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Abstract. We consider the problem of inferring connectivity from time-

series data under the presence of time-dependent common input origi-

nating from non-measured variables. We analyze a simple method to fil-
ter out the influence of such confounding variables in multivariate auto-

regressive models (MVAR). The method learns the parameters of an
extended MVAR model with latent variables. Using synthetic MVAR

models we characterize where connectivity reconstruction is possible and

useful and show that regularization is convenient when the common in-
put has strong influence. We also illustrate how the method can be used

to correct partial directed coherence, a causality measure used often in

the neuroscience community.
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1. Introduction

Estimating connectivity from time series data is of fundamental interest, for in-
stance, in economics or neuroscience [1]. Many techniques rely on parametric lin-
ear models, e.g. multivariate autoregressive (MVAR) models, which are learned
from time series data as a first step. From the parameters of the estimated model,
a variety of different coupling measures such as coherence or Granger causality,
can be computed [2,3].

There are several factors that can affect the accuracy of a MVAR model, e.g.
nonstationarities or nonlinearities in the data or a wrong model order selection. A
more general problem is the influence of unobserved latent variables (e.g. common
input). Strong influence of such confounding variables can lead to bias in the
connectivity measures, resulting, for instance, in the identification of spurious
dependencies. In this paper, we focus on how common input can influence model
estimation in a way that is not originally captured in a MVAR model, e.g. as
temporally and spatially uncorrelated Gaussian noise.



The standard approach to deal with unobserved common input is using latent
factors. For example, in neuroscience the common input problem is related to the
fact that each sensor measures a noisy mixture of cortical sources (volume conduc-
tion problem) [4]. Latent variables in this case model the brain activity sources.
However, due to model degeneracy, the interpretability of the estimated connec-
tivity in the latent space has limitations. Standard ways to address this identifi-
ability problem rely on physical models of electro- and magnetoencephalography
(EEG and MEG) that are inverted under physiologically motivated constraints
(see [5,6,7] for a few examples). Such models require very specialized prior knowl-
edge that, if incorrect, can affect dramatically the results. Although the problem
is less critical for intra-cortical recordings (also known as ECoG) due to better
signal quality, it is often the case that this type of recordings only covers partially
the brain [8], thus relevant activity from other brain regions is overlooked.

We propose a simple method that provides directly the connectivity estimates
between the observed variables while correcting for the influence of the unobserved
common input. Specifically, we consider the problem of learning a MVAR for
which part of the variables are latent. We thus assume a linear model for the
common input process. This choice permits to capture more complex confounding
influences than just uncorrelated Gaussian noise.

Throughout this paper, we use the term connectivity to denote the matrix of
linear coefficients of the MVAR model. In the next section, we describe the prob-
lem formulation and our parameter learning method. In section 3, we characterize
under which conditions one can recover the true underlying connectivity pattern
and illustrate the applicability of the proposed method to correct partial directed
coherence, a causality measure used often in the neuroscience community.

2. MVAR Models with Common Input

A p−th order multivariate autoregressive model, MVAR(p), describes the dynamic
interactions among a vector of n variables yt where each variable is regressed on
p of its own lags as well as on p lags of each of the other variables. We consider
a MVAR(p) process in which observations yt are affected by a m × 1 vector of
(unobserved) common-input zt. The influence of zt on yt is instantaneous, but
non-homogeneous:

yt =

p∑
k=1

A(k)
y yt−k +Bzt + ξt. (1)

Here ξt ∼ N (0, Qy). The common-input process is assumed to evolve as a first-
order Markov process:

zt = Azzt−1 + ηt (2)

with ηt ∼ N (0, Qz) and initial state z0 ∼ N (0, Q0
z). For multidimensional zt,

such common-input model can represent rich and complex dynamics, including
oscillations with correlations at multiple time-scales.



