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ABSTRACT

Our goal is to accurately model human class separation judgements
in color-coded scatterplots. Towards this goal, we propose a set
of 2002 visual separation measures, by systematically combining
17 neighborhood graphs and 14 class purity functions, with differ-
ent parameterizations. Using a Machine Learning framework, we
evaluate these measures based on how well they predict human sep-
aration judgements. We found that more than 58% of the 2002 new
measures outperform the best state-of-the-art Distance Consistency
(DSC) measure. Among the 2002, the best measure is the average
proportion of same-class neighbors among the 0.35-Observable
Neighbors of each point of the target class (short GONG 0.35 DIR
CPT), with a prediction accuracy of 92.9%, which is 11.7% better
than DSC. We also discuss alternative, well-performing measures
and give guidelines when to use which.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Theory and methods.

1 INTRODUCTION

In visual data analysis a human analyst visually inspects data to
identify interesting, yet previously unknown patterns. Given the
ever-growing complexity of modern data, however, directly visual-
izing all the data is usually not possible. It is therefore imperative
to support the data analyst in selecting the most relevant data ag-
gregations and graphical representations. The relevance in this case
is a matter of human choice and depends on how humans perceive
certain patterns in a given representation.

Visual quality measures aim to support this explorative process
by pre-selecting visually interesting projections (scatterplots) [21,
27], proposing interesting ways on how to sort axes in parallel co-
ordinates [11, 23], or by guiding the choice of synthetic dimension
reduction algorithms before visualizing the data [20]. While many
visual quality measures have been proposed [5], studies have shown
that these measures are still far from optimal, posing ample oppor-
tunities for further improvements [15, 19, 20, 24].

Here, we focus on the specific case of visual separation measures
in color-coded scatterplots of pre-classified data, which have gained
much attention [1, 15, 17, 19–21, 23, 24]. The idea behind visual
separation measures is illustrated in Figure 1. In such scatterplots,
a human observer has a clear notion of “separated” (a & b) or “not
separated” (c & d) classes [15, 20]. Mimicking this human notion
of separability is the goal of visual separation measures.

Our goal is to build better visual separation measures, that is,
measures that better resemble the human perception [1, 15, 19, 20].
Previous separation measures proposed certain ways of how this
visual separability might be expressed directly, for instance, based
on distance of points to class centroids, or on the entropy in grid
cells [21]. We use a different approach: first, we thoroughly ana-
lyze existing separation measures to characterize recurrent features
(Section 2). We then systematically generate a large set of 2002 new
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Figure 1: 2D projections of Wisconsin Cancer data [16] showing two
classes as red and blue dots. (a & b) show pairs of dimensions with
visibly good class separation and (c & d) with poor separation. Below
are the scores of two separation measures (GON, DSC), which are
between 100 for best separability, and 0 for worst separability.

separation measures by exploring and parameterizing these features
(Section 3). Finally, we evaluate and rank these measures following
a Machine Learning-based methodology from previous work [19]
(Section 4), which allows us to evaluate how well a measure pre-
dicts human judgements of visual class separation. In doing so,
we not only identified the most promising measures among our set
of 2002, but also showed our measures’ and approach’s superiority
over previous work. 1170 of our measures (58.4%) performed bet-
ter than the best state-of-the-art Distance Consistency (DSC) mea-
sure [21]. Furthermore, the best of our measures were better than
DSC by 9.7 points (11.7%) of prediction accuracy. This is a sub-
stantial improvement over current state-of-the-art measures.

In summary, our work makes the following contributions:
• a set of 2002 new visual separation measures;
• a quantitative evaluation of these measures, showing superi-

ority of our measures compared to the current state-of-the-art;
• discussion and guidelines on using alternative measures from

the set of 2002;
• a qualitative case study on Wisconsin Cancer data [16], illus-

trating the differences between the new best measure and the
best state-of-the-art one.

2 BACKGROUND

Not least with the venerable work by Wilkinson and Anand on
Scagnostics [27], visual quality measures have become a very ac-
tive area of visualization research. Bertini et al. [5] provides a good
overview over the breadth of research on visual quality measures
in general. Here, we focus on a specific type of measures, sepa-
ration measures, of which many have been defined in the Visual-
ization, Pattern Recognition and Machine Learning communities.
Some of these measures were intentionally designed with a specific
eye towards human perception (e.g., [17,21,23]). Others have been
developed with a sole focus on data (e.g., [6, 12, 13]); they could,
however, similarly be used for perceptual modeling (although, the
expectation is that they would perform inferior).

