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Abstract—Demand Response is an emerging technology which
will transform the power grid of tomorrow. It is revolutionary,
not only because it will enable peak load shaving and will
add resources to manage large distribution systems, but mainly
because it will tap into an almost unexplored and extremely
powerful pool of resources comprised of many small individual
consumers on distribution grids. However, to utilize these re-
sources effectively, the methods used to engage these resources
must yield accurate and reliable control. A diversity of methods
have been proposed to engage these new resources. As opposed
to direct load control, many methods rely on consumers and/or
loads responding to exogenous signals, typically in the form of
energy pricing, originating from the utility or system operator.
Here, we propose an open loop communication-lite method for
estimating the price elasticity of many customers comprising a
distribution system. We utilize a sparse linear regression method
that relies on operator-controlled, inhomogeneous minor price
variations, which will be fair to all the consumers. Our numerical
experiments show that reliable estimation of individual and thus
aggregated instantaneous elasticities is possible. We describe
the limits of the reliable reconstruction as functions of the
three key parameters of the system: (i) ratio of the number
of communication slots (time units) per number of engaged
consumers; (ii) level of sparsity (in consumer response); and (iii)
signal-to-noise ratio.

I. INTRODUCTION

Today’s Demand Response (DR) focuses on controlling

major commercial and industrial loads, i.e. large individual

loads, where the actual control is infrequent and mostly

focused on shaving peaks during times when the transmission

grid and generation resources are highly stressed [1]. Large

peaking events are usually predicted well in advance so that

communication requirements for this type of DR duty are quite

limited; often taking the form of phone calls [2], [1]. At other

times, this large-scale DR may be used as a type of spinning

reserve to rebalance generation and load after a major grid

disruption [3], [4]. In this case, the immediacy of the need for

the resource justifies the cost of installing the communication

so that the load interruption is under direct control of the

system operator.

As utilities and system operators integrate more time-

intermittent renewables, they will also be forced into a situa-

tion where there is less traditional controllable generation re-

sources online as there will be less room left in the generation

stack for these resources. The loss of controllable resources

will occur at a time when they are needed even more to balance

the intermittent renewables. Increased deployment of the DR

is expected to be one controllable resource that will fill this

gap [1], however, the type of resource required for this duty

is different than the large-load DR discussed above. Perhaps

the most significant differences are that (a) this new form of

DR will be called upon more frequently, and (b) the control

will be required to both decrease and increase in a controlled

fashion the load.

Accessing DR at the residential scale can be done via

arrangements similar to those currently used for large com-

mercial and industrial customers, e.g. contracts where cus-

tomers receive payments or lower energy rates for providing

DR services. However, it is expected that the majority of

residential consumers would balk at the idea of a utility or

system operator have direct control over loads within their

home. Instead, it is expected that DR will be implemented via

variable pricing or some other similar signaling [1]. Several

models exist for this type of DR control, and they can be

categorized into two fundamental groups: open loop or closed

loop control. Retail-level, double auction markets (also termed

“transactive control”) [5] represent one type of the closed loop

control. In this model, the control loop is closed via a forward

energy market where the supplier and each consumer agree

upon the amount of energy each load will consume and the

price of energy over the next market period. Advantages of this

type of control include certainty about the energy consumption

over the following market period and the ability to build in

network and/or generation constraints into the control in a

logical manner, e.g via local marginal pricing. A significant

drawback of this type of control is the need for two-way,

individually addressed communication between the utility or

system operator and every individual participating load. The

communication is not required to be real-time, however, the

gathering of energy bids from the loads must take place every

market period which can be as short as every five minutes.

Mechanisms other than double auctions have been proposed to

settle on energy quantity and pricing [6], however, the two-way

communication infrastructure and overhead remain essentially

the same.

An alternative to the transactive control is open loop control

where the utility or system operator simply broadcasts a

price to all participating loads. The communication in this

case is a simple one-way broadcast that does not require

any information to be returned from the customer–a form of

communication that is easier and less expensive to implement
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and that also does not expose sensitive consumer data in

a real-time environment. Prices may be updated on regular

intervals with allowances for unscheduled updates triggered

by system disruptions. After receiving an updated price, each

participating load consumes electricity at the current price if it

desires [7], [8], however, the simplicity of the communication

systems comes at a cost of not having certainty about load

response that the price change will elicit.

