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Abstract
The dynamical processes taking place on a network depend on its topology. 
Influencing the growth process of a network therefore has important 
implications on such dynamical processes. We formulate the problem of 
influencing the growth of a network as a stochastic optimal control problem 
in which a structural cost function penalizes undesired topologies. We 
approximate this control problem with a restricted class of control problems 
that can be solved using probabilistic inference methods. To deal with the 
increasing problem dimensionality, we introduce an adaptive importance 
sampling method for approximating the optimal control. We illustrate this 
methodology in the context of formation of information cascades, considering 
the task of influencing the structure of a growing conversation thread, as in 
Internet forums. Using a realistic model of growing trees, we show that our 
approach can yield conversation threads with better structural properties than 
the ones observed without control.

Keywords: control, complex Networks, sampling, conversation threads

(Some figures may appear in colour only in the online journal)

1.  Introduction

Many complex systems can be described as dynamic processes which are characterized by 
the topology of an underlying network. Examples of such systems are human interaction net-
works, where the links may represent transmitting opinions (Olfati-Saber et al 2007, Dai and 
Mesbahi 2011, Centola and Baronchelli 2015), habits (Centola 2010, Farajtabar et al 2014), 
money (Gai and Kapadia 2010, Amini et al 2016, Giudici and Spelta 2016) or viruses (Pastor-
Satorras and Vespignani 2001, Eguíluz and Klemm 2002). Being able to control, or just influ-
ence in some way, the dynamics of such complex networks may lead to important progress, 
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for example, avoiding financial crises, preventing epidemic outbreaks or maximizing informa-
tion spread in marketing campaigns.

The control of the dynamics on networks is a very challenging problem that has attracted 
significant interest recently (Liu et al 2011, Cornelius et al 2013, Gao et al 2014, Yan et al 
2015). Existing approaches typically consider network controllability as the controllability 
of the dynamical system induced by the underlying network structure. While it is agreed that 
network controllability critically depends on the network structure, the problem of how to 
control the network structure itself while it is evolving remains open.

The network structure is determined by the dynamics of addition and deletion of nodes 
and links over time. In this paper, we address the problem of influencing this dynamics in 
the framework of stochastic optimal control. The standard way to address these problems is 
through the Bellman equation  and dynamic programming. Dynamic programming is only 
feasible in small problems and requires approximations when the state and action spaces are 
large. In the setting of network growth, this problem is more severe, since the state space 
increases (super-)exponentially with the number of nodes.

In order to deal with this curse of dimensionality, we propose to approximate the network 
growth control problem by a special class of stochastic optimal control problems, known 
as Kullback–Leibler (KL) control or linearly-solvable Markov decision problems (LMDPs) 
(Todorov 2009, Kappen et al 2012). For this class of problems, one can use efficient adaptive 
importance sampling methods that scale well in high dimensions. The optimal solution for 
the KL-control problem tends to be sparse, so that only a few next states become relevant, 
effectively reducing the branching factor of the original problem. The obtained solution of the 
KL-control problem is then used to compute the optimal action in the original problem that 
does not belong to the KL-control class.

In the next section we present our proposed general methodology. We then apply it to a 
realistic problem: influencing the growth process of cascades in online forums, in order to 
maximize structural network measures that are connected to the quality of an online conversa-
tion thread. We conclude the paper with a discussion.

2.  Optimal network growth as a control problem

We now formulate the network growth control problem as a stochastic optimal control prob-
lem. Let xt ∈X , with X  being the set of all possible network structures, denote the growing 
structure (state) of the network at time t and let P x x, u( )|′  describe the network dynamics, 
where the control variable u∈U  denotes possible actions we can perform in order to manipu-
late the network. Let us label the default action, which means not interacting with the system, 
with u 0= . We denote the corresponding dynamics without control as the uncontrolled pro-
cess Pp x x : x x, u 0( ) ( )| = | =′ ′ .

At each time-step t, we incur an arbitrary cost function on the network state r x, t( ) which is 
assigned when the state is reached. The state cost r x, t( ) penalizes network structures that are not 
convenient in the particular context under consideration. For example, if one wants to favour 
networks with large average clustering coefficient C x( ), then r x, t C x( ) ( )= − . Alternatively, 
one can consider more complex functions, such as the structural virality or Wiener index 
(Mohar and Pisanski 1988), as proposed recently (Goel et al 2015), to maximize the influence 
in a social network. In general, any measure that can be (efficiently) computed from x fits the 
presented framework.

Our objective is to find the control function u x, t :( ) N× �X U  which minimizes the total 
cost over a time horizon T, starting at state x at initial time t 0=
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where the expectation is taken with respect to the probability P x x, u , t 01:T( ( ) )| ⋅ =  over paths 
x1:T in the state space, given state x at time t 0=  using the control-function u( )⋅ . The probabil-
ity of a path is given by P Px x, u , t 0 x x , u x , s , st 1:T s t

T 1
s 1 s s( ( ) ) ( ( ) )| ⋅ = = ∏ |+ =

−
+ .

Computing the optimal control can be done by dynamic programming (Bertsekas 1995). 
We introduce the optimal cost-to-go

J x, t min x, t, u ,
u

( ) ( ( ))
( )

= ⋅
⋅
C� (2)

which is an expectation of the cumulative cost starting at state x and time t and acting opti-
mally thereafter. This can be computed using the Bellman equation

J Jx, t min r x, t x , t 1 .P
u

x x,u,t( ) ( ( ) ( ) )( )= + +′ |′� (3)

From J x, t( ), the optimal control is obtained by a greedy local optimization:

Ju x, t argmin r x, t x , t 1 .Pu x x,u,t( ) ( ( ) ( ) )( )= + +′∗
|′� (4)

In general, the solution to equation (3) can be computed recursively using dynamic program-
ming (Bertsekas 1995) for all possible states. This is however infeasible for controlling net-
work growth, as the computation is of polynomial order in the number of states and the state 
space of networks increases super-exponentially on the number of nodes. E.g. for directed 
unweighed networks, there are 2N2

 possible networks with N labelled nodes.

