
1

Smooth Distances for
Second Order Kinematic Robot Control
Vinicius Mariano Gonçalves, Anthony Tzes, Farshad Khorrami and Philippe Fraisse

I. INTRODUCTION

This is a supplementary material for the paper “Smooth Distances for Second Order Kinematic Robot Control”, explaining
how to compute DA

h,R(p) for some 3D objects. Through this document, we will use p = [x y z]T .

A. Removing the regularization parameter

In this document, we will explain how to compute a particular case of DA
h,R(p) , ΠA

h,R(p) when R → ∞, henceforth denoted
simply by DA

h (p) and ΠA
h (p), respectively. This is because it turns out that we can compute these expressions for a generic

R if we have procedures that can compute it for R → ∞. Let ac = Cen(A) (as it is the geometric center of objects, this can
computed easily for objects as boxes, cylinders and spheres). We start by noting the following identity:

∥a− ac∥2

R2
+

∥p− a∥2

h2
=

∥p̂− a∥2

η2
+

(
∥ac∥2

R2
+

∥p∥2

h2
− ∥p̂∥2

η2

)
(1)

in which η ≜ (1/h2 + 1/R2)−1/2 and p̂ ≜ η2(p/h2 + ac/R
2). Using this formula and the definition of DA

h,R(p) and DA
h (p)

(the latter being the case in which R → ∞ and thus WA
R (a) = 1 and VolR(A) is simply the volume of A, Vol(A)):

DA
h,R(p) = h2 log

(
VolR(A)

Vol(A)

)
+

h2

2

(
∥ac∥2

R2
+

∥p∥2

h2
− ∥p̂∥2

η2

)
+

h2

η2
DA

η (p̂). (2)

Furthermore, note that h2 log
(

VolR(A)
Vol(A)

)
= − h2

R2D
A
R (ac). So:

DA
h,R(p) = − h2

R2
DA

R (ac) +
h2

2

(
∥ac∥2

R2
+

∥p∥2

h2
− ∥p̂∥2

η2

)
+

h2

η2
DA

η (p̂). (3)

The righthand side only depends on the computations of DA
g (u) for the different values of g and points u. The formula for the

projection is even simpler: taking the derivative of both sides with respect to p and using the fact that ∂
∂pD

A
h,R(p) = p−ΠA

h,R(p)

, ∂
∂pD

A
η (p) = p−ΠA

η (p) and also that ∂p̂
∂p = (η2/h2)I (in which I is the identity matrix):

p−ΠA
h,R(p) = (p− p̂) +

(
p̂−ΠA

η (p̂)
)

→ ΠA
h,R(p) = ΠA

η (p̂). (4)

Consequently, henceforth, without loss of generality, we will work with the case in which R → ∞.

B. Computing projections numerically

In this document, we will show how to compute DA
h (p) for some sets. However, we will also need to compute the h-

projections ΠA
h (p). In that case, we note that ΠA(p) = p− ∂DA

h

∂p (p). We suggest to compute ∂DA
h

∂p (p) numerically, that is:

∂DA
h

∂x
(p) ≈ DA

h (p+ ϵex)−DA
h (p− ϵex)

2ϵ
∂DA

h

∂y
(p) ≈ DA

h (p+ ϵey)−DA
h (p− ϵey)

2ϵ

∂DA
h

∂z
(p) ≈ DA

h (p+ ϵez)−DA
h (p− ϵez)

2ϵ
(5)

in which ex = [1 0 0]T , ey = [0 1 0]T , ez = [0 0 1]T and ϵ is a small number (we suggest ϵ = 0.001).

V. M. Gonçalves is with Center for Artificial Intelligence and Robotics (CAIR), New York University Abu Dhabi, United Arab Emirates
A. Tzes is with New York University Abu Dhabi, Electrical Engineering, Abu Dhabi 129188, United Arab Emirates
F. Khorrami is with New York University, Electrical & Computer Engineering Department, Brooklyn, NY 11201, USA.
P. Fraisse is with Laboratoire d’informatique, de robotique et de microelectronique de Montpellier (LIRMM) Montpellier, France.