This model can be seen as an extension of a standard MVAR(p) model with
additional latent variables zt (for B = 0), but it can also be seen as an extension
of an ordinary linear dynamical system (LDS) with coupled observations. In an
ordinary LDS, the latent factors zt form a Markov chain as in (2) but the observed

variables are independent of the previous observations (A
(k)
y = 0, k = 1, . . . , p)

and only depend in a linear-Gaussian manner on the latent values.
The common input MVAR model can be also expressed as an extended LDS

xt = Axt−1 + wt

yt = Cxt + vt, (3)

with a new latent space that includes both the common input and the observed
process

xt
((np+m)×1)

= [yt yt−1 . . . yt−p zt]
>
, C

(n×(np+m))
= [In 0]

A
((np+m)×(np+m))

=



A
(1)
y . . . A

(p−1)
y A

(p)
y B

In . . . 0 0 0
0 . . . 0 0 0
...

. . .
...

...
...

0 . . . In 0 0
0 . . . 0 0 Az


, wt

(np×1)
= [ξt 0 . . .0 ηt]

>

Q
((np+m)×(np+m))

=


Qy 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . Qz

 , R
(n×n)

= 0

with wt ∼ N (0, Q) and vt ∼ N (0, R) a dummy variable. We call this model the
extended LDS (eLDS).

Denote the parameter vector θ = θo ∪ θh where θo = {A(1)
y . . . A

(p)
y , Qy} and

θh = {Az, B,Qz}. The existence of the latent structure introduces model degen-
eracy: θh can be estimated up to a similarity transformation. Typically, one sets
the noise covariance Qz to the identity matrix without loss of generality [9]. Note
that the degeneracy only affects θh. Because yt is observed, the parameters θo,
which are the ones required for computing the connectivity between observables,
are identifiable.

2.1. Parameter Estimation

The parameters θ of the eLDS of Eq. (3) or, equivalently, the extended MVAR(p)
model of Eqs. (1) and (2) can be learned using maximum likelihood. Our interest
is to maximize the complete log-likelihood function for observed Y and common
input Z processes. However, since Z is not observed, this optimization can not
be performed in closed form. We use expectation-maximization (EM) [9,10] or,



alternatively, expected gradient based methods which are more convenient than
EM for low observation noise [11].

A specific problem that appears in this scenario occurs when the influence
of the common input is strong (large B). In those cases, the optimization tends
to overestimate the entries of Ay. To prevent this, we introduce a `-2 norm reg-
ularization term in the objective function that penalizes large values of Ay. The
optimization problem becomes (for a given value of the regularizer λ)

θ∗ML = argmaxθL(θ;Y,Z) = argmaxθ log
∏
t

p(yt, zt|θ) +
λ

2

∑
ij

|Ay|2ij . (4)

Optimization in the presence of latent variables strongly depends on the ini-
tialization. We define our initialization strategy considering two independent op-

timizations on the simpler models, namely, the simple LDS with A
(k)
y = 0, k =

1, . . . , p (independent outputs given the common input) and the MVAR(p) model
with B = 0 (no common input) to obtain initial values for all parameters.

First, in the case of the simple LDS, we use subspace identification (SSID)
methods [12]. SSID methods first construct an estimate of the latent state se-
quence by decomposing (using singular value decomposition) an observation ma-
trix (Hankel matrix) and then solve a least squares problem. The dimension of
the latent space can be selected based on the spectrum of the decomposition, see
N4SID method [13]. With this initialization, we run EM or expected gradient
method [9] to obtain the initialization of the simple LDS.

Second, we initialize coefficients A
(k)
y , k = 1, . . . , p as the solution of the stan-

dard MVAR(p) problem without common input. This is a convex problem and

the maximum likelihood estimator for A =
[
A

(1)
y , . . . , A

(p)
y

]
is given by

Â =

(
T∑
t=1

ytν
>
t−1

)(
T∑
t=1

νtν
>
t

)−1

(5)

where νt
(np×1)

= [yt yt−1 . . . yt−p]
>

. We use Â as an initialization for our

procedure and also as a baseline for comparison in the next section.
Summarizing, we initialize parameters Az, B and Qy using SSID+{EM or

gradient method} and parameters A using Eq. (5). Once we have initial values for
θ, we can finally optimize for the full eLDS of Eq. (3). This is a standard parameter
estimation procedure with minor changes. We reproduce here the equations for
completeness. For fixed θ, the E-Step computes the following expectations under
the posterior p(x|y, θ) using Kalman filtering and smoothing:

