
Caarvida: Visual Analytics for Test Drive Videos
Alexander Achberger

alexander.achberger@daimler.com
Mercedes-Benz AG
Stuttgart, Germany

René Cutura
rene.cutura@tuwien.ac.at
University of Vienna

Vienna, Austria

Oguzhan Türksoy
oguzhan.tuerksoy@daimler.com

Mercedes-Benz AG
Stuttgart, Germany

Michael Sedlmair
michael.sedlmair@visus.uni-stuttgart.de

University of Stuttgart
Stuttgart, Germany

Figure 1: The Training Data Acquisition Tool with a combobox area (A) to select the data that is plotted in the line chart (B). A
video image (C) that is selected from the line chart and bounding boxes of the detected objects from the object detection.

ABSTRACT
We report on an interdisciplinary visual analytics project wherein
automotive engineers analyze test drive videos. These videos are
annotated with navigation-specific augmented reality (AR) con-
tent, and the engineers need to identify issues and evaluate the
behavior of the underlying AR navigation system. With the increas-
ing amount of video data, traditional analysis approaches can no
longer be conducted in an acceptable timeframe. To address this
issue, we collaboratively developed Caarvida, a visual analytics tool
that helps engineers to accomplish their tasks faster and handle an
increased number of videos. Caarvida combines automatic video
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analysis with interactive and visual user interfaces. We conducted
two case studies which show that Caarvida successfully supports
domain experts and speeds up their task completion time.

CCS CONCEPTS
• Human-centered computing → Visualization systems and
tools; • Computing methodologies→ Graphics systems and in-
terfaces.
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1 INTRODUCTION
Visualization design studies are an essential part of visualization
research. Design studies are defined as projects in “which visual-
ization researchers analyze a specific real-world problem faced by
domain experts, design a visualization system that supports solving
this problem, validate the design, and reflect about lessons learned
in order to refine visualization design guidelines” [12]. In this work,
we contribute a design study in cooperation with automotive engi-
neers. The problem we want to solve is related to automotive video
data analysis. These videos are recorded by the front cameras of
cars and annotated with driving specific augmented reality con-
tent through an AR navigation system. One example is an arrow
that points into the street to which the driver has to turn into (Fig.
1). The task is identifying issues and analyzing behavior in the
augmented reality navigation system by analyzing the videos.

Video analysis is a very challenging task due to the high amount
of information tomemorize. In our case, the domain experts struggle
to analyze the amount of videos in an acceptable time. To date,
they have used ordinary video players to analyze their videos,
meaning they cannot concentrate on multiple videos at once and
must repeat tasks for multiple videos. Experts also spend too much
time determining if a video is relevant for their current analysis
and the time spent on analysis is proportional to the video duration.
An automatic solution is not possible, because the errors and the
behavior they analyze are ill-defined and subjective. Occasionally,
new types of errors occur that the system must know. It is difficult
to define errors, as they depend on the perception of the observer.
Additionally, it is possible that the graphics, textures, and behavior
of the AR navigation system will change during development. One
example of an actual error is that in some cases the maneuver arrow
object is too high above the street after driving uphill for a while.

We want to reduce the time experts have to spend on the afore-
mentioned matter, so they can handle the amount of video data.
After completing a task once, they should be able to quickly repeat
it in other videos.

To address these issues, we engaged in a six-month iterative
design process with three automotive engineers. The result is a
visual analytics tool named Caarvida. Its core idea is to accomplish
a given task for the first video manually with the support of inter-
active visual user interfaces, then complete it semi-automatically
for subsequent videos by defining the task relevant scene with the
used data.

We show how Caarvida speeds up the analysis for multiple
videos through a quantitative analysis. Afterwards, we present two
usage scenarios to demonstrate how Caarvida works. Through a
problem abstraction, we discuss how Caarvida can potentially be
transferred to other application areas such as sports analytics. Our
main contribution is a visualization design study on augmented
reality video analysis in the domain of automotive engineering,
including requirement analysis, design of Caarvida, its evaluation
in a quantitative analysis, and two usage scenarios.