2

C. Canonical objects

In this document, we will show how to compute DA
h (p) (and thus ΠA

h (p), see the previous subsection) for some sets in
a canonical pose. For example, for a box centered at p = [0 0 0]T of a reference frame with its sides aligned with the axis
of this reference frame. For these objects in a general pose, other than the canonical one, we use the property derived in the
paper: if E(·) is a rigid transformation and E−1(·) is its inverse:

D
E(A)
h (p) = DA

h

(
E−1(p)

)
Π

E(A)
h (p) = E

(
ΠA

h

(
E−1(p)

))
.

(6)

D. The Cartesian Product Property

Using the definition of A, it is easy to see that if Ai are subsets of Rni for a ni ≥ 1, A = A1 ×A2 × ...×Am, pi ∈ Rni

and p = [(p1)T (p2)T ... (pm)T]T then:

DA
h (p) =

m∑
i=1

DAi

h (pi). (7)

We can use this to compute the h-distance function for complex sets that are build as Cartesian product of simpler sets.

E. The Error Function

The Error Function Erf(u) ≜ 2√
π

∫ u

0
e−t2dt appears often in the calculations of DA(p) for some simple objects. It has

no closed form in terms of a finite number elementary functions, but there are very good approximation for it in terms of
elementary functions that will be used here. Let

J(u) ≜
a

(a− 1)
√
πu2 +

√
πu2 + a2

. (8)

in which a = 2.7889. Then, Erf(u) ≈ sign(u)(1− e−u2

J(u)). This approximation is excellent for all values of u. More details
can be seen in [1].

A related function that will often appear in our calculations is, for L ≥ 0 and v ∈ R:

Inth(v, L) ≜ −h2 log

(
1

2L

∫ L

−L

e−
(u−v)2

2h2 du

)
=

−h2 log

(√
π

2

h

2L

(
Erf
(
L+ v√

2h

)
+ Erf

(
L− v√

2h

)))
. (9)

Int stands for interval as it is DA
h (p) for A = [−L,L], in which p ∈ R.

Without a careful evaluation, this function can easily be problematic to be computed. When |v| ≥ 5
√
2h + L the sum of

Erf ’s inside the log is already very close to 0 in most naive implementations of the error function, generating +∞ as a result.
The approximation Erf(v) ≈ sign(v)(1 − e−v2

J(v)) allow us to solve this problem. We will consider two cases, |v| ≤ L,
in which the aforementioned problem do not happen, and when |v| ≥ L, in which we need to rewrite the function to avoid
underflows.

For |v| ≤ L, both u = (L+v)/(
√
2h) and u = (L+v)/(

√
2h) are nonnegative and we can simply use Erf(u) ≈ 1−e−u2

J(u).
Then we have the following approximation for Inth(v, L):

Inth(v, L) ≈ −h2 log

(√
π

2

h

2L

(
2− e−

(L+v)2

2h2 J
(v + L√

2h

)
− e−

(L−v)2

2h2 J
(v − L√

2h

)))
for |v| ≤ L. (10)

For |v| ≥ L, we note that we can assume, without loss of generality, that v ≥ 0, since Inth(v, L) is an even function of v. Note
than, in this case, u1 = (L+v)/(

√
2h) ≥ 0 and u2 = (L−v)/(

√
2h) ≤ 0. Using the approximations Erf(u1) ≈ (1−e−u2

1J(u1)),

Erf(u2) ≈ −(1− e−u2
2J(u2)) , and factoring out the term −e−

(L−v)2

2h2 out of the log, we can write:

3

Inth(v, L) ≈
(v − L)2

2
− h2log

(√
π

2

h

2L

(
J

(
v − L√

2h

)
− J

(
v + L√

2h

)
e

−2Lv

h2

))
for v ≥ L. If v ≤ −L, use −v in the formula instead. (11)

