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The Setting



1. Search query (e.g., “should | vaccinate my child...”)

2. Two classes of items (“yes, vaccinate”, “no, don’t vaccinate”)

Users click on items based on their
Ranking preferences and ranking position
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1. Search query (e.g., “should | vaccinate my child...”)
2. Two classes of items (“yes, vaccinate”, “no, don’t vaccinate”)
3. Items are ranked based on their popularity (number of clicks)
4. Users search sequentially, they:
 have heterogeneous preferences for (visible) classes of items

« are more likely to click on higher-ranked items.

Users click on items based on their Type 1 users
preferences and ranking position
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A surprising consequence of popularity-based rankings:

The fewer the items of a given class,
the greater the share of the overall traffic

they collectively attract.



The Model



» The search environment consists of a ranking algorithm that ranks M items
of two types k € {0, 1} that get accessed by N users who sequentially use the ranking
to decide which item to click on.

> "nm € {1,..., M} is the rank of item m observed by user n € {1,..., N}, which
depends on the number of clicks received.

Users click on items based on their
Ranking preferences and ranking position

1 .
M m Ranking

2
Feedback Loop

YA

4
5 I
6 I
7 .
8 [
9 I
10 I

i

O WO NN A WN S



» The search environment consists of a ranking algorithm that ranks M items
of two types k € {0, 1} that get accessed by N users who sequentially use the ranking
to decide which item to click on.

> "nm € {1,..., M} is the rank of item m observed by user n € {1,..., N}, which

depends on the number of clicks received.

» Propensities: user n with ~, € {0, %, 1} has propensity ¢nm of clicking on item m:

h .
A if m € M,

Pnm = (1)

1—y,
v if m € M.

Y =0  Prefers M, (i.e., chooses M, with prob. 0)
Yn = 1/2 Indifferent between M, and M, (Agnostic)
Yn =1 Prefers M, (i.e., chooses M, with prob. 1)

Users click on items based on their
Ranking preferences and ranking position
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» The search environment consists of a ranking algorithm that ranks M items
of two types k € {0, 1} that get accessed by N users who sequentially use the ranking
to decide which item to click on.

> "nm € {1,..., M} is the rank of item m observed by user n € {1,..., N}, which

depends on the number of clicks received.
» Propensities: user n with ~, € {0, %, 1} has propensity ¢nm of clicking on item m:

h .
A if m € M,

Pnm = (1)

11—y,
—'Y—Ml if m € M.

Users enter sequentially with =, drawn randomly and independently: ~, = 0, v, = 1
each with probability 0 < p < 5 and 7y, = § with (remaining) probability 0 < 1—2p < 1.

Users click on items based on their
Ranking preferences and ranking position
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» The search environment consists of a ranking algorithm that ranks M items
of two types k € {0, 1} that get accessed by N users who sequentially use the ranking
to decide which item to click on.

> "nm € {1,..., M} is the rank of item m observed by user n € {1,..., N}, which

depends on the number of clicks received.

» Propensities: user n with ~, € {0, %, 1} has propensity ¢nm of clicking on item m:

n if m € M,

Agnostic Onm = { Mo Prefers My (1)

I_ZT/IYE if m € M;. \
Users enter sequentially with 4;~drawn randomly and independently: ty, = 0}y, = 1
each with probability 0 < p < %and Vi = % }vith (remaining) probability 0 < 1—2p < 1.

Prefers M,
(i.e., chooses M, with prob. 0)

Users click on items based on their
Ranking preferences and ranking position
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» The search environment consists of a ranking algorithm that ranks M items
of two types k € {0, 1} that get accessed by N users who sequentially use the ranking
to decide which item to click on.

> Tnm € {1,..., M} is the rank of item m observed by user n € {1,..., N}, which
depends on the number of clicks received.

» Propensities: user n with ~, € {0, %, 1} has propensity ¢, m, of clicking on item m:

_f& .
i if m € M,

Pnm = (1)

11—y,
—7—M1 if m € M.

