
Lecture Notes

Quantum Cryptography Week 10: Further topics

cbea

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Licence.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

10.1 Delegated computation 3
10.1.1 Preliminaries on efficient quantum computation . 4
10.1.2 The Pauli group and Clifford gates . 5

10.2 Verifiable delegation of quantum circuits 5
10.2.1 Computation with magic states . 6
10.2.2 Blindness . 7
10.2.3 Verifiability . 7

10.3 Delegation in the measurement-based model 9
10.3.1 Measurement-based computation . 10
10.3.2 Blind delegation in the MBQC model . 11
10.3.3 Verifiability . 13

10.4 Delegating to two servers 13
10.4.1 Establishing a trusted computation space . 14
10.4.2 State tomography . 15
10.4.3 Process tomography . 16
10.4.4 Teleportation-based computation . 17
10.4.5 Blind and verifiable delegated computation . 18

10.1 Delegated computation 3

10.1 Delegated computation
As powerful as quantum computers may be, in the foreseeable future they are likely to remain
rather bulky machines dedicated to special-purpose computations. The first person to have realized
the potential of quantum mechanics for computation is Feynman, who thought that one of the
main applications of quantum computing devices would be precisely to the problem of simulation:
quantum computers to simulate quantum systems [feynman1982simulating]! Indeed predicting
the properties of physical materials such as superconductors, or certain chemical molecules, are
some of the most challenging problems faced by experiments, and running accurate simulations of
such systems on a classical computer is far too costly.

Today we see Feynman’s idea approaching realization. The largest quantum computers to date
number in the hundreds of qubits, but these computers can only perform specialized tasks: for
instance, they might be arranged in a 2D grid where one is only allowed to apply certain gates on
neighboring qubits. Nevertheless, such large bulky machines are in principle universal, meaning
that any computation can be translated into one that can be executed on the machine, with a possibly
rather large (but nevertheless polynomial) blow-up.

This sets the stage for the scenario of delegated computation. Suppose a user Alice has a
quantum circuit C in mind, that she would like to execute on some input x in order to learn the
outcome C (x). All of Alice’s data, x and C , is classical: we can assume x is a classical bit string,
and C is specified by a sequence of two-qubit gates. We can also assume the outcome is classical:
let’s say it’s the result of measuring a specially designated output qubit of C in the standard basis.

Now, unfortunately Alice herself does not have a universal quantum computer. Maybe she has
a tiny desktop machine that for example lets her play around with BB’84-like operations: prepare
or measure single qubits, possibly store a couple qubits at a time in memory, but no more. Luckily
Alice does have the possibility of buying computation time on a quantum server, with which she
could interact over the internet, or maybe even over a simple BB’84-type quantum communication
channel that would allow the exchange of one qubit at a time. So Alice could just send x and the
description of C to the server, who would perform the computation, and return the outcome, right?

But remember this is a crypto class. Alice might not trust this server. For one she’d like to
have a way to verify that the outcome provided to her is correct. What if the server is lazy and
systematically claims the outcome of her computation, C (x), equals ‘0’? Since Alice has no
quantum computer herself she has no means of checking the outcome! A second property Alice
could require is that the computation be private: while she certainly wants to learn C (x), she’d
rather not have the server know that she was interested in circuit C , or in input x, as these might
contain private data.

Let’s restate these conditions a bit more formally as the requirements that the computation be
correct, verifiable and blind.

Definition 10.1.1 — Delegated computation. In the task of delegated computation, a user
Alice (sometimes called the verifier) has an input (x,C), where x is a classical string and C
the classical description of a quantum circuit. Alice has a multiple-round interaction with a
quantum server (sometimes also called prover). At the end of the interaction, Alice either returns
a classical output y, or she aborts. A protocol for delegated computation is called:
• Correct if whenever both Alice and the server follow the protocol, with high probability

Alice accepts (she does not abort) and y = C (x).
• Verifiable if for any server deviating from the protocol, Alice either aborts or returns

y = C (x).
• Blind if for any server deviating from the protocol, at the end of the protocol the server

has no information at all about Alice’s input (x,C).

The properties of verifiability and blindness are stated rather informally. A precise defini-

4

tion satisfying all the desired properties (and in particular, universal composability) would take
us many pages. Such a definition was given using the framework of abstract cryptography
in [dunjko2014composable].

The informal definition given above will be sufficient for our purposes. Note that in spite
of being rather similar neither of the properties of verifiability or blindness implies the other. In
practice it will often be the case that verifiability follows from blindness by arguing using “traps”
that, if a protocol is already blind, the server’s trustworthiness can be tested by making it run “fake”
computations for which Alice already knows the output, without the server being able to distinguish
when it is asked to do a real or fake computation. We will see an example of this technique later on.

What are good protocols for delegating quantum computations? It turns out that we don’t
have a fully satisfactory answer yet: this is an active area of research! Many interesting ideas
are being pursued, but none is perfect. In these notes we’ll survey the three most prominent
approaches. The first construction shows how arbitrary quantum circuits can be delegated, as long
as the verifier has the ability to prepare certain specific single-qubit states and communicate them to
the server. The second construction achieves a similar result, using a very different idea: it is based
on the measurement-based model for quantum computation, which we will introduce. The third
construction has a wholly different flavor. It manages to achieve delegation by a purely classical
verifier, with no quantum abilities whatsoever. However, the downside is that the verifier now has
to interact with two isolated quantum servers. This method relies on similar techniques as we have
seen in the analysis of device-independent QKD (in particular the use of the CHSH game for testing
that the two servers share EPR pairs).

10.1.1 Preliminaries on efficient quantum computation
Before we delegate quantum computations, let’s first review briefly what a quantum computation
is. As hinted at earlier, there are many distinct models for quantum computation, each capable of
universal computation (and thus of simulating any other). We’ll see three of them in these notes.

The most natural model is called the quantum circuit model. Here a computation is represented
by the action of a circuit C on n input qubits. The input qubits are initialized in an arbitrary
quantum state that contains the input of the computation; we will mostly be concerned with
classical inputs of the form |x〉, where x ∈ {0,1}n, but quantum inputs can also be considered. The
circuit C itself is specified by a list of m gates, which are one- or two-qubit unitaries that act on
a subset of the qubits. For instance, a simple 4-qubit circuit could be specified as the ordered list
((H,1),(CNOT,(2,3)),(H,3),(Z,4)). It is then usually assumed that the first qubit is measured in
the standard basis to produce a single bit as the classical outcome of the circuit (though quantum
outputs can be considered as well). We will write C (x) for the outcome of a measurement of the
output qubit of C in the standard basis, when C is executed on the state |x〉. Thus C (x) should be
treated as a random variable, but we’ll assume that for each possible input x it takes on a certain
value with high probability, and we’ll write C (x) for that fixed value.

The class BQP of “efficiently computable functions” in the quantum circuit model is formally
defined as follows.1

Definition 10.1.2 — BQP. A family of functions { fn : {0,1}n→{0,1}} is in BQP if for every
integer n there exists a circuit Cn whose description size (number of gates and precision of the
entries in each gate) is polynomial in n and such that for every x ∈ {0,1}n, a measurement of
the output qubit of the execution of Cn on |x〉 returns f (x) with probability at least 2/3.

