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Abstract We analyze the variational method for sparse regression using �0 regularization.
The variational approximation results in a model that is similar to Breiman’s Garrote model.
We refer to this method as the Variational Garrote (VG). The VG has the effect of making
the problem effectively of maximal rank even when the number of samples is small com-
pared to the number of variables. We propose a naive mean field approximation combined
with a maximum a posteriori (MAP) approach to estimate the model parameters and use
an annealing and reheating schedule of the sparsity hyper-parameter to avoid local minima.
The hyper-parameter is set by cross-validation. We compare the VG with the lasso, ridge re-
gression and the recently introduced Bayesian paired mean field method (PMF) (Titsias and
Lázaro-Gredilla in Advances in neural information processing systems, vol. 24, pp. 2339–
2347, 2011). For fair comparison, we implemented a similar annealing-reheating schedule
for the PMF sparsity parameter. Numerical results show that the VG and PMF yield more
accurate predictions and more accurately reconstruct the true model than the other methods.
The VG finds correct solutions when the lasso solution is inconsistent due to large input
correlations. In the experiments that we consider we find that the VG, although based on
a simpler approximation than the PMF, yields qualitatively similar or better results and is
computationally more efficient. The naive implementation of the VG scales cubic with the
number of features. By introducing Lagrange multipliers we obtain a dual formulation of
the problem that scales cubic in the number of samples, but close to linear in the number of
features.
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1 Introduction

One of the most common problems in statistics is linear regression. Given p samples
of n-dimensional input data x

μ

i , i = 1, . . . , n and 1-dimensional output data yμ, with
μ = 1, . . . , p, find weights wi,w0 that best describe the relation

yμ =
n∑

i=1

wix
μ

i + w0 + ξμ (1)

for all μ. ξμ is zero-mean noise with inverse variance β .
The ordinary least square (OLS) solution is given by w = χ−1b and w0 = ȳ − ∑

i wi x̄i ,
where χ is the input covariance matrix b is the vector of input-output covariances and x̄i , ȳ

are the mean values. There are several problems with the OLS approach. When p is small,
it typically has a low prediction accuracy due to over fitting. In particular, when p < n, χ is
not of maximal rank and so its inverse is not uniquely defined. In addition, the OLS solution
is not sparse: it will find a solution wi �= 0 for all i. Therefore, the interpretation of the OLS
solution is often difficult.

These problems are well-known, and there exist a number of approaches to overcome
these problems. The simplest approach is called ridge regression. It adds a regularization
term 1

2λ
∑

i w
2
i with λ > 0 to the OLS criterion. This has the effect that the input covariance

matrix χ gets replaced by χ + λI which is of maximal rank for all p. One optimizes λ by
cross validation. Ridge regression improves the prediction accuracy but not the interpretabil-
ity of the solution.

Another approach is lasso (Tibshirani 1996). It solves the OLS problem under the lin-
ear constraint

∑
i |wi | ≤ t . This problem is equivalent to adding an �1 regularization’s term

λ
∑

i |wi | to the OLS criterion. The optimizations of the quadratic error under linear con-
straints can be solved efficiently. See Friedman et al. (2010) for a recent account. Again,
λ or t may be found through cross validation. The advantage of the �1 regularization is that
the solution tends to be sparse. This improves both the prediction accuracy and the inter-
pretability of the solution.

The �1 or �2 regularization terms are known as shrinkage priors because their effect is to
shrink the size of wi . The idea of shrinkage prior has been generalized by Frank and Fried-
man (1993) to the form λ

∑
i |wi |q with q > 0 and q = 1,2 corresponding to the lasso and

ridge case, respectively. Better solutions can be obtained for q < 1, however the resulting
optimization problem is no longer convex and therefore more difficult to solve.

An alternative Bayesian approach to obtain a sparse solution using an �0 penalty was
proposed by George and McCulloch (1993), Mitchell and Beauchamp (1988) under the
“spike and slab” formulation. There are n variational selector variables si such that the
prior distribution over wi is a mixture of a narrow (spike) and wide (slab) Gaussian dis-
tribution, both centered on zero. The posterior distribution over si indicates whether the
input feature i is included in the model or not. Since the number of subsets of fea-
tures is exponential in n, for large n one cannot compute the solution exactly. In addi-
tion, the posterior is a complex high dimensional distribution of the wi and the other
(hyper) parameters of the model. The computation of the posterior requires thus the
use of Markov chain Monte Carlo (MCMC) sampling (George and McCulloch 1993;
Brown et al. 1998; Clyde and George 2004; Ishwaran and Rao 2005) or variational
Bayesian approximations (Carbonetto and Stephens 2012; Titsias and Lázaro-Gredilla 2011;
Logsdon et al. 2010).
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Although Bayesian approaches tend to over fit less than a maximum likelihood or maxi-
mum a posteriori (MAP) estimators, they also tend to be relatively slow. Here we propose a
partial Bayesian approach, where we apply a variational approximation to integrate out the
binary (selector) variables in combination with a MAP approach for the remaining parame-
ters. For clarity, we analyze this idea in its most simple form, in the absence of (hierarchical)
priors. Instead, we infer the sparsity prior through cross validation. As we will motivate be-
low, we call the method the Variational Garrote (VG).

The paper is organized as follows. In Sect. 2 we introduce the model and derive the
variational approximation. Related work is described in Sect. 3. In Sect. 4 we study the case
when the design matrix is orthogonal. In this case the solution can be computed exactly in
closed form with no need to resort to approximations. In Sect. 5 we compare numerically
the VG with a number of other MAP methods, such as lasso and ridge regression and with
the paired mean field method (PMF) (Titsias and Lázaro-Gredilla 2011), a recently proposed
variational Bayesian method. We conclude with discussion in Sect. 6.

2 The variational approximation

Consider the regression model of the form1

yμ =
n∑

i=1

wisix
μ

i + ξμ

n∑

i=1

si ≤ t (2)

with si = 0,1. The bits si = 1 will identify the predictive inputs i. Using a Bayesian de-
scription, and denoting the data by D : {xμ, yμ},μ = 1, . . . , p, the likelihood term is given
by

p(y|x, s,w, β) =
√

β

2π
exp

(
−β

2

(
y −

n∑

i=1

wisixi

)2)

p(D|s,w, β) =
∏

μ

p
(
yμ|xμ, s,w, β

)
(3)

=
(

β

2π

)p/2

exp

(
−βp

2

(
n∑

i,j=1

sisjwiwjχij − 2
n∑

i=1

wisibi + σ 2
y

))

with bi = 1
p

∑
μ x

μ

i yμ, σ 2
y = 1

p

∑
μ(yμ)2, χij = 1

p

∑
μ x

μ

i x
μ

j .
We should also specify prior distributions over s,w, β . For concreteness, we assume that

the prior over s is factorized over the individual si , each with identical prior probability:

p(s|γ ) =
n∏

i=1

p(si |γ ) p(si |γ ) = exp(γ si)

1 + exp(γ )
(4)

with γ given which specifies the sparsity of the solution. We denote by p(w, β) the prior
over the inverse noise variance β and the feature weights w. We will leave this prior unspec-
ified since its choice does not affect the variational approximation.

1We assume from here on without loss of generality that 1
p

∑p
μ=1 x

μ
i

= 1
p

∑p
μ=1 yμ = 0.
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The posterior becomes

p(s,w, β|D,γ ) = p(w, β)p(s|γ )p(D|s,w, β)

p(D|γ )
(5)

Computing the MAP estimate or computing statistics from the posterior is complex in par-
ticular due to the discrete nature or s. We propose to compute a variational approximation
to the marginal posterior p(w, β|D,γ ) = ∑

s p(s,w, β|D,γ ) and computing the MAP so-
lution with respect to w, β . Since p(D|γ ) does not depend on w, β we can ignore it.