2 RELATEDWORK
We review related work in visual analysis of video data and auto-
motive related data.

2.1 Visual Analysis of Video Data
As the volume of available video data has increased in recent
decades, so too has the interest in visual analysis. One important
area is video visualization aiming to summarize videos through vi-
sualization. Borgo et al. [1] provide a good overview of reviewmeth-
ods for abstract visual representations and summaries of videos,
in order to find important events and features in videos. Parry et
al. [8] use storyboards to summarize Snooker matches. They focus
on the challenges of event selection and event illustration. Event
visualization is also often applied to for traffic monitoring. Video
storyboards require a highly application-dependent event classi-
fication and many application specific semantics to be encoded
in a system. Such an event classification would not work in the
application specific semantics of the subject work because they
are too complex. Medioni et al.[6] present a system that analyzes
the behavior of moving objects from a video stream of an airborne
moving platform.

Another domain where visual analysis of video data is used is
in sports. Takahashi et al. [16] use a ‘video poster’ created from
the meta-data and keyframes of large sports videos in order to
summarize them. Stein et al. [4] present a visual analytics system
for analyzing rugby games. They extract the player’s trajectories
from the video and allow sketch-based queries of their trajecto-
ries. The results of the queries are extracted candidate fragments
based on their trajectories with multiple attributes, for example
curvature or tortuosity. These attributes are visualized in a parallel
coordinates plot. Stein et al. [14] present a visual analytics tool
that combines video with movement data of soccer games. The
tool visually highlights extracted events of the game to support
the analyst explaining the player’s behavior, for example highlight
players who show a reaction to a pass. Vu et al. [20] introduce
another visual analytics tool for soccer videos that helps analysts
to understand formation changes.

These tools analyze videos recorded by stationary cameras to
make it easier to extract information from the videos and compare
different scenes within them. The visual interactive interfaces used
in these approaches are highly application-dependent and would
not work here.

2.2 Visual Analysis of Car Related Data
Throughout the recent decades, the number of sensors and amount
of software in cars has increased. Consequently, the data collected
from cars has also grown rapidly. These automotive data are very
different and extensive. For example, there are sensor data, CAD
data, navigation data, flow data and communication data of running
systems. To visualize and gather insights into this amount of data
is challenging. Sedlmair et al. [11] introduce Cardiogram, a visual
analytics system that helps automotive engineers debug recorded
messages from in-car communication networks. These data often
consist of text files with approximately 50 million messages for
an one-hour test drive. Cardiogram uses a data pre-processing ap-
proach to automatically reduce complexity based on the domain
knowledge of the engineers. Tonnis et al. [17] present a system that
can visualize spatial sensor data and geometric models that high-
light recognized objects. Spretke et al. [15] focus on the analysis
of vehicles’ locations and road elevations data. They developed an
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approach that uses an interval-based Parallel Coordinates visualiza-
tion in order to find representative driving profiles. All these works
analyze different data with different tasks. Their analysis is highly
data and task dependent and would not work in our use case.

3 PROBLEM CHARACTERIZATION
In the following, we explain the knowledge we gathered from the
domain experts via interviews and observations. First, we present
experts’ tasks and how they are currently accomplished. We then
explain the data and how they are prepared. From our interviews,
we derive the design requirements that are necessary to achieve
the goals of the experts.

3.1 Understanding Task
The high-level task of the domain experts is enhancing the AR
navigation system and to ensure its quality. Therefore, they must
test the system in realistic environments. They obtain the video
from test drives by recording the display video that the driver sees,
as well as corresponding log data.

