An experimental spatio-temporal model checker*

Vincenzo Ciancia!, Gianluca Grilletti?, Diego Latella', Michele Loreti®*, and
Mieke Massink!

! Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Pisa, Italy
2 Scuola Normale Superiore, Pisa, Italy
3 Universita di Firenze, Italy
4 IMT Alti Studi, Lucca, Italy

Abstract. In this work we present a spatial extension of the global
model checking algorithm of the temporal logic CTL. This classical veri-
fication framework is augmented with ideas coming from the tradition of
topological spatial logics. More precisely, we add to CTL the operators of
the Spatial Logic of Closure Spaces, including the surrounded operator,
with its intended meaning of a point being surrounded by entities sat-
isfying a specific property. The interplay of space and time permits one
to define complex spatio-temporal properties. The model checking algo-
rithm that we propose features no particular efficiency optimisations, as
it is meant to be a reference specification of a family of more efficient al-
gorithms that are planned for future work. Its complexity depends on the
product of temporal states and points of the space. Nevertheless, a pro-
totype model checker has been implemented, made available, and used
for experimentation of the application of spatio-temporal verification in
the field of collective adaptive systems.

1 Introduction

A collective system consists of a large set of interacting individuals. The tempo-
ral evolution of the system is not only determined by the decisions taken by the
individuals at the local level, but also by their interactions, that are observable
at the global level. By their own nature, such systems feature a “spatial” dis-
tribution of the individuals (e.g., locations in physical space, or nodes of some
digital or social network), affecting interaction possibilities and patterns. Verifi-
cation of collective systems and of their adaptation mechanisms requires one to
take such spatial constraints into account.

In this work, we provide a preliminary study on the feasibility of model
checking as a fully automated analysis of spatio-temporal models. Our work is
grounded on the so-called snapshot models (see [8] for an introduction). Spatial
information is encoded by some topological structure, in the tradition of topo-
logical spatial logics [10], whereas temporal information is described by a Kripke
frame. The valuation of atomic propositions is a function of temporal states,

* Research partially funded by EU project QUANTICOL (nr. 600708) and IT MIUR
project CINA

and spatial locations. We employ Cech closure spaces for the spatial part of the
modelling, following the research line initiated in [4] with the definition of the
Spatial Logic of Closure Spaces (SLCS). Cech closure spaces are a generalisation
of topological spaces also encompassing directed graphs.

Starting from a spatial and a temporal formalism, spatio-temporal logics
may be defined, by introducing some mutually recursive nesting of spatial and
temporal operators. Several combinations can be obtained, depending on the
chosen spatial and temporal fragments, and the permitted forms of nesting of
the two. A great deal of possibilities are explored in [8], for spatial logics based
on topological spaces. We investigate one such structure, in the setting of closure
spaces, namely the combination of the temporal logic Computation Tree Logic
(CTL) and of SLCS, resulting in the Spatio-Temporal Logic of Closure Spaces
(STLCS). STLCS permits arbitrary mutual nesting of its spatial and temporal
fragments. As a proof of concept, we define a simple model checking algorithm,
which is a variant of the classical CTL labelling algorithm [5,1], augmented with
the algorithm in [4] for the spatial fragment. The algorithm, which operates on
finite spaces, has been implemented in a prototype tool, available at [7].

Related work. The literature on topological spatial logics is rich (see [11]). How-
ever, model checking is typically not taken into account; this is discussed in
detail in [4]. In computer science, the term spatial logics has also been used for
logics that predicate about the internal structure of processes in process calculi.
A model checker for such kind of logics was developed in [2]. Indeed, the theory
and tool we present are linked to topological spatial logics rather than the area
of process calculi, thus the developed algorithms are very different in nature.