In this work, our goal is to develop and demonstrate

algorithms that reduce the load response uncertainty in open

loop control methods by estimating or learning the future price

elasticity of consumers based on their responses to previous

pricing updates. We seek to keep communication requirements

at a minimum raising a significant challenge–how can we

learn the price elasticities of individual consumers and/or loads

without deployment of additional sensors in the distribution

network and without resorting to two-way communication?

By limiting our algorithms to sensing of power flows at the

beginning of a distribution circuit (where there is typically a

sensor already installed), we must resort to another method

to distinguish individuals. To solve the problem, we consider

multi-cast communication where we are able to address prices

to individual customers. We propose to introduce fluctuations

in the individual prices of each customer to enable estimating

their individual price elasticities. We express the task of

learning the elasticities as a linear regression problem [9],

[10], [11], [12], [13], [14] in which the aggregated changes

in consumption over the distribution network are represented

as the weighted sum of all individual changes in consumptions.

The prices enter in the model via the design matrix, and

thus can be considered as controlled variables chosen in a

convenient way for the task under consideration.

We are interested in characterizing the regime where re-

construction of the price elasticities is possible in a distri-

bution system utilizing the multi-cast (utility-to-consumers)

communication system illustrated in Fig. (1). We analyze how

the reconstruction error behaves as a function of the Signal-

to-Noise Ratio (SNR) of the aggregate power measurement

and the number of available measurements per number of

consumers. For systems with small noise and constant price

elasticities, it is easy to infer the parameters optimally. Elas-

ticity estimation becomes significantly more difficult in very

noisy environments and when price elasticities change rapidly

effectively limiting the number of measurements available. The

problem is still solvable if one assumes that only a small

number of consumers are the “marginal” consumers, i.e. only

a small number of consumers respond to any particular price

update. We compare different state-of-the-art linear regression

methods that incorporate this sparsity assumption and show

that their reconstruction can be done satisfactorily given a

relatively small number of samples.

In the next Section we introduce and describe our regres-

sion modeling. Section II presents our numerical results. We

conclude in Section IV with a discussion and future work.

utility
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Fig. 1. Scenario of the two-stage, real time, open loop control of
prices and operations: (a) the price signal, including some small consumer-
inhomogeneous component, is communicated to consumers through an inde-
pendent aggregating entity; (b) the utility senses (through electric measure-
ments) only an aggregated response, i.e. the cumulative/aggregated change in
consumption/production.

II. REGRESSION MODELS FOR LEARNING PRICE

ELASTICITIES

We consider a distribution system consisting of N individual

consumers served by a single retailer/utility. We ignore losses

in lines, transfer of reactive power and varying voltages, thus

accounting only for redistribution of real power in a simple,

capacity-based balance between production and consumption.

pi(t) denotes the change in consumption of the i-th customer,

i = 1, . . . ,N, from the previous time step t − 1 where time

is discrete, t = 1, . . . ,T . We assume the following consumer-

specific, time-varying, linear relation between pi(t) and the

price ρi(t): pi(t) = p
(0)
i + αiρi(t). Here, αi is the elasticity

(linear response) rate which is under control of the customer

but presumed constant for sufficiently long periods, and p
(0)
i is

the portion of the individual consumption which is insensitive

to the price signal. In this work where we only consider the

open loop scenario, ρi(t) is set by the aggregator/utility. We

can model the aggregate change in consumption of the entire

distribution network as the direct sum over all the consumers

P(t) =
N

∑
i=1

p
(0)
i +

N

∑
i=1

αiρi(t)+ξ (t), (1)

where ξ (t) is the uncertainty modeled as an aggregated zero-

mean Gaussian noise with unknown variance β = 1/σ2
P .

Eq. (1) constitutes a standard linear regression model

where the predictors and the response variables correspond

to changes in the consumer-specific prices ρi(t) and in

the aggregated real power P(t), respectively. Our learn-

ing/reconstruction task is to estimate simultaneously the vector

of regression weights ~α and the noise β given the training data

Dtrain = {~ρ(1),P(1), . . . ,~ρ(T ),P(T )}. Notice that the aggrega-

tion of the price insensitive portion of the signal, ∑N
i=1 p

(0)
i , can
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be incorporated in the response vector, therefore, without loss

of generality, we can consider zero mean response vector P(t)
and drop the first term from the rhs of Eq. (1).

