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Abstract— We propose a modeling framework based on
the event-driven paradigm for populations of neurons which
interchange messages. Unlike other strategies our approach is
focused on the dynamics at the mesoscopic level (spike produc-
tion and reception) and does not determine the microstates of
the neurons. We apply the technique on a discrete model of
stochastic ensembles and on extensions of this model to the
continuous time domain. Due to the event-driven nature of
the method efficient large-scale simulations can be performed
without precision errors. The approach uses spike predictions as
evidences and a one-step update of the predictions is performed
every time an event occurs, resulting in a more efficient solution
than the existing strategies.

I. INTRODUCTION

The study of the collective dynamics of networks of
interacting spiking neurons is a relevant field in neural
computation. It leads to a better understanding of biological
information processing and coding and may be applied to
build artificial systems inspired in these mechanisms [1], [2].

Some approaches describe the temporal structure of neu-
ronal activity using generic quantitative methods to cha-
racterize the statistical properties of the train of action
potentials associated with spontaneous activity [3], [4]. These
approaches are focused on the mesoscopic level where the
activity of a neuron can be regarded as a stochastic point
process, because the output signals of most neurons consist
of stereotypical electric pulses (spikes). They are useful as a
descriptive tool but have a poor physiological foundation to
understand the underlying mechanisms at the cell level.

More detailed models consider a microstate variable (the
membrane potential) whose temporal evolution can be descri-
bed by a system of differential equations. For realistic models
which account for the inherent stochasticity of the neuronal
activity the evolution of this variable can be characterized
as a stochastic process. Several theoretical approaches have
been developed under this framework, from simple models
which consider the microstate as a random walk (Gernstein
Mandelbrot Model [3]) to models with much higher com-
plexity such as the Hodking-Huxley Model [5] where four
dynamical variables define the microstate, or compartmental
models [6] where more than 20 variables are used.

Probably the best compromise between tractability and
realism is the arquetypical leaky integrate-and-fire neuron
model [7], [1], where the neuron is defined as a leaky
integrator that fires if the microstate reaches a threshold. If
the contribution of each received impulse to the microstate
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variable is small and they are many, the microstate evolu-
tion can be approximated by a diffusion process (diffusion
approximation). The resulting continuous stochastic process
is the Ornstein-Uhlenbeck process [8]. Using the Fokker-
Planck formalism significant theoretical results have been
obtained from a perspective of mean field analysis [9],[10].
This model however is difficult to solve analytically in many
situations, since the inter-spike-interval (ISI) distribution for
a given input is mathematically equivalent to a first-passage-
time problem, which is known to be intractable in the general
case.

For the success of those theoretical approaches extensive
and efficient numerical simulations are needed to explore
the parameter space. Recently, the event-driven paradigm
has been introduced as a convenient way to optimize them
[11], [12], [13], [14]. Assuming that spikes occur sparsely in
time and have pulsed nature, the processing time between
two successive events can be avoided under some realis-
tic cortical conditions, namely, small connectivity and low
firing rates. In [15] the algorithm was extended to include
stochastic dynamics using deterministic linear integrate-and-
fire neurons under external background noisy activity using
the Fokker-Planck equation to obtain numerically the ISI
density function. This strategy overcomes the event saturation
problem of a previous approach [12] at the cost of large
lookup tables where the ISI density functions are stored after
a huge precalculation task.

In the present work, we propose a general event-driven
modeling technique based on the spike production and re-
ception which can be applied to models with stochastic
dynamics and which decreases the computational demand of
the previous stochastic event-driven approach of [15]. Instead
of starting with a stochastic differential equation governing
the microstate of the neurons we consider each neuron within
the population as a stochastic oscillator emitting spikes
spontaneously according to some ISI density function which
depends on the model under consideration. The isolated
activity can be interpreted as an external irregular background
activity or also as an intrinsic source of noise. We introduce
the general method in section II and apply it to a microscopic
model. We first consider discrete-time modeling in section
IIT where the ISI probability distribution of the spontaneous
evolution corresponds to a negative binomial distribution and
in section IV we introduce two possible extensions of this
model to the continuous time domain where the ISI density
function corresponds to a gamma density function. In section
V we show simulation results which compare the efficiency
of the mesoscopic and microscopic simulations and show the



accuracy of the extensions to the continuous time domain and
the original discrete model. We give some conclusions about
the applicability to other models at the end of the paper.

