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A B S T R A C T

Air pollution in urban areas poses a significant and pressing challenge for modern society. Unfortunately, the
existing network of pollution detectors in many cities is limited in scope and fails to adequately cover the
entire geographical area. Consequently, the implementation of spatial prediction algorithms becomes essential
to generate high-resolution data. In this paper, we introduce two significant contributions: 1) We formalize the
air pollution prediction problem as a Maximum A Posteriori (MAP) estimate within the framework of a Markov
Random Field and 2) we propose a message-passing algorithm, which stands out as an efficient solution that
surpasses the current state of the art. The experimental procedure has been carried out using the case study
of the city of Barcelona, based on a dataset extracted from the BCN Open Data portal.
1. Introduction

Air quality is a major concern in urban areas, as poor air quality
can lead to a range of negative health outcomes such as respiratory and
cardiovascular diseases (Lelieveld et al., 2015). Accurate prediction of
air quality is essential for mitigating these negative impacts and for
developing effective strategies for improving air quality (Viana et al.,
2020). However, predicting air quality in urban areas is a complex
task, as it involves a range of factors such as meteorological conditions,
traffic patterns, and emissions from various sources. Traditionally, air
quality prediction has relied on models based on physical and chemical
principles, which can be computationally expensive and may not accu-
rately capture the complex interactions that occur in real-world urban
environments.

In recent years, there has been a growing interest in the use of
graph-based approaches for predicting air quality in urban areas. These
approaches are based on the idea that air quality can be represented
as a graph, with nodes representing different locations in the city and
edges representing some kind of interaction between these locations.
In this paper, we present a new approach to air quality prediction
that utilizes message passing in graphs. Graph-based models are a
powerful tool for representing complex systems, as they can capture the
structural relationships between different elements of the system. This
graph-based approach allows the use of Graph Neural Network (GNN)
methods (Scarselli et al., 2008). GNNs are a class of deep learning
models that operate on graph-structured inputs. In recent years, the
field of GNN has experienced exponential growth in terms of published
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articles and general interest (Zhou et al., 2020). Its application has
resulted in several breakthroughs in many different fields. To cite just a
few examples, we have applications in Physics (Sanchez-Gonzalez et al.,
2018), in combinatorial optimization problems (Khalil et al., 2017), in
Computer Vision (Garcia and Bruna, 2017), in traffic forecasting (Rico
et al., 2021; Peng and Zhang, 2023) and industry applications (Liu
et al., 2023; Wang et al., 2023). We refer to Zhou et al. (2022) for
a comprehensive survey. For this reason, we believe it is promising to
explore the use of Graph Neural Networks in the proposed problem.
This approach may allow the incorporation of structural information
into the prediction process. By modeling the relationships between
different variables, the graph neural network can capture more nuanced
patterns and relationships that may not be captured by traditional
models.

In this work, we propose a GNN-based approach that leverages
message passing to model the interactions between different air quality
sensors and predict the air quality at different locations in an urban
area. To do so, the urban area of Barcelona is modeled as a graph,
where the edges are its streets and the nodes are the intersections
between them. The final approach consists of two main steps: regu-
larization as graph signal smoothing and GNN refinement. The GNN
training and validation are carried out using data from the city of
Barcelona in different years. We show that with this mixed schema,
we can achieve low prediction errors for these data.
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2. Related work

Numerous studies in the literature have tackled the challenge of
air pollutant prediction, often emphasizing either temporal or spa-
tiotemporal perspectives. In the case of temporal prediction, the em-
phasis lies in forecasting air quality as a time series problem, centered
on predicting the temporal evolution of monitored data (Reddy and
Mohanty, 2017; Zeinalnezhad et al., 2020; Xayasouk et al., 2020).
These studies commonly employ Deep Learning techniques like Long
Short-Term Memory (LSTM) recurrent neural networks and sometimes
integrate meteorological data to enhance predictive performance (Teng
et al., 2018). Regarding spatiotemporal methodologies, the prevalent
approach combines LSTM for temporal aspects with Convolutional
Neural Networks (CNN) for spatial domains, aiming to analyze both
temporal and spatial correlations in pollutant concentrations (Bekkar
et al., 2021; Mao et al., 2021). However, alternative strategies exist,
such as stacked autoencoder models extracting spatiotemporal features
in a layer-wise manner (Li et al., 2016), or hierarchical Bayesian spa-
tiotemporal approaches (Saez and Barceló, 2022). Zhang et al. (2022)
deep learning model based on the Transformer architecture to learn
long-term temporal dependencies for air quality PM2.5 prediction.
Closer to our methodology, recent studies have explored Graph Neural
Networks (GNNs) for capturing spatiotemporal correlations (Lu and
te Li, 2020; Ouyang et al., 2021). These approaches represent spatial in-
terdependencies between monitors using graph structures. Wang et al.
(2020) use GNNs to model this type of spatiotemporal dependencies
for the prediction of PM2.5 concentrations. Similarly, Han et al. (2022)
employs GNNs to predict air quality in fine spatiotemporal granularity
based on historical readings and various urban contextual factors such
as weather conditions and traffic flows.