After receiving the data, the domain experts have two types of
tasks, (1) formative analysis tasks and (2) change analysis tasks. In
the following, we describe the tasks of these two types:

Formative Analysis:

• T-error Find Errors: The most important task is to find er-
rors in the AR navigation system that could confuse the user
or induce an incorrect navigation maneuver. An example is
an arrow for turning right being rendered too high above
the road.

• T-improv Identify Room for Improvement: This task is
defined by reviewing specific situations and deciding wether
they can improve the behavior of the AR navigation system
at that moment, for instance if the animation speed of the
arrow still appropriate when turning with a high speed.

Change Analysis:

• T-data New Data: It is important to check the impact of
new or changed data, such as the use of new sensor data, to
ensure the system uses this data correctly.

• T-softw New Software: Due to the fact that the AR naviga-
tion system is still in development, there are many changes
in the software that have to be inspected, such as a new
feature showing additional information.

3.2 Understanding Data
As described in the previous section, all data are collected while
driving. One part of the data is the video that shows the result of
the AR navigation system. These videos have a duration of 20 to
30 minutes in average with a maximum duration of 1 hour and a
minimum duration of 2 minutes. Currently, automotive engineers
receive approximately 10 videos per week, but they will receive
more videos from an automatic video recording system in the future.
The domain experts do not have access to the rendering process
while driving, so they only record the already rendered video that
is shown to the driver. They do not have the information regarding
where the renderer placed the objects of the AR navigation system.

Logging this information would cost too much performance and
influence the system’s output.

The other part is the log data. Those are a temporally ordered
list of all messages from all running systems, including the AR
navigation system. Log data can become extremely large due to the
duration of the test drive. For example, resulting data consists of the
position and orientation of the car, the position of navigation objects
from the AR navigation system, and text. The logged positions of
the navigation objects are latitude and longitude value where the
AR navigation system positions objects on the map. As mentioned
before, no render information of these objects is logged.

3.3 Design Requirements
We analyzed the current workflow and the domain experts’ prob-
lems via interviews and observations of their daily work over
several weeks. In their current workflow, domain experts analyze
videos successively to accomplish their tasks, and analyzing videos
simultaneously is impossible for them. They use ordinary media
players to watch the videos and jump via a video’s timeline in an
arbitrary manner to find the relevant scene. To analyze the videos
with log data information, they must switch between tools because
they do not have a tool that combines both data. We observed mul-
tiple problems with their current workflow. The domain experts
take too long to analyze videos because they analyze videos in
succession. Also, the longer the video, the more time they need.
After completing a task for one video, they repeat the same task for
the next videos. In most cases, they watch many irrelevant scenes
because they do not know where to find the relevant scenes. They
do not know which data from the log file belongs to which video
frame, so they analyze both data sources separately. Based on these
problems and the described tasks, we define the following design
requirements, which we split in two types: analysis requirements
and data preparation requirements:

Data Preparation Requirements:
• R-acqui Data Acquisition: It should be possible to find
objects and its image positions that are relevant for the tasks
in the videos. Inmost of the tasks, the experts need to observe
the behavior of an object, so it should be possible to find its
occurrence and position in the data.

• R-combi Combine Data: Caarvida should be able to com-
bine video data with the corresponding log data automati-
cally. So the domain experts know what data are needed to
accomplish their tasks.

• R-adapt Adaptivity: Our tool should still be applicable
when the data changs or there are new objects added to
the AR navigation system. This is essential, because the AR
navigation system is still in development. Therefore, it is
feasible that there will be new objects or that the data or
behavior may change.

Analysis Requirements:
• R-time Time Reduction: The amount of time the domain
experts spend analyzing multiple videos for one task should
be reduced. This is the most important requirement, because
the biggest problem is, repeating a task for multiple videos.
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• R-overvOverview:Domain experts should be able to quickly
gather an overview of the whole data. In many cases, do-
main experts must determine if the current video has scenes
relevant to the task or if it can be skipped. For example, if
they want to identify the maneuver object on a highway,
they can skip videos that do not contain highway scenes.