Users enter sequentially with -, drawn randomly and independently: ~, = 0, v, = 1
each with probability 0 < p < %and Vn = %With (remaining) probability 0 < 1—2p < 1.

» They also have an attention bias § (> 1), whereby an item ranked exactly one
position higher is 8 times more likely to be clicked.

» Stochastic choice rule: user n chooses ranked item m according to

1
M —Tnm J— M —Tnm
Pnm — & ( m Pn,m Z = E , ﬁ( ’ l)spn,m’- (2)
. . . v .
attention bias ¢lick propensity m'eM
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Prob(user n clicks on item m) normalization constant




» The search environment consists of a ranking algorithm that ranks M items
of two types k € {0, 1} that get accessed by N users who sequentially use the ranking
to decide which item to click on.

> Tnm € {1,..., M} is the rank of item m observed by user n € {1,..., N}, which
depends on the number of clicks received.

» Propensities: user n with ~, € {0, %, 1} has propensity ¢, m, of clicking on item m:

_f& .
A if m € M,

Pnm = (1)

11—y,
—7—M1 if m € M.

Users enter sequentially with -, drawn randomly and independently: ~, = 0, v, = 1
each with probability 0 < p < %and Vn = %With (remaining) probability 0 < 1—2p < 1.

» They also have an attention bias § (> 1), whereby an item ranked exactly one
position higher is 8 times more likely to be clicked.

» Stochastic choice rule: user n chooses ranked item m according to

ﬁ(M—rn, m)(Pn, "

(2)

Pn,m = B .

2m'eM IB(M rn’m,)ﬁon, m’
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Prob(user n clicks on item m)




The Few-Get-Richer Effect

Keeping the total number of ranked items M constant, decreasing the number of
items 1n one of the two classes can dramatically increase the total traffic to that
class: having few items in the ranking can increase total number of clicks on those
\( few) items.

J




Simulations |
Trajectories



— M = 20 items and N = 100 users, and M, items are initially at the bottom.
— Proportion of users of different types: py and p;. Agnostic users: ps =1 — pg — p1.
— Uniform initialization, with all items having one click.

B=1.1,T ={0.9,0.1,0.5},pp = p1 = 0.4

Ranking




— M = 20 items and N = 100 users, and M, items are initially at the bottom.
— Proportion of users of different types: py and p;. Agnostic users: ps =1 — pg — p1.
— Uniform initialization, with all items having one click.

f=1.1T ={0.9,0.1,0.5},pp = p1 = 0.4
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— M = 20 items and N = 100 users, and M, items are initially at the bottom.
— Proportion of users of different types: py and p;. Agnostic users: ps =1 — pg — p1.
— Uniform initialization, with all items having one click.

f=1.1T ={0.9,0.1,0.5},pp = p1 = 0.4
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— M = 20 items and N = 100 users, and M, items are initially at the bottom.

— Proportion of users of different types:

— Uniform initialization, with all items having one click.
f=11T={0.9,0.1,0.5},po = p1 = 0.4
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More formally...



The Few-Get-Richer Effect

Keeping the total number of ranked items M constant, decreasing the number of
items 1n one of the two classes can dramatically increase the total traffic to that

class: having few items in the ranking can increase total number of clicks on those
\( few) items.

J

More formally...

Fix two popularity-based search environments £ and £’ that differ only in

the number of items of class 1 (M; and M respectively). Suppose My < 17 B <
BM

5 < M/, then there exists N such that, for any N > N, the total clicking
probability (pn ar,) by individual N on an item in M; in environment & is
strictly greater than the total clicking probability (pn. M{) by individual N on
an item in M7 in environment &', provided p > 0 is sufficiently small.



The Few-Get-Richer Effect

Keeping the total number of ranked items M constant, decreasing the number of
items 1n one of the two classes can dramatically increase the total traffic to that
class: having few items in the ranking can increase total number of clicks on those

\( few) items.

J

Attention bias More formally...

