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The Complexity Class BQP

The complexity class BQP is the quantum analog of the class BPP. It consists of all languages that
can be decided in quantum polynomial time. More formally,

Definition 1. A language L € BQP if there exists a classical polynomial time algorithm A that
maps inputs x € {0,1}* to quantum circuits Cx on n = poly(|x|) qubits, where the circuit is
considered a sequence of unitary operators each on 2 qubits, i.e Cy = UrUt_1...Uy where each
U; € L((C2 ® Cz), such that:

i. Completeness: x € L = Pr(Cy accepts |0y)) > %

ii. Soundness: x & L = Pr(Cy accepts |0,)) < %

We say that the circuit “Cy accepts |\)” if the first output qubit measured in Cyx|) is 0. More
specifically, letting H‘10> = |0) (0|1 be the projection of the first qubit on state |0),

Pr(Cy accepts |¢)) =|| (H|10> ® Li-1)Cx|) |3

The Complexity Class QMA

The complexity class QMA (or BONP, as Kitaev originally named it) is the quantum analog of
the class NP. More formally,

Definition 2. A language L € QMA if there exists a classical polynomial time algorithm A that
maps inputs x € {0,1}* to quantum circuits Cy on n + q = poly(|x|) qubits, such that:

i. Completeness: x € L = 3|p) € C¥, ||[|p)ll2 = 1, such that Pr(Cy accepts |0,) @
) > 3

ii. Soundness: x € L = V|¢p) € C¥, [|¢) |2 = 1, Pr(Cx accepts |0,) @ |¢)) < 3

Proposition 3. NP C QMA

Proof. The circuit C, will be the NP verifier “hardwired” with the input x, and it will measure
every bit of |i) independently and use it as the classical proof 7. [



Exercise 4. Let QMA . ; be same as QMA but with completeness and soundness parameters ¢ and

1
s instead of % and % Show that QMA.; = QMA as long as ¢ — s € ——————~. (The main

O(poly(|x]))

issue to consider during repetition is the entanglement that could exist between multiple quantum
proofs).

Exercise 5. Show the progressively stronger sequence of inclusions NP C QMA C PP C
PSPACE C EXP

Remark 6. Note that QMA is a largest eigenvalue problem:

Pr(Cy accepts |0,) ® |p)) = ||(H|0 @ Mg 1)C 104) @ [9) 3
= (] @ (0| CHITY @ Tig-1)Cx[0n) ® [19)
= (y|Dly)

where D = I; ® (0,|C} (H|10> ® Ig—1)Cx|0n) @1 is a 27 x 29 matrix. Since (P|¢) = 1, finding
|¢) which maximizes (|D|) is exactly same as the maximum eigenvalue A of the matrix D.

The Local Hamiltonian Problem

Now that the class QMA is defined, it is necessary to consider some important problems that are
in QMA or complete for it. One such problem is the Local Hamiltonian (henceforth abbreviated
as LH) problem. The g — LH problem is the quantum analog of g — CSP. The n variables in a
g — CSP correspond to 7 qubits in a ¢ — LH. The m constraints each acting on at most g4 variables
in a g — CSP correspond to 7 Hamiltonians each measuring at most g qubitsina g — LH.

Definition 7. An instance of q — LH is given by a collection of n qubits and m Hamiltonians H;
(Hj = H]‘L ) such that H; € L<C2q> and 0 = Hj = 1. The total “energy” is specified by the
Hamiltonian H = Z}":l H;.

Definition 8. (The Local Hamiltonian Problem) Given an instance of ¢ — LH and real parameters

a < b, the Local Hamiltonian problem, written as q — LH, 1, is to decide between the following
two cases

e (YES): 3|9) € C%, |||)|| = 1, such that (p|H|¢p) < a

o (NO):V[p) € C¥, [[[p)]| =1, (¢|H|yp) > b

Note that this is a promise problem, i.e. to solve g — LH, }, it is enough to give the correct answer,
YES or NO, on Hamiltonians that satisfy the promise that their total energy is either at most a or
at least b.