Here is the C code:
#include <math.h>

#define PI 3.1415926
#define SQRTHALFPI 1.2533141
#define SQRT2 1.4142135
#define CONSTJA 2.7889

double fun J(double u)
{

return CONSTJA/((CONSTJA−1)*sqrt(PI*u*u) + sqrt(PI*u*u+CONSTJA*CONSTJA));
}

double Int (double v, double h, double L)
{

if (abs(v) <= L)
{

double A1 = exp(−(L−v)*(L−v)/(2*h*h))*fun J((v−L)/(SQRT2*h));
double A2 = exp(−(L+v)*(L+v)/(2*h*h))*fun J((v+L)/(SQRT2*h));
return −h*h*log(SQRTHALFPI*(h/(2*L))*(2−A1−A2));

}
else
{

// The function is even
v = abs(v) ;

double A1 = fun J((v−L)/(SQRT2*h));
double A2 = exp(−2*L*v/(h*h))*fun J((v+L)/(SQRT2*h));
return 0.5*(v−L)*(v−L) −h*h*log(SQRTHALFPI*(h/(2*L))*(A1−A2));

}
}

F. The Modified Bessel Function of the First Kind

Another function that will often appear is the Modified Bessel Function of the First Kind of order 0, defined as I0(u) ≜
1
2π

∫ 2π

0
eu cos(θ)dθ.

Let Î0(u) = cosh(u)−1I0(u). Then we define, for R ≥ 0 and v ∈ R+, the following function that will appear in our
calculations:

Cirh(v,R) ≜ −h2 log

(
1

R2

∫ R

0

r

(
e−

(r−v)2

2h2 + e−
(r+v)2

2h2

)
Î0

(rv
h2

)
dr

)
. (12)

Cir stands for circle as it is related DA
h (p) when A is a circle (with interior) in R2, centered at the origin and with radius

R. More precisely, since the distance function in this case will be radially symmetric, DA
h (p) = Cirh(∥p∥, R).

It is beneficial to study an scaled version of this function, in which v, r and R are scaled by 1/h. Making the change of
variables ρ = r/h in the integral and considering ν = v/h, P = R/h we obtain that

Cirh(hν, hP) = −h2 log

(
1

P 2

∫ P

0

ρ
(
e−

1
2 (ρ−ν)2 + e−

1
2 (ρ+ν)2

)
Î0 (ρν) dρ

)
. (13)

Now, if we graph the function f(ρ, ν) ≜ ρ
(
e−

1
2 (ρ−ν)2 + e−

1
2 (ρ+ν)2

)
Î0 (ρν) on ρ for fixed values of ν (ν ≥ 0), we will

see that the maximum of f(ρ, ν) is approximatelly at r∗(ν) =
√
1 + ν2, and it is practically zero for r ≤ r∗(ν) − 3 and

r ≥ r∗(ν) + 3. Therefore, let F (ν, P) ≜ max(0, r∗(ν)− 3) and F (ν, P) ≜ min(P, r∗(ν) + 3)∫ R/h

0

f(ρ, ν)dρ ≈
∫ F (ν,P)

F (ν,P)

f(ρ, ν)dρ. (14)

We can integrate the integral at the right numerically using, for example, Gaussian quadrature. For that, let ρ = F (ν, P) +
F (ν,P)−F (ν,P)

2 (g + 1). Then the integral becomes:

4

∫ R/h

0

f(ρ, ν)dρ ≈
(
F − F

2

)∫ 1

−1

f

(
F +

(
F − F

2

)
(g + 1), ν

)
dg. (15)

and thus Gauss-Legendre quadrature can be applied. This integral only make sense if F (ν, P) ≥ F (ν, P). This holds if ν ≤ P ,
which, returning to the original variables, implies v ≤ R.

If v ≥ R, we will integrate in the whole interval from 0 to P = R/h in the Gauss Legendre quadrature rule. However, we
need to be carefult to avoid underflows.