• R-repet Repetitive: Caarvida should allow the domain ex-
perts to quickly repeat tasks for subsequent videos. They
must perform one task for many videos, so it should be pos-
sible to quickly repeat the task after accomplishing it the
first time.

• R-task Task Depending Data: Domain experts should be
able to display only the data that are necessary for their
current task. In most of the described tasks, irrelevant parts
of the data increase the complexity.

4 CAARVIDA

Figure 2: The data preparation process that acquires addi-
tional information from the videos via object detection (A),
combines these data with the filtered log data and stores
them as high dimensional data (B), acquires new training
images for object detection improvement or new classes (C)
and labels the training images (D).

In the following, we introduce the results of our conducted de-
sign study, a visual analytics tool called Caarvida. Its core idea is
split in two steps: (1) gather and combine all data needed to find
task-relevant images, find these images, and accomplish the task
with them, and (2) create a query with the task relevant data in
order to find the images automatically next time. For example, if
the task is to check the position of maneuver objects while driving
a specific slope, first find the correct slope and number of maneuver
objects that define the scene which contains the task relevant im-
ages. Second, save them in a query to automatically find the images
in the next videos. Based on these two steps, we designed Caarvida
as two major software components: a Data Preparation Component
and a Data Analysis Component.

4.1 Data Preparation Component
In the Data Preparation Component, we developed multiple tools
and methods to efficiently generate the necessary data which is able
to define task depending scenes in the Data Analysis Component.

Its input are the log data and the videos, where additional data is
acquired. The entire process is illustrated in Fig. 2.

(A) Object Detection. To be able to define scenes that contain
the task dependent images, it is essential to find the important
objects in the videos (R-acqui). There are many approaches for this,
such as semantic segmentation, instance segmentation, or object
detection, Parekh et al. [7] give a overview. The first two annotate
each pixel to an object in an image, which is useful but also requires
training data annotated at pixel level. Therefore, we choose object
detection. We use Yolo [9] because of its performance (R-time) and
its high precision. We took the implementation from Trieu [18].
The training data are manually generated from the test drive videos
with the support of the Training Data Acquisition Tool and the Label
Tool. Fig. 1C shows an example of detected objects.

(B) Combining Data Method. To define a task dependent scene,
it is necessary to connect the images to their corresponding log
data (R-combi). Combining data is highly application dependent, so
we developed our own Data Combining Method that automatically
extracts the time of each image, matches the time stamps between
the images and the log data, and connects them accordingly. The
combined result are high dimensional feature vectors 𝐹 𝑗 where
𝑗 ∈ [1, ..., 𝑁 ] and 𝑁 is the amount of data and every feature of 𝐹 𝑗
is 𝑓𝑖 ∈ [0, 1] and 𝑖 ∈ [1, ..., 𝑀] where 𝑀 is the number of dimen-
sions/attributes of the data. Fig. 1A shows the list of all extracted
features.

(C) Training Data Acquisition Tool. It is a challenge to develop a
general analysis tool for accomplishing the domain experts’ tasks
because the AR navigation system is still under development. There-
fore, Caarvida has to be able to handle system changes and new
data to ensure it is still usable in the future (R-adapt). To solve this
issue, we developed a Training Data Acquisition Tool that allows the
experts to quickly find new training images, so they can find new
or changed objects with the object detection. For optimal accuracy,
we used original images from the test drive video as training data.
For fast training data search, we utilize the combined data. We inte-
grated a checkbox area, Fig. 1A, where the experts can plot all data
in an interactive line chart, Fig. 1B. The video data are the number
of detected objects for each image with the currently trained object
detection and with a confidence higher than a selected threshold 𝜙 .
These checkboxes are created from each dimension dynamically,
so Caarvida can handle changes in the log and video data (R-adapt).
To see the corresponding images, the user can click on a data point
in the line chart (Fig. 1B). Users can select the current image to
store it automatically in the Training Image Pool. This approach
helps domain experts quickly find training images. For example, if
they want to detect stop signs, they can find images with stop signs
faster if they focus on images where the speed of the car is zero.
The user can further change the threshold value 𝜙 to find training
data that contains detected objects with a low confidence.