Fix two popularity-based search environments £ and &’ that differ only in

the number of items of class 1 (M; and M respectively). Suppose M; < % <

% < M, then there exists N such that, for any N > N, the total clicking
probability (pn ar,) by individual N on an item in M; in environment & is
strictly greater than the total clicking probability (pn,as) by individual N on
an item in M7 in environment &', provided|p > 0 is sufficiently small.

Not too few ‘agnostic’ users



The proof is in three steps.
1. we characterize a limit ranking (r.,) of the process p,, (popularities) and
show it constitutes a (stable) limit.

2. we show it is the unique such limit ranking.

Attention bias More formally...

Fix two popularity-based search environments £ and &’ that differ only in

he number of items of class 1 (M; and M respectively). Suppose M; < % <

% < M/, then there exists N such that, for any N > N, the total clicking

probability (pn ar,) by individual N on an item in M; in environment & is
strictly greater than the total clicking probability (pn,as) by individual N on
an item in M7 in environment &', provided|p > 0 is sufficiently small.

Not too few ‘agnostic’ users



The proof is in three steps.

1. we characterize a limit ranking (r.,) of the process p,, (popularities) and
show it constitutes a (stable) limit.

2. we show it is the unique such limit ranking.

3. we compute total traffic on all items in M; at the limit and show it is

over half of total traffic when M; < %, and hence greater than total traffic
on all items in My for M{| > 1B+—MB

Attention bias More formally...

Fix two popularity-based search environments £ and &’ that differ only in

he number of items of class 1 (M; and M respectively). Suppose M; < % <

% < M/, then there exists N such that, for any N > N, the total clicking

probability (pn ar,) by individual N on an item in M; in environment & is
strictly greater than the total clicking probability (pn,as) by individual N on
an item in M7 in environment &', provided|p > 0 is sufficiently small.

Not too few ‘agnostic’ users



— M = 20 items
— Proportion of users of different types: py and p;. Agnostic users: ps =1 — pg — p1.

I ={0.8,0.2,0.5} po=p1 =0.4

» Analytical curves for infinite users:
- 3=1.5

0.9 /\ —3=1.25 |°
! —p=1.1
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Simulations |l
Comparative Statics



— M = 20 items and N = 100 users, and M, items are initially at the bottom.
— Proportion of users of different types: py and p;. Agnostic users: ps =1 — pg — p1.

— Uniform initialization, with all items having one click.
f=11T={0.9,0.1,0.5},po = p1 = 0.4
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— M = 20 items and N = 100 users, and M, items are initially at the bottom.
— Proportion of users of different types: py and p;. Agnostic users: ps =1 — pg — p1.

— Uniform initialization, with all items having one click.
f=11T={0.9,0.1,0.5},po = p1 = 0.4

» Dependence on proportion of agnostic
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— M = 20 items and N = 100 users, and M, items are initially at the bottom.
— Proportion of users of different types: py and p;. Agnostic users: ps =1 — pg — p1.

— Uniform initialization, with all items having one click.
f=11T={0.9,0.1,0.5},po = p1 = 0.4
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Experiment



» Amazon Turk : 786 participants.

» M = 20 ranked items of 2 types:
M, Cat Pictures, M; Dog Pictures.

» Uniform initialization, with all pictures having
one click.
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» Amazon Turk : 786 participants.

Please click on a photo from the following list of photos of cats and dogs and rate it

» M = 20 ranked items of 2 types: sccording o your g
M, Cat Pictures, M; Dog Pictures. .6
s
g

» Uniform initialization, with all pictures having
one click.

. o \: Cat Pictures
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» Amazon Turk : 786 participants.

Please click on a photo from the following list of photos of cats and dogs and rate it

» M = 20 ranked items of 2 types: e s
M, Cat Pictures, M; Dog Pictures.

]

Report tis MIT » | Why Report v

» Uniform initialization, with all pictures having
one click.

» User types: ‘cat person’, ‘dog person’, or ‘neither a cat nor a dog person.’