The posterior distribution equation (5) for given w, β is a typical Boltzmann distribution
involving terms linear and quadratic in si . It is well-known that when the effective couplings
wiwjχij are small, one can obtain good approximations using methods that originated in the
statistical physics community and where si denote binary spins. Most prominently, one can
use the mean field or variational approximation (Jordan et al. 1999), the TAP approximation
(Kappen and Spanjers 2000) or belief propagation (BP) (Murphy et al. 1999). For introduc-
tions into these methods also see Opper and Saad (2001), Wainwright and Jordan (2008).
Here, we will develop a solution based on the simplest possible variational approximation
and leave the possible improvements using BP or structured mean field approximations to
the future.

We approximate the sum by the variational bound (by Jensen’s inequality)

log
∑

s

p(s|γ )p(D|s,w, β) ≥ −
∑

s

q(s) log
q(s)

p(s|γ )p(D|s,w, β)

= −F(q,w, β). (6)

The probability distribution q(s) is called the variational approximation and can be any
positive probability distribution on s and F(q,w, β) is called the variational free energy.
The optimal q(s) is found by minimizing F(q,w, β) with respect to q(s) so that the tightest
bound (best approximation) is obtained.

In order to be able to compute the variational free energy efficiently, q(s) must be a
tractable probability distribution, such as a chain or a tree with limited tree-width (Barber
and Wiegerinck 1999). Here we consider the simplest case where q(s) is a fully factorized
distribution: q(s) = ∏n

i=1 qi(si) with qi(si) = misi + (1 − mi)(1 − si), so that q is fully
specified by the expected values mi = qi (si = 1), which we collectively denote by m.

The expectation values with respect to q can now be easily evaluated and the result is

F = βp

2

(
n∑

i,j

mimjwiwjχij +
∑

i

mi(1 − mi)w
2
i χii − 2

n∑

i=1

miwibi + σ 2
y

)

− γ

n∑

i=1

mi +
n∑

i=1

(
mi logmi + (1 − mi) log(1 − mi)

) − p

2
log

β

2π
, (7)

where we have omitted terms independent of m, β,w. The first line is due to the likelihood
term, the second line is due to the prior on s and the entropy of q(s). The approximate
marginal posterior is then

p(w, β|D,γ ) ∝ p(w, β)
∑

s

p(s|γ )p(D|s,w, β)

≈ p(w, β) exp
(−F(m,w, β, γ )

)
.



Mach Learn

We can compute the variational approximation m for given w, β, γ by minimizing F with
respect to m. In addition, p(w, β|D,γ ) needs to be maximized with respect to w, β . Note,
that the variational approximation only depends on the likelihood term and the prior on γ ,
since these are the only terms that depend on s. Thus, for given w, the variational approx-
imation does not depend on the particular choices for the prior p(w, β). For concreteness,
we assume a flat prior p(w, β) ∝ 1. We set the derivatives of F with respect m,w, β equal
to zero. This gives the following set of fixed point equations:

mi = σ

(
γ + βp

2
w2

i χii

)
(8)

w = (
χ ′)−1

b χ ′
ij = χijmj + (1 − mj)χjj δij (9)

1

β
= σ 2

y −
n∑

i=1

miwibi (10)

with σ(x) = (1 + exp(−x))−1 and where in Eq. (10) we have used Eq. (9). Equations (8)–
(10) provide the final solution. They can be solved by fixed point iteration as outlined in
Algorithm 1.

input : Data D : {xμ, yμ},μ = 1, . . . , p; ε and step-size �γ

output : w,m, β, γ solution with minimal cross validation error
1 Preprocess data such that

∑
μ x

μ

i = ∑
μ yμ = 0 and partition D in Dtrain, Dval

2 Compute bi = 1
p

∑
μ x

μ

i yμ and if n < p compute χij = 1
p

∑
μ x

μ

i x
μ

j

3 Compute γmin from ε and γmax from γmin and �γ

4 Initialize m =← 0
5 for γ = γmin : �γ : γmax do // FORWARD PASS
6 η ← 1
7 while not converged do
8 Compute w, β from Eqs. (9)–(10) (n < p) or Eqs. (22), (25)–(28) (n > p)
9 Compute m′ using a smoothed version of Eq. (8): m′

i ← (1 − η)mi + ησ(. . .)

10 if maxi |m′
i − mi | > 0.1 then

11 η ← η/2

12 m ← m′

13 Store solution (w1,m1, β1)γ and F1(γ ) ← F((w1,m1, β1)γ ) from Eq. (7)

14 for γ = γmax : −�γ : γmin do // BACKWARD PASS
15 As 5 − 11
16 Store solution (w2,m2, β2)γ and F2(γ ) ← F((w2,m2, β2)γ ) from Eq. (7)

17 for γ = γmin : �γ : γmax do
18 Choose solution (w,m, β)γ that has minimal F1,2(γ )

19 Compute cross validation error on Dval using Eq. (11)

20 Select w,m, β, γ with minimal cross validation error

Algorithm 1: The Variational Garrote algorithm
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Within the variational/MAP approximation the predictive model is

y =
∑

i

miwixi + ξ (11)

with 〈ξ 2〉 = 1/β and m,w, β as estimated by the above procedure.
Equation (11) has some similarity with Breiman’s non-negative Garrote method (Breiman

1995). It computes the solution in a two step approach: it computes first wi using OLS and
then finds mi by minimizing

∑

μ

(
yμ −

n∑

i=1

x
μ

i wimi

)2

subject to mi ≥ 0
∑

i

mi ≤ t.

Because of this similarity, we refer to our method as the Variational Garrote (VG). Note,
that because of the OLS step the non-negative garrote requires that p ≥ n. Instead, the vari-
ational solution of Eqs. (8)–(10) computes the entire solution in one step (and as we will see
does not require p ≥ n).

The model in Eqs. (2), (4) is also equivalent to a “spike and slab” prior on the weights
parametrized as a product of a Gaussian random variable wi and a Bernoulli random vari-
able si

p(wi, si) = N
(
wi |0, σ 2

w

)
πsi (1 − π)1−si ∀i, (12)

under the identification that the VG assumes a constant (improper) prior on wi (σ 2
w = ∞)

and the relation between the sparsity γ and π is given by γ = log(π/(1 − π)).
Let us pause to make some observations about the VG solution. One might naively expect

that the variational approximation would simply consist of replacing wisi in Eq. (2) by its
variational expectation wimi . If this were the case, m would disappear entirely from the
equations and one would expect in Eq. (9) the OLS solution with the normal input covariance
matrix χ instead of the new matrix χ ′ (note, that in the special case that mi = 1 for all i,
χ ′ = χ and Eq. (9) does reduce to the OLS solution). Instead, m and w are both to be
optimized, giving in general a different solution than the OLS solution.2

When mi < 1, χ ′ differs from χ by rescaling with mi and adding a positive diagonal
to it, a ‘variational ridge’. This is similar to the mechanism of ridge regression, but with
the important difference that the diagonal term depends on i and is dynamically adjusted
depending on the solution for m. Thus, the sparsity prior together with variational approx-
imation provides a mechanism that solves the rank problem. When all mi < 1, χ ′ is of
maximal rank. Each mi that approaches 1, reduces the rank by one. Thus, if χ has rank
p < n, χ ′ can be still of rank n when no more than p of the mi = 1, the remaining n − p of
the mi < 1 making up for the rank deficiency. Note, that the size of mi (and thus the rank
of χ ′) is controlled by γ through Eq. (8).