2 DMotivating example: adaptive smart transport network

This work is part of a larger research effort aimed at formal verification of spatio-
temporal requirements of collective adaptive systems, in the scope of the EU FP7
QUANTICOL project®. In order to motivate the proposed tool in the theory of
verification of adaptive systems, we briefly report on a recent case study, detailed
in [3], where the STLCS model checker has been used in the context of adaptive
systems, and in particular of smart transport networks. The context is the bus
network of a city. The model checker is primarily used to identify occurrences of
clumping of buses, that is, buses of the same line that are “too close in space-
time” to each other, resulting in several buses of the same line passing by the
same stops within a short amount of time, and longer intervals without any buses
at certain stops. More precisely, a bus is part of a clump if it is close to a point
where another bus of the same line will be very soon. This statement is inherently
spatio-temporal, and classical temporal logics do not have the ability to directly
express it. It turns out that there is some ambiguity in the formalisation of
this sentence, resulting in different possible STLCS formulas characterising it.
Once established these formulas, the bus coordination system is equipped with an

% See the web site http://www.quanticol.eu

http://www.quanticol.eu

adaptation layer, enabling buses to wait for some time at a stop, in order to avoid
the emergence of clumps at the expenses of some additional delay on the line.
The underlying hypothesis is that clumping happens when some buses are forced
to delay (e.g. because of traffic conditions) but the system evolves immediately
afterwards, in such a way that subsequent buses of the same line do not delay. The
STLCS model checker is used to define an analysis methodology that estimates
the impact of adaptation, before deployment, starting from existing traces (logs)
of the system. Each trace, in the form of a series of GPS coordinates for each bus,
is considered as a deterministic system. For traces featuring clumping (checked
using the model checker), the expected non-deterministic behaviour of the system
under the effect of the adaptation layer is then computed as a spatio-temporal
model, by augmenting the existing trace with the possible “wait” steps of each
bus. The counterexample-generation capabilities of the model checker are finally
used on such Kripke frame to analyse the impact of the adaptation, by identifying
new traces containing wait instructions that correct the problem. By doing this,
one is able to check if, and under what conditions, the adaptation strategy
succeeds in mitigating or eliminating the clumping problem, and confirm or
disprove (depending on the actual situation) the hypothesis underlying the choice
of the adaptation strategy. For more details on the specific case study, we refer
the reader to [3]; in the remainder of the paper, we shall focus on the formal
definition of the STLCS logic, and its model checking algorithm, as both were
not presented in [3].

3 Closure spaces

In this work, we use closure spaces to define basic concepts of space. Below, we
recall several definitions, most of which are explained in [6]. See also [4] for a
thorough description of SLCS, the spatial logic of closure spaces, and its model-
checking algorithm. A closure space is a set equipped with a closure operator
obeying to certain laws. In the finite case, closure spaces are graphs, but also
(infinite) topological spaces are an instance of the more general constructions.

Definition 1. A closure space is a pair (X,C) where X is a set, and the closure
operator C : 2% — 2% assigns to each subset of X its closure, obeying to the
following laws, for all A,B C X:

1. C(0) = 0;
2. ACC(A);
3. C(AUB) = C(A)ucC(B).

The notion of interior, dual to closure, is defined as Z(A) = X \ C(X \ A).
Closure spaces are a generalisation of topological spaces. The axioms defining
a closure space are also part of the definition of a Kuratowski closure space,
which is one of the possible alternative definitions of a topological space. More
precisely, a topological space is a closure space where the axiom C(C(A)) = C(A)
(idempotency) holds. We refer the reader to, e.g., [6] for more information.

Various notions of boundary can be defined. The closure boundary (often
called frontier) is used for the surrounded operator in STLCS.

Definition 2. In a closure space (X,C), the boundary of A C X is defined
as B(A) = C(A) \ Z(A). The interior boundary is B~ (A) = A\ Z(A), and the
closure boundary is BT (A) = C(A) \ A.

A closure space may be derived starting from a binary relation, that is, a graph.
In particular all finite spaces are in this form. This is easily seen by the equivalent
characterization of quasi-discrete closure spaces.

Definition 3. Consider a set X and a relation R C X x X. A closure operator
is obtained from R as Cr(A) = AU{x € X | Ja € A.(a,z) € R}.

Closure spaces derived from a relation can be characterised as quasi-discrete
spaces (see also Lemma 9 of [6] and the subsequent statements).

Definition 4. A closure space is quasi-discrete if and only if one of the follow-
ing equivalent conditions holds: i) each x € X has a minimal neighbourhood®

Ny; ii) for each A C X, C(A) = U ca C({a}).

Proposition 1. A closure space (X,C) is quasi-discrete if and only if there is
a relation R C X x X such that C = Cg.