The definition of BQP allows arbitrary circuits C , as long as they can be efficiently specified as a
list of single- or two-qubit gates. An important theorem in quantum computing, the Solovay-Kitaev

1In complexity theory we often talk about “languages” rather than functions, were a language is a subset L⊆ {0,1}∗.
It is then natural to associate a Boolean function to any language, and vice-versa.

10.2 Verifiable delegation of quantum circuits 5

theorem, states that it is in fact possible to restrict the set of gates allowed to some simple sets of
gates, called “universal gate sets”: a gate set is called universal if any circuit that has an efficient
implementation, has an efficient implementation that uses only gates from that set. An example
gate set that we will use later on is the set

G =
{

G =

(
cos(π/8) −sin(π/8)
sin(π/8) cos(π/8)

)
, CNOT

}
,

where G implements a π/4 rotation around the y axis of the Bloch sphere and CNOT a controlled-Z
operation (on any two qubits of the circuit). Another example of a popular gate set is the set

G ′ =
{

H, T =

(
1 0
0 eiπ/4

)
, CNOT

}
,

but there are many others; which gate set to use depends on the task at hand (as well as the
architecture of the quantum computer, as certain physical implementations can implement certain
gates much more easily than others).

We will use one more useful feature of quantum (as well as classical) circuits, which is the
notion of a “universal” circuit. Due to the universality of quantum circuits for efficient quantum
computation, and its equivalence with the model of quantum Turing machines, it is possible to
show the following.

Theorem 10.1.1 — Universal circuit. For any integer n and size parameter s there exists a fixed
circuit CU acting on n+m qubits, where m is a polynomially bounded function of n and s, such
that for any circuit C of size at most s expressed using the gate set G , and any input x ∈ {0,1}n

to C , there is a z ∈ {0,1}m (efficiently computable from C) such that CU(x,z) has the same
distribution as C (x).

10.1.2 The Pauli group and Clifford gates
We’ve already encountered the 4 single-qubit Pauli matrices, P = {I,X ,Y,Z}. These form a group,
in the sense that for any two Pauli matrices P and Q, the product PQ is again a Pauli matrix. A
single-qubit Clifford gate U is any operation that preserves the Pauli group, in the sense that UPU†

is a Pauli matrix for any Pauli P. If U is a two-qubit gate, we similarly require that UPU† ∈±P⊗2

for any P ∈P⊗2.

Exercise 10.1.1 Clearly the Pauli matrices are Clifford gates. Show that the Hadamard, phase
P = T 2 and CNOT gates are both Clifford gates. Do you see other examples? Is the G gate
considered above a Clifford gate? How about the T gate? �

The defining property of Clifford gates is very useful, and plays an important role in delegated
computation. Unfortunately it turns out that there is no universal gate set made only of Clifford
gates — any universal set of gates for quantum computation must include at least one non-Clifford
gate. As we will soon see this will be a source of many headaches when trying to implement
delegated computation.

10.2 Verifiable delegation of quantum circuits

Our first approach to delegating computation is based on the idea of computing on encrypted data.
Recall the quantum one-time pad from Week 1. Suppose we have a n-qubit density matrix ρ . To
encrypt it using the one-time pad we select two n-bit strings a,b ∈ {0,1}n uniformly at random, and
return ρ̃ = XaZbρ(XaZb)†, where Xa denotes applying a Pauli X operator on all qubits i such that

6

ai = 1; similarly for Zb with Pauli Z operators. If ρ represents the input x to the circuit, ρ = |x〉〈x|,
and the result is classical, ρ̃ = |x⊕ a〉〈x⊕ a|. So this is an operation the client Alice can easily
perform by herself, and send ρ̃ to the server. If she keeps a local copy of the strings a,b but does
not communicate them to the server her input x remains perfectly private.

Now let’s see how Alice could make the server execute a circuit C by acting directly on
the encrypted state ρ̃ . The goal is to find a transformation C̃ for the server to apply, such that
C̃ (ρ̃) = C̃ (ρ), an encrypted version of C (ρ) from which Alice will nevertheless be able to infer
the output C (x). (As we will see, this will also require Alice to update the one-time pad keys she
used to encrypt ρ in the first place.)

The circuit C can be expressed using gates taken from a universal gate set, for example the
set G ′ = {X ,H,CNOT,T} considered in Section 10.1.1. Suppose the first gate in C is an X to be
applied on the second qubit. We’d like the server to evaluate

XaZb(XρX†)(XaZb)† = Xa⊕e2Zb
ρ(Xa⊕e2Zb)† = X ρ̃X†,

where e2 is the bit string with a single 1 in the second position. These equations show that the
server doesn’t even need to apply the X gate: it is sufficient for Alice to update her one-time pad
key from (a,b) to (a⊕ e2,b). So the X gate is easy. You can see that any Pauli gate, single- or
multi-qubit, will be similarly easy.

Let’s move one step further and consider the implementation of a Clifford gate — let’s take the
example of a Hadamard gate on the second qubit, He2 . Using HXH = Z, observe that

(XaZb)(He2ρ(He2)†)(XaZb)† = (−1)a2b2He2Xa′Zb′
ρ(Xa′Zb′)†,

where (a′,b′) is obtained from (a,b) by exchanging the bits a2 and b2. Hence if Alice instructs the
server to apply an H gate on the second encrypted qubit, the effect is the same as if the server had
applied the H gate directly on the second unencrypted qubit — as long as she updates her one-time
pad key (a,b) to (a′,b′) as described above. The following exercise asks you to show that a similar
trick can be employed for any Clifford gate.

Exercise 10.2.1 Let U be any one- or two-qubit Clifford gate. Show that the effect of applying
U to the encrypted state ρ̃ is equivalent to the application of U on ρ , up to an update rule on the
one-time pad key (a,b). Work out the update rule in the case of the phase and CNOT gates. �

So Alice can run the whole computation by herself? Remember from Section ?? that no set
of Clifford gates is universal — we need to show how to implement one more gate, for instance
the T gate considered in the universal set G ′. Because the T gate is non-Clifford, applying it
to the encrypted state ρ̃ will have a more complicated effect, that we can’t keep track of by a
simple modification of the one-time pad keys. Instead, we’ll show how Alice can make the server
implement a T gate on the encrypted state by using the idea of magic states.

10.2.1 Computation with magic states
The idea for magic states is that the computation of certain complicated gates on an arbitrary state
can be replaced by a simple computation using certain ancilla states called “magic states”. Let’s
see this for the T gate, the only gate that we still need to figure out how to implement. The magic
state we need is

|π/4〉= T |+〉= 1√
2
|0〉+ eiπ/4

√
2
|1〉.

Note that preparing this state itself requires applying a T gate. But the point is that we only need to
apply the gate to a fixed, known input state, that is independent of the state |ψ〉 on which we really

10.2 Verifiable delegation of quantum circuits 7

want to apply the T gate. So the preparation of single-qubit magic states is a relatively simple task
that we could ask Alice to perform by herself.

