where Lj and G(i)
` are given in terms of Laguerre Lj and Gegenbauer C(βi)

` polynomials respectively:

Lj(γ) =
√
aLj(aγ)e−

aγ
2 , (4.2.16)

G(i)
` (z) =

√
22βi−1Γ(βi)2(`+ βi)`!

πΓ(`+ 2βi)
C

(βi)
` (z)(1− z2)

βi
2 −

1
4 . (4.2.17)

This choice of the basis is motivated by the same remarks of Sec. 3.3. The parameter a governs
the extension of g in the γ-direction, while β governs the behavior of F (β)

` (z) ≡ C
(β)
` (z)(1 − z2)

β
2−

1
4

for z2 → 1, as well as the oscillatory behavior in the −1 ≤ z ≤ 1 range. Notice that, in our case,
there is no exchange symmetry between the constituent particles, so that both even and odd degree
Gegenbauer polynomials appear in the expansion (4.2.15).

Plugging the expansion (4.2.15) into (4.2.13) and projecting over a given basis element LjG(i)
` , we

obtain the linear system:
Nγ∑
j′=0

Nz∑
`′=0

Bi,jj′,``′c
j′`′

i = α ·
Nγ∑
j′=0

Nz∑
`′=0

∑
i′=1,2

Aii′,jj′,``′c
j′`′

i′ , (4.2.18)

where:

Bi,jj′,``′ ≡
∞̂

0

dγ
1ˆ

−1

dz
∞̂

0

dγ′ Lj(γ)G(i)
` (z)B(γ, z; γ′)Lj′(γ′)G

(i)
`′ (z), (4.2.19)

Aii′,jj′,``′ ≡
∞̂

0

dγ
1ˆ

−1

dz
∞̂

0

dγ′
1ˆ

−1

dz′ Lj(γ)G(i)
` (z)Aii′(γ, z; γ′, z′)Lj′(γ′)G

(i′)
`′ (z′). (4.2.20)

By introducing a collective index:

I = (i− 1)(Nγ + 1)(Nz + 1) + j(Nz + 1) + `+ 1,

Eq. (4.2.18) becomes a generalized eigenvalue problem, viz.:

N∑
I′=1

AII′cI′ = λ
N∑
I′=1

BII′cI′ , (4.2.21)

where the dimension is N = 2(Nγ + 1)(Nz + 1), and λ = 1
α (this choice is suggested only by numerical

purposes). The form (4.2.21) can finally be solved by standard methods. As explained in Sec. 3.3, for
a given binding energyM , the ground state solution of the BSE is given by the greatest real eigenvalue
λ(M) = 1

α(M) . In our work, Eq. (4.2.21) has been solved with the LAPACK routine DGGEV.
Let us conclude this Subsection by noting that, starting from (4.2.9), one may deduce a second

integral equation for the weight function, once another relevant result by Nakanishi is introduced: the
theorem stating the uniqueness of the weight function itself [29]. Such a theorem has been used in
[13], [18] and [22] to investigate the alternative integral equation for the weight function, but for a
two-scalar BSE. In our case, the direct application of the uniqueness theorem is complicated by the
additional structure brought by the spin of the fermion constituent (the numerator of Eq. (4.2.10))
and it will be analysed elsewhere.

4.3 Wick-rotated ladder BSE
The mass/coupling constant relation obtained from the solution of (4.2.4) was cross-checked through
the one obtained from the Wick-rotated BSE. The latter is obtained from Eq. (4.2.4) by the formal
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substitutions k0 = ik4, k′0 = ik′4 in the rest frame P = 0:

φ̂i(k2, k4) = λψλφ[
m2
ψ + k2 + (k4 − iη1M)2

] [
m2
φ + k2 + (k4 + iη2M)2

]×
×
ˆ d4k′

(2π)4

∑
j=1,2 Ĉij(k, k4,k′, k′4)φ̂j(k′2, k′4)
(k4 − k′4)2 + (k− k′)2 + µ2 , (4.3.1)

where:

φ̂i(k2, k4) ≡ φi(−(k4)2 − k2, iMk4), (4.3.2)

Ĉij(k, k4,k′, k′4) ≡ Cij(k, ik4,k′, ik′4, P )
∣∣∣
P=(M,0)

. (4.3.3)

The Wick-rotated coefficients Ĉij are tabulated in Appendix C.4.
The solution of the Wick-rotated BSE is much more direct. The four-dimensional equation (4.3.1)

is reduced to a two-dimensional one by explicitly performing the angular integrations in the RHS,
noticing that the amplitudes φ̂i are independent from the orientation of the three-vector k. This
yields the system:

φ̂i(x, y) = α

+∞ˆ

−∞

dx′
+∞ˆ

0

dy′
∑
j=1,2

V̂ij(x, y;x, y′)φ̂j(x′, y′), (4.3.4)

where x = k4, y = |k| and the kernel V̂ij is given in Appendix C.4. It should be pointed out that
the amplitudes φ̂i are complex, so that the coupled system (4.3.4) corresponds effectively to four real
coupled integral equations.

To solve the system (4.3.4), we first express the two unbounded variables x and y in terms of two
bounded ones x, y:

x = x

1− |x| , (−1 < x < 1), (4.3.5)

y = y

1− y , (0 ≤ y < 1), (4.3.6)

and define the new amplitudes:
fi(x, y) ≡ y2φ̂i(x, y) (4.3.7)

which satisfy the integral equation:

fi(x, y) = α

1ˆ

−1

dx′
1ˆ

0

dy′
∑
j=1,2

Wij(x, y;x′, y′)fj(x′, y′), (4.3.8)

Wij(x, y;x′, y′) ≡ 1
(1− |x′|)2(1− y′)2

y2

y′2
V̂ij(x, y;x′, y′). (4.3.9)

The system (4.3.8) is finally discretized and solved by introducing a local cubic spline expansion for
the amplitude fi. We will not give details of the numerical solution, since the interested reader can
find more information in Ref. [56, Appendix A].
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Chapter 5

Numerical results for the
fermion-scalar ladder BSE

In this Chapter, our numerical results are illustrated in details. On one side, what follows shows per se
the reliability of the NIR-LF approach to the Minkowski space BSE, extending the analyses performed
for two-scalar and two-fermion systems. On the other side, the adopted ladder approximation, which
is essential in determining the dynamics at small distances, though quite simple, puts in evidence
unexpected features when a scalar-exchange is acting the spin degrees of freedom are turned on.

Let us remind that within the NIR-LF approach we obtained a coupled system of integral equations
for the Nakanishi weight functions, formally equivalent to the initial BSE for the fermion-boson system.
Furthermore, the coupled system can be transformed into a generalized eigenvalue problem, once
the BS kernel in ladder approximation is adopted (the cross-ladder contribution will be analysed
elsewhere). This allows one to easily get eigenvalues (the coupling constants) and eigenvectors (the
Nakanishi weight functions) for the coupled system, making NIR a viable tool for actually solving the
ladder BSE.

In Sec. 5.1 some generalities and notations are given. In Sec. 5.2, the coupling constants and
the Nakanishi weight functions are presented and what we call saturation of the binding energies is
introduced. In Sec. 5.3, our quantitative results for LF wave functions and corresponding probabilities
are discussed.

5.1 Generalities

For the sake of clarity, we have collected in this Section some general definitions to be used for
presenting our numerical investigation of the ladder BSE. In particular, the following notations are
adopted:

mψ ≡ fermion mass, (5.1.1)
mφ ≡ scalar mass, (5.1.2)
M ≡ bound state mass, (5.1.3)
µ ≡ exchanged mass, (5.1.4)

m ≡ mφ +mψ

2 , (5.1.5)

r ≡ mψ

mφ
. (5.1.6)
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The binding energy is defined by:

B ≡ mφ +mψ −M = 2m−M, (5.1.7)

and ranges in the interval 0 ≤ B ≤ 2m, since both B and M are positive definite. Of course the
positivity of B, namely M < mφ + mψ, is required for the stability of the bound state, since we are
considering physical (i.e. not confined) constituents.

We denote by a hat quantities scaled by m, e.g.:

B̂ ≡ B/m ≡ 2− M̂.

Apart from a global mass-scale m, the ground state solution is entirely characterized by the adimen-
sional quantities B̂ ∈ [0, 2], r ∈ [0,∞] and µ̂ ∈ [0,∞], and we denote by α(B̂, r, µ̂) the corresponding
value of the coupling constant.

We shall present our results for the coupling constants in terms of the quantity:

α(B̂, r, µ̂) ≡ λ(r)α(B̂, r, λ(r)µ̂), (5.1.8)

where:
λ(r) ≡ 2

√
r

1 + r
. (5.1.9)

This choice is motivated by the fact that, for the solution of the non-relativistic Schrödinger equation
with a Yukawa potential, α(B̂, r, µ̂) does not depend on r at all, viz.:

α(B̂, r, µ̂) = α(B̂, 1, µ̂) [Schrödinger equation] (5.1.10)

as a result of the transformation property of the Yukawa Hamiltonian under the canonical transfor-
mation (see Appendix D.2 for a derivation):

r→ θr, p→ 1
θ

p. (5.1.11)

The non-flip and flip valence LFWFs (see Subsec. 4.1.3) are denoted by Ψnf/f respectively, and
the corresponding valence probabilities by Pnf/f. The LFWFs, defined by Eqs. (4.1.50), (4.1.51) and
(4.1.52), are obtained from the properly normalized Nakanishi weight functions (see Subsec. 4.1.2).

The numerical solution of the generalized eigenvalue problem in Eq. (4.2.12) was obtained with
(cf. Eqs. (4.2.16)-(4.2.17)) an Nγ ×Nz = 32× 32 polynomial basis, with parameters:

a = 6.00/m2, β1 = 1, β2 = 3.

To solve the discretized eigenvalue problem, we have employed the LAPACK routine DGGEV.
The results for the coupling constants have been cross-checked, for several values of B̂, r and µ̂,

with those obtained from the solution of the Wick-rotated BSE, described in Sec. 4.3. The outcomes
agree with high accuracy.

It should be pointed out that the accuracy achieved in the present calculations requires a quite
modest amount of computing resources. In perspective (e.g., the extension to cross-ladder exchanges),
this low-demanding need could be a valuable feature.

5.2 Coupling constants and Nakanishi weight functions
A first sample of our numerical results for the coupling constant is shown in Table 5.2.1, where the
coupling constants are presented for equal-mass constituents, i.e. r = 1, three values of the masses for
the exchanged quanta and binding energies up to B̂ = 1. This cut, together with Fig. 5.2.1(a) where
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Figure 5.2.1. Coupling constants for equal-mass constituents, i.e. r = 1. (a) B̂ vs.α at fixed µ̂ = 0.15. (b)
α vs. µ̂ at fixed B̂ = 0.3.

it is shown the binding energy as a function of the coupling constant α, and fixed value µ̂ = 0.15,
introduces the interesting feature of the saturation of the binding in the case of a scalar interaction.
Indeed, the graph in Fig. 5.2.1(a) has an horizontal asymptote B̂crit ≈ 1.2, and for B̂ ≥ B̂crit no bound
state solution is found.

B̂ µ̂ = 0 µ̂ = 0.15 µ̂ = 0.5
0.001 0.072 0.3645 1.1705
0.01 0.2655 0.5760 1.4628
0.1 1.1679 1.5057 2.656
0.2 1.9408 2.297 3.6244
0.5 4.133 4.568 6.404
1 8.97 9.777 13.74

Table 5.2.1. Coupling constants for r = 1, µ̂ = 0, 0.15, 0.5 and B̂ ∈ [0, 1].

From the numerical point of view, the critical value manifests itself in a rather simple way: for
B̂ < B̂crit we observe full convergence of the solution with respect to the Nγ × Nz basis employed
in the expansion of g1,2 (cf. Subsec. 4.2.2); for B̂ > B̂crit there is no longer convergence. We stress
that the same value for B̂crit is found in the Wick-rotated solution of the BSE. This important test
confirms that the observed behavior is not due to the NIR, nor to the numerical method employed in
the solution of the Minkowski space BSE.

The critical value B̂crit is found to be decreasing with increasing the exchanged mass µ̂. In Table
5.2.2, some approximate values of B̂crit for r = 1 and different values of µ̂ are given.

In Fig. 5.2.1(b) the µ̂-dependence of α is shown for a large interval of exchanged masses, for
B̂ = 0.3 and r = 1. Notice the large values of α in the high-µ̂ region. Indeed, if we fix B̂ as in Fig.
5.2.1(b), since B̂crit = B̂crit(µ̂; r = 1) decreases with µ̂, it will eventually approach B̂ from above. Since
the coupling constant tends to infinity for B̂ → B̂crit, we see that the curve is developing a vertical
asymptote for µ̂ & 6.

The existence of a critical binding energy is already suggested by the structure of the coupled
system for the Nakanishi weight functions, Eq. (4.2.12), whose RHS kernel is explicitly given in
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µ̂ 0 0.15 0.5 1.5 5

B̂crit 1.24 1.21 1.14 1.00 0.68

Table 5.2.2. Critical binding energies for r = 1 and different values of µ̂.

Appendix C.2, and has the form:

Aij(γ, z; γ′, z′) ≡
mφ

4πD0

1ˆ

0

v2dv

θ(z′ − z)N (u)
ij

D2
u

+ θ(z − z′)
N

(d)
ij

D2
d

 . (5.2.1)

The denominators D0 and Du,d are regular in the limit M → 0 (i.e. B̂ → 2), but the two numerators
N

(u,d)
12 diverge:

N
(u)
12 ∼ −

1− v
1 + z

[
(1− z)m2

φ + 2γ
] 1
M
, (5.2.2)

N
(d)
12 ∼ (1− v)m2

ψ

1
M
. (5.2.3)

It is worth to observe that the kernel A for a two-scalar system (cf. Sec. 3.3) has the same structure
of (5.2.1), with numerators N (u) = N (d) = 1. In our case, the negative divergent term in N (u)

12 appears
to be causing the saturation. Indeed, dropping this term from the kernel, we obtain a convergent
and increasing value for the coupling constant in the whole interval 0 ≤ B̂ ≤ 2, as in the case of the
two-scalar system.

Figure 5.2.2 better illustrates the overall behavior of the saturation, when we change the mass
ratio r. It is clear1 that the value of B̂crit increases rapidly with r, as also suggested by the divergent
structure of N (u,d)

12 (cf. Eqs. (5.2.2)-(5.2.3) and notice that the negative contribution N (u)
12 becomes

less and less important). Indeed, for r ? 5 the convergence is obtained up to B̂ ' 2 (see Fig. 5.2.2,
right panel), i.e. there is no critical binding energy. Interestingly, all B̂(α) curves have a flex inside
the interval 0 ≤ B̂ ≤ 2 (for instance, for the r = 1

3 , 1, 3 lines in Fig. 5.2.2, the flex-points are
approximately given by B̂flex = 0.15, 0.3, 0.5, respectively).