Example 9. 3SAT is an instance of 3 — LHq 1. Let there be n qubits corresponding to the n
variables of the 3SAT formula. We will define a Hamiltonian H; for every clause C; in the 3SAT
formula. Intuitively, H; can be thought as the energy or penalty that is imposed if the clause C;
is not satisfied by a setting of the variables. For every clause C; = x4V X, V X, the Hamiltonian
H; = [0)(0], ® [1)(1], ® |0)(0]c ® I evaluates to 1 iff the constraint C; isn’t satisfied. The
completeness is straightforward, and for soundness, expanding the state as a linear combination
of the 2" n-bit strings, it is easy to see that in case of an unsatisfiable formula, since at least 1
clause will be unsatisfied by any assignment, no state can lead to less than energy 1 on average.
(Watch though that the coefficients of the state are complex numbers, and one cannot in general
reduce it to a probability distribution over bit-strings!)

Example 10. The Motzkin Hamiltonian acts on (C3)®” where we name an orthonormal basis for
C3 as |(),])),]0). A Motzkin path is a well-parenthesized expression. Given the states |¢) =
75(100) = 10)). [r) = J5(1(0) = [00). [9r) = 5(10)) = 1)0)). the Motzkin Hamiltonian is
defined as follows:

n—1
H=1))Oh+10{(n+ ; () (@lijr1 + () (Weljjen + [9r) (YRl 41)

J

The smallest eigenvalue of H is 0, and the associated eigenvector is the Motzkin State |M,,),
the uniform superposition over all Motzkin paths (see the problem sheet for a proof of this).

The Local Hamiltonian problem is QMA -complete

Theorem 11. (Kempe-Kitaev-Regev) 2 — LH, ;, is QMA-complete for some a = 2 Poly(n) gng
b =1/ poly(n).

The first result along these lines came from Kitaev, who showed that 5 — LH is QM A-complete.
We shall show a slightly weaker version of the theorem, which will contain all the key ideas:

Theorem 12. (Kitaev) There exists some a = 2~ P°Y(") and b = 1/ poly(n) such that O(log n) —
LH, ; is OMA-complete, i.e.

i. O(log n) —LH,;, € QMA

ii. O(log n) — LH, }, is QMA-hard

Proof. (i) Assume we are given an instance of O(log n) — LH, ;. Here n denotes the number of
qubits in the LH instance. We will show that the Local Hamiltonian problem on this instance can
be solved in QMA. The input x to the QMA algorithm A that converts x — C, will consist of the
description of each of the Hamiltonians in the LH instance. The algorithm A works as follows: It
will use n = log m of the qubits in state |0) and create a uniform distribution over all strings of
length m. It will measure this state and get a random 1 < j < m. For the j that is chosen, it will
choose the corresponding Hamiltonian Hj;, and apply it on the qubits of the witness to measure
{H;, 1 — H;}. The circuit C will reject if the outcome of the measurement is H;.

m
Pr(Cy rejects) = )  Pr(Measurement outcome is H;) - Pr(H; is chosen)
j=1



Thus,
. 1 &
Pr(Cy rejects) = Z | H; )3 = - Z Y| Hjlp) = (9| H\’P)
=1

Since either one of the case holds 3¢, (Y|H|y) < a or Vi, (¢|H|yp) > b, it implies that the
circuit Cy accepts with probability at least 1 — - for some [¢), or accepts with probability at most

— % for all |¢), which means that the completeness and soundness parameters for QMA are:

c=1-1ands=1-— %. Further, as longas b — a € j the gap can be amplified.

1
O(poly |x[)”

(i) For this part, we need to show that every L € QMA can be reduced to an instance of
O(log n) — LH. We will construct a O(logn)-local Hamiltonian H, such that the following
holds:

o (Completeness): If 3¢ such that Pr(Cy accepts ¢) > 1 — €, then J¢, (Y|Hy|p) < €
o (Soundness): If V¢, Pr(Cy accepts ¢) < €, then V¢, (p|Hy|p) > 3 — €

To see the difficulty in doing this, consider first the classical Cook-Levin reduction of a circuit
to 3SAT. If the input variables to the circuit are X1 to x;, and without loss of generality, if only one
gate acts at every “stage” and there are T stages, one can introduce auxiliary variables x; ;, where
1<i<mnand1l <j < T, such that x;; denotes the value in the i’th wire at the j’th stage. The
constraints that are introduced are so as to make sure that the values of the variables are consistent
with the applied gates. For instance, if an OR gate acts on x1 5 and x, 5 and gives the output on X, 6,
we add the constraint X, 6 = X715 V X35, and so on (the constraints can further easily be converted
to constraints on 3 variables, giving a 3SAT expression).