2.1 Common Features of Separation Measures
Taking a step back, the general idea behind all existing separation
measures is to evaluate how “pure” the neighborhoods of a scatter-
plot’s data points are. If neighborhoods include points from many
different classes (i.e., colors) they are intermixed, if only from one
class then they are pure.

While the general concept is the same, the actual measures differ
in terms of how the neighborhood around points is defined. We
differentiate between two types of neighborhoods:



• measures with hard-neighborhoods look at a specific subset
of the data points close to the one under focus;

• soft-neighborhoods are based on a weighting of all the data
points with respect to their distance to a focus point.

In addition, existing measures differ in terms of how they per-
form class-purity evaluation within these neighborhoods:

• some measures seek to predict the class of the focus point
based on its neighbors’ class: the more accurate this predic-
tion, the higher the class-purity;

• others evaluate the class-entropy in these neighborhoods: the
lower the entropy, the higher the class-purity;

• yet other measures compare the within-class and between-
class distances: the larger the between-class and the lower
the within-class distances, the higher the class-purity;

• finally, some measures compare the class density: the higher
one of the class’ density, the higher the class-purity.

The local class-purity values are then averaged over all possi-
ble focus points. A good separation is obtained when the averaged
class-purity is high, that is, when the local neighborhood class-
purity is high for a large set of focus points. All the measures have
been tentatively designed to be monotonic with the human percep-
tion of class separation, that is, the higher a measure’s value is, the
better the perceived class separation (or vice versa).

2.2 Existing Separation Measures

Based on this analysis, we can loosely classify existing measures
into 4 different families:

(i) Hard-neighborhood / class-prediction-based: The Distance
Consistency (DSC) measure [21] is the proportion of data points x
whose nearest class-center-of-mass belongs to the same class as x.
DSC has been found to be the best current state-of-the-art visual
separation measure, that is, the one that aligns best with human
judgments of class separation [19]. Two other measures follow a
similar approach. The Class Separation (CS) measure [17] is the
average proportion of the neighbors of each data point x which be-
long to the same class as x. The neighbors are given considering the
Extended Minimum Spanning Tree [17] of all the data points. The
Hypothesis Margin (HM) measure [14] is the average of the dif-
ferences between distances from each data point to its other-class
nearest-neighbor and to its same-class nearest-neighbor.

(ii) Hard-neighborhood / class-entropy-based: The Distribution
Consistency (DC) [21] looks at how points of different classes mix
in an Euclidean ball centered at a pixel z with radius ε (entropy).
The final score is the average of the entropy over all pixels. The
Histogram Density Measure (HDM) [23] is similar to DC but the
average is made over the cells of a square-grid partition of the image
space. The class entropy at each cell is computed over the data
points within the cell and its 8 adjacent cells in the grid.

(iii) Soft-neighborhood / within-between-class-distances-based:
The Average Between (ABTN) and Average Within (AWTN) [15]
measures evaluate the between-class separation and within-class
homogeneity based on average within-class and between-class dis-
tances, respectively. Their ratio (ABW) has been used as a measure
as well [19]. The Calinski-Harabasz (CAL) measure [6] quantifies
the concentration of the classes around their center-of-mass using
squared Euclidean distances. The Dunn’s index (DUNN) [12] is the
ratio of the minimum between-class distances over the maximum
within-class distance. The Gamma (GAM) measure [4] is defined
as follows: let ρ+ be the number of times that a pair of data points
that belong to the same class has distance smaller than two data
points assigned to different classes, and let ρ− be the opposite, then
the Gamma measure is the ratio (ρ+−ρ−)/(ρ++ρ−). The Lin-
ear Discriminant Analysis (LDA) [13] seeks to find the linear map-
ping which maximizes the average pairwise distance between class
center-of-mass while minimizing the average within-class pairwise
distance for all classes. The Silhouette (SIL) measure [18] quanti-

fies the separation as the difference between the average between-
class distances and the average within-class distances, normalized
by the maximum of these two quantities. Lastly, the Weighted Inter-
Intra (WII) measure [22] is the average between-class over average
within-class distances weighted by the respective size of the classes.

(iv) Soft-neighborhood / class-density-based: In the Class Den-
sity Measure (CDM) [23] the density of each class is estimated at
each image pixel z as the inverse distance of z to its Kth nearest
data point x of this class. The sum over the pixels of the absolute
differences between these class-density images gives the CDM.

3 NEW SEPARATION MEASURES

As discussed above, all existing measures model class separation
in a specific way. Here, we propose a fundamentally different ap-
proach, namely, taking a step back and systematical explore how
to instantiate the underlying features: (1) neighborhood definitions,
and (2) class-purity functions. In a second step, we then use a Ma-
chine Learning framework [19] to find which of these instantiations
perform best. In our exploration, we specifically focus on hard-
neighborhood approaches, such as the ones described in (i) and (ii).
Hard-neighborhood approaches provide a clear line between neigh-
borhood and purity evaluation, giving us separate features to vary.
Given this clear separation, we can leverage a large set of existing
neighborhood or class-purity definitions, as further detailed below.

