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ABSTRACT

The success of modern businesses relies on the quality of their sup-

porting application systems. Continuous application performance

management is mandatory to enable efficient problem detection,

diagnosis, and resolution during production. In today’s age of ubiq-

uitous computing, large fractions of users access application sys-

tems from mobile devices, such as phones and tablets. For detecting,

diagnosing, and resolving performance and availability problems,

an end-to-end view, i.e., traceability of requests starting on the

(mobile) clients’ devices, is becoming increasingly important. In

this paper, we propose an approach for end-to-end monitoring of

applications from the users’ mobile devices to the back end, and di-

agnosing root-causes of detected performance problems. We extend

our previous work on diagnosing performance anti-patterns from

execution traces by new metrics and rules. The evaluation of this

work shows that our approach successfully detects and diagnoses

performance anti-patterns in applications with iOS-based mobile

clients. While there are threats to validity to our experiment, our

research is a promising starting point for future work.

CCS CONCEPTS

• Software and its engineering → Software performance; •

General and reference → Measurement; • Human-centered

computing → Empirical studies in ubiquitous and mobile com-

puting;
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1 INTRODUCTION

In recent years, the number of users that use mobile devices has

been increasing and has surpassed the number of desktop users [5].

However, users are still sensitive to issues when using mobile de-

vices. A report by Google states that 61% of the users are unlikely

to return to a mobile web site or application if they had trouble ac-

cessing it [2]. Also, the conversion rates are still higher for desktop

users, but it is expected that conversion rates on mobile devices play

a more significant role in the future. For example, Amazon reported

that during 2015’s holiday season, more than 70% of shoppers used

Amazon’s application on mobile devices to place orders [7]. There-

fore, the success of businesses will heavily be influenced by the

success of the mobile applications that support these businesses.

The success and the acceptance of these applications will, in turn,

be heavily influenced by their performance.

In order to maintain service levels in enterprise application sys-

tems (EASs), the usual approach is to monitor them using applica-

tion performance monitoring (APM) tools [9]. Most of the currently

available APM tools support end-to-end monitoring [8]. Data col-

lection and analysis on the back end side, i.e., inside the data center,

is a well known research field and common practice with many

available tools and approaches [9]. However, very often, perfor-

mance problems experienced by users with mobile devices are not

caused by or visible inside the application back end. Examples in-

clude slow client-side rendering times due to the hardware and

software technology stack on the client device, the characteristics

and quality of the network connection (WiFi, cellular, etc.), the

current geolocation, etc. In case of desktop clients accessing EASs

via broadband networks, we can safely assume that the connection

quality is constant, and the slow response of the system, can be

attributed to bad software design decisions. In case of accessing

from mobile device, we are often faced with variable network speed

that depends on the network quality. The location of the device,

which is considered fixed for desktop clients, can also be a factor.

Therefore, additional metrics have to be included into root-cause

analysis.

In our previous work [10], we presented the diagnoseIT approach

for automated diagnosis of performance problems in enterprise

applications. The approach is based on the research of performance

anti-patterns [18]. It diagnoses anti-patterns, such as the N+1 anti-

pattern when accessing remote services or databases, by analyzing

execution traces [1] collected during operations.

In this paper, we extend our diagnoseIT approach to EASs that

have mobile applications as front end clients. We collect the data

both from the mobile application and the back end using agents for

the respective platforms. The collection process utilizes underlying

system APIs, and includes standard metrics known from EASs, such

as timing data and resource consumption, but also mobile-specific

https://doi.org/10.1145/3150928.3150939
https://doi.org/10.1145/3150928.3150939
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Figure 1: Proposed monitoring approach

metrics, such as geolocation and network information. Data from

both platforms is then combined and analyzed using diagnoseIT .
The proof-of-concept implementation presented in this paper

uses iOS-based mobile clients accessing a Java-based back end.

However, thanks to the use of the open and technology-agnostic

APIs and formats OpenTracing [20] and OPEN.xtrace [13] the

approach is independent of the technology platforms and APM

tools.

To summarize, the contribution of this paper is threefold:

– An approach for end-to-end monitoring of mobile applica-

tions based on the vendor-neutral OpenTracing and

OPEN.xtrace specifications. In comparison to existing APM

tools, we also monitor what is happening inside the mobile

application, not only its communication with the back-end.

