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Smooth Distances for
Second Order Kinematic Robot Control
Vinicius Mariano Gonçalves, Anthony Tzes, Farshad Khorrami and Philippe Fraisse

I. INTRODUCTION

This is a supplementary material for the paper “Smooth Distances for Second Order Kinematic Robot Control”, explaining
how to compute DA

h,R(p) for some 3D objects. Through this document, we will use p = [x y z]T .

A. Removing the regularization parameter

In this document, we will explain how to compute a particular case of DA
h,R(p) , ΠA

h,R(p) when R → ∞, henceforth denoted
simply by DA

h (p) and ΠA
h (p), respectively. This is because it turns out that we can compute these expressions for a generic

R if we have procedures that can compute it for R → ∞. Let ac = Cen(A) (as it is the geometric center of objects, this can
computed easily for objects as boxes, cylinders and spheres). We start by noting the following identity:

∥a− ac∥2

R2
+

∥p− a∥2

h2
=

∥p̂− a∥2

η2
+

(
∥ac∥2

R2
+

∥p∥2

h2
− ∥p̂∥2

η2

)
(1)

in which η ≜ (1/h2 + 1/R2)−1/2 and p̂ ≜ η2(p/h2 + ac/R
2). Using this formula and the definition of DA

h,R(p) and DA
h (p)

(the latter being the case in which R → ∞ and thus WA
R (a) = 1 and VolR(A) is simply the volume of A, Vol(A)):

DA
h,R(p) = h2 log

(
VolR(A)

Vol(A)

)
+

h2

2

(
∥ac∥2

R2
+

∥p∥2

h2
− ∥p̂∥2

η2

)
+

h2

η2
DA

η (p̂). (2)

Furthermore, note that h2 log
(

VolR(A)
Vol(A)

)
= − h2

R2D
A
R (ac). So:

DA
h,R(p) = − h2

R2
DA

R (ac) +
h2

2

(
∥ac∥2

R2
+

∥p∥2

h2
− ∥p̂∥2

η2

)
+

h2

η2
DA

η (p̂). (3)

The righthand side only depends on the computations of DA
g (u) for the different values of g and points u. The formula for the

projection is even simpler: taking the derivative of both sides with respect to p and using the fact that ∂
∂pD

A
h,R(p) = p−ΠA

h,R(p)

, ∂
∂pD

A
η (p) = p−ΠA

η (p) and also that ∂p̂
∂p = (η2/h2)I (in which I is the identity matrix):

p−ΠA
h,R(p) = (p− p̂) +

(
p̂−ΠA

η (p̂)
)

→ ΠA
h,R(p) = ΠA

η (p̂). (4)

Consequently, henceforth, without loss of generality, we will work with the case in which R → ∞.

B. Computing projections numerically

In this document, we will show how to compute DA
h (p) for some sets. However, we will also need to compute the h-

projections ΠA
h (p). In that case, we note that ΠA(p) = p− ∂DA

h

∂p (p). We suggest to compute ∂DA
h

∂p (p) numerically, that is:

∂DA
h

∂x
(p) ≈ DA

h (p+ ϵex)−DA
h (p− ϵex)

2ϵ
∂DA

h

∂y
(p) ≈ DA

h (p+ ϵey)−DA
h (p− ϵey)

2ϵ

∂DA
h

∂z
(p) ≈ DA

h (p+ ϵez)−DA
h (p− ϵez)

2ϵ
(5)

in which ex = [1 0 0]T , ey = [0 1 0]T , ez = [0 0 1]T and ϵ is a small number (we suggest ϵ = 0.001).
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C. Canonical objects

In this document, we will show how to compute DA
h (p) (and thus ΠA

h (p), see the previous subsection) for some sets in
a canonical pose. For example, for a box centered at p = [0 0 0]T of a reference frame with its sides aligned with the axis
of this reference frame. For these objects in a general pose, other than the canonical one, we use the property derived in the
paper: if E(·) is a rigid transformation and E−1(·) is its inverse:

D
E(A)
h (p) = DA

h

(
E−1(p)

)
Π

E(A)
h (p) = E

(
ΠA

h

(
E−1(p)

))
.

(6)

D. The Cartesian Product Property

Using the definition of A, it is easy to see that if Ai are subsets of Rni for a ni ≥ 1, A = A1 ×A2 × ...×Am, pi ∈ Rni

and p = [(p1)T (p2)T ... (pm)T ]T then:

DA
h (p) =

m∑
i=1

DAi

h (pi). (7)

We can use this to compute the h-distance function for complex sets that are build as Cartesian product of simpler sets.

