CS286.2 Lecture 2: Equivalence of two statements of PCP, and a toy theorem

Scribe: Fernando Granha

In this second lecture, we show how to go from the CSP version of the PCP Theorem to its Game variant. Moreover, we state a simplified PCP Theorem whose proof nonetheless uses some of the tools and ideas from the original one. We begin the proof of the simplified PCP.

(PCP, CSP variant) \Longrightarrow (PCP, games variant)

The next Lemma shows how to go from a CSP promised to have a constant gap in $\omega\left(\varphi_{x}\right)$ to a game G_{x} which also has a constant gap in $\omega\left(G_{x}\right)$.

Lemma 1. Given $a(m, q)$-CSP instance φ_{x} on n variables promised by the ($P C P, C S P$ variant) Theorem, it is possible to construct a Game G_{x} such that:
(i) $\omega\left(\varphi_{x}\right)=1 \Longrightarrow \omega\left(G_{x}\right)=1$, and
(ii) $\omega\left(\varphi_{x}\right) \leq \frac{1}{2} \Longrightarrow \omega\left(G_{x}\right) \leq 1-\frac{1}{10 q^{2}}$.

As shown in the exercises, by repeating the game G_{x} in parallel sufficiently many times with independent sets of players it is possible to reduce the game value from $1-\frac{1}{10 q^{2}}$ to $1 / 2$ in case (ii) (while preserving value 1 in case (i)), thereby completing this step of the equivalence.

Proof. Before we start the proof, to make the notation precise, we definite a function $f:\{1, \ldots, m\} \times$ $\{1, \ldots, q\} \rightarrow\{1, \ldots, n\}$, that takes the index of a constraint index and the index of a variable appearing in that constraint to the index of this variable in $\{1, \ldots, n\}$. Consider the following game with two players P_{1} and P_{2}.

```
1 Choose uniformly at random a constraint \(C_{j}\left(z_{f(j, 1)}, \ldots, z_{f(j, q)}\right)\) for \(j \in\{1, \ldots, m\}\);
2 Choose uniformly at random a variable \(i\) in \(\{1, \ldots, q\}\);
3 Ask \(P_{1}\) for an assignment to the variables in \(C_{j}\);
4 Denote by \(a_{f(j, 1)}^{1}, \ldots, a_{f(j, q)}^{1}\) the answers received for \(z_{f(j, 1)}, \ldots, z_{f(j, q)}\), respectively;
5 Ask \(P_{2}\) for an assignment to \(z_{f(j, i)}\);
6 Denote by \(a_{f(j, i)}^{2}\) the answer received;
7 Reject if \(a_{f(j, 1)}^{1}, \ldots, a_{f(j, q)}^{1}\) do not satisfy \(C_{j}\);
8 Accept iff \(a_{f(j, i)}^{2}=a_{f(j, i)}^{1}\).
```


Algorithm 1: Referee in G_{x}

When $\omega\left(\varphi_{x}\right)=1$, there is an assignment $\left(a_{i}\right)_{i=1, \ldots, n}$ to the variables z_{1}, \ldots, z_{n} that satisfies all constraints. Therefore, if both players answer according to it, it is clear that $\omega\left(G_{x}\right)=1$ concluding item (i).

To show item (ii), we show the contrapositive: $\omega\left(G_{x}\right)>1-\frac{1}{10 q^{2}} \Longrightarrow \omega\left(\varphi_{x}\right)>\frac{1}{2}$. In words, if the value of the game is sufficiently large, then there is an assignment to z_{1}, \ldots, z_{n} that satisfies more than half of the constraints. Recall that without loss of generality we may assume that the strategies of the players are deterministic. A strategy for player 2 is a fixed assignment to all variables of φ_{x}, that we denote by $a^{2}=\left(a_{i}^{2}\right)_{i=1, \ldots, n}$. Given the assumption that $\omega\left(G_{x}\right)>1-\frac{1}{10 q^{2}}$ we claim that this assignment satisfies more than half of the constraints. We bound the probability $\operatorname{Pr}\left[a^{2}\right.$ satisfies $\left.C_{j}\right]$ from below as follows:

$$
\operatorname{Pr}\left[a^{2} \text { satisfies } C_{j}\right] \geq \operatorname{Pr}\left[P_{1}^{\prime} \text { s strategy satisfies } C_{j} \wedge a_{f(j, 1)}^{2}=a_{f(j, 1)}^{1} \cdots \wedge a_{f(j, q)}^{2}=a_{f(j, q)}^{1}\right] .
$$

