(CS286.2 Lecture 2: Equivalence of two statements of PCP,
and a toy theorem

Scribe: Fernando Granha

In this second lecture, we show how to go from the CSP version of the PCP Theorem to its Game
variant. Moreover, we state a simplified PCP Theorem whose proof nonetheless uses some of the tools and
ideas from the original one. We begin the proof of the simplified PCP.

(PCP, CSP variant) — (PCP, games variant)

The next Lemma shows how to go from a CSP promised to have a constant gap in w(¢@y) to a game Gy
which also has a constant gap in w(Gy).

Lemma 1. Given a (m,q)-CSP instance @y on n variables promised by the (PCP, CSP variant) Theorem,
it is possible to construct a Game Gy such that:

(i) w(px) =1 = w(Gy) =1, and

(ii) w(px) <3 = w(Gy) <1— ﬁ

As shown in the exercises, by repeating the game G, in parallel sufficiently many times with independent
sets of players it is possible to reduce the game value from 1 — 1017 to 1/2 in case (ii) (while preserving
value 1 in case (i)), thereby completing this step of the equivalence.

Proof. Before we start the proof, to make the notation precise, we definite a function f : {1,...,m} x
{1,...,9} — {1,...,n}, that takes the index of a constraint index and the index of a variable appearing in
that constraint to the index of this variable in {1, ...,n}. Consider the following game with two players P;
and P».

1 Choose uniformly at random a constraint Cj(zf(j,l)/- .., Zf(M)) forje{1,...,m};
2 Choose uniformly at random a variable i in {1,...,4} ;
3 Ask P; for an assignment to the variables in Cj;

1 1 : velv-
4 Denote by Ay Af(iq) the answers received for z¢(; 1), . .., Zf(j ), respectively;

5 Ask P, for an assignment to z FGii) 5

=)

Denote by ai(j i) the answer received ;
Reject if ajlf(j,l)’ ceey a}(].,q) do not satisfy C; ;

2

e 2 1
8 Acceptiffa FGi) = i)

Algorithm 1: Referee in G
When w(¢@y) = 1, there is an assignment (a;);—1,_, to the variables z1, ..., z, that satisfies all con-
straints. Therefore, if both players answer according to it, it is clear that w(Gyx) = 1 concluding item

(i).



ﬁqz — w((px) > % In words, if the

value of the game is sufficiently large, then there is an assignment to z1, . . ., z, that satisfies more than half
of the constraints. Recall that without loss of generality we may assume that the strategies of the players
are deterministic. A strategy for player 2 is a fixed assignment to all variables of ¢y, that we denote by
a? = (aiz)izl,...,n- Given the assumption that w(Gy) > 1— 1017 we claim that this assignment satisfies more
than half of the constraints. We bound the probability Pr[a? satisfies C;| from below as follows:

To show item (i), we show the contrapositive: w(Gy) > 1 —

Pr[a® satisfies C;] > Pr[Py’s strategy satisfies Cj A aj%(].,l) = a}(].ll) A aj%(].,q) = ajlf(j,q)]‘

By negating the probability in the rhs and using the union bound, we have
Pr[a? satisfies Cj] > 1 —Pr[P;s strategy does not satisfy C;] — Pr[a}(jll) #+ a}(m)] — = Pr[ajzc(jlq) # a}(j/q)].

If Py’s strategy does not satisfy C;, the referee readily rejects. Consequently, the probability of C; not
being satisfied it at most 1 — w(Gy ). Each time the referee detects a disagreement between ajzf (i) and a} ()
foriin {1,...,q} it rejects. The probability that any index i € {1,...,q} is chosen as the second player’s
question is exactly 1/q. Therefore for any fixed i, over the choice of a random j, Pr[aj%(].,i) 7+ a}(j’i)] <

7(1 — w(Gy)). These observations result in the bound

Pr(a® satisfies C;] > 1 — (1 — w(Gx)) — q(1 — w(Gy)) — - — q(1 — w(Gx)).
Finally, using the hypothesis that w(Gy) > 1 — ﬁ, we can conclude that
1 1 1 2 1
Pr(a’ satisfies C] >1— —— — —— — -+ — —>1-—>=
r[a” satisfies C;] > 107 100 107 = 0> 3

A ““toy” version of the PCP Theorem

The original PCP Theorem in its proof-checking version demonstrates that for any L € NP there exists
a verifier that uses only O(log(n)) random bits, queries only a constant number of positions in the proof,
and correctly answers the question x € L? with constant probability. A simpler version only requires the
number of random bits to be polynomial in the input size:

Theorem 2. NP C PCP(r = O(poly(n)),q = O(1)).

This version has an exponential blowup in the maximal proof size that is O(2F°% (”)) compared to
O(poly(n)) from the original PCP Theorem. Despite being a weaker result, it will allow us to demonstrate
tools and ideas used in the original version.