3.  Approximating the network growth problem by a Kullback–Leibler  
control problem

In this section we present our main approach, which first computes the optimal cost-to-go on a 
relaxed problem and then uses it as a proxy for the original optimal cost-to-go. In the next sec-
tion, we introduce the class of KL-control problems that we use as a relaxation. We then illus-
trate KL-control using a tractable example of tree growth. In section 3.3, we explain how can 
we approximate the KL-control solution using the cross-entropy method. Finally, in section 3.4 
we show how can we use that result to compute the action selection in the original problem.

3.1.  Kullback–Leibler control

In order to efficiently compute the optimal cost-to-go, we make the assumption that our con-
trols directly specify the transition probabilities between two subsequent network structures, 
e.g. P x x, u t u x x, t( ( )) ( )| ≈ |′ ′ . Further, we define the natural growth process of the network (the 
uncontrolled dynamics) as a Markov chain with transition probabilities p x x( )|′ . Because our 
influence on the network dynamics is limited, we add a regularization term to the total cost 
defined in equation (1) that penalizes deviations from p x x( )|′ . The approximated cost becomes

∑λ⋅ = | | + + ′
λ

+ +

= + |′
′

+

⎡⎣ ⎤⎦C x, t, u KL u x x, t p x x, t r x, t r x , tKL t 1:T t 1:T

t t 1

T

t

u x x,tt 1:T

( ) ( )( ( )) ∥ ( ) ( )
( )

�
(5)

with the KL-divergence
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which measures the closeness of the two path distributions, p x x, tt 1:T( )|+  and u x x, tt 1:T( )|+ . 
The parameter λ thereby regulates the strength of this penalization.

With this assumption, the control problem consisting of minimizing KL
λC  w.r.t. the con-

trol u x x, t( )|′  belongs to the KL-control class and has a closed form solution (Todorov 2009, 
Kappen et al 2012). The probability distribution of an optimal path u x x, tKL t 1:T( )|∗

+  that mini-
mizes equation (5) is

u x x, t
p x x, t

x
x ,KL t 1:T

t 1:T

t 1:T p x x,t
t 1:T

t 1:T

( )
( )

( )
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with

x : exp r x , t .t 1:T
1

t t 1

T

t( ) ( )
⎛

⎝
⎜⎜

⎞

⎠
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−
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Plugging this into equation (5) gives the optimal cost-to-go

J x, t r x, t log x ,KL t 1:T p x x,tt 1:T
( ) ( ) ( ) ( )λ φ= −λ

+ |+� (8)

which can be numerically approximated using paths sampled from the uncontrolled dynamics 
p x x, tt 1:T( )|+ .

The optimal control corresponding to equation (4) corresponds to a state transition prob-
ability distribution that is obtained by marginalization in equation (6). It is expressed in terms 
of the uncontrolled transition probability p x x( )|′  and the (exponentiated) optimal cost-to-go:

∑ λ
| = = | ∝ | −

+
′ ′ ′

′λ
∗ ∗

+ +

+

J
u x x, t u x x , x x, t p x x exp

x , t 1
.KL

x
KL t 1 t 2:T

KL

t 2:T
( )( ) ( ) ( )

( )�
(9)

This resembles a Boltzmann distribution with temperature λ where the optimal cost-to-go 
takes the role of an energy. The effect of the temperature becomes clear: for high values of 
λ, u x x, tKL( )|′∗  deviates only a little from the uncontrolled dynamics p x x( )|′ , thus the optimal 
control has a weak influence on the system. In contrast, for low values of λ, the exponen-
tial in equation (9) becomes very pronounced for the state(s) x′ with the smallest cost-to-go 
J x , t 1KL( )+′λ , suppressing the transition probabilities to suboptimal states x′. Thus the control 
has a very strong effect on the process. In the limit of λ going to zero, the controlled process 
becomes deterministic, if J x , t 1KL( )+′λ  is not degenerate (meaning there is a unique state x′ 
which minimizes the optimal cost-to-go). In this case the control is so strong that it overpow-
ers the noise completely.

We thus approximate our original (possibly difficult) control problem as a KL-control 
problem, parametrized by the temperature λ. The approximated optimal cost-to-go J x , t 1( )+′  
of equation (4) is replaced by the corresponding optimal cost-to-go of the KL-control problem 
J x , t 1KL( )+′λ  of equation (9) and used to compute the action selection in the original problem.

3.2.  A tractable example

We now present a tractable example amenable for exact optimal control computation. This 
example already belongs to the KL-control class, so no approximation is made. The purpose 
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of this analysis it to show how different values of the temperature λ may lead to qualitatively 
different optimal solutions and other interesting phenomena.

Let’s consider a tree that grows at discrete time-steps, starting with the root node at time 
t 0= . We represent the tree at time t as a vector x x xx , , ...,t 0 1 t( )= , where xt indicates the label 
of the parent of the node attached at time t. At every time-step, either the tree remains the same 
or a new node is attached to it. The root node has label 1 and the label 0 is specially used to 
indicate that no node was added at a given time-step (it is also the label of the parent of the 
root node). The nodes are labelled in increasing order as they arrive to the tree, so that at time-
step t, for a tree with k nodes, k t⩽ , x k0, 1, ,t = …  corresponds to the parent of node k  +  1 if 
a node is added or zero otherwise. Thus, the parent vector at time t 1=  is always x 0, 11 ( )= .