We would like to put some emphasis on the appearance of flexes in the mass/coupling constant
functional dependence. This peculiarity is not observed in the corresponding scalar-scalar system, for
which the binding energy plot is convex (see Fig. 3.3.1). Indeed, as illustrated below, in the region
B̂ ≤ B̂flex our results are in very good agreement (when appropriately interpreted) with those found
in Ref. [18] for the scalar case. However, it should be reminded that a sort of saturation effect for
scalar exchange was found for a system composed by two equal-mass fermions, suggesting the basic
role played by the spin degrees of freedom in determining the above mentioned effect. In Ref. [46], a
plot analogous to Fig. 5.2.1 shows a flex, while this feature disappears when a pseudoscalar exchange
or a vector one are adopted.

It would be, of course, highly desirable to understand the physical motivation of the saturation.
Since the involved binding energies are of the order of the constituent masses, this clearly calls for an
analysis of relativistic effects in the one-boson exchange, in particular of the features which depend
on the spins of the particles involved. As a first step, we may consider all terms up to O(β2) in a
potential reduction of the one-boson (scalar, pseudoscalar or vector) exchange interactions. Notice, for
instance, that the scalar coupling of the Dirac field, i.e. ψψ, yields a spin-orbit interaction of opposite

1Notice that the rescaled coupling constant α for a given value of r is obtained with an exchanged mass µ̂ = λ(r)×0.15
(cf. Eqs. (5.1.8) and (5.1.9)). However, as seen from Table 5.2.2, the critical value B̂crit depends weakly on the exchanged
mass in the interval 0 ≤ µ̂ ≤ 0.15, so that the comparison of the critical regions in Figs. 5.2.2(a)-(b) is meaningful.
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Figure 5.2.2. Rescaled coupling constant α (cf. Eq. (5.1.8)) for various mass ratios r and fixed µ̂ = 0.15.

sign to the case of a vector coupling, i.e. ψγµψ (see Appendix D.1, Eq. (D.1.13); in the vector case,
the spin-orbit term is produced by the charge-density ψγ0ψ = ψ†ψ, where the low components of ψ
are coupled with a plus sign). Furthermore, the potential produced by a pseudoscalar coupling2, the
so-called OPEP (one pion exchange potential), has no spin-orbit term at all. Along these lines, it
is also worth noticing that the spin-orbit interaction is the only O(β2) spin-dependent term in the
one-scalar exchange potential (both for a two-fermion and a fermion-scalar system).

In view of the above considerations, which suggest a potential role of the spin-orbit correlation in
the determination of the binding saturation3, the comparison of the scalar exchange kernel considered
here with a vector exchange one seems to be of primary importance, and will be presented in a future
paper [48]. In the following, we shall give a detailed discussion of the solution in the low-binding
region, which we may approximately identify as B̂ > B̂flex, postponing a more complete discussion to
Ref. [48].

Focusing on the low-binding region, the solution shows a definitely physical behavior. In the
first place we observe that, for very low bindings, our coupling constants for r = 1 are very close to
those obtained from the scalar-scalar ladder BSE in Ref. [18] (see Subsec. 3.3.2). Of course, this is
expected from the non-relativistic point of view, since the spin of the fermion decouples in the extreme
non-relativistic limit.

As a second remark, notice that the non-relativistic relation (5.1.10) is generally quite well satisfied
from the ladder BSE solutions for low binding energies, as it can be seen from Figs. 5.2.2. In particular,
the eigenvalues α(B̂, r, µ̂) for 1 ≤ r ≤ 3, are in very nice agreement with Eq. (5.1.10) up to B̂ . 0.5,
while the agreement is restricted to a smaller region when r < 1. This can be understood by observing
that the spin-orbit correction to the Yukawa effective potential (see Eq. (D.1.13)) depends on the
inverse squared mass of the fermion, and is therefore enhanced when r < 1. However for r ? 5, the
agreement is again restricted to a very small region, showing that the deviations from Eq. (5.1.10)
are important not only for large binding energies, but also when the constituent masses are largely
different. Furthermore, it is clear that the dependence of α(B̂, r, µ̂) from r is not monotonic, and
indeed the curves in Figs. 5.2.2 exhibit several crossings in the low-binding region.

We conclude this Section with a brief discussion of the Nakanishi weight functions g1,2(γ, z). In
Fig. 5.2.3, g1,2 are shown for fixed z and running γ, and viceversa, for the case r = 1, and two
values of B̂, corresponding to weak binding B̂ = 0.2, and strong binding B̂ = 1.2 (more relativistic

2We remark that a simple fermion-scalar interaction through a pseudoscalar π in the t-channel is not allowed, since
the lagrangian density L = π

{
λψψiγ

5ψ + λφφ
†φ
}
is not parity invariant, whatever the intrinsic parity of φ be.

3As a side note, we observe that the pseudoscalar or vector potentials for a two-fermion system include the so-called
tensor forces, i.e. terms of the form S12(n̂) ∼ (σ1 ·n̂)(σ2 ·n̂)− 1

3σ1 ·σ2, where n̂ = r
|r| or

p
|p| . In particular, this potentials

do not commute with L2, the total relative orbital momentum.
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regime). Of particular interest are the lines corresponding to γ = 0 and running z, which are nearly
symmetric for B̂ = 0.2, while the asymmetry becomes more pronounced for larger B̂. Again, this is
clearly a consequence of the decoupling of the fermion spin for B̂ → 0: in this limit (in the r = 1 case)
the constituents can be regarded as indistinguishable, hence the Nakanishi weight functions become
symmetric, as a consequence of the corresponding ξ → 1 − ξ (i.e. z → −z) symmetry of the valence
LFWFs (see the next Subsection).

As a technical remark, it is worth to mention that the convergence of the eigenvectors g = (g1, g2)
requires much more numerical effort than that of the eigenvalues α. Indeed, while a fairly good
convergence of α is generally already obtained with a basis of Nγ × Nz = 20 × 20 polynomials, the
convergence of g is much slower. For instance, to obtain the plots of Fig. 5.2.3, we had to extend the
basis up to Nγ × Nz = 44 × 44 polynomials. In any case, the valence probabilities and the LFWFs,
which are given by integrals of g1,2, converge essentially with the same speed of the coupling constant.
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Figure 5.2.3. Nakanishi weight functions for r = 1, µ̂ = 0.15, and B̂ = 0.2 (upper panels), B̂ = 1.2 (lower
panels). Blue lines: g1(γ, z)/g1(0, 0). Red lines: g2(γ, z)/g1(0, 0).

5.3 Valence LFWFs and probabilities

We shall present our results for the LFWFs and the corresponding probabilities in the binding energy
interval 0 ≤ B̂ ≤ B̂flex. The results for the full interval 0 ≤ B̂ ≤ B̂crit, which require a more careful
analysis and comparisons with the vector-exchange case, will be presented in Ref. [48]. To help the



5.3. VALENCE LFWFS AND PROBABILITIES 57

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ξ = ξ
0
 = r/(1+r)

0 0.2 0.4 0.6 0.8 1
0

0.3

0.6

r 
=

 1
/3

γ = γ
0
 = (2

1/2
-1)κ

2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ψ
n
f/

f(
ξ
,γ

) 
/ 
ψ

n
f(

ξ
0
,γ

0
)

0 0.2 0.4 0.6 0.8 1
0

0.3

0.6

r 
=

 1
0 0.2 0.4 0.6 0.8 1

γ / m
2

0

0.5

1

0 0.2 0.4 0.6 0.8 1

ξ

0

0.3

0.6

r 
=

 3

Figure 5.3.1. Valence wave-functions Ψnf/f(ξ, γ)/Ψnf( r
1+r , 0), for B̂ = 0.1, µ̂ = λ(r) × 0.15 and r = 1

3 , 1, 3
(from the top panel). Blue lines: non-flip amplitude. Red lines: flip amplitude. The dashed lines on the
left are γ = (

√
2− 1)κ2, while the dotted lines on the right are ξ = r

1+r .

reader, we report the definitions in Eqs. (4.1.50) and (4.1.51) of the non-flip and flip amplitudes:

Ψnf(ξ, γ) = Φ1(ξ, γ) + (ξ − 1
2)Φ2(ξ, γ), (5.3.1)

Ψf(ξ, γ) =
√

γ

M2 Φ2(ξ, γ), (5.3.2)

where Φ1,2 are given by integrals of the Nakanishi weight functions (see Eq. (4.1.52)).
Several interesting insights into the inner dynamics can be gained from Fig. 5.3.1, where the

valence LFWFs for B̂ = 0.1 and r = 1
3 , 1, 3 are presented. In the right panels, the curves at fixed

γ = γ0 and running ξ = 1−z
2 are shown, while in the left panels ξ = ξ0 and γ varies.

From Fig. 5.3.1 we see that the amplitudes are peaked about ξ0 = r
1+r (dotted lines in the right

panels of Fig. 5.3.1), which is what one expects from the non-relativistic point of view, since for small
momenta and bindings one has ξ = p0

ψ+p3
ψ

P 0+P 3 ≈
mψ

mφ+mψ . Furthermore, the lines for r = 1 are nearly
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symmetric about ξ0 = 1
2 . As discussed above for the Nakanishi weight functions, this is a consequence

of the decoupling of the fermion spin in the non-relativistic limit.
The ξ = ξ0 lines show that the γ-width at half maximum of the non-flip amplitude is approximately

given by:
γ0 = (

√
2− 1)κ2, (5.3.3)

where:
κ2 = m2 − M2

4 = mB − B2

4 . (5.3.4)

This value is suggested from the analytic expression of the valence wave-function in the Wick-Cutkosky
model (see below, Eq. (5.3.7)), where the exchanged mass µ = 0. As seen from the figures, the position
of the peak in the flip amplitude is given by γ ≈ γ0 as well. Thus, one can argue that the size of the
bound system is approximately R ∼ 1

κ , which may be used as a phenomenological guidance to have a
rough estimate of the average mass of the constituents, if both R and M are known. Notice that, for
B � m, this reduces to R2 ∼ 1

mB , which is merely a statement of the uncertainty principle.
The asymptotic behaviors in the γ-tails should be those implied by the NIR of Φ1,2 in Eqs. (5.3.1)

and (5.3.2) (see Eq. (4.1.52)), viz.4:

Ψnf ∼ γ−2, Ψf ∼ γ−
3
2 (γ →∞). (5.3.5)

We did not, however, perform a systematic study of the asymptotics of Ψnf/f, which appear to require
some care from the numerical point of view, and are left for future work.

It is interesting to observe that, in the limit B̂ → 0, the amplitudes Φ1 and Φ2 in Eqs. (5.3.1) and
(5.3.2) become sharply peaked about ξ = r

1+r and γ = 0 as one expects (see Fig. 5.3.2; the behavior
of Φ2 is identical). Thus:

Ψnf ≈ Φ1 + 1
2
r − 1
r + 1Φ2, Ψf ≈ 0 (B̂ → 0). (5.3.6)

4These estimates strictly follow if the Nakanishi weight functions gi are absolutely integrable.
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Figure 5.3.3. Comparison between the non-flip amplitude Ψnf for B̂ = 0.01, r = 1 and µ̂ = 0 and the analytic
expression obtained in the Wick-Cutkosky model (cf. Eq. (5.3.7)).

Finally, we can compare the non-flip wave-function for r = 1, µ̂ = 0 and B̂ ≈ 0, with the analytic
expression obtained in the Wick-Cutkosky model, which reads [34]:

Ψ(WC)(ξ, γ) = C(ξ)
[γ +m2 − ξ(1− ξ)M2]2

, (5.3.7)

where m is the common mass of the constituents, and the function C(ξ) is given, for B̂ � 1, by:

C(ξ) = κ4

8 ξ(1− ξ)(
1
2 −

∣∣∣∣12 − ξ
∣∣∣∣) (B̂ � 1). (5.3.8)

The normalization is chosen in such a way that Ψ(WC)(0.5, 0) = 1. As seen from Figure 5.3.3 for
B̂ = 0.01, the agreement between our calculations and the analytic expression is quite remarkable.

Our results for the corresponding valence probabilities are shown in Fig. 5.3.4, where the proba-
bilities for r = 1

3 , 1, 3 and µ̂ = λ(r)× 0.15 are shown for 0 ≤ B̂ ≤ B̂flex.
In the low-binding energy region, the behavior of the probability has the features one should expect

on the non-relativistic ground: the non-flip probability approaches unity as B̂ → 0 and decreases for
growing binding energy, while the flip probability tends to zero in the same limit and increases with
B̂ (cf. Eqs. (5.3.1) and (5.3.6)). Moreover, as a further consistency check, we remark that our results
for the total probability at low B̂ are very close to those obtained, in the scalar-scalar case, in Ref.
[18] (cf. Subsec. 3.3.2), as we have already seen for the coupling constants.

From 5.3.4, we see that the flip probability appears to decrease when we increase the ratio r. A
monotonic behavior of this kind is not completely unexpected since, as already observed, the spin-orbit
term (the only O(β2) spin-dependent term in the non-relativistic reduction of the Yukawa interaction)
is proportional to 1

m2
ψ
. However, within our LF description, it is not a priori immediately clear if the

interaction of the fermion spin favors, from the energetic point of view, the flip or non-flip component.
This is so because, as already observed in Subsec. 4.1.3, only Lz = −i ∂∂ϕ does not change the number
of LF constituents (since it is a kinematical operator), so that the spin-orbit interaction Vs.o. ∼ L · S
does not have a direct interpretation in terms of LF two-particle states.
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Figure 5.3.4. Valence probabilities for r = 1
3 , 1, 3 and µ̂ = λ(r) × 0.15. Dashed line: non-flip probability.

Dotted line: flip probability. Solid line: total probability.

Also not easy to anticipate is the µ̂-dependence of the valence probabilities for fixed B̂ and r.
Indeed, this dependence may be pictorially regarded as the effect of two competing contributions: i)
for large µ̂, it is kinematically less favorable for the constituents to emit a virtual boson, i.e. it is
difficult to populate higher Fock components, suggesting an higher valence probability; however ii) for
a fixed B̂, the coupling constant increases with µ̂, so that the emission of a boson becomes favored
dynamically. As seen in Fig. 5.3.5, the first physical mechanism appears to be the dominant one for
B̂ = 0.1 and r = 1, but the non-flip probability alone is not monotonic in µ̂.
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Chapter 6

Conclusions and Perspectives

In this Thesis, we have addressed the homogeneous Bethe-Salpeter equation in Minkowski space,
for a bound state composed by a fermion and a scalar, freely propagating inside the system, but
interacting through the exchange of a massive scalar. A workable equation, in ladder approximation
for the interaction kernel, has been obtained within a framework based on i) the Nakanishi integral
representation of the BS amplitude and ii) the so-called light-front projection technique. It has to be
emphasized that the NIR allows one to perform analytically the integration on the minus-component
of the relative four-momentum, namely the LF-projection onto the null hyperplane of the BSE, and
to single out singular integrals generated by the presence of spin degrees of freedom. After rigorously
treating such singular contributions, that in our case are shown to be vanishing (cf. the discussion
following Eq. (4.2.10)), one obtains a formally exact reduction of the original equation into a system of
integral equations for the Nakanishi weight-functions. Notably, one eventually deals with a generalized
eigenvalue problem in the ladder approximation. It should be pointed out that the existence of
solutions for such an eigenvalue problem validates, a posteriori, the NIR-LF approach for solving the
ladder BSE. Furthermore, the obtained eigenvalues provide the usual binding energy/coupling constant
functional dependence, and the eigenvectors allow one to completely reconstruct the Minkowski space
BS amplitude.