The Ordinary Least Squares (OLS) approach is the

simplest way of solving this linear regression problem:

~α = χ−1~b, where χ is the input covariance matrix,

χi j = 1/p∑t ρi(t)ρ j(t), and ~b is the vector of input-output

covariances, bi = 1/p∑t ρi(t)P(t). If price elasticities ~α do

not change in time, one can obtain reliable estimates after

a sufficiently long period of measurements. However, either

because the individual consumptions can start affecting the

price signal, or because the individual users may change their

elasticity, the periods where ~α remains constant can be short,

limiting the small number of samples T compared to the

number of consumers N. In these cases, obtaining non-biased

estimates can be problematic as the typical inverse of χ is not

well defined.

One known way to address this problem is to incorporate a

regularization term into the OLS error function to penalize

undesirable solutions [10], resulting in the following error

function to minimize:

E(α) =
1

2

T

∑
t=1

(

P(t)−
N

∑
i=1

αiρi(t)

)2

+λ
N

∑
i=1

|αi|
q, (2)

where λ > 0 and q≥ 0. Different choices of q determine the

prediction accuracy, interpretability of the obtained solution

(selecting variables that are relevant), and complexity of the

optimization problem. Selecting the optimal λ is usually

performed via cross-validation. In this work we consider three

possible choices of the penalty term in Eq. (2):

• Ridge regression: [9] q = 2. The simplest penalty term

takes the sum of squares (ℓ2 norm) of the weight vector

~α , which has the effect of replacing the input covariance

matrix χ with χ +λ I, that can be invertible. Using ridge

regression improves the prediction accuracy, but not the

interpretability of the solution.

• Lasso: [11] q = 1. The lasso imposes an ℓ1 penalty on

the weights ~α (sum of the absolute values), which has the

effect of automatically performing variable selection by

setting certain coefficients to zero and shrinking the rest.

The lasso method favors sparse solutions while preserves

the convexity (tractability) of the optimization problem,

resulting in a good compromise between prediction ac-

curacy, interpretability and tractability. 1

• ℓℓℓ0 norm: q = 0. A drawback of the lasso is that the

same λ is used for both variable selection and shrinkage.

Consequently, lasso may select a model with too many

variables to prevent over-shrinkage of the regression

coefficients [12]. It is known that using an ℓ0 norm instead

(the number of non-zeros αi) improves the selection of

relevant variables, resulting in more interpretable solu-

tions. A complication is that for q < 1, the optimization

problem is non-convex and more difficult to solve.

1We use the glmnet implementation for lasso in our experiments.

There are many other related regularization methods, most of

them based on the first two methods and thus resulting in

convex optimization problems (see [14] for a recent account).

We restrict our analysis to the two canonical convex methods

(ridge and lasso) and a novel method for ℓ0 norm regulariza-

tion, summarized in the next Section.

A. ℓ0-norm Regression

We choose a recently introduced method [13] that performs

a variational approximation on the posterior probability of the

price elasticities. It is inspired by Breiman’s Garrotte [15] and

uses a spike-and-slab model [16].

We model price elasticities αi as siwi, where the additional

binary variables si = {0,1} show if the customer i is active

(si = 1) or inactive (si = 0). The regression model becomes:

P(t) =
N

∑
i=1

siwiρi(t)+ξ (t).

We consider the probability distribution over the parameters

(~w,~s,β ) and compute the maximum-a-posteriori estimate from

the posterior probability of the parameters given the data. We

choose the following prior distribution for ~s:

p(~s|γ) =
N

∏
i=1

p(si|γ), p(si|γ) =
exp(γsi)

1+ exp(γ)
,

where γ (similar to λ before) determines the sparsity of

the solution: γ ≪ 0 will favor sparse solutions and, on the

contrary, γ ≈ 0 will indicate bias towards dense solutions.

The marginal posterior is approximated with the following

variational bound:

p(~w,β |D,γ) ∝∑
~s

p(~s|γ)p(D|~s,~w,β )

≥exp

(

−∑
~s

q(~s) log
q(~s)

p(~s|γ)p(D|~s,~w,β )

)

,

where we choose q(~s) = ∏N
i=1(misi + (1−mi)(1− si)) thus

allowing us to specify q with only the expected values

mi = qi(si = 1). For a given level of sparsity γ , the expected

values ~m of ~s and the rest of parameters ~w,β are found by

iteratively solving a set of fixed point equations defined for the

expectations mi, the weights wi, and the noise β . An estimate

of the price elasticity for customer i is obtained by setting

α ′
i = miwi (see [13] for more details on the algorithm).