Ranking
, I . “Are you more of a cat person or a dog
. e [\],: Cat Pictures person?”
o  “lam a cat person

2— « “l am neither a cat person nor a dog
7 I person”
¢ I « .
_ « “l am a dog person.
I
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» Amazon Turk : 786 participants.

» M = 20 ranked items of 2 types:
M, Cat Pictures, M; Dog Pictures.

» 4 treatments with M; = 3, 8, 12 or 17 dogs,
initially ranked at the bottom.

» 2 sets of ranking conditions

Static: dog pictures stay at the bottom. “Control” condition
—
Dynamaic: items go up as they are clicked. | “Treatment” condition

» Uniform initialization, with all pictures having
one click.

» User types: ‘cat person’, ‘dog person’, or ‘neither a cat nor a dog person.’
Ranking
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» Amazon Turk : 786 participants.
Please click on a photo from the following list of photos of cats and dogs and rate it

» M = 20 ranked items of 2 types: sccordng o your g
M, Cat Pictures, M, Dog Pictures.

» 4 treatments with M; = 3, 8, 12 or 17 dogs,
initially ranked at the bottom.

» 2 sets of ranking conditions
Static: dog pictures stay at the bottom.
Dynamac: items go up as they are clicked.

» Uniform initialization, with all pictures having
one click.

» User types: ‘cat person’, ‘dog person’, or ‘neither a cat nor a dog person.’

Ranking Main finding: Total #clicks at-
1

, I |\/|O: Cat Pictures tracted by dog pictures is larger
3

: when there are few dog pictures

I (3/20) than when there are many
L 1

7 I dog pictures (17/20) in the Dy-
: namic setting but not in the

o I . i
10— M1- DOg Pictures Static setting.




# Cats (M) 38 1217
# Dogs (M) 171218 3
Dynamic
Condition D1 D2 D3| D4
# participants 96 11021 99 101
# participants Cat person |
in each Neither
type Dog person
Dog Experiment
traffic Sim 1
share Sim?2
Static
Condition Sl |52 |53 H4
# participants 96 1101 95| 96

# participants Cat person

in each Neither
type Dog person
Dog Experiment

traffic Sim1

share Sim?2




# Cats (M) 38 1217
# Dogs (M) 171218 3
Dynamic
Condition D1 D2 D3| D4
# participants 96 11021 99 101
# participants Cat person| 34 | 30 | 24| 29
in each Neither | 9 | 21 11 16
type Dog person| 53 51 64 56| “Are you more of a cat person or
Dog Experiment a dog person?”
traffic Sim1 -+ “lam a cat person”
share Sim? -+ “lam neither a calt person
, nor a dog person
Static « “l'am a dog person.”
Condition Sl |52 |53 H4
# participants 96 1101 95| 96
# participants Cat person| 34 30 | 25| 33
in each Neither |13/19| 9 | 15
type Dog person| 49 52 61 | 48
Dog Experiment |
traffic Sim1
share Sim2




# Cats (M) 38 1217
# Dogs (M) 171218 3
Dynamic
Condition D1 D2 D3| D4
# participants 96 11021 99 101
# participants Cat person| 34 | 30 | 24| 29
in each Neither | 9 | 21 11 16
type Dog person{53 51 64 56] “Are you more of a cat person or
Dog Experiment a dog person?”
traffic Sim1 -+ “l'am a cat person”
share Sim? -+ “l'am neither a cat person
, nor a dog person”
Static « “l'am a dog person.”
Condition Sl |52 |53 H4
# participants 06 10195 96| Notice: Not exactly constant.
# participants Cat person| 34 30 | 25| 33
in each Neither |13/19| 9 | 15
type Dog person| 49 52 61 | 48
Dog Experiment |
traffic Sim1
share Sim2




# Cats (M)

# Dogs (M)

17

Dynamic

Condition

# participants

# participants Cat person

in each Neither

type Dog person

Dog Experiment

traffic Sim1

share Sim?2

Static

Condition

# participants

# participants Cat person

in each Neither

type Dog person

Dog Experiment | .

