import cv2 import numpy as np import math cap = cv2.VideoCapture(0) while(cap.isOpened()): # read image ret, img = cap.read() # get hand data from the rectangle sub window on the screen cv2.rectangle(img, (300,300), (100,100), (0,255,0),0) crop_img = img[100:300, 100:300] # convert to grayscale grey = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY) # applying gaussian blur value = (35, 35) blurred = cv2.GaussianBlur(grey, value, 0) # thresholdin: Otsu's Binarization method _, thresh1 = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) # show thresholded image cv2.imshow('Thresholded', thresh1) # check OpenCV version to avoid unpacking error (version, _, _) = cv2.__version__.split('.') if version == '3': image, contours, hierarchy = cv2.findContours(thresh1.copy(), \ cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) elif version == '2': contours, hierarchy = cv2.findContours(thresh1.copy(),cv2.RETR_TREE, \ cv2.CHAIN_APPROX_NONE) # find contour with max area cnt = max(contours, key = lambda x: cv2.contourArea(x)) # create bounding rectangle around the contour (can skip below two lines) x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(crop_img, (x, y), (x+w, y+h), (0, 0, 255), 0) # finding convex hull hull = cv2.convexHull(cnt) # drawing contours drawing = np.zeros(crop_img.shape,np.uint8) cv2.drawContours(drawing, [cnt], 0, (0, 255, 0), 0) cv2.drawContours(drawing, [hull], 0,(0, 0, 255), 0) # finding convex hull hull = cv2.convexHull(cnt, returnPoints=False) # finding convexity defects defects = cv2.convexityDefects(cnt, hull) count_defects = 0 cv2.drawContours(thresh1, contours, -1, (0, 255, 0), 3) # applying Cosine Rule to find angle for all defects (between fingers) # with angle > 90 degrees and ignore defects for i in range(defects.shape[0]): s,e,f,d = defects[i,0] start = tuple(cnt[s][0]) end = tuple(cnt[e][0]) far = tuple(cnt[f][0]) # find length of all sides of triangle a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2) b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2) c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2) # apply cosine rule here angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 57 # ignore angles > 90 and highlight rest with red dots if angle <= 90: count_defects += 1 cv2.circle(crop_img, far, 1, [0,0,255], -1) #dist = cv2.pointPolygonTest(cnt,far,True) # draw a line from start to end i.e. the convex points (finger tips) # (can skip this part) cv2.line(crop_img,start, end, [0,255,0], 2) #cv2.circle(crop_img,far,5,[0,0,255],-1) # define actions required if count_defects == 1: cv2.putText(img,"I am Vipul", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, 2) elif count_defects == 2: str = "This is a basic hand gesture recognizer" cv2.putText(img, str, (5, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, 2) elif count_defects == 3: cv2.putText(img,"This is 4 :P", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, 2) elif count_defects == 4: cv2.putText(img,"Hi!!!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, 2) else: cv2.putText(img,"Hello World!!!", (50, 50),\ cv2.FONT_HERSHEY_SIMPLEX, 2, 2) # show appropriate images in windows cv2.imshow('Gesture', img) all_img = np.hstack((drawing, crop_img)) cv2.imshow('Contours', all_img) k = cv2.waitKey(10) if k == 27: break