Our numerical results for the coupling constants were cross-checked through the solution of the
Wick-rotated BSE. The peculiar and unique feature of solving the BSE directly in Minkowski space is
represented by the possibility to evaluate also dynamical quantities, like the LF distributions. As a first
step of a wider investigation, we have presented an analysis of the so-called LF valence wave-functions
and the corresponding probabilities.

For moderate binding energies, the solution of the fermion-scalar ladder BSE has most of the fea-
tures one expects both from intuition and from the non-relativistic limit. The coupling constants and
the valence probabilities for low binding energies are very close to those obtained by solving the ladder
BSE for a two-scalar system [18], showing that spin degrees of freedom decouple in the non-relativistic
limit, as one expects. Moreover, a non-relativistic relation for the coupling constant dependence upon
the bound system parameters (see Eq. (5.1.10)) is found to be fairly well satisfied from our solutions.
The Nakanishi weight functions and the valence LFWFs for equal-mass constituents have an approx-
imate symmetry z → −z (i.e. ξ → 1 − ξ), which becomes exact when B → 0. In the same limit,
the spin-flip amplitude vanishes and the non-flip amplitude becomes sharply peaked about γ = 0
and ξ = mψ

mφ+mψ , while the total valence probability tends to one. Also, noteworthy, in the massless-
exchange case, the non-flip amplitudes for very low bindings coincide with the wave-function obtained
analytically in the Wick-Cutkosky model (cf. Eq. 5.3.3). It is very rewarding to see these several
non-relativistic features automatically emerging from a field-theoretical and fully covariant approach.
Summarizing the low-energy studies, we can state that the numerical solutions are under control and
well understood.
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On the other hand, for higher binding energies, the solution shows an unexpected behavior, i.e.
what we call binding saturation. Indeed, for not too high values of the ratio r = mψ

mφ
, the interval of

binding energies 0 ≤ B ≤ mφ +mψ is not entirely covered by the BSE solution but, on the contrary,
there exists a critical binding energy Bcrit < mφ+mψ above of which no bound-state solution is found.
In general, the B(α) plots show a flex, which is not observed in the corresponding two-scalar system
[18], but is interestingly present for a 0+ two-fermion system with scalar-exchange [17]. Therefore
a working hypothesis is yielded by the particular role played by the spin degrees of freedom in the
fermion-scalar case, where the interaction could be differently tuned by the parallel and antiparallel
configurations of the constituent LF spin and the composite system one.

In order to gain crucial insights into the issue, the comparison with a vector-exchange ladder
kernel, or with a ladder+cross-ladder kernel (to assess in more detail the ladder contribution), seems
to be of primary importance. In view of this, both binding/coupling correlations and valence LFWFs
were presented only for low binding energies, where the solution appears to be coherent with previous
results, postponing the desired more complete analysis to a forthcoming work [48]. In spite of these
not yet completely understood features, which appear to be intrinsic of the scalar exchange considered
here, it is worth recalling that our initial results validate the NIR for the fermion-scalar ladder BSE,
and that the introduction of unequal masses (for the first time in a NIR-LF study of the ladder BSE)
opens a new window on the ongoing dynamical game inside a bound system.

The natural development of our analysis will be the study of the fermion-vector system, more
demanding from the formal side, given the presence of higher-spin components that request a careful
study of light-cone singularities one has to face with while performing the LF projection.

It should be pointed out that the method presented here is by no means restricted to the ladder
BSE, which is in any case essential for describing the asymptotic behavior of the LF distributions.
It would be extremely interesting to try to apply the same approach with more realistic kernels
and propagators. From a fundamental point of view, efforts for implementing self-energies in the
constituent propagators have to be undertaken, with the final goal of making the present approach
a viable one, e.g., in the description of a nucleon in terms of quark and diquark degrees of freedom,
given the need to take into account the confined nature of its colored constituents.

As a final note, we would like to emphasize that all numerical calculations presented here were
performed with a home computer. Indeed, thanks to NIR, the integrations in the Minkowski space
BSE are performed analytically as far as possible, thereby reducing it to a two-dimensional, regular
integral equation of a canonical form, which is a relatively simple numerical problem.

To close this Thesis, we would like to make some comments on the present state of art of the
BSE, and on the relevance of these studies to our understanding of the bound-state problem in the
relativistic domain.

As we hope to have clarified in the Introduction, the development of the Minkowski space approach
to the BSE is still in an early stage, and it has to be improved in many respects before becoming
a broad-spectrum tool for phenomenological applications. In spite of this, we believe that NIR-LF
studies of the BSE could provide some helpful insights into the non-perturbative regime of QFT,
basically investigated through the well-recognized main tool, namely the the path-integral method.
This hope is based on the ability of the NIR-LF approach to elaborate the description of the bound
system directly in the physical 4D space. In order to appreciate the relevance of this last issue,
one should remind that within lattice QCD, though valuable results have been achieved, e.g., in the
calculations of both hadron masses and decay constants, only a few Mellin moments of the parton
distribution functions are at present available. In this context, the great ambition is to investigate the
internal dynamics as unveiled by the PDFs, or more generally the transverse-momentum distributions
and generalized parton distributions. In particular, in view of recent caveats [57] on the feasibility
of performing lattice calculations of PDFs in full, one could conjecture that studies of the BSE in
Minkowski space be able to offer useful hints. Also in condensed matter one could foresee applications,
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when relativistic bound and unbound systems have to be carefully described.
In conclusion, there is no risk to overemphasize that the bound-state problem is still a relatively

unexplored field, and the above considerations, together with the recent progress in solving the BSE,
suggest that these studies could in perspective play a relevant and complementary role in understanding
the bound-state structure in the physical Minkowski space.
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Appendix A

NIR: from the vertex to the BS
amplitude

In this Appendix we shall give a formal derivation of the NIR of the BS amplitude for a scalar bound
state of scalar constituents, starting from the one of the corresponding vertex given in Subsec 3.1.1.
The same representation is adopted for the invariant amplitudes in the decomposition of the fermion-
scalar BS amplitude (cf. Subsec. 4.1.1).

We recall from 3.1.1 that the bound state vertex iΓ is defined by:

χ(k;P ) ≡ i∆′1(P2 + k)i∆′2(P2 − k)iΓ(k;P ), (A.1)

and we assume that it admits the following NIR:

Γ(k;P ) =
1ˆ

0

dζ
∞̂

−∞

dν ϕ(ζ, ν)
ζs1 + (1− ζ)s2 − ν + iε

, (A.2)

where:

s1 = (P2 + k)2, s2 = (P2 − k)2. (A.3)

The support of ϕ in the unbounded variable ν is left implicit.
Neglecting self-energy corrections in the propagators we obtain, after a Feynman parametrization:

χ(k;P ) = −2i
ˆ

[0,1]2

dα1dα2θ(1− α1 − α2)
1ˆ

0

dζ
+∞ˆ

−∞

dν ϕ(ζ, ν)
[D(ζ, ν, α, s1, s2) + iε]3

, (A.4)

where:

D(ζ, ν, α, s1, s2) = s1(α1 + ζ(1− α1 − α2)) + s2(α2 + (1− ζ)(1− α1 − α2))+
− α1m

2
1 − α2m

2
2 − (1− α1 − α2)ν. (A.5)

Define z and γ through:

1 + z

2 = α1 + ζ(1− α1 − α2) (A.6)

α1m
2
1 + α2m

2
2 + (1− α1 − α2)ν = 1 + z

2 m2
1 + 1− z

2 m2
2 + γ. (A.7)
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Making this change of variables into Eq. (A.4), we obtain:

χ(k;P ) = −i
ˆ

[0,1]2

dα1dα2

+1ˆ

−1

dz
+∞ˆ

−∞

dγ×

×
θ(1+z

2 − α1)θ(1−z
2 − α2)

[1− α1 − α2]2
ϕ(γ+( 1+z

2 −α1)m2
1+( 1−z

2 −α2)m2
2

1−α1−α2
,

1+z
2 −α1

1−α1−α2
)

[D(γ, z, s1, s2) + iε]3
, (A.8)

D(γ, z, s1, s2) = 1 + z

2 (s1 −m2
1) + 1− z

2 (s2 −m2
2)− γ. (A.9)

Finally, defining the Nakanishi weight function of the BSA as:

g(γ, z) = −
ˆ

[0,1]2

dα1dα2
θ(1+z

2 − α1)θ(1−z
2 − α2)

[1− α1 − α2]2
×

× ϕ(
γ + (1+z

2 − α1)m2
1 + (1−z

2 − α2)m2
2

1− α1 − α2
,

1+z
2 − α1

1− α1 − α2
) (A.10)

we obtain from (A.8) the final form:

χ(k;P ) = i

+1ˆ

−1

dz
+∞ˆ

−∞

dγ g(γ, z)[
1+z

2 (s1 −m2
1) + 1−z

2 (s2 −m2
2)− γ + iε

]3 . (A.11)

As explained in Subsec. 3.1.1, we shall assume that g(γ, z) = 0 for γ < 0. Expressing s1,2 in terms of
P and k through Eq. (A.3) and defining:

m ≡ m1 +m2
2 , ∆ ≡ m2 −m1

2 , κ2 ≡ m2 − M2

4 . (A.12)

we obtain the form of the NIR used throughout this Thesis:

χ(k;P ) = i

1ˆ

−1

dz
∞̂

0

dγ g(γ, z)[
(k + z P2 )2 − (1− z2)κ2 − (zm−∆)2 − γ + iε

]3 . (A.13)
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Appendix B

Special topics in LF dynamics

In this Appendix we discuss some technicalities related to the Poincaré group in the LF formalism,
which are necessary in order to deal with a system with spin. In Sec. B.1 we review the standard
construction of a spin operator from the Poincaré generators, and specialize to the light front spin.
In Sec. B.2 we derive the expressions of the LF spinors. Finally, in Sec. B.3, we discuss the issue of
discrete symmetries in the LF formalism, and introduce LF parity and LF time reversal operators.

In what follows, we denote by U(Λ, a) the unitary operator, acting on the Hilbert space of the
quantum theory, corresponding to a (proper, orthochronous) Poincaré transformation x 7→ Λx + a
(we adopt the shorthand notation U(Λ) if a = 0). It is assumed that U forms a representation of the
Poincaré group:

U(Λ2, a2)U(Λ1, a1) = U(Λ2Λ1,Λ2a1 + a2),
U(1, 0) = 1.

As a consequence:
U(Λ, a)† = U(Λ−1,−Λ−1a).

The irreducible subrepresentations of U are the vacuum state:

U(Λ, a)|0〉 = |0〉,

and the one-particle states, which are (normalizable) eigenstates of the mass operator M =
√
PµPµ.

We assume that the theory contains no massless particles, i.e. that pµ = 0 is an isolated point of the
joint spectrum of the four-momentum Pµ. This implies, in particular, that the operator 1

M ≡M
−1 is

well defined on the subspace orthogonal to the vacuum.

B.1 LF boosts and LF spin
As is well known, in relativistic quantum mechanics there are several ways to construct a spin operator,
that is to say, a triplet j = (j1, j2, j3) of self-adjoint operators which satisfies the algebra of the rotation
group:

[jl, jk] = iεlkmjm, (B.1.1)
and whose action on states at rest is that of J, the angular momentum generator.

The construction starts from the Pauli-Lubanski four vector, which is defined by:

Wµ = −1
2ε

µνρσMνρPσ. (B.1.2)

From the commutation rules of the Poincaré generators Mνρ and Pσ, one can easily prove that the
operator:

W 2 = WµWµ, (B.1.3)
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commutes with all the generators of the Poincaré group, i.e., it is a Casimir operator for the Poincaré
group representation. Indeed, it is more common to consider, rather than (B.1.2), the operator defined
by:

j2 = −W
2

M2 , (B.1.4)

because, as the notation suggests, Eq. (B.1.4) reduces to
∑3
i=1 J

2
i , when applied on a state at rest.

Writing down explicitly the components of (B.1.2), one finds that:

W 0 = P · J, (B.1.5)
W = HJ−P×K, (B.1.6)

which imply:
Wµ|P = 0〉 = (0,MJ) |P = 0〉, (B.1.7)

where |P = 0〉 is an arbitrary state with zero three-momentum.
The second ingredient of the construction is the definition of a boost for the mass-shell P 2 = M2,

that is to say, of a particular parametrization B(P ) of Lorentz transformations such that the (classical)
equation1:

B(P ) ν
µ P

µ = (M,0) (B.1.8)

holds for any P such that P 2 = M2. If |P 〉 is an arbitrary state of momentum P , then U(B(P ))†|P 〉
has three-momentum P′ = 0 zero. Therefore, (B.1.7) implies:

WµU(B(P ))†|P 〉 = (0,MJ)U(B(P ))†|P 〉,

or:
1
M
B(P ) ν

µ W
µ|P 〉 =

(
0, U(B(P ))JU(B(P ))†

)
|P 〉. (B.1.9)

Note that P and M in the LHS of (B.1.9) can be interpreted as operators, so that Eq. (B.1.9) says
that the operator 1

MB(P ) ν
µ W

µ has only the three space components, which act like J on a state of
zero momentum. Furthermore, the triplet defined by:

(0, j) = 1
M
B(P ) ν

µ W
µ (B.1.10)

satisfies the commutation rules (B.1.1)2 and, therefore, perfectly qualifies as a spin operator. From
(B.1.10), we also see that:

j · j = −W
2

M2 (B.1.11)

1The components of the inverse Lorentz transformations Λ−1 are denoted by Λ ν
µ .

2To see this, one can use the commutation relations:

[Wµ, P ν ] = 0, [Wµ,W ν ] = iεµνρσWρPσ.