Our example is a finite horizon task of T 10=  time-steps and end-cost only. The end-cost 
implements two control objectives: it prefers trees of large Wiener index while penalising 
trees with many nodes (more than five, in this case). The Wiener index is the sum of the 
lengths of the shortest paths between all nodes in a graph. It is maximal for a chain and mini-
mal for a star.

The uncontrolled process is biased to the root: new nodes choose to link the root with prob-
ability 3/5 and uniformly otherwise. More precisely

= | =
=

= ∈ …
+

⎧

⎨
⎪⎪

⎩
⎪⎪

x j
j

j j x
p x

3

5
for 1

2

5 x
for 0 or 2, ,

t

t

1 t

t 0
0{ }

( )
 

∥ ∥
 ( )       

� (10)

Wiener
r x , t

x if x 5

otherwiset
t t,T t 0

t,T
( )

( )  ∥ ∥⎧
⎨
⎩

δ
δ

=
− <

� (11)

where x 0∥ ∥  denotes the number of non-zero elements in x and Wiener the (normalized) Wiener 
index.

In this setting, the uncontrolled process p tends to grow trees with more than five nodes 
with many of them attached to the root node, i.e. with low Wiener index. We want to influence 
this dynamics so that the target configuration, a chain of five nodes (maximal Wiener index) 
is more likely to be obtained.

Figure 1 (top) shows the state cost r of the final tree that results from choosing the most 
probable control (MAP solution) as a function of the temperature λ. The exact solution is 
calculated using dynamic programming (Kappen et al 2012). We can differentiate three types 
of solutions, denoted as A, B and C in the figure.

For low temperatures (region A) the control aims to fulfil both control objectives: to find a 
small network with maximal Wiener index. The optimal strategy does not add nodes initially 
and then builds a tree of maximal Wiener index (see inset of initial controls in left column 
of the figure). This type of control (to wait while the target is far in the future) is reminiscent 
of the delayed choice mechanism described previously (Kappen 2005). This initial waiting 
period makes sense because if the chain of length 5 would be grown immediately, then at time 
6 the size of 5 is already reached. If now an additional node attaches, then the final cost would 
be zero. However if one first waits and then grows the chain, an accidental node insertion 
before time 6 would not be so disastrous (actually it may help), as one can then just wait until 
time 7 to start growing the rest of the tree. So delaying the decision when to start growing the 
tree helps compensating accidental events.

For intermediate temperatures (region B), the initial control becomes less extreme, as we 
observe if we compare the left plots between regions A and B. For 0.07λ≈ , the solution that 
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builds the tree with maximal Wiener index is no longer optimal, since it deviates too much 
from the uncontrolled dynamics. In region B, the control aims to build a network of five nodes 
or less, but no longer aims to maximize the Wiener index. The control is characterized by an 
initial waiting period and the subsequent growth of a tree of five nodes, which are in this case 
all attached to the root node.

Finally, for high temperatures (region C, 0.4λ> ), the control essentially ignores the cost 
r and the optimal strategy is to add one node to the root at every time-step, following the 
uncontrolled process.

From these results we conclude that KL-control as a mechanism for controlling network 
growth can capture complex phenomena such as transitions between qualitatively different 
optimal solutions and delayed choice effects.

3.3.  Sampling from the KL-optimally controlled dynamics

In this section, we explain how we can sample from the optimally controlled dynamics and 
thereby obtain an estimate of the optimal cost-to-go J x, tKL( )λ  of equation (8).

Figure 1.  Example of optimal control of tree growth. (Top): the state cost of the most 
probable solutions as a function of the temperature λ. In region A, the optimal strategy 
waits until the last time-steps and then grows a tree with maximal Wiener index. In 
region B, it builds a star of five nodes. Finally, in region C, it follows the uncontrolled 
dynamics and builds a star of ten nodes. (Left): for each region, the optimal probabilities 

( )|∗
+xu xt 1 t  at =t 1 for the two actions which are initially available: no node addition (0) 

and adding a node to the root (1). In regions A, B the optimal control favours not adding 
a new node initially. The sequences on the right show how the tree grows. When a new 
node is added to the tree, it is coloured in red.

D Thalmeier et alJ. Phys. A: Math. Theor. 50 (2017) 034006
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The probability of an optimally controlled path, equation (6), corresponds to the product 
of the uncontrolled dynamics by the exponentiated state costs. Hence a naive way to obtain 
samples from the optimal dynamics, would consist in sampling paths from the uncontrolled 
dynamics p x x( )|′  and weight them by their exponentiated state costs. Using these samples we 
can then compute expectations from the optimally controlled dynamics. We use that for any 
function f xt 1:T( )+  we have:

( ) ( ) ( )
( )( )

( ) ( )

φ
φ

=+ | +
+

+ | |

∗
+

+
+

f fx x
x

x
.t 1:T u x x,t t 1:T

t 1:T

t 1:T p x x,t p x x,t
KL t 1:T

t 1:T
t 1:T

More precisely, provided a learned model or a simulator of the uncontrolled dynamics p x x( )|′ , 

we generate M sample paths ix , 1, , Mi
t 1:T
( ) = …+  from p x x( )|′  and compute the weights 

x i
t 1:T( )
ˆ

( )φ

φ
+ . 