(D) Label Tool. To support the domain experts in efficiently la-
beling training images for the object detection, we modified the
existing tool LabelImg [19]. We also enabled access to the Training
Image Pool, where domain experts can see which images are already
labeled. Additionally, we integrated an automatic labeling process
from the currently trained object detection method.
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Figure 3: TheDataAnalysis Componentwith the dimension reduction result of the combined log and video data and a heatmap
of a currently selected dimension (A). The data points are represented with miniature images of the video. The lines are
between two images, indicate they were recorded in succession. The green circles are clusters which allow the user to select
multiple images at once. (B) The interactive violin plot shows the distribution of each dimension of the data. (C) Top: The
query table which shows the minimum and maximum values of the current query. Bottom: The result of all stored queries
which show howmany images of the current videomeets the query requirements. The red portion of the bars show howmany
images have objects that are outlier depending on their position.

4.2 Data Analysis Component
In the Data Analysis Component, we developed an Interactive t-
SNE and Violin Plot to generate an overview if the video has the
necessary scenes to solve the task. The t-SNE Metric Manipulation
enables the experts to cluster the task dependent data. The Image
View supports the users to accomplish the task by analyzing mul-
tiple images simultaneously. Afterwards, the relevant data can be
stored in a Query to find the task dependent images in other videos
automatically.

Interactive t-SNE. To support the domain experts in determining
whether a video contains task relevant scenes (R-overv), we need
an approach that can visualize our high dimensional data. There
are many techniques available, such as scatterplot matrices, parallel
coordinates, or glyphs, each of those results in visual clutter with an
increase in dimensions. Therefore, a dimension reduction method,
like PCA, MDS, or t-SNE is appropriate. For our dimension reduc-
tion, we use t-SNE [5] because it considers the local structure of the
data, which is important for our tasks, because similar errors are
likely to be found in the local neighborhood of the data. We extend
the t-SNE result with additional information to gather knowledge

about temporal changes and the images. We split the video into
keyframes and run t-SNE only on the data of the keyframes. Each
data point is represented by a miniature image of its keyframe, Fig.
3A. Seeing these images allow the experts to recognize patterns or
outliers, such as image clusters where the AR navigation system is
turned off. We add lines connecting consecutively recorded images
to get temporal information, such as whether the AR navigation
system turned off at the end or the beginning of the video. To get
more details of the data and images of a cluster, we added a selection
technique that uses DBSCAN in the low dimensional space. We use
the low dimensional space for performance reasons, so experts can
select clusters interactively during t-SNE is optimizing.

Interactive Violin Plot. To get a deeper insight into the actual data,
we must see the values of the data, such as the mean / minimum /
maximum speed of the test drive or whether the car drove uphill.
To answer these questions, we need to inspect the distribution of
all data dimensions and the actual values. We therefore integrate
an interactive violin plot, Fig. 3B. This plot shows the dimensions’
distributions of the whole data as well as the selected cluster’s data.
Additionally, users can see the actual value of the distribution by
hovering over it, as shown in the tooltip (Fig. 3B). We also include
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Figure 4: The image view of a selection of images. On top is the average image of the selection and a heatmap of the detected
object. At the bottom are all detected object extracted in one list.