In order to prove Theorem we use the NP-complete problem “Quadratic Equations” (QUADEQ) that
is defined next.

Definition 3. (QUADEQ) An instance ¢ of QUADEQ is given by m constraints C; over n boolean variables
X; of the form:

G- Z“y)xi + Zﬁffﬁxixk =Y mod 2,
i ik

2



or equivalently

where
x = (%;)i=1,..n € {0,1}",

al) = (“(j))izl,...,n €{0,1}",

1
. 4 )
BV = (B )iscr, . € {0,1}" and
7 e {0,1}.
The instance ¢ belongs to QUADEQ if and only if there is an assignment x that satisfies all constraints.

The following is an example of a QUADEQ instance.

Ci: x1+x+x4x5+xx7=1 mod 2
C: x74+x1%=0 mod?2

ey

Cn: X9+2x506 =1 mod 2

The goal is to describe a PCP verifier for QUADEQ and as we advance some tools are established. The
first such tool is a test that fails with probability % if a QUADEQ instance ¢ is infeasible, and always accepts
otherwise.

Given coefficients a = (fli)izl,...,m € {0,1} chosen independently and uniformly at random, form an
equation by combining the constraints of ¢ as follows:

E=E@): Y aj@@V - x+ gV (x@x) =Y anV.
i i
Claim 4. For a uniformly random choice of the coefficients a, it holds:

(i) If x satisfies all constraints, then x satisfies E(a),

(ii) If x does not satisfy all constraints, Pr,[x satisfies E(a)] < %

Proof. Ttem (i) is clear, as any assignment that satisfies all equations individually must also satisfy the sum.
For item (i), we introduce the error vector given by

(X(l) -x 4+ ‘B(l) . (x & x) — r)/(l)
= : 2)
(X(m) -x 4+ ‘B(m) . (x ®x) — ,),(m)

Since not all the constraints of ¢ are satisfiable, the vector e has at least one not zero component. Note
that the inner product of the random vector a with the error vector e checks the parity of the elements a; for
which e; = 1. As the elements a; are drawn independently and uniformly at random this parity is 1 with
probability exactly % Moreover, the probability that x does not satisfy E is Pryle-a = 1] < % O



Now, We are ready for our first attempt to solve the simplified PCP Theorem [2 We assume that the

n nz
verifier has access to a proof IT = (IT', I12) where IT' € {0,1}?" and IT*> € {0,1}%" . Ideally, we would
like to have I to be composed of

e (ITY, = a-x,and
o (IT?)g = Bx - (®x).

for some x € {0,1}".

In words, the proof IT! encodes in each position « the value of the inner product with a fixed x (similarly
to IT?). If ¢ € QUADEQ, the bit string x would be the satisfying assignment.

It is important to note that all combination of the constraints given by any random a will lead to a new
value for « and B whose inner product with x is encoded in II. This is a key point that allows us to use
Claim 4] A first attempt at designing a verifier for QUADEQ is given below.

1 Choose a = (a;)i=1..m € {0,1} uniformly at random ;
6=y ajnl) € {0,1}"
2 Compute ¢ B = 2/» ajﬁ(j) c {0,1}”2 ;
v=Y,avY € {0,1}
3 Make two queries (IT'), and (I1%)g ;
4 Accept iff (IT"), + (I_Iz)ﬁ =7;
Algorithm 2: Verifier V for QUADEQ
The problem of this verifier is that it expects the proof to be in a particular format. Provided this is the
case, it follows from Claim that the verifier V has completeness 1 and soundness at most % However, it
can not rely on receiving this exact format, or otherwise the system may loose its constant soundness as the
proof I is given by an adversarial prover.
The proofs IT! and IT? should encode the evaluation of a linear function (the inner product with a fixed
X, or X ® x) over all possible inputs. Fortunately, this is a strong property that we can exploit to ensure that
IT is “close” to having the desired format. For this, we devise a linearity test that has oracle access to a
function f : {0,1}" — {0,1} and whose goal is to check that f is linear. (By linearity we mean that there
isc € {0,1}" such that f(«) = c1a1 + - - - + cyr, mod 2 = ¢ - « for every a.)
Testing if f is exact linear would require querying its value on all inputs. Nevertheless, the next simple
test can enforce that it is “almost” linear.

1 Choose &, a’ € {0,1}" at random;
2 Query f(a), f(), f(a+a');
3 Acceptiff f(a +a') = f(a) + f(a');
Algorithm 3: BLR Linearity Test
The next theorem makes precise our notion of “almost linear”. If the linearity test succeeds with high
probability, f agrees with a single linear function on a large fraction of inputs.

Theorem 5 (BLR). The BLR linearity test satisfies:
(i) If f is linear, then Pr[f passes BLR test] = 1.

(ii) Suppose Pr[f passes BLR test] > 1 — € for some € > 0, then there is a coefficient vector ¢ such that
f(a) =c-afor1— e fraction of x € {0,1}".