In the above procedure, we compute the VG solution for fixed γ and choose its optimal
value through cross validation on independent data (Mitchell and Beauchamp 1988). This
has the advantage that our result is independent of our (possibly incorrect) prior belief.

2The technical reason that this does not occur is that in the computation of the expectation with respect to the

distribution q that results in Eq. (7) one has 〈si sj 〉 = mimj for i �= j , but 〈s2
i
〉 = 〈si 〉 = mi .
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Another important advantage of varying γ manually is that it helps to avoid local min-
ima. When we increase γ from a negative value γmin to a maximal value γmax in small steps,
we obtain a sequence of solutions with decreasing sparseness. These solutions will better
fit the data and as a result β increases with γ . Thus, increasing γ implements an annealing
mechanism where we sequentially obtain solutions at lower noise levels. We found empiri-
cally that this approach is effective to reduce the problem of local minima. To further deal
with the effect of hysteresis (see Sect. 4) we recompute the solution from γmax down to γmin

and choose the solution with lowest free energy.
The minimal value of γ is chosen as the largest value such that mi = ε, with ε small. We

find from Eqs. (8)–(10) that

γmin = −pb2
i χii

2σ 2
y

+ σ−1(ε) +O(ε) (13)

with σ−1(x) = log(x/(1 − x)). We heuristically set the maximal value of γ as well as the
step size.

In Appendix B we provide an alternative fixed point iteration scheme that is more ef-
ficient in the large n small p limit. Whereas Eqs. (8)–(10) require the repeated solution
of a n-dimensional linear system, the dual formulation, Eqs. (8), (22), (25)–(28), requires
the repeated solution of a p dimensional linear system. Algorithm 1 summarizes the VG
method.

3 Related work

The “spike and slab” model is one of the most widely approaches to sparse Bayesian variable
selection. Inference in this model has been performed usually by MCMC sampling. These
methods address the combinatorial problem of searching all possible 2n combinations of
predictors by sampling from the posterior distribution. There is an extensive literature on
MCMC methods for this model, e.g. George and McCulloch (1993), Brown et al. (1998),
Clyde and George (2004), Ishwaran and Rao (2005), O’Hara and Sillanpää (2009). However,
their applicability is limited on large-scale problems, since designing a Markov chain that
explores the parameter space efficiently is a difficult task. In this paper, we focus on the
alternative Bayesian variational approach.

A mean field variational approximation for the spike and slab prior was proposed initially
in Logsdon et al. (2010) in the context of genetic association studies. Their model differs
from the VG in the sense that they use separate and different priors for positive and negative
effects. They also use truncated normal distributions for the feature weights and place hyper-
priors on γ .

More recently, an alternative variational approximation called paired mean field (PMF)
has been proposed in Titsias and Lázaro-Gredilla (2011). It is defined on a model for multi-
ple outputs and considers a linear combination of an input layer of basis functions governed
by a Gaussian process, thereby unifying several sparse linear models such as sparse factor
analysis or sparse matrix factorization. To relate the PMF model to the VG, we consider the
uni-variate response case without the extra input layer. Instead of assuming a fully factor-
ized variational approximation, PMF places each weight wi and bit si in the same factor, i.e.
q(w, s) = ∏n

i=1 qi(wi, si).
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An important difference between the VG and the two previous methods is the algorithm
used for parameter optimization. The VG method computes expectation of s (called m)
but finds MAP solution for w and β . Hyper-parameter γ is optimized using an annealing-
reheating schedule and a validation dataset. In contrast, Logsdon et al. (2010) and Titsias and
Lázaro-Gredilla (2011) rely exclusively on the expectation-maximization algorithm with
random restarts. As we will show later, this can have important consequences in terms of
sub-optimality in cases where inputs are highly correlated.

Around the time of publication of this paper, we became aware of the work of Carbonetto
and Stephens (2012). Their approach also considers the fully factorized case but assumes a
joint prior for the hyper-parameters and uses importance sampling to compute their poste-
rior distribution. Similarly to the VG, their algorithm considers an inner-loop of coordinate
ascent updates for mi and wi .3 The difference is that it considers β as a hyper-parameter,
together with σ 2

w and π , and they are jointly integrated using importance sampling. The sam-
pling step is in practice performed using a three-dimensional grid with resolution selected
heuristically. For each setting of the hyper-parameters, they compute the largest marginal
likelihood solution (m(init),w(init)) using random initializations and, instead of annealing, the
coordinate ascent updates are run separately again for each setting of the hyper-parameters
with (m(init),w(init)) as initialization.

The fully factorized approximation considered here is also closely related to the one pro-
posed for independent factor analysis (Attias 1999). Combined with a more complex form
of annealing for MAP search has been proposed in Yoshida and West (2010) in the context
of sparse latent factor analysis. They have shown that this type of optimization strategy can
be useful to address the local minima problem and lead to robust estimation.

An alternative to the aforementioned variational approaches is the work of Hernández-
Lobato et al. (2010), in which the expectation propagation (EP) algorithm is used in a multi-
task setting where the latent variables indicate whether the corresponding features are used
for classification in all the tasks or in none of them. EP also considers a factorized approxi-
mate distribution.

The problem of inconsistency of the lasso’s penalty has been addressed by many authors
and lead to several generalizations (see Tibshirani 2011 and references therein). Two pop-
ular approaches that, similarly to the VG, consider non convex penalties, are the Smoothed
Clipped Absolute Deviation penalty (known as SCAD) (Fan and Li 2001) and the SparseNet
(Mazumder et al. 2011). The SCAD (Fan and Li 2001) replaces the lasso penalty with a con-
tinuous differentiable function that reduces the amount of shrinkage for larger values of wi ,
with eventually no shrinkage for wi → ∞. The SparseNet (Mazumder et al. 2011) performs
a coordinate-wise optimization of λ and q , covering the bridge of possible solution surfaces
between lasso q = 1 and variable selection q = 0.

From a Bayesian point of view, the lasso estimator can be viewed as solving a MAP es-
timation problem when the feature weights have independent double exponential (Laplace)
priors. A complete Bayesian analysis for the lasso prior is developed in Park and Casella
(2008). Fully Bayesian approaches compute posterior mean and median estimates using
MCMC sampling and may lead to solutions that are not necessarily sparse. Recently,
a Bayesian model that extends the double exponential prior with a normal-exponential-
gamma distribution (NEG) and uses MAP estimation has been proposed in Griffin and
Brown (2011). The NEG prior has a finite spike at zero and heavy tails, thus preventing
over-shrinkage of weights with large absolute values. The authors propose an EM method

3The notation in Carbonetto and Stephens (2012) uses αk for mi and μk for wi .
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that alternates between estimation of the prior variances of the weights (E-Step) and the
weight values conditioned on the variances (M-Step). Other hyper-parameters are chosen
using cross validation.

4 Orthogonal and uni-variate case

In this section we show for the uni-variate case that the solution is either unique or has
two solutions, depending on the input-output correlations, the number of samples p and on
the sparsity prior γ . We derive a phase plot and show that the solution is unique, when the
sparsity prior is not too strong or when the input-output correlation is not too large. The
input-output behavior of the VG is shown to be close to optimal as a smoothed version of
hard feature selection. We argue that this behavior also holds in the multi-variate case.