Unlike the aforementioned works, the peculiarities of the problem
addressed mean that our method focuses only on spatial prediction.
This lack of a temporal component makes our work differ from much of
the existing literature. Another peculiarity of our setting is that we want
to make predictions from a small number of known nodes to a large
number of nodes without information. This means that the input we
are working with is a large and very sparse signal. These peculiarities
motivate the proposal of a method that is suitable for this setting.

Finally, it is also worth mentioning that the literature contains
extensive analyses of the health impacts (Pierangeli et al., 2020; de
Bont et al., 2019; Khomenko et al., 2021) and urban mobility im-
plications (Rodríguez-Rey et al., 2020; Reche et al., 2022; Mueller
et al., 2017) of air quality in Barcelona. These studies affirm the active
and pertinent nature of air quality research in this city, with some
delving into compositional analyses of air pollutants (Mota-Bertran
et al., 2022).

3. Background

3.1. Graph signal processing

A graph is a data structure that captures different elements and the
relationship between them. More formally, a graph 𝐺 can be defined
as (𝑉 ,𝐸,𝑊 ), where 𝑉 is a set of vertices or nodes, 𝐸 is a set of
connections, also called edges, between the vertices and 𝑊 a weight
matrix that represents the weights of those connections. We define a
clique, 𝐶, as a subset of the vertices, 𝐶 ∈ 𝑉 , such that every two distinct
vertices are adjacent. Each clique can be associated with a potential
function 𝜙. This can be any arbitrary positive function of the clique
nodes.

The graph can be weighted, in case the edges have different weights,
or unweighted if all these edges are equal. We can also distinguish
between directed graphs, where the edges have a notion of direction
(i.e., from node A to node B, but not vice versa), or undirected graphs,
2

where this notion does not exist. h
This structure admits different representations. One of them is the
Adjacency matrix. This is an 𝑛 by 𝑛 square matrix, where 𝑛 is the
total number of nodes in the network. The elements of this matrix are
zeros except in those positions (𝑖, 𝑗) where a connection exists between
nodes 𝑖 and 𝑗. In that case, the value of the matrix element is 1 in the
case of unweighted graphs or the value of the connection, 𝑒𝑖,𝑗 , in the
case of weighted graphs. Furthermore, if the graph is undirected, the
Adjacency matrix is symmetric.

Given the definition of a graph, we also can define the signal of a
given node as a function 𝑓 , such that

𝑓 ∶ 𝑉 → R

Given the node signal, we can then define a graph signal as the set of
individual node signals in the following way

𝑔 = [𝑓 (𝑣1), 𝑓 (𝑣2),… , 𝑓 (𝑣𝑁 )] ∣ 𝑣1, 𝑣2,… , 𝑣𝑁 ∈ 𝑉

Graph signal processing (GSP) is an extension of the field of signal
rocessing that deals with these signals in graphs, 𝑔. A specific family
f problems within GSP is Graph Signal Reconstruction (GSR). The
SR process, generally understood, proposes the reconstruction of a
omplete graph signal from a series of samples extracted from it.

.2. Graph signal processing as probabilistic graphical models

When it comes to GSP problems, numerous attempts to build a
seful theoretical framework can be observed in recent literature.
or instance, the spectral analysis of graph signals based on Fourier
nalysis, the same way as in one-dimensional signals or grids, is widely
sed in graphs for numerous applications. We can see this approach
n Tseng and Lee (2021) and Srivastava et al. (2021), to name a few
ecent works. Among the different approaches present in the literature,
e will build the theoretical framework of the present work from the
oint of view of Probabilistic Graphical Models (PGM). As a result, our
ethod, which is based on a message-passing scheme, fits naturally

nto the framework. Another advantage is that we align our work with
any recent papers in the field, which also take this approach. We

dvocate for a unified framework in the field to enhance coherence
mong diverse methodologies. Zhang et al. (2016) defend the idea of
n approach to graph signal theory from the PGM point of view and
ts benefits. The authors also demonstrate the direct mapping between
ndirected weighted graphs and GMRF. According to Gadde and Ortega
2015), a probabilistic interpretation allows us to view graph signal
ampling theory as a model-based method. Other works that solve GSP
roblems under this framework include methods based on the common
raph smoothness assumption formulated in a Gaussian random field
odel (Ji and Han, 2012), and an approach to semi-supervised learning

ased on a Random fields (Zhu et al., 2003), among others.

.3. Graph neural networks

Traditional neural network architectures and methods often struggle
hen handling complex graph-like data structures. This fact motivated
ew research to find models that work naturally with graphs as input.
he work of Gilmer et al. (2017) unified various graph neural networks
nd Graph Convolutional Network approaches (Battaglia et al., 2018).
his concept is known as Message Passing Neural Networks (MPNNs).
his was initially conceived in the field of chemistry and constitutes a
ramework that systematizes and encompasses a large part of the cur-
ent approaches. The most widely used graph neural network scheme
s built on this same MPNN basis.