3.1 Conceptual Overview
Figure 2 gives a global overview over our approach, and shows
the measures that we generated by systematically exploring—so far
untested—combinations of these features.

In the first step, we define neighborhoods by building different
proximity graphs. A proximity graph is a graph whose vertices are
the data points and edges connect them depending on their relative
positions in the data space. A proximity graph is by itself inde-
pendent of class labels, and can be directed or not. The Nearest-
Neighbor Graph (NNG) is, for instance, directed, and the ε-Ball
Graph (EBG) not. It might also need to be parameterized, such as
the K-Nearest Neighbor Graph (KNNG), or not, such as the Delau-
nay Graph (DG).

In the second step, we define two ways to consider the class-
purity evaluation within such a graph. For neighborhood-based
class-purity (Figure 2, top branch), we consider the neighbors of
each point as given by the graph, and apply to each of these neigh-
borhoods the class-purity function. Averaging the purity scores of
all points will provide the separation measure: the higher the class-
purity of each neighborhood, the higher their average, the higher
the class separation. This general idea is also used by the state-of-
the-art measures DC, HDM, CS, DSC and HM (i, ii). Our separa-
tion measures differ in the way the neighborhood is defined and the
class-purity is evaluated over each neighborhood. We also explore
additional aspects specific to this neighborhood-based class-purity
approach. Most importantly, we vary the set of focus points to be
used for computing a final separation score. While typically the fi-
nal separation measure is gained from averaging over all points, we
also propose to only iterate over the points of a certain target class.

In component-based class-purity (Figure 2, bottom branch), we
cut mixed-edges in order to find the largest sets of neighbors in
a given graph, for which the points are at the maximum purity. In
other words, we want to find the class-connected-components of the
graph [2, 28]. The larger such components or the smaller the num-
ber of mixed edges, the higher the class separation. This approach
has not been studied for separation measures in scatterplots.

We now provide technical details on the exact instantiations of
our features. We used 17 different neighborhood base-graphs (with
different parameterizations), and 14 class-purity features. In Sec-
tion 4, we will systematically evaluate these options and identify
which combinations constitute the best separation measures.
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Figure 2: Given a color-coded scatterplot, our global framework (Section 3.1) consists of two major steps. (1) We build a proximity graph of the
unlabeled data (Section 3.3). Overall, we explore 143 different graphs from 17 base graphs. Some graphs need to be parameterized (no. of
parameters we tested are shown in parentheses). Some graphs are directed, in which case we also look at their mutual (MUT) or symmetrical
variants (SYM). (2) We then compute 14 different class-purity functions (Section 3.4). 12 of them are neighborhood-based (top branch), and 2
component-based (bottom branch). For neighborhood-based evaluations, we further differentiate between considering all (A) or target only (T)
focus points, and between optimistic (O) and pessimistic (P) tie-breaking rules. This process leads to 2002 new separation measures.

3.2 Formal Notations
We consider color-coded scatterplots. A color-coded scatterplot
I (s) (scatterplot for short in the sequel) is the graphical point-
based representation in the discrete pixel space, of a labeled dataset
s = {(xi,ci)i=1,...,n|xi ∈ R,ci ∈ Cs} lying in a 2-dimensional real
data space R ⊂ R2. The graphical representation I (s) of the n
points xi in s is color-coded based on their respective class label
ci ∈ Cs where Cs = {0, . . . ,k−1} is a set of k classes.

Without loss of generality, we simplify the following discussion
to two-class problems Cs = {0,1}. Previous work has shown that
class separation can be judged for each class separately [19]. Multi-
class problems can then be simply broken down into k two-class
problems. We call ct = 1 the target class, that is, the one for which
we evaluate the separation from the others, and co = 0 the union
of all other classes. To avoid confusion, we call scatterplot both
the abstract dataset s and its graphical representation I (s) and we
distinguish them only when necessary.