II. MESOSCOPIC, EVENT-DRIVEN MODELING

We consider a generic model composed of N coupled
spiking units which evolve spontaneously in time. The en-
semble can be considered as a directed graph with arbitrary
connectivity in which nodes emit and receive messages
through the connections. According to the standard event-
driven framework [14], to rewrite a particular model of
this type four components have to be defined: the state
variable a;, which usually represents the membrane potential
of neuron 7, two functions, r; and s;, which describe how
a; changes after the reception and emission of a message
respectively, and the function #;, which gives the predicted
time of the next firing, given the present state variable,
assuming that no messages will affect ¢ until then. Provided
an instance of these four components {a;, ;, s;, fi}, an event-
driven engine drives the simulation without the necessity to
integrate the microstate variable in the interval between two
relevant events. The engine basically performs four steps:

1) Select the next event to be processed

2) Process the event

3) Schedule all possible new events generated in the
previous step and

4) Return to the first step or end the simulation.

Since messages can be delayed after their emission, two types
of events have to be distinguished: the firing events and the
reception events. Step 1) selects the event with minimum
time label and Step 2) is essentially a disjunction which
evaluates if the selected event is a firing or a reception
event, and applies r; or s; respectively. Once the value of
the microstate a; is determined, the function ¢; is used to
predict the next firing time. The previous prediction is then
discarded and not used anymore.

Contrary to the classical approach we adopt a different
strategy: we define the state of a neuron ¢ as its next predicted
firing time, or belief b; which is reset to an initial value
according to a predefined initial IST probability distribution
every time the neuron ¢ fires. If a relevant event occurs,
instead of discarding the prediction and determining the value
of the microstate a;, we use b; as an evidence to obtain its
new value b using an inference procedure. Every time a
neuron receives an impulse from other unit we update the
belief according to Bayes’ rule:

P(b;[b;) P(b;)
P(b;)

As a consequence, to update the belief of a unit we need
to define two probability distributions. An unconditional 1SI
probability distribution P(b;), used when a unit fires and the
next spiking time is independent of previous predictions, and
a conditional IS] probability distribution P(b}|b;), used when
an event affects a unit before its predicted next firing time.
A specific model of spiking neurons can be defined using

P(b}|b;) = (1)

this technique, given that the two following mechanisms are
provided: the two probability distributions or belief updating
rules, which describe how the mesoscopic state b; changes
when ¢ fires or receives a message, and the scheduler of the
reception events.

We emphasize the main difference between the approach
taken in [15] and our technique. In their approach every
time a relevant event occurs the value of the prediction is
discarded and two pseudorandom numbers are extracted: the
first is required for fixing the microstate a;, and the second
for determining the next possible firing time ;. Our approach
does not fix the microstate and uses only one pseudorandom
number extraction, resulting in a more efficient approach.
The main caveat concerns the implementation of the ISI
probability distributions. For the models considered here no
lookup tables are required to simulate large networks.

In our strategy the statistical description of the microstate
a; is not retained. The sequence of firing times (7T}), or
equivalently the ISIs are the relevant magnitudes obtained
from the simulations. This is not a limitation, since it is
widely assumed that the dynamics at the mesoscopic level
(spike trains) concern the main aspect of neural informa-
tion processing [2], whatever the neural coding mechanism
adopted (firing rates or exact timing). Moreover, our tech-
nique is not limited if dynamics at the level of the synapse
is included, since Spike Time Dependent Plasticity (STDP)
[16] only considers the spike timing.

To illustrate the previous technique we start with a simple
microscopic model and derive the mesoscopic reformulation
which reproduces the same dynamics in the temporal domain.