MPNNs are a particular family of algorithms within the Message
assing scheme, which follows an Aggregation and Combination pro-
ess. The idea behind the algorithm is conceptually simple. Each node
f the graph has a hidden state which can be a real value or a vector.
or each node 𝑣, we aggregate the result of applying a function on the

idden states and (in certain cases) the edges of all neighboring nodes
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with node 𝑣 itself. We then update the hidden state of node 𝑣 using the
obtained message and the previous hidden state of that node.

More formally, according to the general approach of the Message
Passing Neural Networks (Gilmer et al., 2017), hidden states ℎ𝑡𝑣 at each
node in the graph are updated during the message passing phase based
on messages 𝑚𝑡+1

𝑣 through the following Eqs. (1) and (2):

𝑚𝑡+1
𝑣 = 1

𝑛
∑

𝑤∈𝑁(𝑣)
𝑀𝑡(ℎ𝑡𝑣,

𝑡
𝑤 , 𝑒𝑣𝑤) (1)

ℎ𝑡+1𝑣 = 𝑈𝑡(ℎ𝑡𝑣, 𝑚
𝑡+1
𝑣 ) (2)

where the message functions, 𝑀𝑡, and vertex update functions, 𝑈𝑡, are
earned differentiable functions. We can repeat this MP algorithm for a
iven number of times in an iterative manner.

. Method

.1. Problem formulation

We model a graph as a Markov Random Field (MRF). An MRF is a
odel that belongs to the PGM family, where a set of random variables

re described by an undirected graph following the Markov property.
he joint probability of 𝑋 given the evidence 𝑌 can be factorized over

the cliques 𝐶 of 𝐺 as:

𝑃 (𝑋 = 𝑥|𝑌 ) =
∏

𝑐∈𝐶
𝜙𝑐 (𝑥𝑐 , 𝑦𝑐 ) (3)

where 𝑥𝑐 and 𝑦𝑐 are the variable and evidence nodes in clique 𝑐,
respectively. 𝜙𝑐 is referred to as the potential of clique 𝑐, and it is a
function that encodes direct statistical interactions between the nodes
forming the clique.

The GSR problem is then translated under this framework into a
Maximum a Posteriori (MAP) inference problem, where we seek to
compute the assignment of 𝑋 that maximizes the probability 𝑃 given
𝑌 .

𝑀𝐴𝑃𝑋 = max
𝑋

𝑃 (𝑋|𝑌 ) = max
𝑋

∏

𝑐∈𝐶
𝜙𝑐 (𝑥𝑐 , 𝑦𝑐 ) (4)

Calculating this quantity is equivalent to maximizing the logarithm
of the probability as follows:

𝑀𝐴𝑃𝑋 = max
𝑋

𝑙𝑜𝑔(𝑃 (𝑋|𝑌 )) = max
𝑋

∑

𝑐∈𝐶
𝑙𝑜𝑔(𝜙𝑐 (𝑥𝑐 , 𝑦𝑐 )) (5)

Assumption 1 (Binary Cliques). Cliques of size 2 dominate in the graph.

𝐶2 ≫ 𝐶3+

Being 𝐶2 the number of size 2 cliques and 𝐶3+ the number of cliques
with size at least 3

Assumption 2 (Homophily Assumption). Two nodes that are connected
in the graph by an edge will tend to have similar node signals. This can
also be understood as smoothness in the graph signal

At this point, we can define the clique potential 𝜙𝑐 . As previously
noted, the potential function may be of any form, given that it is
positive across all points. We will then define the potential function
as stated in Eq. (6). Assumption 1 allows us to define the potential
function on binary cliques.

𝜙𝑐 (𝑥𝑐 ) = 𝑒𝑥𝑝(−1
2
(𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗 )))2 (6)

By selecting this potential, Eq. (4) transforms into a minimization
problem, resembling a graph signal smoothing scenario. This function
attains its minimum when minimizing the discrepancy between neigh-
boring nodes. Emphasize that the trivial solution of having a constant
signal is not possible because the signal in nodes where there are
detectors remains fixed.

𝑀𝐴𝑃𝑋 = max
𝑋

∑

−1
2
(𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗 ))2 = min

𝑋

∑ 1
2
(𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑗 ))2 (7)
3

𝑖,𝑗∈𝐶 𝑖,𝑗∈𝐶 s
4.2. Our method

We will now present the proposed method. This algorithm will
consist of two distinct steps, which are executed serially. First, we
will introduce a simple and novel method of interpolation between
nodes, based on the message-passing scheme. This first step serves as
a regularizing mechanism for a second step, where we train a GNN
to obtain a more refined result. The general scheme of the method is
shown in Fig. 1.

