
CS286.2 Lecture 2: Equivalence of two statements of PCP,
and a toy theorem

Scribe: Fernando Granha

In this second lecture, we show how to go from the CSP version of the PCP Theorem to its Game
variant. Moreover, we state a simplified PCP Theorem whose proof nonetheless uses some of the tools and
ideas from the original one. We begin the proof of the simplified PCP.

(PCP, CSP variant) =⇒ (PCP, games variant)

The next Lemma shows how to go from a CSP promised to have a constant gap in ω(ϕx) to a game Gx
which also has a constant gap in ω(Gx).

Lemma 1. Given a (m, q)-CSP instance ϕx on n variables promised by the (PCP, CSP variant) Theorem,
it is possible to construct a Game Gx such that:

(i) ω(ϕx) = 1 =⇒ ω(Gx) = 1, and

(ii) ω(ϕx) ≤ 1
2 =⇒ ω(Gx) ≤ 1− 1

10q2 .

As shown in the exercises, by repeating the game Gx in parallel sufficiently many times with independent
sets of players it is possible to reduce the game value from 1− 1

10q2 to 1/2 in case (ii) (while preserving
value 1 in case (i)), thereby completing this step of the equivalence.

Proof. Before we start the proof, to make the notation precise, we definite a function f : {1, . . . , m} ×
{1, . . . , q} → {1, . . . , n}, that takes the index of a constraint index and the index of a variable appearing in
that constraint to the index of this variable in {1, . . . , n}. Consider the following game with two players P1
and P2.

1 Choose uniformly at random a constraint Cj(z f (j,1), . . . , z f (j,q)) for j ∈ {1, . . . , m};
2 Choose uniformly at random a variable i in {1, . . . , q} ;
3 Ask P1 for an assignment to the variables in Cj;
4 Denote by a1

f (j,1), . . . , a1
f (j,q) the answers received for z f (j,1), . . . , z f (j,q), respectively;

5 Ask P2 for an assignment to z f (j,i) ;
6 Denote by a2

f (j,i) the answer received ;

7 Reject if a1
f (j,1), . . . , a1

f (j,q) do not satisfy Cj ;

8 Accept iff a2
f (j,i) = a1

f (j,i).

Algorithm 1: Referee in Gx

When ω(ϕx) = 1, there is an assignment (ai)i=1,...,n to the variables z1, . . . , zn that satisfies all con-
straints. Therefore, if both players answer according to it, it is clear that ω(Gx) = 1 concluding item
(i).

1

To show item (ii), we show the contrapositive: ω(Gx) > 1− 1
10q2 =⇒ ω(ϕx) >

1
2 . In words, if the

value of the game is sufficiently large, then there is an assignment to z1, . . . , zn that satisfies more than half
of the constraints. Recall that without loss of generality we may assume that the strategies of the players
are deterministic. A strategy for player 2 is a fixed assignment to all variables of ϕx, that we denote by
a2 = (a2

i)i=1,...,n. Given the assumption that ω(Gx) > 1− 1
10q2 we claim that this assignment satisfies more

than half of the constraints. We bound the probability Pr[a2 satisfies Cj] from below as follows:

Pr[a2 satisfies Cj] ≥ Pr[P1’s strategy satisfies Cj ∧ a2
f (j,1) = a1

f (j,1) · · · ∧ a2
f (j,q) = a1

f (j,q)].

By negating the probability in the rhs and using the union bound, we have

Pr[a2 satisfies Cj] ≥ 1−Pr[P′1s strategy does not satisfy Cj]−Pr[a2
f (j,1) 6= a1

f (j,1)]−· · ·−Pr[a2
f (j,q) 6= a1

f (j,q)].

If P1’s strategy does not satisfy Cj, the referee readily rejects. Consequently, the probability of Cj not
being satisfied it at most 1−ω(Gx). Each time the referee detects a disagreement between a2

f (j,i) and a1
f (j,i)

for i in {1, . . . , q} it rejects. The probability that any index i ∈ {1, . . . , q} is chosen as the second player’s
question is exactly 1/q. Therefore for any fixed i, over the choice of a random j, Pr[a2

f (j,i) 6= a1
f (j,i)] ≤

q(1−ω(Gx)). These observations result in the bound

Pr[a2 satisfies Cj] ≥ 1− (1−ω(Gx))− q(1−ω(Gx))− · · · − q(1−ω(Gx)).

Finally, using the hypothesis that ω(Gx) > 1− 1
10q2 , we can conclude that

Pr[a2 satisfies Cj] ≥ 1− 1
10q2 −

1
10q
− · · · − 1

10q
≥ 1− 2

10
>

1
2

.

A “toy” version of the PCP Theorem

The original PCP Theorem in its proof-checking version demonstrates that for any L ∈ NP there exists
a verifier that uses only O(log(n)) random bits, queries only a constant number of positions in the proof,
and correctly answers the question x ∈ L? with constant probability. A simpler version only requires the
number of random bits to be polynomial in the input size:

Theorem 2. NP ⊆ PCP(r = O(poly(n)), q = O(1)).

This version has an exponential blowup in the maximal proof size that is O(2poly(n)) compared to
O(poly(n)) from the original PCP Theorem. Despite being a weaker result, it will allow us to demonstrate
tools and ideas used in the original version.

In order to prove Theorem 2, we use the NP-complete problem “Quadratic Equations” (QUADEQ) that
is defined next.