a heatmap in the t-SNE plot that appears after hovering over one
dimension in the violin plot and displays information from the
t-SNE plot, as shown in Fig. 3A. Here, the experts can see that the
cluster in the bottom right consists of data with the highest height.
This method is introduced by Stahnke et al. [13]. They focus on
methods helping users to understand dimension reduction results
better and faster. Another way to get information about the data of
the t-SNE plot is to use intervals in the violin plot. The user can set
an interval on one or multiple features. Afterwards, the data points
in the t-SNE plot with the corresponding feature values in that
interval, are drawn with a red border. Compared to the heatmap
from Stahnke et al. this method has the benefit of showing the
distribution of the data in the t-SNE plot with multiple dimensions
instead of one.

t-SNE Metric Manipulation. After gathering an overview of the
data, the experts must find the data that define the scene, that
contains the task relevant images. To do so, they will collect them
in one cluster. Data of t-SNE clusters are based on all dimension. If
two images have the same speed and number of maneuver objects
but all other dimension differ, it is likely that they are not in the
same cluster. But experts may want to see all images with the
same speed and number of maneuver objects, which would mean
searching multiple clusters for these images. To cluster the images
depending on the interest of the domain experts, we modify the
t-SNE similarity calculation metric to get a dimension reduction
result based on the weighted dimensions, without the influence of
unnecessary dimensions (R-task). To control the influence of each
dimension, we introduce a method:

We add a normalized weighting vector𝑊 that consists of sep-
arate weights 𝑤𝑖 where 𝑤𝑖 ≥ 0 and 𝑖 ∈ [1, ..., 𝑁 ] and 𝑁 is the
number of dimensions. Afterwards, we change the Euclidean dis-
tance 𝑑 (𝑥𝑖 , 𝑥 𝑗 ) from t-SNE to:

𝑑 ′(𝑥𝑖 , 𝑥 𝑗 ) = ∥𝑊 (𝑥𝑖 − 𝑥 𝑗 )∥2 (1)

With thismodification, the domain experts can cluster the images
based on the task. If one dimension is not important for the current
task, they can set its weight to zero. For example if they only care
about the dimension “speed” they can set the weight of “latitude”
to zero. If a dimension is necessary but other dimensions are more
important, they can set the weights depending on their importance.
With this approach, they can select a task relevant cluster, see its
data in the violin plot and its images in the Image View, and check
if this data includes the task relevant images.

Image View. T-error is about analyzing images and finding navi-
gation objects that could confuse the driver. To do so, experts need
to compare multiple images and identify possible differences be-
tween them. Within these images, they then need to understand
where an object of interest lies, whether it is in the correct position
in the context of the video, and whether it is readable. For example,
if the domain experts have to find an image with a maneuver object
too high above the street or they want to find navigation objects
with mutated vowels in their text.

We developed an image view with an average image and a
heatmap of the detected objects from a selection of images, Fig.
4. In the average image, the experts can recognize similar and dif-
ferent areas, such as street contours or multiple objects in the same
position. To focus on task dependent images (R-time), we enable
users to limit images to those with objects in which they are inter-
ested in by hovering and scrolling over the bounding boxes. Below
the average image, we show extracted objects of the image selec-
tion, so users can check the object’s readability. From the literature,
we identify multiple ways to visually supporte this. For instance,
we could do an image comparison like VAICo [3], but this does not
work for images that are recorded from a moving camera. Another
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idea would be to calculate “Eigenslides” via PCA [10] to identify
similar regions in images. But PCA would take too much time to
calculate for our images, so we adapted this idea for our purpose.

Querys. After the experts complete one task, they usually repeat
it with other videos. To handle this more efficiently, we enable
the user to create queries (R-time, R-repet). Here, the user stores
the data defining the scenes necessary for the task to find them
automatically the next time. Here, the experts use the relevant
data from the selected cluster containing the task-relevant images
checked in the Image View. For example, there are critical locations
in some cities with complex street structures. With queries, experts
can save the specific latitude and longitude of these locations to
find them automatically in other videos. To create a query, users
enter the data values they want to find in a table. They can enter
the data manually or via intervals in the violin plot.