Let gi ∈ [−1, 1] be the N points in the Gauss-Legendre quadrature, in an increasing order, with associated weights wi. Thus,
gN ≤ 1 is the greatest of the weights and the mapped point in the interval 0 to P = R/h is ρ̃ ≜ 0+ 0.5(R/h− 0)(gN +1) =
0.5(R/h)(gN + 1). Define the function

f̂(ρ, ν, ρ̃) ≜ e
1
2 (ρ̃−ν)2f(ρ, ν) = ρ

(
e−

1
2 (ρ−ν)2+ 1

2 (ρ̃−ν)2 + e−
1
2 (ρ+ν)2+ 1

2 (ρ̃−ν)2
)
Î0 (ρν) . (16)

Thus, for v ≥ R, we compute

Cirh(v,R) =
(v − hρ̃)2

2
− h2 log

(
h2

R2

∫ R/h

0

f̂(ρ, vh, ρ̃)dρ

)
(17)

in which the integral inside is approximated using Gauss-Legendre quadrature in the interval [0, R/h].
Note that we need to compute the values of the Bessel Function. If it is not readily available, we can use the excellent

approximation given by (see [2]):

I0(u) ≈
cosh(u)

(1 + 0.25u2)1/4
1 + 0.24273u2

1 + 0.43023u2
. (18)

And thus:

Î0(u) ≈
1

(1 + 0.25u2)1/4
1 + 0.24273u2

1 + 0.43023u2
. (19)

Here we provide the codes in C. Note that we use Gauss-Legendre quadrature of 7th order, which seems good enough, but
the code is easily modifiable if one wants to use higher-order quadratures.
#include <math.h>

#define PI 3.1415926;
#define SQRTHALFPI 1.2533141;
#define SQRT2 1.4142135;

double fun I0 hat (double u)
{

return pow(1+0.25*u*u,−0.25)*(1 + 0.24273*u*u)/(1 + 0.43023*u*u);
}

double fun f(double nu, double rho)
{

double A1 = exp(−0.5*(rho−nu)*(rho−nu));
double A2 = exp(−0.5*(rho+nu)*(rho+nu));
return rho*(A1+A2)*fun I0 hat(rho*nu);

}

double fun f hat (double nu, double rho , double rhobar)
{

double A1 = exp(−0.5*(rho−nu)*(rho−nu) + 0.5*(rhobar−nu)*(rhobar−nu));
double A2 = exp(−0.5*(rho+nu)*(rho+nu) + 0.5*(rhobar−nu)*(rhobar−nu));
return rho*(A1+A2)*fun I0 hat(rho*nu);

}

double max(double a, double b)
{

if (a >= b)
{

return a;
}
else
{

5

return b;
}

}

double min(double a, double b)
{

if (a >= b)
{

return b;
}
else
{

return a;
}

}

double Cir(double v, double h, double R)
{

// The function should be called only for v >= 0
v = abs(v) ;

// Change here the Gauss−Legendre quadrature
int N=7;
double node[N] = {−0.94910, −0.74153, −0.40584, 0, 0.40584, 0.74153, 0.94910};
double weight[N]= {0.12948,0.27970,0.38183,0.4179,0.38183,0.27970,0.12948};
// end

double F low,F up,delta , rhobar ,y;

if (v <= R)
{

F low = max(0,sqrt ((v/h)*(v/h)+1)−3);
F up = min(R/h, sqrt ((v/h)*(v/h)+1)+3);
delta = 0.5*(F up−F low);

y=0;
for (int i=0; i<N; i++)
{

y = y + weight[i]*fun f(v/h,F low + delta*(node[i]+1)) ;
}
y = delta *y;
return −h*h*log(y*(h/R)*(h/R));

}
else
{

F low = 0;
F up = R/h;
delta = 0.5*(F up−F low);
rhobar = F low + delta*(node[N−1]+1);

y=0;
for (int i=0; i<N; i++)
{

y = y + weight[i]* fun f hat (v/h,F low + delta*(node[i]+1) , rhobar) ;
}
y = delta *y;
return 0.5*(v−h*rhobar)*(v−h*rhobar)−h*h*log(y*(h/R)*(h/R));

}
}

II. FORMULAES FOR OBJECTS

A. Sphere

For a sphere of radius R centered at p = [0 0 0]T (see Figure 1), clearly DA
h (p) is radially symmetric, that is, DA

h (p)
depends only on ∥p∥. Then, without loss of generality, we can assume that p = [0 0 ∥p∥]T .