The denominator thereby gives with equation (8) an estimate of the optimal cost-to-go as

x :
1

M
x .

i

i
t 1:T p x x,t

1

M

t 1:Tt 1:T
( ) ˆ ( )( )

( )∑φ φ φ≈ =+ |
=

++

This method can be combined with resampling techniques (Douc and Cappé 2005, Hol et al 

2006) to obtain unweighted samples x i
t 1:T
opt,( )
+  from the optimal dynamics (for the numerical 

methods in this article, we have used structural resampling (Douc and Cappé 2005, Hol et al 
2006)).

Using such a naive sampling method, however, can be inefficient, in particular for low 

temperatures. While for high temperatures λ basically all weights 
x i

t 1:T( )
ˆ

( )φ

φ
+  are more or less 

equal, for low temperatures only a few samples with very large weights contribute to the 
approximation, resulting in very poor estimates.

This is a standard problem in Monte Carlo sampling and can be addressed using the Cross-
Entropy (CE) method (De Boer et al 2005, Kappen and Ruiz 2016), which is an adaptive 
importance sampling algorithm that incrementally updates a baseline sampling policy or 
sequence of controls. Here we propose to use the CE method in the discrete formulation and 
use a parametrized Markov process u x x, t( )|′ω� , with parameters ω, to approximate uKL

∗ . The CE 
method in our setting alternates the following steps:

	 (i)	In the first step, the optimal control is estimated using M sample paths drawn from a 
parametrized proposal distribution u x x, t( )|′ω� .

	(ii)	In the second step, the parameters ω are updated so that the proposal distribution becomes 
closer to the optimal probability distribution.

As a proposal distribution u x x, t( )|′ω� , we use

J
u x x, t p x x exp

x , t
,KL( ) ( ) ( ( ))⎛

⎝
⎜

⎞
⎠
⎟

ω
λ

| ∝ | −′ ′
′

ω�
�

� (12)

which has the same functional form as the optimally controlled transition probabilities in 
equation (9). The KL-optimal cost-to-go is thereby approximated by a linear sum of time-
dependent feature vectors xk

t ( )ψ

J x, t t x .
k

k kKL
t( ( )) ( ) ( )∑ω ω ψ=�

� (13)
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The probability distribution of an optimally controlled path, equation (6), can be written as

( ) ( )
( )

( )
( )( ) ( )

( )

( )
( )∑λ| ∝ |

|

|
− ′ω

ω

∗
+ +

+

+

−

= +′
′

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟�

�
u x x, t u x x, t

p x x, t

u x x, t
exp r x , t .i i

i

i
i

KL t 1:T t 1:T
t 1:T

t 1:T

1

t t 1

T

t

�

(14)

This shows that we can draw samples from the proposal distribution and reweight them 
with the combined weights

w
p x x, t

u x x, t
x .i

i

i
it 1:T

t 1:T
t 1:T

( )
( )

( )( )
( )

( )
( )φ=

|

|ω

+

+
+

�

The parameters tk( )ω  of the importance sampler are initialized with zeros, which makes the 
initial proposal distribution equivalent to the uncontrolled dynamics. The procedure requires 
the gradients of u x x, t( )|′ω�  at each iteration. We describe the details of the CE method in 
appendix A.

We measure the efficiency of an obtained proposal control using the effective sample size 
(EffSS), which estimates how many effective samples can be drawn from the optimal distribu-
tion. Given M samples with weights w i( ), the EffSS is given by

∑

∑
=

=

=

EffSS
w

w
.

i
i

i
i

1

M 1

M 2

1

M 1

M 2

( )
( )

( )

( )� (15)

If the weights w i( ) are all about the same value, the EffSS is high, indicating that many samples 
contribute to statistical estimates using the weighted samples. If all weights are equal, the EffSS 
is equal to the number of samples M. Conversely if the weights w i( ) have a large spread, the 
EffSS is low, indicating that only few independent samples contribute to statistical estimates. 
In the extreme case, when one weight is much larger then all others, the EffSS approaches 1.

3.4.  Action selection using the KL-approximation

Once we have an estimate of the cost-to-go JKL
λ , we need to select an action u∈U  in the 

original control problem, which is not of the KL-control type. We select the optimal action 
according to

Ju x, t argmin r x, t x , t 1 ,P tu KL x x,u,( ) ( ( ) ( ) )( )≈ + +′λ∗
|′� (16)

which requires the computation of J x , t 1KL t 1( )+λ
+  for every reachable state xt 1+ . In growing 

networks, the number of possible next states (the branching factor) increases quickly, and 
visiting all of them soon becomes infeasible.

In this section we highlight an important benefit of using the KL-approximation as a relaxa-
tion of the original problem: the optimally controlled process tends to discard many irrelevant 
states, specially for small values of λ. This means that u x x, tKL( )|′∗  is sparse on x′ (only a few 
next states are relevant for the task), since the cost J tx ,KL( )′λ  is very large for the corresponding 
x′ where u x x, t 0KL( )| ≈′∗ .

Let xt 1:T
opt
+  denote a trajectory sampled from the optimally controlled process, as described 

in the previous section. We compute u x x, tKL( )|′∗  using:

u x x, t ,KL x t 1 ,x u x x,t
opt

KL t 1:T
ˆ ( ) ( ) ( )δ| =′∗

+ |′ ∗
+

� (17)
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where x t 1opt( )+  is the first element of the trajectory and x t 1 ,xopt( )δ + ′ is the Kronecker delta 
which is equal one if x t 1opt( )+  is equal to x′, and zero otherwise.