5 ANALYSIS OF TIME SAVINGS
We evaluated Caarvida’s time reduction via a quantitative analysis
and conducted two usage scenarios to demonstrate how Caarvida
prepares data and defines a query to repeat a specific task automat-
ically.

5.1 Time Reduction
To evaluate the time savings that Caarvida provides, we conducted
a quantitative analysis inspired by GOMS [2], a classical evaluation
approach based on user modeling. The main idea behind GOMS
(simplified) is to break down higher-level goals into lower-level
operators, which allows a completion time to be reasonable esti-
mated. Adding up the times of the different operators needed gives
an estimate of the overall time needed to reach a certain goal. We
argue that in our case, this approach gives a good estimate of the
potential time savings. A future quantitative lab study might be
useful to further refine these results, as GOMS results are known
to be imprecise.

As a first step, we break the high-level goals down into lower-
level operations for both the baseline approach and our Caarvida
approach. Then, we accurately define how long each operator takes.
For the current practice, experts only have a common media player,
so their only operation is clicking on the timeline to skip to dif-
ferent parts in the video. How often they repeat this operation
depends on the task and video complexity. Because the amount
of operation repeats for complex tasks is too varied, we focus on
low-complexity tasks. Low task complexity means that the task
should be accomplished by just skimming over the videos to notice
only whether a navigation event occurs, not the details of it. To
estimate the required time, we skimmed over three different test
drive videos (total duration about 26 minutes and 40 seconds) with
different complexities and measured the time. We need 232s to
skim over all three videos. To switch to a new video, we estimate
5s.

To compare these values with Caarvida, we must perform a
similar task. Here, we are looking for a specific crossroad in the
same three videos at the same time. The time to accomplish the task
in Caarvida is depends on whether there is already a query for this
task or not. First, we assume there is a query, though we analyze
the time without a query later. To complete the task with Caarvida,

we perform three high level operations: (1) load data, requiring 30s,
depending on hardware performance, (2) click on the query result
and draw average image (15s), (3) use the Image View by scrolling
(30s), so in total we need 75s. Based on these estimations, the
domain experts would take about 232s using their current practice,
which is more than three times as long. The time reduction with
Caarvida would increase even more with an increased number of
videos to be analyzed.

5.2 Usage Scenario 1: Data Preparation
In this usage scenario, we demonstrate how Caarvida handles new
features and enables experts to efficiently find training data. We
focus on Task 4 and assume that the AR navigation system has a
new feature that uses traffic light information. It is important to
know where in the videos traffic lights appear in order to evaluate
the quality of the new feature. Experts can use the Training Data
Acquisition Tool to find images with traffic lights quickly. Here, they
plot the speed data in the line chart to see when the car is stationary
and analyze the corresponding images. It is likely that there are
traffic lights in images when the car is stationary, because it could
be waiting for a traffic light to change. Experts can then select these
images for the training data. Fig. 1 shows this example.

After they collect multiple training images, they have to label
them in the Label Tool. There they see which images are not labeled
and can easily select them. These images are already analyzed by
Yolo, so that the detected objects do not have to be labeled manually.
The domain experts only correct these labels if necessary. After
labeling the traffic lights, they can start to train Yolo. Afterwards,
the experts can test the training results with another video. If the
accuracy of traffic light detection is insufficient, they can find more
training images by applying a threshold value to find traffic lights
with a low confidence instead.

Figure 5: The t-SNE results of the usage scenario 2: (A) the
result after weighting the t-SNE metric weight “ARViewAc-
tivated” to high and the others to low and its heatmap for
the same attribute. (B) the result after “maneuver” weight
to high and the others to low and its heatmap. Here, we can
see that there are only images with 0,1,2 or 3 maneuver ob-
jects.
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5.3 Usage Scenario 2: Query Creation
In this usage scenario, we show how users can find task-relevant
images and create a query using the data that contains these im-
ages. Then, we calculate how much time is saved when this task
is repeated with subsequent videos. We focus on Task 1 (T-error)
where we want to find maneuver objects that are too high above
the street during uphill driving. We use a test drive video with a
duration of 7min and 37s.