Suppose we are given a single-qubit state |ψ〉 on a register A1, and initialize ancilla register A2
in the |π/4〉 state. Consider the following circuit: first, apply a CNOT, controlled on A2 and acting
on A1. Second, measure register A1 in the computational basis, obtaining an outcome c. Third,
apply a gate Pc to register A2. What is the corresponding post-measurement state of register A2?
It is a good exercise to verify that this is XcZcT |ψ〉. That is, up to a simple (XZ) correction, we
applied the T gate to |ψ〉 while only requiring a magic state, a CNOT, and a measurement in the
computational basis.

(Thomas: include picture of T gate gadget)

Exercise 10.2.2 Suppose that instead of being applied directly to the state |ψ〉, the circuit
described above is applied to an encrypted version of |ψ〉, XaZb|ψ〉. Show that the outcome of
the circuit is then PaXa′Za′T |ψ〉, for some bits a′ and b′ depending on a,b and c. (Convince
yourself that the same calculation works out in case |ψ〉 is not pure, but a reduced density ρ on
a single qubit. �

Note the phase gate that we picked up in the exercise. This also needs to be corrected. But the
phase is applied on the encrypted state. Alice could instruct the server to apply Pa, but this would
require revealing the bit a, which is part of the key. There is a way around this that involves adding
a little bit of randomization in the choice of magic state we use, so as to guarantee that the phase
correction to be applied is always independent of the one-time pad key. You can try to work this
out as an exercise, or look at the paper [] for a possible solution.

10.2.2 Blindness

With the main ingredients in place, there are still a number of difficulties we need to overcome.
Let’s first consider the blindness property. For this, we assume the server is completely honest,
and we’re only worried that it may be able to obtain information about Alice’s input x or circuit C ,
while still following the correct protocol.

Unfortunately it seems clear that the circuit itself has to be revealed to the server: in the scheme
we described in the previous section each application of a T gate will involve an interaction between
the client and the server. But there is a simple way out: Alice can instruct the server to execute
a fixed “universal” circuit (as in Theorem 10.1.1), and instead encode the actual circuit she is
interested in as part of the input. (Note that this method is not very practical, as there is a large
computational overhead in using such a universal circuit.)

So now the only thing that Alice needs to keep hidden is her new input (x,z), and this is
precisely what the one-time pad achieves. But we should be careful: even though the OTP certainly
hides the input at the start of the interaction, subsequent interactions could in principle reveal more
information. The only gate which involves an interaction between Alice and the server is the T
gate, which requires Alice to tell the server whether a P correction should be applied or not. As
we mentioned earlier it is possible to choose a magic state uniformly at random from a set of 8
possibilities, in a way that both the magic state and the correction bit will appear uniformly random
to the server, irrespective of the measurement outcome it reports to Alice. Once again we refer you
to [] for the (simple) details on how this can be performed.

10.2.3 Verifiability

The protocol we described satisfies the blindness property (provided we use a universal circuit
and implement the T gates as sketched above), but so far it is not verifiable: the client has no
guarantee that the server performs the required computation; indeed, no check is performed and the

8

client would accept any answer (note that under the OTP, any string can be interpreted as a valid
ciphertext).

The idea to implement verifiability is to combine the protocol with some “test runs”. The
original protocol is now called a “computation run”. In a test run the client knows what the outcome
should be, and she will check that the server returns the correct value. But the server will not be
able to distinguish test runs from computation runs, and as a consequence we’ll have the guarantee
that the server is also being honest in a computation run.

There are two types of test runs, X-test and Z-test. In an X-test run, the computation is executed
on an encryption of the all-0 input |0〉⊗n. In a Z-test run, the same computation is executed on
an encryption of |+〉⊗n. The main trick to ensure that the verifier is able to keep track of the
computation is that all gates in a test run are replaced by identity gates, without the prover making
the difference! Note that we already know how to do this for Pauli gates, as these did not involve
the server anyways. The H gate requires a bit more work, but the idea is simple: since an H
exchanges the standard basis and the Hadamard basis we can simply think of it as exchanging
between an X-test run to an Z-test run, so that the verifier can still perfectly keep track of the state
that the circuit should be in. The T gate, of course, is the interesting one. The idea is to modify the
implementation described in Section 10.2.1 by changing the magic state, as well as the update rule,
and in a way that is un-noticeable by the server but will result in an application of the identity gate
instead of the T . The following exercise asks yu to work out how this can be done.

Exercise 10.2.3 Consider the following procedure for implementing a T gate on the single-
qubit state |ψ〉A1 , using a magic state. The client first selects two bits d,y ∈ {0,1} uniformly at
random, and prepares the magic state ZdPyT |+〉A2 , where P = T 2 is the phase gate. The client
sends system A2 to the server, who performs a CNOT, controlled on A1 and with target A2. The
server measures A1 in the computational basis, obtaining an outcome c ∈ {0,1} that it sends
to the client. The client then sends back x = y⊕ c to the server, who applies a gate Px to the
remaining system A2.

1. Show that the state of A2 at the end of this procedure is XcZc(y⊕1)⊕d⊕yT |ψ〉, i.e. it is an
encryption (using a key known to the client) of T |ψ〉.

Next let’s suppose we’re doing a computation run, so that |ψ〉= Xa|0〉 for some a ∈ {0,1}. The
client would like to perform the identity instead of a T gate, without the server noticing. This
can be done by executing precisely the same circuit, except the magic state is replaced by Xd |0〉
(it does not depend on y).

2. Show that with the magic state replaced by Xd |0〉 the interaction results in a register
A2 in state Xd |0〉. Show that in this case the outcome c of the server’s measurement is
deterministically related to a and d in a simple way.

3. Can you find a similar modification, with a different magic state, that will implement the
identity for the case of a Z-test run, where |ψ〉A1 = Zb|+〉 for some b ∈ {0,1}?

�

The exercise shows that simply by changing the magic state used in the implementation of the
T gate, the client can force that gate to act as identity in an X- or Z-test run. Moreover, due to the
random bits d,y used in the preparation of the magic state you can verify that, from the point of
view of the server, these magic states look uniformly distributed, and thus it has no way of telling
which “gadget” — for a T gate or the identity — it is really implementing.

In a test run the verifier knows exactly what the outcome of the circuit should be, so that it can
verify the answer provided by the client. Is this enough to ensure that the server cannot cheat in a
computation run? After all, we can imagine that the server may be able to perform certain attacks
that do not affect simple computations, where the state is always a tensor product of single qubits
encoded in the computational or Hadamard bases, but such that the attack would perturb the kind

10.3 Delegation in the measurement-based model 9

of highly entangled states that will show up at intermediate stages in a more complex circuit.
To show that this is not the case — that any significant attack will necessarily have a noticeable

effect on either the X- or Z-test runs, the idea is to use an observation called the “Pauli twirl”, that
you are asked to work out in the next exercise.