E. The Error Function

The Error Function Erf(u) ≜ 2√
π

∫ u

0
e−t2dt appears often in the calculations of DA(p) for some simple objects. It has

no closed form in terms of a finite number elementary functions, but there are very good approximation for it in terms of
elementary functions that will be used here. Let

J(u) ≜
a

(a− 1)
√
πu2 +

√
πu2 + a2

. (8)

in which a = 2.7889. Then, Erf(u) ≈ sign(u)(1− e−u2

J(u)). This approximation is excellent for all values of u. More details
can be seen in [1].

A related function that will often appear in our calculations is, for L ≥ 0 and v ∈ R:

Inth(v, L) ≜ −h2 log

(
1

2L

∫ L

−L

e−
(u−v)2

2h2 du

)
=

−h2 log

(√
π

2

h

2L

(
Erf
(
L+ v√

2h

)
+ Erf

(
L− v√

2h

)))
. (9)

Int stands for interval as it is DA
h (p) for A = [−L,L], in which p ∈ R.

Without a careful evaluation, this function can easily be problematic to be computed. When |v| ≥ 5
√
2h + L the sum of

Erf ’s inside the log is already very close to 0 in most naive implementations of the error function, generating +∞ as a result.
The approximation Erf(v) ≈ sign(v)(1 − e−v2

J(v)) allow us to solve this problem. We will consider two cases, |v| ≤ L,
in which the aforementioned problem do not happen, and when |v| ≥ L, in which we need to rewrite the function to avoid
underflows.

For |v| ≤ L, both u = (L+v)/(
√
2h) and u = (L+v)/(

√
2h) are nonnegative and we can simply use Erf(u) ≈ 1−e−u2

J(u).
Then we have the following approximation for Inth(v, L):

Inth(v, L) ≈ −h2 log

(√
π

2

h

2L

(
2− e−

(L+v)2

2h2 J
(v + L√

2h

)
− e−

(L−v)2

2h2 J
(v − L√

2h

)))
for |v| ≤ L. (10)

For |v| ≥ L, we note that we can assume, without loss of generality, that v ≥ 0, since Inth(v, L) is an even function of v. Note
than, in this case, u1 = (L+v)/(

√
2h) ≥ 0 and u2 = (L−v)/(

√
2h) ≤ 0. Using the approximations Erf(u1) ≈ (1−e−u2

1J(u1)),

Erf(u2) ≈ −(1− e−u2
2J(u2)) , and factoring out the term −e−

(L−v)2

2h2 out of the log, we can write:
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Inth(v, L) ≈
(v − L)2

2
− h2log

(√
π

2

h

2L

(
J

(
v − L√

2h

)
− J

(
v + L√

2h

)
e

−2Lv

h2

))
for v ≥ L. If v ≤ −L, use −v in the formula instead. (11)

Here is the C code:
#include <math.h>

#define PI 3.1415926
#define SQRTHALFPI 1.2533141
#define SQRT2 1.4142135
#define CONSTJA 2.7889

double fun J(double u)
{

return CONSTJA/((CONSTJA−1)*sqrt(PI*u*u) + sqrt(PI*u*u+CONSTJA*CONSTJA));
}

double Int (double v, double h, double L)
{

if ( abs(v) <= L)
{

double A1 = exp(−(L−v)*(L−v)/(2*h*h))*fun J((v−L)/(SQRT2*h));
double A2 = exp(−(L+v)*(L+v)/(2*h*h))*fun J((v+L)/(SQRT2*h));
return −h*h*log(SQRTHALFPI*(h/(2*L))*(2−A1−A2));

}
else
{

// The function is even
v = abs(v) ;

double A1 = fun J((v−L)/(SQRT2*h));
double A2 = exp(−2*L*v/(h*h))*fun J((v+L)/(SQRT2*h));
return 0.5*(v−L)*(v−L) −h*h*log(SQRTHALFPI*(h/(2*L))*(A1−A2));

}
}

F. The Modified Bessel Function of the First Kind

Another function that will often appear is the Modified Bessel Function of the First Kind of order 0, defined as I0(u) ≜
1
2π

∫ 2π

0
eu cos(θ)dθ.