4.2.1. First step: Mean aggregation message passing
As mentioned above, as the first element of our method, we con-

struct a non-parametric Message-passing algorithm that aggregates and
combines the values of the hidden states, which are now simplified as
the level of the contamination at the node. We will call this algorithm
Mean Aggregation Message Passing (MAMP). This method will be based
on the approach described in Section 3.3. For simplicity and clarity, we
will keep the original notation ℎ𝑡𝑣 as the air quality value of node 𝑣 at
iteration 𝑡, which would correspond to our 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 node values, 𝑋.

he functions 𝑀𝑡 and 𝑈𝑡 that we will use are fundamentally arithmetic
verages between the inputs. We choose these functions motivated by
he particular MAP problem we are trying to solve, where we want to
inimize the differences between the signals from nearby nodes. Based

n the MPNN schema (Eqs. (1) and (2)) the resulting equations are
herefore:
𝑡+1
𝑣 = 1

|𝑁(𝑣)|
∑

𝑤∈𝑁(𝑣)
ℎ𝑡𝑤 (8)

𝑡+1
𝑣 = 1

2
(ℎ𝑡𝑣 + 𝑚𝑡+1

𝑣 ) (9)

where |𝑁(𝑣)| is the size of 𝑁(𝑣).
Due to the characteristics of our problem, we can exploit the infor-

ation in those nodes that have a monitor. Therefore, through each
teration, we will keep constant the known values in those nodes.

Finally, it is necessary for the ℎ𝑡𝑣 values of the unknown nodes to
e initialized to some value. We will study in detail the impact of this
nitial value in Section 5.6. As can be seen, no training data is needed
or this step of the algorithm, since it does not have any trainable
arameters.

Under the scheme just mentioned, it can be seen that our method is
ompletely oblivious to the weights of the connections between nodes,
ll of them having the same weight in the aggregation of the hidden
tates of neighboring nodes. In our case, we do have edge information
n the form of distances between road intersections. This information
ould be useful for the performance of the algorithm, we will compare
he method already presented with a new version that will take these
eights into account.

This variant will be as follows. The aggregation step will change
ts function from an arithmetic mean (8) to a weighted mean (10),
here the weighting parameters depend on the weights of the edges.
or example, in our case, the weights can be the inverse or square
nverse of the distance. Different options will be compared.

𝑡+1
𝑣 =

∑

𝑤∈𝑁(𝑣) ℎ
𝑡
𝑤 ⋅ 𝑒𝑣𝑤

∑

𝑤∈𝑁(𝑣) 𝑒𝑣𝑤
(10)

.2.2. Second step: Introducing GNNs
In the second step of our algorithm, the output obtained by the

AMP method is used as input for a GNN. In this case, the GNN will
ave a series of trainable parameters, whose number will depend on
ts specific architecture. The objective of this GNN will be to refine the
esult obtained in the first step, the MAMP algorithm. The hypothesis
ehind this decision is that the GNN, thanks to its ability to adapt the
eights to optimize the result, will be able to achieve higher precision

han the MAMP algorithm alone. To prove that, we will train various
NN architectures and compare the best performance with the one
chieved by other methods.

Fig. 1 shows the whole pipeline for the algorithm presented in this
ection.



Engineering Applications of Artificial Intelligence 133 (2024) 108191S. Calo et al.

m
P

Fig. 1. Pipeline of the method presented in this section. HR stands for High resolution, meaning the historical data with street-level resolution that we will use to train the GNN.
The area marked with a dotted line shows the GNN training process, as explained in Section 5.4. This training process employs the novel MAMP method proposed in this paper as
a data preprocessing step. The other elements of the scheme show the inference process. This process is as follows: The proposed MAMP algorithm is applied to a sample graph
containing a given percentage of unknown node values. The output of this step is refined by a GNN previously pre-trained on a different training dataset.
Algorithm 1 Mean aggregation message passing
Input: 𝑆0, A, mask, 𝜖, GNN ⊳ 𝑆0: input signal, A:Adj.

atrix, mask: binary sampling vector, 𝜖: convergence condition, GNN:
retrained Graph Neural Network model (optional)
Output: S ⊳ S: reconstructed signal

𝑆0[𝑚𝑎𝑠𝑘] ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 ⊳ Initialize the unknown node values
while |𝑆𝑡 − 𝑆𝑡−1| > 𝜖 do

for 𝑛𝑜𝑑𝑒 in 𝑆𝑡 do
𝑁𝑛𝑜𝑑𝑒 ← neighbors of 𝑛𝑜𝑑𝑒
𝑚 ← 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑁𝑛𝑜𝑑𝑒, 𝐴) ⊳ Eq. 8 or 10
ℎ ← 𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝑛𝑜𝑑𝑒, 𝑚) ⊳ Eq. 9
𝑛𝑜𝑑𝑒 ← ℎ

end for
𝑆𝑡+1[𝑚𝑎𝑠𝑘] ← 𝑆𝑡[𝑚𝑎𝑠𝑘]

end while
𝑆 ← 𝐺𝑁𝑁(𝑆) ⊳ GNN for refinement. Optional step

5. Results

In this section, we will present first the metrics used for the eval-
uation of the methods. Subsequently, we will discuss in detail the
experimental setup and procedure we followed to obtain the results.
We then present the results of the experiments. In Section 5.3, we will
compare the performance of the different methods proposed and other
existing methods. In Section 5.4, we will present the results of the
training process of the different GNN models. In Section 5.5 we will
empirically study the convergence properties of our method. Finally, in
Section 5.6 we will analyze the effect of different node initialization.