III. AN EXAMPLE: DISCRETE AND STOCHASTIC
ENSEMBLES

A. The microscopic model

In this model the microstate of a neuron evolves as a
random walk with positive drift towards an absorbing barrier
[17], [18]. Neurons are stochastic non-leaky integrate-and-
fire and the microstate of neuron ¢ is represented by the
activation level a;. This variable grows at discrete timesteps
until a threshold L is reached. When this happens, unit ¢
emits a message to the rest of the units, a; is reset to the
initial value, and the unit enters a refractory period "™ where
it remains insensitive to incoming spikes. We set t*" = 1.
Formally, the growth of a; at time ¢ + 1 is modeled by the
following rule, which from now on will be referred to as the
spontaneous evolution:

Y +1 with probabilit
&§+1: a; + W% proa%%yp ot <L)
al with probability (1 — p)
att! =1 with probability 1 ifal > L.

Within the same timestep, the strength of the possibly
received messages from units which fired at the previous
timestep ¢ is integrated, t91% = 1, so the activation state at
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timestep ¢ 4 1 is:

altt + eZHL(aﬁ)
J#i

where H (z) = {

1 _
a;" =

1 ife>1L,

0 otherwise .

€ represents a homogeneous synaptic efficacy. Thus, the total
evolution of a; in one timestep is composed of two terms:
the stochastic spontaneous evolution and the activity induced
by incoming messages of the population.

A characteristic parameter used to describe the degree of
interaction between the units is:

L-1

Uzm )

where ¢ indicates a global coupling term. Parameter 7
indicates whether the spontaneous dynamics or the message
interchange mechanism dominate the behavior of the sys-
tem. For 17 > 1, where interactions are small, the system
is basically driven by the stochastic, spontaneous activity,
and all units behave as independent oscillators. This weak
coupling regime is mostly referred as the “Noise-dominated”,
or spontaneous activity regime, which is recognized as a
representative of typical cortical conditions. For values of
n near 1 the behavior of the system is dominated by the
pulse-exchange mechanism and synchronous behavior starts
to emerge. This corresponds to the “driven” activity regime
or also called “Drift-dominated” regime.

B. Mesoscopic reformulation

We provide a reformulation of the previous model in terms
of the framework presented in section II which reproduces
identically the dynamics at the mesoscopic level. We replace
the microstate a; by m; = (b;, L;), where b; is the belief and
L; summarizes all the mesoscopic activity since the last firing
time T}°. L; can be viewed as an effective threshold which
decreases deterministically every time an incoming impulse
is received. It can be calculated from the temporal sequences
of spikes (7}) but we propagate it as a component of the
mesoscopic state m; for computational efficiency. We now
describe how the reception events are handled and which are
the rules of belief updating.

The model is defined with global connectivity and homo-
geneous coupling so each generated message affects equally
all the units. Thus NV iterations are sufficient to process one
event even in the worst case that all units spike in unison.
Moreover, since we set delay £1Y and refractory period ™'
homogeneously and equal to one, all units can be updated
consistently at the firing time, avoiding the necessity of
a priority queue in the implementation. Rather than being
a limitation, this allows us to focus our analysis on the
belief updating mechanism instead of the implementation
engine. In the continuous time model the priority queue
will be required. We now specify the two ISI probability
distributions and the model will be fully redefined.
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1) Unconditional ISI probability distribution: This proba-
bility distribution is used when a unit fires and thus the next
spiking time is independent of previous predictions. Consider
a unit ¢ which fires at time ¢, possibly simultaneously with
n other units. During the transition from ¢ to ¢ + 1, ¢ is
in its refractory period, insensitive to incoming events. At
t + 1, ¢ receives an initial message of strength ¢ = ne from
those units which fired simultaneously with . A new value
of b; is drawn assuming that evolution is only due to the
spontaneous activity. Since the path towards the absorbing
barrier L; which an isolated unit takes can be interpreted
as a random walk specified by a Bernoulli process with
probability p, the new value of b; is obtained according to
the negative binomial distribution [19]:

b; —1 _ L.
>pL,L 1(]__p)b1 L;+1

3
L2 (3)
for b, =1,2,...

Pup(t) = (

where for clarity we have taken temporal values relative to
TF + tf the last firing time of 4 plus the refractory period.
Note that the quantity (b; — L; 4+ 1) is the number of failures,
which in our case indicates the number of timesteps that ¢
will delay its firing from (7¢ +#"+ L; —1). This probability
distribution has an infinite support. Thus, the microscopic
state has a nonzero probability of crossing the threshold L;
at any timestep greater than L; — 1 in the future. The first
two moments of this probability distribution are:

(Li =1 —p)
p2

Li—1

2 _
ONB =

“)

UNB =

2) Conditional ISI probability distribution: In the case of
a reception event, the belief b; of unit 7, which was last
updated at timestep ¢, is affected by a subsequent reception
event of strength ¢ at timestep ¢'. Omitting time indices
for clarity, we are interested in the rule which describes the
update from m; = (b;, L;) to m; = (b}, L}).

The strength of the message ¢ is the number of units
which fired at timestep ' — 1 multiplied by e. We set
L’ = L;— ¢ and apply Bayes’ rule to obtain the new value b}
using the previous prediction b; as evidence. For the model
under study the three probability distributions involved in the
rule are negative binomial distributions. Figure 1 illustrates
the procedure. The light grey region covering all possible
trajectories of the microscopic state a; within the interval
[T¢ + ™ b;] can be decomposed in two disjoint sets of
possible realizations of a;. The dark gray area contains
the trajectories where unit ¢ fires at time b, with effective
threshold L;, and the black one contains the trajectories
where a; starts at L] and reaches L; at time b;. We are now
interested in the probability distribution of the waiting time to
reach L/ state transitions (successes), where the total number
of successes L; and failures (b; — L; + 1) are known from
the previous prediction. Using the ISI probability distribution
of (3) in Bayes’ rule we get the negative hypergeometric
distribution [20], which is the desired belief update rule (see
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Fig. 1. Illustration of the process involved in the belief updating of a given

unit ¢. Horizontal axis denotes time and vertical axis the microstate variable.
(a) After ¢ has fired, the belief is obtained according to the unconditional
ISI probability distribution P(b;). (b) When subsequent events affect ¢ a
conditional IST probability distribution P(b;|b;) is defined. (c) The previous
prediction (first packet of trajectories) can be decomposed in two disjoint
regions (P(b}), P(b;|b}), see text for details). (d) The belief updating is
repeated with the new value b;,.

appendix-A for details) :
bi—bi—l b;—l
(o) ()
(122
L7j—2
for b, = L, —1,...,b; — ¢. This probability distribution,
unlike the one of Eq.(3) has finite support, showing that the
number of possible firing times are constrained from previ-

ous predictions. The first two moments of this distribution
applied to this particular model are [20]:

bi(L)—1) 2 _ bi(bi+Li—1)(Li-1)g
LT ONH T T L(Lioi)? )

Py (bi|b;) = ®)

UNH =

Note that once the first prediction has been made according
to Eq.(3), the rate p, which represents the intrinsic rate of
noise, or the external background stationary activity, is no
longer relevant in subsequent updates, where only a number
counting method is applied until ¢ fires again.

IV. EXTENSION TO CONTINUOUS TIME DOMAIN MODELS

We extend the previous discrete model by replacing the
Bernoulli process governing the evolution of the microstate
variable by its continuous counterpart, the Poisson process.
The resulting model corresponds to the Poisson excitation
model [8], where excitatory inputs occur at random according
to a simple Poisson process and cause the microstate to
increase. As in the discrete case, this stochastic evolution
can also be interpreted as an intrinsic source of noise.

We analyze two possible continuous extensions: the Pois-
son process of rate p and a version obtained by equating
the moments of the gamma density function to those of the
negative binomial distribution (method of moments).