We then compute the optimal cost using equation (9):

J x , t 1 log
u x x, t

p x x, t
,KL

KL( )
ˆ ( )

( )

⎛
⎝
⎜

⎞
⎠
⎟+ ∼−

|
|

′
′

′
λ

∗

� (18)

where we dropped a term which does not depend on x′ and therefore plays no role in the 
minimization of equation  (16). The KL-approximation can help reducing the branching 
factor because it needs only a few samples to calculate J x , t 1KL( )+′λ  only for the x′ where 
u x x, t 0KL( )| >′∗  and thus J tx ,KL( )′λ  has a finite value.

As mentioned earlier, u x x, tKL( )|′∗  tends to be more sparse for small values of λ, when the 
KL-control problem is less noisy. In appendix B we provide analytical details of the two 
extreme conditions, when λ is zero or infinite, respectively.

4.  Application to conversation threads

We have described a framework for controlling growing graphs. We now illustrate this frame-
work in the context of growing information cascades. In particular, we focus on the task of 
controlling the growth of online conversation threads. These are information cascades that 
occur, for example, in online forums such as weblogs (Leskovec et al 2007), news aggregators 
(Gómez et al 2008) or the synthesis of articles of Wikipedia (Laniado et al 2011). In conversa-
tion threads, after an initial post appears, different users react writing comments either to the 
original post or to comments from other users.

Figure 2 shows an example of a conversation thread, taken from Slashdot (www.slashdot.org).  
Users see a conversation thread using a similar hierarchical interface.

The task we consider is to optimize the structure of the generated conversation thread while 
it grows. The state is thus defined as a growing tree. We assume an underlying (not observed) 
population of users that keep adding nodes to this tree. Since we can not control directly what 
is the node that will receive the next comment, we propose the user interface as a control 
mechanism to influence indirectly the growth process. This can be done in different ways, 
for example, manipulating the layout of the comments. In our case, the control signal will 
be to recommend a comment (by highlighting it) to which the next user can reply. Figure 3 
illustrates such a mechanism. The action selection strategy introduced in section 3.4 is used to 
select the comment to highlight. Our goal is thus to modify the structure of a cascade in cer-
tain way while it evolves, by influencing its growth indirectly. It is known that the structure of 
online threads is strongly related with the complexity of the underlying conversation (Gómez 
et al 2008, Gonzalez-Bailon et al 2010).

To fully define our control problem, we need to specify the structural cost function, the 
uncontrolled dynamics, i.e. the equivalent of equations (10) and (11) for this task, and a model 
of how an action (highlighting a node) changes the dynamics. Globally, this application differs 
from the toy example of section 3.2 in some important ways:

	 (i)	The state-space is larger (threads typically receive more than 10 comments).
	(ii)	We choose as state-cost function the Hirsch index (h-index), which makes the control task 

highly non-trivial.
	(iii)	The original problem is not a KL-control problem. We use the action selection method 

described in section 3.4 to control the growth of the conversation thread.

D Thalmeier et alJ. Phys. A: Math. Theor. 50 (2017) 034006
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4.1.  Structural cost function

We propose to optimize the Hirsch index (h-index) as structural measure. In our context, a 
cascade with h-index h has h comments each of which have received at least h replies. It is 
a sensible quantity to optimize, since it measures how distributed the comments of users on 
previous comments are. A high h-index prevents two extreme cases that occur in a rather poor 
conversation: the case where a small number of posts attract most of the replies, thus there is 
no interaction, and the case with deep chains, characteristic of a flame war of little interest for 
the community. Both cases have a low h-index, while a high h-index spreads the conversation 
over multiple levels of the cascade.

The h-index is a function of the degree sequence of all nodes in the tree, where the degree 
of a node is this case is the number of replies plus one, as there is also a link to the parent 
(replied comment or post). Therefore we use the degree histogram as features xk

t ( )ψ  for the 
parametrized form of the optimal cost-to-go, equation (13). That is, feature xk

t ( )ψ  is the num-
ber of nodes with degree k in the tree x at time-step t. We model the problem as a finite horizon 
task with end-cost. Thus, the state cost is defined as r x, t h xt,T( ) ( )δ= − ⋅ , where h x( ) is the 
h-index of the tree x.

Figure 2.  Task illustration: example of an Internet news forum. News are posted 
periodically and users can write comments either to the original post or to other user’s 
comments, forming a cascade of messages. The figure shows an example of conversation 
thread taken from Slashdot about Google’s AlphaGo. The control task is to influence 
the structure of the conversation thread (shown as a growing tree in the top-right).
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4.2.  Uncontrolled dynamics for online conversation threads

As uncontrolled dynamics, we use a realistic model that determines the probability of a com-
ment to attract the replies of other users at any time, by means of an interplay between the 
following features:

	 •	Popularity α: number of replies that a comment has already received.
	 •	Novelty τ: the elapsed time since the comment appeared in the thread.
	 •	Root node bias β: characterizes the level of trendiness of the main post.

Such a model has proven to be successful in capturing the structural properties and the tem-
poral evolution of discussion threads present in very diverse platforms (Gómez et al 2013). 
Notice that these features , ,( )θ α τ β=  should not be confused with the features xk

t ( )ψ  used to 
encode the cost-to-go.

We represent the conversation thread as a vector of parents x x xx , , ...,t 0 1 t( )= . Given the 
current state of the thread xt, the uncontrolled dynamics attaches a new node t 1+  to an exist-
ing node j with probability

x j
Z

p x
1

degj j
j

t 1 t
t 1

,t ,1
t 1( ) ( )α δ β τ= | = + +θ +

+

+ −� (19)

Figure 3.  Our proposed control mechanism: in addition to the the threaded conversation, 
we highlight a comment (red node in the growing tree), suggested to be replied by the 
user. The choice of suggested comment, shown at the bottom of the page, is calculated 
using the method described in section 3.3.
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with Z t 1+  a normalization constant, degj,t the degree of node j at time t and j,1δ  the Kronecker 
delta function, so parameter β is only nonzero for the root.