Using spherical coordinates, ax = r cos(ϕ) sin(θ), ay = r sin(ϕ) sin(θ) and az = r cos(θ), with dV = r2 sin(θ)rdθdrdϕ.
Now, since we have that ∥p− a∥2 = r2 − 2r∥p∥cos(θ) + ∥p∥2 we can conclude that

DA
h (p) = −h2 log

(
3

4πR3

∫ 2π

0

∫ R

0

∫ π

0

e−
r2−2r∥p∥cos(θ)+∥p∥2

2h2 r2 sin(θ)rdθdrdϕ

)
. (20)

This can be rewritten as:

6

z

x

y

R

(0,0,0)

Fig. 1. Sphere in the canonical pose.

DA
h (p) = −h2 log

(
3

4πR3

∫ 2π

0

∫ R

0

r2e−
r2+∥p∥2

2h2

(∫ π

0

e
r∥p∥cos(θ)

h2 sin(θ)dθ

)
drdϕ

)
. (21)

The inner integral can be easily computed with the change of variables v = r∥p∥ cos(θ)/h2, resulting in:

DA
h (p) = −h2 log

(
3h2

4πR3∥p∥

∫ 2π

0

∫ R

0

re−
r2+∥p∥2

2h2

(
er∥p∥/h

2

− e−r∥p∥/h2
)
drdϕ

)
. (22)

Using the fact that e−
r2+∥p∥2

2h2 er∥p∥/h
2

= e−
(r−∥p∥)2

2h2 , e−
r2+∥p∥2

2h2 e−r∥p∥/h2

= e−
(r+∥p∥)2

2h2 and the fact that the integrand does
not depend on ϕ, we can obtain

DA
h (p) = −h2 log

(
3h2

2R3∥p∥

∫ R

0

r

(
e−

(r−∥p∥)2

2h2 − e−
(r+∥p∥)2

2h2

)
dr

)
. (23)

Thus, if we define:

Sphh(v,R) ≜ −h2 log

(
3h2

2R3v

∫ R

0

r

(
e−

(r−v)2

2h2 − e−
(r+v)2

2h2

)
dr

)
(24)

then DA
h (p) = Sphh(∥p∥, R). Sph stands for Sphere.

Now, note that:

∫ R

0

re−
(r+v)2

2h2 dr =

∫ R

0

(r + v − v)e−
(r+v)2

2h2 dr =∫ R

0

(r + v)e−
(r+v)2

2h2 dr − v

∫ R

0

e−
(r+v)2

2h2 dr =

h2

(
e−

v2

2h2 − e−
(R+v)2

2h2

)
− v

√
π

2
h

(
Erf
(
R+ v√

2h

)
− Erf

(
v√
2h

))
.

Analogously:

∫ R

0

re−
(r−v)2

2h2 dr =

h2

(
e−

v2

2h2 − e−
(R−v)2

2h2

)
+ v

√
π

2
h

(
Erf
(
R− v√

2h

)
+ Erf

(
v√
2h

))
.