Can the same thing be done in the quantum case? Consider a quantum circuit C, = Ur...Uq,
with 72 input qubits x;, and such that the unitaries U; act on at most 2 qubits at every stage. We
shall create a Hamiltonian that will give an energy penalty if any of the constraints are violated.
Since all input qubits are in the |0) state and the output needs to be in the |0); state, two of the
Hamiltonians are simple:

n
Hip =} 1)(1]; @1, How =[1)(11 ®1T,
i=1

where here the input qubits from i = 1 to n correspond to the ancilla qubits initialized to |0") b
the circuit C,.

Further, we should introduce constraints of the form ;) = U; ® I[y;_1), where [¢;) is a
(quantum) variable describing the state of all the qubits at the j-th state of the circuit. Unfortunately
it is not clear at all how to implement such a contraint with a local Hamiltonian! For instance, if
lp1) = \%(|O”> +|1™)) and [¢p) = %(\0”) —|1™)) then one can in fact show that no local
measurement acting on < 71 qubits will be able to distinguish (at all, even with small success
probability) between these two states. Indeed, observe that if we measure any qubit in |1) or |¢)
then it will be O or 1 with equal probability in both cases. To expand this observation into a formal
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argument for the local indistinguishability of the two states we’d need to get into the formalism of
density matrices, which are used to describe the reduced state of a quantum vector on a subset of
its qubits; we will return to this topic later.

Since “juxtapositions” of quantum states cannot be compared locally, the main idea instead is
to use superpositions of the two states. If we were given access to the state |¢) = \/Li( 10)|y1) +

11)|¢2)), we could apply a Hadamard transformation (|0) — |+) = %(|O> + 1)),
|—) = %(|0> —|1))) on the first qubit, and then make a measurement of the first qubit. One

can verify that the probability of obtaining the outcome |0) is exactly 1/4]||¢1) + |42)||?, and the
probability of obtaining the outcome |1) is exactly 1/4(||1) + |¥2)||%, giving us a very precise
way to compare the two states.

1) —

‘We now describe Kitaev’s construction of a local Hamiltonian.
Kitaev’s Construction: For intuition, we first describe the “ideal witness” that we would like
the ground state of the local Hamiltonian to be:

T
9) = %;Tgpuupum@®w»®mm

where |1p) is a state that maximizes the probability of C, accepting. |i) is a uniform superposition
over the state of the circuits at each stage j = 0,..., T. The superposition is indexed by the states
|£) of the “clock”, which keeps track of the number of unitaries that have been applied so far. This
idea, of replacing a time-dependent unitary evolution by a time-independent Hamiltonian, goes
back to Feynman.

The local Hamiltonian can be decomposed in three parts. The first two are straightforward and
almost exactly as introduced earlier:

n

Hiy = Z |1><1|i QI® |010gT> <OlogT|Cr Hour = |1><1|1 I ® |T><T|C
i=1

Note that we have used T = 1jo¢ 7 above. The third part is the propagation Hamiltonian

T

Hprop - Z Hprop,t/
t=1

where
Hypopt = 3 U@ [0 {tle +1® |t 1) (¢~ 1]e — U © 1)t — 1fe — U} @ [~ 1)t]o).
Finally, we let the Hamiltonian H in out LH instance be as follows:
H = JiyHiy 4 (T + 1)Hout + JpropHprop,

where J;; and [,y are positive integer weights that will be assigned later. Since T, the number of
gates in the circuit Cy, is polynomial in 7, this gives a Hamiltonian acting on O(log n) qubits.



Completeness: Assume there is some state |¢) such that Pr(Cy accepts [0,) ® |¢p)) > 1 — €.
We let our state |) be the ideal state as described before, i.e.

T
‘170> - \/T—H t_zo(ufut—l---ulyon> ® |¢>) ® ‘t>c

Note that (|H;,,|1p) = 0 since for t = 0, none of the inputs is in the |1) state which will make
the first term corresponding to the ancilla bits in |1p> above 0, and for all other values of ¢, the term
corresponding to the clock will become 0.