Writing:
Sν = 1

M
B ν
µ (P )Wµ, Wµ = MBµν(P )Sν , Pµ = MBµ0(P ),

which are valid as operator relations, one has:

[Sν , Sρ] = 1
M2B(P ) νµ B(P ) ρσ iεµστκWτPκ

= B(P ) νµ B(P ) ρσ iεµστ0B γ
τ (P )SγB 0

κ (P )
= iενργ0Sγ ,

where we have used the fact that detB(P ) = 1. This is clearly equivalent to (B.1.1).
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is the Casimir operator j2 defined by (B.1.4).
Therefore, the definition of a spin operator j amounts essentially to the choice of a boost B(P ),

which maps the standard vector (M,0) to P 3. A particularly convenient choice in the LF formulation
is the LF boost BLF(P ) defined by (x′ = BLF(P )x):

x′+ = eωx+, (B.1.12)
x′⊥ = x⊥ + x+α⊥, (B.1.13)
x′− = e−ωx− + e−ωα2

⊥x
+ + 2e−ωα⊥ · x⊥, (B.1.14)

where x± = x0 ± x3 and:
α⊥ = P⊥

M
, eω = P+

M
. (B.1.15)

The LF boost (B.1.12)-(B.1.14) leaves the light front x+ = 0 invariant, so that the corresponding
unitary transformation U(BLF(P )) is kinematical. Indeed, in terms of the LF generators of the
Poincaré group, one has:

U(BLF(P )) = e−iωK
3
e−iα⊥·B⊥ . (B.1.16)

Also, the LF boosts form a subgroup of the Lorentz group. This is particularly clear in the SL(2,C)
notation of Lorentz transformations [51], in which BLF(P ) is represented by the 2×2 complex matrix:

BLF(P )=̇e−
ω
2

(
eω 0

α1 + iα2 1

)
. (B.1.17)

The spin operator corresponding to the boost BLF is:

j3
LF = 1

P+

[
P+J3 + ẑ · (B⊥ ×P⊥)

]
, (B.1.18)

jLF⊥ = 1
M

{
ẑ×

[1
2(P−B⊥ − P+S⊥) + P⊥K3

]
− P⊥
P+

[
P+J3 + ẑ · (B⊥ ×P⊥)

]}
. (B.1.19)

We observe that the third component of the LF spin (B.1.18) is purely kinematical, and it reduces
to J3 in a frame of reference such that P⊥ = 0. To understand the physical meaning of j3

LF, observe
that [41]:

eiωK
3P · Je−iωK3 = P 1(coshωM23 + sinhωM20) + P 2(coshωM31 + sinhωM01)

+ (coshωP 3 + sinhωP 0)J3

= P 1(e
ωB2 + e−ωS2

2 )− P 2(e
ωB1 − e−ωS1

2 ) + (e
ωP+ − e−ωP−

2 )J3.

eiωK
3 |P| e−iωK3 =

√
(P 1)2 + (P 2)2 + (e

ωP+ − e−ωP−
2 )2.

Hence, in the limit ω →∞, we have:

lim
ω→∞

eiωK
3 P · J
|P| e

−iωK3 = j3
LF. (B.1.20)

An eigenstate of j3
LF becomes, for a Lorentz observer which moves along the −ẑ direction with the

speed of light, i.e. in the so-called “infinite momentum frame”, an eigenstate of the helicity h = P·J
|P| .

This explains why the LF spin j3
LF is sometimes called the LF helicity.

To conclude, in an irreducible representation of the Poincaré group, one labels the states through
the eigenvalues of a complete set of commuting operators, which can be chosen as the two Casimir
operators M2 and j2, the LF trimomentum P̃ =

(
P+,P⊥

)
and the third component of jLF.

3Note that any two such boosts B1 and B2 are connected by a rotation (the so-called “Melosh rotation”), because
R21(P ) = B−1

2 (P )B1(P ) maps the standard vector (M,0) into itself.
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B.2 LF spinors
In this section we construct explicitly the spinors associated to the eigenstates of the LF spin operator
j3
LF for a free spin-1

2 field.
The momentum four-vector and the angular momentum four-tensor of a free spin-1

2 field are given
by:

Pµ =
ˆ

Σ

dσρ ψγρi∂µψ (B.2.1)

Mµν =
ˆ

Σ

dσρ
[
xµψγρi∂νψ − xνψγρi∂µψ + ψγρ

1
2σ

µνψ

]
, (B.2.2)

where Σ is a space-like hypersurface. If Σ is chosen to be the LF surface x+ = 0, we have:

Pµ =
ˆ

d3x̃ ψ(+)†i∂µψ(+) (B.2.3)

Mµν =
ˆ

d3x̃

[
ψ(+)†(xµi∂ν − xνi∂µ)ψ(+) + ψ(+)† 1

2σ
µνψ

]
, (B.2.4)

where d3x̃ = d2x⊥dx− and:

ψ(±) = Λ(±)ψ, (B.2.5)

with:

Λ(±) = 1
2γ

0γ± = 1± α3

2 , (B.2.6)

Λ(±)Λ(∓) = 0, (B.2.7)
Λ(+) + Λ(−) = 1. (B.2.8)

In particular, we have (cf. Subsec. 3.2.2):

J3 = M12 =
ˆ

d3x̃

[
ψ(+)†(x1i∂2 − x2i∂1)ψ(+) + ψ(+)† 1

2σ
12ψ(+)

]
, (B.2.9)

Bk = M+k =
ˆ

d3x̃ψ(+)†(−xki∂+)ψ(+). (B.2.10)

Notice that Pµ, J3 and B⊥ are given directly as functionals of the projected field ψ(+), which is the
only independent component of the field in the LF framework (see e.g. [42]).

We may expand the free Dirac field in terms of annihilation and creation operators:

ψ(x) =
∑
s=± 1

2

ˆ d3p̃ θ(p+)
(2π)

3
2

√
m

p+

[
b(p, s)u(p, s)e−ipx + d†(p, s)v(p, s)eipx

]
, (B.2.11)

b(p, s) = (2π)−
3
2

√
p+

m

ˆ d3x̃

2 eip̃x̃u(p, s)ψ(x+ = 0, x̃), (B.2.12)

d(p, s) = −(2π)−
3
2

√
p+

m

ˆ d3x̃

2 eip̃x̃ψ(x+ = 0, x̃)v(p, s), (B.2.13)

where p− = m2+p2
⊥

p+ is understood and:{
b(p, s), b†(q, s)

}
=
{
d(p, s), d†(q, s)

}
= δ3(p̃− q̃)δrs, (B.2.14)
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all other anticommutators being zero. The spinors u and v satisfy:

(/p−m)u(p, s) = 0, (/p+m)v(p, s) = 0 (B.2.15)

and are normalized according to:

u(p, r)u(p, s) = −v(p, r)v(p, s) = δrs. (B.2.16)

The corresponding expansion for ψ(+) is:

ψ(+)(x) =
∑
s=± 1

2

ˆ

p+>0

d3p̃

(2π)
3
2

√
m

p+

[
b(p, s)u(+)(p, s)e−ipx + d†(p, s)v(+)(p, s)eipx

]
, (B.2.17)

with:
u(+)(p, s) = Λ(+)u(p, s), v(+)(p, s) = Λ(+)v(p, s). (B.2.18)

We want to determine a basis of spinors u(p, s) and v(p, s) in such a way that the states |b(p, s)〉 ≡√
(2π)32p+b†(p, s)|0〉 are eigenstates of the LF spin (B.1.18).
Since |b(p, s)〉 are eigenstates of the four momentum Pµ, we have:

j3
LF|b(p, s)〉 = J3|b(p, s)〉+ ẑ · (B⊥ ×

p⊥
p+ )|b(p, s)〉. (B.2.19)

Let us decompose the total angular momentum J3 in an orbital and a spin part:

J3 = L3 + S3, (B.2.20)

L3 = −i
ˆ

d3x̃
[
ψ(+)†ẑ · (x⊥ × ∂⊥)ψ(+)

]
, (B.2.21)

S3 =
ˆ

d3x̃ψ(+)† 1
2σ

12ψ(+). (B.2.22)

A tedious but straightforward calculation shows that:

L3|b(p, s)〉 = −ẑ · (B⊥ ×
p⊥
p+ )|b(p, s)〉 = ẑ · ( i∂

∂p⊥
× p⊥)|b(p, s)〉. (B.2.23)

j3
LF|b(p, s)〉 = S3|b(p, s)〉 =

∑
r=± 1

2

|b(p, r)〉2m
p+ u(+)(p, r)†σ

12

2 u(+)(p, s). (B.2.24)

Since the normalization (B.2.16) and the definition (B.2.18) imply:

u(+)(p, r)†u(+)(p, s) = δrs
p+

2m, (B.2.25)

we see that |b(p, s)〉 are eigenstates of j3
LF provided that:

σ12

2 u(+)(p, s) = λsu
(+)(p, s). (B.2.26)

The spinors u(+) are also subject to the constraint:

Λ(+)u(+)(p, s) = u(+)(p, s), (B.2.27)

given the definition (B.2.28) and the nature of the projector Λ(+) (see Eqs. (B.2.7)-(B.2.8)). There
are two linearly independent solutions:

u(+)(p,±1
2) =

√
p+

2mX± 1
2
, (B.2.28)



78 APPENDIX B. SPECIAL TOPICS IN LF DYNAMICS

where:

X+ 1
2

= 1√
2


1
0
1
0

 , X− 1
2

= 1√
2


0
1
0
−1

 , (B.2.29)

corresponding to the eigenvalues +1
2 and −1

2 respectively. Observe that, apart from the trivial factor
1√
2m , which comes from our choice of normalization (B.2.16), the projected LF spinors (B.2.28) are

independent from the mass of the field. Indeed, a glance at the expansion (B.2.17) reveals that ψ(+),
restricted on the LF surface x+ = 0, is independent from the mass of the field.

To obtain the full eigenspinors, consider the Dirac equation:

(iγ
+

2 ∂− + i
γ−

2 ∂+ − iγ⊥ · ∂⊥ −m)ψ = 0. (B.2.30)

By projecting with Λ(±), we obtain the two equations:

i∂−ψ(+) = (−iα⊥ ·∇⊥ + βm)ψ(−), (B.2.31)
i∂+ψ(−) = (−iα⊥ ·∇⊥ + βm)ψ(+). (B.2.32)

For a spinor solution ψ(x) = u(p, s)e−ipx, equation (B.2.32) implies:

p+u(−)(p, s) = (α⊥ · p⊥ + βm)u(+)(p, s).

Therefore, the full spinors are given by:

u(p, s) = 1√
2mp+

[
p+ +α⊥ · p⊥ + βm

]
Xs, (B.2.33)

The corresponding antiparticle spinors v(p, s) can be obtained from the u(p, s) through charge conju-
gation:

v(p, s) = CuT (p, s),

with C = iγ0γ2. This results in:

v(p, s) = 1√
2mp+

[
p+ +α⊥ · p⊥ − βm

]
X−s. (B.2.34)

B.3 Discrete symmetries in the LF formalism

One of the major drawbacks in the LF formalism is that the underlying rotational symmetry is made
much less apparent by the choice of a particular space direction ẑ. This is reflected by the fact that, in
the LF framework, only the third components J3 and j3

LF, of J and jLF respectively, are kinematical
operators, while jLF⊥ and J⊥ (as well as J2 and j2

LF = −W 2

M2 ) are dynamical.
The same considerations apply to the discrete symmetries of parity and time reversal, which have

both the effect of exchanging the two fronts x+ = 0 and x− = 0, and act on the ± components of the
four momentum Pµ as:

PP±P† = P∓, T P±T † = P∓

Thus, parity and time reversal are, in the LF formalism, both dynamical operators, and their action
on the exact eigenstates of the interacting four momentum Pµ differs from their action on free Fock
states, eigenstates of the free four momentum Pµ0 .
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Operator O P†OP P†LFOPLF T †LFOTLF
P− P+ P− P−

P+ P− P+ P+

P⊥ −P⊥
(
−P 1, P 2) −P⊥

J3 J3 −J3 −J3

K3 −K3 K3 −K3

B⊥ −S⊥
(
−B1, B2) −B⊥

S⊥ −B⊥
(
−S1, S2) S⊥

j3
LF J3 + εijS

iP j −j3
LF −j3

LF

Table B.3.1. behavior of Poincaré generators under parity, LF parity, and LF time reversal [41, Chapter II].

In the LF formulation, it is much more fruitful to consider light front parity and time-reversal
operators, defined by [41, Chapter II]:

PLF = e−iπJ
1P, (B.3.1)

TLF = e−iπJ
3PT . (B.3.2)

These are both kinematical operators, which act on coordinates as:(
x−, x+, x1, x2

) PLF7→
(
x−, x+,−x1, x2

)
, (B.3.3)(

x−, x+, x1, x2
) TLF7→

(
−x−,−x+, x1,−x2

)
. (B.3.4)

The action of PLF and TLF on the Poincaré generators is summarized in Table B.3.1, where we show
for comparison also the action of the ordinary parity operator.

The action of the LF parity and time-reversal on one-particle states (here λ is the eigenvalue with
respect to the LF-spin j3

LF) is given by [41, Chapter II]:

PLF|p+, p1, p2, λ〉 = ηP(−i)2j |p+,−p1, p2,−λ〉, (B.3.5)
TLF|p+, p1, p2, λ〉 = ηPηT (+i)2j |p+,−p1,−p2,−λ〉, (B.3.6)

where ηP and ηT are the (ordinary) intrinsic parity and T-parity respectively, and j is the spin of the
particle in question.

Finally, we note that the space-time inversion I ≡ PT can be expressed in terms of TLF and J3

as:
I = eiπJ

3TLF (B.3.7)

and is therefore a kinematical operator, a result which was used extensively throughout this Thesis.

B.4 Frame independence and symmetries of the LFWFs

The state |b;P, s〉 transforms under LF boosts as [38]:

e−iωK
3
e−iα⊥·B⊥ |b;P, s〉 = |b;P ′, s〉. (B.4.1)

where
P ′+ = eωP+, P′⊥ = P⊥ +α⊥P+. (B.4.2)
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Eqs. (B.4.1)-(B.4.2) follow from the commutation rules of the Poincaré algebra (see, e.g., Ref. [40]).
In particular, the LF helicity s is invariant under LF boosts, as a consequence of:[

K3, j3
LF

]
=
[
B⊥, j3

LF

]
= 0.

Notice that the scaling property of the ± components under longitudinal boosts is nothing but a
rephrasing of the standard Lorentz boost of a four-vector:{

A′0 = coshωA0 + sinhωA3

A′3 = sinhωA0 + coshωA3 ⇐⇒ A′± = e±ωA±,

which, incidentally, shows explicitly that longitudinal boosts fix the light-front x+ = 0.
On the other hand, since the generators K3 and B⊥ are interaction independent, from the defini-

tions (3.2.35), (3.2.36) and (3.2.37) we immediately obtain:

e−iωK
3
e−iα⊥·B⊥ |2/P ; ξk⊥λ1λ2〉 = |2/P ′; ξk⊥λ1λ2〉, (B.4.3)

where the LF helicity of the constituents has also been taken into account. Equations (B.4.1), (B.4.2)
and (B.4.3) clearly imply that the valence LFWFs appearing in Eqs. (3.2.39) and (4.1.30) are in-
dependent of P , the bound state four-momentum. It is worth to emphasize that such a feature is
unique to LF quantum field theory: the two fundamental pieces of information are that the LF boosts
generated by K3 and B⊥ are kinematical, and that they act transitively on the positive mass-shell{
P 2 = M2, P 0 > 0

}
, as is clear from (B.4.2). The same argument applies to higher Fock components

wave functions.
Let us now, for simplicity, limit ourselves to a scalar bound state of scalar constituents. We choose

our reference frame as the rest frame of the bound state b. In this frame, its Fock expansion begins
with:

|b;PCM〉 =
1ˆ

0

dξ
(2π)2ξ(1− ξ)

ˆ d2k⊥
(2π)2 |2/PCM; ξk⊥〉Ψ2(ξ,k⊥) + · · · ,

where (PCM)± = M , (PCM)⊥ = 0. Since the bound state |b〉 is spinless, by applying a rotation e−iφJz
about the z-axis, which has the effect:

e−iφJz |2/PCM; ξ, kx, ky〉 = |2/PCM; ξ, cosφkx − sinφky, sinφkx + cosφky〉,

we see that the LFWF depends only upon γ ≡ k2
⊥.