Exercise 10.2.4 — Pauli twirl. Let ρ be a single-qubit density matrix, and P,P′ ∈P , where
P = {I,X ,Y,Z} is the set of single-qubit Pauli operators. Show that ∑Q∈P(Q†PQ)ρ(Q†(P′)†Q)
equals PρP† if P = P′, and is 0 otherwise. Show that the same result holds for n-qubit Pauli
operators. �

The Pauli twirl lets us argue that, thanks to the use of the quantum one-time pad, any “attack”
of the server boils down to the application of a Pauli operator at the last step of the circuit. Indeed,
suppose first that the interaction performed between the client and the server results in the correct
circuit C being implemented, except at the last step the server applies an arbitrary “deviating
unitary” U . Thus the outcome is UC̃ρ̃C̃†U†, where C̃ is the unitary Alice instructed the server
to implement, and ρ̃ the initial OTP-encoded state sent by the client. Due to the OTP, ρ̃ has the
form ρ̃ = ∑Q∈P Q|x〉〈x|Q†, where |x〉 denotes the real input state that the client would like the
computation to be performed on. Moreover, for any Q there is a correction c(Q) ∈P applied by
the client, which is such that c(Q)C̃Q|x〉〈x|Q†C̃†(c(Q))† =C|x〉〈x|C†. Thus, after applying c(Q) to
the corrupted circuit,

∑
Q∈P

c(Q)UC̃Q|x〉〈x|Q†C̃†U†(c(Q))† = ∑
Q∈P

c(Q)U(c(Q))†c(Q)C̃Q|x〉〈x|Q†C̃†(c(Q))†c(Q)U†(c(Q))†

= ∑
Q∈P

c(Q)U(c(Q))†C|x〉〈x|C†c(Q)U†(c(Q))†

= ∑
P∈P
|αP|2PC|x〉〈x|C†P†,

where for the last step we decomposed U = ∑P∈P αPP in the Pauli basis, and used the property of
the Pauli twirl proved in Exercise 10.2.4.

This computation shows that any unitary applied by a malicious server at the end of the honest
circuit is equivalent to a convex combination of Pauli operators applied at the end of the circuit.
But any such non-trivial operator will be detected in either the X- or Z-test runs, as it will result in
one of the outcomes being flipped in either the standard or Hadamard bases.

To conclude we need to deal with the case where the server applies a deviating unitary, not at
the end of the circuit, but at some intermediate step. But this case can be reduced to the former!
Indeed, we can always think of a “purified” version of the whole protocol, where all measurements
are deferred until the end. Suppose the unitary C̃ the server is supposed to implement decomposes
as C̃ = C̃2C̃1, and the server applies a deviating unitary U in-between the two circuits. The result
can be written as

C̃2UC̃1 = (C̃2UC̃†
2)C̃2C̃1,

where we used that C̃2 is unitary, C̃†
2C̃2 = I. Thus the deviation U is equivalent to applying another

deviating unitary U ′ = C̃2UC̃†
2 at the end of the circuit, and we are back to the analysis performed

in the previous case: if the deviation has a non-trivial effect it will be detected by the client in one
of the test runs.

10.3 Delegation in the measurement-based model
Our second scheme for delegated computation has a similar flavor to the one presented in the
previous section, but at its heart it is based on a completely different approach to universal quantum
computation. So far we have encountered the circuit model for performing quantum computations.

10

From the point of view of computer science this is the most natural model, as it is a direct analogue
of the classical circuit model on which the architecture of our (classical) computers is based.
However, quantum information allows for other, much more exotic, models of computation. Many
of these models were originally proposed with the idea that they might be more powerful than the
circuit model, although ultimately they were proved equivalent. This includes the adiabatic model
for computation [aharonov2008adiabatic] and the measurement-based model that we will now
study.

The highlight of measurement-based quantum computation (MBQC) is that it allows one to
implement an arbitrary quantum computation (specified by a circuit using some universal gate
set) solely by executing an (adaptive) sequence of single-qubit measurements on a fixed, universal
starting state. Seems impossible? Let’s first give an overview of how this model works, and then
we’ll explain how it can be used to achieve blind, verifiable delegated computation.

10.3.1 Measurement-based computation
Measurement-based computation is based on an idea very similar to teleportation-based compu-
tation, a model to which we return in the next section. It is the idea that a complete quantum
computation, including the preparation of the initial state and the application of gates from a uni-
versal set, can be performed by making a sequence of adaptive measurements on a fixed universal
state, simultaneously “teleporting” the input state from one qubit to the next while at the same time
applying unitary transformations on the state.

Let’s do a simple example first. Suppose we have a qubit initialized in the state |ψ〉A =
α|0〉+ β |1〉. Suppose a second qubit is created in the state |+〉B, and a CTL-Z operation is
performed, controlling on the first qubit to perform a phase flip on the second. Then the joint
state of the system is |ψ〉AB = α|0〉|+〉+β |1〉|−〉. Suppose now we measure the first qubit in the
Hadamard basis. What happens to the second qubit? Let’s re-write

|ψ〉AB = α|0〉|+〉+β |1〉|−〉

=
1√
2
|+〉(α|+〉+β |−〉)+ 1√

2
|−〉(α|+〉−β |−〉).

The measurement rule states that if we get the outcome “+” the second qubit is projected to
|ψ〉B = α|+〉+ β |−〉, and if we get a “−” it is projected to α|+〉 − β |−〉. In the first case,
|ψ〉B = H|ψ〉A, and in the second |ψ〉B = XH|ψ〉A. More succinctly put, |ψ〉B = XmH|ψ〉A where
m ∈ {0,1} denotes the outcome of the measurement, m = 0 in case of “+” and m = 1 in case of
“−”. Thus, up to a “Pauli correction” Xm, we managed to apply a Hadamard gate simply by making
a single-qubit measurement on the appropriate state.

For an arbitrary φ ∈ [0,π/2) let

|+φ 〉 =
1√
2
|0〉+ eiφ 1√

2
|1〉 and |−φ 〉 =

1√
2
|0〉− eiφ 1√

2
|1〉, (10.1)

and

Uz(φ) =

(
1 0
0 eiφ

)
, Ux(φ) = HUz(φ)H.

The rotations Uz(φ) and Ux(φ) together generate a universal set of single-qubit gates, as any rotation
on the Bloch sphere can be implemented as Uz(ϕ3)Ux(ϕ2)Uz(ϕ1) for an appropriate choice of ϕ1,
ϕ2 and ϕ3. The following exercise asks you to generalize our example of the Hadamard gate to any
single-qubit rotation that can be decomposed in this way.

10.3 Delegation in the measurement-based model 11

Exercise 10.3.1 Modify the method we described to apply a Hadamard gate by instead per-
forming a measurement of the first qubit in the basis {|+ϕ〉, |−ϕ〉}. Show that the second qubit
is then projected on the state XmHUz(ϕ)|ψ〉A, where m ∈ {0,1} indicates the measurement
outcome.