To accommodate the dynamics of the discrete case, we
choose the same values for the transmission delay and the
refractory period, i.e. t91% = ¢ — 1. The fact that events
may occur at non-integer times prevents a synchronous
update of all the beliefs at firing times as in the discrete case.
Therefore, a priority queue where firing and reception events
coexist is required as explained in the general framework of
section II.

1) Continuous version I: Poisson process approximation:
We take the limit in which the size of a timestep At tends to
zero but the number of state transitions to reach the threshold
L remains constant. In this case the probability p of a state
transition tends to zero and the amount of timesteps before
firing tends to infinity. Taking again values of the belief
relative to T + t™ we obtain in the limit of At — 0 the
following gamma distribution: !

ﬁ ¢ b;xfl e—ﬁt

pF(bi) = T (a)

where & = L—1 and 3 = p. This ISI probability distribution

can be understood as the sum of L — 1 exponentially

distributed variables with A = p. Each of these variables

represents the waiting time between two state transitions,

which are now Poisson events with rate p. The first two

moments of the gamma density applied to the model are:
of =

pr=2"1 L w
p p
Note that the mean ur is the same as pyp of the discrete
case, Eq. (4), but the variance is overestimated, and only
coincides with the discrete case in the limit of p — 0.
Following a similar procedure as in section II, we apply
Bayes’ rule to obtain the conditional ISI density function. An
equivalent picture as Figure 1 can be used to illustrate the
different terms involved in the rule. The resulting density
function (see appendix-B) is a rescaled beta distribution,

the analogous counterpart of the negative hypergeometric
distribution in the continuous time domain:

O

for v, €10,...,b;]  (9)

for b; >0 . @)

with parameters « = L;—1 and § = ¢. Again, the parameter
p is no longer relevant in subsequent updates of the belief.
Note also that the previous value of the belief b; defines
the bounded support of the beta distribution, so the new
belief is constrained by the previous prediction. The first two
moments of this distribution applied to the model are:

(L= 1)

@, -1, - 10

N

INote that unlike the discrete case, beliefs are not restricted to have
values greater than the threshold L. Units in the continuous time domain
can advance and fire before an interval of time L.
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TABLE 1
MOMENTS OF THE RELATED ISI PROBABILITY DISTRIBUTIONS.

| Discrete (waiting time) | Continuous (Poisson) |

i L-1
HNB == Hr =73
2 (L;=1)(1—p) 2 _L-1
ag = or =
NB P2 r P2
b; (L}—1) b (L-1)
HNH =77 He =", -1
02 bt Li=D(Li=Do | o _Hi(Li-D¢
NH Li(L;—1)2 B T Li(L;—1)?

| Discrete (failures) | Continuous (Fitting moments) |

_(L;=1)(1-p) , = (Li=1)(1-p)
KUNB = » Hrr = P
2 _(Li—1)(1-p) 2 _(L;=1)(1-p)
Np="m b=
LN :<L7:—1;<1—p> g :<L7:—1;<1—p)
9 _bi(bi+Li—1)(Lj-1)¢ 2 _ b2 (Li—1)o
ONH T Li(Li—1)2 3 TP L)L~ D2

We compare them with the moments of the negative hyper-
geometric distribution in the discrete case, see Eq. (6). The
means coincide, but the variance is overestimated by a factor
(b; + L; — 1) instead of b;.

2) Continuous version II: method of moments: Other
extensions can be obtained depending on how the continuous
density functions are chosen, or which limiting process is
taken. For example, we get another continuous model if we
consider the value of the beliefs relative to T;°+ L;, instead of
T¥. This situation is equivalent to considering in the discrete
case the belief b; as the number of failures, or delayed
timesteps from 77 4 L;, instead of the waiting time from 7.
The discrete dynamics is not modified by this new counting
mechanism (the negative binomial is just shifted), but in the
continuous case the beliefs are prevented from taking values
smaller than the number of required state transitions to reach
the threshold. Then, with the following suitable choice of the
gamma density parameters: « = (L; — 1)(1 —p) and 8 = p,
both continuous and discrete probability distributions will
have the same first two moments.