To conclude, we consider the implications of parity and time reversal invariance. We assume that
the operator PT satisfies:

PT a†1,2(p̃)(PT )† = a†1,2(p̃), (B.4.4)

where a†1,2 are the creation operators for the constituents. We have omitted a possible phase factor in
the right hand side of (B.4.4), which can always be absorbed in the definition of the a’s by using the
antiunitary character of PT .

Applying PT to both sides of Eq. (3.2.34), we see that:

|b;P 〉 =
1ˆ

0

dξ
(2π)2ξ(1− ξ)

ˆ d2k⊥
(2π)2 |2/P ; ξk⊥〉Ψ∗2(ξ,k⊥) + · · · (B.4.5)

which implies:
Ψ2(ξ,k⊥) = Ψ∗2(ξ,k⊥), (B.4.6)

i.e., the valence wave-function is real.
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Appendix C

Analytic derivations for the
fermion-scalar BSE

In this appendix we present our calculations for the fermion-scalar BSE in full detail.
In Sec. C.1 we decompose the BS amplitude and the conjugated amplitude in its independent

Dirac structures allowed by parity invariance. Assuming time-reversal invariance as well, we show
that the same two invariant amplitudes enter both the decompositions. An integral equation for these
amplitudes is derived under the approximations employed in our numerical work.

In Sec. C.2 we obtain the integral equations satisfied by the Nakanishi weight functions of the
invariant amplitudes, through the LF projection of the BSE.

In Sec. C.3 we explicitly write the normalization condition of the BS amplitude in terms of the
Nakanishi weight functions.

In Sec. C.4 we discuss the Wick-rotated BSE, and reduce it to a two-dimensional integral equation
on a bounded domain.

Finally, Sec. C.5 contains some mathematical tools employed in the derivations of the previous
Sections.

In what follows, Dirac matrices are in the usual Pauli representation:

γ0 =
(
I O
O −I

)
, γ =

(
O σ
−σ O

)
, γ5 =

(
O I
I O

)
,

and spinors are normalized according to:

∑
s=± 1

2

u(p, s)u(p, s) = /p+m

2m .

C.1 The BS amplitude for a fermion-scalar system

In this Section, we derive some formal properties of the fermion-scalar BS amplitude. The results
of Subsecs. C.1.1 and C.1.2 are valid under the assumption of parity and parity plus time-reversal
invariance respectively, but are in any other respect completely general. In Subsec. C.1.3, on the
other hand, we specialize to the case studied in our numerical work.

C.1.1 General form of the amplitude

The BS amplitude for a bound state of spin j = 1
2 composed by a fermion and a scalar, has the

following general structure (see Table 2.1.1 for the definitions of coordinate and momentum space
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variables):

χs(k;P ) ≡
ˆ

d4x eikx〈0|T {ψ(η2x)φ(−η1x)} |b;P, s〉

=Λ(k, P )u(P, s) (C.1.1)

where ψ and φ are the fermion and scalar fields respectively, u(P, s) is the Dirac spinor corresponding
to the state |b;P, s〉, and Λ(k, P ) is a 4 × 4 matrix, which can be expressed through the Dirac basis
and the four-momenta at disposal as follows:

Λ(k, P ) = φS + φPγ
5 + (φV,1

kµ
M

+ φV,2
Pµ
M

)γµ + (φA,1
kµ
M

+ φA,2
Pµ
M

)γµγ5 + φT
kµPν
M2 σ

µν . (C.1.2)

For the BS amplitude to transform properly under Lorentz transformations, the functions φ(·) must
depend only upon the invariants which one can construct from the two vectors kµ and Pµ, i.e. Pk
and k2 (P 2 = M2 is understood).

We can reduce the number of independent amplitudes to two, by taking into account parity in-
variance. As discussed in Subsec. 4.1.1, we assume that the intrinsic parity of the ground state |b〉
coincides with the product of the intrinsic parities of ψ and φ, defined by:

P†ψ(x)P = πψγ
0ψ(xP ), (C.1.3)

P†φ(x)P = πφφ(xP ), (C.1.4)

where xP =
(
x0,−x

)
, PP =

(
P 0,−P

)
. For the purpose of this and the following derivations (Subsec.

C.1.2), we may assume that |b;P, s〉 represents an eigenstate of the helicity h = P·J
|P| , so that:

P|b;P, s〉 = πψπφ|b;PP ,−s〉. (C.1.5)

The corresponding spinors u(P, s) are given by:

u(P, s) =

√
P 0 +M

2M

(
ϕs(P̂)

σ·P
P 0+Mϕs(P̂)

)
, σ · P̂ϕ± 1

2
(P̂) = ±ϕ± 1

2
(P̂), (C.1.6)

and satisfy:
u(PP ,−s) = γ0u(P, s), (C.1.7)

provided ϕ± 1
2
(P̂) = ϕ∓ 1

2
(−P̂). Using Eqs. (C.1.3), (C.1.4), (C.1.5) and (C.1.7), one can see that the

matrix Λ(k, P ) must satisfy:

Λ(k, P )u(P, s) = γ0Λ(kP , PP)γ0u(P, s). (C.1.8)

which implies1:
Λ(k, P ) = γ0Λ(kP , PP)γ0. (C.1.9)

In turn, this requires:
φP = φA,1 = φA,2 ≡ 0. (C.1.10)

Observe now that the spinor u(P, s) satisfies:

/Pu(P, s) = Mu(P, s),
kµPνσ

µνu(P, s) = i(M/k − Pk)u(P, s).
1This argument actually requires some care, since the matrix Λ(k, P ) is defined by Eq. (C.1.1) only up to a term of

the form Λ1(k, P ) /P−M2M . A more careful procedure would be to define uniquely Λ(k, P ) by requiring, e.g. Λ(k, P ) /P+M
2M =

Λ(k, P ), which leads to some additional relations between the amplitudes φ(·). For such a matrix, which satisfies
automatically Λ(k, P )v(P, s) = γ0Λ(kP , PP)γ0v(P, s) = 0, Eq. (C.1.8) implies (C.1.9).
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Therefore, we can write the BS amplitude as:

χs(k;P ) =
[
φ1(k2, Pk) + φ2(k2, Pk)

/k

M

]
u(P, s), (C.1.11)

where the dependence of the various quantities upon the arguments k, P and s has been made explicit,
and:

φ1 = φS + φV,2 − i
Pk

M2φT , (C.1.12)

φ2 = φV,1 + iφT . (C.1.13)

C.1.2 The conjugate amplitude

The conjugate BS amplitude is defined by:

χs(q;P ) ≡
ˆ

d4y e−iqy〈b;P, s|T{ψ(η2y)φ†(−η1y)}|0〉 (C.1.14)

(notice the different signs of the exponentials in Eqs. (C.1.1) and (C.1.14)). When PT is a good
symmetry of the theory, there exists a simple relation between χ and χ, which may be derived as
follows.

We employ the following conventions2 for the PT operator (see, e.g., [?]):

PT |b;P, s〉 = (−1)
1
2−s|b;P,−s〉, (C.1.15)

PT ψ(x)(PT )† = γ1γ3γ0ψ(−x), (C.1.16)
PT φ(x)(PT )† = φ(−x). (C.1.17)

Recalling that PT is antiunitary, from these we easily obtain:

〈0|T {ψ(η2y)φ(−η1y)} |b;P, s〉 = (−1)
1
2−sγ1γ3〈b;P,−s|T{ψ(−η2y)φ†(η1y)}|0〉T . (C.1.18)

From the definition (C.1.14) we find, in momentum space:

χs(q;P ) = γ1γ3(−1)
1
2−sχ−s(q;P )T (C.1.19)

When P and T are separately conserved, we may write the conjugate amplitude in the form:

χs(q;P ) = u(P, s)
[
φ1(q2, P q) + φ2(q2, P q) /

q

M

]
, (C.1.20)

where the amplitudes φi are, a priori, different from φi. Since /qT = γ1γ3/qγ3γ1 we have:

γ1γ3χ−s(q;P )T =
[
φ1(q2, P q) + φ2(q2, P q) /

q

M

]
(−1)

1
2−sγ1γ3u(P,−s)T . (C.1.21)

By appropriately choosing a common global phase for u(P,±1
2), we may assume that:

γ1γ3u(P,−s)T = (−1)
1
2−su(P, s). (C.1.22)

2This can always be done, given the antiunitary character of PT ; e.g. if PT φ(x)(PT )† = e2iθφ(−x), we define the
new field φ1(x) = eiθφ(x), which satisfies PT φ1(x)(PT )† = φ1(−x).
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The factor (−1)
1
2−s is consistent with our choice (C.1.15) for the PT transformation of the bound

state3. With these conventions, Eqs. (C.1.19) and (C.1.21) imply:[
φ1(q2, P q) + φ2(q2, P q) /

q

M

]
u(P, s) =

[
φ1(q2, P q) + φ2(q2, P q) /

q

M

]
u(P, s) (s = 1, 2), (C.1.23)

which in turn yields φi ≡ φi, since φ1 and φ2 are uniquely defined by Eq. (C.1.11) (see the next
Subsection, Eqs. (C.1.30) and (C.1.31)). In conclusion:

χs(q;P ) = u(P, s)
[
φ1(q2, P q) + φ2(q2, P q) /

q

M

]
. (C.1.24)

C.1.3 Ladder coupled system for the invariant amplitudes

The relation between the BS amplitude and the invariant amplitudes φ1,2, Eq. (C.1.11), can be
inverted by using the projection identity:

∑
s=± 1

2

u(P, s)u(P, s) =
/P +M

2M . (C.1.25)

This yields:

T1 ≡ Tr

∑
s=1,2

χs(k;P )u(P, s)

 (C.1.26)

= 2φ1 + 2 Pk
M2φ2, (C.1.27)

T2 ≡ Tr

 /k

M

∑
s=1,2

χs(k;P )u(P, s)

 (C.1.28)

= 2 Pk
M2φ1 + 2 k

2

M2φ2. (C.1.29)

Solving for φ1 and φ2 we obtain:

φ1 = 1
2
M2k2T1 −M2P · k T2
M2k2 − (P · k)2 , (C.1.30)

φ2 = 1
2
M4T2 −M2P · k T1
M2k2 − (P · k)2 . (C.1.31)

Observe that k2M2 − (P · k)2 is proportional to the determinant of the above linear system, and it
vanishes if k ∝ P . As we will show below, the determinant actually drops out from the equations for
the Nakanishi weight functions of φ1,2.

Eqs. (C.1.30) and (C.1.31) can be used to derive a coupled system of integral equations satisfied
by the invariant amplitudes φ1,2. We write the BSE for the fermion-scalar system under study as:

χs(k;P ) = i

η1 /P + /k −mψ + iε

i

(η2P − k)2 −m2
φ + iε

ˆ d4k′

(2π)4 iK(k, k′;P )χs(k′;P ), (C.1.32)

3For a shorthand derivation of Eq. (C.1.22), one can consider the asymptotic fields bin/out(x) of the bound state,
which transform like:

PT bin(x)(PT )† = ηγ1γ3bout(−x),
under PT transformations. The phase choice η = 1, together with our convention (C.1.15), yields Eq. (C.1.22).
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where self-energy corrections are neglected. To obtain the corresponding equations for the invariant
amplitudes amplitudes φ1,2, we first need equations for the traces T1 and T2 defined by (C.1.26) and
(C.1.28). Plugging the BSE (C.1.32) into the definitions (C.1.26) and (C.1.28) we obtain:

Tj = i

(η1P + k)2 −m2
ψ + iε

i

(η2P − k)2 −m2
φ + iε

ˆ d4k′

(2π)4Sj(k, k
′, P ), (C.1.33)

with:

S1(k, k′, P ) ≡ Tr
{

(η1 /P + /k +mψ)iK(k, k′;P )(φ1 + φ2
/k
′

M
)
/P +M

2M

}
, (C.1.34)

S2(k, k′, P ) ≡ Tr
{
/k

M
(η1 /P + /k +mψ)iK(k, k′;P )(φ1 + φ2

/k
′

M
)
/P +M

2M

}
. (C.1.35)

Then, from (C.1.30) and (C.1.31), we obtain:

φ1 = i

(η1P + k)2 −m2
ψ + iε

i

(η2P − k)2 −m2
φ + iε

ˆ d4k′

(2π)4
1
2
M2k2S1 −M2P · k S2
M2k2 − (P · k)2 , (C.1.36)

φ2 = i

(η1P + k)2 −m2
ψ + iε

i

(η1P − k)2 −m2
φ + iε

ˆ d4k′

(2π)4
1
2
M4S2 −M2P · k S1
M2k2 − (P · k)2 . (C.1.37)

We now take iK as the one-scalar exchange ladder kernel:

iK(k, k′;P ) = iλψ
i

(k − k′)2 − µ2 + iε
iλφ. (C.1.38)

The traces (C.1.34) and (C.1.35) read

Sj(k, k′, P ) = iλψ
i

(k − k′)2 − µ2 + iε
iλφTj(k, k′, P ), (C.1.39)

where the Tj ’s are given in Subsec. C.5.1. Substituting eqs. (C.1.39) in (C.1.36) and (C.1.37), and
using the formulas (C.5.3) and (C.5.4), we obtain:

φi(k2, Pk) = iλψλφ[
(η1P + k)2 −m2

ψ + iε
] [

(η2P − k)2 −m2
φ + iε

] ˆ d4k′

(2π)4

∑
j=1,2Cij(k, k′, P )φj(k′2, Pk′)

(k − k′)2 − µ2 + iε
,

(C.1.40)
The coefficients Cij are the ones tabulated in Subsec. C.5.1 and rewritten here, for convenience, with
η1 = η2 = 1

2 :

C11 = M

2 +mψ, (C.1.41)

C12 =
(M2 +mψ)k2(Pk′) + (M2 −mψ)(Pk)(kk′) +Mk2(kk′)− 1

M (Pk)2(Pk′)− k2

M (Pk)(Pk′)
M2k2 − (Pk)2 ,

(C.1.42)
C21 = M, (C.1.43)

C22 =
Mk2(Pk′) + (M2 −mψ)(Pk)(Pk′) + (mψ − M

2 )M2(kk′)−M(Pk)(kk′)
M2k2 − (P · k)2 , (C.1.44)
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C.2 NIR and LF projection
To solve the coupled system (C.1.40) for the invariant amplitudes, we let η1 = η2 = 1

2 and assume the
following NIR for φ1,2:

φi(k2, Pk) = i

1ˆ

−1

dz′
+∞ˆ

0

dγ′ gi(γ′, z′)[
(k + z′ P2 )2 − (1− z′2)κ2 − (z′m−∆)2 − γ′ + iε

]3 . (C.2.1)

Plugging Eq. (C.2.1) into (C.1.40), we obtain:

−iφi(k2, Pk) =
1ˆ

−1

dz′
+∞ˆ

0

dγ′
∑
j=1,2

Ṽij(k2, Pk, γ′, z′)gj(γ′, z′), (C.2.2)

where φi on the LHS is expressed in terms of gi through Eq. (C.2.1), and:

Ṽij(k2, Pk, γ′, z′) ≡ iλψλφ[
(P2 + k)2 −m2

ψ + iε
] [

(P2 − k)2 −m2
φ + iε

] ˆ d4k′

(2π)4
1

[(k − k′)2 − µ2 + iε]×

× Cij(k, k′, P )[
(k′ + z′ P2 )2 − (1− z′2)κ2 − (z′m−∆)2 − γ′ + iε

]3 . (C.2.3)

Applying the LF projection, i.e. integrating over k−, we obtain:

1ˆ

−1

dz′
+∞ˆ

0

dγ′B(γ, z; γ′, z′)gi(γ′, z′) =
1ˆ

−1

dz′
+∞ˆ

0

dγ′
2∑
j=1

Vij(γ′, z′; γ′, z′)gj(γ′, z′), (C.2.4)

where:

B(γ, z; γ′, z′) ≡ iP+
+∞ˆ

−∞

dk−

2π
1[

(k + z′ P2 )2 − (1− z′2)κ2 − (z′m−∆)2 − γ′ + iε
]3 , (C.2.5)

Vij(γ, z; γ′, z′) ≡ iP+
+∞ˆ

−∞

dk−

2π Ṽij(k2, Pk, γ′, z′), (C.2.6)

and the factors iP+ are introduced for later convenience. Noteworthy, the projected kernels B and
Vij depend only upon the LF variables defined by:

γ ≡ k2
⊥, (C.2.7)

z ≡ −2k+

M
= 1− 2ξ. (C.2.8)

The kernel B in Eq. (C.2.5) has been already computed in Subsec. 3.2.4, and it is given by:

B(γ, z; γ′, z′) = δ(z − z′)
[γ′ +D0(γ, z)]2

. (C.2.9)

Here the function:

D0(γ, z) ≡ γ + (1− z2)κ2 + (zm−∆)2. (C.2.10)
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The kernel Vij requires considerably more work. We make the Cij ’s dependence upon k′ explicit
by writing:

Cij = C
(0)
ij + C

(1)µ
ij k′µ. (C.2.11)

To perform the k′ integral in Eq. C.2.3, we use the Feynman parametrization (see Subsec. C.5.2):

1
A3B

= 3
1ˆ

0

v2 dv 1
{vA+ (1− v)B}4

.

