
CS286.2 Lecture 3: The linearity test
and low-degree extensions

Scribe: Sid Barman

Continuing our discussion from last lecture, we will complete the proof of the following simpler
version of PCP theorem:

Theorem 1. NP ⊆ PCP1,1/2(r = O(poly(n)), q = O(1)).

As mentioned in the last lecture, the proof of this theorem constructs a verifier for the NP-
complete problem “Quadratic Equations” (QUADEQ). Recall that an instance of QUADEQ, say
ϕ, is given by m constraints Cj over n boolean variables xi of the form:

Cj : α(j) · x + β(j) · (x⊗ x) ≡ γ(j) mod 2.

Here, boolean variables (x1, x2, . . . , xn) ∈ {0, 1}n, and for every constraint j we are given the
following coefficients α(j) ∈ {0, 1}n, β(j) ∈ {0, 1}n2

along with γ(j) ∈ {0, 1}.
In the last lecture we showed that given a proof Π = (Π1, Π2)—with Π1 ∈ {0, 1}2n

and

Π2 ∈ {0, 1}2n2
—that satisfies

(Π1)α = α · x, and

(Π2)β = β · (x⊗ x),

for some x ∈ {0, 1}n, we can check the proof with completeness 1 and soundness 1/2.

The linearity test
Today, we present the linearity test that verifies that a proof Π is of the required form, i.e., (Π1)α =
α · x and (Π2)β = β · (x⊗ x) for some x. Interestingly, we will accomplish this using only four
queries.

The linearity test is based on the following theorem by Blum, Luby, and Rubinfeld [BLR93].

Theorem 2 (BLR). Suppose a function f : {±1}n → {±1} satisfies

Pr
α,α′∈U{±1}

[
f (α) f (α′) = f (αα′)

]
= 1− ε,

where the product αα′ is taken componentwise and ∈U means that α, α′ are chosen uniformly at
random. Then there exists a set S ⊆ [n] such that f (α) = ∏i∈S αi for at least a fraction 1− ε of
all α.

1

The connection between the theorem and the linearity test is obtained by setting f (α) =
(−1)Π

α . Now, if f satisfies f (α) = ∏i∈S αi then proof Π satisfies the required linear form, i.e.,
Πα = ∑i∈S αi = cS · α, where cs is the indicator vector for set S. To prove the BLR theorem we
will need a little bit of Fourier analysis over Fn

2 .

Basics of Fourier analysis over Fn
2

In this section we present some basic definitions and results from Fourier analysis over F =
({±1},×). These results are used in the next section to prove Theorem 2.

Note that the set V = { f : {±1}n → R} is a vector space. The canonical basis for this vector
space consists of the delta functions δx. Specifically, for all x ∈ {±1}n write

δx : y 7→ 1 if y = x
0 otherwise.

We have a natural inner product in this vector space that is defined as follows:

〈 f , g〉 :=
1
2n ∑

x∈{±1}n

f (x)g(x).

In addition to the canonical basis, for this vector space of functions we have a Fourier basis
that consists of the following set of functions {χS : x 7→ ∏i∈S xi | S ⊆ [n]}. Note that this basis
is orthonormal with respect to the inner product 〈, 〉:

〈χS, χT〉 =
1
2n ∑

x
χS(x)χT(x)

=
1
2n ∑

x
∏
i∈S

xi ∏
i∈T

xi

=
1
2n ∑

x
χS∆T(x), (since xi ∈ {±1}, x2

i = 1).

where S∆T denotes the symmetric difference between the sets S and T. For S 6= T we have
∑x χS∆T(x) = 0; since we are summing over all x ∈ {±1}n. For S = T, the inner product
〈χS, χS〉 is equal to one. Hence, we get orthonormality. In particular, the characters χS form
a complete basis for our vector space V, and every function f ∈ V, f : {±1} → R can be
decomposed as

f (x) = ∑
S⊆[n]

f̂ (S) · χS(x),

where f̂ (S) ∈ R is called the Fourier coefficient at S. Note that by orthogonality of the Fourier
basis we have f̂ (S) = 〈 f , χS〉. Next we state a useful property of the Fourier coefficients.

Proposition 3. For any functions f , g : {±1} → R we have 〈 f , g〉 = ∑S f̂ (S)ĝ(S).