– The diagnosis of performance problems in mobile applica-

tions using the diagnoseIT approach, extended to deal with

performance problems typical for mobile platforms.

– A proof-of-concept implementation and evaluation based on

an iOS/Java-based application system setting.

The remainder of this paper is organized as follows. Section 2

presents our approach, which is evaluated in Section 3. Relatedwork

is discussed in Section 4. In Section 5, we draw the conclusions

and outline future work. Supplementary material for this paper, is

available online.
1

2 APPROACH TO MOBILE-AWARE

PERFORMANCE MONITORING AND

ANALYSIS OF APPLICATION SYSTEMS

An overview of our approach is depicted in Figure 1. The data is col-

lected using monitoring agents for mobile and back end platforms,

respectively (Section 2.1). The implementation of both agents is

based on the OpenTracing standard [20]. These agents send the col-

lected data to the Trace Buffer, which merges the data from different

system tiers. This data is then converted into the OPEN.xtrace

format and analyzed using diagnoseIT (Section 2.2).

1
https://doi.org/10.5281/zenodo.1012746

2.1 Collecting the Data

Monitoring of mobile applications provides a challenge because

operating systems on mobile devices do not allow the modification

of applications once they are published. Therefore, monitoring ap-

proaches that are well known from EASs, such as instrumentation

or using external monitoring agents [9], cannot be implemented.

This is why commercial, out-of-the-box solutions usually provide

only a limited number of end-point metrics, e.g., number of re-

mote calls or call durations, which are usually extracted by the

monitoring data from HTTP communication.

In order to be able to collect the data from different platforms,

and to be able to correlate and merge it for the analysis, we use the

concept of spans from OpenTracing. Spans, delimited using pairs

of start- and end-points inserted into application code by develop-

ers, are abstract representations of certain code regions that will

be executed. They contain unique identifiers and timestamps, and

can be nested inside each other, allowing for hierarchical struc-

tures. An example of how spans can be inserted into the code is

shown in Listing 1. The resulting hierarchical structure is illustrated

in Figure 2.

Root span:
               Root Use Case

Remote call span:
            First Remote Call

Use case span:
             Nested Use Case

Use case span:
             Nested Use Case

Figure 2: An example of a span hierarchy

Developers create spans using agents, which are singleton, and

are responsible for their closing, in order to prevent an overlap

between spans. In our case, the top span is always designated as

the root, and it contains sub-spans, which can further be remote
call spans and use-case spans. It also contains a unique identifier—

trace identifier, which is passed to all the spans that are contained

in it. Remote call spans represent calls from one application node

(e.g., mobile device), to another (e.g., application back end), and

contain the data about the call, e.g., HTTP request, as well as the

trace identifier from the root span. In order to be able to trace

a client’s call from the mobile device to the back end, we inject

the span identification data into HTTP requests, as well as into

responses. More specifically, this data is added into the headers as

additional attributes. When an HTTP response arrives, based on

the identifier, the remote call span is closed by the agent. Use-case

spans represent a specific execution within the application, and

their creation triggers a data collection. The semantic of spans is

not predefined by standard. It is up to the developer who creates

them by inserting them into the source code to specify what they

represent. A span can cover anything from one simple operation to

a complex processing that includes several components.

The Trace Buffer (Figure 1) performs the merging of the data

from multiple nodes, in our case from the mobile device and the

application back end, based on the unique trace identifier from

the root span. This procedure within the Trace Buffer effectively
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Listing 1: Example Code for a simple root use case with

nested use case and remote call

1 // start the root use case
2 Agent.getInstance().startRootUsecase(name: "Root Use Case")
3 // ... (application logic)
4

5 // start the first sub use case
6 Agent.getInstance()
7 .startUsecase(name: "First Use Case",
8 root: "Root Use Case")
9 // ... (application logic)
10

11 // nest one use case
12 Agent.getInstance()
13 .startUsecase(name: "Nested Use Case",
14 root: "First Use Case")
15 // ... (application logic)
16

17 // close the nested use case
18 Agent.getInstance()
19 .closeUsecase(name: "Nested Use Case",
20 root: "First Use Case")
21 // ... (application logic)
22