Consider the case in which the inputs are uncorrelated: χij = δij . In this case, we can
derive the MAP solution of Eq. (5) exactly, without the need to resort to the variational ap-
proximation. Equation (5) reduces to a distribution that factorizes over i with log probability
proportional to

L = p

2
logβ − βp

2

(
n∑

i=1

si

(
w2

i − 2wibi

) + σ 2
y

)
+ γ

n∑

i=1

si

Maximizing wrt wi,β yields wi = bi , β−1 = σ 2
y − ∑n

i=1 sib
2
i and

L = p

2
logβ +

n∑

i=1

si

(
βp

2
b2

i + γ

)
− βp

2
σ 2

y

Assume without loss of generality that b2
i are sorted in decreasing order. L is maximized

by setting si = 1 when βp

2 b2
i + γ > 0 and si = 0 otherwise. Thus, the optimal solution is

s1:k = 1, sk+1:n = 0, β−1 = σ 2
y − ∑k

i=1 b2
i with k the smallest integer such that

βp

2
b2

k+1 + γ < 0 (14)

By varying γ from small to large, we find a sequence of solutions with decreasing sparsity.
In the variational approximation the solution is very similar but not identical. Equa-

tion (9) gives the same solution wi = bi . Equations (8) and (10) become

mi = σ

(
γ + βp

2
b2

i

)

1

β
= σ 2

y −
∑

i

b2
i mi

which we can interpret as the variational approximations of Eq. (14), with m1:k ≈ 1 and
mk+1:n ≈ 0. The term

∑
i b

2
i mi is the explained variance and is subtracted from the total

output variance to give an estimate of the noise variance 1/β .
Note that the posterior is factorized in si , the variational approximation is not identical

to the exact map solution equation (14), although the results are very similar. The relation is
si = 0 ⇔ mi < 0.5 and si = 1 ⇔ mi > 0.5.
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Fig. 1 Phase plot ρ,γ for
p = 100 giving the different
solutions for m. Dashed and
dot-dashed lines for
ρ > ρ∗ = 0.28 are from Eq. (19)
where two solutions for m exist.
Solid line for ρ < ρ∗ is the
solution for γ when m = 1/2, to
indicate the transition from the
unique solution m ≈ 0 to the
unique solution m ≈ 1. Dotted
line is the exact transition from
s = 0 to s = 1 from Eq. (14).
Insets indicate solutions for m

versus ρ for γ = −10,p = 100
(top-right) and for γ = −40,
p = 100 (bottom-left). In the
lower left corner of the insets, the
unique solution m ≈ 0 is found.
In the top right corner, the
unique solution m ≈ 1 is found.
Between the dot-dashed and the
dashed line, the two variational
solutions m ≈ 0 and m ≈ 1
co-exist

In order to further analyze the variational solution, we consider the 1-dimensional case.
The variational equations become

m = σ

(
γ + p

2

ρ

1 − ρm

)
= f (m) (15)

1

β
= σ 2

y (1 − mρ) (16)

with ρ = b2/σ 2
y the squared correlation coefficient.

In Eq. (15), we have eliminated β and we must find a solution for m for this non-linear
equation. We see that it depends on the input-output correlation ρ, the number of samples p

and the sparsity γ . For p = 100, the solution for different ρ,γ is illustrated in Fig. 12 (see
Appendix A). Equation (15) has one or three solutions for m, depending on the values of
γ,ρ,p. The three solutions correspond to two local minima and one local maximum of the
free energy F . For γ = −40 and γ = −10, we plot the stable solution(s) for different values
of ρ in the inserts in Fig. 1. The best variational solution for m is given by the solution with
the lowest free energy, indicated by the solid lines in the inserts in Fig. 1.

Figure 1 further shows the phase plot of γ,ρ that indicates that the variational solution is
unique for γ > γ ∗ or for ρ < ρ∗. The solid line for 0 < ρ < ρ∗ in Fig. 1 indicates a smooth
(second order) phase transition from m = 0 to m = 1. For ρ > ρ∗, the transition from m = 0
to m = 1 is discontinuous: for each ρ there is a range of values of γ where two variational
solutions m ≈ 0 and m ≈ 1 co-exist. For comparison, we also show the line γ = −pρ/2
that separates the solution s = 0 and s = 1 according the exact (non-variational) solution
equation (14).

The multi-valued variational solution results in a hysteresis effect. When the solution
is computed for increasing γ , the m ≈ 0 solution is obtained until it no longer exists. If the
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Fig. 2 Uni-variate solution for
different regression methods. All
methods yield a shrinked solution
(deviation from diagonal line).
Variational Garrote (VG) with
γ = −10,p = 100 and σ 2

y = 1.
Ridge regression with λ = 0.5.
Garrote with γ = 1/4. Lasso
with γ = 1/2

sequence of solutions is computed for decreasing γ the m ≈ 1 solution is obtained for values
of γ where previously the m ≈ 0 solution was obtained.

From this simple one-dimensional case we may infer that the variational approximation
is relatively easy to compute in the uni-modal region (small ρ or γ not too negative) and
becomes more inaccurate in the region where multiple optima exist (region between the
dot-dashed and dashed lines in Fig. 1).

It is interesting to compare the uni-variate solution of the Variational Garrote with ridge
regression, lasso or Breiman’s Garrote, which was previously done for the latter three meth-
ods in Tibshirani (1996). Suppose that data are generated from the model y = wx + ξ with
〈ξ 2〉 = 〈x2〉 = 1. We compare the solutions as a function of w. The OLS solution is approx-
imately given by wols ≈ 〈xy〉 = w, where we ignore the statistical deviations of order 1/p

due to the finite data set size. Similarly, the ridge regression solution is given by wridge ≈ λw,
with 0 < λ < 1 depending on the ridge prior. The lasso solution (for non-negative w) is given
by wlasso = (w − γ )+ (Tibshirani 1996), with γ depending on the �1 constraint. Breiman’s
Garrote solution is given by wgarrote = (1 − γ

w2 )+w (Tibshirani 1996), with γ depending on
the �1 constraint. The VG solution is given by wvg = mw, with m the solution of Eq. (15).
Note, that the VG solution depends, in addition to w,γ , on the unexplained variance σ 2

y and
the number of samples p, whereas the other methods do not.

The qualitative difference of the solutions is shown in Fig. 2. The ridge regression solu-
tion is off by a constant multiplicative factor. The lasso solution is zero for small w and for
larger w gives a solution that is shifted downwards by a constant factor. Breiman’s Garrote
is identical to the lasso for small w and shrinks less for larger w. The VG gives an almost
ideal behavior and can be interpreted as a soft version of variable selection: For small w the
solution is close to zero and the variable is ignored, and above a threshold it is identical to
the OLS solution.

The qualitative nature of the phase plot Fig. 1 and the input-output behavior Fig. 2 ex-
tends to the multi-variate orthogonal case. The symmetry breaking of feature i is indepen-
dent of all other features, except for the term δ = ∑

j �=i b
2
jmj that enters through β . If we

increase γ , δ increases in steps each time that one of the features j switches from mj ≈ 0 to
mj ≈ 1. Thus δ is constant almost always, except at the step points. Since the critical values
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of ρ and γ depend in a simple way on δ, the phase plot for the multivariate orthogonal case
is qualitatively the same as for the uni-variate case.

5 Numerical examples

In the following examples, we compare the VG with lasso, ridge regression and in some
cases, with the paired mean field approach (PMF) (Titsias and Lázaro-Gredilla 2011). We
show that the VG and PMF significantly outperform the lasso and ridge regression on a
large number of different examples both in terms of the accuracy of the solution, as well as
in prediction error. In addition, we show that the VG does not suffer from the inconsistency
of the lasso method when the input correlations are large. We finally show how all methods
compare as a function of the level of noise, the sparsity of the target solution, the number of
samples and the number of irrelevant predictors.