3.3 Neighborhood Selection
There is a large literature that deals with defining neighborhoods
based on some underlying metric in the data space. These neigh-
borhoods build a basic component of many data analysis tasks. For
instance, neighborhoods are used to infer quantities unknown at
test points from quantities known at training points (e.g., interpo-
lation, classification), or to define geodesic distances or clusters in
the data [8, 25]. These neighborhoods usually come as proxim-
ity graphs [7, 26] Gs,g,θ which span the points x in a scatterplot s.
The existence of edges depends on some function g of the points
x ignoring their labels. Edges might be directed or undirected, and
might depend on some scale parameter θ , for instance, the max-
imum distance between a point and its neighbors or the number
of nearest neighbors. Any proximity graph Gs,g,θ determines for
each xi ∈ s a neighborhood Ni,θ ⊂ s\xi. In graphs with scale pa-
rameter θ , we consider parameterizations such that the monotonic
increase of the parameter generates a hierarchy of neighborhoods
where θ1 ≤ θ2 ⇔ Gs,g,θ1 ⊆ Gs,g,θ2 ⇔ ∀i,Ni,θ1 ⊆ Ni,θ2 . We will
note Gs,g,θ = Gs and Ni,θ = Ni for short in the sequel. We denote

ρi, j =‖xi−x j‖ the Euclidean distance between xi and x j.
We derive the neighborhood feature from one of the following

proximity graphs (all distances considered here are Euclidean and
all points refer to points in the scatterplot s). All these graphs have
been studied in [26] except the GONG [3] and the KNCG [9]. Their
formal algebraic characterization (g) is beyond the scope of this
paper and can be found in the above references. Figures 3(a)-(e)
show graphical illustrations of the proximity graphs that do not have
scale parameters; Figures 4(a)-(f) show the proximity graphs that
have scale parameters. Without loss of generality, we simplify the
presentation of graphs to points in general position, that is, no 4
points are concyclic, and no 3 points are aligned.

3.3.1 Base graphs without scale parameter

Fig. 3(a)—The Delaunay Graph (DG) [26] connects two points
p and q if their Voronoi cells are adjacent (thin red edges), that is,
if there exists a point in the plane that has both p and q as nearest
neighbors. In other words, circumscribing discs (grey discs) of any
edge triangle must be empty (except the vertices of the triangle).
Hence, the neighbors of a point tend to surround it.

Fig. 3(b)—The Gabriel Graph (GG) [26] connects the focus
point xi to another point q if the disc with diameter xiq (dotted
discs) contains no other point (grey discs); The Gabriel Graph is
a connected Delaunay subgraph (GG⊆DG) whose edges cross the
shared Voronoi boundary of their endpoints at the center of these
discs (small discs). The Gabriel Graph is equivalent to the 0.5-
Observable Neighbor Graph (GONG) and to the 0-skeleton graph
(CBSG), both discussed later in this section. Similar to DG, neigh-
bors of a point tend to surround it.

Fig. 3(c)—The Relative Neighbor Graph (RNG) [26] is a sub-
graph of the GG (RNG ⊆ GG) which connects two points p and q
if no other point s has a distance to p and q smaller than the dis-
tance between p and q. Conceptually, it is equivalent to say that the
intersection of two discs (regions with dotted edges) around a fo-
cus point xi and a neighbor point q with radius ρxi,q must be empty
(grey areas). Then, xi and q will be connected (light blue edge).
Again, neighbors of a point tend to surround it.
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Figure 3: Base-graphs without scale parameter— The points of the scatterplot s are represented as colored circles. The color is only meant to
visually differentiate the points from each other; in particular, color does not reflect any class membership. The light-blue point is the focus point
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Fig. 3(d)—The Euclidean Minimum Spanning Tree (MST)
[26] is a subgraph of the RNG (MST ⊆RNG) and is the unique con-
nected subgraph of the Delaunay graph forming a tree and whose
total edge length is minimum.

Fig. 3(e)—The Sphere-of-Influence Graph (SIG) [26] con-
nects two points p and q if the distance ρp,q is lower than the sum
of the distance to their own nearest neighbors. In other words, if
the circles centered at point p and q and passing through their re-
spective nearest neighbor (dotted circles) intersect, then p and q are
neighbors. Compared to the EBG (see below), the radius of the ball
is “automatically” adapted to the local density of the points.

3.3.2 Base graphs with scale parameter
Fig. 4(a)—The ε-Ball Graph (EBG) [26] connects points p and
q if their distance ρp,q ≤ ε (with ε > 0). Any point in the ε-ball
(dotted circles) centered at p is neighbor of p.

Fig. 4(b)—The K-Nearest Neighbor Graph (KNNG) [26] con-
nects each point to its K nearest neighbors (dotted circles passing
through the nearest neighbor of each point (K = 1 top) or the 2nd

nearest neighbor (K = 2 bottom)). It generates neighborhoods with
equal size ∀i, |Ni| = K and is similar to the EBG except that the
scale is adapted to the local density of the points. The KNNG for
K = 1 (NNG) is a subgraph of the MST (NNG⊆MST ) and is iden-
tical to the GONG for γ = 0 and to the KNCG for K = 1. The
KNNG is a directed graph, as shown in Figure 4(b).