23 // close the first sub use case
24 Agent.getInstance()
25 .closeUsecase(name: "First Use Case",
26 root: "Root Use Case")
27 // ... (application logic)
28

29 // start a remote call with timeout
30 Agent.getInstance()
31 .startRemoteCall(name: "First Remote Call",
32 root: "Root Use Case",
33 httpMethod: "GET", request: &rq)
34

35 // ... processing of the first remote call
36

37 // closing successfully completed remote call
38 Agent.getInstance()
39 .closeRemoteCall(name: "First Remote Call",
40 root: "Root Use Case",
41 responseCode: 200, timeout: true)
42 // ... (application logic)
43

44 // close the root use case
45 Agent.getInstance().closeRootUsecase(name: "Root Use Case")

removes the need to independently analyze and manually correlate

data from different platforms. When the Trace Buffer receives the

data and finishes merging, it converts it into the OPEN.xtrace rep-

resentation, so it can be analyzed by diagnoseIT. A simplified object

diagram based on the example in Figure 2 is shown in Figure 3.

As stated previously, the data is being collected during the ex-

ecution of use case spans. The metrics collected in the back end

of EASs are well known in literature [9]. Here we discuss metrics

that we consider in mobile applications. They can be grouped into

four categories. The list of metrics considered and collected by our

approach is provided in Table 1.

trace : TracesubTr1 : SubTrace

MethodInvocation
startRootUseCase :

MethodInvocation
startUseCase :

...

MethodInvocation
closeUseCase :

...

...

MethodInvocation
startUseCase :

MethodInvocation
closeUseCase :

...

MethodInvocation
startRemoteSpan :

subTr2 : SubTraceremote :
RemoteInvocation

getData :
MethodInvocation

...

MethodInvocation
closeUseCase :

...

Root use case

MethodInvocation
closeRemoteSpan :

...

Nested use case

Nested use case

entryMtd :
MethodInvocation

Remote call span

Figure 3: An object diagram of the trace in OPEN.xtrace

format, based on Figure 2

System-related metrics. These metrics are collected from the

operating system itself. Examples of these metrics are CPU, mem-

ory, and hard drive usage for the application. Some metrics from

this group, such as overall CPU usage of the system, which are usu-

ally available in enterprise systems and are valuable in root-cause

analysis, are not available in mobile systems.

Network-related metrics. These metrics are collected from the

network interface. They include the information about the network

provider and the network connection. Network provider informa-

tion can be interesting, for example, to compare detected problems

with problems reported by the provider.

Location data. These metrics are collected from the mobile de-

vice’s location services. This is useful to detect if some performance

problems are location-dependent.

The data from these three categories is collected using sampling

when the span is created. The frequency of sampling is configurable,

but this should be done with caution. A too low frequency may

lead to missing important data, while a too high frequency causes

unacceptable overhead.

Remote call data. is collected for remote call spans by inter-

cepting calls towards the application back end, and contains the

information extracted from HTTP requests.

2.2 Analyzing the Data

Our previous work on diagnoseIT successfully diagnoses perfor-

mance anti-patterns in EASs. This approach can be applied to the

back end applications, but our analysis of mobile systems shows

that some anti-patterns known from EASs can appear in mobile

applications.
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Metric Collected from

CPU usage System

Hard drive System

Memory System

Battery power System

WLAN active System

Network provider Network

Network connection Network

SSID Network

Geolocation Location data

Response code Remote call

Timeout Remote call

Table 1: Overview of considered mobile metrics

One example of these anti-patterns is the Blob anti-pattern [14],

a situation where one class contains most of the application’s logic,

while others serve only as data containers. In large systems, this

class represents a performance bottleneck, and it should be broken

down into several top-level classes. In this paper, we will not focus

on these anti-patterns, as their diagnosis was already discussed

in our previous work [10]. Instead, we focus on diagnosing five

anti-patterns known from EASs, but with slight modifications, and

two glitches—situations that appear as anti-patterns, but actually

are not.

In case of the Ramp anti-pattern [19], we differentiate between

the Memory Ramp and the Hard drive Ramp, i.e., increasing

memory and hard drive consumption over time, respectively. Both

anti-patterns can be diagnosed by observing memory and hard

drive consumption over time.High memory utilization refers to

the situation when the device slows down due to the fact that the

memory is full and the system stores more data on the hard drive.

