
Sparse matrix factorization for Brain Computer Interfaces

Alberto Llera Arenas
Donders Institute/Biophysics Department

Radboud University Nijmegen
The Netherlands.

a.llera@donders.ru.nl

Vicenç Gómez
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Abstract

We present a novel sparse dimensionality reduction ap-

proach to reconstruct biological signals for brain computer

interfaces (BCI). The proposed technique may be used in

the design of an adaptive Brain Computer Interface which

uses interaction error potentials.

1. Introduction

Interaction error potentials (IEP) are potentials detected

in the recorded EEG of a subject controlling a device, just

after the device performs an error. The error is the differ-

ence between the result of the action that the subject ex-

pected, based on his/her action, and the actual outcome.

Since the 1990’s there has been many studies related to

the presence of error potentials. They can be classified as

follows: the response error potential [3] found in speeded

reaction tasks; the feedback error potential [8] which ap-

pears in reinforcement learning tasks; the observation error

potential [12] and finally, the IEP, which can be detected in

a Brain Computer Interface (BCI) context [4].

The precise detection of an IEP after the BCI makes a

classification error can help us to construct a more robust

BCI, by either correcting the BCI output directly, or more

interestingly, by adapting the BCI classifier so that it is less

likely to make a similar mistake in the future. This idea is

illustrated in Figure 1.

From EEG studies it is well known [3, 4, 8, 12] that the

error (as we introduced above) is usually followed by what

is called event-related negativity (ERN) which is found in

the α-band in fronto-central channels. More recently, an

MEG study [7] on the detection of error fields in MEG has

shown an increase in the frontal µ-power and a decrease in

the posterior α and central β-power.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Feature 1

F
e
a
tu

re
 2

New data point

Time t

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Feature 1

F
e
a
tu

re
 2

Time t+1

 

 

Right

Left

Decision boundary

Figure 1. Illustration of an adaptive BCI for a binary task. Each

point is labeled with the movement (class) that was intended by

the subject (left or right) and denotes a brain state encoded using

two features. Bold line indicates the decision boundary of the BCI

classifier. (Left) A new point is misclassified. The IEP recognized

by the BCI provides a mechanism to detect the misclassification.

(Right) The decision boundary is changed and the BCI is adapted

during performance.

The application of the IEP to BCI [4] requires its reliable

detection. The IEP may in principle be localized in various

channels, various frequency bands, and may be subject de-

pendent.

In this paper, we propose a novel dimensionality reduc-

tion approach which can be used to analyse the IEP. We

propose a sparse version of singular value decomposition

(SVD) that describes the high dimensional signal as a sum

of a small number of sparse templates that change through

time. The sparsity means that the number of channels that

are used in each template is small and it will greatly im-
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prove the interpretability of our findings. Our approach is

then related to works which rely on signal decomposition

using different spatio-temporal features [6, 10] and opens

new doors on how to classify the interaction error fields

(IEF, which are the MEG equivalent of the IEP) since we

do not need to focus in just a few electrodes, but we may

use all the electrodes to increase the quality of the classifi-

cation.

Our approach is presented without any preselected fre-

quency band for detection of IEF, since the aim of this work

is only to present a new method and is not specially focused

on solving the IEF classification. However, it can be ap-

plied to any specific frequency band that previous knowl-

edge might indicate is the most relevant for a particular

problem.

2. Experimental setup

We describe now the experimental framework we used

in our data acquisition. The main goal of this experimental

design is to gain insight into how error signals are encoded

in the brain. Up to now, we gathered measurements from

two subjects. Each subject performed 6 sessions composed

of 84 trials with a minute between two sessions. We plan to

acquire data from 25 more subjects.

All the data used during this work was collected using

an MEG system with 275 channels from which 273 were in

use. EOG and ECG were also recorded and trials with ocu-

lar or muscular artifacts were removed from the data using

an automatic routine.

The experiment is designed as follows:

1. First, two squares and a fixation cross appear in the

screen.

2. After 300 ms, the fixation cross becomes an arrow

(pointing to left or right). The subject is instructed to

direct the attention to the direction pointed by the ar-

row points while keeping the sight in the center of the

screen.

3. After 2000 ms, the arrow disappears and is replaced

with a text indicating the decision of the device (right

or left). This lasts for 1000 ms, and it is the period of

main interest.