Now consider a sequence of three measurements with angles ϕ1, ϕ2 and ϕ3. That is, suppose
a first qubit is in state |ψ〉A, and three additional qubits are created in the |+〉 state and organized
on a line. Three CTL-Z operations are performed from left to right. Then the first qubit
is measured in basis {|+ϕ1〉, |−ϕ1〉}, obtaining an outcome m1 ∈ {0,1}, the second qubit is
measured with angle ϕ2, obtaining outcome m2, and finally the third qubit is measured with
angle ϕ3, obtaining outcome m3. Show that the state of the fourth qubit can then be written as

|ψ〉D = Xm3Zm2Xm1HUz((−1)m2ϕ3)Ux((−1)m1ϕ2)Uz(ϕ1)|ψ〉A. (10.2)

[Hint: you may use the identities XUz(φ) = Uz(−φ)X and HUz(φ)H = Ux(φ), valid for any
real φ .] �

The exercise almost lets us apply an arbitrary rotation Uz(ϕ3)Ux(ϕ2)Uz(ϕ1), except there are
these annoying “corrections”, the X and Z operations and the Hadamard to the left, and the extra
(−1)mi phases in the angles. But these can be dealt with easily! For the phases, note that we
perform the measurements sequentially, and the phase flip that got applied to a certain angle only
depends on the outcome of the measurement performed right before. For the case of the calculation
performed in the exercise, if we really had wanted to end up with Ux(ϕ2), after having obtained
outcome m1 we would have updated our choice of angle in which to measure to ϕ ′2 = (−1)m1ϕ2.
As for the X ,Z and H corrections at the end of the computation, we can handle those at the time of
final measurement: they correspond to corrections that will need to be applied once we measure the
final qubit (this is similar to how we handled the one-time pad in the previous section).

This shows how any sequence of single-qubit rotations can be applied to a qubit. You would
start with a line of m qubits, each initialized in the |+〉 state. Then apply CTL-Z operations on all
pairs of neighboring qubits, from left to right. This corresponds to preparing a 1×m-dimensional
“brickwork state”, our universal resource for single-qubit computation. Suppose for simplicity the
initial qubit is meant to be initialized in the |+〉 state (if it is not you can modify the circuit so
that the first gate applied prepares the correct qubit). Any rotation can be applied by decomposing
it in the form Uz(ϕ3)Ux(ϕ2)Uz(ϕ1) and making the correct sequence of measurements on three
qubits, keeping track of successive measurement outcomes to update the angles and the X ,Z and H
“corrections” that tag along to the left of the description of the state of the qubit, as in (10.2) (note
that you do not need to remember all measurement outcomes, but only their combined effect in
terms of a power of X and a power of Z).

What if we have a multi-qubit computation? We won’t give the details, as the overall idea is the
same. Since we already know how to implement arbitrary single-qubit gates, to get a universal gate
set it suffices to implement a 2-qubit CNOT gate. We’ll use multiple lines of qubits, one per qubit
of the computation. The lines are connected by vertical CTL-Z operations once every three qubits
(in a slightly shifted manner). A two-qubit CNOT gate can then be applied using similar ideas as
we described, but performing measurements on the two lines associated with both qubits on which
the gate acts. We’ll leave the details as an exercise, and refer you to the notes [browne2006one]
for detailed explanations.

10.3.2 Blind delegation in the MBQC model

Now that we have seen how to perform an arbitrary computation in the MBQC model, let’s see how
the computation can be delegated to an untrustworthy server. Let’s imagine that the client, Alice,

12

has a sequence of single-qubit measurements, specified by angles ϕi, j and update rules (depending
on prior measurement outcomes), that she wishes to apply on an n×m brickwork state in order to
implement a certain circuit she is interested in. Let’s also assume for simplicity that the outcome of
the last measurement would (possibly after a Pauli correction if needed) give her the answer she is
looking for.

Of course Alice could tell the server to prepare the n×m brickwork state and then instruct it,
through a classical interaction, to perform the measurements specified by the ϕi, j. The server would
report the outcomes, Alice would perform the updates, and tell the server the next angle to measure
in. But clearly this would be neither blind nor verifiable.

The key idea is then for Alice to (partially) prepare some kind of “one-time padded” version of
the brickwork state, on which the server will implement the computation without ever having any
information about the “real” angles ϕi, j.

Consider the following outline for a protocol.

Protocol 1 Fix a set of “hiding” angles D = {0,π/4,2π/4, . . . ,7π/4}.
1. For each of the nm qubits of the brickwork state, Alice chooses a random θi, j ∈D, prepares

the state |+θi, j〉, and sends it to the server.
2. The server arranges all qubits it receives in the shape of an n×m brickwork state, and

performs CTL-Z operations on neighboring qubits as required.
3. Alice and the server have a classical interaction over nm rounds. In each round,

(a) Alice computes an angle δi j as a function of θi j, ϕi j, private randomness ri j, and
previous outcomes bi j reported by the server. She sends δi j to the server.

(b) The server measures the (i, j)-th qubit of the brickwork state in the {|+〉ϕi j , |−〉ϕi j}
basis and reports the outcome bi j ∈ {0,1} to the client.

4. Alice infers the outcome of her circuit from her private data and the server’s last reported
outcome.

There are many details missing to fully specify the protocol. The idea is to design rules for
Alice to update the measurement angles δi j that she sends to the server in a way that, from the
point of view of the server δi j is uniformly random in D (so it reveals no information about the
computation being performed), but Alice is able to keep track, under her one-time pad, of the actual
computation. To see how this can be done, first consider the following exercise.

Exercise 10.3.2 Based on Exercise 10.3.1 we know that applying a Hadamard gate to a qubit A
can be performed by measuring the qubit in the basis {|+〉, |−〉}, and adding an Xm correction,
where m is the measurement outcome.

This is correct when the second qubit, B has been initialized in a |+〉 state, as required for
the un-hidden brickwork state. Now suppose the qubit has in fact been initialized in the state
|+θ 〉, for some real angle θ (and a CTL-Z operation has been performed on the two qubits).
Show that the result of measuring the first qubit in the basis {|+δ 〉, |−δ 〉} is to project the second
qubit on the state XmHUz(θ +δ)|ψ〉A, where m is the measurement outcome. �

Suppose then that Alice would like to apply a gate Uz(ϕ), for some angle ϕ ∈ A. The exercise
shows that by communicating the angle δ = ϕ−θ to the server instead, where θ is the initial angle
using which she prepared the corresponding qubit of the brickwork state, will have the desired
effect of implementing XmHUz(ϕ). However, this still poses a problem: if the server is given both
the quantum state |+θ 〉, and the real angle ϕ−θ , we can’t argue any more that the computation is
blind, as the joint distribution of these two pieces of information depends on ϕ .

Exercise 10.3.3 Fix ϕ , and suppose an adversary is given a classical value η = ϕ−θ and a
single-qubit state |ψ〉= |+θ 〉, where θ is chosen uniformly at random. Design a strategy for

10.4 Delegating to two servers 13

the adversary to recover ϕ , given (η , |ψ〉). What is its success probability (averaged over the
random choice of θ)? �

The role of the additional values ri j specified in the protocol is to render ϕi j completely hidden
to the server. Here ri j is chosen uniformly at random in {0,1}, and Alice communicates the angle
ϕ − θ + rπ to the server. Based on exercise 10.3.2 the effect of rπ on the computation to add
an extra Zr correction, which Alice can easily keep track of. To see that it is sufficient to ensure
blindness, imagine that instead rπ had been added to the initial angle θ . For any fixed θ , a random
choice of r ∈ {0,1} is sufficient to ensure the server gains no information from receiving |+θ+rπ〉,
as 1

2 |+θ 〉〈+θ |+ 1
2 |+θ+π〉〈+θ+π |= 1

2I. But then as θ varies in D the angle θ−ϕ itself is uniformly
distributed in D. Therefore from the point of view of the client the joint distribution of the pair
(|+θ +rπ〉,θ −ϕ) is indistinguishable from that of a uniformly random qubit and a uniformly
random value from D. The server receives completely random data, so the computation is perfectly
blind.