To calculate how much time we need for this process, we use
the same approach as above. For the current practice, we have to
skim over the same video carefully to identify any errors. Here, we
need 120s to skim over the video and find the errors.

Using the workflow of Caarvida, we implement several different
operations. The first high level operation is to load data, which
takes 14s. We then delete data that obviously cannot include the
error. Our second high-level operation is to set the weight for
“ARViewActivated” to high in order to remove images where the
AR navigation view is turned off, Fig. 5A. This operation requires
a drag and drop gesture to apply the weight, waiting for t-SNE
optimization, hovering over the data where the AR view is turned
off (which can be recognized via the images), and clicking delete. In
total, we need 25s for this operation.We do the same for “maneuver”
to delete images without maneuver objects (25s), Fig. 5B. The third
high level operation is to set “speed” and “deltaHigh” to high, find
and click on the cluster with the images that could contain the
errors by using the violin plots intervals, and changing the cluster
parameters (45s). The final operation is to draw the average image
(2s). We then scroll over the bounding boxes to check the position
on the road and complete the task for this video (5s). Now, we
see that the cluster contains the task-relevant images, Fig. 4, and
create a query with the important data. We type in a name, draw
intervals in the violin plot over the distribution of the latest selected
cluster for the attributes “deltaHeight”, “speed”,“numManeuver” and
“ARViewActivated” and click on save (17s). In total it took 133s for
these steps.

Compared to the current practice, we see that it takes only a few
seconds more to complete the task and create a query. To repeat the
task for other videos, we only have to run the query and watch the
videos in the Image View, which is much faster than the baseline
practice, we showed in section 5.1.

6 CONCLUSION
In this design study, we developed a visual analytics tool called
Caarvida that supports automotive engineers in their test drive
video analysis workflow. The problem we adress in this study is
reducing the time spent analyzing multiple test drive videos with
navigation information annotations from an AR navigation system.
Caarvida helps the engineers gather additional data from the video
and handle data changes via an object detection method and a
Training Data Acquisition Tool. Furthermore, we include visual
interactive components such as interactive t-SNE projection and
violin plots to provide a quick overview of the data and allow
users to quickly find task-relevant images. We show that Caarvida
significantly reduces the time to accomplish a task when a task is
repeated for multiple videos.

Transfer-ability. Caarvida is also transferable to other data and
tasks, such as analyzing soccer game videos players movement
data. If we have players’ x and y and the balls’ position for each
frame, the violin plot would show their distribution. Additionally,
we could calculate the distance to the goals for each player and
show them in the violin plot too. With this information, analysts
could see if a teamwould play more offensively or defensively based
on various ball positions. They could also analyze the position of
a player while the opponents are attacking, in order to find errors
the players make. They could then save the interesting situations
in queries and find them in other videos automatically.

Limitations. Measuring a realistic and accurate accomplishing
time is challenging because it depends on many factors. Such as the
complexity of the tasks. There are some tasks where experts neet to
watch the video very carefully, like whether identifing the fading
of maneuver objects is appropriate (T-improv). But there are some
less complex tasks like checking the maneuver object’s position on
a specific complex crossroad (T-error). The accomplishing time also
depends on the amount and complexity of the videos. A complex
video consists of less waiting and fewer sequences where the AR
navigation system is turned off. Due to these factors and their
high variance of occurrence, it is challenging to evaluate a general
task-accomplishing time. Also, Caarvida is limited in that it does
not reduce the task-accomplishing time when it is used for short
videos separately (less than two minutes), unless queries are used.
Caarvida should rather be used for longer videos or repeated tasks.

Future Work. We plan to evaluate Caarvida in a longitudinal
study to gather further information regarding how we can improve
Caarvida and to learn about its value in other environments.
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