For most of the examples, we generate training, validation and testing sets. Inputs are
generated from a zero mean multi-variate Gaussian distribution with specified covariance
structure. We generate outputs yμ = ∑

i ŵix
μ

i + dξμ with dξμ ∈ N (0, σ̂ ) and ŵi depending
on the problem.

For VG, ridge regression and lasso, we optimize the model parameters on the training
set and, when necessary, optimize the hyper-parameters (γ for VG, λ for ridge regression
and lasso) that minimize the quadratic error on the validation set. For the lasso, we used the
method described in Friedman et al. (2010).4

Comparison with PMF is performed using the software available online for the regression
case with one-dimensional output.5 For PMF, we merge both training and validation sets and
the resulting dataset is used as input for the PMF method. This ensures that all methods use
the same data for parameter estimation.

We also consider a modified version of PMF which replaces the update of π in the M-
Step with a sequential annealing-reheating procedure such as the one proposed for γ in
the VG. We observed empirically that the best strategy is to perform a sweep from sparse
to dense π0→1 solutions (forward pass) followed by a sweep from dense to sparse π1→0

solutions (backward pass) and select the solution with maximum bound value (or minimum
negative bound as we report here) in the backward pass. PMF does not over-fit as a function
of π and thus does not require the use of a validation set. We refer to such variant of PMF
as PMF-ANNEAL.

We define the solution vector for a given method as v. For VG, the components are
vi ≡ miwi . In the case of PMF and PMF-ANNEAL, mi corresponds to the spike-and-slab
variational posterior and wi to the variational mean for the weights.6 For ridge and lasso
vi ≡ wi .

5.1 Small Example 1

In the first example, we take independent inputs x
μ

i ∈ N (0,1) and a teacher weight vector
with only one non-zero entry: ŵ = (1,0, . . . ,0), n = 100 and σ̂ = 1. The training set size
p = 50, validation set size pv = 50 and test set size pt = 400. We choose ε = 0.001 in
Eq. (13), γmax = 0.02γmin,�γ = −0.02γmin (see Algorithm 1 for details).

4http://www-stat.stanford.edu/~tibs/glmnet-matlab/.
5http://www.well.ox.ac.uk/~mtitsias/software.html.
6The notation in Titsias and Lázaro-Gredilla (2011) uses w̃i for wi and γi for mi .

http://www-stat.stanford.edu/~tibs/glmnet-matlab/
http://www.well.ox.ac.uk/~mtitsias/software.html
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Fig. 3 Top left (a): minimal
variational free energy versus γ .
The two curves correspond to
warm start solution from small to
large γ (‘forward’) and from
large to small γ (‘backward’)
(see also Algorithm 1). Top right
(b): training and validation error
versus γ . The optimal γ

minimizes the validation error.
Bottom left (c): solution
v1 = m1w1 and
maxi=2:n|miwi |. The correct
solution is found in the range
γ ≈ −20 to γ ≈ −5. Bottom
right (d): optimal solution
vi = wimi versus i

Results for a single run of the VG are shown in Fig. 3. In Fig. 3a, we plot the minimal
variational free energy F versus γ for both the forward and backward run. Note, the hys-
teresis effect due to the local minima. For each γ , we use the solution with the lowest F .
In Fig. 3b, we plot the training error and validation error versus γ . The optimal γ ≈ −21
is denoted by a star and the corresponding σ = 1/

√
β = 1.05. In Fig. 3c, we plot the non-

zero component v1 = m1w1 and the maximum absolute value of the remaining components
versus γ . Note the robustness of the VG solution in the sense of the large range of γ values
for which the correct solution is found. In Fig. 3d, we plot the optimal solution vi = miwi

versus i.
In Fig. 4 we show the lasso (top row) and ridge regression (bottom row) results for the

same data set. The optimal value for λ minimizes the validation error (star). In Fig. 4b, c we
see that the lasso selects a number of incorrect features as well. Figure 4b also shows that
the lasso solution with a larger λ in the range 0.45 < λ < 0.95 could select the single correct
feature, but would then estimate ŵ1 too small due to the large shrinkage effect. Ridge re-
gression gives very bad results. The non-zero feature is too small and the remaining features
have large values. Note from Fig. 4e, that ridge regression yields a non-sparse solution for
all values of λ.

Table 1 shows that the VG significantly outperforms the lasso method and ridge regres-
sion both in terms of prediction error, the accuracy of the estimation of the parameters and
the number of non-zero parameters. In this simple example, there is no significant differ-
ence in the prediction error of lasso, PMF and VG, but the lasso solution is significantly less
sparse. There is no significant difference between the solutions found by PMF and VG.

5.2 Small Example 2

In the second example, we consider the effect of correlations in the input distribution. Fol-
lowing Tibshirani (1996) we generate input data from a multi-variate Gaussian distribution
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Table 1 Results for Example 1 averaged over 20 instances. Train is mean squared error (MSE) on the training
set. Val is MSE on the validation set. Test is MSE on the test set. # non-zero is the number of non-zero
elements in the lasso solution and

∑n
i=1(mi > 0.5) for VG and PMF. ‖δv‖1 = ∑n

i=1 |vi − ŵi |

Train Val Test # non-zero ‖δv‖1

Ridge 0.60 ± 0.43 1.72 ± 0.39 1.80 ± 0.12 − 3.97 ± 1.23

Lasso 0.78 ± 0.26 1.07 ± 0.20 1.17 ± 0.20 8.65 ± 6.75 0.80 ± 0.57

PMF − − 1.02 ± 0.10 1.5 ± 1.19 0.33 ± 0.37

VG 0.85 ± 0.22 0.96 ± 0.17 1.01 ± 0.10 1.20 ± 0.52 0.31 ± 0.30

True 0.93 ± 0.14 0.87 ± 0.20 0.98 ± 0.04 1 0

Fig. 4 Regression solution for lasso and ridge regression for same data set as in Fig. 3. Top row (a)–(c):
lasso. Bottom row (d)–(f): ridge regression. Left column (a), (d): training and validation errors versus λ.
Middle column (b), (e): solution for the non-zero feature v1 and the zero-features maxi=2:n |vi |. Right column
(c), (f): optimal lasso and ridge regression solution vi versus i

with covariance matrix χij = ζ |i−j |, with ζ = 0.5. In addition, we choose multiple fea-
tures non-zero: ŵi = 1, i = 1,2,5,10,50 and all other ŵi = 0. We use n = 100, σ̂ = 1
and p/pv/pt = 50/50/400. In Table 2 we compare the performance of the VG, lasso, ridge
regression and PMF on 20 random instances. We see that the VG and PMF significantly
outperform the lasso method and ridge regression both in terms of prediction error and ac-
curacy of the estimation of the parameters. Again, there is no significant difference between
PMF and VG.
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Table 2 Results for Example 2. For definitions see caption of Table 1