(Li-D1-p) _» _(Li=1(l-p)

MFI e JF/ ==
P p?

Again, applying Bayes’ rule leads to another rescaled beta
distribution, but now with parameters o = (L;—1)(1—p) and
B = ¢(1—p) and rescaled in the time interval [L; — ¢, b; — @],
as the discrete version. The moments of this distribution are:

Li-1 b;(Li — 1)

L1 R (7 e
(12)

(11

pp =bi

As before there is only one difference with the discrete case
in the standard deviation, with the factor b; + L; — 1 instead
b;, and the factor ((1 — p)(L; — 1)+ 1) instead of L; which
coincide when p — 0. To facilitate the comparison between

the three different versions of the model we group in Table
I all the moments of the used probability distributions and
density functions. The negative binomial (NB) and negative
hypergeometric (NH) distributions are used in the discrete
model (left side of the table). Regardless of whether the
waiting time (which is equivalent to take the belief with
respect to T¢ + ¢™™) or the number of failures (which is
equivalent to takeing the belief with respect to T + ™ +
L —1) is considered as the belief variable, both use the same
parameters. In the continuous version (right side of the table),
the Poisson approximation uses a gamma density function
with parameters & = (L — 1) and 3 = p and a beta density
function with parameters o = L} —1 and 3 = ¢, whereas the
approximation which fits the moments uses a gamma density
function with parameters o« = (L — 1)(1 —p) and 5 = p and
a beta density function with parameters o = (L, — 1)(1 —p)

and § = ¢(1 — p).
V. SIMULATION RESULTS

We performed simulations to evaluate the proposed tech-
nique. First, we compare the computational complexity of
the mesoscopic version of the model against the original
microscopic model and then we compare the accuracy of
the continuous versions with the discrete one.

Since the model does not assume any particular time units,
we quantify the performance of a given model in terms
of the number of updates (in cpu-time) within an ISI of
length 7. This measure allows us to easily compare both
models. Figure 2 shows this quantity for different values of
the characteristic parameter 1 which indicates the degree of
interaction between the units of the ensemble. Higher values

5 10° cpu-time comparison
—— microscopic
—e— mesoscopic
251
7 2
4
[8]
o
A
o 1.5
E
i
3
5 4
0.5r
O I I I I I I I I I
1 2 3 4 5 6 7 8 9 10
n
Fig. 2. Comparison of the computational cost between the original mi-

croscopic model and the mesoscopic event-based reformulation in function
of the degree of interaction for different sizes of the ensemble. We use a
full-connected network and the noise rate is p = 0.9. No lookup tables
were computed a priori. For n > n* ~ 2.5 the mesoscopic version is more
efficient.
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Fig. 3. Simulation results of the event-driven model for the discrete and two possible continuous extensions. The extension which considers the spontaneous
evolution as a Poisson process with rate p is indicated by Poisson whereas Moments indicates the model which uses the method of moments (see the
text). Upper figures show (a) the mean of the ISI in logarithmic scale and (b) the respective standard deviation over 500 simulations with p = 0.9. Lower
figures (¢, d) show the same statistics but for a noise rate of p = 0.5. Simulations were performed over an ensemble of size N = 200 and threshold
L = 500. The coupling strength € was varied around the critical value of = 1. Both continuous models fit well the mean ISI. The standard deviation is
well fitted by the Moments version while the Poisson version significantly overestimates it for higher values of the rate p.

of 1 correspond to small interaction between the units, and
vice versa. Clearly, the mesoscopic event-based version of
the model is suitable when spikes are rare events in time,
since timesteps where neurons do not fire are not simulated.
It turns out that for regimes of 7 < 1 the event-based version
does not perform better than the microscopic version, since
spikes occur at every timestep [18] and hence, the number
of updates is the same in both approaches.