Also, (|Hprop|p) = 0, since all other terms except the corresponding terms for the t — 1 and
t times cancel out, which further cancel out as follows:

L& [8)(He + 1@ [t = 1)t = e — U @ Bt = 1]c — Uf @ [ = 1){t])

1
Hproptlth) = 2\/?“(

(Up U [0,) @ |9) © [£) + Us 1.0 [0,) @ |) & [£ — 1))

= 2\/%Jrl((uf...uﬂm) R |p) @ [t) + Up_1..U1|0,) @ |P) @ |t — 1)
—Up...U1[0,) @ |¢) © 1) — Uf Ul 1...U1|0,) © |@) @ [t — 1))
=0
Thus,
(Y[H[p) = (@[(T +1)Hout|9)
1
= T+ 1) e I Ur-1010) @ 14)
= Pr(Cy rejects |0) @ |¢))
<e, (D
as claimed.

Soundness: Before we can analyze the soundness, we will need an important lemma:

Lemma 13. (Projection Lemma, Kempe-Kitaev-Regev): Let H = Hy + H», where H, Hy, H, are
Hermitian positive semidefinite. Let S be the null-space of Hy and assume Ay, (Halgr) > ] >

2||Hy ||, where || - || denotes the operator norm, the largest singular value. Then
Apin (H]s) = A < 0 (H) < A (B 5
J = 2[[Hi|

Proof. RHS: Let |v) be an eigenvector associated with the smallest eigenvalue of H|s. Thus,

(v|Hlv) = (o|H:[v) + (v|Hz[v)
= (v[Hi|v) +0
Amin(H) < <U|H|Z)> = <U|H1|Z)> = /\min(H1|S)
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LHS: Let |v) be an eigenvector corresponding to the smallest eigenvalue of H. Expand |v) =
a1|o1) 4+ az|v), where [v1) € S, |v2) € St, a1, 4 € R (which we can always assume by
multiplying |v1) and |v;) by a complex phase if necessary), and |a1|* + |a2|?> = 1. Thus,

(v|Hz|0) = 0+ |az|*(v2| Halv2) > |aa|?]
where we used the condition given in the lemma for the inequality. Also,

(v|Hy|v) (1— |az|*){(v1|Hi|o1) + |a2|*(va|Hi|va) + 2Re(a1a2(v1|Hy|02))

> (v1|Hi|or) — [aal?|[ Hy ]| + o (|| Ha]]) + 202 (= || Fa )

Hence,

(vo|Hlv) = (o|Hi|v) + (v|Hz|v)
> (o1|Hilor) — |aoP[|H || — 2| Hal| — 202 Hi || + |a2|*]

[[Ha |

This quantity is minimized by setting |ay| = AR
- 1

Substituting this value gives the re-

quired inequality.

]

We will also use the following claim, whose proof is left as an exercise (hint: observe that
Hyrop can be brought into a simple tridiagonal form by an appropriate change of basis).

Claim 14. The smallest non-zero eigenvalue of Hpyop is at least c/ T? for some ¢ > 0.

We conclude our soundness analysis by showing how the Projection Lemma can be used
to get the claimed bound. Let S,.0, be the null-space of Hpsp. Using the claim above we

JinllHinl] £ T+ 1+ Jin(n+4q) < poly(n) if J;, = poly(n), we can let [rop = T?]in/c =
poly(n) and satisfy all the conditions required to apply the Projection Lemma. Further, we can
choose Jyrop large enough so that the result is the following lower bound on the minimum eigen-

value of H: 1

/\mzn(H) > /\min(Hl‘Sp,op) - g

Now we apply the Projection Lemma again to find a lower bound on A,,;, (Hi|s oo p). Assume all
further arguments are restricted to the space Sprop. Let Sjy © Sprop be the null-space of Hj;, inside
Sprop- Now let Hy = (T + 1)Hout|5pmp and Hy, = ]inHin|S,,,0,,- Using a similar argument as the
previous case we can apply the Projection Lemma again and get

1

)\min <]inHin|Spmp + (T + 1)Hout|5pmp) 2 Amin(Hout|Sin) - g



But note that by the same calculation as in (T)), Ay, ((T + 1) Hout|s, ) is precisely the probability
with which the circuit Cy rejects the state |0,) ® |¢), which we assumed to be at least 1 — €. Thus,

we get that,

1 1 1 3
Amin(H) > Amin(Hout|Sin) - g - g >1—€e— 1 = 1 €
as claimed. L]