5.1. Dataset

The contamination level is not measured everywhere in the city
during daily operation, and instead, there are only a few sensors
dispersed around the city (Department of Sustainability and Environ-
ment of Barcelona, 2023), which creates the necessity to estimate the
contamination level accurately across the entire area.

To perform the experiments, we will use data that does have this
finer spatial resolution. The dataset has been obtained from the official
database of the city council of Barcelona, Spain. This database, Open
Data BCN (Ajuntament de Barcelona, 2023), is a project designed to
provide open access to data in many different fields concerning the city
of Barcelona. The limitation of these data is that they have an annual
4

temporal resolution, and only one map is published per year. However,
using different past years will allow us to train and validate our method.
In addition, the data provided by the Open map is obtained by modeling
based on emission factors, and thus the standard limitations of this kind
of approach should be taken into account (Thunis et al., 2021). They
are publicly accessible at https://opendata-ajuntament.barcelona.cat/
data/ca/dataset/mapes-immissio-qualitat-aire.

In this dataset, we can find the annual average values of different
pollutants for the years 2018 and 2019. Each year consists of a different
network, both of them with a size of 9466 nodes and 14 684 edges.
Specifically, the contaminants present in the dataset are the following:
PM2.5, PM10, and NO2. In our case, we will analyze only the pollutant
PM2.5 for simplicity.

It is also necessary to mention that the concentration of pollutants is
given by road section in the entire city of Barcelona. To build the graph
from this point, we will take the data of road sections, intersections,
and positions also present in the Open Data BCN platform, accessible
at https://opendata-ajuntament.barcelona.cat/data/ca/dataset/mapa-
graf-viari-carrers-wms. With this information, we can now construct
the graph and assign each road section its contaminant concentration
value. To distribute the graph signal on the nodes instead of on the
edges of the graph, we will take each value of each node as an
arithmetic mean of the concentration values of the road sections that
connect to that node. A sample of the final result can be seen in Fig. 2.

We remark that an important point of our method is Assumption 1,
in which we assume binary cliques. The dataset used presents a percent-
age of 98% of binary clicks. Therefore, we consider the assumption to
be fulfilled.

5.2. Metrics

The evaluation of the models will proceed as follows. Each time
we run each algorithm for a given number of known nodes, we will
calculate a series of metrics that will measure the difference between
the ground truth (𝑌 ) with the result predicted by the algorithm (𝑌 ) at
each node of the graph. These metrics will be in our case the Mean
Squared Error (MSE) (11) and the Mean Absolute Percentage Error
(MAPE) (12).

Mean Square Error (MSE):

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑌𝑛 − 𝑌𝑛)2 (11)

Mean Absolute Percentage Error (MAPE):

𝑀𝐴𝑃𝐸 = 100
𝑛
∑

|

|

|

|

𝑌𝑛 − 𝑌𝑛 ||
|

|

(12)

𝑛 𝑖=1 | 𝑌𝑛

|

https://opendata-ajuntament.barcelona.cat/data/ca/dataset/mapes-immissio-qualitat-aire
https://opendata-ajuntament.barcelona.cat/data/ca/dataset/mapes-immissio-qualitat-aire
https://opendata-ajuntament.barcelona.cat/data/ca/dataset/mapes-immissio-qualitat-aire
https://opendata-ajuntament.barcelona.cat/data/ca/dataset/mapa-graf-viari-carrers-wms
https://opendata-ajuntament.barcelona.cat/data/ca/dataset/mapa-graf-viari-carrers-wms
https://opendata-ajuntament.barcelona.cat/data/ca/dataset/mapa-graf-viari-carrers-wms
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Fig. 2. Sample of one of the graphs used in our dataset. Specifically for the PM2.5 pollutant in the year 2018.
For the validation of models based on Graph Neural Networks,
the procedure is the same as mentioned above. However, validating
a model that has been trained with certain data, using the same data,
is a clear bias. Therefore, a different training graph, belonging to the
previous year’s data set (2018), will be used for training the neural
models. This allows these models to be evaluated under the same
conditions and with the same data as the others. Therefore, it should
be noted that none of the data used for the validation has been shown
to the model during any previous phase.

5.3. Method comparison

In this section, we conduct an empirical comparison between the
proposed method and different alternatives available in the literature.
In addition to our proposed method, which combines MAMP with
GNNs, we also evaluated the results using MAMP alone (no GNN refine-
ment), and MAMPe (MAMP weighted by edge features). These results
have also been compared with those obtained directly from a GNN,
without using MAMP as a regularizing mechanism. Two architectures
have been compared, Graph Convolutional Networks (GCN) (Kipf and
Welling, 2016) and SAGE (Hamilton et al., 2017) for different model
sizes. In the results of this section, we present results for the SAGE ar-
chitecture, as it showed better overall results. See Section 5.4 for more
details on the comparison between GNN architectures. Alongside our
methods, we benchmark against several established methods prevalent
in the literature, which are listed below.