Summing up, a closure space enjoys minimal neighbourhoods, and the closure
of A is determined by the closure of the singletons composing A, if and only if
the space is derived from a relation using Definition 3.

4 The Spatio-Temporal Logic of Closure Spaces

We define a logic interpreted on a variant of Kripke models, where valuations
are interpreted at points of a closure space. Fix a set P of proposition letters.

Definition 5. STLCS formulas are defined by the following grammar, where p
ranges over P:

=T [TRUE]
D [ATOMIC PREDICATE]
-¢ [Nort]
&V & [OR]
N & [CLOSE]

ArL FUTURES]

[
¢S P [SURROUNDED]
[
[SOME FUTURE]

Ep

pu=XP [NEXT]
| U P [UNTIL)

5 A minimal neighbourhood of x is a set A that is a neighbourhood of x, namely,
x € I(A), and is included in all other neighbourhoods of z.

The logic STLCS features the CTL path quantifiers A (“for all paths”), and
E (“there exists a path”). As in CTL, such quantifiers must necessarily be fol-
lowed by one of the path-specific temporal operators, such as” X® (“next”), Fd
(“eventually”), G@ (“globally”), &1 UP, (“until”), but unlike CTL, in this case &,
@1 and @5 are STLCS formulas that may make use of spatial operators. Further
operators of the logic are the boolean connectives, and the spatial operators N'®,
denoting closeness to points satisfying @, and &, S®2, denoting that a specific
point satisfying @, is surrounded, via points satisfying @1, by points satisfying
®,. The mutual nesting of such operators permits one to express spatial proper-
ties in which the involved points are constrained to certain temporal behaviours.
Let us proceed with a few examples. Consider the STLCS formula EG (green
S blue). This formula is satisfied in a point x in the graph, associated to the
initial state sg, if there exists a (possible) evolution of the system, starting from
S0, in which point z, in every state in the path, satisfies green and is surrounded
by blue. A further, nested, example is the STLCS formula EF (green S (AX
blue)). This formula is satisfied by a point = in the graph, in the initial state
S0, if there is a (possible) evolution of the system, starting from sg, in which
point z is eventually green and surrounded by points y that, for every possible
evolution of the system from then on, will be blue in the next time step.

A model M is composed of a Kripke structure (S, 7T), where S is a non-empty
set of states, and T is a non-empty accessibility relation on states, and a closure
space (X, C), where X is a set of points and C the closure operator. Every state s
has an associated valuation Vs, making ((X,C),Vs) a closure model according to
Definition 6 of [4]. Equivalently, valuations have type Sx X — 2F, where P is the
set of atomic propositions, thus, the valuation of atomic propositions depends
both on states and points of the space. Intuitively, there is a set of possible worlds,
i.e. the states in S, and a spatial structure represented by a closure space. In
each possible world there is a different valuation of atomic propositions, inducing
a different “snapshot” of the spatial situation which “evolves” over time. In this
paper we assume that the spatial structure (X,C) does not change over time.
Other options are indeed possible. For instance, when space depends on S, one
may consider an S-indexed family (X, Cs)ses of closure spaces.

Definition 6. A model is a structure M = ((X,C),(S,T),Vses) where (X,C)
is a closure space, (S,T) is a Kripke frame, and V is a family of valuations,
indexed by states. For each s € S, we have Vs : P — P(X).

A path in the Kripke structure is a sequence of spatial models (in the sense
of [4]) indexed by instants of time; see Fig. 1, where space is a two-dimensional
structure, and valuations at each state are depicted by different colours.

Definition 7. Given Kripke frame K = (S,T), a path o is a function from N
to S such that for all n € N we have (o(i),0(i + 1)) € T. Call Py the set of
infinite paths in K rooted at s, that is, the set of paths o with o(0) = s.

" Some operators may be derived from others; for this reason, e.g., in Definition 5, and
Section 5, we use a minimal set of connectives. As usual in logics, there are several
different choices for such a set.

/

space

o0
2l
e

n n+1 n+2

time
Fig.1: In spatio-temporal logics, a temporal path represents a sequence of snap-

shots induced by the time-dependent valuations of the atomic propositions.