The evaluation of the k′ integral is thus reduced to the evaluation of the two integrals:

I =
ˆ d4k′

(2π)4
1{

v
[
(k′ + z′ P2 )2 − (1− z′2)κ2 − (z′m−∆)2 − γ′

]
+ (1− v) [(k − k′)2 − µ2] + iε

}4 ,

(C.2.12)

Iµ =
ˆ d4k′

(2π)4
k′µ{

v
[
(k′ + z′ P2 )2 − (1− z′2)κ2 − (z′m−∆)2 − γ′

]
+ (1− v) [(k − k′)2 − µ2] + iε

}4 .

(C.2.13)

We rewrite the two denominators in (C.2.12) and (C.2.13) as:

{· · · }4 ≡
{
q2 − s

}4
,

where:

q ≡ k′ + 1
2
[
vz′P − 2(1− v)k

]
(C.2.14)

s ≡ v(κ2 + ∆2 − 2z′m∆ + γ′) + (1− v)µ2 + v2z′2
M2

4 − v(1− v)k2 − v(1− v)z′P · k (C.2.15)

Making this change of variables, we can evaluate (C.2.12) and (C.2.13) through the standard integrals
given in Subsec. C.5.3. We obtain:

I = i

6(4π)2
1

(s− iε)2 , (C.2.16)

Iµ = i

6(4π)2
tµ

(s− iε)2 , (C.2.17)

with:
t ≡ (1− v)k − 1

2vz
′P. (C.2.18)

Coming back to Eq. (C.2.3), we have:

Ṽij = − λψλφ
2(4π)2

1ˆ

0

v2dv 1[
(P2 + k)2 −m2

ψ + iε
] [

(P2 − k)2 −m2
φ + iε

]×
×

C
(0)
ij + C

(1)µ
ij tµ[

−v(κ2 + ∆2 − 2z′m∆ + γ′)− (1− v)µ2 − v2z′2M
2

4 + v(1− v)k2 + v(1− v)z′P · k + iε
]2 .

(C.2.19)



88 APPENDIX C. ANALYTIC DERIVATIONS FOR THE FERMION-SCALAR BSE

To simplify the following calculations, we boost to the rest frame of the bound state, where P⊥ = 0
and P± = M . Defining:

k+
D = v(1− v)M2 (z′ − z), (C.2.20)

lD = −v(κ2 + ∆2 − 2z′m∆ + γ′)− (1− v)µ2 − v(1− v)(γ + M2

4 z′z)− v2z′2
M2

4 , (C.2.21)

k−d = −M2 + 2
M(1− z)(γ +m2

ψ), (C.2.22)

k−u = M

2 −
2

M(1 + z)(γ +m2
φ), (C.2.23)

and writing:
C

(0)
ij + C

(1)µ
ij tµ = c

(0)
ij + c

(1)
ij k

−,

we have:

Vij(γ, z; γ′, z′) = 2iλψλφ
(4π)2

1
M

1ˆ

0

v2dv
+∞ˆ

−∞

dk−

2π ×

×
c

(0)
ij + c

(1)
ij k

−[
(1− z)(k− − k−d ) + iε

] [
(1 + z)(k− − k−u )− iε

] [
k−k+

D + lD + iε
]2 . (C.2.24)

Notice that, for z2 > 1, the above integral vanishes, as can be seen by contour integration. For z2 ≤ 1
employing the J integrals of Subsec. C.5.4, we obtain:

Vij(γ, z; γ′, z′) = λψλφ
2(4π)2

1
D0(γ, z)

1ˆ

0

v2dv

θ(k+
D)

c
(0)
ij + c

(1)
ij k

−
u[

k−u k
+
D + lD

]2 + θ(−k+
D)

c
(0)
ij + c

(1)
ij k

−
d[

k−d k
+
D + lD

]2
 . (C.2.25)

Defining the coupling constant by (see Appendix D):

λφλψ = 8πmφα, (C.2.26)

we finally obtain the integral equation satisfied by the Nakanishi weight functions:
+∞ˆ

0

B(γ, z; γ′)gi(γ′, z) = α

+1ˆ

−1

dz′
∞̂

0

dγ′
2∑
j=1

Aij(γ, z; γ′, z′)gj(γ′, z′) (C.2.27)

with the kernels:

B(γ, z; γ′) = 1
[γ′ +D0(γ, z)]2

, (C.2.28)

Aij(γ, z; γ′, z′) ≡
mφ

4πD0(γ, z)

1ˆ

0

v2dv

θ(z′ − z) c(0)
ij + c

(1)
ij k

−
u[

k−u k
+
D + lD

]2 + θ(z − z′)
c

(0)
ij + c

(1)
ij k

−
d[

k−d k
+
D + lD

]2
 . (C.2.29)

The coefficients c(k)
ij are explicitly given by c(1)

11 = c
(1)
21 = c

(1)
22 = 0 and:

c
(0)
11 = M

2 +mψ,

c
(0)
12 = −(1− v)( z4M + γ

M )− (M2 +mψ)vz′2 ,

c
(0)
21 = M,

c
(0)
22 = (1− v)(mψ − M

2 )− vz′

2 M,

c
(1)
12 = 1

2(1− v)(1− z).

(C.2.30)
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C.3 Normalization condition
The normalization condition for the BS amplitude reads (cf. Subsecs. 2.1.3 and 2.2.3):

lim
P 0→ω(P)

iχr
(G−1

0 − iK)
P 2 −M2 χs = δsr, (C.3.1)

where s and r denote the spin arguments. Explicitly:ˆ d4q

(2π)4
d4k

(2π)4χr(q;P )N(q, k;P )χs(k;P ) = −4iM2δsr, (C.3.2)

where:
N ≡ 2Pµ ∂(G−1

0 − iK)
∂Pµ

∣∣∣∣∣
P 0=ω(P)

. (C.3.3)

For ladder kernel, with free propagators in G0, we have:

G−1
0 (q, k;P ) = (2π)4δ4(k − q)

[
/P

2 + /k −mψ

] [
m2
φ + Pk − P 2

4 − k
2
]
, (C.3.4)

N(q, k;P ) =
[
m2
φ −

3
4M

2 − k2 + 2Pk
]
/P + (2Pk −M2)(/k −mψ) (C.3.5)

Introducing the two parametrizations (C.1.11) and (C.1.24), we obtain:∑
j,l=1,2

Irsjl = −4iδsrM2, (C.3.6)

where:

Irs11 =
ˆ d4k

(2π)4φ1(k2, Pk)φ1(k2, Pk)u(P, r)N(k;P )u(P, s) (C.3.7)

Irs12 =
ˆ d4k

(2π)4φ1(k2, Pk)φ2(k2, Pk)u(P, r)N(k;P )
/k

M
u(P, s), (C.3.8)

Irs21 =
ˆ d4k

(2π)4φ2(k2, Pk)φ1(k2, Pk)u(P, r)
/k

M
N(k;P )u(P, s). (C.3.9)

Irs22 =
ˆ d4k

(2π)4φ2(k2, Pk)φ2(k2, Pk)u(P, r)
/k

M
N(k;P )

/k

M
u(P, s). (C.3.10)

Using /Pu(P, s) = Mu(P, s) and:ˆ d4k

(2π)4F (k2, Pk) kµ = Pµ
ˆ d4k

(2π)4F (k2, Pk) Pk
M2 ,

which follows from Lorentz invariance, we find:

Irs11 = δrsM

ˆ d4k

(2π)4φ1(k2, Pk)φ1(k2, Pk)
{
Mmψ +m2

φ −
3
4M

2 + (1− 2mψ

M
)Pk + 2(Pk)2

M2 − k2
}
,

Irs12 = Irs21 = δrsM

ˆ d4k

(2π)4φ1(k2, Pk)φ2(k2, Pk)
{[
Mmψ +m2

φ −
3
4M

2
]
Pk

M2 +

+ (1− mψ

M
)2(Pk)2

M2 − k2 + k2 Pk

M2

}

Irs22 = δrsM

ˆ d4k

(2π)4φ2(k2, Pk)φ2(k2, Pk)
{

(
m2
φ

M2 −
3
4)2(Pk)2

M2 + 4(Pk)3

M4 + (3
4 + mψ

M
−
m2
φ

M2 )k2 +

+ (−3− 2mψ

M
)k2 Pk

M2 + (k2)2

M2

}
.
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These integrals can be evaluated as explained in Subsec. C.5.5. Omitting the common δrs factors, we
have:

i

4M2 I11 =
[
m2
φ +mψM −

3
4M

2
]
A11
4M + (M

2

2 −mψM)2Pµ
M2

Aµ11
4M + 2PµPν

M2
Aµν11
4M − B11

4M ,

i

4M2 I12 = 1
2

[
m2
φ +mψM −

3
4M

2
] 2Pµ
M2

Aµ12
4M + (1− mψ

M
)2PµPν
M2

Aµν12
4M − B12

4M + 1
2

2Pµ
M2

Bµ
12

4M ,

i

4M2 I22 =
[
m2
φ

M2 −
3
4

]
2PµPν
M2

Aµν22
4M + 4PµPνPρ

M4
Aµνρ22
4M + (3

4 + mψ

M
−
m2
φ

M2 )B22
4M+

(−3
2 −

mψ

M
)2Pµ
M2

Bµ
22

4M + 1
M2

C22
4M ,

where the integrals A, B and C are given in Subsec. C.5.5. The normalization condition reads:∑
j,l=1,2

i

4M2 Ijl = 1.

Following Subsec. C.5.5, we write Xµν···
ij =

(
gi|X µν···ij |gj

)
, where the X are given in (C.5.49)-(C.5.55),

which we now rewrite in a more convenient form. Putting:

ζ = 1
2
[
(1− v)z′′ + vz′

]
, (C.3.11)

s = vγ′ + (1− v)γ′′ + κ2 + ∆2 − 4ζm∆ + ζ2M2, (C.3.12)

we have:

A = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{3
2

}
, (C.3.13)

2Pµ
M2A

µ = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4 {−3ζ} (C.3.14)

2PµPν
M2 A

µν = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{
3ζ2M2 − 1

2s
}
, (C.3.15)

4PµPνPρ
M4 Aµνρ = 1

(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{
−6ζ3M2 + 3ζs

}
(C.3.16)

B = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{3
2ζ

2M2 − s
}
, (C.3.17)

2Pµ
M2 B

µ = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{
−3ζ3M2 + 3ζs

}
, (C.3.18)

C = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{3
2ζ

4M4 − 3ζ2M2s+ 3
2s

2
}
. (C.3.19)

We finally obtain the normalization condition in the form:∑
ij=1,2

(gi|Fij |gj) = 1, (C.3.20)
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where:

(gi|Fij |gj) =
+∞ˆ

−∞

dγ′′
+1ˆ

−1

dz′′
+∞ˆ

−∞

dγ′
+1ˆ

−1

dz′gi(γ′′, z′′)Fij(γ′′, z′′, γ′, z′)gj(γ′, z′), (C.3.21)

Fij = 1
(8π)2M

1ˆ

0

dv v2(1− v)2 fij
s4 , (C.3.22)

f11 = 3
2

[
m2
φ +mψM −

3
4M

2
]

+ (3mψM −
3M2

2 )ζ + 3
2M

2ζ2 + s

2 (C.3.23)

f12 = f21 = −3
2

[
m2
φ +mψM −

3
4M

2
]
ζ + (1

2 −
mψ

M
)3ζ2M2 − 3

2ζ
3M2 + 1

2(mψ

M
+ 1 + 3ζ)s,

(C.3.24)

f22 = 3
[
m2
φ

2M2 −
3
8 + mψ

2M

]
ζ2M2 + 3(mψ

M
− 1

2)ζ3M2 + 3
2ζ

4M2+

+
[
m2
φ

2M2 −
3
8 −

mψ

M
− 3(1

2 + mψ

M
)ζ − 3ζ2 + 3s

2M2

]
s (C.3.25)

C.4 Wick-rotated BSE

We discuss in this Section the Wick-rotation of the BSE for the scalar exchange ladder kernel. This is
obtained from Eq. (C.1.40) by the formal substitutions k0 = ik4, k′0 = ik′4 in the rest frame P = 0:

φ̂i(k) = λψλφ[
m2
ψ + k2 + (k4 − iη1M)2

] [
m2
φ + k2 + (k4 + iη2M)2

] ˆ d4k′

(2π)4

∑
j=1,2 Ĉij(k, k′, P )φ̂j(k′)

(k4 − k′4)2 + (k− k′)2 + µ2 ,

(C.4.1)
where the Wick-rotated amplitudes are φ̂j(k) = φj(ik4,k) and the coefficients are:

Ĉ11 = (η1 + mψ

M
)M, (C.4.2)

Ĉ12 =
−k2(k · k′) + i(η1 + mψ

M )Mk2k′4 + i(η1 −
mψ
M )Mk4(k · k′)

Mk2 (C.4.3)

Ĉ21 = M, (C.4.4)

Ĉ22 =
(mψM − η1)Mk · k′ + ik2k′4 − ik4(k · k′)

k2 . (C.4.5)

Notice that, in Eq. (C.4.1), we have reintroduced the two coefficients η1,2, for reasons to be explained
below.