4. Finally, the text disappears and the two squares remain

in the screen for 1000 ms before the new trial starts.

Note that subjects are instructed to control the device using

directed (or covert) attention, a well known paradigm for

BCI control, based on the lateralization of the power on the

α band in the posterior channels [11]. However, we could

also have used another paradigm such as, for instance, mo-

tor imagery, without any change in our protocol.

Figure 2. Experimental protocol.

In this preliminary setup, to focus in the goal of error

detection, the device returns automatically a random 20%
of error responses. We labeled as error trials those with the

wrong feedback (when the text does not correspond to the

direction pointed by the arrow) and correct trials otherwise.

The length of the trials was reduced to 1800 ms. For

that we selected the full period for IEF detection (1000 ms)

plus 800 ms of the arrow. The recording sampling rate was

1200 Hz which gave us a total of 2160 time points per trial.

This means that our data matrix for a single trial has size

n× t, where n = 273 and t = 2160.

3. Theoretical framework

In this section we present our method to obtain a recon-

struction of the data using a reduced and sparse set of fea-

tures. First, we describe how we perform dimensionality

reduction and then we focus on sparsity.

3.1. Matrix Factorization and Dimensionality Re­
duction

Lets assume that we have a data matrix Y ∈ Mn×t

where n and t indicate number of channels and time-steps

respectively. When facing the problem of matrix factoriza-

tion in a general setting, our goal is to find two matrices F

and G that minimize

||FG− Y ||2
2
. (1)

where ||FG − Y ||2 is the Frobenius norm of the matrix

FG− Y . This can be seen as constructing a basis matrix F

for which the coefficients for the data are in matrix G.

A common first step when classifying data is to reduce

the effect of the noise and use the most informative fea-

tures. This is usually done using dimensionality reduction

techniques. In our case, we retain the most informative k

basis vectors and discard the rest.



In this general setting, we see that for any given k ∈ N

we can find matrices F ∈Mn×k and G ∈Mk×t that min-

imize expression (1). We are interested in the case where

k ≪ n. Here appears the model selection problem, or how

to select the parameter k.

For k = n, the singular value decomposition (SVD)

can be used to factorize Y and obtain three matrices: U ∈
Mn×n, a diagonal matrix S ∈Mn×t and V ′ ∈Mt×t such

that

Y = USV ∗. (2)

where ∗ denotes conjugate transpose of a matrix, and the

singular values of Y are sorted by their absolute value in

descending order along the diagonal of S. If we define F =
U and G = SV ∗, such a factorization corresponds to the

minimization of (1) for the case of k = n.

For k ≪ n, we define the matrix F considering only

the first k columns of F and equivalently, G considering the

first k rows of G. Hence, FG is an approximation of Y ,

which becomes more accurate as k increases.

In this work, we use the Akaike information criterion

(AIC) [1] to select the value of k. In our particular case,

under the assumption that errors are normally distributed,

the AIC selects the k which minimizes

||FG− Y ||2
2

+ k(n + t). (3)
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Figure 3. The Akaike information criterion (AIC) for model selec-

tion is used to select the number of features k in our approach.

Figure 3 shows the AIC for different trials corresponding

to the experiment described in section 2. From now on we

can assume that k is fixed.

3.2. Sparsity

Up to now we have described how to represent the ma-

trix Y using a reduced basis F of k vectors. Each of the k

vectors can be considered as a feature composed of a mix-

ture of different channels. To reconstruct the original signal

over time these features are weighted by the corresponding

coefficients in G.

In this section we explain how to make the basis F

sparse. Enforcing sparsity in F will result in features com-

posed of a reduced number of channels thus providing a

more compact and structured representation of the data and

consequently, increasing the interpretability of the recov-

ered signal.

A natural method to obtain a sparse F is an extension

to matrices of the ℓ1-norm regularized least squares method

[2]. Given the data Y , and assuming an initial G fixed, we

are interested in the F which minimizes

||FG− Y ||2
2

+ λ||F ||1, (4)

where the ||F ||1 is the sum of the absolute values of the

elements in the matrix F .