2

This proposition implies a useful corollary—called Parseval’s identity—for ±1 valued func-
tions. Note that when f is±1 valued, the inner product 〈 f , f 〉 = 1. This along with the proposition
above, 〈 f , f 〉 = ∑S f̂ (S)2, gives us Parseval’s identity:

Corollary 4. For any ±1-valued function f , we have ∑S f̂ (S)2 = 1.

0.1 Proof of Theorem 2
Using Fourier analytic tools we will now prove Theorem 2. The assumption of the theorem implies
that

1− 2ε =
1

22n ∑
α,α′

f (α) f (α′) f (αα′)

=
1

22n ∑
αα′

∑
S,T,U

f̂ (S) f̂ (T) f̂ (U)χS(α)χT(α
′)χU(αα′) (via Fourier expansion)

=
1

22n ∑
αα′

∑
S,T,U

f̂ (S) f̂ (T) f̂ (U)χS(α)χT(α
′)χU(α)χU(α

′)

Here, the last equality follows from the fact that χU(αα′) = χU(α)χU(α
′); this equality is ob-

tained just from the definition of χU. Rewriting the right-hand-side of the above equation we
obtain:

1− 2ε = ∑
S,T,U

f̂ (S) f̂ (T) f̂ (U)

(
1
2n ∑

α

χS(α)χT(α)

)(
1
2n ∑

α

χT(α
′)χU(α

′)

)
= ∑

S,T,U
f̂ (S) f̂ (T) f̂ (U)〈χS, χT〉 〈χT, χU〉

The orthogonality of χs implies that only the summands where S = T = U are non-zero, in fact
are equal to one. The remaining summands, where either S 6= T or T 6= U, are equal to zero.
Therefore, the following inequality holds:

1− 2ε ≤∑
U

f̂ (U)3

≤ max
W

f̂ (W) ∑
U

f̂ (U)2

= max
W

f̂ (W) (by Parseval’s identity).

Write S0 = arg maxS f̂ (S). By the inequality above, f̂ (S0) ≥ 1− 2ε.
We can now prove Theorem 2. Recall that the Fourier coefficient f̂ (S0) =

1
2n ∑α f (α)χS0(α).

But, the inequality f̂ (S0) ≥ 1− 2ε holds iff f (α) = χS0(α) for at least (1− ε)2n α’s; both f and
χS0 are ±1 valued. In other words, for at most ε2n many α’s for f and χS0 differ. This completes
the proof of the theorem.

3

PCP Verifier
We give the complete PCP verifier for QUADEQ that uses the linearity test described above.
Recall that the a correct proof Π = (Π1, Π2) must consist of (Π1)α = α · x and (Π2)β =
β · (x⊗ x) for some satisfying assignment x of the given QUADEQ instance ϕ.

To verify the proof Π, the verifier performs the each of the following with probability 1/4.

1. Linearity test on Π1. That is, we use Theorem 2 with f = (−1)Π1
. This is equivalent to

querying (Π1)α, (Π1)α′ and (Π1)α+α′ for α, α′ ∈u {0, 1}n, and testing whether (Π1)α +
(Π1)α′ = (Π1)α+α′ .

2. Linearity test on Π2

3. Consistency of tensor product: Choose α, α′ ∈ {0, 1}n, β ∈ {0, 1}n2
uniformly at random.

Then check (Π1)α(Π1)α′ = (Π2)(α⊗α′)+β + (Π2)β.

4. As in the previous lecture, construct an equation at random, say with coefficients (α, β, γ),
and check (Π1)α + (Π2)β = γ.

We will skip the detailed analysis of this verifier. But, we have presented all the required
elements to establish the correctness and soundness of this verifier. Overall, if ϕ is satisfiable
then there exists a proof Π that is accepted with probability 1. On the other hand, if ϕ is not
satisfiable then any proof is rejected with probability at least 0.001 (the exact constant is not
relevant here). This implies that we have soundness at most 0.999. Repeating the verifier’s
test a large enough (constant) number of times to amplify the soundness, we obtain Theorem 1:
NP ⊆ PCP1,1/2(O(poly(n)), O(1)). Note that the length of the proof Π is 2n + 2n2

bits, and the
number of random bits required by the verifier is at most 2 + 2n2.