This also influences the battery consumption. Similarly,High hard

drive utilization forces the system to try to freemore space by, e.g.,

deleting unused data, decreasing the performance and consuming

more battery. These two anti-patterns are diagnosed by setting a

threshold on the utilization.

Too many remote calls [23] from mobile device can have se-

rious performance impact and is usually solved by merging many

similar calls into one, to reduce the network overhead. There are

two special cases of this problem that we identified: many remote

calls to the same target (e.g., server, page) and many remote calls

to the same URL (e.g., the same picture is loaded multiple times

instead of loading it once and saving it). These anti-patterns are

diagnosed by analyzing the number of remote calls from a method

that is designated as slow.

There are also some situations that may appear as performance

problems, but are actually caused by temporary problems in the

device’s environment. We designate these as glitches rather than as

performance anti-patterns. If an application is contacting its back

end, a performance issue may be reported, but it can be caused by

the mobile network’s high latency. In order to properly diagnose

this issue, we need to check if the long response time was due to a

network delay. The solution to this problem is for the application to

check the connection speed before sending large amounts of data.

Listing 2: Excerpt of the rule that diagnoses a short timeout

1 rule "Short timeout"
2 ...
3 for(RemoteInvocation call:
4 trace.getRemoteInvocations())
5 if(call.isTimeoutFlag()
6 && call.getTargetSubTrace() != null) {
7 /* detected! */
8 }

Listing 3: Excerpt of the rule that diagnoses a memory ramp

1 rule "Memory Ramp"
2 ...
3 Map<Long, Long> ramValues = ...; // timestamp, value
4 for(Trace trace: traces.get(startTime, endTime))
5 for(Callable callable: trace.getCallables())
6 ramValues.add(getRamValues(callable));
7 if (calculateSlope(ramValues) > SLOPE_THRESHOLD) {
8 /* detected! */
9 }

Related to this issue is the situation when the application reports

a timeout, but the response arrives later (Too short timeout). In

this case, we check for the existence of the response. The solution

is to increase the application’s timeout settings, if the network

connection is slow.

To implement the diagnosis of these performance anti-patterns

and glitches, we implement an additional set of rules, and extend

diagnoseIT with them. As diagnoseIT is designed to be extensible,

no changes are needed, except for the rule set.

Here we present two examples of these rules, while the others

are available in the appendix of this paper. Too short timeout is

diagnosed by checking if the remote call from themobile application

side, which did not receive a response in timely manner, has an

existing target subtrace on the back end side (Listing 2). If the

subtrace exists, that means that the application back end processed

the request, but did not have enough time to send a response. If

no subtrace exists, that would mean that the processing of the

request failed and something else was the problem. An increase in

memory utilization is detected by collecting memory utilization

measurements from all the callables in traces from a certain time

interval, calculating the slope from them and comparing it to a

predefined threshold (Listing 3). For details on the OPEN.xtrace

concepts mentioned here see [13].

3 EVALUATION

The goal of the evaluation is to find out to what extent our approach

can diagnose performance problems in applications with mobile

clients and properly diagnose them. We evaluate our approach by

running different scenarios for anti-pattern and glitch diagnosis.

We also need to properly assess our approach by investigating what

are the correct parameters, e.g., thresholds, and data sampling rates.

To summarize, we want to answer the following research ques-

tions:
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(a) Trace analysis (b) Mobile-specific data

Figure 4: Analysis of traces collected with the iOS agent and mobile specific data in diagnoseIT

RQ1: Do the implemented rules correctly diagnose performance

anti-patterns and glitches in mobile systems?

RQ2: What are suitable values for the configuration parameters

of the rules?

The remainder of this section is organized as follows. Section 3.1

describes the experimental methodology, Section 3.2 reports the

experiment results and Section 3.3 discusses threats to validity.

3.1 Experimental Methodology

For this evaluation, we use a sample iOS application, which

allows clients to browse the data about books in a library. This data

is retrieved from the Java back end. The application is instrumented

with the iOS agent developed in this work, while the back end

is instrumented using the existing inspectIT Java agent [3]. The

application contains performance problems that can be turned on

and off from the application interface. APM data was collected and

sent to diagnoseIT , which was integrated into the inspectIT client

(Figure 4).