The methods included in our comparison span diverse techniques.
First, we integrate a Kernel method based on heat kernel computa-
tion, addressing the problem of graph signal interpolation through the
resolution of the heat equation. Second, we incorporate the Gaussian
Belief Propagation (GBP) (Bickson, 2008) method. GBP is a probabilis-
tic inference algorithm that, similarly to a GNN, operates by passing
messages between the nodes in a graph. Additionally, we integrate
Interpolated Regularization (IR), a Laplacian Regularization method,
drawing inspiration from the work detailed in Belkin et al. (2004). Fi-
nally, we also compared our method with IGNNK (Wu et al., 2021). This
is a method based on GNN, which aims to attack the spatiotemporal
prediction problem in cases of graph-structured data such as this one.
This method is of particular interest to us, since it also employs GNN
models. Recall that our setting differs from the spatiotemporal setting
since the temporal dimension is missing.

Fig. 3 shows two graphs with the results obtained for each of these
methods compared. While Fig. 3(a) shows the MSE (Eq. (11)), graph
Fig. 3(b) shows the MAPE (Eq. (12)). We can see from this plot how
5

our proposed method combining MAMP with GNNs achieves the best
performance for both metrics in a large part of the studied range of the
percentage of missing nodes.

Table 1 presents the mean MSE values and their standard deviations
after running the experiments repeatedly. We can see that there are
two methods (GBP and IR) that did not produce reliable results for
the performed experiments. This is because these two methods have
intrinsic difficulties in handling the proposed problem. Firstly, GBP
does not reach a convergence point. This is because the convergence
of the algorithm is not assured when there are loops in the network, as
is the case. Interpolated Regularization requires calculating an inverse
of the Laplacian matrix of the subset of unknown nodes. Calculating the
inverse of this matrix according to the proposed method involves first
calculating its determinant. Thus, when the percentage of unknown
nodes is 50 percent (the lowest considered in this work), the absolute
number of unknown nodes is 4733. In this case, there is a numerical
problem when dealing with such a large matrix, since the value of the
determinant diverges towards infinity very quickly. We have verified
experimentally that the maximum percentage of unknown nodes sup-
ported by this method for this problem is around 1% (about 100 nodes).
It is important to mention that the graph we consider here is much
larger than other scenarios where these methods have been tested. That
is why some methods have encountered difficulties specific to their
architecture. Concerning the IGNNK method, the outcome differs from
those achieved by our method. We attribute this difference to the fact
that, as we already mentioned, this method was originally intended
for a spatiotemporal prediction problem. The temporal component is
absent in our setting. We therefore believe that our method may be
better suited to the spatial task considered here. It is also interesting to
highlight the fact that the performance of GNNs becomes significantly
worse when is not combined with MAMP. This is the case for both the
GCN and SAGE architectures. We hypothesize that this is because a pre-
vious simple interpolation helps significantly to stabilize the training
process.

In Table 1 we can also see other methods that have been able to find
a convergence point. Specifically the HDK method and the three meth-
ods proposed in this paper. Of the four methods, the three proposed in
this work outperform the kernel method, except for the case where 99
percent of the nodes are unknown. In this stretch, only the combination
of the MAMP algorithm and a GNN clearly outperformed HDK. With
respect to the standard deviations, these are not very large with respect
to the absolute value obtained. These standard deviations move around
the third significant figure, between 2 and 6% of the absolute value of
the error. Therefore, we can conclude that both the proposed methods
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Table 1
Mean squared error for the different methods. All quantities are expressed in μg∕m3. ‘‘–’’ denotes when the method has intrinsic problems that
prevent it from returning a solution.

% of missing nodes

50 70 80 90 95 99

GBP – – – – – –
IR – – – – – –
HDK 1.180 ± 0.042 1.974 ± 0.041 2.621 ± 0.037 3.81 ± 0.16 4.695 ± 0.084 6.52 ± 0.38
IGNNK 5.048 ± 0.062 7.085 ± 0.083 8.26 ± 0.15 9.535 ± 0.058 10.108 ± 0.090 10.69 ± 0.10
MAMP 0.791 ± 0.043 1.455 ± 0.083 1.977 ± 0.060 3.051 ± 0.080 4.04 ± 0.18 9.36 ± 0.35
GNNa 1.17 ± 0.29 2.65 ± 0.30 3.98 ± 0.33 5.73 ± 0.59 7.13 ± 0.52 8.58 ± 0.68
MAMP + edges 0.711 ± 0.070 1.377 ± 0.091 1.940 ± 0.083 3.238 ± 0.049 4.284 ± 0.080 10.05 ± 0.056
Heat + GNN 0.581 ± 0.015 1.274 ± 0.060 1.735 ± 0.029 2.79 ± 0.13 3.709 ± 0.052 5.28 ± 0.20
MAMP + GNN 𝟎.𝟓𝟕𝟔 ± 𝟎.𝟎𝟏𝟓 𝟏.𝟎𝟓𝟒 ± 𝟎.𝟎𝟖𝟒 𝟏.𝟑𝟖𝟖 ± 𝟎.𝟎𝟑𝟕 𝟐.𝟏𝟖𝟔 ± 𝟎.𝟎𝟐𝟒 𝟑.𝟎𝟐 ± 𝟎.𝟏𝟒 𝟒.𝟔𝟐𝟕 ± 𝟎.𝟎𝟐𝟖

a GNN denotes the results obtained by the best architecture among those compared.
Fig. 3. Method comparison. The plot shows MSE and MAPE vs. the % of missing nodes, i.e., with unknown node signal.
and the HDK comparison method are quite stable in terms of accuracy.
As can be seen, the method formed by the combination of the MAMP
algorithm and a refinement GNN obtains the best results for all the
missing node ranges.