Instead of minimizing Equation (4) directly, we make

use of an extension of the algorithm described in [5]. Given

a matrix A and a vector y, [5] describes an interior-point

method for solving x which minimizes:

||Ax− y||2
2

+ λ||x||1. (5)

Note first that the minimization of (4) is equivalent to the

minimization of

||GTFT − Y T||2
2

+ λ||F ||1. (6)

Thus [5] gives a solution to our problem for n = 1.

Now denote the s-th column of Y T by Y T

s . Using [5] we

can also find a solution to

||GTx− Y T

s ||
2

2
+ λ||x||1, (7)

where x is exactly the s-th column of FT. Repeating this

procedure for every s ∈ {1 . . . n} we can find F , a solution

of (6) and consequently of (4). In other words, we have ex-

pressed the global minimization (4) as n independent mini-

mizations of the form (7), one for each channel.

Parameter λ plays the role of a trade-off between spar-

sity and quality of the reconstruction. On one hand, for a

small λ, the quality of the reconstructed signals will be high.

However, F will less sparse. On the other hand, a large λ

will result in a very sparse F , but in poor approximations of

the original signals.

After having defined a procedure to find a reduced and

sparse basis F , we can find a new G which minimizes Equa-

tion (1). Since (1) is a differentiable quadratic form in G,

the solution can be found analytically and we can write the

optimal G in closed form:

G = (FTF )−1(FTY ). (8)



Note that the inverse (FTF )−1 is only defined when

rank(F ) = k, and this is not generally guaranteed. In

particular, the more sparse F is, the more likely is that

rank(F ) < k. This means that there exists a maximal λ

which limits the level of sparsity that can be achieved by

our method. In practice, this limitation does not restrict our

method, as we will show in the next sections.

4. Algorithms for Sparse matrix factorization

After introducing the theoretical building blocks of our

approach, we present two possible algorithms. Both algo-

rithms take as input the BCI data Y , the regularization pa-

rameter λ and the desired sparsity of the solution (number

of zero entries in F ).

Algorithm 1 applies SVD to the original signal Y and

then uses AIC (see Section 3.1) to select k. This results in

a matrix G with k rows which is used in the ℓ1-norm mini-

mization (step 4 of Algorithm 1) to find the sparse basis F ⋆.

After the minimization, some of the entries in F ⋆ are very

small in absolute value. We set the required entries to zero

as long as the matrix F ⋆ has full rank (in practice, we al-

ways found full rank matrices even using 50% of sparsity).

Algorithm 1

Require: x (number of zeros in F ), λ and matrix Y

1: G← SV D(Y ).
2: k ← AIC.

3: G← select k rows of G.

4: F ⋆ ← argmin
F ′ ||F ′G− Y ||2

2
+ λ||F ′||1.

5: repeat

6: (i, j)← find smallest non-zero absolute value F ⋆

7: F ⋆(i, j) := 0
8: until F ⋆ has x zeros or rank(F ) < k.

9: G⋆ ← argmin
G
||F ⋆G− Y ||2

2

10: return F ⋆, G⋆

Figure 4 shows the behavior of the algorithm for three

different values of λ as a function of the number of zeros.

As can be seen, the larger the λ, the more sparse can F be

made without increasing significantly the error. Note, how-

ever, that for small λ, the initial errors (those corresponding

to non-sparse solutions) are smaller than for large λ.

The interplay between λ and the level of sparsity sug-

gests a modification of the algorithm in which the matrix F

resulting from SVD, instead of F ⋆, is used as a final basis.

The latter is used only to select which entries of F must be

zero. Algorithm 2 describes this alternative approach.

Figure 5 shows a comparison of both methods for a fixed

λ = 300 as a function of the number of zero entries. As can

be seen, the alternative algorithm performs better than the

previous one as long as the solution is not very sparse.
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Figure 4. Performance of Algorithm 1 from one random trial. k is

fixed to 19 using AIC and λ = {200, 300, 400}.

Algorithm 2

Require: x (number of zeros in F ), λ and matrix Y

1: F,G← SV D(Y ).
2: k ← AIC.

3: F,G← select k cols. and rows from F,G respectively.

4: F ⋆ ← argmin
F ′ ||F ′G− Y ||2

2
+ λ||F ′||1

5: repeat

6: (i, j)← find smallest non-zero absolute value F ⋆

7: F (i, j) := 0
8: until F has x zeros or rank(F ) < k.

