CS286.2 Lecture 2: Equivalence of two statements of PCP, and a toy theorem

Scribe: Fernando Granha

In this second lecture, we show how to go from the CSP version of the PCP Theorem to its Game variant. Moreover, we state a simplified PCP Theorem whose proof nonetheless uses some of the tools and ideas from the original one. We begin the proof of the simplified PCP.

$(PCP, CSP \text{ variant}) \Longrightarrow (PCP, games \text{ variant})$

The next Lemma shows how to go from a CSP promised to have a constant gap in $\omega(\varphi_x)$ to a game G_x which also has a constant gap in $\omega(G_x)$.

Lemma 1. Given a (m,q)-CSP instance φ_x on n variables promised by the (PCP, CSP variant) Theorem, it is possible to construct a Game G_x such that:

- (i) $\omega(\varphi_x) = 1 \implies \omega(G_x) = 1$, and
- (ii) $\omega(\varphi_x) \leq \frac{1}{2} \implies \omega(G_x) \leq 1 \frac{1}{10a^2}$.

As shown in the exercises, by repeating the game G_x in parallel sufficiently many times with independent sets of players it is possible to reduce the game value from $1 - \frac{1}{10q^2}$ to 1/2 in case (ii) (while preserving value 1 in case (i)), thereby completing this step of the equivalence.

Proof. Before we start the proof, to make the notation precise, we definite a function $f: \{1, \ldots, m\} \times$ $\{1, \ldots, q\} \rightarrow \{1, \ldots, n\}$, that takes the index of a constraint index and the index of a variable appearing in that constraint to the index of this variable in $\{1, \ldots, n\}$. Consider the following game with two players P_1 and P_2 .

- 1 Choose uniformly at random a constraint $C_i(z_{f(i,1)}, \ldots, z_{f(i,a)})$ for $j \in \{1, \ldots, m\}$;
- 2 Choose uniformly at random a variable *i* in $\{1, ..., q\}$;
- **3** Ask P_1 for an assignment to the variables in C_i ;
- 4 Denote by $a_{f(j,1)}^1, \ldots, a_{f(j,q)}^1$ the answers received for $z_{f(j,1)}, \ldots, z_{f(j,q)}$, respectively;
- **5** Ask P_2 for an assignment to $z_{f(j,i)}$;
- 6 Denote by $a_{f(j,i)}^2$ the answer received ;
- 7 Reject if $a_{f(j,1)}^1, \dots, a_{f(j,q)}^1$ do not satisfy C_j ; 8 Accept iff $a_{f(j,i)}^2 = a_{f(j,i)}^1$. Algorithm 1: Referee in G_x

When $\omega(\varphi_x) = 1$, there is an assignment $(a_i)_{i=1,\dots,n}$ to the variables z_1,\dots,z_n that satisfies all constraints. Therefore, if both players answer according to it, it is clear that $\omega(G_x) = 1$ concluding item (*i*).

To show item (*ii*), we show the contrapositive: $\omega(G_x) > 1 - \frac{1}{10q^2} \implies \omega(\varphi_x) > \frac{1}{2}$. In words, if the value of the game is sufficiently large, then there is an assignment to z_1, \ldots, z_n that satisfies more than half of the constraints. Recall that without loss of generality we may assume that the strategies of the players are deterministic. A strategy for player 2 is a fixed assignment to all variables of φ_x , that we denote by $a^2 = (a_i^2)_{i=1,\ldots,n}$. Given the assumption that $\omega(G_x) > 1 - \frac{1}{10q^2}$ we claim that this assignment satisfies more than half of the constraints. We bound the probability $\Pr[a^2 \text{ satisfies } C_i]$ from below as follows:

$$\Pr[a^2 \text{ satisfies } C_j] \ge \Pr[P_1 \text{'s strategy satisfies } C_j \wedge a_{f(j,1)}^2 = a_{f(j,1)}^1 \dots \wedge a_{f(j,q)}^2 = a_{f(j,q)}^1].$$

By negating the probability in the rhs and using the union bound, we have

 $\Pr[a^2 \text{ satisfies } C_j] \ge 1 - \Pr[P_1's \text{ strategy does not satisfy } C_j] - \Pr[a_{f(j,1)}^2 \neq a_{f(j,1)}^1] - \dots - \Pr[a_{f(j,q)}^2 \neq a_{f(j,q)}^1].$