Train Val Test # non-zero ‖δv‖1

Ridge 0.32 ± 0.27 3.30 ± 0.67 3.46 ± 0.31 − 11.09 ± 0.93

Lasso 0.75 ± 0.37 1.39 ± 0.37 1.48 ± 0.29 16.30 ± 6.60 2.08 ± 0.87

PMF − − 1.06 ± 0.11 5.15 ± 0.49 0.67 ± 0.35

VG 0.80 ± 0.25 1.13 ± 0.31 1.15 ± 0.21 5.05 ± 0.51 0.83 ± 0.54

True 0.93 ± 0.14 0.87 ± 0.20 0.98 ± 0.04 5 0

Fig. 5 Lasso and VG solution for the inconsistent Example a of Zhao and Yu (2006). Top left: lasso
solution versus λ is called inconsistent because it does not contain a λ for which the correct sparsity
(w1,2 �= 0,w3 = 0) is obtained. Top right: the VG solution for v versus γ contains large range of γ for
which the correct solution is obtained. Bottom left: VG solution for m (curves for m1,2 are identical). Bottom
right: VG solution for w (Color figure online)

5.3 Analysis of consistency: VG vs lasso

It is well-known that the lasso method may yield inconsistent results when input vari-
ables are correlated. In Zhao and Yu (2006), necessary and sufficient conditions for con-
sistency are derived. In addition, they give a number of examples where lasso gives in-
consistent results. Their simplest example has three input variables, x1, x2, x3. x1, x2, ξ, e

are independent and Normal distributed random variables, x3 = 2/3x1 + 2/3x2 + ξ and
y = ∑3

i=1 ŵixi + e, p = 1000. When ŵ = (−2,3,0) (Example b) this example is consis-
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Table 3 Accuracy of ridge, lasso and VG for Example 1a, b from Zhao and Yu (2006). p = pv = 1000.
Parameters λ (ridge and lasso) and γ (VG) optimized through cross validation. ‖δv‖1 as before, max(|v3|)
is maximum over 100 trials of the absolute value of v3. Example a is inconsistent for lasso and yields much
larger errors than the VG. Example b is consistent and the quality of the lasso and VG are similar. Ridge
regression is bad for both examples

Example a Example b

‖δv‖1 max(|v3|) ‖δv‖1 max(|v3|)

Ridge 0.64 ± 0.18 0.48 0.02 ± 0.02 0.27

Lasso 0.19 ± 0.14 0.30 0.00 ± 0.00 0.00

VG 0.05 ± 0.03 0.00 0.00 ± 0.00 0.00

Fig. 6 Accuracy as a function of the noise. n = 100,p = 100,pv = 20 and ŵi = 1 for 10 randomly chosen
components i. (a) For weakly correlated inputs ζ = 0.5 VG and PMF show comparable performance superior
to lasso. (b) For strongly correlated inputs ζ = 0.95 VG performs better than PMF (errorbars for PMF are not
shown for clarity) but similarly to PMF-ANNEAL. (c) For ζ = 0.95, p = 60, pv = 5, and ŵi ± 1 and mixed
input correlations VG outperforms all methods on average

tent, but when ŵ = (2,3,0) (Example a) this example violates the consistency condition.
The lasso and VG solution for Example a for different values of λ and γ are shown in
Fig. 5a, b, respectively. The VG solution vi = miwi in terms of mi and wi is shown in
Fig. 5c, d. The average results over 100 instances for Example a and Example b are shown
in Table 3. We see that the VG does not suffer from inconsistency and always finds the
correct solution, avoiding sub-optimal local minima.

5.4 Effect of the noise

In this subsection we show the accuracy VG, lasso and PMF as a function of the noise σ̂ 2.
We generate data with n = 100,p = 100,pv = 20 and ŵi = 1 for 10 randomly chosen
components i. We vary σ̂ 2 in the range 10−8 to 10 for two values of the correlation strength
in the inputs ζ = 0.5,0.95.

For weakly correlated inputs, Fig. 6a, we distinguish three noise domains: for large noise
all methods produce errors of O(1) and fail to find the predictive features. For intermediate
and low noise levels, 100 > σ̂ 2 > 10−2, VG and PMF perform significantly better than lasso.
In the limit of zero noise, the error of VG and PMF keeps on decreasing whereas the lasso
error saturates to a constant value.
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Table 4 Comparison of VG and PMF in the Boston-housing dataset in terms of approximating the ground-
truth ŵ. Average errors ‖δv‖1 = ∑n

i=1 |vi − ŵi |, with vi the approximation of VG or PMF, together with
95 % confidence intervals (given by percentiles) obtained after 300 random initializations for both soft and
extreme initializations

Soft-error Extreme-error

PMF (Titsias and Lázaro-Gredilla 2011) 0.208 [0.002, 0.454] 0.204 [0.002, 0.454]

PMF 0.237 [0.001, 0.454] 0.209 [0.001, 0.454]

VG 0.006 [0.006, 0.006] 0.006 [0.006, 0.006]

For strongly correlated inputs, Fig. 6b, we observe that whereas the error of VG scales
approximately as before, PMF gets stuck in local minima in some instances, yielding worse
average performance than VG. In contrast, the annealed version of PMF is able to avoid
these sub-optimal solutions, resulting in average performance comparable to VG.

Finally, we consider a more challenging problem in which the weights have mixed signs
ŵi = ±1, inputs are positively and negatively correlated, and a small number of samples is
available (p = 60,pv = 5). To generate negatively correlated inputs, we select a subset of the
predictors and for each predictor we first obtain the indices (sample numbers) of their values
sorted in ascending order. Then, we replace the predictor values with the values sorted in
descending order using the previous indices. Average results for this setup are shown Fig. 6c.
In this case, VG error scales as before, whereas PMF-ANNEAL gets stuck in sub-optimal
solutions in some instances.

We can thus conclude that the use of annealing-reheating in the hyper-parameter opti-
mization only explains partially the better performance of the VG compared to PMF. The
results on the mixed problem suggest that the combination of a naive mean field variational
approximation with a MAP step also helps to avoid local minima.

5.5 Boston-housing dataset: VG vs PMF

We now focus on comparing in more detail the performance of VG with PMF. In Titsias and
Lázaro-Gredilla (2011), the Boston-housing dataset7 is used to test the accuracy of the PMF
approximation compared to a naive mean field approximation.

This is a linear regression problem that consists of 456 training examples with one-
dimensional response variable y and 13 predictors that include housing values. We use here
the same setup as in Titsias and Lázaro-Gredilla (2011) to compare VG with PMF. For PMF,
hyper-parameters were fixed to values σ 2 = 0.1 × var(y),π = 0.25, σ 2

w = 1 where var(y)

denotes the output variance. For the VG, we use β = 1/σ 2, γ = log(π/(1 − π)). Since γ

and β are given, the VG algorithm reduces to iterate Eqs. (8) and (9) starting from a ran-
dom m. Similarly, the PMF reduces to perform an E-step given the fixed hyperparameter
values.

As in Titsias and Lázaro-Gredilla (2011), we use random initial values for the variational
parameters between 0 and 1 (soft initialization) and random values equal to 0 or 1 (hard
initialization). We considered as ground truth ŵ ≡ wtr the result of the efficient paired Gibbs
sampler developed in Titsias and Lázaro-Gredilla (2011).

Table 4 shows the results. The first and second rows show the errors reported in Titsias
and Lázaro-Gredilla (2011) and the errors that we obtain using their software, respectively.

7http://archive.ics.uci.edu/ml/datasets/Housing.

http://archive.ics.uci.edu/ml/datasets/Housing


Mach Learn

Fig. 7 Boston-housing results. wtr are the true weights. Left: PMF finds two solutions (in white and red).
The red one is suboptimal (predictor 10 is a false negative and predictor 9 is underestimated). Middle: VG
always finds the same optimum. Right: hysteresis effect for π in PMF. PMF is initially trapped in the local
optimum (beginning of forward pass). The global optimum is found for π > π∗ (π∗ ≈ 0.7) and continued to
be the solution in the backward pass (Color figure online)

We observe a small discrepancy in the average errors. However, if we consider the per-
centiles, the results are consistent.