By negating the probability in the rhs and using the union bound, we have
$\operatorname{Pr}\left[a^{2}\right.$ satisfies $\left.C_{j}\right] \geq 1-\operatorname{Pr}\left[P_{1}^{\prime} s\right.$ strategy does not satisfy $\left.C_{j}\right]-\operatorname{Pr}\left[a_{f(j, 1)}^{2} \neq a_{f(j, 1)}^{1}\right]-\cdots-\operatorname{Pr}\left[a_{f(j, q)}^{2} \neq a_{f(j, q)}^{1}\right]$.
If P_{1} 's strategy does not satisfy C_{j}, the referee readily rejects. Consequently, the probability of C_{j} not being satisfied it at most $1-\omega\left(G_{x}\right)$. Each time the referee detects a disagreement between $a_{f(j, i)}^{2}$ and $a_{f(j, i)}^{1}$ for i in $\{1, \ldots, q\}$ it rejects. The probability that any index $i \in\{1, \ldots, q\}$ is chosen as the second player's question is exactly $1 / q$. Therefore for any fixed i, over the choice of a random $j, \operatorname{Pr}\left[a_{f(j, i)}^{2} \neq a_{f(j, i)}^{1}\right] \leq$ $q\left(1-\omega\left(G_{x}\right)\right)$. These observations result in the bound

$$
\operatorname{Pr}\left[a^{2} \text { satisfies } C_{j}\right] \geq 1-\left(1-\omega\left(G_{x}\right)\right)-q\left(1-\omega\left(G_{x}\right)\right)-\cdots-q\left(1-\omega\left(G_{x}\right)\right) .
$$

Finally, using the hypothesis that $\omega\left(G_{x}\right)>1-\frac{1}{10 q^{2}}$, we can conclude that

$$
\operatorname{Pr}\left[a^{2} \text { satisfies } C_{j}\right] \geq 1-\frac{1}{10 q^{2}}-\frac{1}{10 q}-\cdots-\frac{1}{10 q} \geq 1-\frac{2}{10}>\frac{1}{2} .
$$

A "toy" version of the PCP Theorem

The original PCP Theorem in its proof-checking version demonstrates that for any $L \in$ NP there exists a verifier that uses only $O(\log (n))$ random bits, queries only a constant number of positions in the proof, and correctly answers the question $x \in L$? with constant probability. A simpler version only requires the number of random bits to be polynomial in the input size:

Theorem 2. NP $\subseteq \operatorname{PCP}(r=O(p o l y(n)), q=O(1))$.
This version has an exponential blowup in the maximal proof size that is $O\left(2^{\text {poly }(n)}\right)$ compared to $O(\operatorname{poly}(n))$ from the original PCP Theorem. Despite being a weaker result, it will allow us to demonstrate tools and ideas used in the original version.

In order to prove Theorem 2, we use the NP-complete problem "Quadratic Equations" (QUADEQ) that is defined next.

Definition 3. (QUADEQ) An instance φ of $\mathbf{Q U A D E Q}$ is given by m constraints C_{j} over n boolean variables x_{i} of the form:

$$
C_{j}: \sum_{i} \alpha_{i}^{(j)} x_{i}+\sum_{i, k} \beta_{i, k}^{(j)} x_{i} x_{k} \equiv \gamma^{(j)} \quad \bmod 2,
$$

or equivalently

$$
\alpha^{(j)} \cdot x+\beta^{(j)} \cdot(x \otimes x) \equiv \gamma^{(j)} \quad \bmod 2,
$$

where

$$
\begin{gathered}
x=\left(x_{i}\right)_{i=1, \ldots, n} \in\{0,1\}^{n}, \\
\alpha^{(j)}=\left(\alpha_{i}^{(j)}\right)_{i=1, \ldots, n} \in\{0,1\}^{n}, \\
\beta^{(j)}=\left(\beta_{i k}^{(j)}\right)_{i, k=1, \ldots, n} \in\{0,1\}^{n^{2}} \text { and } \\
\gamma^{(j)} \in\{0,1\} .
\end{gathered}
$$

The instance φ belongs to QUADEQ if and only if there is an assignment x that satisfies all constraints.
The following is an example of a QUADEQ instance.

$$
\begin{cases}C_{1}: & x_{1}+x_{2}+x_{4} x_{5}+x_{2} x_{7} \equiv 1 \quad \bmod 2 \tag{1}\\ C_{2}: & x_{7}+x_{1} x_{2} \equiv 0 \quad \bmod 2 \\ \vdots & \\ C_{m}: & x_{9}+x_{5} x_{6} \equiv 1 \quad \bmod 2\end{cases}
$$

The goal is to describe a PCP verifier for QUADEQ and as we advance some tools are established. The first such tool is a test that fails with probability $\frac{1}{2}$ if a QUADEQ instance φ is infeasible, and always accepts otherwise.

Given coefficients $a=\left(a_{i}\right)_{i=1, \ldots, m} \in\{0,1\}$ chosen independently and uniformly at random, form an equation by combining the constraints of φ as follows:

$$
\mathrm{E}=\mathrm{E}(a): \sum_{j} a_{j}\left(\alpha^{(j)} \cdot x+\beta^{(j)} \cdot(x \otimes x)\right)=\sum_{j} a_{j} \gamma^{(j)} .
$$

Claim 4. For a uniformly random choice of the coefficients a, it holds:
(i) If x satisfies all constraints, then x satisfies $\mathrm{E}(a)$,
(ii) If x does not satisfy all constraints, $\operatorname{Pr}_{a}[x$ satisfies $E(a)] \leq \frac{1}{2}$.