To test the diagnosis of the previously described anti-patterns

and glitches, we construct eleven scenarios detailed in Table 2.

Scenario 1 represents the application without a known perfor-

mance problem, Scenarios 2–5 represent performance problems

being present in the application, while Scenarios 6-11 represent the

problems in the communication between the application and the

back end.

In all the scenarios, we collect the data and run diagnoseIT to test

for anti-patterns/glitches, and compare the diagnosis results with

the expected results from the respective scenarios. It is important

to note that the thresholds, which were used in some scenarios, are

based on our experience from working with the application and

the back end.

3.2 Evaluation Results

In this section, the results of the different scenarios are presented.

We provide only an overview of results. Complete results, with the

experimental setup, are available in the supplementary material.

As it was expected, in Scenario 1, based on the data in Table 3, no

rule was triggered, and therefore no anti-patterns were discovered.

To test whether performance issues stemming from a nearly full

hard disk and high memory utilization in Scenarios 2 and 3 are

diagnosed, we used the threshold values of 97% and 90% respectively.

During the experiment, the measured hard disk utilization of 97.73%

was higher than the specified threshold of 97%, and memory usage

was 99.89% compared to the 90% threshold. In both cases, diagnoseIT
correctly identified the slow methods. However, in the next step,

high resource utilization is identified as the root-cause.

Based on the results for Scenario 4, shown in Table 4, increased

memory utilization was detected. An average increase of 0.01%

per second was higher than the specified threshold of 0.005% per

second. In this case, memory utilization was sampled five times per

second, during the execution of use case spans. This frequency pro-

vided enough data for the analysis, while keeping the monitoring

overhead low.

In Scenario 5, memory ramp and high hard disk utilization were

correctly diagnosed, based on the results shown in Table 5. The hard

drive utilization threshold was set to 97% and 97.78% was detected.

The threshold for the memory ramp was set to 0.001% per second,

and an increase of 0.003% per second was detected. Additionally,

due to increasing memory consumption, memory utilization also

exceeded the threshold of 97%, which was also diagnosed correctly.

The diagnosis of the short timeout in Scenario 6, was correctly

diagnosed by checking for the existence of the response in the back

end, which was not registered by the mobile application.

It took the server at least five seconds to respond, while we set

the timeout interval to four seconds.

In Scenario 7, the high latency was tested and diagnosed in a

similar way with the predefined latency threshold, with one differ-

ence: the timeout was long enough for the response to be accepted

by the mobile application.

In Scenario 8, the application performed too many (11) remote

calls to the same URL, which was correctly diagnosed by setting

the predefined number of calls as threshold to 4.

In Scenarios 9 and 10, both problems were diagnosed correctly

using the approaches described in the previous scenarios—Scenario

8 for many remote calls, and Scenarios 6 and 7 for timeout and high

latency, respectively.

In Scenario 11, a high number of remote calls was correctly

diagnosed, but because of the missing information from the back
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Nr. Scenario name Description

1 No performance problems Normal application execution when no performance problem

is activated.

2 Hard disk utilization too

high

The hard disk of the test device is filled with random data.

3 Memory utilization too

high

When the application starts, the available physical memory size

is computed, allocated, and initialized. After that, the application

continues executing.

4 Increase in memory usage Periodically, a certain amount of memory is allocated to simu-

late a memory leak, resulting in a memory ramp.

5 Combination of memory

and hard disk issues

Both high hard disk utilization and increase in the memory

utilization are simulated in a same way as in Scenarios 2 and 4,

respectively.

6 Remote call with a short

timeout

The mobile application performs a remote call with a specified

timeout to the tracked back end system. The back end provides

a response, but only after the timeout, so it is never registered

by the application.

7 Remote call with a high la-

tency

Similar to the previous scenario, but here we set the timeout to

be long enough.

8 Too many equal URL calls

to a tracked back end

Many remote calls to the same URL are conducted.

9 Many remote calls with a

short timeout setting

The timeout issue from Scenario 7 is combined with performing

too many remote calls from Scenario 6.

10 Many remote calls with a

high latency

The high latency issue from Scenario 8 is combined with per-

forming too many remote calls from Scenario 6.

11 Many remote calls to an un-

tracked back end with short

call timeout setting

The application performs many remote calls to the same URL,

but the back end is not monitored.