The evaluation contexts are of the form M, z, s = @, where @ is a STLCS
formula, s is a state of a Kripke structure, and x is a point in space X.

Definition 8. Satisfaction is defined in a model M = ((X,C),(S,T),Vses) at
point x € X and state s € S as follows:

Mz,sET

Mz, sEDp — z € Vs(p)

Mz, slE-® <= M,z,sEP

Mz, s EPVY < M,z,s =P or M,z,s =¥

Mz, s EN® <= zelC{ye X|M,y,s | P})

Mz, s EPSY <— JAC Xaxe ANVy e AM,y,sE PA
AVz € BT (A).M,z,5s =W

Mz, sEAp << VYoePs. M,z,0k¢p

Mz, s EEp <= JoeP,. M,x,0=¢p

Mz,o0=XP — M,z,0(l) =

Mz,0 EOUY <— In.M,z,0(n) E¥ and Vn' € [0,n).M,z,0(n’') E P

The syntax we provide is rather essential. Further operators can be derived from
the basic ones; e.g., one can define conjunction and implication using negation
and disjunction; spatial interior is defined as the dual of A; several derived path
operators are well-known for the temporal fragment, by the theory of CTL. We
do not attempt to make an exhaustive list; for the classical temporal connec-
tives, see e.g., [1]; for spatial operators, [4] provides some interesting examples.
In Section 6 we show some simple spatial and spatio-temporal formulas. More
complex formulas can be found in [3].

5 Model checking

In this section we describe the model checking algorithm, which is a variant of

the well-known CTL labelling algorithm. For more information on CTL and its

model checking techniques, see e.g., [1] or [5]. This algorithm operates in the case

of finite, quasi-discrete closure spaces, represented as finite graphs. Assume the

type Set implementing a finite set-like data structure®, with elements of type E1

and operations union, inter, diff, times, emptyset, with the obvious types.
We represent a finite directed graph as the triple

(G: Set,Pred_G:E1 — Set,C1.G: Set — Set)

where the argument and result of the operators implementing closure C1_G, and
predecessor Pred_G, are constrained to belong to G. We describe a model by a pair
of graphs M = (X, T) where the spatial component is X = (X,Pred X, C1l.X),
and the temporal component (which can be thought of as a Kripke frame) is
T = (T,Pred_T,C1.T).

Consider the finite set S = X times T of points in space-time; given a subset
A C 8, and a state t € T, we let space_sec(A,t) be the subset of X containing
the points z such that (z,t) € A; we define time_sec in a similar way. With
choose we indicate the operation of choosing an element from a non-empty set
(without making explicit how to pick it). For & an STLCS formula, and M a
model, we let []M = {(z,t) C S | M,z,t = &}.
Given a formula @ and a model M, the algorithm proceeds by induction on the
structure of @; the output of the algorithm is the set [@]*. In the following, we
present the relevant code portions addressing each case of the syntax; we omit
the cases for the boolean connectives, and use a minimal set of connectives for
the temporal part, namely EX, AF, E I{ . The cases for & = EX®’ and E(®; UD)
make use of the auxiliary function pred_time:

function pred_time (A)

F := emptyset;
foreach ((x,t) in A)
U := Pred_T(t);
F := F union ({x} times U);

return F;

Case ® = N@': The result is computed as the set U, yepaqmi(y,t) | ¥ €
Cx(x)}, which is correct in a quasi-discrete closure space (X,C), as, for all sets

A, we have C(A) = J,c4 C({z}).

let A = [¢'TM;
P := emptyset;

8 We remark that the complexity of operations on such type affect the complexity of
the algorithm; however, since the algorithm is global, the Set type may be imple-
mented using an explicit lookup table, that is, an array of boolean values indexed
by states, as usual in model checking, obtaining the complexity that we discussed.

foreach ((x,t) in A)
P := P union (Cl_X({x}) times {t});
return P;

Case & = &15P,: For every state t, we compute the spatial components of
[@1]™ and [®2]™ at state t (called R and Bs in the pseudo-code). Then we
apply the algorithm described in [4].

let A = [&1]M;
let B = ﬂ@g}M;