PMF finds two local optima depending on the initialization: one is the correct solution
(error ≈ 10−3) whereas the other has error 0.454. These two solutions are found equally of-
ten for both soft or hard initializations, showing no dependence on the type of initialization,
in agreement with Titsias and Lázaro-Gredilla (2011), and they are illustrated in Fig. 7(left).

The results of VG are shown on the third row of Table 4 and in Fig. 7(middle). Contrary
to PMF, the VG shows no dependence on the initialization and always finds a solution with
an error of order 10−3.

The result of the annealed version of PMF for a case in which PMF converged to the
suboptimal solution is illustrated in Fig. 7(right). The global optimum is found for π > π∗,
(π∗ ≈ 0.7) during the forward pass and continued to be the solution in the backward pass,
showing the hysteresis effect mentioned for γ in the VG. This means that for π > π∗,
conventional PMF always converges to the global optimum, but that may not be case for
π < π∗, depending on the initialization of the weights.

We also perform a similar experiment with VG for fixed values of γ in the corresponding
range γ = log( π

1−π
) and for each value of γ we run VG using 100 random initial values.

VG never finds a suboptimal solution and always converges to the same solution regardless
of the fixed value of γ and the initialization. We thus conclude that the naive mean field
variational approximation in combination with the MAP procedure do not suffer from local
optima effect in this dataset.

5.6 Dependence on the number of samples

We now analyze the performance of all considered methods as a function of the number of
samples available. We first analyze the case when inputs are not correlated and then consider
correlations of practical relevance that appear in genetic datasets.

For these experiments, we generate the data for dimension n = 500 and noise level β = 1.
We explore two scenarios: very sparse problems with only 10 % of active predictors and
denser problems with 25 % of active predictors. The weights of the nonzero elements take
integer values in increasing order starting from 1, i.e. in the sparse case, they take values
from 1 to 50. We choose the validation set sizes very small (pv = p/10). Choosing larger
validation set sizes worsens the performance of VG compared to the PMF variants. This is



Mach Learn

Fig. 8 Uncorrelated case: performance as a function of number of training samples p for two levels of
sparsity (10 % and 25 % of non-zero entries). For each value averages over 20 runs are plotted. Top: area under
the ROC curves (see text for definition). Bottom: reconstruction error, defined as ‖δv‖1 = ∑n

i=1 |vi − ŵi |

due to the difference between using a cross validation or a Bayesian approach (PMF variants
use both training and validation sets for learning).

5.6.1 Uncorrelated case

Figure 8 shows results of performance for uncorrelated inputs. Top panels show the area
under the Receiver Operating Characteristic (ROC) curve. The ROC curve is calculated by
thresholding the weight estimates. Those weights that lie above (below) the threshold are
considered as active (inactive) predictors. The ROC curve plots the fraction of true posi-
tives versus the fraction of false positives for all threshold values. The area under the curve
measures the ability of the method to correctly classify those predictors that are and are not
active. A value of 1 for the area represents a perfect classification whereas 0.5 represents
random classification. The ROC is plotted as a function of the fraction of samples relative
to the number of inputs: p/n.

For both VG and PMF, we observe in all performance measures a transition from a regime
where solutions are poor to a regime with almost perfect recovery. This transition, not no-
ticeable in the other (convex) methods, occurs at around 35 % of examples for 10 % of
sparsity (left column) and shifts to higher values for denser problems (≈ 60 % for 25 % of
sparsity, right column).

If we compare VG with PMF we see that PMF performs slightly better than VG in terms
of area under the ROC curve and reconstruction error in the small sample size limit. Above
the threshold, VG and PMF show equivalent performance. We observe no difference be-
tween PMF and PMF-ANNEAL (results not shown).
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Fig. 9 Example of input
correlation matrix in the genetic
dataset (Color figure online)

We also see that lasso performs better than ridge regression, but the difference between
both methods tends to be smaller for denser problems. Both lasso and ridge regression are
significantly worse than VG and PMF.

5.6.2 Correlated case: genetic dataset

We now consider input data obtained from a genetic domain, where inputs xi denote sin-
gle nucleotide polymorphisms (SNPs) that have values xi = {0,1,2}. SNPs typically show
correlations structured in blocks, where nearby SNPs are highly correlated, but show no de-
pendence on distant SNPs. An example of such correlation matrix can be seen in Fig. 9. The
raw genetic dataset for that experiment included 928 samples of 2399 three-valued SNP pre-
dictors {0,1,2}. To generate the dataset used in the analysis, we keep the original correlation
structure of the input data but generate the outputs artificially using a randomly chosen set
of active/inactive predictors. This allows to quantify the error of the different methods.

First, we filter out the less informative predictors (with entropy smaller than εe = 0.9).
This steps removes 877 predictors. From the remaining set of 1522 predictors, we select
incrementally the active ones checking that at each step the correlation between a new active
predictor and the rest of active predictors is at most εζ = 0.9. Once the active predictors
have been selected, we select randomly the remaining (inactive) predictors to form a set of
n = 500 total predictors. The values for n, εe and εζ are chosen in a way that permits the
analysis in terms of size of the training and validation sets.

Figure 10 shows the results. Contrary to the uncorrelated case, the existence of strong
correlations between some of the predictors prevents a clear distinction between solution
regimes as a function of sample size.

We observe, as before, that both VG and PMF are the preferable methods for sufficiently
large training set size. The difference between ridge regression and lasso is more remarkable
and ridge regression can even be a preferable choice than lasso for denser problems when a
large number samples is available.

In all performance measures considered, VG performs better or comparable to PMF. In
particular, VG significantly outperforms PMF for denser problems, which are harder due
to the presence of more local minima. PMF-ANNEAL significantly improves the results
of conventional PMF for both sparsity levels. From these results we can conclude that VG
shows better or comparable performance than any other method considered.

5.7 Scaling with dimension n

We conclude our empirical study by analyzing how the methods scale, both in terms of the
quality of the solution as in terms of CPU times, as a function of the number of features n
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Fig. 10 Correlated case: performance as a function of number of training samples p for two levels of sparsity
(10 % and 25 % of non-zero entries). For each value averages over 20 runs are plotted. Top: area under the
ROC curves (see text for definition). Bottom: reconstruction error, defined as ‖δv‖1 = ∑n

i=1 |vi − ŵi |

Fig. 11 Scaling with n: performance of VG (dual version), PMF and lasso as a function of the number of
features n. (a) Error of the solution vector. (b) �0 of the solution vector. (c) cpu-time in seconds (dashed line
corresponds to a linear fit). Data are generated as in Example 2. p = 100,pv = 100, β = 2, ζ = 0

for a constant number of samples. We use the data as in Example 2 above, with uncorrelated
inputs.

Figure 11 shows the results for VG, PMF and lasso. For the VG, we use the dual method
described in Appendix B. Figure 11a shows that the VG and PMF have constant quality in
terms of the error ‖δv‖1, whereas the quality of the lasso deteriorates with n. Figure 11b
shows that the VG and PMF have close to optimal norms �0 = 5 and that the �0 norm of
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the lasso deteriorates with n. Figure 11c shows that the computation time of all methods
scales approximately linear with n. Lasso is significantly faster than VG and PMF, and VG
is significantly faster than PMF. Note, however that the VG and the PMF methods are im-
plemented in Matlab whereas the lasso method uses an optimized Fortran implementation.