If P_1 's strategy does not satisfy C_j , the referee readily rejects. Consequently, the probability of C_j not being satisfied it at most $1 - \omega(G_x)$. Each time the referee detects a disagreement between $a_{f(j,i)}^2$ and $a_{f(j,i)}^1$ for i in $\{1, \ldots, q\}$ it rejects. The probability that any index $i \in \{1, \ldots, q\}$ is chosen as the second player's question is exactly 1/q. Therefore for any fixed i, over the choice of a random j, $\Pr[a_{f(j,i)}^2 \neq a_{f(j,i)}^1] \leq q(1 - \omega(G_x))$. These observations result in the bound

$$\Pr[a^2 \text{ satisfies } C_j] \ge 1 - (1 - \omega(G_x)) - q(1 - \omega(G_x)) - \cdots - q(1 - \omega(G_x)).$$

Finally, using the hypothesis that $\omega(G_x) > 1 - \frac{1}{10a^2}$, we can conclude that

$$\Pr[a^2 \text{ satisfies } C_j] \ge 1 - \frac{1}{10q^2} - \frac{1}{10q} - \dots - \frac{1}{10q} \ge 1 - \frac{2}{10} > \frac{1}{2}.$$

A "toy" version of the PCP Theorem

The original PCP Theorem in its proof-checking version demonstrates that for any $L \in NP$ there exists a verifier that uses only $O(\log(n))$ random bits, queries only a constant number of positions in the proof, and correctly answers the question $x \in L$? with constant probability. A simpler version only requires the number of random bits to be polynomial in the input size:

Theorem 2. NP \subseteq PCP(r = O(poly(n)), q = O(1)).

This version has an exponential blowup in the maximal proof size that is $O(2^{poly(n)})$ compared to O(poly(n)) from the original PCP Theorem. Despite being a weaker result, it will allow us to demonstrate tools and ideas used in the original version.

In order to prove Theorem 2, we use the NP-complete problem "Quadratic Equations" (QUADEQ) that is defined next.

Definition 3. (*QUADEQ*) An instance φ of *QUADEQ* is given by *m* constraints C_j over *n* boolean variables x_i of the form:

$$C_j: \sum_i \alpha_i^{(j)} x_i + \sum_{i,k} \beta_{i,k}^{(j)} x_i x_k \equiv \gamma^{(j)} \mod 2,$$

or equivalently

$$\alpha^{(j)} \cdot x + \beta^{(j)} \cdot (x \otimes x) \equiv \gamma^{(j)} \mod 2$$

where

$$\begin{aligned} x &= (x_i)_{i=1,\dots,n} \in \{0,1\}^n, \\ \alpha^{(j)} &= (\alpha^{(j)}_i)_{i=1,\dots,n} \in \{0,1\}^n, \\ \beta^{(j)} &= (\beta^{(j)}_{ik})_{i,k=1,\dots,n} \in \{0,1\}^{n^2} \text{ and } \\ \gamma^{(j)} &\in \{0,1\}. \end{aligned}$$

The instance φ belongs to **QUADEQ** if and only if there is an assignment x that satisfies all constraints. The following is an example of a **QUADEQ** instance.

$$\begin{cases} C_1: & x_1 + x_2 + x_4 x_5 + x_2 x_7 \equiv 1 \mod 2\\ C_2: & x_7 + x_1 x_2 \equiv 0 \mod 2\\ \vdots\\ C_m: & x_9 + x_5 x_6 \equiv 1 \mod 2 \end{cases}$$
(1)

The goal is to describe a PCP verifier for **QUADEQ** and as we advance some tools are established. The first such tool is a test that fails with probability $\frac{1}{2}$ if a **QUADEQ** instance φ is infeasible, and always accepts otherwise.

Given coefficients $a = (a_i)_{i=1,...,m} \in \{0,1\}$ chosen independently and uniformly at random, form an equation by combining the constraints of φ as follows:

$$\mathbf{E} = \mathbf{E}(a) : \sum_{j} a_{j}(\alpha^{(j)} \cdot x + \beta^{(j)} \cdot (x \otimes x)) = \sum_{j} a_{j}\gamma^{(j)}.$$

Claim 4. For a uniformly random choice of the coefficients a, it holds:

- (i) If x satisfies all constraints, then x satisfies E(a),
- (ii) If x does not satisfy all constraints, $\Pr_a[x \text{ satisfies } E(a)] \leq \frac{1}{2}$.
- *Proof.* Item (i) is clear, as any assignment that satisfies all equations individually must also satisfy the sum. For item (ii), we introduce the error vector given by

$$e = \begin{pmatrix} \alpha^{(1)} \cdot x + \beta^{(1)} \cdot (x \otimes x) - \gamma^{(1)} \\ \vdots \\ \alpha^{(m)} \cdot x + \beta^{(m)} \cdot (x \otimes x) - \gamma^{(m)} \end{pmatrix}$$
(2)

Since not all the constraints of φ are satisfiable, the vector *e* has at least one not zero component. Note that the inner product of the random vector *a* with the error vector *e* checks the parity of the elements a_i for which $e_i = 1$. As the elements a_i are drawn independently and uniformly at random this parity is 1 with probability exactly $\frac{1}{2}$. Moreover, the probability that *x* does not satisfy E is $\Pr_a[e \cdot a = 1] \leq \frac{1}{2}$.

Now, We are ready for our first attempt to solve the simplified PCP Theorem 2. We assume that the verifier has access to a proof $\Pi = (\Pi^1, \Pi^2)$ where $\Pi^1 \in \{0, 1\}^{2^n}$ and $\Pi^2 \in \{0, 1\}^{2^{n^2}}$. Ideally, we would like to have Π to be composed of

- $(\Pi^1)_{\alpha} = \alpha \cdot x$, and
- $(\Pi^2)_{\beta} = \beta x \cdot (\otimes x).$

for some $x \in \{0, 1\}^n$.

In words, the proof Π^1 encodes in each position α the value of the inner product with a fixed x (similarly to Π^2). If $\varphi \in \mathbf{QUADEQ}$, the bit string x would be the satisfying assignment.

It is important to note that all combination of the constraints given by any random a will lead to a new value for α and β whose inner product with x is encoded in Π . This is a key point that allows us to use Claim 4. A first attempt at designing a verifier for **QUADEQ** is given below.

1 Choose $a = (a_i)_{i=1,...,m} \in \{0,1\}$ uniformly at random ; 2 Compute $\begin{cases} \alpha = \sum_j a_j \alpha^{(j)} \in \{0,1\}^n \\ \beta = \sum_j a_j \beta^{(j)} \in \{0,1\}^{n^2} \\ \gamma = \sum_j a_j \gamma^{(j)} \in \{0,1\} \end{cases}$ 3 Make two queries $(\Pi^1)_{\alpha}$ and $(\Pi^2)_{\beta}$; 4 Accept iff $(\Pi^1)_{\alpha} + (\Pi^2)_{\beta} = \gamma$;

Algorithm 2: Verifier V for QUADEQ

The problem of this verifier is that it expects the proof to be in a particular format. Provided this is the case, it follows from Claim that the verifier V has completeness 1 and soundness at most $\frac{1}{2}$. However, it can not rely on receiving this exact format, or otherwise the system may loose its constant soundness as the proof Π is given by an adversarial prover.

The proofs Π^1 and Π^2 should encode the evaluation of a linear function (the inner product with a fixed x, or $x \otimes x$) over all possible inputs. Fortunately, this is a strong property that we can exploit to ensure that Π is "close" to having the desired format. For this, we devise a linearity test that has oracle access to a function $f : \{0,1\}^n \to \{0,1\}$ and whose goal is to check that f is linear. (By linearity we mean that there is $c \in \{0,1\}^n$ such that $f(\alpha) = c_1\alpha_1 + \cdots + c_n\alpha_n \mod 2 = c \cdot \alpha$ for every α .)

Testing if f is exact linear would require querying its value on all inputs. Nevertheless, the next simple test can enforce that it is "almost" linear.

- 1 Choose $\alpha, \alpha' \in \{0, 1\}^n$ at random;
- 2 Query $f(\alpha)$, $f(\alpha')$, $f(\alpha + \alpha')$;
- 3 Accept iff $f(\alpha + \alpha') = f(\alpha) + f(\alpha')$;

Algorithm 3: BLR Linearity Test

The next theorem makes precise our notion of "almost linear". If the linearity test succeeds with high probability, f agrees with a single linear function on a large fraction of inputs.

Theorem 5 (BLR). The BLR linearity test satisfies:

- (i) If f is linear, then $\Pr[f \text{ passes BLR test}] = 1$.
- (ii) Suppose $\Pr[f \text{ passes BLR test}] \ge 1 \epsilon$ for some $\epsilon > 0$, then there is a coefficient vector c such that $f(\alpha) = c \cdot \alpha$ for 1ϵ fraction of $\alpha \in \{0, 1\}^n$.