Mij :=
1

T − 1

T∑
t=1

〈xt+ix>t+j〉, i, j = {0, 1}. (6)

Given these expectations (6) we can either solve for θ in closed form (M-Step)
and alternate both E-Step and M-Steps until convergence or use a gradient based
procedure on the expected log-likelihood. The gradients and update equations are



• Common input dynamics matrix Az:

∂L
∂Az

= −Qz
T∑
t=1

Mzz
10 +Qz

T∑
t=1

AzM
zz
00 , Az =

(
T∑
t=1

Mzz
10

)(
T∑
t=1

Mzz
00

)−1

• Observed dynamics matrix:

∂L
∂Ay

= −Qy
T∑
t=1

Myy
10 +Qy

T∑
t=1

AyM
yy
00 + λ|Ay|,

Ay =

(
T∑
t=1

Myy
10 − λIy

)(
T∑
t=1

Myy
00

)−1

• Common input mapping:

∂L
∂B

= −Qy
T∑
t=1

Myz
10 +Qy

T∑
t=1

BMzy
00 , B =

(
T∑
t=1

Myz
10

)(
T∑
t=1

Mzy
00

)−1

• Output covariance matrix Qy:

∂L
∂Qy

=− T − 1

2
Qy +

1

2

T∑
t=1

(
Myy

00 −BM
·y
10 −M

y·
01B

> +BM00B
>)

Qy =
1

T − 1

(
T∑
t=1

Myy
00 −B

T∑
t=1

M ·y10

)

where superindices on the matrices Mij denote indexing on the corresponding
latent z or observed y components (index · corresponds to entire row/column(s)).

To optimize the regularization parameter λ we use an annealing approach:
we start with a strong regularizer (high λ) and decrease it progressively. At each
decreasing step, we use the solution of the previous step as initialization (warm
start). This helps the convergence of the algorithm and works best in practice.
The results we report are using this procedure.

3. Numerical Results

We show results using simulated data. First, we analyze a minimal example that
can be characterized in detail. We then compare the performance of the algorithm
on larger systems as we vary the relation between different model parameters.
We also show the convenience of using regularization and illustrate the method
using a higher-order system. For comparison, we will refer to the solution obtained
from the proposed method as corrected solution as opposite to the naive (or not
corrected) solution obtained from the maximum likelihood (ML) estimator that
ignores the common input, Eq. (5). We measure the error as the area under the
ROC curve. We found this measure preferable to other measures, i.e. the norm of
the differences, since the ROC is invariant under rescalings.



−10

0

10

time

β
 =

 0
.1

0

 

 

y
t

β z
t

A
y
 corrected

 

 

1 2

1

2

0

0.2

0.4

A
y
 not corrected

 

 

1 2

1

2

0

0.2

0.4

−1

0

1

2

time

52 iterations

 

 estimated
common input

α

γ

likelihood

 

 

−1 0 1

−1

0

1

−1.3

−1.2

−1.1

−1

x 10
5

−50

0

50

time

β
 =

 1
.0

0

 

 

y
t

β z
t

A
y
 corrected

 

 

1 2

1

2

0

0.2

0.4

A
y
 not corrected

 

 

1 2

1

2

0

0.2

0.4

−5

0

5

time

104 iterations

 

 

estimated
common input

α

γ

likelihood

 

 

−1 0 1

−1

0

1
−2.5

−2

−1.5

−1
x 10

5

−400

−200

0

200

time

β
 =

 1
0
.0

0

 

 

y
t

β z
t

A
y
 corrected

 

 

1 2

1

2

0

0.2

0.4

A
y
 not corrected

 

 

1 2

1

2

0

0.2

0.4

−50

0

50

time

527 iterations

 

 

estimated
common input

α

γ

likelihood

 

 

−1 0 1

−1

0

1 −14
−12
−10
−8
−6
−4
−2

x 10
6

Figure 1. Three scenarios as a function of β for the minimal model for γ = 0.5 and α = 0.25.

Top row (β = 0.1): The common input has weak influence on the observed variables. The

true connectivity can be recovered without correction. Middle row (β = 1.0): The influence
of the common input is of the same order as the coefficients in Ay . No correction results in

overestimated couplings and correction allows to fully recover the true connectivity pattern.