III. RESULTS

We are only interested in testing the nontrivial case of T <N

because for T ≥ N, the elasticity of each consumer can be

probed independently. For T < N, we utilize a random price

strategy. Even though the random strategy may not be the opti-

mal reconstruction strategy for all customer elasticity patterns,

we expect it to be sufficiently good and robust in an average

sense. For convenience, we choose independent fluctuations

for the different customers to prevent undesired effects due

to correlated predictors. In the following, we quantitatively

compare the different learning schemes introduced in Section
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II under the aforementioned assumptions, i.e. independent

random price variations and constant customer elasticities. We

analyze two simulated scenarios: a sparse case when only

10% of customers respond to the incremental change in price

and a denser case when 50% of customers are active. The

price elasticities are set to unity/zero for all active/inactive

customers. For each of the tested algorithms, parameters ~α and

β are estimated using a training set, Dtrain, for a fixed hyper-

parameter (λ or γ), which is optimized on an independent,

validation set Dval [17], generated in the same way as Dtrain

of size T/2.
To compare the resulting solutions quantitatively, we com-

pute the following three quantities. Let ~α ′ and ~α∗ denote the

estimated and the true price elasticities, respectively:

• Generalization error: measures how well the learning

model generalizes, i.e. given a new vector of prices

~ρnew, how the response predicted using ~α ′ differs from

the response obtained using ~α∗. We computed it as

∑t(P(t)−∑i α
′
iρi(t))

2, where P(t),~ρ(t) belong to Dval.

• Area under the Receiver Operating Characteristic

(ROC) curve: The ROC curve is calculated by threshold-

ing the estimates ~α ′. Those α ′
i that lie above (below) the

threshold are considered as active (inactive) customers.

For a given threshold, it is computed as the ratio between

the true positive rate and the false positive rate, where the

true positive rate means those active customers that are

detected out of the actual active ones and false positive

rate means those active customers that are detected out

of the inactive ones. The ROC curve plots this relation

at various threshold settings. The area under the curve

measures the ability of the method to correctly classify

those customers that are and are not active. A value of

1 for the area represents a perfect test whereas an 0.5

represents a worthless test.

• Reconstruction error: measures how accurately the pat-

tern of price elasticities is recovered. It is defined as the

ℓ1 norm of the price elasticities differences, ∑i |αi
′−αi

∗|.

The quality of learning depends critically on the following

three dimensionless parameters: the ratio of measurement

time slots to number of samples T/N, the sparsity level,

and the Signal-to-Noise ratio (SNR) of the aggregate power

measurement. In the next two Subsections we consider the

dependence on the number of samples and SNR. For each

condition, we report the variations in the results over 10

different random instances.

A. Dependence on the Number of Samples

In our study of the dependence on T/N, we set the noise

level to β = 1/σ2
P = 1. As shown in Fig. 2, the generalization

errors (top plot) for the three tested methods are similar if

the number of samples is small. Once the number of samples

reaches certain threshold (in this case T/N ≈ 40%) the error of

ℓ0 drops to the error obtained using the actual (optimal) elas-

ticities (denoted by ’Opt’ and black curve), and the decrease in

the lasso error is also significant. On the contrary, the perfor-

mance of ridge regression improves continuously but slowly,
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Fig. 2. Results for 10% of active customers vs the number of measurements.

remaining worse than what is shown by the other methods.

The area under the ROC curve (middle plot) shows that ℓ0
and ridge methods initially perform similarly and significantly

better than lasso. This is consistent with the fact that when

the number of samples is small, the lasso outputs a trivial

(all zero) solution. However, once the threshold is reached,

both lasso and ℓ0 outperform the ridge method. Finally, the

reconstruction error in the sparse case (bottom plot) shows a

well pronounced threshold for ℓ0, which reconstructs the price

elasticity pattern perfectly once ≈ 40% or more samples are

available. The lasso error, although very small, is not totally

reduced, because some coefficients are not set to zero. We

observe that the reconstruction error of the ridge method is

not monotonic - showing an initial increase and then decrease,

which is consistent with the fact that the ridge regression is

not optimizing the reconstruction error.