Fig. 4(c)—The K-Nearest Center of Gravity Graph (KNCG)
[9] allows generating equal size neighborhoods as the KNNG but
with the goal to put each point the closest possible to the center
of gravity of its neighbors. Initially, it connects each point xi to
its nearest neighbor for K = 1. Then, iteratively at step K > 1, it
connects each point xi to the candidate among the N−K remain-

ing points, for which the center of gravity (small circles) of this
candidate (yellow-filled point) together with the K− 1 xi’s neigh-
bors (red-filled point) is the nearest to xi (dotted circles). Here the
KNCG is shown for K = 2 (top) and K = 3 (bottom). The KNCG
with K = 1 is identical to the NNG. The KNCG is a directed graph.

Fig. 4(d)—The Circle-based β -Skeleton Graph (CBSG) [26]
connects two points p and q if for any other point s the angle formed
by the lines joining s to p and q is lower than a threshold angle
π(1+β )/2. The parameter β lies in the range of ∈ [−1,1]: If −1,
CBSG is the empty graph; if 0, CBSG is identical to the Gabriel
graph; and if 1, then CBSG is the complete graph. Notice that we
use a parameterization reverse to the one given in [26], in order to
be consistent with the neighborhood hierarchy built on increasing
scale parameter values. In Fig. 4(d), the CBSG is shown for β < 0
(top) and β > 0 (bottom). The interpretation of the dotted circles
and grey area is the same as for the RNG illustration in Fig. 3(c).

Fig. 4(e)—The α-Shape (AS) graph [26] is a subgraph of DG
(AS ⊆ DG) which connects two points if they are neighbors in the
DG and their pairwise distance is not greater than 2/α (α > 0). In
other words, points are neighbors if they are Delaunay neighbors
and their (1/α)-balls (dotted circles) intersect. This allows to se-
lect close neighbors of a point (EBG property) which also tend to
surround it (DG property).

Fig. 4(f)—The γ-Observable Neighbor Graph (GONG) [3]
connects each point xi to a point p if the intermediary point (small
circle) pi = γ p+(1−γ)xi has p as its nearest neighbor among s\xi.
That is, pi belongs (small yellow-filled circles) to the Voronoi cell
(thin red lines) of p over the set s\xi, i.e. the ball centered at pi
passing through p (dotted circles) is empty (grey areas). Here, we
show the GONG for γ = 0.3 (top) and γ = 0.8 (bottom). It is iden-
tical to GG for γ = 0.5, a subgraph of GG for γ ≤ 0.5, and identical



Table 1: Scale parameter settings.
Measure # param. Parameters

EBG 7 ε ∈ {0.005,0.01,0.02,0.05,0.1,0.2,0.5} × ∆s with
∆s the maximum distance between the points in s

CBSG 9 β ∈ {−0.5,−0.4, . . . ,0.2,0.3}
AS 14 α = 1/(ζ ∗ ∆DG) with ζ ∈

{0.01,0.02, . . . ,0.05,0.1, . . . ,0.45,0.5} and ∆DG

the length of the longest edge in DG
KNNG 15 K ∈ {1,2, . . . ,15}
KNCG 15 K ∈ {1,2, . . . ,15}
GONG 6 γ ∈ {0.25,0.3,0.35, . . . ,0.45,0.5}

to NNG for γ = 0. GONG is a directed graph (not shown here).
As the graph directedness has an impact on the neighborhood

Ni of each point, for the 3 directed (DIR) base graphs G ∈
{GONG,KNNG,KNCG} we consider their mutual (MUT) variant
mut(G) deleting one-way edges, and their symmetrical (SYM) vari-
ant sym(G) making all one-way edges undirected (see Figure 2).

Thus, we consider 17 different proximity base graphs (MUT and
SYM included) plus their parametric variants leading to a total of
143 graphs in our experiments. The set of scale parameters that
we explore are shown in Table 1. All these scale parameters are
invariant to rescaling of the axes with constant aspect ratio.

3.4 Class-purity Evaluation
Based on these proximity graphs, we define several separation mea-
sures. We do that by applying different class-purity functions to a
given neighborhood Ni given by a specific proximity graph Gs. All
our measures are scaled linearly between 0 (no separation) and 100
(separation): the higher the measure, the higher the perceived sep-
aration is supposed to be.

As already indicated in Figure 2, we are pursuing two different
approaches of class-purity evaluation. On the one hand, we create
separation measures based on evaluating class-purity in the local
neighborhood of points. We call this approach neighborhood-based
class-purity; it is conceptually illustrated in Figure 5. On the other
hand, we create measures that evaluate how global neighborhood
graphs can be broken down into components (sub-graphs) made
only of points of one class. We call this approach component-based
class-purity evaluation, illustrated in Figure 6. After some further
notations, we will describe both approaches in more detail.