9: G⋆ ← argmin
G
||FG− Y ||2

2

10: return F,G⋆
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Figure 5. Performance of Algorithm 2 (solid) versus Algorithm 1

(dashed) from one random trial. k = 19 and λ = 300.

4.1. Choosing the regularization parameter λ

Given a level of sparsity, is there a λ for which the error is

minimal? If this is the case, we could choose automatically



the λ provided the number of zero entries in the matrix F .
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Figure 6. Performance of Algorithm 2 as a function of λ for dif-

ferent levels of sparsity. Results are equivalent if we consider all

the trials.

Figure 6 shows the performance of Algorithm 2 as a

function of λ for different levels of sparsity: 1000, 2000
and 2594 (50% of the entries). It shows that there exists a

optimal value of λ for any level of sparsity. This optimal

value could be easily found, for instance, using line search.

For both algorithms we found that the optimal λ, as well

as the error, are larger as we increase the level of sparsity.

4.2. Why not make sparse the SVD directly?

Another way to look at the problem would be to simply

make zeros the positions of smallest absolute values of F ,

and then updating G using (8). In Figure 7 we show that

this is not a good strategy. As we can see, the error of Algo-

rithm 2 with λ = 300 is always smaller than this alternative

approach, regardless of the level of sparsity, showing the

advantage of using the ℓ1-norm minimization.

This can also be viewed from the perspective that the

regularization term used in step 4 of Algorithm 2 has by

definition the property to produce parameter shrinkage in

the least relevant directions of the data.

5. Results: Sparse reconstruction of signals

In this section we illustrate with an example the qual-

ity of the reconstruction made by our method. We show

results for the MEG signal acquired according the experi-

mental procedure described in Section 2.

Step 2 of Algorithm 2 gives k = 19. Since the MEG

system has 273 active channels, this result in a matrix F ∈
M273×19, so the matrix F has a total of 5187 elements.

For this example we will require Algorithm 2 to make 2000

zeros in F . For this level of sparsity, we selected λ = 300.
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Figure 7. Performance of Algorithm 2 (solid) versus sparsifying

the initial SVD (dashed). k = 19 and λ = 300.

As expected, we observe that columns of F associated

with the most relevant features (leftmost columns) are less

sparse than the rightmost columns, However, it is not the

case that a column becomes totally zero, which would indi-

cate that rank(F ) < k.
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Figure 8. Example of signal reconstruction for one channel and

one trial selected randomly. (Top) Original signal (grey solid) and

the approximation (black dashed-dotted) over time. The approxi-

mation was calculated using Algorithm 2 with k = 19, λ = 300

and 2000 zeros in F . The inset shows an histogram of the resid-

uals, which look normally distributed. (Bottom) Residuals as a

function of time.

Figure 8 illustrates the reconstruction obtained from a

random channel (random row of Y ) in one trial using Al-

gorithm 2. For this particular channel there are 7 zeros out

of the 19 elements in the respective row of F . The sparsity

of the whole matrix F is 38%, whereas the selected channel



appears as irrelevant in 37% of the features. As can be seen

from the figure, the reconstruction is very accurate.

5.1. Discussion and ongoing research

We have developed a method to decompose a space/time

signal into a small set of features and shown its applicability

in MEG signal reconstruction. The method not only leads to

a more understandable signal but, more importantly, is also

appropriate to be used in a BCI setup, such as the one pre-

sented in Section 1, where the reconstructed signal is used

in the classification of IEP. This is our current direction of

research.

We devise some possibilities to improve/extend the pro-

posed method. First, since the role of the regularizer in

our algorithms is just that to select which positions in F

should be zero, we might get similar results by using the

Tikhonov regularization, also known as ℓ2-regularized least

squares [9]. This approach would be much more efficient

in computational terms since the regularization becomes a

a quadratic differentiable form which therefore has an ana-

lytic solution. We have promising preliminary results in this

direction.

Another extension is to perform the analysis into the

frequency domain, more often used in BCI. Notice that

the method can be easily adapted to this case: first, the

source data Y would be transformed using a selected band

of frequencies (low frequencies are more convenient in our

paradigm) and then our sparse factorization would be ap-

plied to the transformed data. The resulting basis would

constitute a set of spectral features which change over time,

the analogous counterpart to our original features.
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