Let Î0(u) = cosh(u)−1I0(u). Then we define, for R ≥ 0 and v ∈ R+, the following function that will appear in our
calculations:

Cirh(v,R) ≜ −h2 log

(
1

R2

∫ R

0

r

(
e−

(r−v)2

2h2 + e−
(r+v)2

2h2

)
Î0

(rv
h2

)
dr

)
. (12)

Cir stands for circle as it is related DA
h (p) when A is a circle (with interior) in R2, centered at the origin and with radius

R. More precisely, since the distance function in this case will be radially symmetric, DA
h (p) = Cirh(∥p∥, R).

It is beneficial to study an scaled version of this function, in which v, r and R are scaled by 1/h. Making the change of
variables ρ = r/h in the integral and considering ν = v/h, P = R/h we obtain that

Cirh(hν, hP ) = −h2 log

(
1

P 2

∫ P

0

ρ
(
e−

1
2 (ρ−ν)2 + e−

1
2 (ρ+ν)2

)
Î0 (ρν) dρ

)
. (13)

Now, if we graph the function f(ρ, ν) ≜ ρ
(
e−

1
2 (ρ−ν)2 + e−

1
2 (ρ+ν)2

)
Î0 (ρν) on ρ for fixed values of ν (ν ≥ 0), we will

see that the maximum of f(ρ, ν) is approximatelly at r∗(ν) =
√
1 + ν2, and it is practically zero for r ≤ r∗(ν) − 3 and

r ≥ r∗(ν) + 3. Therefore, let F (ν, P ) ≜ max(0, r∗(ν)− 3) and F (ν, P ) ≜ min(P, r∗(ν) + 3)∫ R/h

0

f(ρ, ν)dρ ≈
∫ F (ν,P )

F (ν,P )

f(ρ, ν)dρ. (14)

We can integrate the integral at the right numerically using, for example, Gaussian quadrature. For that, let ρ = F (ν, P ) +
F (ν,P )−F (ν,P )

2 (g + 1). Then the integral becomes:
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∫ R/h

0

f(ρ, ν)dρ ≈
(
F − F

2

)∫ 1

−1

f

(
F +

(
F − F

2

)
(g + 1), ν

)
dg. (15)

and thus Gauss-Legendre quadrature can be applied. This integral only make sense if F (ν, P ) ≥ F (ν, P ). This holds if ν ≤ P ,
which, returning to the original variables, implies v ≤ R.

If v ≥ R, we will integrate in the whole interval from 0 to P = R/h in the Gauss Legendre quadrature rule. However, we
need to be carefult to avoid underflows.

Let gi ∈ [−1, 1] be the N points in the Gauss-Legendre quadrature, in an increasing order, with associated weights wi. Thus,
gN ≤ 1 is the greatest of the weights and the mapped point in the interval 0 to P = R/h is ρ̃ ≜ 0+ 0.5(R/h− 0)(gN +1) =
0.5(R/h)(gN + 1). Define the function

f̂(ρ, ν, ρ̃) ≜ e
1
2 (ρ̃−ν)2f(ρ, ν) = ρ

(
e−

1
2 (ρ−ν)2+ 1

2 (ρ̃−ν)2 + e−
1
2 (ρ+ν)2+ 1

2 (ρ̃−ν)2
)
Î0 (ρν) . (16)

Thus, for v ≥ R, we compute

Cirh(v,R) =
(v − hρ̃)2

2
− h2 log

(
h2

R2

∫ R/h

0

f̂(ρ, vh, ρ̃)dρ

)
(17)

in which the integral inside is approximated using Gauss-Legendre quadrature in the interval [0, R/h].
Note that we need to compute the values of the Bessel Function. If it is not readily available, we can use the excellent

approximation given by (see [2]):

I0(u) ≈
cosh(u)

(1 + 0.25u2)1/4
1 + 0.24273u2

1 + 0.43023u2
. (18)

And thus:

Î0(u) ≈
1

(1 + 0.25u2)1/4
1 + 0.24273u2

1 + 0.43023u2
. (19)

Here we provide the codes in C. Note that we use Gauss-Legendre quadrature of 7th order, which seems good enough, but
the code is easily modifiable if one wants to use higher-order quadratures.
#include <math.h>

#define PI 3.1415926;
#define SQRTHALFPI 1.2533141;
#define SQRT2 1.4142135;

double fun I0 hat (double u)
{

return pow(1+0.25*u*u,−0.25)*(1 + 0.24273*u*u)/(1 + 0.43023*u*u);
}

double fun f(double nu, double rho)
{

double A1 = exp(−0.5*(rho−nu)*(rho−nu));
double A2 = exp(−0.5*(rho+nu)*(rho+nu));
return rho*(A1+A2)*fun I0 hat(rho*nu);

}

double fun f hat (double nu, double rho , double rhobar)
{

double A1 = exp(−0.5*(rho−nu)*(rho−nu) + 0.5*(rhobar−nu)*(rhobar−nu));
double A2 = exp(−0.5*(rho+nu)*(rho+nu) + 0.5*(rhobar−nu)*(rhobar−nu));
return rho*(A1+A2)*fun I0 hat(rho*nu);