3.4.1 Formal notations
We note ci ∈ {0,1} the class of xi and s1 the subset of class-1 points
in s (points of the target class). The set of xi’s neighbors with class
ν ∈ {0,1} is denoted N ν

i , their proportion as pν
i = |N ν

i |/|Ni|
and the proportion including xi as qν

i = (|N ν
i |+δci,ν )/(|Ni|+1).

Here, δ is defined as δi, j = 1 if i = j and 0 otherwise (i.e., Kro-
necker’s delta). We call mC(G) the resulting separation measure
applying the class-purity evaluation C to the graph G.

3.4.2 Measures based on neighborhood-based class-purity
We first describe four separation measures that are based
on neighborhood-based class-purity: Class-Proportion, Class-
Entropy, Majority-Vote, and Weighted-Vote. All these measures are
defined as the average of local purity values over a set S of points
in the scatterplot s. This set of evaluated points can be either all
points (A), that is S = s, or only the points of the target class (T),
that is S = s1.

The Class Proportion (CP) measure computes the local propor-
tion of the same-class neighbors for each focus point xi in S. The
final score is the average over all these local proportion scores. The
local proportion is high in pure-class regions, close to 0.5 in mixed-
class regions and low if the focus point xi is a class-outlier (e.g.
a blue point in the middle of red points). Formally, it is defined
as: mCP(S,Gs) = ∑xi∈S pci

i /|S|. If Ni = /0, we set pci
i = 1. This

CP p1
i 1 0.75 0.5 0.25 0

CE q0
i 0 0.2 0.4 0.6 0.8

q1
i 1 0.8 0.6 0.4 0.2

hi 0 0.72 0.97 0.97 0.72
MV zi 1 1 b 0 0
WV zi 1 b 1 0 0

Figure 5: Illustration of the neighborhood-based class-purity evalu-
ation. The focus point xi has label 1 (blue color). The class 0 is
color-coded in red. The weights wi j ∈ [0,1] are indicated near the xi’s
neighbors. For MV and WV, the tie-breaking rule can be either opti-
mistic b = 1 (O) or pessimistic b = 0 (P). The left case corresponds to
pure-class, the right case to class-outlier, and the intermediary cases
to mixed-class situations.

class-purity function is used in the existing CS [17] and DSC [21]
measures.

The Class Entropy (CE) measure averages the local class en-
tropy hi =−q0

i log2 q0
i −q1

i log2 q1
i over all the points in S, depend-

ing on the size of the local neighborhood ni = |Ni|+ 1. log2 ac-
counts for the binary-class setting so the local entropy equals 1 for
identical proportions of both classes, and 0 for pure-class situations.
It is defined as: mCE(S,Gs) = ∑xi∈S nihi/∑xi∈S ni, and has been
used in DC [21] and HDM [23].

The Majority-Vote (MV) measure predicts the label of xi based
on the majority label of its neighbors and average the resulting
votes over S. If the prediction is correct (vote = 1) then the lo-
cal purity is high and if the prediction is false (vote = 0) xi is a
class-outlier possibly catching the attention of the user as a marker
of non-separation. Compared to Class Proportion (CP), the vote
puts emphasis on pure-class regions (vote = 1) and class-outliers
(vote = 0). Mixed-class regions are either classified as pure-class if
pci

i > p1−ci
i or as a class-outlier otherwise. The measure is defined

as: mMV (S,Gs) =∑xi∈S δci,zi/|S|where zi = 1 if p1
i > p0

i and zi = 0
if p1

i < p0
i . If p1

i = p0
i then we set either zi = ci as an Optimistic

(O) tie-breaking rule, or zi = 1− ci as a Pessimistic (P) one. In any
case if Ni = /0, then we set zi = ci.

The Weighted-Vote (WV) measure is similar to the Majority-
Vote except it accounts for the relative distance to xi of its neigh-
bors. The closer the neighbors to xi the higher their weight in the

vote: ∀x j ∈ Ni,wi, j =
maxk∈Ni (ρi,k)−ρi, j

maxk∈Ni (ρi,k)−mink∈Ni (ρi,k)
is the normalized

Euclidean similarity of xi to its neighbor x j. wi, j equals 1 for x j the
nearest of the xi’s neighbors Ni and 0 for the farthest. If Ni = {x j},
wi, j is set to 1. We define the total weight of the neighbors of class
ν ∈ {0,1} as W ν