Since the amplitudes φ̂j depend on k only through the invariants k2 = −k2−(k4)2 and Pk = iMk4,
they can be regarded as functions of x = k4 and y = |k|. Therefore, we can immediately perform the
angular integrations in:

d4k′ = dx′y′2dy′dωdϕ,

where ω = cos θ = k·k′
|k||k′| . Decomposing the coefficients as:

Ĉij = ĉ
(0)
ij + ĉ

(1)
ij k · k′,
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and using the two integrals:

1ˆ

−1

dω 1
a− bω

= 1
b

ln a+ b

a− b
,

1ˆ

−1

dω ω

a− bω
= −2

b
+ a

b2
ln a+ b

a− b
,

we obtain:
ˆ d4k′

(2π)4

∑
j=1,2 Ĉij(k, k′, P )φ̂j(x′, y′)

(k4 − k′4)2 + (k− k′)2 + µ2 =
ˆ dx′dy′

(2π)3

∑
j=1,2

φ̂j(x′, y′)
{

b

4y2

[
ĉ

(0)
ij + a

2 ĉ
(1)
ij

]
ln a+ b

a− b
− y′2ĉ(1)

ij

}
,

where:

a = (x− x′)2 + y2 + y′2 + µ2,

b = 2yy′.

By writing λφλψ = 8πmφα, the Wick-rotated BSE (C.4.1) becomes:[
m2
ψ + y2 + (x− iη1M)2

] [
m2
φ + y2 + (x+ iη2M)2

]
φ̂i(x, y) = mφα

(2π)2 ·
1
y2

ˆ
dx′dy′

∑
j=1,2

φ̂j(x′, y′)×

×
{
b

(
ĉ

(0)
ij + a

2 ĉ
(1)
ij

)
ln a+ b

a− b
− b2ĉ(1)

ij

}
,

(C.4.6)

or, in a more compact notation:

φ̂i(x, y) = α

ˆ
dx′dy′

∑
j=1,2

V̂ij(x, y;x, y′)φ̂j(x′, y′), (C.4.7)

V̂ij(x, y;x′, y′) =
mφ

(2π)2

{
b
(
ĉ

(0)
ij + a

2 ĉ
(1)
ij

)
ln a+b

a−b − b
2ĉ

(1)
ij

}
y2
[
m2
ψ + y2 + (x− iη1M)2

] [
m2
φ + y2 + (x+ iη2M)2

] . (C.4.8)

where the coefficients are given explicitly by:

ĉ

(0)
11 = (η1 + mψ

M )M,

ĉ
(0)
12 = i(η1 + mψ

M )x′,
ĉ

(0)
21 = M,

ĉ
(0)
22 = ix′,



ĉ
(1)
11 = 0,

ĉ
(1)
12 = −x2−y2+i(η1−

mψ
M

)Mx

My2 ,

ĉ
(1)
21 = 0,

ĉ
(1)
22 = (

mψ
M
−η1)M−ix
y2 .

(C.4.9)

To solve the system (C.4.7), we first express the two unbounded variables x and y in terms of two
bounded ones x, y:

x = x

1− |x| , (−1 < x < 1), (C.4.10)

y = y

1− y , (0 ≤ y < 1), (C.4.11)

and define the new amplitudes:
fi(x, y) ≡ y2φ̂i(x, y) (C.4.12)
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which satisfy the integral equation:

fi(x, y) = α

1ˆ

−1

dx′
1ˆ

0

dy′
∑
j=1,2

Wij(x, y;x′, y′)fj(x′, y′), (C.4.13)

Wij(x, y;x′, y′) ≡ 1
(1− |x′|)2(1− y′)2

y2

y′2
V̂ij(x, y;x′, y′). (C.4.14)

Also, we have treated the singularities of y2

y′2 V̂ij by doing a Taylor expansion around b
a ≈ 04:

y2

y′2
V̂ij(x, y;x, y′) =

mφ
(2π)2

{
8y2

a (1 + b2

3a2 )ĉ(0)
ij + 4b2

3a2 y
2ĉ

(1)
ij

}
[
m2
ψ + y2 + (x− iη1M)2

] [
m2
φ + y2 + (x+ iη2M)2

] +O6( b
a

). (C.4.15)

Finally, concerning the choice of the arbitrary constants η1,2, we have found that, forM � |mφ −mψ|,
the choice:

η1 =
M2 +m2

ψ −m2
φ

2M2 , η2 =
M2 +m2

φ −m2
ψ

2M2 , (C.4.16)

which is motivated by the analytic solution of the Wick-Cutkosky model [26], improves somewhat the
stability of the numerical solution. Notice that, with this choice:

m2
ψ − η2

1M
2 = m2

φ − η2
2M

2 = f2m2,

where:

f2 =
[
(mψ +mφ)2 −M2] [M2 − (mψ −mφ)2]

4M2 = κ2(M2 − 4∆2)
M2 ,

so that the denominators in the propagators (see Eq. (C.4.8)) always have a non negative real part
for M > |mφ −mψ|. When M . |mφ −mψ|, we have used:

η1 = mψ

mφ +mψ
, η2 = mφ

mφ +mψ
,

which also leads to non-vanishing denominators, but appears to make the numerical solution less
stable.

C.5 Mathematical tools

C.5.1 Trace identities

We collect here some useful trace identities for obtaining the BSE for the invariant amplitudes φi.
Recall that:

Tr( /A/B) = 4AB,
Tr( /A/B /C /D) = 4 [(AB)(CD)− (AC)(BD) + (AD)(BC)] ,

and that the trace of an odd number of γ matrices vanishes. Using these facts, one easily computes:

4Notice that the ratio b
a
vanishes in the limits y(y′)→ 0 and y(y′)→∞, with y′(y) fixed.
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T1(k, k′, P ) ≡ Tr
{

(η1 /P + /k +mψ)(φ1 + φ2
/k
′

M
)
/P +M

2M

}
(C.5.1)

= 2φ1

[
(η1 + mψ

M
)M + Pk

M

]
+ 2φ2

[
(η1 + mψ

M
)Pk

′

M
+ kk′

M

]
T2(k, k′, P ) ≡ Tr

{
/k

M
(η1 /P + /k +mψ)(φ1 + φ2

/k
′

M
)
/P +M

2M

}
(C.5.2)

= 2φ1

[
(η1 + mψ

M
)Pk
M

+ k2

M

]
+ 2φ2

[
2η1

(Pk)(Pk′)
M3 + k2(Pk′)

M3 + (mψ

M
− η1)kk

′

M

]

We compute the linear combinations:

L1 ≡
1
2
M2k2T1 −M2(Pk)T2

M2k2 − (P · k)2 =
2∑
j=1

C1j(k, k′, P )φj , (C.5.3)

L2 ≡
1
2
M4T2 −M2(Pk) T1
M2k2 − (P · k)2 =

2∑
j=1

C2j(k, k′, P )φj , (C.5.4)

The coefficients C are given by:

C11 = η1M +mψ, (C.5.5)

C12 =
(η1M +mψ)k2(Pk′) + (η1M −mψ)(Pk)(kk′) +Mk2(kk′)− 2η1

M (Pk)2(Pk′)− 1
M k

2(Pk)(Pk′)
M2k2 − (Pk)2 ,

(C.5.6)
C21 = M, (C.5.7)

C22 = Mk2(Pk′) + (η1M −mψ)(Pk)(Pk′) + (mψ − η1M)M2(kk′)−M(Pk)(kk′)
M2k2 − (P · k)2 . (C.5.8)

C.5.2 Feynman’s parametrization

Let z1, z2, . . . , zn be complex numbers with zi 6= 0, and let p1, . . . , pn be positive integers. Then [10,
Eq. (7-1)]:

1
zp1

1 z
p2
2 · · · z

pn
n

= Γ(
∑n
k=1 pk)∏n

k=1 Γ(pk)

n∏
k=1

 1ˆ

0

αpk−1
k dαk

 δ(1−
∑n
k=1 αk)

[
∑n
k=1 αkzk]

∑n

k=1 pk
. (C.5.9)

Special cases:

1
z1z2 · · · zn

= (n− 1)!
n∏
k=1

 1ˆ

0

dαk

 δ(1−
∑n
k=1 αk)

[
∑n
k=1 αkzk]

n , (C.5.10)

1
zpwq

= (p+ q − 1)!
(p− 1)!(q − 1)!

1ˆ

0

αp−1dα
1ˆ

0

βq−1dβ δ(1− α− β)
[αz + βw]p+q

. (C.5.11)
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C.5.3 Standard 4-dimensional integrals

Let s be a real number and n a positive integer. Then [58, Appendix A]:

In(s) =
ˆ d4q

(2π)4
1

(q2 − s+ iε)n = i
(−1)n

(4π)2
1

(n− 1)(n− 2)
1

(s− iε)n−2 (n ≥ 3), (C.5.12)

Iµνn (s) =
ˆ d4q

(2π)4
qµqν

(q2 − s+ iε)n = i

2
(−1)n−1

(4π)2
1

(n− 1)(n− 2)(n− 3)
gµν

(s− iε)n−3 (n ≥ 4),

(C.5.13)
and all integrals with an odd number of q factors in the numerator vanish.

C.5.4 J integrals

Define the integrals:

Jn =
+∞ˆ

−∞

dk−

2π
1[

(1− z)(k− − k−d ) + iε
] [

(1 + z)(k− − k−u )− iε
] [
k−k+

D + lD + iε
]n , (n ≥ 1)

(C.5.14)

J0 =
+∞ˆ

−∞

dk−

2π
Ln(k−k+

D + lD + iε)[
(1− z)(k− − k−d ) + iε

] [
(1 + z)(k− − k−u )− iε

] , (C.5.15)

where:
ImLn(ζ) ∈ [0, 2π) . (C.5.16)

We prove the formulas:

Jn = M

4
1

iD0(γ, z)

 θ(k+
D)[

k−u k
+
D + lD

]n + θ(−k+
D)[

k−d k
+
D + lD

]n
 , (n ≥ 1) (C.5.17)

J0 = M

4
1

iD0(γ, z)
{
θ(k+

D)Ln(k−u k+
D + lD) + θ(−k+

D)Ln(k−d k
+
D + lD)

}
, (C.5.18)

with

D0(γ, z) = M

4 (1− z2)(k−d − k
−
u ) (C.5.19)

= γ + (zm−∆)2 + (1− z2)κ2 (C.5.20)

and where it can be shown that:

k−u k
+
D + lD > 0 (k+

D > 0)
k−d k

+
D + lD > 0 (k+

D < 0)

Before proving Eqs. (C.5.17) and (C.5.18), let us note that these imply, for the integrals defined by:

J1
1 ≡

+∞ˆ

−∞

dk−

2π
k−[

(1− z)(k− − k−d ) + iε
] [

(1 + z)(k− − k−u )− iε
] [
k−k+

D + lD + iε
] , (C.5.21)

J1
2 ≡

+∞ˆ

−∞

dk−

2π
k−[

(1− z)(k− − k−d ) + iε
] [

(1 + z)(k− − k−u )− iε
] [
k−k+

D + lD + iε
]2 , (C.5.22)

J2
2 ≡

+∞ˆ

−∞

dk−

2π
(k−)2[

(1− z)(k− − k−d ) + iε
] [

(1 + z)(k− − k−u )− iε
] [
k−k+

D + lD + iε
]2 , (C.5.23)
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the explicit formulas:

J1
1 = M

4
1

iD0(γ, z)

{
k−u θ(k+

D)
k−u k

+
D + lD

+ k−d θ(−k
+
D)

k−d k
+
D + lD

}
(C.5.24)

J1
2 = M

4
1

iD0(γ, z)

 k−u θ(k+
D)[

k−u k
+
D + lD

]2 + k−d θ(−k
+
D)[

k−d k
+
D + lD

]2
 (C.5.25)

J2
2 = M

4
1

iD0(γ, z)

 (k−u )2θ(k+
D)[

k−u k
+
D + lD

]2 + (k−d )2θ(−k+
D)[

k−d k
+
D + lD

]2
− i

1− z2
δ(k+

D)
lD

(C.5.26)

Eqs. (C.5.21) and (C.5.22) are obtained by differentiating Eqs. (C.5.18) and (C.5.17) (for n = 1) with
respect to k+

D. Eq. (C.5.23) is obtained in the same way from Eq. (C.5.21).
Consider first the integral (C.5.14). If k+

D > 0, we can evaluate Jn by closing the contour in the
upper plane:

Jn(k+
D > 0) = M

4
1

iD0(γ, z)
1[

k−u k
+
D + lD

]n ,
Similarly, if k+

D < 0:

Jn(k+
D < 0) = M

4
1

iD0(γ, z)
1[

k−d k
+
D + lD

]n .
If k+

D = 0 but z2 6= 1, the integral can, again, be evaluated as contour integral, with the result:

Jn(k+
D = 0) = M

4
1

iD0(γ, z)lnD
= lim

k+
D→0±

Jn(k+
D).

To conclude, suppose z = 1 and k+
D = 0. Then, using the identities:

1
x− iε

= P1
x

+ iπδ(x), P
+∞ˆ

−∞

dx 1
x

= 0,

we obtain:

Jn(z = 1, k+
D = 0) = M

4
1

iD0(γ, 1)lnD
= lim

k+
D→0±

Jn(z = 1, k+
D).