5.4. Graph neural network training

To facilitate training, we partitioned the 2018 graph into sepa-
rate training and validation sets while preserving its overall structure.
Specifically, 80% of the nodes were allocated for training purposes, and
the remaining 20% were designated for validation, with node selection
carried out randomly. We consider the 2019 graph as the test set by
itself, and the final scores once we have chosen the best model will be
obtained using this test set. This data contain the contamination value
at all nodes. For training, given the desired percentage of unknown
nodes, we proceed to mask a certain number of nodes, making this
information inaccessible to the algorithm. The next step will be to
pass this masked graph through our first algorithm, MAMP, which will
perform an interpolation of the graph signal with the available data.
The result of this first interpolation will be the input to a Graph Neural
Network.

We define the loss function as the MSE (11), a widely used loss
function in regression problems like this one. The MSE between the
predicted signal by the GNN and the actual node signal will be the
objective function to minimize by the GNN. The optimizer used is
ADAM (Kingma and Ba, 2015), with a learning rate parameter, 𝑙𝑟, set
to 0.001.

In Fig. 4 we show the results obtained for three different percentages
of missing nodes for a given GNN architecture. More specifically, the
figure shows the validation loss versus the training epoch. As we can
see, the initial behavior of the loss in every case is very noisy. However,
the performance of the GNN converges to a given value, which is higher
6

Fig. 4. Validation MSE loss after training for three of the proposed architectures: GCN,
SAGE3, and SAGE5, all of them in their Medium version. The training was carried out
for a fixed mask size of 0.8.

when the number of missing nodes is also higher. This result is in line
with the intuition of the problem.

In Table 2 we show the results obtained for different GNN architec-
tures. Due to the infinite variety of architectures that can be built, we
have decided to systematize the experiments as much as possible. For
this purpose, we have selected two well-known architectures, Graph
Convolutional Networks (GCN) and GraphSAGE (or SAGE). Under the
SAGE architecture, we have built two different models, SAGE3 and
SAGE5, with 3 and 5 layers respectively. On the other hand, GCN has 7
layers. The letters S, M, and L (Small, Medium, and Large) correspond



Engineering Applications of Artificial Intelligence 133 (2024) 108191S. Calo et al.

𝐵

Table 2
Comparison of different GNN architectures. Performance for 80 and 99 percent of missing nodes, average training time, and number of trainable
parameters are shown. All quantities are expressed in μg∕m3.

GNN architectures

GCN-S GCN-M GCN-L SAGE_3-S SAGE_3-M SAGE_3-L SAGE_5-S SAGE_5-M SAGE_5-L

80% MSE 5.349 5.347 5.411 1.628 1.534 1.253 1.982 1.38 1.373
99% MSE 8.823 8.654 8.367 4.428 4.636 4.888 7.648 5.132 5.478
80% MAPE 13.047 12.996 12.942 6.252 5.861 5.2645 4.9679 5.8403 4.619
99% MAPE 18.938 18.829 18.222 14.279 14.962 15.119 15.243 15.554 14.44
Training time (s) 4.736 9.691 26.74 1.675 5.392 5.893 2.456 5.3047 12.247
Parameters 1101 25 501 101 001 261 5301 20 601 681 15 401 60 801
Fig. 5. Time of convergence in seconds given the % of missing nodes. The last point corresponds to 99% of missing nodes.
to the number of parameters in the hidden layers of the models. This
number corresponds to 10, 50, and 100 respectively. As can be seen,
the SAGE architectures achieve better performances for all the cases
studied with ease. The lowest MSE obtained is found in the SAGE3
architecture, SAGE3-S the best for 99 percent of missing nodes, and
SAGE3-L when the percentage is 80.

5.5. Convergence

As mentioned above, the method consists of sending and receiving
messages iteratively. Yet, we have not theoretically determined the
optimal number of iterations required for peak performance. A high
dependency of the error on the iteration count could pose challenges
when implementing the method in different scenarios. In this sec-
tion, we experimentally analyze the behavior of the algorithm through
its iterative process. These experiments aim to empirically study its
convergence properties. In our approach, convergence is defined in
accordance with the criteria outlined in Algorithm 1, employing a
specific 𝜖 value set at 𝜖 = 10−3. This value determines the threshold
for convergence (i.e., when the change or improvement in the model’s
performance falls below this threshold, the algorithm is considered to
have converged). It is important to note that the selection of epsilon at
10−3 is not universally fixed, as it is subject to adjustment based on the
nuances and specific requirements of each scenario.