Recall that the PCP theorem is a stronger version of Theorem 1 that claims that NP ⊆
PCP(O(log n), O(1)). In order to get to the PCP theorem we need to save on randomness, or
equivalently make the proof much shorter. We can accomplish this by extending our framework to
low-degree polynomials over Fp.

Low-degree testing
Without going into any amount of detail we give a flavor of the ideas that go into designing a
much more randomness-efficient version of the PCP verifier described in the previous section.
Abstracting the details of the particular NP-complete problem we chose, the proof Π = (Π1, Π2)
can be though of as a (very long) encoding of a candidate assignment to formula ϕ that has the
following properties:

1. Local testability: it is possible to verify that Π is close to a proof having the correct format,
Π1 = α · x and Π2 = β · (x · x) for some x, by making only a constant number of queries
to Π;

4

2. Local decodability: given any coordinate xi of x that we may be interested in, it is possible
to recover xi from the proof by making a constant number of uniformly distributed queries
(the fact that the queries are uniformly distributed is important to ensure compatibility with
item 1; this was used in test 3. of our verifier):

xi = x · ei = x · (ei + α) + x · α = (Π1)ei+α + (Π1)α

for any α ∈ {0, 1}n.

The proof of the PCP theorem is based on the design of encodings having these two properties
that are much more efficient than the linear encoding we used above. These are based on the use
of low-degree polynomials. To give a flavor of how polynomials come into play, let’s fix a large
prime p (of size polynomial in n) and set m = log n/ log log n. Let Fp be the finite field with p
elements. A degree-d polynomial f : Fm

p → R is any function that has an expansion

f (x) = ∑
i1,...,im

ci1,...,im xi1
1 · · · x

im
m .

The degree of f is the largest i1 + · · ·+ im such that ci1,...,im 6= 0. Note that we may always assume
i1, . . . , im ∈ {0, . . . , p− 1}, since over Fp we have xp = x.

Let q be an integer of size approximately log n, so that |{0, . . . , q− 1}m| = qm > n Let ι be
an arbitrary injection from {1, . . . , n} into {0, . . . , q− 1}m. Define a function f̃ by f̃ (ι(k)) = xk
for k ∈ {1, . . . , n}. As it turns out, f̃ can be extended to a polynomial f defined over the whole
of Fm

p that has degree at most q in each variable. In particular the total degree is at most d ≤ qm,
which is polylogarithmic in n.

We think of the polynomial f as giving an encoding of x (this is basically the Reed-Muller
code). Note that describing f completely requires specifying pm = nO(log n) values. This is not
quite polynomial (and more work is required in order to bring this down to a polynomial), but it is
already much better than the exponential-size proof we obtained from linear encodings.

Now, is f locally testable/decodable? A natural test would be as follows: pick a random line
` ⊂ Fm

p , and query d + 1 values of f along that line. If f is of total degree d, its restriction f|` to
any line also has degree at most d and these d + 1 values should be enough to recover a complete
description of the univariate polynomial f|`. We could then query a (d + 2)-th value of f , and
check whether it agrees with the polynomial recovered from the first d + 1 queries.

The problem with this is that the number of queries, d + 2, remains large, polylogarithmic in
n. To get a code that can be tested with a constant number of queries the idea is to add even more
redundancy: in addition to listing all possible values of f , the proof will list all the f|`, for every
possible line `. That is, Π = (Π1, Π2) with Π1 ∈ (Fp)pm

such that (Π1)x = f (x), and Π2 ∈
(Fp)(pm)2

with (Π2)` = f|`. Note the proof still has length 2poly log n. And now we have a simple
local test: choose a line ` at random, and x ∈ ` at random. Check that (Π1)x = ((Π2)|`)(x).
Local decoding is even simpler: given a point z for which we want to know f (x), choose a random
line ` such that z ∈ `, query (Π2)`, and use it to recover f (z).

5

This is the flavor of the codes that come into the construction of the PCP verifier showing
NP ∈ PCP(O(log n), O(1)). The actual details are a little bit (not too much) more complicated;
in particular we did not describe the remaining important step of composition. But we got most of
the ideas!

References
[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applica-

tions to numerical problems. Journal of computer and system sciences, 47(3):549–595,
1993.

6

	Proof of Theorem 2