The computational complexity of the original microscopic
model is proportional to the ISI O(7N), since in an ISI
of size 7 all N states need to be updated at each time
step. The event-based strategy, however, requires the update
of N predictions every time an event is produced because
we are using a full connected network. The homogeneous
coupling allows to update a unit in constant time. Thus
an average of N? updates will be required within an ISI
leading to an O(N?) computational complexity. Without the
requirement of simulating the evolution of the microstate
variable, the cost does not depend on the size of the ISI
7 unlike the microscopic approach. As can be observed in
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Fig.(2) the number of updates of the mesoscopic approach is
constant and the event-driven approach performs better than
the original approach the higher the value of 7 (the lower the
coupling). A decrease is observed for 17 ~ 2 and below, which
is caused because in this regime simultaneous spikes occur
often and can be grouped together into one single impulse.
The time independence is a common feature of all event-
driven approaches.

Figure 3 shows simulation results of the discrete and
both continuous versions of the model, where L and N
are fixed and the coupling strength is varied to cover a
significant parameter space of 7. We simulate the model
starting at a regime of small values of e (weak coupling)
and progressively increase it until all units emit spikes
synchronized in unison. As previously explained, the event-
based strategy allows the model to be simulated exactly,
without precision errors. The mean ISI (7) and the dispersion
(o) for a unit are averaged over all the ensemble and over
500 initial conditions. We report exact agreement between
both continuous and discrete versions as expected from the



analytical results (not shown in the figure for clarity) and
also the mean of the ISIs is reproduced with accuracy in
the continuous versions. As for the standard deviation, the
approach based on the method of moments reproduces much
better the discrete dynamics than the Poisson approximation,
which is more similar if p is low, as theory suggests (note
the differences between the upper-right plot and the lower-
right plot). Figures 3.b and 3.d show a rapid decrease in
the standard deviation which vanishes at n = 1, where the
coupling strength reaches a critical value [21].

VI. CONCLUSIONS

The presented framework is useful and convenient for
modeling large-scale neural populations when the detailed
evolution of the microscopic variables is not the main aspect
of analysis and efficient simulations are needed.

In general two critical points arise regarding the compu-
tational efficiency of all event-based approaches. On the one
hand, the necessity of an ordered data structure for storing the
events for models with heterogeneous 9% and ¢, On the
other hand, for a general case with heterogeneous efficacies,
and high connectivity the cost of processing one event is
O(N?). These are inherent limitations which can only be
alleviated using parallel and distributive computing [22] for
which our approach can also be applied.

Despite the simplicity of the model presented, the related
ISI probability distributions have been successfully used
many times for modeling neural data. See, for example [23],
[24] where the gamma density function is used. This is
not surprising, since empirical ISI densities under stationary
background activity often have three basic forms [8]: for
very large excitatory impulses, neurons fire at the reception
of one spike and the ISI density is exponential-like; if few
impulses occurring in a short enough interval are sufficient to
trigger a spike, the ISI density is the gamma density analyzed
here. Finally, if the threshold is large compared to the
average strength of the impulses, the ISI density has gaussian
appearance. We notice the great similarity between the first-
passage-time density function of the Ornstein-Uhlenbeck
Model and the gamma density function except for the long
tail of the first case.

Indeed, the presented technique is not restricted to the
particular model analyzed here. Inhibition in the form of
negative pulses can easily be incorporated given that no
reflecting barrier is imposed at the zero value of the mi-
crostate as in the case of Stein’s model [25]. For example,
the Wiener process (Brownian motion) with positive drift
governing the microstate evolution can also be simulated
using our approach. In that case, the inverse gaussian density
function would be the unconditional ISI density function
to be used. In general the method is applicable provided
the ISI density function has a closed analytical form and
when the underlying evolution of the microstate is such that
the update is independent of the time at which an event
affects the neuron. It is worth emphasizing that any relevant
magnitude which can be obtained from the spike history
can be captured by the presented approach, given that the

required computations can be performed in an event-driven
basis. An example in this direction would be to incorporate
the dynamics of slow variables whose time constants may
span several ISIs. This issue is outside of the scope of this
paper and considered as future work.