10.3.3 Verifiability
In the previous section we showed how blind delegation could be implemented in the MBQC model.
Can we make the protocol verifiable? Note that so far the client does not perform any checks, so
the server could just as easily report random outcomes to the client at each step. Already though,
due to blindness there is no way the server can force a particular outcome on the client; the best it
can do is mislead her into thinking that the outcome of the computation is some random bit.

There are different techniques available to make the protocol verifiable, and we refer to [fitzsimons2012unconditionally]
for details. The main idea is to introduce trap qubits. Those are particular rows of the brickwork
state that the client randomly inserts into its circuit but carry no operation: they are meant to remain
in the |0〉 state (hidden, as usual, under the quantum one-time pad). By asking the server to measure
a qubit on such a line the client can verify the measurement outcome. Due to the blindness property,
even the application of identity gates cannot be detected by the server, thus it does not know it is
being tested.

Implementing this idea requires a little care, as it is important to ensure that even the tiniest
attack by the server, such as reporting a single false measurement outcome, is detected with good
probability, as just one such deviation could suffice to ruin the whole computation. This can be
achieved by introducing additional ideas from fault-tolerant computation that we will not go into
here.

10.4 Delegating to two servers

Both schemes for delegated computation we’ve seen so far, in the circuit model or using measurement-
based computation, require the client to prepare single-qubit states taken from a small fixed set and
send them to the server. What if the client has no quantum abilities whatsoever? Intuitively, the aim
of the qubits sent by the client in the two previous schemes is to establish some kind of “trusted
space” within the server’s quantum memory, in which the computation is to be performed. The
quantum one-time pad is used to guarantee that if the server does not use this space then the client
interprets the results, at best, as garbage. In fact the verifiability property, enforced through the use
of trap qubits, ensures that the server’s cheating will be detected with high probability.

How can we establish a “trusted computation space” within the server’s memory, without
sending it the qubits in the first place? You know the answer! In previous weeks we’ve seen
that simple tests based on the CHSH game could be used to guarantee that two arbitrary but
non-communicating devices share a specific state, the EPR pair |φ+〉. Even if it is limited to a
single qubit per server, this gives us a solid starting point: a test which ensures that a certain little
corner of the servers’ workspace behaves in a way that we can control.

14

Let’s see how this idea can be leveraged to devise a scheme for delegated computation in
which the verifier is completely classical, but has access to two non-communicating servers, both
untrusted. This method is the most technical of the three we are presenting, and we’ll remain at an
intuitive level of presentation. If you are interested to learn more we refer you to the main paper on
the topic [reichardt2013classical].

10.4.1 Establishing a trusted computation space
In Week 7 we saw the CHSH rigidity theorem, which states that if the servers successfully play
the CHSH game then up to local isometries the operations they perform are equivalent to those
specified in the ideal strategy for the CHSH game. Thus the CHSH game provides a simple test,
not only to certify the presence of an EPR pair between the servers, but also the structure of the
measurements that the servers perform on their respective half of the EPR pair when asked certain
questions. The central idea for using this in delegated computation will be to sometimes play
the CHSH game with the servers, and sometimes other games, some of which will involve the
computation Alice wants them to implement; this will be done in a way that the servers invidiually
can never tell whether they are being “CHSH-tested” or actually being “used” to implement a useful
part of the computation, so that they have to apply the honest CHSH strategy all the time, test or
computation.

The first thing to deal with is that we’re going to need many more EPR pairs. One idea to certify
n EPR pairs would be to play n CHSH games “in parallel”: Alice could select n pairs of questions
(x j,y j) j=1,...,n to send to the servers, collect n pairs of answers (a j,b j), and check how many satisfy
the CHSH condition a j⊕b j = x j ∧ y j. If this estimate is close enough to the optimal cos2 π/8 she
would accept the interaction. Although this is a sensible idea it is currently not known how well it
works; in particular the effect of small errors in the servers’ answers is not clear. (The difficulty is
similar to one we encountered in Week 4, when we saw an example of a game for which the servers
could play two repetitions of the game much better than you’d expect by using a correlated strategy
across both instances of the game.)

Instead of executing the games in parallel Alice will perform them sequentially. That is, she
sends the questions (x j,y j) to the servers one pair at a time, waiting for their answer before sending
the next pair of questions. After having repeated this procedure for n rounds, she counts the average
number of rounds in which the CHSH condition was satisfied, and accepts if and only if it is at
least cos2 π/8−δ , for some error threshold δ . The following sequential rigidity theorem states the
consequences of this test in the idealized setting where δ = 0.

Theorem 10.4.1 — idealized. Suppose the two servers, Bob and Charlie, successfully play
n sequential CHSH games. Then up to local isometries their initial state is equivalent to
|φ+〉⊗n

BC⊗| junk〉BC. Moreover, at each step j ∈ {1, . . . ,n} the measurements performed by each
server are equivalent to those of the ideal strategy for CHSH (Z and X for Bob and H and H̃ for
Charlie) applied on the j-th EPR pair.

You may notice that the protocol for the n sequential CHSH tests is similar to how the CHSH
tests are performed in the protocol for device-independent quantum key distribution we saw in
Week 7. The analysis uses similar tools: a first step uses a (Martingale) concentration inequality
to argue that, if a fraction about cos2 π/8−δ of the games are won by the servers, then for most
j ∈ {1, . . . ,n} the a priori probability that the servers would have won in round j must be of the
same order, say at least cos2 π/8−2δ . For any such j the basic CHSH rigidity theorem can be
applied to conclude that the measurements applied, and the state on which they were applied, are
(up to local isometries) equivalent to the ideal CHSH strategy.

By itself this reasoning is not sufficient to imply that the servers’ initial state is a tensor product
of EPR pairs. Indeed, the different EPR pairs used in each round could partially “overlap”, or

10.4 Delegating to two servers 15

even be the same pair! Intuitively we know this is not possible, as any measurement destroys the
EPR pair, so it cannot be re-used. But this is tricky to establish rigorously; the way the errors add
up through a proof by induction can be hard to control. Nevertheless, it can be done, and for the
remainder of the section we will assume that a “robust” version of the “idealized” theorem above
can be proven dealing with the more realistic setting where the servers are not required to play the
CHSH games strictly optimally, a far too stringent requirement for any practical application.

10.4.2 State tomography
Now that we have a way to establish a “secure computation space”, as a second step let’s see how
the client Alice can use that space, and additional CHSH tests, to certify that one of the servers has
prepared certain single- or two-qubit states in that space.

Consider the following protocol. With Bob, Alice behaves exactly as if she was executing
the n sequential CHSH games described in the previous section. With Charlie, however, she does
something different: she instructs him to measure each half of the EPR pairs he is supposed to
share with Bob in a certain basis, say {|+θ 〉, |−θ 〉} for some real theta (see (10.1)), and to report
the outcome.