Proof. Item (i) is clear, as any assignment that satisfies all equations individually must also satisfy the sum. For item (ii), we introduce the error vector given by

$$
e=\left(\begin{array}{c}
\alpha^{(1)} \cdot x+\beta^{(1)} \cdot(x \otimes x)-\gamma^{(1)} \tag{2}\\
\vdots \\
\alpha^{(m)} \cdot x+\beta^{(m)} \cdot(x \otimes x)-\gamma^{(m)}
\end{array}\right)
$$

Since not all the constraints of φ are satisfiable, the vector e has at least one not zero component. Note that the inner product of the random vector a with the error vector e checks the parity of the elements a_{i} for which $e_{i}=1$. As the elements a_{i} are drawn independently and uniformly at random this parity is 1 with probability exactly $\frac{1}{2}$. Moreover, the probability that x does not satisfy E is $\operatorname{Pr}_{a}[e \cdot a=1] \leq \frac{1}{2}$.

Now, We are ready for our first attempt to solve the simplified PCP Theorem 2. We assume that the verifier has access to a proof $\Pi=\left(\Pi^{1}, \Pi^{2}\right)$ where $\Pi^{1} \in\{0,1\}^{2^{n}}$ and $\Pi^{2} \in\{0,1\}^{2^{n^{2}}}$. Ideally, we would like to have Π to be composed of

- $\left(\Pi^{1}\right)_{\alpha}=\alpha \cdot x$, and
- $\left(\Pi^{2}\right)_{\beta}=\beta x \cdot(\otimes x)$.
for some $x \in\{0,1\}^{n}$.
In words, the proof Π^{1} encodes in each position α the value of the inner product with a fixed x (similarly to Π^{2}). If $\varphi \in$ QUADEQ, the bit string x would be the satisfying assignment.

It is important to note that all combination of the constraints given by any random a will lead to a new value for α and β whose inner product with x is encoded in Π. This is a key point that allows us to use Claim4. A first attempt at designing a verifier for QUADEQ is given below.
1 Choose $a=\left(a_{i}\right)_{i=1, \ldots, m} \in\{0,1\}$ uniformly at random ;
2 Compute $\left\{\begin{array}{l}\alpha=\sum_{j} a_{j} \alpha^{(j)} \in\{0,1\}^{n} \\ \beta=\sum_{j} a_{j} \beta^{(j)} \in\{0,1\}^{n^{2}} \quad ; \\ \gamma=\sum_{j} a_{j} \gamma^{(j)} \in\{0,1\}\end{array} ;\right.$
3 Make two queries $\left(\Pi^{1}\right)_{\alpha}$ and $\left(\Pi^{2}\right)_{\beta}$;
4 Accept iff $\left(\Pi^{1}\right)_{\alpha}+\left(\Pi^{2}\right)_{\beta}=\gamma$;

Algorithm 2: Verifier V for QUADEQ

The problem of this verifier is that it expects the proof to be in a particular format. Provided this is the case, it follows from Claim that the verifier V has completeness 1 and soundness at most $\frac{1}{2}$. However, it can not rely on receiving this exact format, or otherwise the system may loose its constant soundness as the proof Π is given by an adversarial prover.

The proofs Π^{1} and Π^{2} should encode the evaluation of a linear function (the inner product with a fixed x, or $x \otimes x$) over all possible inputs. Fortunately, this is a strong property that we can exploit to ensure that Π is "close" to having the desired format. For this, we devise a linearity test that has oracle access to a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and whose goal is to check that f is linear. (By linearity we mean that there is $c \in\{0,1\}^{n}$ such that $f(\alpha)=c_{1} \alpha_{1}+\cdots+c_{n} \alpha_{n} \bmod 2=c \cdot \alpha$ for every α.)

Testing if f is exact linear would require querying its value on all inputs. Nevertheless, the next simple test can enforce that it is "almost" linear.

```
1 Choose \(\alpha, \alpha^{\prime} \in\{0,1\}^{n}\) at random;
2 Query \(f(\alpha), f\left(\alpha^{\prime}\right), f\left(\alpha+\alpha^{\prime}\right)\);
3 Accept iff \(f\left(\alpha+\alpha^{\prime}\right)=f(\alpha)+f\left(\alpha^{\prime}\right)\);
```

Algorithm 3: BLR Linearity Test
The next theorem makes precise our notion of "almost linear". If the linearity test succeeds with high probability, f agrees with a single linear function on a large fraction of inputs.

Theorem 5 (BLR). The BLR linearity test satisfies:
(i) If f is linear, then $\operatorname{Pr}[f$ passes BLR test $]=1$.
(ii) Suppose $\operatorname{Pr}[f$ passes BLR test $] \geq 1-\epsilon$ for some $\epsilon>0$, then there is a coefficient vector c such that $f(\alpha)=c \cdot \alpha$ for $1-\epsilon$ fraction of $\alpha \in\{0,1\}^{n}$.