Given a dataset composed of S threads : x , , x1 S{ }( ) ( )= …D  with respective sizes x k( )| |, 
k 1, S{ }∈ … , the parameter vector θ can be learned by minimizing

xlog ; log p x .
k

k k

1

S

t 2

x

t 1 t

k

( ) ( )( ) ( )
( )

∑∑θ− = − |θ
= =

| |

+L D

We learn the parameters using the Slashdot dataset, which consists of S 9820=  threads, con-
taining more than 2 106⋅  comments among 93 638 users. In Slashdot, the most relevant feature 
is the preferential attachment, as detailed in Gómez et al (2013). This will have implications 
in the optimal control solution, as we show later.

4.3.  Control interaction

The control interaction is done by highlighting a single comment of the conversation. We 
assume a behavioural model for the user inspired by Craswell et al (2008), where the user 
looks at the highlighted comment and decides to reply or not. For simplicity, we assume that 
the user chooses the highlighted comment with a fixed probability p 1/( )α α= +′  and with 
probability p1− ′ she chooses to ignore it. If the highlighting of the comment is ignored, the 
thread grows according to the uncontrolled process. Therefore, α parametrizes the strength of 
the influence the controller has on the user. For →α ∞, we can fully control the behaviour and 
for 0α = , the thread evolves according to the uncontrolled process. A typical control would 
have a small α as usually the influence of an controlling agent on a social systems is weak.

4.4.  Experimental setup

To evaluate the proposed framework we use a simulated environment, without real users. 
We consider a finite horizon task with T 50=  with the goal to maximize the h-index at end-
time, starting from a thread with a single node as initial condition. The state-space consists 
of 50 364≈  states. The thread grows in discrete time-steps. At each time-step, a new node is 
added to the thread by a (simulated) user. For that, we first choose which node to highlight 
(optimal action) as described in section 3.4 using equation (16). We then simulate the user as 
described in section 4.3, so the highlighted node is selected with probability p 1/( )α α= +′  
as the parent of the new node. Otherwise, with probability p1− ′, the user ignores the high-
lighted node and the parent of the new node is chosen according to the Slashdot model, equa-
tion (19). This is repeated until the end time.

4.5.  Experimental results

We first analyse the performance of the adaptive importance sampling algorithm described in 
section 3.3 for different fixed values of λ.

Figure 4 shows the effective sample size (EffSS), equation (15) as a function of the number 
of iterations of the CE method. We observe that the EffSS increases to reach a stable value. 
As expected, large temperature (easier) problems result in higher values of EffSS. We can 
also see that, even for hard problems with low temperature, the obtained EffSS is significantly 
larger than zero, which allows us to compute the KL-optimal control. In general, the curves 
are less smooth for smaller values of λ, because a few qualitatively better samples dominate 
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Figure 4.  Evaluation of the inference step: the Effective sampling size (EffSS) increases 
after several iterations of the cross-entropy method. As expected, large values of the 
temperature λ result in higher values of EffSS. We use M  =  105 samples to compute the 
EffSS. The EffSS is measured here in percent of the maximum number of samples M.
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Figure 5.  The learned importance sampler: the figure  shows the time-dependent 
parameters of the learned expected cost-to-go for λ = 0.2. Each pixel is the parameter 
of a feature at a certain time. The features are the degrees of the parent node after the 
new child attaches. The colour represents the weight of the parameter. Large negative 
weights (pixels in blue colour) stand for a low cost and thus a desirable state, while 
large positive weights (red pixels) stand for high cost and thus undesirable states. At 
all times there is a desirable degree which the parent should have and higher as well as 
lower degrees are inhibited. This desirable degree is small at early times and becomes 
larger at later times.
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the EffSS, resulting in higher variance. On the other hand we also observe that the EffSS never 
reaches 100%. This is expected, as this would mean that our parametrized importance sampler 
perfectly resembles the optimal control, and this is not possible due to the approximation error 
introduced by the use of features.

We can better understand the learned control by analysing the linear coefficients of the 
parametrized optimal cost-to-go, equation (13), for this problem. Figure 5 shows the feature 
weights tk( )ω , at different times t 1, , T= … , after convergence of the CE method. Feature 
k corresponds to the number of nodes with degree k in the tree, after a new node arrives. 
The parent node to which the new node has attached is thereby the only node whose degree 
changes (the degree increases by 1). Thus a high weight for a feature which measures the 
number of nodes with a certain degree k results in a low probability of attaching to a node with 
degree k  −  1. Conversely low, or large negative weights thus correspond to nodes which have 
a high probability of becoming the parent of the next node which is added. We observe that 
there is an intermediate preferred degree (large negative weight, in blue). This is the preferred 
degree of the parent of the new node, and this preferred degree increases with time, reaching 
a value of 5 at t 50= .

Does this strategy make sense? The maximum h-index of a tree of 50 nodes is 7, and it is 
achieved if 6 nodes have exactly 7 children and one node has 8. However, achieving such a 
configuration requires a very precise control. For example, increasing too much the degree of 
a node, say up to 9, prevents the maximum h-index to be reached, as there are not enough links 
left, due to the finite horizon. Thus, in this setting, steering for the maximal possible h-index 
is not optimal. The controller prefers all parents to have a degree of 5 and not less, but also not 
much more. As having more than five parents with degree at least five will result in an h-index 
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Figure 6.  Evaluation of the actual control: uncontrolled dynamics (blue), KL-optimally 
controlled dynamics (green) action selection based control for α = 1 (red) and α = 0.5 
(black). The KL-optimally controlled dynamics, which optimize the sum of the λ-
weighted KL-term and the end cost, shifts the final mean value from about 3.7 to about 
4.7. The action selection based control, which is aiming to optimize the end cost only, 
is able to shift the h-index to even higher values then the KL-optimal control. For the 
controlled dynamics, λ = 0.2 for all three cases. To compute the control in each time-
step we sample 1000 trajectories. The statistics where computed using 1000 samples 
for each of the three cases.
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of 5 we conclude that the control seems to aim for a target h-index of 5, while preventing wast-
ing links to higher or lower degree nodes, which would not contribute to achieve that target.