Charlie of course knows that something special is going on. So we have no guarantee as to
what action he performs. In contrast, Bob is told the exact same thing as in the n-sequential CHSH
test. He must thus behave exactly as if this is the test Alice was performing, and Theorem 10.4.1
applies: in each round, Bob applies the ideal CHSH measurements, in the standard or Hadamard
bases, on his half of the j-th EPR pair, in a way that, if Charlie had been measuring using his own
CHSH measurements, they would have succeeded with near-optimal probability.

But now Charlie is doing something different — we don’t know what. But if Charlie performs
the measurement asked by Alice, and reports the right outcome, we know what should happen:
Charlie’s half-EPR pair gets projected onto one of the basis states, |+θ 〉 or |−θ 〉, and by the special
properties of EPR pairs so does Bob’s half. In particular, whenever Bob performs a measurement
in the Hadamard basis the average value of his outcome (considered as a value in {±1}) should
be 〈+θ |X |+θ 〉= cosθ or 〈−θ |X |−θ 〉=−cosθ . Thus by collecting all Bob’s answers associated
to measurements in the X basis Alice can check whether the average outcome over the rounds in
which Charlie reported a + is approximately cosθ , and −cosθ over those rounds when Charlie
reported a −. Alice is using Bob’s answers to perform tomography on the state that Charlie claims
having prepared, without Bob being able to detect what is going on! (Even though Bob knows he
might not be currently tested, since he is aware of the structure of the protocol, there is nothing he
can do about it — if he deviates he risks failing too many CHSH games, in case this is what Alice
is doing.)

In the CHSH game the only measurements made by Bob are in the computational or Hadamard
bases. To perform tomography of arbitrary multi-qubit states we would also need him to sometimes
apply a Pauli Y . It is possible to do this via a simple modification of the CHSH game. For our
purposes the modification will not be necessary, as the set of states that are characterized by their
expectation value with respect to Pauli X and Z observables (call such states XZ-determined) is
sufficient to implement the delegated computation protocol.

Exercise 10.4.1 Show that the family of all single-qubit states in the xz-plane of the Bloch
sphere, i.e. all states of the form

ρ =
1
2
(I + cosθX + sinθZ), θ ∈ [0,2π),

are XZ-determined.

16

Show that the family of two-qubit states of the form

|ψ〉=U⊗P|φ+〉,

for any single-qubit real unitary U and P ∈ {I,X ,Y,Z}, is XZ-determined.
Give an example of two distinct single-qubit states that have the same expectation values

with respect to both X and Z observables, and are thus not XZ-determined. �

10.4.3 Process tomography
Beyond state tomography, our protocol for delegated computation will require us to implement
some limited form of process tomography: we need to find a way to guarantee that at least one
of the servers, Bob or Charlie, is performing the right computation! At first this task may appear
overwhelming: while as described in the previous section it is possible to use one server to perform
tomography against the other server’s state, how can we test for a certain gate being applied? For
the case of state preparation we know what the right states are, and as long as they are restricted
to simple single- or two-qubit states we can do full state tomography. But our ultimate goal is to
implement an arbitrary quantum circuit, which may generate highly entangled states of its n qubits;
there is no hope to perform full tomography on such states, as it would require an exponential
number of measurements.

We will sidestep the difficulty and use a model of computation which only requires the ap-
plication of a very special type of gate — a measurement in the Bell basis, i.e. the simultaneous
eigenbasis of X⊗X and Z⊗Z, given by

|ψ00〉AB =
1√
2
(|00〉AB + |11〉AB), |ψ01〉AB =

1√
2
(|00〉AB−|11〉AB),

|ψ10〉AB =
1√
2
(|01〉AB + |10〉AB), |ψ11〉AB =

1√
2
(|01〉AB−|10〉AB),

where |ψ00〉= |φ+〉 is the familiar EPR pair. This model of computation is called teleportation-
based computation (recall that a measurement in the Bell basis is precisely the operation required
of the sender in the teleportation protocol), and we’ll review it in the next section. But let’s already
see how this idea can be used for delegated computation.

In a similar vein as in the previous section, suppose Alice instructs Charlie to measure his n
qubits in the Bell basis, where the qubits are paired in an arbitrary way chosen by Alice (so she tells
Charlie the whole set of measurements to be performed at the outset). Of course as usual Charlie
does what he wants — he may not even have n qubits in the first place. But Alice also instructs
Bob to play sequential CHSH games, so that from his point of view the protocol is perfectly
indistinguishable from the tests. Once Alice has collected all of Bob and Charlie’s outcomes, she
groups Bob’s outcomes when they are associated to the same state, and uses them to check that
Charlie did not lie. For instance, if Charlie reports |ψ00〉 then whenever Bob measured the two
corresponding qubits using the same basis, computational or Hadamard, his two outcomes should
be the same. (Note that not all Bob’s measurements are useful, as it will sometimes be the case that
the qubits were measured in different bases, in which case there is no useful test Alice can perform
— she simply discards those rounds.)

The following exercise asks you to make this argument more formal.

Exercise 10.4.2 Suppose Bob and Charlie share two EPR pairs, |φ+〉B1C1⊗|φ+〉B2C2 . Charlie
measures his two halves, C1C2, using an arbitrary four-outcome POVM, obtaining a result
(c1,c2) ∈ {0,1}2. Bob measures each of B1 and B2 using observables O1,O2 ∈ {X ,Z} chosen
uniformly at random.

10.4 Delegating to two servers 17

Suppose that if (O1,O2) = (X ,X) then Bob’s outcomes (as values in {±1}) satisfy b1b2 = a,
and if (O1,O2) = (Z,Z) they satisfy b1b2 = d, for some fixed values a,d ∈ {±1} (i.e. imagine
the same experiment is repeated many times, and Bob’s outcomes consistently satisfy these
equations). Show that Charlie must have been implementing a measurement in the Bell basis.
Which Bell state is associated to each of the four possible values for (a,d)? �

The exercise shows that, provided we can trust that Bob and Charlie indeed share EPR pairs,
and Bob’s measurements are made in the computational or Hadamard bases, then Alice has a way
to verify that Charlie has been implementing a Bell basis measurement on certain pre-specified
pairs of qubits. Just as for the case of state tomography, these assumptions are guaranteed by the
fact that Bob cannot tell the difference between when Alice is executing the process tomography
protocol described here, or when she is executing sequential CHSH games.

10.4.4 Teleportation-based computation
The final ingredient needed for our delegation protocol is a method of computation adapted to the
kinds of operations we are able to certify of the servers: preparation of EPR pairs and single- or
two-qubit XZ-determined states (Exercise 10.4.1), and measurements of pairs of qubits in the Bell
basis (Exercise 10.4.2).

Computation by teleportation is a model of computation which allows just that. The main
idea is that a gate can be applied to a qubit by “teleporting the qubit into the gate”. The following
exercise fleshes out the main gadget used in computation by teleportation.