i = ∑ j∈N ν
i

wi, j. The Weighted-Vote measure is
then defined over the points in S as: mWV (S,Gs) = ∑xi∈S δci,zi/|S|
where zi = 1 if W 1

i > W 0
i and zi = 0 if W 1

i < W 0
i . The same op-

timistic and pessimistic tie-breaking rules as for the Majority-Vote
apply here in case of W 1

i =W 0
i . If Ni = /0, we set zi = ci. Both MV

and WV have never been used before in separation measures.
Overall, we thus define 12 neighborhood-based separation mea-

sures. In addition to the different class-purity functions (MV, WV,
CP, CE), the measures depend on the optimistic (O) or pessimistic
(P) tie-breaking rule for vote-based measures (MV, WV), and the
set of points, all (A) or target class (T), over which the local purity
value is averaged (for all four). Hence, we have:

• mCPA, mCPT based on Class Proportion
• mCEA, mCET based on Class Entropy
• mMVOA, mMV PA, mMVOT , mMV PT based on Majority-Vote
• mWVOA, mWV PA, mWVOT , mWV PT based on Weighted-Vote

Figure 5 illustrates these measures using a simple example.
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(b) Mixed-Class-Edges-Cut (MCEC)

Figure 6: Illustration of the component-based class-purity evaluation
and associated measures LTCC (top) and MCEC (bottom). LTCC:
The proportion of points contained in the largest connected compo-
nent of the target class (here red) is used as a separation measure:
the greater the class separation, the lower the number of connected
components and the greater their size. MCEC: the number of mixed
edges (magenta) in the original labeled graph is compared to the
distribution of the number of mixed edges in the same graph with
randomly permuted labels. The proportion of random counts greater
than the original count serves as a separation measure: the lower
the number of mixed edges, the greater the class separation.

3.4.3 Measures based on component-based class-purity

We also consider two additional separation measures LTCC and
MCEC based on component-based class-purity.

The Largest-Target-Class-Component (LTCC) measure is il-
lustrated in Figure 6(a). LTCC is based on the graph G∗s which
is the graph Gs for which we delete the edges connecting points
with different classes. We compute its class-connected components
CCG∗ = {CC1, . . . ,CCκ} as proposed in [2]. Here, we use this con-
cept to define a separation measure as the proportion of points in
the largest connected component of the target class, to all points of
the target class: mLTCC(s,Gs) = maxi(|CCi∩ s1|)/|s1|.

Lastly, the Mixed-Class-Edges-Cut (MCEC) is illustrated in
Figure 6(b). The MCEC measure is based on the edge-cut statis-
tic which is a measure of class learnability proposed by Zighed
et al. [28]. It has been used to distinguish well-separated classes
and well-structured chessboard-like class patterns from randomly
mixed classes. The measure counts the reference number nG of
mixed-class edges (edges whose end points are of different class) of
the proximity graph Gs. Then, it compares this number to its dis-
tribution over a set Grand of m identical graphs Gs with randomly
permuted labels of their vertices: Grand

1 . . .Grand
m (Note the number

of points of each class remains the same, only the class assignment
is changed at random). If nG is small compared to the distribution
values, that means the classes are clustered in a small number of
large class-connected-components indicating high separation. Al-
ternatively, nG should be close to the average of the distribution if
the classes are spatially intermixed in the scatterplot. Hence, we de-
fine the MCEC measure as the proportion of label-permuted graphs
Grand for which the number of mixed-class edges is greater than
the reference number nG. The greater the measure, the greater the
separation: mMCEC(s,Gs) = |{i ∈ {1, . . . ,m}|nGrand

i
> nG}|/m.

Finally, we end up with a set of 2002 separation measures based
on the combination of the 14 distinct class-purity functions applied

to each one of the 17 proximity graphs and their parametric variants
(143 in total).

4 EVALUATION

We now evaluate these measures with four goals in mind: (1)
among the 2002, we are interested to identify which of these mea-
sures perform best; (2) we are similarly interested in how the newly
proposed measures compare to the best current state-of-the-art DSC
measure; (3) we want to more closely analyze the impact of the
17× 14 different features on the performance of a measure; (4) fi-
nally, we want to qualitatively evaluate the performance on a real-
istic example.

Towards these goals, we performed two evaluations. First, we
conducted a large-scale quantitative experiment using a Machine
Learning framework for evaluating visual quality measures that we
previously proposed [19]. This framework provides a way to quan-
tify how well a measure predicts human judgments assigned be-
forehand to a large set of data (goals 1–3). We then illustrate the
performance of the best new and old measures with a case study on
the UCI Wisconsin Breast cancer data [16] (goal 4).

4.1 Quantitative Experiment
After a brief justification and explanation of our methodological
choice, we present different results of our experiment.