F := emptyset;
foreach (t in T)
R := space_sec(A,t);
Bs := space_sec(B,t);
U := R union Bs;
D := C1_X(U) diff U;
while (D != emptyset)
s := choose(D);
N := (C1_X({s}) inter R) diff Bs;
R := R diff N;
D := (D union N) diff {s};
F := F union (R times {t})

return F;

Case @ = EXP': The set of predecessors (in time) of the points in space-time
belonging to the semantics of @' are computed and returned.

let A = [&'|M;
return pred_time (A);

Case & = AF®': The case for AF is essentially the efficient algorithm for EG
presented in [1], except that it is presented in “dual” form, using the fact that
[EGP'|M = [-AF(=@")]™ . The algorithm is iterated for each point of the space.
More precisely, for each x € X, vector count, whose indices are states in T, is used
to maintain the following invariant property along the while loop: whenever
count [t] is 0, we have M,xz,t = AF®'. In order to establish such invariant
property, before the while loop, count[t] is initialised to O for each point in
F, which is the set of points t such that there is some x, with M,x,t E &'
(therefore, also M, x,t = AF®’ by definition). For each remaining state t, the
value of count [t] is set to the number of its successors. Along the while loop,
the set U is the set of states ¢ that, at the previous iteration (or at initialisation),
have been shown to satisfy M, x,t = AF®’. At each iteration, for each t in U,
function sem_af_aux is used to inspect each predecessor y of t and decrease the
value of count [y]. When count [y] becomes 0, y is added to U, as it is proved
that all the successors of y satisfy AF®’; no state is added twice to U (which is
guaranteed by the check if count[y] > 0 in function sem_af_aux).

let A = ﬂ@ﬂﬂ4;
M := emptyset;
foreach (x in X)
F := time_sec(A,x);
U := F;
foreach (t in (T minus F))
count [t] := cardinality (CL_T({t}));
foreach (t in F)
count [t] := 0;
while (U != emptyset)
U’ := U;
U := emptyset;
foreach (t in U?)
sem_af_aux(F,U,count,t);
M := M union ({x} times F);
return M;

function sem_af_aux(F,U,count,t)
foreach (y in Pred_T(t))
if count[y] > O then

count [y] := countl[y] - 1;

if (count[y] = 0)

then
U := U union {y};
F F union {y};

Case E(P1 UP5): In this case, the algorithm computes the set of points that either
satisfy @4, or satisfy @, and can reach points satisfying @5 in a finite number of
temporal steps. This is accomplished by maintaining, along the while loop, the
set F of points that have already been shown to be in this situation (initialised
to the points satisfying @2), and the set L of points that satisfy @4, are not in F,
and can reach F in one (temporal) step. At each iteration, F is augmented by the
points in L, and L is recomputed. When L is empty, F contains all the required
points. The set P, initialised to the points satisfying @1, is used to guarantee
termination, or more precisely, that no node is added twice to L.

let A = [&]M;
let B = ﬂ@gWM;

F := B;
P := A diff B;
L := pred_time(F) inter P;
while (L <> emptyset)
F := F union L;
P := P diff L;
L := pred_time(L) inter P;

return F

In the implementation, available at [7], the definition of the Kripke structure
is given by a file containing a graph, in the plain text graph description language®
dot. Quasi-discrete closure models are provided either in the form of a graph, or
in the form of a set of images, one for each state in the Kripke structure, having
the same size. The colours of the pixels in the image are the valuation function,
and atomic propositions actually are colour ranges for the red, green, and blue
components of the colour of each pixel. In this case, the model checker verifies a
special kind of closure spaces, namely finite regular grids.

The model checker interactively displays the image corresponding to a “cur-
rent” state. The most important command of the tool is sem colour formula,
that changes the colour of points satisfying the given formula, to the specified
colour, in the current state. The tool has the ability to define parametrised
names for formulas (no recursion is allowed). Formulas are automatically saved
and restored from a text file. The implementation is that of a so-called “global”
model checker, that is, all points in space-time satisfying the given formulas are
coloured /returned at once. More information on the tool, as well as the complete
source code, is available at [7].

The complexity of the currently implemented algorithm is linear in the prod-
uct of number of states, subformulas, and points of the space, which is a con-
sequence of the algorithm described in [4] being linear in the number of points,
and the classical algorithm for CTL being linear in the number of states (in both
cases, for each specific formula). Such efficiency is sufficient for experimenting
with the logic (see [3]), but if both the space and the Kripke structures are large,
model checking may become impractical.