The interpretation of why the preferred degree increases with time involves the uncon-
trolled dynamics. Remember that the most relevant term in equation (19) for the considered 
dataset corresponds to the preferential attachment, parametrized by α. This term boosts high-
degree nodes to get more links. If this happens, most of the links end up attached to a few 
parents, and this effect can only be suppressed by a strong control. The controller prevents that 
self-amplifying effect by aiming initially for an overall low degree, preventing a high impact 
of the preferential attachment. This keeps the process controllable and allows for a more equal 
distribution of the links.

After having evaluated the sampling algorithm, we evaluate the proposed mechanism for 
actual control of the conversation thread. As described in section 3.4, in our simulated sce-
nario, we highlight the node as the parent which minimizes the computed expected cost-to-go.

Figure 6 shows the evolution of the h-index using different control mechanisms. The blue 
curve shows how the h-index changes under the uncontrolled dynamics. On average, it reaches 

Slashdot thread Uncontrolled thread
Controlled thread

Figure 7.  Examples of threads. A thread from the data (Slashdot), an uncontrolled 
thread generated from the model and a controlled thread. The nodes that contribute to 
the h-index are coloured in yellow. The h-index for the data and the uncontrolled thread 
is 4 and 6 for the controlled one.

Algorithm 1.  Cross-entropy method for KL-control.

Require: importance sampler ω�u ,
             feature space ( )ψ ⋅ ,
             number of samples M,
             learning rate η
   ←l 0

   ( ) ←( )ω t 0k
l , Initialize weights for all k, t, l

   ←( )
+x i

t 1:T  draw M sample trajectories ( )∼ ω�u l , = …i 1, , M
   repeat

     compute gradient ( )
( )

( )ω
ω

∂
∂
D

tk

l
 using equation (A.2)

     ( ) ← ( )( ) ( ) ( )
( )

( )
ω ω η+ ω

ω
+ ∂

∂
t tk

l
k
l1 D

tk

l
 for all k, t, l

      ←( )
+x i

t 1:T  draw M samples  ∼ ( )ω +�u l 1

     ← +l l 1
   until convergence
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a maximum of about 3.7 after 50 time steps. In green, we show the evolution of the h-index 
under a KL-optimal controlled case, for temperature 0.2λ = . As expected, we observe a faster 
increase, on average, than using the uncontrolled dynamics. The maximum is about 4.7.

The red and black curves show the evolution of the h-index using the control mechanism 
described in sections 3.4 and 4.3, where we select actions using the expected cost-to-go JKL

λ  
of the KL-optimal control with 0.2λ = , for 1α =  and 0.5α = , respectively. In both cases 
the obtained h-index is even higher than the one obtained with the KL-control relaxation. 
Therefore, the objective for this task, to increase the h-index, can be achieved through our 
action selection strategy. As expected, a stronger interaction strength 1α =  leads to higher 
h-indices than a lower strength 0.5α = .

Finally, in figure 7 we show examples of a real discussion thread from the dataset (Slashdot), 
a thread generated from the learned model (uncontrolled process) and one resulting from 
applying our action selection strategy. The latter has higher h-index.

5.  Discussion

We have addressed the problem of controlling the growth process of a network using stochas-
tic optimal control with the objective to optimize a structural cost that depends on the topology 
of the growing network. The main difficulty of such a problem is the exploding size of the 
state space, which grows (super-)exponentially with the number of nodes in the network and 
renders exact dynamic programming infeasible.

We have shown that a convenient way to address this problem is using KL-control, where 
a regularizer is introduced which penalizes deviations from the natural network growth pro-
cess. One advantage of this approach is that the optimal control can be solved by sampling. 
The difficulty of the sampling is controlled by the strength of the regularization, which is 
parametrized by a temperature parameter λ: for high temperatures the sampling is easy, while 
for low temperatures, it becomes hard. This is in contrast to standard dynamic programming, 
whose complexity is directly determined by the number of states and independent of λ.

In order to tackle the more challenging low temperature case, we have introduced a feature-
based parametrized importance sampler and used adaptive importance sampling for optimiz-
ing its parameters. This allows us to sample efficiently in the low temperature regime. For 
control problems which cannot directly be formulated as KL-control problems, we have pro-
posed to use the solution of a related KL-control problem as a proxy to estimate the effective 
values of possible next network states. These expected effective values are subsequently used 
in a greedy strategy for action selection in the original control problem. This action selection 
mechanism benefits from the sparsity induced by the optimal KL-control solution.

We have illustrated the effectiveness of our method on the task of influencing the growth of 
conversation cascades. Our control seeks to optimize the structure of the cascade, as it evolves 
in time, to maximize the h-index at a final time. This task is non-trivial and characterized by 
a sparse, delayed reward, since the h-index remains constant during most of the time, and 
therefore a greedy strategy is not possible.

