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Abstract. We propose to cluster class-wise covariance matrices in order to identify different groups of 

covariances contributing to the same condition. Each cluster represents a different brain pattern 

associated with one class. Further, we present Clustered Common Spatial Patterns, a new algorithm 

that applies this technique prior to CSP. We show that CCSP can outperform CSP in a binary imagery 

movement task. Although in this work we consider only the case of CSP, this clustering technique 

could also be used to improve other feature extraction methods. 
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1. Introduction 

The traditional training of CSP filters [Ramoser et al., 1998] uses the class spatial covariance 

matrices,  and , to construct  spatial filters (SF). We will denote this operation as 

. In situations where more than one covariance structure contributes to a class, such as 

in presence of spatial shifts of the informative channels,  or  might over-represent the covariance 

structures from which more samples (trials) were observed. This can affect the generalization 

performance of the SF if covariances associated with infrequent trials become typical in the testing 

phase. Here we describe a new methodology to address this problem, Clustered Common Spatial 

Patterns (CCSP), and show that this technique has the potential to outperform standard CSP.  

2. Clustered Common Spatial Patterns (CCSP) 

CCSP performs per-class clustering of covariance matrices and combines the learned clusterings to 

learn SF. We illustrate the algorithm using K-means clustering [Bishop, 2007] and propose a simple 

way of combining the cluster centroids to construct the SF. 

Consider a set of trials , where  indexes the class 

label,  is the amount of trials of class ,  the number of electrodes and  the number of time samples 

per trial. Define two sets of  spatial covariance matrices , where 

 is the covariance matrix of . Given , CCSP applies -means clustering to   

resulting on  cluster centroids . CCSP performs CSP by replacing the per-class co-

variance matrix by the per class mean cluster centroids. In other words, CCSP is equivalent to 

. 

3. Results 

We use EEG data consisting of 70 train and 70 test trials from 8 subjects performing imagery 

movement collected using a 64 electrodes Biosemi system. The data were downsampled at 250 Hz, 

linearly detrended and bandpass-filtered in the frequency band 8-30 Hz. An automatic variance based 

routine was applied to remove noisy trials and channels from the train set.  

In Fig. 1 we illustrate the idea of clustering the covariances. The training set covariance matrices 

from class 2 of one subject are projected onto their first two PCA components [Bishop, 2007] as small 

squares.  
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Figure1. Training set covariance matrices of class 2 projected onto their first two PCA dimensions (small squares) 

for one subject.The big squares represent 3 cluster centroids learned from the train covariances. The x-

axis shows a histogram of the data projected onto the first PCA dimension. 

 

Using  we identify a clustering structure and we represent the learned cluster centroids as 

big squares. On the x-axis we present a histogram of the first PCA dimension of the plotted data. Note 

that the top cluster represents trials with a higher variance wrt to both dimensions which most probably 

can be identified as outliers. The lower clusters represent two groups of covariances with different 

number of elements that can be associated to two types of covariances corresponding to class 2.   

Next we compare CCSP with CSP. For both methods we used the log-variance of the data project-

ed onto 6 filters as features for classification. As classifier we used a SVM [Bishop, 2007]. Table 1 

shows the classification results for CSP and CCSP with   and .  

 

Table1.Columns indicate subject number. Rows show the percentage of correctly classified test trials for CSP and 

CCSP with   respectively. 

 

We can see that for this choice of parameters CCSP improves wrt CSP for 6 out of 8 subjects. In 

some cases (subjects 3 and 7) the increase in performance is notable. On the other hand, for subjects 2 

and 5, CCSP performance decreases wrt CSP. We can conclude that clustering the train covariances 

can help us to learn better filters, and as a result CCSP can provide an efficient improvement wrt CSP.  

4. Discussion 

Clustering covariance matrices is not an easy task due to the high dimensionality of the space. To 

alleviate this problem, in this work we used the projection of the vectorized upper triangular parts of 

the covariance matrices onto their two first PCA dimensions as input to the clustering algorithm. Fur-

ther, to avoid local minima, each clustering solution was chosen as the most likely out of 20 solutions 

obtained with different initializations. 

There are several lines of ongoing research. First, we are studying how the quality of the clustering 

affects the learned filters (choice of , local minima, dimensionality reduction previous to clus-

tering). Further, alternative ways of learning the filters after clustering are being investigated. For in-

stance, one could learn one CSP filter for each cluster centroid and select the ones maximizing the var-

iance between classes. Alternatively, one could learn filters using only the most dense clusters. Prelim-

inary results suggest that these choices could improve the presented CCSP. 
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Subject 1 2 3 4 5 6 7   8 

CSP 97.1 94.2 78.5 71.4 64.2 60 52.8 50 

CCSP 100     92.8        90 77.1     54.2 67.1 77.1 58.5 
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