Definition 3. (QUADEQ) An instance ϕ of QUADEQ is given by m constraints Cj over n boolean variables
xi of the form:

Cj : ∑
i

α
(j)
i xi + ∑

i,k
β
(j)
i,k xixk ≡ γ(j) mod 2,

2

or equivalently

α(j) · x + β(j) · (x⊗ x) ≡ γ(j) mod 2,

where
x = (xi)i=1,...,n ∈ {0, 1}n,

α(j) = (α
(j)
i)i=1,...,n ∈ {0, 1}n,

β(j) = (β
(j)
ik)i,k=1,...,n ∈ {0, 1}n2

and

γ(j) ∈ {0, 1}.

The instance ϕ belongs to QUADEQ if and only if there is an assignment x that satisfies all constraints.

The following is an example of a QUADEQ instance.
C1 : x1 + x2 + x4x5 + x2x7 ≡ 1 mod 2
C2 : x7 + x1x2 ≡ 0 mod 2
...
Cm : x9 + x5x6 ≡ 1 mod 2

(1)

The goal is to describe a PCP verifier for QUADEQ and as we advance some tools are established. The
first such tool is a test that fails with probability 1

2 if a QUADEQ instance ϕ is infeasible, and always accepts
otherwise.

Given coefficients a = (ai)i=1,...,m ∈ {0, 1} chosen independently and uniformly at random, form an
equation by combining the constraints of ϕ as follows:

E = E(a) : ∑
j

aj(α
(j) · x + β(j) · (x⊗ x)) = ∑

j
ajγ

(j).

Claim 4. For a uniformly random choice of the coefficients a, it holds:

(i) If x satisfies all constraints, then x satisfies E(a),

(ii) If x does not satisfy all constraints, Pra[x satisfies E(a)] ≤ 1
2 .

Proof. Item (i) is clear, as any assignment that satisfies all equations individually must also satisfy the sum.
For item (ii), we introduce the error vector given by

e =

 α(1) · x + β(1) · (x⊗ x)− γ(1)

...
α(m) · x + β(m) · (x⊗ x)− γ(m)

 (2)

Since not all the constraints of ϕ are satisfiable, the vector e has at least one not zero component. Note
that the inner product of the random vector a with the error vector e checks the parity of the elements ai for
which ei = 1. As the elements ai are drawn independently and uniformly at random this parity is 1 with
probability exactly 1

2 . Moreover, the probability that x does not satisfy E is Pra[e · a = 1] ≤ 1
2 .

3

Now, We are ready for our first attempt to solve the simplified PCP Theorem 2. We assume that the

verifier has access to a proof Π = (Π1, Π2) where Π1 ∈ {0, 1}2n
and Π2 ∈ {0, 1}2n2

. Ideally, we would
like to have Π to be composed of

• (Π1)α = α · x, and

• (Π2)β = βx · (⊗x).

for some x ∈ {0, 1}n.
In words, the proof Π1 encodes in each position α the value of the inner product with a fixed x (similarly

to Π2). If ϕ ∈ QUADEQ, the bit string x would be the satisfying assignment.
It is important to note that all combination of the constraints given by any random a will lead to a new

value for α and β whose inner product with x is encoded in Π. This is a key point that allows us to use
Claim 4. A first attempt at designing a verifier for QUADEQ is given below.

1 Choose a = (ai)i=1,...,m ∈ {0, 1} uniformly at random ;

2 Compute


α = ∑j ajα

(j) ∈ {0, 1}n

β = ∑j ajβ
(j) ∈ {0, 1}n2

γ = ∑j ajγ
(j) ∈ {0, 1}

;

3 Make two queries (Π1)α and (Π2)β ;
4 Accept iff (Π1)α + (Π2)β = γ ;

Algorithm 2: Verifier V for QUADEQ
The problem of this verifier is that it expects the proof to be in a particular format. Provided this is the

case, it follows from Claim that the verifier V has completeness 1 and soundness at most 1
2 . However, it

can not rely on receiving this exact format, or otherwise the system may loose its constant soundness as the
proof Π is given by an adversarial prover.

The proofs Π1 and Π2 should encode the evaluation of a linear function (the inner product with a fixed
x, or x⊗ x) over all possible inputs. Fortunately, this is a strong property that we can exploit to ensure that
Π is “close” to having the desired format. For this, we devise a linearity test that has oracle access to a
function f : {0, 1}n → {0, 1} and whose goal is to check that f is linear. (By linearity we mean that there
is c ∈ {0, 1}n such that f (α) = c1α1 + · · ·+ cnαn mod 2 = c · α for every α.)

Testing if f is exact linear would require querying its value on all inputs. Nevertheless, the next simple
test can enforce that it is “almost” linear.

1 Choose α, α′ ∈ {0, 1}n at random;
2 Query f (α), f (α′), f (α + α′);
3 Accept iff f (α + α′) = f (α) + f (α′);

Algorithm 3: BLR Linearity Test
The next theorem makes precise our notion of “almost linear”. If the linearity test succeeds with high

probability, f agrees with a single linear function on a large fraction of inputs.

Theorem 5 (BLR). The BLR linearity test satisfies:

(i) If f is linear, then Pr[f passes BLR test] = 1.

(ii) Suppose Pr[f passes BLR test] ≥ 1− ε for some ε > 0, then there is a coefficient vector c such that
f (α) = c · α for 1− ε fraction of α ∈ {0, 1}n.

4