Our approach for controlling network growth is inspired in recent approaches to optimal 
decision-making with information-processing constraints (Todorov 2009, Tishby and Polani 
2011, Kappen et al 2012, Rawlik et al 2012, Theodorou and Todorov 2012). The Cross-Entropy 
method has been explored previously in the continuous case (Kappen and Ruiz 2016). The 
continuous formulation of this class of problems has been used in robotics, using parametrized 
policies (Theodorou et al 2010, Levine and Koltun 2013, Gómez et al 2014). In economics, 
the question of altering social network structure in order to optimize utility has been addressed 
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mainly from a game theoretical point of view, under the name of strategic network formation 
(Jackson and Watts 2002, Bloch and Jackson 2007). To the best of our knowledge, the problem 
of network formation has not yet been addressed from a stochastic optimal control perspective.

The standard approach to address the problem of controlling a complex, networked system 
is to directly try to control the dynamics on the network (Liu et al 2011, Cornelius et al 2013, 
Gao et al 2014, Yan et al 2015). This approach considers the classical notion of structural 
controllability as the capability of being driven from any initial state to any desired final 
state within finite time. Optimal control in thus referred to the situation where a network can 
be fully controlled using only one driving signal. This idea is also prevalent in the influence 
maximization problem in social networks (Kempe et al 2003, Farajtabar et al 2014, 2015), 
which consists in finding the subset of driver (most influential) nodes in a network.

Since the controllability of the dynamics on the network depends crucially on the topology, 
several works have considered the idea of changing the network structure is some way that 
favours structural controllability.

For example, the perturbation approach introduced in Wang et  al (2012) looks for the 
minimum number of links that needs to be added so that the perturbed network can be fully 
controlled using a single input signal. In Hou et al (2015), a method to enhance structural 
controllability of a directed network by changing the direction of a small fraction of links is 
proposed. More recently, Wang et al (2016) analyzed node augmentation of directed networks 
while insisting that the minimum number of drivers remains unchanged.

The main difference between our approach and these approaches is that, rather than con-
sidering the controllability of the dynamical system on the underlying network, our optimal 
control task is defined on the structure of the network itself, regardless of the dynamical sys-
tem defined on it. In some sense, our results complement these approaches. For example, one 
could use our optimal control approach to shape the growth of the network in a way that the 
structural controllability, understood as the state cost function, is optimized.
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Appendix A.  Adaptive importance sampling for KL-optimal control  
computation using the cross-entropy method

Here we show how the time-dependent weights tk( )ω  of the importance sampler are updated 
such that u x x, t( )|′ω�  becomes closer to the optimal sampling distribution. This corresponds to 
the second step of the cross-entropy method described in section 3.3. For clarity in the deriva-
tions, we will replace p x x, 01:T( )|  and u x x, 0KL 1:T( )|∗  by p and uKL

∗ , respectively, in the expecta-
tions. The closeness of the two distributions u x x, t( )|′ω�  and u x x, tKL( )|′∗  can be measured as the 
cross entropy between the path x1:T probabilities under these two Markov processes:
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where the constant term log u x x, 0KL 1:T uKL
( )|∗

∗  is dropped.

We minimize equation (A.1) by gradient descent. At iteration l, the gradient D l( )( )ω  with 
respect to tk( )ω  is given by
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where we can drop the first term as it is independent of t( )ω . The second term can be evaluated 
using the definition of JKL� , equation (13).

Further, plugging in Z we get
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where we have used the estimates from the importance sampling step and equation (9).
The update rule for the parameters becomes
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for some learning rate η. Algorithm 1 summarizes the CE method applied to this context.
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Appendix B.  Analyzing the KL-optimal cost-to-go based action selection

We have introduced an action selection framework which is based on an approximation of the 
optimal cost-to-go J x , t( )′  by the optimal cost-to-go J x , t 1KL( )+′λ  of a parametrized family of 
KL-control problems which share the same state cost r x, t( ).

Why is this a good idea? Consider the two extreme cases where the temperature λ, which 
parametrizes the family of equivalent KL-control problems, is zero or infinite, respectively.

B.1.  Extreme case λ 0→  (zero temperature)

The total cost in the KL-control problem becomes equal to the total cost in the original 
control problem, equation  (1), as the KL term vanishes. The KL-optimal control becomes 
deterministic:
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KL�
(B.1)

where Z is a normalization constant.
Thus, for 0→λ , the KL-control problem becomes identical to the original problem if the sys-

tem is fully controllable, i.e. for every t, x and x̃ there is a ux̃∈U  such that p x x, t, ux x,x( )˜ ˜δ| =′ ′.

B.2.  Extreme case λ ∞→  (infinite temperature)

For this case, using equation (8) we get
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Using equation (1) and the definition of the uncontrolled dynamics, we can write

J x, t r x, t r x , t x, t, 0 .
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Thus, for →λ ∞, the KL-optimal cost-to-go becomes equal to the total cost in the original 
control problem under the uncontrolled dynamics (using u 0= ). Having this equation (16) 
can be written as

u x, t argmin r x, t x , t 1, 0 .Pu x x,u,t( ) ( ( ) ( ) )( )≈ + +′∗
|′C� (B.3)

In this case, the action selection is equivalent to optimize an expected total cost assuming 
the system will evolve according to the free dynamics in the future. Thus the infinite temper
ature control can be used if one wants to guarantee that the obtained solution will not be worse 
than the solution obtained with zero control. Choosing a lower λ, however, might in practice 
work better (as we also have shown in section 4) but has no theoretical guarantee.
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We can conclude that our action selection strategy is meaningful in the two extreme cases, 
→λ ∞ and 0→λ . Also this analysis suggests that, if the available set of actions u∈U  offers a 

strong control over the system dynamics, it is more convenient to use a JKL
λ  with a low temper

ature λ.
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