Then:

DA
h (p) = −h2 log

 3h2

2R3

h2

e−
(R+v)2

2h2 −e−
(R−v)2

2h2

v

+2Re−Inth(v,R)/h2

 . (25)

7

This formula provides no problems if v ≤ R if we use the approximation for Inth(v, L) shown in Subsection I-E. However,

for v ≥ R there can be numerical issues. In this case, we factor out e−
(R−v)2

2h2 to rewrite it as:

(v −R)2

2
− h2 log

(
3h2

2R3

(
h2

(
e−

2Rv
h2 −1

v

)
+2Re−Înth(v,R)/h2

))
(26)

in which Înth(v, L) ≜ Inth(v, L)− (v−L)2

2 . Note that, when v = 0, we need the limit

lim
v→0

e−
(R+v)2

2h2 −e−
(R−v)2

2h2

v

 = −2R

h2
e−

R2

2h2 . (27)

Here is the C code:
double Sph(double v, double h, double R)
{

// The function should be called only for v >= 0
v = abs(v) ;

double C = 3*(h*h)/(2*R*R*R);
double A1, A2;
if (v <= R)
{

if (v==0)
{

return −h*h*log(C*(−2*R*exp(−(R*R)/(2*h*h)) + 2*R*exp(−Int(0,h,R)/(h*h))));
}
else
{

A1 = exp(−((R+v)*(R+v)/(2*h*h)));
A2 = exp(−((R−v)*(R−v)/(2*h*h)));
return −h*h*log(C*(h*h*(A1−A2)/v + 2*R*exp(−Int(v,h,R)/(h*h))));

}
}
else
{

A1 = exp(−(2*R*v/(h*h)));
A2 = 1;
return 0.5*(v−R)*(v−R)−h*h*log(C*(h*h*(A1−A2)/v + 2*R*exp((0.5*(v−R)*(v−R)−Int(v,h,R))/(h*h))));

}
}

B. Box

For a box centered at p = [0 0 0]T with sides ℓx, ℓy and ℓz aligned with the x, y and z axis, respectively (see Figure 2),
we have that A = [− ℓx

2 ,
ℓx
2]× [− ℓy

2 ,
ℓy
2]× [− ℓz

2 ,
ℓz
2].

z

x

y
ℓ
y

ℓ
x

ℓ
z (0,0,0)

Fig. 2. Box in the canonical pose.

Thus, using the Cartesian product property (Subsection I-D) and the fact that for Ai = [−Li

2 , Li

2] and pi ∈ R, DAi

h (pi) =
Inth

(
pi, Li

2

)
, we have that

8

DA
h (p) = Inth

(
x,

ℓx
2

)
+ Inth

(
y,

ℓy
2

)
+ Inth

(
z,

ℓz
2

)
. (28)

We can use the approximation for Inth(v, L) shown in Subsection I-E.

C. Cylinder

For a cylinder centered at p = [0 0 0]T with radius R and height H (see Figure Figure 3), we use the fact that A =
C(R)× [−H/2, H/2], in which C(R) is a circle centered at the origin of R2 with radius R.

z

x

y

R

H (0,0,0)

Fig. 3. Cylinder in the canonical pose.

We first compute D
C(R)
h (pxy), in which pxy = [x y]T . We can exploit the fact that the distance function for C(R) is

radially symmetric in the variables pxy , that is, the distance depends only on
√
x2 + y2. Thus, without loss of generality,

we can assume pxy = [
√
x2 + y2 0]T . Plugging this into the integral definition for D

C(R)
h (pxy), using polar coordinates,

the definition of the modified Bessel function of the first kind of order 0 and the results in Subsection I-D, we can see that
D

C(R)
h (pxy) = Cirh(

√
x2 + y2, R).

Thus, using the Euclidean product property (Subsection I-D), we have that:

DA
h (p) = Cirh(

√
x2 + y2, R) + Inth

(
z,

H

2

)
. (29)

We can then use the approximation for Inth(v, L) and Cirh(v,R) shown in Subsections I-E and I-D, respectively.

REFERENCES

[1] C. Ren and A. R. MacKenzie, “Closed-form approximations to the error and complementary error functions and their applications in atmospheric
science,” Atmospheric Science Letters, vol. 8, no. 3, pp. 70–73, 2007. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/asl.154

[2] J. Olivares, P. Martin, and E. Valero, “A simple approximation for the modified bessel function of zero order i0(x),” vol. 1043, p. 012003, jun 2018.