}

double max(double a, double b)
{

if (a >= b)
{

return a;
}
else
{
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return b;
}

}

double min(double a, double b)
{

if (a >= b)
{

return b;
}
else
{

return a;
}

}

double Cir(double v, double h, double R)
{

// The function should be called only for v >= 0
v = abs(v) ;

// Change here the Gauss−Legendre quadrature
int N=7;
double node[N] = {−0.94910, −0.74153, −0.40584, 0, 0.40584, 0.74153, 0.94910};
double weight[N]= {0.12948,0.27970,0.38183,0.4179,0.38183,0.27970,0.12948};
// end

double F low,F up,delta , rhobar ,y;

if ( v <= R)
{

F low = max(0,sqrt ((v/h)*(v/h)+1)−3);
F up = min(R/h, sqrt ((v/h)*(v/h)+1)+3);
delta = 0.5*(F up−F low);

y=0;
for ( int i=0; i<N; i++)
{

y = y + weight[ i ]*fun f(v/h,F low + delta*(node[i ]+1)) ;
}
y = delta *y;
return −h*h*log(y*(h/R)*(h/R));

}
else
{

F low = 0;
F up = R/h;
delta = 0.5*(F up−F low);
rhobar = F low + delta*(node[N−1]+1);

y=0;
for ( int i=0; i<N; i++)
{

y = y + weight[ i ]* fun f hat (v/h,F low + delta*(node[i ]+1) , rhobar) ;
}
y = delta *y;
return 0.5*(v−h*rhobar)*(v−h*rhobar)−h*h*log(y*(h/R)*(h/R));

}
}

II. FORMULAES FOR OBJECTS

A. Sphere

For a sphere of radius R centered at p = [0 0 0]T (see Figure 1), clearly DA
h (p) is radially symmetric, that is, DA

h (p)
depends only on ∥p∥. Then, without loss of generality, we can assume that p = [0 0 ∥p∥]T .

Using spherical coordinates, ax = r cos(ϕ) sin(θ), ay = r sin(ϕ) sin(θ) and az = r cos(θ), with dV = r2 sin(θ)rdθdrdϕ.
Now, since we have that ∥p− a∥2 = r2 − 2r∥p∥cos(θ) + ∥p∥2 we can conclude that

DA
h (p) = −h2 log

(
3

4πR3

∫ 2π

0

∫ R

0

∫ π

0

e−
r2−2r∥p∥cos(θ)+∥p∥2

2h2 r2 sin(θ)rdθdrdϕ

)
. (20)

This can be rewritten as:
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z

x

y

R

(0,0,0)

Fig. 1. Sphere in the canonical pose.

DA
h (p) = −h2 log

(
3

4πR3

∫ 2π

0

∫ R

0

r2e−
r2+∥p∥2

2h2

(∫ π

0

e
r∥p∥cos(θ)

h2 sin(θ)dθ

)
drdϕ

)
. (21)

The inner integral can be easily computed with the change of variables v = r∥p∥ cos(θ)/h2, resulting in:

DA
h (p) = −h2 log

(
3h2

4πR3∥p∥

∫ 2π

0

∫ R

0

re−
r2+∥p∥2

2h2

(
er∥p∥/h

2

− e−r∥p∥/h2
)
drdϕ

)
. (22)

Using the fact that e−
r2+∥p∥2

2h2 er∥p∥/h
2

= e−
(r−∥p∥)2

2h2 , e−
r2+∥p∥2

2h2 e−r∥p∥/h2

= e−
(r+∥p∥)2

2h2 and the fact that the integrand does
not depend on ϕ, we can obtain

DA
h (p) = −h2 log

(
3h2

2R3∥p∥

∫ R

0

r

(
e−

(r−∥p∥)2

2h2 − e−
(r+∥p∥)2

2h2

)
dr

)
. (23)

Thus, if we define:

Sphh(v,R) ≜ −h2 log

(
3h2

2R3v

∫ R

0

r

(
e−

(r−v)2

2h2 − e−
(r+v)2

2h2

)
dr

)
(24)

then DA
h (p) = Sphh(∥p∥, R). Sph stands for Sphere.

Now, note that:

∫ R

0

re−
(r+v)2

2h2 dr =

∫ R

0

(r + v − v)e−
(r+v)2

2h2 dr =∫ R

0

(r + v)e−
(r+v)2

2h2 dr − v

∫ R

0

e−
(r+v)2

2h2 dr =

h2

(
e−

v2

2h2 − e−
(R+v)2

2h2

)
− v

√
π

2
h

(
Erf
(
R+ v√

2h

)
− Erf

(
v√
2h

))
.