Similarly, for z = −1, one finds the correct limit of Jn, and Eq. (C.5.17) is proved.
The integral J0 requires a little more attention. Notice that the (monodrome) function Ln, with

the determination (C.5.16), has a cut along the positive x axis. When we apply the residue theorem
to compute (C.5.15), we must pay attention to the argument ζ = k−kD + lD + iε of Ln. Indeed, when
k+
D > 0, we compute the integral by closing the arc in the upper k− plane, so Imζ > 0. When k+

D < 0,
we compute the integral by closing in the lower k− plane, so Imζ > 0 again. In any case, we do never
cross the cut, so that we may regard Lnζ as an analytic function and apply the residue theorem. The
singular cases k+

D = 0 and/or z2 = 1 can be treated as above.
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C.5.5 Integrals for the normalization condition

In Sec. C.3, we encountered the following integrals:

Aij = i

ˆ d4k

(2π)4φi(k
2, Pk)φj(k2, Pk), (C.5.27)

Aµij = i

ˆ d4k

(2π)4φi(k
2, Pk)φj(k2, Pk)kµ, (C.5.28)

Aµνij = i

ˆ d4k

(2π)4φi(k
2, Pk)φj(k2, Pk)kµkν , (C.5.29)

Aµνρij = i

ˆ d4k

(2π)4φi(k
2, Pk)φj(k2, Pk)kµkνkρ, (C.5.30)

Bij = i

ˆ d4k

(2π)4φi(k
2, Pk)φj(k2, Pk)k2, (C.5.31)

Bµ
ij = i

ˆ d4k

(2π)4φi(k
2, Pk)φj(k2, Pk)k2kµ, (C.5.32)

Cij = i

ˆ d4k

(2π)4φi(k
2, Pk)φj(k2, Pk)(k2)2. (C.5.33)

Introducing the NIR of the scalar amplitudes φj and denoting by Xµνρτ ···
ij any one of the integrals

(C.5.27)-(C.5.33), we have:

Xµνρτ ···
ij =

∞̂

0

dγ′′
1ˆ

−1

dz′′
∞̂

0

dγ′
1ˆ

−1

dz′gi(γ′′, z′′)X µνρτ (z′′, γ′′, z′, γ′)gj(γ′, z′) ≡ (gi|X µνρτ |gj) (C.5.34)

where:

X µνρτ ···(z′′, γ′′, z′, γ′) ≡ 1
i

ˆ d4k

(2π)4
kµkνkρkτ · · ·

[D1(γ′′, z′′) + iε]3 [D1(γ′, z′) + iε]3
,

D1(γ, z) ≡ k2 + zP · k − κ2 −∆2 + 2zm∆− γ

Also, by introducing a Feynman parametrization, we have:

X µνρτ ···(z′′, γ′′, z′, γ′) = 30
1ˆ

0

dv v2(1− v)2xµνρτ ···,

with:

xµνρτ ··· = 1
i

ˆ d4k

(2π)4
kµkνkρkτ · · ·

[D2(γ′′, z′′, γ′, z′, v) + iε]6
,

D2 ≡ k2 +
[
(1− v)z′′ + vz′

]
P · k − κ2 − (1− v)γ′′ − vγ′ −∆2 + 2

[
(1− v)z′′ + vz′

]
m∆

Letting:

tµ = −ζPµ,

ζ = 1
2
[
(1− v)z′′ + vz′

]
s = vγ′ + (1− v)γ′′ + κ2 + ∆2 − 4ζm∆ + ζ2M2,
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and making the shift kµ → kµ + tµ, we have:

xµνρτ ··· = 1
i

ˆ d4k

(2π)4
(kµ + tµ)(kν + tν)(kρ + tρ)(kτ + tτ ) · · ·

[k2 − s+ iε]6
.

Notice that s > 0, since 0 ≤ ζ ≤ 1
2 and:

κ2 + ∆2 − 4ζm∆ + ζ2M2 = (1− 4ζ2)κ2 + (∆− 2ζm)2.

In particular, we need to evaluate:

a = 1
i

ˆ d4k

(2π)4
1

[k2 − s+ iε]6
, (C.5.35)

aµ = 1
i

ˆ d4k

(2π)4
kµ + tµ

[k2 − s+ iε]6
, (C.5.36)

aµν = 1
i

ˆ d4k

(2π)4
(kµ + tµ)(kν + tν)

[k2 − s+ iε]6
, (C.5.37)

aµνρ = 1
i

ˆ d4k

(2π)4
(kµ + tµ)(kν + tν)(kρ + tρ)

[k2 − s+ iε]6
, (C.5.38)

b = 1
i

ˆ d4k

(2π)4
(k + t)2

[k2 − s+ iε]6
, (C.5.39)

bµ = 1
i

ˆ d4k

(2π)4
(k + t)2(kµ + tµ)

[k2 − s+ iε]6
, (C.5.40)

c = 1
i

ˆ d4k

(2π)4
(k + t)4

[k2 − s+ iε]6
. (C.5.41)

Let us define the basic integrals:

α = 1
i

ˆ d4k

(2π)4
1

[k2 − s+ iε]6

β = 1
i

ˆ d4k

(2π)4
k2

[k2 − s+ iε]6

γ = 1
i

ˆ d4k

(2π)4
k4

[k2 − s+ iε]6

In terms of these, we have:

a = α

aµ = αtµ,

aµν = αtµtν + β

4 g
µν ,

aµνρ = αtµtνtρ + β

4 (gµνtρ + gνρtµ + gρµtν),

b = αt2 + β,

bµ = αt2tµ + 3
2βt

µ,

c = αt4 + 3βt2 + γ.



C.5. MATHEMATICAL TOOLS 99

To solve for α, β and γ, set:

αn(θ) = 1
i

ˆ d4k

(2π)4
1

[θk2 − s+ iε]n = θ−2αn(1).

We have:

α = α6(1),

β = −1
5
∂

∂θ

∣∣∣∣
θ=1

α5(θ) = 2
5α5(1),

γ = 1
20

∂2

∂θ2

∣∣∣∣∣
θ=1

α4(θ) = 3
10α4(1).

From Subsec. C.5.3, we have:

αn(1) = 1
(4π)2

(−1)n

(n− 1)(n− 2)
1

sn−2 .

Hence:

α = 1
(4π)2

1
20
s4 ,

β = 1
(4π)2

− 1
30s

s4 ,

γ = 1
(4π)2

1
20s

2

s4 ,

and:

a = 1
(4π)2

1
s4

{ 1
20

}
(C.5.42)

aµ = 1
(4π)2

1
s4

{ 1
20 t

µ
}

(C.5.43)

aµν = 1
(4π)2

1
s4

{ 1
20 t

µtν − 1
120g

µνs

}
(C.5.44)

aµνρ = 1
(4π)2

1
s4

{ 1
20 t

µtνtρ − 1
120(gµνtρ + gνρtµ + gρµtν)s

}
(C.5.45)

b = 1
(4π)2

1
s4

{ 1
20 t

2 − 1
30s

}
(C.5.46)

bµ = 1
(4π)2

1
s4

{ 1
20 t

2tµ − 1
20st

µ
}

(C.5.47)

c = 1
(4π)2

1
s4

{ 1
20 t

4 − 1
10 t

2s+ 1
20s

2
}

(C.5.48)
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Finally, recalling that tµ = −ζPµ:

A = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{3
2

}
, (C.5.49)

Aµ = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{
−3

2ζP
µ
}

(C.5.50)

Aµν = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{3
2ζ

2PµP ν − 1
4g

µνs

}
, (C.5.51)

Aµνρ = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{
−3

2ζ
3PµP νP ρ + ζ

4(gµνP ρ + gνρPµ + gρµP ν)s
}

(C.5.52)

B = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{3
2ζ

2M2 − s
}
, (C.5.53)

Bµ = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{
−3

2ζ
3M2Pµ + 3

2ζP
µs

}
, (C.5.54)

C = 1
(4π)2

1ˆ

0

dv v2(1− v)2 1
s4

{3
2ζ

4M4 − 3ζ2M2s+ 3
2s

2
}
. (C.5.55)

C.5.6 LF integrals

In this Subsection we prove a distributional identity, the so-called LF integral, which is particularly
useful for LF projection calculations.

Theorem. Let n ≥ 1 and suppose Imz 6= 0. Then:
+∞ˆ

−∞

dβ
2π

1
[βx+ z]n+1 =

{
− i
nzn δ(x) if Imz > 0,

+ i
nzn δ(x) if Imz < 0.

(C.5.56)

The distributional identity (C.5.56) is valid for any test function which is bounded and continuous at
x = 0.

Proof. Define:

D
(n)
z,B(x) ≡

+Bˆ

−B

dβ 1
[βx+ z]n+1 = 2B

n

n−1∑
k=0

(z +Bx)−(n−k)(z −Bx)−(k+1).

If f(x) is as stated above, then:

〈
D

(n)
z,B, f

〉
= 2B

n

+∞ˆ

−∞

dx f(x)
n−1∑
k=0

(z +Bx)−(n−k)(z −Bx)−(k+1),

= 2
n

+∞ˆ

−∞

du f( u
B

)
n−1∑
k=0

(z + u)−(n−k)(z − u)−(1+k).



C.5. MATHEMATICAL TOOLS 101

Since the integrand goes at worst as 1
u2 for u → ∞, and it is bounded in any compact interval, it

admits an L1 majorant, of the form Cu−2, say. We can therefore apply the dominated convergence
theorem:

lim
B→∞

〈
D

(n)
z,B, f

〉
= 2
n
f(0)

n−1∑
k=0

I
(n)
k ,

where:

I
(n)
k = (−1)k+1

+∞ˆ

−∞

du (z + u)−(n−k)(u− z)−(1+k).

Assume Imz > 0 and close the contour in the upper plane:

I
(n)
k = −2πi(−1)kR(n)

k

The residue of the integrand of I(n)
k at z = u is:

R
(n)
k = 1

k!

[
∂k

∂uk

]
u=z

(z + u)−(n−k) = (−1)k
(
n− 1
k

)
2−nz−n.

Therefore:

I
(n)
k = −2πi

(
n− 1
k

)
2−nz−n,

n−1∑
k=0

I
(n)
k = −πiz−n,

lim
B→∞

〈
D

(n)
z,B, f

〉
= −2πi

n

f(0)
zn

,

as was to be proved. The case Imz < 0 is treated similarly.
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Appendix D

Extreme non-relativistic limit of the
Yukawa interaction

D.1 Effective Yukawa potential

Consider a fermion field ψ and a scalar field φ interacting through the exchange of a scalar field ϕ:

L = ϕ
{
λψψψ + λφφ

†φ
}
. (D.1.1)

In the non-relativistic limit, this interaction determines an instantaneous potential between the two
particles ψ and φ. To derive the form of the potential, let us compute the S-matrix element for the
elastic scattering process:

ψ(p, s)φ(k)→ ψ(p′, s′)φ(k′)

to lowest order in the coupling constants λψ,φ. This is given by the one-boson exchange diagram of
Figure D.1.1, and evaluates to:

〈ψ(p′, s′)φ(k′)|S|ψ(p, s)φ(k)〉 = (2π)4δ4(p′ + k′ − p− k)
√

mψ

(2π)3p′0

√
mψ

(2π)3p0
1√

(2π)32k0
1√

(2π)32k′0
×

× u(p′, s′)u(p, s) iλφλψ
µ2 + q2 − (q0)2 , (D.1.2)

where q = p′ − p. In the above formula, the external states are normalized according to:

〈ψ(p′, s′)φ(k′)|ψ(p, s)φ(k)〉 = δ3(p− p′)δ3(k− k′)δss′ (D.1.3)

in order to facilitate the non-relativistic limit. The spinors are normalized according to:

∑
s=± 1

2

u(p, s)u(p, s) = /p+mψ

2mψ
. (D.1.4)

In the extreme non-relativistic limit, the S-matrix element (D.1.2)reduces to:

〈ψ(p′, s′)φ(k′)|S|ψ(p, s)φ(k)〉 = (2π)−2δ4(p′ + k′ − p− k)χ†s′χs
iλφλψ
2mφ

1
µ2 + q2 +O(β2) (D.1.5)

where χs,s′are the two components spinors of the initial and final fermions, and β stands for the speed
of any (real) particle involved in the process.
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Figure D.1.1. One scalar exchange diagram for ψ-φ elastic scattering (cf. Eq. (D.1.2)).

Notice that the relativistic corrections are of second order in β. In particular, the spin of the fermion
enters the matrix element (D.1.2) only through the coupling u(p′, s′)u(p, s). From the expansion:

u(p′, s′)u(p, s) = χ†s′(1 + q2

8m2
ψ

− iσ · (q × p)
4m2

ψ

)χs +O(β4) (D.1.6)

we see that the corrections due to spin are enhanced when mψ is smaller or, equivalently, when r = mψ
mφ

is smaller for fixed m = mψ+mφ
2 .

Equation (D.1.5) should be compared with the S-matrix element obtained from non-relativistic po-
tential scattering in the Born approximation. Assuming a spin-independent potential V (as suggested
by Eq. (D.1.5)), this is given by (see, e.g., [59]):

〈ψ(p′, s′)φ(k′)|S|ψ(p, s)φ(k)〉Born = −2πiδ4(p′ + k′ − p− k)χ†s′χsV (q), (D.1.7)

where:
V (q) ≡ 1

(2π)3

ˆ
d3r e−iq·rV (r). (D.1.8)

Comparing Eqs. (D.1.5) and (D.1.7), we see that:
ˆ

d3r e−iq·rV (r) = −λφλψ2mφ

1
µ2 + q2 ,

or:
(2π)3V (r) = −λφλψ2mφ

ˆ
d3q eiq·r 1

µ2 + q2 . (D.1.9)

The integral can be evaluated as follows:

ˆ
d3q eiq·r 1

µ2 + q2 = 2π
∞̂

0

dq q2

µ2 + q2

+1ˆ

−1

d cos θ eiqr cos θ

= 2π
ir

∞̂

0

dq q(e
iqr − e−iqr)
µ2 + q2

= 2π
ir

∞̂

−∞

dq qeiqr

(q + iµ)(q − iµ)

= 2π2e−µr

r
.
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The potential in Eq. (D.1.9) is thus explicitly given by:

V (r) = − λφλψ8πmφ

e−µr

r
, (D.1.10)

Hence, the interaction density (D.1.1) determines, in the non-relativistic limit, a binding potential of
the Yukawa type:

V (r) = −αe
−µr

r
, (D.1.11)

where the effective dimensionless coupling constant is given by:

α ≡ λφλψ
8πmφ

. (D.1.12)

The spin-orbit correction, which comes from the expansion (D.1.6), has the expression:

Vso = − 1
2m2

ψr

dV
dr L · S, (D.1.13)

and has the opposite sign of the corresponding term in QED, due to the scalar coupling ψψ of the
fermion.

D.2 Unitarily equivalent Yukawa systems
In the non-relativistic limit, the binding energies of the fermion-scalar bound states are found by
solving the time-independent Schrödinger equation for the Hamiltonian operator:

H(α,m, µ) = p2

2m −
αe−µr

r
, (D.2.1)

where m ≡ mφmψ
mφ+mψ denotes the reduced mass of the fermion-scalar system.

Observe that:
U †(θ)H(α,m, µ)U(θ) = H(θ−1α, θ2m, θµ), (D.2.2)

where the unitary operator U(θ) is defined by:

U(θ) ≡ exp
[
−iθp · r + r · p

2

]
. (D.2.3)

Since unitarily equivalent operators have the same spectrum, the levels of the three parameters family
of Hamiltonians (D.2.1) satisfy:

E(α,m, µ) = E(θ−1α, θ2m, θµ). (D.2.4)

Notice that the binding energy of the ground state is B = −E0, where E0 is the ground state level of
H. If we fix B, m and µ and denote by α(B,m, µ) the corresponding coupling constant, we see that
Eq. (D.2.4) implies:

θα(B, θ2m, θµ) = α(B,m, µ). (D.2.5)

In particular, choosing θ =
√

m′

m , we have1:√
m′

m
α(B,m′,

√
m′

m
µ) = α(B,m, µ) (D.2.6)

1Observe that, in the µ = 0 case, Eq. (D.2.6) follows directly from Bohr’s formula for hydrogen energy levels:

En(m,α, µ = 0) = −mα
2

2n2 .
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Since the coupling constant is dimensionless, in turn it can be written as a function of the dimensionless
quantities B̂ ≡ B/m, r ≡ mψ

mφ
and µ̂ ≡ µ/m, where m = mφ+mψ

2 . From the previous equation, we
obtain:

λ(r)α(B̂, r, λ(r)µ̂) = α(B̂, r = 1, µ̂), (D.2.7)

where:
λ(r) ≡ 2

√
r

1 + r
. (D.2.8)