Bottom row (β = 10): The common input has too much influence. From left to right: simulated
time series; Ay estimated using the corrected method; Ay estimated using the naive method;

real and estimated common input projected onto the first dimension of the output; expected

likelihood as a function of γ and α. Other parameters: T = 103, σ2
y = σ2

z = 1.

3.1. Minimal Example

We consider the following two dimensional example with a one dimensional com-
mon input Ay = [γ α; 0 γ] , B = β [1.05 0.95]

>
and Az = 0.95. The influ-

ence of the common input is thus determined by the parameter β. We recognize
three different scenarios, which are illustrated in the different rows of Fig. 1. The
first column shows examples of time series generated from this toy model.

For β = 0.1 (top row) the common input (red) has little influence in the ob-
served process (blue). In this case, the naive solution, Eq. (5), correctly estimates
Ay. Correcting for the common input is harmless, as shown in the second and
third columns respectively. The fourth column shows the estimated latent process
projected onto the first observed variable (as obtained from the Kalman filter-
ing/smoothing step) compared to the projected real common input (in red). The
common input is not well approximated, but this has no effect on the predicted
connectivity. The rightmost column shows the expected likelihood as a function
of γ and α. We observe a clearly defined global optimum.

For β = 1 (middle row), the influence of the common input is significant. It
is in this scenario where we expect best performance of the proposed approach.
The naive method (third column) overestimates the off-diagonal elements of Ay
whereas the corrected estimate (second column) recovers the true values.

For β = 10 (bottom row), the common input has too strong influence on
the observed process. The method requires a large number of steps to initialize
the parameters and little corrections are being made afterwards. Both naive and
corrected estimates are biased. The common input, however, is correctly identified



Figure 2. Illustration of the method: Ay : Randomly generated connectivity matrix; Ay corrected:

solution recovered by the algorithm ; Ay not corrected: solution obtained from the standard
approach, Eq. (5). Parameter values: n = 10, m = 4, β = 1, λymin = 0.1, λymax = 0.8,

λzmin = 0.9, λzmax = 0.95, σ2
y = 0.252 and T = 105 time-steps.

(fourth column), since it has a strong signal. The expected likelihood (rightmost
column) shows a ridge, where the maximum occurs for α = γ/2. The algorithm
in this situation requires a large number of iterations to initialize Az, B and Qy.
After initialization, B contains large entries and no further significant corrections
are made to the initial Ay. In these cases, regularization can help to find the
correct solution.

3.2. Large, First Order Systems

We generate random MVAR(1) models for given dimensions m, n using the follow-
ing procedure: Ay is obtained from a random n× n matrix with 60% of nonzero,
Gaussian distributed entries with random sign. To create systems with prescribed
dynamical time-scales, we compute the eigendecomposition of this initial matrix
and rescale the eigenvalues within a prescribed range [λymin, λymax]. The final
matrix Ay is obtained by multiplying again the rescaled eigenvalues with the
eigenvectors. For a fully observable system, the dynamical time-scale is deter-
mined by τ = −1/ log λymax. We generate a random Az in a similar way. The
mixing matrix B is generated orthogonal (via Gram-Schmidt procedure) without
loss of generality (non orthogonal B can be made orthogonal by redefining zt).
The final B is rescaled by β. Finally, we fix the noise Qz = Im and parameterize
the observation noise by σ2

y, Qy = σ2
yIn. The models are evolved until they reach

stationary dynamics and then time series are obtained for estimation.
The full matrix A for such randomly generated eLDS has a block-triangular

form A = [Ay B; 0 Az] and its eigenvalues are simply those of Ay and Az.
Hence, we can analyze the performance of the algorithm as a function of the inter-
play between the independent time-scales of the common input and the observed
process by considering different values of λzmax and λymax.

Fig. 2 illustrates the method for n = 10 observed variables and m = 4 la-
tent dimensions for a case where the exact pattern of connectivity can be recon-
structed. In this example, λzmin = 0.9 and λymax = 0.8, which corresponds to
the situation in which the common input process has longer timescales than the
observed process.
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Figure 3. Comparison between corrected and non-corrected solutions in terms of area under the
ROC curve. Plots show 95% confidence intervals of 50 random experiments, as a function of β

for different time scales (λymax vs λz) and noise values σ2
y .