Fig. 5 depicts a curve showing the convergence time in relation to
the percentage of missing nodes. This relation appears to increase at
a rate faster than linear. We performed a fitting of the graph to an
exponential curve of the form 𝐶 ⋅𝑒𝐴⋅𝑚+𝐵, with parameters 𝐴 = 0.09252,

2
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= 131.05 and 𝐶 = 0.1508. This fit results in a 𝑅 value of 0.992.
5.6. Node initialization

As mentioned in Section 4.2, our method requires an initialization
of the Graph Signal values at the unknown nodes. We wonder, is
then our method dependent on this initialization value in terms of its
performance? At the same time, how does it affect its convergence?

We have tried to answer the following questions by comparing
different initialization values for the same graph as input. The result
obtained can be seen in Fig. 6. As can be seen, the initialization value
does not affect the convergence point. However, it does affect the ve-
locity at which this point is reached. From the algorithm performance,
it is clear that an initialization close to the actual value causes a faster
convergence since it needs fewer messages to reach a stable value. The
value of 12.8628 corresponds to the mean value of the Graph Signal.
The other values are chosen arbitrarily to perform the experiment.

5.7. Experiment setup

To study the performance of the presented method, we performed a
series of experiments. For this purpose, the methods have been imple-
mented and tested using the Dataset previously shown. The language
used was Python. We have also made use of the following libraries.
Deep graph library (DGL) (Wang et al., 2019) was used for the con-
struction of the dataset, as well as the implementation of the Graph
Neural Networks. The NetworkX library (Hagberg et al., 2008) was
used to visualize the graphs. Finally, the Heat kernel diffusion method
was implemented with the help of the pygsp library (Defferrard et al.).
The implementations of the IR method have been carried out thanks to
the code of the work (Ferrer-Cid et al., 2022) provided by the authors,

to whom we are grateful for their contribution.
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Fig. 6. Convergence comparison for different initialization values of the nodes, i.e., the
value assigned to the unknown nodes at the beginning of the algorithm.

The experiments will be carried out as follows: in Section 5.3, the
methods to be compared are run independently for different percent-
ages of unknown nodes. We call this parameter % of missing nodes,
and it indicates the percentage of nodes whose values we do not
know out of the total number of nodes available in the full signal. It
should be noted that, once the percentage of missing nodes is defined,
the available nodes within the network are randomly selected with a
uniform distribution until this percentage is reached. This may create
a slight variability in the results. For this reason, each experiment is
performed more than once to compare the standard deviation. This
standard deviation will be present both in the graphs in the form of
error bars and in the tables. In Section 5.5, we fix a given % of missing
nodes and run the MAPE algorithm once. The aim is to analyze the
behavior of the metrics throughout the iterations when running our
method, to demonstrate experimentally that a point of convergence
exists. Lastly, in Section 5.6, our goal is to study the effect of node
value initialization on the performance of the method. To do this, we
run the algorithm for different initial values, and we display the error
as a function of the iterations for those different values. We will thus try
to prove our hypothesis that the initial value of the nodes accelerates
convergence when it is closer to the average value of the graph signal.

All the experiments, and therefore the computational time measure-
ments, have been carried out on a machine running a processor Intel®
Core™ i7-10750H CPU @ 2.60 GHz × 12 and an NVIDIA GeForce RTX
2060 GPU with 6 GB of memory.

6. Conclusions and future work

In this paper, we formalize the problem of air quality prediction
from monitors using a Markov Random Field. Through this formaliza-
tion, the problem is reduced minimizing a proposed energy function
given the observations. We propose a method for this, based on message
passing, which achieves a graph signal smoothing. Subsequently, we
use graph neural networks trained in a supervised way to refine the
result.

In conclusion, the proposed combination of a new message-passing
algorithm for graph signal smoothing and the use of graph neural net-
works achieves the best performance among the other compared meth-
ods. This is a promising approach that has the potential to significantly
improve the accuracy and efficiency of air quality spatial prediction
models. We showed that the regularization step of graph signal smooth-
ing effectively improved the robustness of the GNN model, leading to
more accurate predictions. Additionally, the use of graph neural net-
works allowed for the incorporation of complex spatial dependencies
in the data which the signal smoothing itself cannot capture.

While our study shows promising results, it is important to note the
limitations of this approach. First, Assumption 2 may not be accurate
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enough in scenarios of multiple and extreme pollution hotspots. These
areas often have significant gradients, and their absence in our data
challenges accurate predictions. Future work should address these ex-
tremes, a considerable challenge for our approach. Second, exploring
different graph neural network architectures and sizes could enhance
our understanding. Additionally, testing our method on a wider range
of datasets, including larger urban ones or new rural ones, is crucial to
gauge its generalizability.

Finally, further research on the theoretical properties of the ap-
proach is needed, to obtain a better understanding of its generalization
and limitations.
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