Remark 1. Even though we consider a thorough performance analysis of the ba-
sic algorithm beyond the scope of this preliminary investigation, and possibly
redundant, we can provide some hints about the feasibility and the efficiency
problems of spatio-temporal model checking. Our prototype has been imple-
mented in OCaml, trying to make use of the declarative features of the lan-
guage. For example, we use the Set module of OCaml, implementing a purely
functional data type for sets, in order to make use of Definition 8 directly, rather
than attempting to use bit arrays to improve performance, as it is typical in
global model checking. In the example of Section 2, we considered rather small
Kripke frames, in the order of one hundred states. However, the images associ-
ated to each state contain around one million points. Therefore, even though the
state space seems rather small, the number of examined points in space-time is
in the order of 50-100 millions of states. The model checker is able to perform
the required analyses in a time that roughly varies between some seconds and 30
minutes, depending on the formula, on a quite standard laptop computer. On the
one hand, this proves that non-trivial examples may be analysed using the simple
algorithm we proposed, but on the other hand, the same data strongly suggests
that effective optimisations need to be found to make large-scale spatio-temporal
model checking feasible (more on this in the conclusions).

9 Further information on the dot notation can, for example, be found at
http://www.graphviz.org/Documentation.php.

6 Examples

Finally, we show some simple examples to illustrate operation of the tool. Con-
sider the Kripke frame in Fig. 2. To each state, an image is associated, that the
model checker considers an undirected graph whose nodes are pixels, and whose
arcs go from each pixel to the neighbouring ones, in the four main directions
north, south, east, west. The image associated to each state are shown in Fig. 3.

Fig. 2: The Kripke frame of our example.

6 7 I\ 8 9 10

11 12 13 14 15

Fig.3: The images providing valuations for the atomic propositions. Each valu-
ation depicts a green, filled circle with a red border.

Let us consider the green circle with red boundary, in the first image of
Fig. 3. The centre of the circle in the figures moves along time towards the right.
Its radius grows at constant speed in turn. Then, in state 5, there is a non-
deterministic choice point. In the first possible future (states 6 — 10), the radius
keeps growing, whereas in the second future (states 11 — 15) the radius shrinks.
In the following, we shall use atomic propositions g, r, evaluating to the green
and red points (boundary of the green area) in the figures.

Let us first consider the spatial formula gSr (green points surrounded by a
red boundary). Such formula is evaluated, colouring in blue the points satisfying
it, by executing the command below. Its output is displayed in Fig. 4, for each
point in space and state of the Kripke structure:

sem blue S[<g>,<r>]

1 2 3 4 5
6 7 I 8 9 10
11 12 13 14 15

Fig. 4: The points satisfying gSr are displayed in blue. These are the filled circles;
their borders remain red.

A second example is the spatio-temporal formula EF(gSr), computed by:

sem blue EF (S[<g>,<r>])
See output in Fig. 5. For each point in space and temporal state, the points that
will eventually satisfy green and be surrounded by red, are coloured in blue.

‘I 1 I\ 2 ‘I 3 I 4 I 5
I 6 I 7 II 8 10
11 12 13 14 15

Fig.5: In blue, the semantics of EF(¢Sr).

Finally, we show the semantics of the spatio-temporal formula AGg, characterising
points that will be green forever in all futures. In Fig. 6 we show the output of
sem blue AG <g>

6 7 I\ 8 9 10

11 12 13 14 15

Fig.6: In blue, the semantics of AGg.

In states 1 — 5 of Fig. 6, the valuation of the formula in each state is the
intersection of two circular areas, namely the intersection of the green area in the
chosen state and the green area in state 15. By this, in particular, the valuation
of the formula is the empty set in state 1. In states 11 — 15, the situation is
similar, since state 15 is a possible future. On the other hand, in states 6 — 10,
state 15 is not reachable, thus the area which will be forever green is larger.