Table 2: Overview of considered evaluation scenarios

Timestamp

Battery

Power

CPU

Usage

Memory

Usage

Storage

Usage

16:46:45.374 100 % 0.00 % 72.64 % 95.08 %

16:46:50.374 100 % 0.00 % 72.73 % 95.08 %

16:46:55.374 100 % 0.00 % 72.57 % 95.08 %

16:47:00.374 100 % 0.05 % 72.76 % 95.08 %

16:47:05.374 100 % 0.00 % 72.60 % 95.08 %

16:47:10.374 100 % 0.00 % 72.40 % 95.08 %

16:47:15.374 100 % 0.00 % 72.62 % 95.08 %

16:47:20.374 100 % 0.00 % 72.48 % 95.08 %

16:47:25.374 100 % 0.00 % 72.69 % 95.08 %

16:47:30.374 100 % 0.00 % 72.53 % 95.08 %

Table 3: Measurement samples from Scenario 1

end, the actual cause of the problem (short timeout duration) was

not diagnosed.

We can conclude that the evaluation has shown that the newly

defined anti-patterns can be successfully diagnosed and that the

configuration values seemed suitable for anti-pattern diagnosis.

However, for future research the approach should be testedwith real

world data, e.g., using other applications, to ensure more validity

for the results (as discussed in Section 3.3).

Timestamp

Battery

Power

CPU

Usage

Memory

Usage

Storage

Usage

16:40:02.299 100 % 0.07 % 95.60 % 93.95 %

16:40:03.299 100 % 0.05 % 97.60 % 93.95 %

16:40:04.300 100 % 22.48 % 99.82 % 93.95 %

16:40:05.299 100 % 23.23 % 99.81 % 93.95 %

16:40:06.309 100 % 1.40 % 99.79 % 93.95 %

16:40:07.309 100 % 0.05 % 99.79 % 93.95 %

16:40:08.308 100 % 0.07 % 99.77 % 93.95 %

Table 4: Measurement samples from Scenario 4

Timestamp

Battery

Power

CPU

Usage

Memory

Usage

Storage

Usage

16:31:46.452 100 % 0.10 % 81.52 % 97.78 %

16:31:47.451 100 % 0.15 % 81.78 % 97.78 %

16:31:48.450 100 % 46.15 % 98.75 % 97.78 %

16:31:49.451 100 % 7.70 % 98.39 % 97.78 %

16:31:50.451 100 % 0.25 % 98.34 % 97.78 %

16:31:51.451 100 % 0.10 % 98.29 % 97.78 %

Table 5: Sample of measurements for Scenario 5
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3.3 Threats to Validity

In this section we discuss the shortcomings of our experiments.

External Validity: The results of the evaluation might not be gen-

eralizable because the tested scenarios may not consider all relevant

cases. Moreover, we used only one sample mobile application and

the respective Java back end.

Internal Validity: We did not test if the iOS agent is reliable, i.e.,

we cannot guarantee that the collected mobile measurements are

true. We can assume that the agent is reliable, since the collected

measurements were as we expected, and because we rely on the

underlying standard APIs.

Construct Validity:We injected problems to the demo application

so that the rules take effect. We were biased during the implementa-

tion of the application. We did not test the anti-patterns with other

mobile applications and cannot guarantee that the rules work for

them.

Conclusion Validity: In some experiment runs the rules were not

triggered, since the data from the back end, monitored by the Java

agent, did not arrive in the buffer when the diagnosis was triggered.

Therefore, diagnoseIT analyzed incomplete traces, which led to

false negative results. We cannot guarantee that the rules work

correctly for these experiment runs.

4 RELATEDWORK

An overview of APM tools by Haight and Da Silva [8] shows that

there are various commercial (e.g., Dynatrace, AppDynamics, CA

APM) and open-source (e.g., [3, 22]) APM tools available. According

to this analysis, some of them, e.g., Dynatrace, AppDynamics and,

New Relic support monitoring of mobile applications. However,

this is usually limited to monitoring communication of the mobile

application with the back end (the so called end-to-end monitoring)
and collecting some system metrics. To the best of our knowledge,

support for monitoring that will provide information of what is

going on inside of the mobile application’s components is not avail-

able, or is custom built by application developers [9]. Regarding the

analysis of monitoring results, anomaly detection and/or alerting

based on, e.g., baselines calculated from historical data or manually

defined thresholds, is available, while problem diagnosis is limited

to identifying the component that is designated “problematic,” not

the real root-cause.