traffic Sim1

share Sim?2
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Static case:

Dog traffic: <50%

Fewer dog pictures
- lower dog traffic

(no surprise)



# Cats (M)

# Dogs (M)

17
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Dynamic

Condition

# participants

# participants Cat person

in each Neither

type Dog person

Dog Experiment | .
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traffic Sim1

share Sim?2

Static

Condition

# participants

# participants Cat person

in each Neither

type Dog person

Dog Experiment

traffic Sim1

share Sim?2

44

27

Dynamic case:

Dog traffic: >50%

Fewer dog pictures
—> greater dog traffic

Main finding: Total #clicks at-
tracted by dog pictures is larger
when there are few dog pictures
(3/20) than when there are many
dog pictures (17/20) in the Dy-
namic setting but not in the
Static setting.
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17
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Dynamic

Condition

# participants

# participants Cat person

in each Neither

type Dog person
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traffic Sim1

share Sim?2
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Static

Condition

# participants

# participants Cat person

in each Neither

type Dog person

Main finding: Total #clicks at-
tracted by dog pictures is larger
when there are few dog pictures
(3/20) than when there are many
dog pictures (17/20) in the Dy-
namic setting but not in the
Static setting.

Dog Experiment| .

traffic Sim1

share Sim?2




, More dog lovers in

D3 than in D4

Main finding: Total #clicks at-
tracted by dog pictures is larger
when there are few dog pictures
(3/20) than when there are many
dog pictures (17/20) in the Dy-
namic setting but not in the
Static setting.

# Cats (M) 38 1217
# Dogs (M) 171218 3
Dynamic
Condition D1 D2 D3| D4
# participants 96 11021 99 101
# participants Cat person | 34 | 30 | 24 2)/
in each Neither | 9 | 21 |1 /16/
type Dog person | 53 | 51 | 64|56
Dog Experiment .53|.69|.76}].71
trafhic Sim 1
share Sim?2
Static
Condition Sl |52 |53 H4
# participants 96 1101 95| 96
# participants Cat person 34 30 |25/ 33
in each Neither |13/19| 9 | 15
type Dog person | 49 52 61 | 48
Dog Experiment .44 .37 .40 .27
traffic Sim 1 |

share Sim?2




Simulations llI
Using Estimated Model Parameters



Recall:

» Tnm € {1,..., M} is the rank of item m observed by user n € {1,..., N}, which
depends on the number of clicks received.

» Propensities: user n with 7, € {0, 3,1} has propensity ¢nm of clicking on item m:

Lo if m e MO
Pnm = Mo (1)

1=
i if m € M.

Users enter randomly and independently with v, = 0 and 7, = 1 each with probability
0 < p < 5 and with 7, =  with (remaining) probability 0 < 1 — 2p < 1.

» They also have an attention bias g (> 1), whereby an item ranked exactly one
position higher has [ times as much as probability of being clicked.

» Stochastic choice rule: user n chooses ranked item m according to

% Q(M_"'n-m) . @ 4 = Z ,B M rnm/ Pn,m’- (2)

attention bias click propensity m'eM

Pnm —

Estimate: 8 = 1.22, for ‘cat person’: 7, = .74.
for ‘dog person’: =, = .08.



i Cats (Mo) 3| 8 |12]17 Sim1: average traffic attracted
# Dogs (M) | LT 12781 3 Yy Dog pictures (M,) over
Dynamic + 1} 1 | 1000 simulations of the
Condition choice model with a setting
# participants | matching the exact number of
# participants Cat person 34 30 24 29| participants of each identity
in each Neither | 9 | 21 11 16| typein each condition.
type Dog person | 53 | 51 | 64 56
Dog Experiment | .53 .69 .76 .71 Dynamic setting
traffic Siml .46 .56 |.73] .76j=—— Traffic to dog pictures
share Sim? ] 1 increases wher_1 there are
L1 L fewer dog pictures
Static & 1
Condition
# participants S
# participants Cat person |34 30 | 25| 33
in each Neither [13]19| 9 | 15
type Dog p.erson 491 52 | 61| 48 Static setting
Dog bixperiment 44 37 40 .27 Traffic to dog pictures (sort
traffic Sim1 41| .371.39| .28 74_ of) decreases when there
share Sim?2