The results are qualitatively different for denser problems,

see Fig. 3. Testing the generalization error (top plot), one

observes an abrupt transition in both lasso and ℓ0 meth-

ods. However, the transition occurs earlier in the ℓ0 method
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Fig. 3. Results for 50% of active customers vs the number of measurements.

(T/N ≈ 80%) than in the lasso, which requires T ≈N number

of samples to reduce the error significantly. Remarkably, for

small T/N (before the threshold) the solution provided by

the simplest method (ridge) is the best. The behavior of the

area under the ROC curves (middle plot) also differs from

the sparse case – the performance of ℓ0 and lasso below the

threshold is not as good as before. Finally, the reconstruction

error (bottom plot) is generally worse in this case, and again

the ridge method shows the best performace for small T/N.

B. Dependence on the Signal-to-Noise Ratio

We now vary the SNR in a simulated environment of N =
500 customers. We define the SNR as the log of the average

standard deviation of ~αT~ρ(t) divided by the standard deviation

σP. In this case, we choose the number of time steps to be

large enough to allow accurate reconstruction for sufficiently

large SNR, i.e. T = 250 samples for a sparsity of 10% and

T = 475 samples for a sparsity of 50%. These conditions are

shown as gray vertical lines in Figs. 2 and 3, respectively.

Figs. 4 and 5 show that, at sufficiently high SNR, ℓ0
performs the best. However, when the SNR is low, the other
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Fig. 4. Results for 10% of active customers vs SNR.

two methods outperform ℓ0 in all the measures considered, but

especially if the problem is dense, see Fig. 5. In the dense case,

ridge regression is the best option at low SNR. Note, however,

that the bad performance of lasso in the dense case is due to

the fact that it requires more samples for denser problems to

improve over ridge, see the gray line in Fig. 3.

IV. DISCUSSION AND FUTURE WORK

Our main conclusion is that the sparse reconstruction can

be used to extract individual consumer price elasticities from

a measured time series of aggregated consumption of real

power when this aggregated power is perturbed using small,

consumer-specific, random price signal variations. For the

reconstruction to be reliable, several conditions must be met:

the number of time slots over which consumers do not change

their elasticity should be sufficiently large, the proportion

of the consumers actually responding should be sufficiently

small, and the aggregated consumption is sufficiently large

so that the price-driven response is not swamped by the

noise of natural fluctuations of consumption. All methods

show transitions (smooth or abrupt, and sometimes at different

651



0 1 2 3 4 5 6

10
−4

10
−2

10
0

SNR

sparsity = 50%, generalization error

 

 

L
0

Lasso

Ridge

Opt

0 1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1

SNR

area under ROC curve

0 1 2 3 4 5 6
0

0.2

0.4

0.6

SNR

reconstruction error

Fig. 5. Results for 50% of active customers vs SNR.

values of the governing parameters) in reconstruction quality.

In a regime where the number of samples is insufficient

or when the SNR is not sufficiently large, the ℓ0 method

performs worse than the others, and its performance degrades

for denser problems. In these bad or marginal cases, one

would choose the lasso method over the ℓ0 method. However,

when the unreliable-to-reliable transition has been crossed,

the ℓ0 approach is preferable because it is able to reconstruct

the individual price elasticities perfectly, at the cost of more

computational time. Further simulations (not discussed in the

manuscript) suggest that this phase transition-like behavior

becomes sharper with increase in N.

The technique described in this manuscript applies prac-

tically without modifications to a number of more general

settings, for example to account for distributed generation

(e.g. from PV systems that include local storage) sold by

consumers to the utility. This will require introducing an

additional selling-price signal, but it is otherwise identical to

the description above. Generalizations accounting for other

types of the exogenous signals, e.g. to outside temperature,

can also be made as long as they signals are known on a

consumer-specific basis.

In a future, we will consider incorporating more details of

power systems into the reconstruction, e.g. losses, variation

in voltages, and nonlinearity of power flows. Another direc-

tion for extensions is more detailed modeling of consumer

elasticity that includes the discrete and nonlinear nature of

the response [8]. Finally, some of the sparse reconstruction

methodology discussed in this manuscript should be useful

for analysis of the ”closed loop” distribution markets, e.g. the

double auction markets of the Olympic Peninsula Project [5]

and several others discussed in recent energy market research

[18], [19], [20].
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