We now analyze the performance of the method for different conditions. Fig. 3
shows 95% confidence intervals of 50 random experiments for each condition as
a function of β. In all figures, the performance of the naive method starts to
decrease earlier than the corrected method.

The top rows show results for λymax = 0.3 and λzmax = λzmin = 0.9. In these
cases, the common input process evolves at a much longer time-scale than the
observed process. Not correcting for the common input results in large bias. The
improvement becomes less significant as λymax approaches λzmax. The bottom
plots show results for λzmax = 0.7, where the improvement is still notable. Even-
tually, both curves collapse for λymax ≈ λzmax. Importantly, for λzmax < λymax,
correcting for the common input does not worsen the naive method (results not
shown). In those cases, the time-scale of the common input is short and the pro-
cess can be captured as noise by the naive method. In general, we can conclude
that the improvement of the corrected over the naive method is proportional to
the difference in λzmax − λymax.

The behavior for different noise levels is illustrated by comparing the left
(σ2
y = 1) and the right (σ2

y = 10) plots. In general, higher noise in the observations
results in easier problems, as can be seen from the shift to the right of both
curves. Also, higher noise levels yields more variability in the estimates. Thus, the
improvement of the method becomes more pronounced for low observational noise.
Interestingly, for this situation the EM algorithm tends to freeze and becomes
impractical. In these cases, the expected gradient method converges faster [11].
The results shown are computed using the best approach in both conditions.
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Figure 4. Higher-order system example. Left: underlying connectivity: a loop with a common

input source. Right: comparison between partial directed coherence calculated from a MVAR(p)
which is learned using the standard procedure (continuous line) and the corrected one using

our approach (circles) against the ground truth (thick line). The corrected measure reproduces
better the true PDC in terms of the frequency dependent values and also removes the spurious

interactions detected by the naive method (m = 2, n = 4, T = 203, p = 3, β = 10, σy = 1).

3.3. Higher-Order Systems

We now look at higher-order systems (p > 1) and consider the partial directed
coherence (PDC), a frequency-domain measure for Granger-causality [14] which
is often used within the neuroscience community [15,1]. Given a MVAR(p) model
estimated from time-series data, the PDC is defined as

πij(f) =
|Λij(f)|√∑n
`=1 |Λ`j(f)|2

where Λ(f) =
∑p
k=0A

(k)
y e−ikf2π∆t is the z-transform that converts the time-

dependent coefficients A
(k)
y , k = 1, . . . , p to the frequency domain. ∆t is the sam-

pling interval and i is the imaginary number. Our example is a four dimensional
observed process affected by two dimensional common input. The observed vari-
ables interact at different delays according to the following mixing matrices

A(1)
y =


1/3 0 0 0
1/4 1/3 0 0
0 1/3 −1/3 0
0 0 0 1/3

 , A(2)
y =


1/10 0 0 0
0 −1/10 0 0
0 0 1/10 0
0 0 1/3 0

 , A(3)
y =


−2/5 0 0 1/4

0 −1/4 0 0
0 0 0 0
0 0 0 0

 .
The underlying structure is a loop shown in Fig. 4(left). The common input
process is governed by Azij = 0.99 for i = j and zero otherwise and B is composed
of two orthonormal vectors and rescaled by β to force a strong influence of the
confounding variables.



Fig. 4 shows comparison results between the PDC for the full system (denoted
as true), the observed one (denoted as not corr, with 95% confidence intervals)
and the corrected one 1. We observe that the corrected measure reproduces better
the true PDC in terms of the frequency dependent values and also removes the
spurious interactions detected by the standard method.

4. Conclusions

In this paper, we have addressed the problem of estimating the dynamical struc-
ture of a MVAR model when some of the variables are not observed. We have as-
sumed a linear-Gaussian model for the unobserved variables. The resulting model
can be solved using a constrained form of EM or expected gradient methods. Us-
ing synthetic data, we have characterized the conditions in which the proposed
method can successfully be applied. Future work includes applying the method
to real-world data and incorporating sparsity-inducing regularization, as in [16].
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