Exercise 10.4.3 Let |ψ〉A be an arbitrary single-qubit state and let |φ〉BC = (I⊗UP|φ+〉), where
U is an arbitrary single-qubit unitary and P ∈ {I,X ,Y,Z}. Suppose a measurement of qubits
A and B is performed in the Bell basis, yielding a pair of outcomes (b1,b2) ∈ {0,1}2. Show
that there exists a Pauli operator Q (depending only on (b1,b2)) such that the post-measurement
state of the qubit in C is (UQPU†)U |ψ〉. �

The idea is then the following. Suppose that Alice wishes to implement an arbitrary computation
on n qubits, specified by a circuit C using the universal gate set G = {CNOT,G} introduced in
Section 10.1.1. Assume for simplicity the input to the circuit is |0〉⊗n. Alice initializes her work
space with a large number of “magic states” from the set{

|0〉, (I⊗H)|φ+〉, (I⊗G)|φ+〉, CNOTB1B2(|φ+〉A1B1 |φ+〉A2B2)
}
. (10.3)

At each stage of the computation Alice keeps track of a special set of n qubits which represent the
current state of the circuit. We can label these as A1 · · ·An, even though they will change over time.
Initially A1 · · ·An point to any n of the “magic” |0〉 qubits she has prepared in her workspace.

Now suppose Alice would like to apply a gate to one of her qubits A j, for example a G gate.
Then she can perform the circuit described in Exercise 10.4.3, where the role of A is played by A j,
and the roles of B and C by one of her “magic” (I⊗G)|φ+〉. As a result the state of C is projected
to (GQG†)G|ψ〉C, where initially A j is in state |ψ〉 (the same computation would work for mixed
states as well). This is the operation Alice wanted to perform, except for the correction GQG†.
How do we deal with this?

Depending on Q, GQG† will amount to a Pauli correction, possibly multiplied by a Hadamard:
GXG† = iHY , GY G† = Y and GZG† = H. By now we are used to Pauli corrections: Alice can
keep track of these as a form of one-time pad that is tagged along the whole computation. The
Hadamard gate is a little more annoying, but in fact it can be easily corrected using one more step
of “teleportation”, this time using a “magic” (I⊗H)|φ+〉. This will induce yet another correction
HQ′H†, but this time whatever Q′ is the result is a simple Pauli correction that Alice can tag along
as part of the one-time pad.

18

Thus, aside from the preparation of the magic states, the whole computation boils down to a
simple sequence of Bell basis measurements. Note however that, due to the necessity of performing
Hadamard corrections in an unpredictable way (as it depends on measurement outcomes obtained
when teleporting into a G gate), this sequence is adaptive. This is similar to the scenario of MBQC,
but it will require us to proceed with a little extra care in our delegation protocol.

10.4.5 Blind and verifiable delegated computation

With all the ingredients in place we are ready to describe a delegation protocol for the classical client
Alice to delegate the computation of an n-qubit quantum circuit C , specified using the universal
gate set {CNOT,G}, to two isolated quantum servers, Bob and Charlie, sharing entanglement.

Protocol 2 Alice compiles a description of C in the teleportation-based model. Let T =
poly(|C |) be chosen large enough, and δ = poly−1(|C |) small enough. Alice performs one
of the following four tests (the first three with equal probability, and the last with smaller
probability depending on the size of C).

1. She plays T sequential CHSH games with the two servers. If the average number of
successes is below cos2(π/8)−δ she rejects.

2. Alice executes a state tomography protocol in which Charlie is asked to perform measure-
ments that correspond to T/9 copies of each of the four magic states in (10.3). Bob is
instructed to play T CHSH games. Bob’s measurement outcomes are used to check the
results reported by Charlie, as described in Section 10.4.2.

3. Alice executes a process tomography protocol in which Bob is instructed to perform
Bell basis measurements according to the pattern that corresponds to the teleportation-
based circuit associated with C . Charlie is instructed to play T CHSH games. Charlie’s
measurement outcomes are used to verify that Bob is reporting the correct outcomes for
his Bell measurements, as described in Section 10.4.3.

4. Alice orchestrates the computation of C : she instructs Charlie to prepare the magic
states as in step 2., and Bob to perform Bell basis measurements as in step 3. She uses
the measurement outcome reported by Bob for the output qubit as the output of the
computation (after having applied any required Pauli corrections).

The main reason this protocol works is that Bob cannot distinguish a computation run from a
process tomography run, or a CHSH run from a state tomography run; similarly Charlie cannot
distinguish between a computation run and a state tomography run, or between a CHSH run and a
process tomography run. The protocol can be made blind: blind to Bob, whom without knowledge
of which magic states his Bell basis measurements are performed on gains no useful information
from the pattern of Bell measurements Alice instructs him to perform (the pattern can be made
independent from the circuit C , aside from its size); blind to Charlie, who prepares magic states in
a way that is completely independent from the computation. Verifiability follows directly from the
tests performed in cases 1., 2. and 3. of the protocol.

There is one difficulty we hinted at earlier and we have glossed over so far. This is the fact
that, after application of a Bell basis measurement corresponding to teleportation into a G gate,
Alice needs to make an adaptive choice: either apply an H correction, or not. However, Bob should
be ignorant of this choice, as otherwise the protocol would no longer be blind. The solution is to
switch the focus over to Charlie. While Bob will always be asked to perform the same pattern of
Bell basis measurements, Charlie will be (adaptively) asked by Alice to create certain magic states
as |φ+〉, and others as (I⊗H)|φ+〉, as a function of the outcomes reported by Bob. Since these
outcomes are uniformly distributed, the pattern of state preparation requests Charlie sees is still
random, so that he does not gain any information about the computation either. (Note however
that a third observer able to eavesdrop on both the messages exchanged with Bob and with Charlie

10.4 Delegating to two servers 19

would learn valuable information about the computation; however such an attack falls outside of
the scope of the security definition of delegated computation.)

Only one task remains: performing a soundness analysis of the protocol! Given it is not possible
to require that the servers exactly pass all the tests, some error should be tolerated. How does this
error effect the quality and trustworthiness of the computation? This is quite delicate. The best
analysis known to-date makes this protocol, compared to the ones we saw in the previous two
sections, highly inefficient, as it requires T to be a very large power of n before even relatively
weak security guarantees can be obtained. Nevertheless, it is the only protocol known for purely
classical delegated computation, and improving it is an important research problem.

Acknowledgments
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International Licence. The lecture notes are written by Nelly Ng, Thomas Vidick and Stephanie
Wehner. We thank David Elkouss, Kenneth Goodenough, Jonas Helsen, Jérémy Ribeiro, and Jalex
Stark for proofreading.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	10.1 Delegated computation
	10.1.1 Preliminaries on efficient quantum computation
	10.1.2 The Pauli group and Clifford gates

	10.2 Verifiable delegation of quantum circuits
	10.2.1 Computation with magic states
	10.2.2 Blindness
	10.2.3 Verifiability

	10.3 Delegation in the measurement-based model
	10.3.1 Measurement-based computation
	10.3.2 Blind delegation in the MBQC model
	10.3.3 Verifiability

	10.4 Delegating to two servers
	10.4.1 Establishing a trusted computation space
	10.4.2 State tomography
	10.4.3 Process tomography
	10.4.4 Teleportation-based computation
	10.4.5 Blind and verifiable delegated computation