7 Conclusions and future work

In this paper we studied an extension of the Spatial Logic of Closure Spaces
of [4] with classical CTL temporal logic operators. A simple, proof-of-concept,
temporal extension of the spatial model checker for SLCS has also been presented
together with a simple example. The spatio-temporal model checker has been
used for a urban transportation case study, as described in detail in [3].

The use of a spatial model checker provides us with a sophisticated tool
for checking properties of systems where location plays an important role, as it
does in many collective adaptive systems. By enhancing this standpoint with
a temporal perspective, the interplay of space and time allows one to define
complex spatio-temporal formulas, predicating over the relation between points
of a spatial model that varies over branching time.

Current work is focused on defining collective variants of spatial and spatio-
temporal properties; that is, the satisfaction value of a formula is defined on a
set of points, rather than on a single point, so that the satisfaction value of a
formula with respect to a set of points (a collective property) is not necessarily
determined by the satisfaction values over the points composing the set (an
individual property). Such interpretation of spatio-temporal logics is particularly
motivated by the setting of collective adaptive systems and emergent properties.

High priority in future work will be given to the investigation of various kinds
of optimisations for spatio-temporal model checking, including partition refine-
ment of models, symbolic methods, and on-line algorithms taking advantage of
differential descriptions of the change between system states. An orthogonal, but

nevertheless interesting, aspect of spatio-temporal computation is the introduc-
tion of probability and stochastic aspects, as well as the introduction of metrics,
yielding bounded versions of the introduced spatio-temporal connectives. Such
features will be studied in the context of STLCS. Investigating efficient model
checking algorithms in this setting is important for practical applications, which
are very often quantitative rather than boolean.

Another ongoing work is the development of qualitative and quantitative
spatio-temporal analysis of the behaviour of complex systems, which was started
in [9], and features an extension of Signal Temporal Logic to accommodate spa-
tial information. In that case, models are deterministic (thus non-branching)
and monitoring plays a central role. Single, infinite traces (intended to be the
outcome of some approximation of a complex sytem, described by a system of
differential equations) are analysed to check whether specific spatio-temporal
properties are satisfied, such as, the formation of specific patterns.

References

1. C. Baier and J. P. Katoen. Principles of model checking. MIT Press, 2008.

2. Luis Caires and Hugo Torres Vieira. SLMC: A tool for model checking concurrent
systems against dynamical spatial logic specifications. In Cormac Flanagan and
Barbara Konig, editors, Tools and Algorithms for the Construction and Analysis
of Systems - 18th International Conference, TACAS 2012, volume 7214 of Lecture
Notes in Computer Science, pages 485—491. Springer, 2012.

3. V. Ciancia, S. Gilmore, G. Grilletti, D. Latella, M. Loreti, and M. Massink. Spatio-
temporal model-checking of vehicular movement in transport systems. submitted
for journal publication, available from the authors.

4. V. Ciancia, D. Latella, M. Loreti, and M. Massink. Specifying and Verifying Prop-
erties of Space. In Springer, editor, The 8th IFIP International Conference on
Theoretical Computer Science, TCS 2014, Track B, volume 8705 of Lecture Notes
in Computer Science, pages 222-235, 2014.

. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 2001.

6. A. Galton. A generalized topological view of motion in discrete space. Theoretical
Computer Science, 305(1-3):111 — 134, 2003.

7. G. Grilletti and V. Ciancia. STLCS model checker, 2014. https://github.com/
cherosene/ctl_logic.

8. R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. Spatial logic +
temporal logic = 7 In M. Aiello, I. Pratt-Hartmann, and J. van Benthem, editors,
Handbook of Spatial Logics, pages 497-564. Springer, 2007.

9. L. Nenzi, L. Bortolussi, V. Ciancia, M. Loreti, and M. Massink. Qualitative and
quantitative monitoring of spatio-temporal properties. submitted.

10. J. van Benthem and G. Bezhanishvili. Modal logics of space. In M. Aiello, I. Pratt-
Hartmann, and J. van Benthem, editors, Handbook of Spatial Logics, pages 217-298.
Springer, 2007.

11. J. van Benthem and G. Bezhanishvili. Modal logics of space. In Handbook of
Spatial Logics, pages 217-298. 2007.

ot

https://github.com/cherosene/ctl_logic
https://github.com/cherosene/ctl_logic

	An experimental spatio-temporal model checker