are fewer dog pictures



# Cats (M) 38 1217

# Dogs (M) 171218 3
Dynamic : : : :

Condition Lo

# participants E E E E

# participants Cat person | 34 | 30 | 24 | 29
in each Neither | 9 |21 |11 16
type Dog person | 53 | 51 | 64 56
Dog Experiment .53|.69 .76 .71
trafhic Sim1 46 .56 .73 .76
share S1m?2 7
Static i i i i 7

Condition Lo

# participants i i i i

# participants Cat person |34 30 | 25| 33
in each Neither [13]19| 9 | 15
type Dog person | 49 52 61 | 48
Dog Experiment .44 .37 .40 .27
traffic Sim1 41| .37|.39| .28

share Sim?2

Sim2: average traffic attracted
by Dog pictures (M,) over
1000 simulations of the
choice model with 100 users
where numbers of users who
are a ‘dog person’, ‘neither a
dog person nor a cat person’
and a ‘cat person’ are 55, 15
and 30, respectively (same
frequencies for all conditions).




i Cats (Mo) 3|8 [12]17 Sim2: average traffic attracted
# Dogs (M) | LT 12781 3 Yy Dog pictures (M,) over
Dynamic 1+t ' ' | 1000 simulations of the
Condition i\ 1+ 1 1 | choice model with 100 users
# participants E E E E where numbers of users who
# participants Cat person 34 30 24 29| are a ‘dog person’, ‘neither a
in each Neither | 9 21 11| 16| dog person nor a cat person’
type Dog person | 53| 51 |64 56 and a ‘cat perso_n’ are 55, 15
Dog Experiment |.53 .69 .76 .71 and 30, r_espectlvely (%
. Sl 16 56 73 76 frequenclljes for.all c;?ndltlons).
share Sim?2 '1}7 '{50 '6|7 '?5 Traﬂ’\i/cn’?omcllggS T)icl;rt]l?res
Static ¢+ 11 increases when there are
Condition T fewer dog pictures
# participants i i i i
# participants Cat person |34 30 | 25| 33
in each Neither 13119 | 9 | 15
Dol Beperment .44 37 402
Traffic to dog pictures
traffic oiml .41 .37 .39 .28 decreases when there are
share Sim?2 44 .39 .35 30|«——  fewer dog pictures




Conclusion



We used stylized model to prove existence of few-get-richer effect.
Using simulations, we showed the few-get-richer effect is robust to
some alternative specifications.

The presence of attention bias and of agnostic users both play a
key role for the size of the effect.

Results of online experiment are consistent with the theory and
simulations. It is a proof-of-concept for the few-get-richer effect.
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Implications

- Misinformation: removal of some fake news sources can lead to
an increase in total traffic attracted by the remaining "alternative’
news sources, resulting in more exposure to "fake news’.

- Recommendation systems: having less items of one class can
actually induce more exploration on that class.



What else to do?

- Better experiments; ideally with field data

- Estimate welfare implications for users?

- Devise ‘correction’ mechanism

- Alternative models

- Optimal ranking algorithms/recommendation systems?

Some literature:

- Germano, F., Gomez, V. and Le Mens, G., 2019, May. The few-get-richer: a
surprising consequence of popularity-based rankings. In The World Wide Web
Conference (pp. 2764-2770). ACM.

- Germano, F., and Sobbrio, F., 2019, July. Opinion dynamics via search engines
(and other algorithmic gatekeepers), in prep..

- Welfare implications, asymptotic learning, also looks at personalization.

- Tennenholtz, M., and Kurland, O., 2019, May. Rethinking search engines and
recommendation systems: A game-theoretic perspective.

- Optimal recommendation systems with search engine optimization.
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