In diagnoseIT [10], detection and semantification of performance

problems is based on research on performance anti-patterns [18].

There are works in this field that focus on architectural perfor-

mance problems [6, 21], but the general problem with model-based

approaches is that they are limited by the lack of information about

the real system. There are also approaches designed for the testing

phase, that are not suitable for production scenarios [4, 12]. In the

work by Wert et al. [23], the authors propose to systematically

perform load tests and search for anti-patterns based on symptoms

detected in their results. In our work, we use their classification of

anti-patterns based on symptoms. Parsons and Murphy [15] and

Peiris and Hill [16] propose approaches for anti-pattern diagnosis,

but both have certain limitations. The approach by Parsons and

Murphy is technology-specific, i.e., works only in Java EE environ-

ments, while the approach of Peiris and Hill diagnoses only the

existence of the One-lane Bridge anti-pattern, without providing

the root-cause.

Some newer (commercial) tools going into a direction to di-
agnoseIT have been announced [11, 17]. However, to the best of

our knowledge they do not provide any semantics to performance

problems, and their analysis strategies are not extensible.

5 CONCLUSION

In this paper we proposed an approach for monitoring of EASs that

use the applications on mobile devices as front end. We also pro-

vided a proof-of-concept implementation for a setup that includes

iOS applications using a Java back end. Based on the collected

data, we performed the root-cause analysis using our diagnoseIT
approach. For this, diagnoseIT was extended to be able to diagnose

performance problems that are typical for mobile applications.

Future work includes a further investigation of other perfor-

mance anti-patterns, particularly those whose detection requires

metrics more specific to mobile environment, e.g., location and

mobile network characteristics. We also plan to work on improv-

ing the current diagnosis rules, and evaluating the approach with

real-world applications. The implementation of this approach for

mobile devices using other operating systems is planned. Finally,

we would like to find other ways to implement data collection, as

the one presented here mixes application logic and monitoring,

which causes problems in code maintenance.

A RULES

Here we provide the (simplified) implementation of the rest of the

rules used in this paper.

A.1 Hard Drive Ramp

The Ramp in hard drive utilization is diagnosed in the same way as

memory ramp shown in Listing 3. The only difference is that we

collect hard drive utilization (getHddValues()) for each callable in

the trace.

A.2 High Memory/Hard Drive Utilization

High memory utilization is diagnosed by collecting memory uti-

lization values for callables and comparing them to the predefined

threshold.

Hard drive utilization is diagnosed in the same way. The differ-

ence is that we collect “hard drive values” for each callable in the

trace, and compare them to the HDD_THRESHOLD value.

Listing 4: Excerpt of the rule that detects a highmemory uti-

lization

1 rule "High memory utilization"
2 ...
3 Map<Long, Long> ramValues = ...; // timestamp, value
4 for(Trace trace: traces.get(startTime, endTime))
5 for(Callable callable: trace.getCallables())
6 if(getRamValues(callable)) > MEM_THRESHOLD) {
7 /* detected! */
8 }
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A.3 Too Many Remote Calls

Too many remote calls is diagnosed by counting the number of

remote calls in the trace and comparing the number to the threshold.

Listing 5: Excerpt of the rule that detects too many remote

calls

1 rule "Short timeout"
2 ...
3 int noOfCalls = trace.getRemoteInvocations().size();
4 if(noOfCalls > NO_OF_CALLS_THRESHOLD) {
5 /* detected! */
6 }

A.4 High Latency

High latency is diagnosed by measuring the duration of the call on

the client side and the duration of the processing on the server side.

The difference between these two values is then compared to the

predefined threshold.

Listing 6: Excerpt of the rule that detects high latency

1 rule "High latency"
2 ...
3 for(RemoteInvocation call: trace.getRemoteCalls())
4 long callDuration = calculateDuration(call);
5 long subTraceDuration =
6 calculateDuration(call.getTargetSubTrace());
7 if(callDuration - subTraceDuration > LATENCY_THRESHOLD) {
8 /* detected! */
9 }
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