Analogously:

∫ R

0

re−
(r−v)2

2h2 dr =

h2

(
e−

v2

2h2 − e−
(R−v)2

2h2

)
+ v

√
π

2
h

(
Erf
(
R− v√

2h

)
+ Erf

(
v√
2h

))
.

Then:

DA
h (p) = −h2 log

 3h2

2R3

h2

e−
(R+v)2

2h2 −e−
(R−v)2

2h2

v

+2Re−Inth(v,R)/h2

 . (25)



7

This formula provides no problems if v ≤ R if we use the approximation for Inth(v, L) shown in Subsection I-E. However,

for v ≥ R there can be numerical issues. In this case, we factor out e−
(R−v)2

2h2 to rewrite it as:

(v −R)2

2
− h2 log

(
3h2

2R3

(
h2

(
e−

2Rv
h2 −1

v

)
+2Re−Înth(v,R)/h2

))
(26)

in which Înth(v, L) ≜ Inth(v, L)− (v−L)2

2 . Note that, when v = 0, we need the limit

lim
v→0

e−
(R+v)2

2h2 −e−
(R−v)2

2h2

v

 = −2R

h2
e−

R2

2h2 . (27)

Here is the C code:
double Sph(double v, double h, double R)
{

// The function should be called only for v >= 0
v = abs(v) ;

double C = 3*(h*h)/(2*R*R*R);
double A1, A2;
if ( v <= R)
{

if (v==0)
{

return −h*h*log(C*(−2*R*exp(−(R*R)/(2*h*h)) + 2*R*exp(−Int(0,h,R)/(h*h))));
}
else
{

A1 = exp(−((R+v)*(R+v)/(2*h*h)));
A2 = exp(−((R−v)*(R−v)/(2*h*h)));
return −h*h*log(C*(h*h*(A1−A2)/v + 2*R*exp(−Int(v,h,R)/(h*h))));

}
}
else
{

A1 = exp(−(2*R*v/(h*h)));
A2 = 1;
return 0.5*(v−R)*(v−R)−h*h*log(C*(h*h*(A1−A2)/v + 2*R*exp((0.5*(v−R)*(v−R)−Int(v,h,R))/(h*h))));

}
}

B. Box

For a box centered at p = [0 0 0]T with sides ℓx, ℓy and ℓz aligned with the x, y and z axis, respectively (see Figure 2),
we have that A = [− ℓx

2 ,
ℓx
2 ]× [− ℓy

2 ,
ℓy
2 ]× [− ℓz

2 ,
ℓz
2 ].

z

x

y
ℓ
y

ℓ
x

ℓ
z (0,0,0)

Fig. 2. Box in the canonical pose.

Thus, using the Cartesian product property (Subsection I-D) and the fact that for Ai = [−Li

2 , Li

2 ] and pi ∈ R, DAi

h (pi) =
Inth

(
pi, Li

2

)
, we have that
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DA
h (p) = Inth

(
x,

ℓx
2

)
+ Inth

(
y,

ℓy
2

)
+ Inth

(
z,

ℓz
2

)
. (28)

We can use the approximation for Inth(v, L) shown in Subsection I-E.

C. Cylinder

For a cylinder centered at p = [0 0 0]T with radius R and height H (see Figure Figure 3), we use the fact that A =
C(R)× [−H/2, H/2], in which C(R) is a circle centered at the origin of R2 with radius R.

z

x

y

R

H (0,0,0)

Fig. 3. Cylinder in the canonical pose.

We first compute D
C(R)
h (pxy), in which pxy = [x y]T . We can exploit the fact that the distance function for C(R) is

radially symmetric in the variables pxy , that is, the distance depends only on
√
x2 + y2. Thus, without loss of generality,

we can assume pxy = [
√
x2 + y2 0]T . Plugging this into the integral definition for D

C(R)
h (pxy), using polar coordinates,

the definition of the modified Bessel function of the first kind of order 0 and the results in Subsection I-D, we can see that
D

C(R)
h (pxy) = Cirh(

√
x2 + y2, R).

Thus, using the Euclidean product property (Subsection I-D), we have that:

DA
h (p) = Cirh(

√
x2 + y2, R) + Inth

(
z,

H

2

)
. (29)

We can then use the approximation for Inth(v, L) and Cirh(v,R) shown in Subsections I-E and I-D, respectively.
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