6 Discussion

In this paper, we have analyzed the variational method for sparse regression using �0 penalty.
We have presented a minimal version of the model with no (hierarchical) prior distributions
to highlight some important features: the variational ridge term that dynamically regularizes
the regression; the input-output behavior as a smoothed version of hard feature selection;
a phase plot that shows when the variational solution is unique in the orthogonal design case
for different p,ρ, γ .

The VG suffers from local minima as can be expected for any method that needs to solve
a non-convex problem. We have shown evidence that the combined variational/MAP ap-
proach together with the annealing procedure that results from increasing γ , followed by a
“heating” phase to detect hysteresis works well in practice, helping to avoid local minima.
In particular, we have shown that VG can outperform a more complex model such as PMF
precisely because of that reason. Further, we also have observed that VG can be still prefer-
able to an improved version of PMF (PMF-ANNEAL) in a practical scenario with strongly
correlated inputs and/or moderately sparse problems.

As mentioned in Sect. 3, the approach of Carbonetto and Stephens (2012) shares many
similarities with the VG. It would be of interest to compare both approaches. We leave
this comparison and other more powerful approximations, such as structured mean field
approximation or belief propagation for future work.

We have seen that the performance of the VG is excellent in the zero noise limit. In this
limit, the regression problem reduces to a compressed sensing problem (Candes and Tao
2005; Donoho 2006). The performance of compressed sensing with �q sparseness penalty
was analyzed theoretically in Kabashima et al. (2009), showing the superiority of the �1

penalty in comparison to the �2 penalty and suggesting the optimality of the �0 penalty. Our
numerical results are in agreement with this finding.

Our implementation uses parallel updating of Eqs. (8)–(10) or for the dual formulation
equations (8), (22), (25), (28). One may consider also a sequential updating. This was done
successfully for the lasso based on the idea of the Gauss-Seidel algorithm (Friedman et al.
2010). The advantage of such an approach is that each update is linear in both n and p,
since only the non-zero components need to be updated. However, the number of updates to
converge will be larger. The proof of convergence for such a coordinate descend method for
the VG is likely to be more complex than for the lasso due to non-convexity. As a result, a
smoothing parameter η �= 1 (see Algorithm 1) may still be required.
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Fig. 12 f (m) vs m. Left (a): p = 100, γ = −10, different lines correspond to different values of 0 < ρ < 1
(higher lines are higher ρ). The solution for m is given by the intersection f with the diagonal line. The
solution for m is unique and increases with increasing ρ. Right (b): same as left, but with p = 100, γ = −30.
Depending on ρ, there are one or three solutions for m. The solutions close to m ≈ 0,1 correspond to local
minima of F . The intermediate solution corresponds to a local maximum of F (Color figure online)

Appendix A: Phase plot computation for the orthogonal case

In the uni-variate case, f (m) in Eq. (15) is an increasing function of m and crosses the line m

either 1 or three times, depending on the values of p and γ (see Fig. 12). In the multivariate
orthogonal case, this is still true, since the influence of other features is only through β .
We can thus write β−1 = σ 2

y (1 − ρm − δ), where 0 ≤ δ < 1 is a function of the variational
parameters of the other features. Thus, there are regions of parameter space γ,p,ρ where
the uni-variate solution is unique and others for which there are two stable solutions.

The transition between these two regions is when f ′(m) = 1 and f (m) = m. These two
equations imply

(
1 + p

2

)
ρ2m2 −

(
2ρ(1 − δ) + p

2
ρ2

)
m + (1 − δ)2 = 0 (17)

This quadratic equation in m has either zero, one or two solutions, corresponding to no
touching, touching once and touching twice, respectively. Denote a = (1 + p

2 )ρ2, b =
2ρ(1 − δ) + p

2 ρ2. The critical value for ρ,p is when Eq. (17) has one solution for m, which
occurs when

D = b2 − 4a(1 − δ)2 = p

2
ρ2

(
ρ − ρ∗)

(
p

2
ρ + 2(1 − δ) + 2(1 − δ)

√
1 + p

2

)
= 0

ρ∗ = 4

p
(1 − δ)

(√
1 + p

2
− 1

) (18)

Thus, D is positive when ρ > ρ∗ and Eq. (17) has two solutions for m. We denote these
solutions by m1,2 = b±√

D
2a

. Note, that the solutions in these critical points only depend on
ρ,p. For each of these solutions we must find a γ such that f (m) = m, which is given by

γi = log
mi

1 − mi

− p

2

ρ

1 − ρmi

i = 1,2 (19)
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It is easy to see that the smallest of these solutions m1 < m2 corresponds to a local maximum
of the free energy and can be discarded. Thus, when ρ > ρ∗ and γ2 < γ < γ1 two stable
variational solutions m ≈ 0,1 co-exist.

When ρ < ρ∗, Eq. (17) has no solutions for m. In this case the conditions f ′(m) = 1 and
f (m) = m cannot be jointly satisfied and the variational solution is unique.

From Eq. (18) we see that ρ∗ is a decreasing function of p and when p � 1, ρ∗ ≈ 2
√

2
p

.

In the critical point, where ρ = ρ∗(p), m = b/2a ≈ 1
2 (1 +

√
2
p
) and

γ ∗ ≈ −√
2p(1 − δ) (20)

When ρ < ρ∗ or γ > γ ∗ the variational solution is unique. We illustrate the phase plot ρ,γ

for p = 100 in Fig. 1a.

Appendix B: Dual formulation

The solution of the system of Eqs. (8)–(10) by fixed point iteration requires the repeated
solution of the n dimensional linear system χ ′w = b. When n > p, we can obtain a more
efficient method using a dual formulation.

We define new variables zμ = ∑
i miwix

μ

i and add Lagrange multipliers λμ:

F = −p

2
log

β

2π
+ β

2

p∑

μ

(
zμ − yμ

)2 + βp

2

∑

i

mi(1 − mi)w
2
i χii

− γ

n∑

i=1

mi +
n∑

i=1

(
mi logmi + (1 − mi) log(1 − mi)

)

+
∑

μ

λμ

(
zμ −

∑

i

miwix
μ

i

)
(21)

We compute the derivatives of Eq. (21):

∂F

∂wi

= mi

(
βp(1 − mi)χiiwi −

∑

μ

λμx
μ

i

)

∂F

∂zμ
= β

(
zμ − yμ

) + λμ

∂F

∂β
= − p

2β
+ 1

2

p∑

μ

(
zμ − yμ

)2 + p

2

∑

i

mi(1 − mi)w
2
i χii

∂F

∂mi

= βp

2
(1 − 2mi)w

2
i χii − γ + σ−1(mi) −

∑

μ

λμwix
μ

i

∂F

∂λμ
= zμ −

∑

i

miwix
μ

i
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By setting ∂F
∂wi

= ∂F
∂zμ = 0 we obtain

wi = 1

βpχii

1

1 − mi

∑

μ

λμx
μ

i (22)

and zμ = yμ − 1
β
λμ. Setting the remaining derivatives to zero, and eliminating wi and zμ we

obtain Eq. (8) and

β = 1

p

∑

μν

λμλνAμν (23)

βyμ =
∑

ν

Aμνλ
ν (24)

with Aμν given by

Aμν = δμν + 1

p

∑

i

mi

1 − mi

x
μ

i xν
i

χii

(25)

For given Aμν , let ŷ denote the solution of

p∑

ν=1

Aμνŷ
ν = yμ (26)

Then it is easy to verify that

1

β
= 1

p

∑

μ

ŷμyμ (27)

λμ = βŷμ (28)

solve the system of Eqs. (23)–(24).
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