The approach also has potential applications in the context
of pulse-coupled oscillators when a linear (or a piecewise
linear) evolution is considered in the phase variable. For
example, it can be used for improving the numerical method
used in deterministic models [26] as well as in the linear
pulse-coupled oscillator where noise is applied only every
time an event occurs [27].

Summarizing, under simplifying assumptions on the equa-
tion governing the microstate variable the high demand
placed on computational resources for simulating stochastic
populations of neurons can be alleviated using the proposed
technique.

APPENDIX

A. Bayes’ rule in the discrete model

We show how the negative hypergeometric probability
distribution (5) is obtained as the posterior probability of the
Bayes’ Rule: Pyy(b|b;) = P(b;|b;)P(b})/P(b;) Writing
the numerator in terms of the negative binomial distributions:

bi—bi—1Y (b —1 _bi—Ls
Py (bi|0}) Pnp(b) = (Liflj;fl) (L7,;712)pL7, Lgbi—Li+1
(13)
The denominator can be obtained summing over all possible
values of b:
Py (bi) =52t () (et g e

=Shise G CEE g

Decomposing the sum:
_ bi—Lj (b;—b,—L\ (b, +L}—2
Pyp(bi) = (Zb;:o (L,;—L;—l)( Li—2 )
bi—L; bi—b;—L7\ (b;+L;—2 L;—1,b;—L;+1
= 2 —by- L1 41 (L,;—L;—l)( L2 ) )t
The second term of the sum is always zero, since b; — (b; —

L;+1)—L; < L;—L;,—1and L; — L, = ¢ > 0. Applying
the following equality [19]:

- ()

L;—1 _b;—L;+1

We get:
bi—L,+L;—2+1 )
q

PNB(bv):(
Yo\Li-Li-14+L,-2+1

_ b" - ]‘ L;—1 b;—L;+1
(Lz' - 2>p !

Using (13) and (14) we obtain the negative hypergeometric
distribution (5):
bi—b,—11 (b —1
(L,ﬁL;q) (L;.fz)

bi—1
(7)

for b, in the interval of values restricted by the previous belief
[L’/L - 17b’i - (b]

(14)

P (bj|bi) =
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B. Bayes’ rule in the continuous model

We derive the beta density function (9) using Bayes’ rule
in the continuous model:
bi|b))R (b))
/ bl b — g( 1Y ) .
g ( ’L| 7/) h(bl)

In this case h'(b}) is the density function of the waiting time
until the threshold lowered by the incoming messages L} =
L; — ¢ is reached. We use the gamma density function with
a=L,—1and vy =p:

5)

iy — T el
h (bz) - F(O{) bi e
Similarly g(b;|}) is the density function of the waiting time
until an effective threshold (L; — 1) is reached at time b;,
assuming that unit ¢ starts with activation state (L; — 1) at
time b]. It represents another gamma density, in this case
with 0 = ¢ and v = p:

for b, >0 (16)

B
bilb) = ——(b; — b})P~Le™ B8 for (b; — b)) > 0
o(bilh) = 15 0= ) (b~ bl) >
(17)

The normalization factor is h(b;), which is the marginal
probability of b;:

o) = [ R — bt B e
— 00
Using the substitution ¢ = b;/b; and eliminating the regions
where the integral is zero we get:
,yaJrﬁefvbibiOH'ﬁ—l
I(a+p)
We use Eqgs. (16), (17) and (18) to find the density function:

R (-2

for b} € [0, b;], which is the beta distribution with parameters
« and (3 rescaled by the inverse of the previous value of the
belief, 1/b;.

In the case of the approximation using the method of the
moments we can proceed in the same way and get the same
probability density function, but with parameters oo = (L] —
1)(1 — p) and 8 = ¢(1 — p) and rescaled to be within the
time interval b; € [L; — 1,b; — ¢], as the discrete version.

h(b;) = (18)

g'(bilbi) =
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