4.1.1 Methods
To quantitatively evaluate the separation measures, we use an eval-
uation framework that we recently proposed [19]. We use this eval-
uation framework for two main reasons: First, traditional methods
such as user studies [24], and manual data studies [20] simply do
not scale to the sheer number of measures we are interested to test.
A more algorithmic approach, as given by this framework, is there-
fore mandatory. Second, our goal is to evaluate measures as com-
pared to human judgments. The framework we use is grounded in
a large set of reliable human judgements and has been thoroughly
evaluated, making it the currently best choice for evaluation.

The evaluation framework works as follows: The best separa-
tion measure m∗ is determined by evaluating how well measures
predict human judgments on yet unseen scatterplots. The prediction
accuracy is expressed as the Area Under the Receiver Operat-
ing Characteristic Curve Bootstrapped Average (AUCBA) [19],
which gives a way to quantitatively compare measures among each
other. An AUCBA of 50% or less means that a measure is not
doing better than random guessing, while 100% indicates perfect
alignment of a measure with human judgements. In other words,
the higher the AUCBA, the better the measure. For our evalu-
ation, we use 768 of the 828 datasets used in [19] containing two-
class scatterplots (we had to excluded some that did not work for all
measures). All data are publicly available1. These data have been
carefully cleaned by removing points occluded to human viewers,
as well as uncertain human class judgments, and hence can be seen
as the most reliable source that is currently available. We use 10000
bootstrap samples to compute the AUCBA score for each measure
(bootstrapping allows to generalize to yet unseen datasets). A de-
tailed explanation and justification of the framework is beyond the
scope of the paper, but can be found in [19].

4.1.2 Comparison of measures
Figure 7 shows the distribution of the AUCBA scores obtained for
the 2002 new separation measures and the best state-of-the-art one,
DSC [21]. Overall 1170 (58.4%) of our new measures outper-
formed DSC, showing the relevance of our global approach.

Figure 8 shows the AUC bootstrap distributions of the best mea-
sures given a specific neighborhood or class-purity feature. It shows

1http://sepme.cs.univie.ac.at/



Figure 7: Distribution of AUCBA scores of the 2002 new separation
measures and the best state-of-the-art DSC (red line). The closer the
AUCBA is to 1, the better the measure; 0.5 equals a random guess.
58.4% of the new measures outperformed DSC.

Figure 8: Box plot of the best new measures given a specific base
graph (11 × bold blue font) and class-purity features (14 × bold black
font), sorted by AUCBA. Along with the AUCBA (magenta line in the
center of the box), the bootstrapping variance is shown using the de-
fault boxplot Matlab function which displays the interquartile range
(box), 1.5 times the interquartile range above and below the box
(whiskers) covering 99.3% of the data if they are normally distributed,
and outliers (red dots). This distribution shows the expected perfor-
mance on unseen data. The best state-of-the-art measure, DSC, is
shown in magenta.

that the best measure in terms of AUCBA is the GONG 0.35 DIR
CPT, that is, the average Class-Proportion of the 0.35-Observable
Neighbors of each point in the Target class. GONG 0.35 DIR CPT
has a 92.9% AUCBA score, which is 9.7 points (11.7%) better
than the best state-of-the-art measure, DSC, whose AUCBA equals
83.2%. The remarkable difference between the two bootstrapped
AUC distributions underlines the superiority of GONG 0.35 DIR
CPT over the state-of-the-art DSC. Similarly good performance is
obtained with other combinations of features like the surprisingly
simple average Class-Proportion of the 2-Nearest-Neighbors of
each point in the Target class (KNNG 2 DIR CPT). This measure
could be used as an alternative to lower the computation complex-
ity: O(Kn log(n)) for KNNG instead of O(n2 log(n)) for GONG.

4.1.3 Effects of features

We evaluate the effect of the different features combined in the sep-
aration measures. For each measure based on a specific feature we
summarize the distribution of its AUCBA scores across all possi-
ble combinations of other independent features and compare their
medians based on 95% confidence intervals.

We consider the 11 base graphs (EBG, KNNG, KNCG, CBSG,
AS, GONG, MST, RNG, GG, DG, SIG) and the 14 class-purity
functions (CPx,CEx,MVxy,WVxy,LTCC,MCEC) as main features.

Figure 9: Comparison of the AUCBA distributions (boxplot) across all
features for a given fixed one. 95% confidence intervals are shown in
pink. Groups of features are separated based on black/blue colors.
Features are ranked based on the median value of the AUCBA distri-
bution for each group separately. The features involved in the overall
best measure GONG 0.35 DIR CPT are shown in bold font.

As secondary features, we took directedness (DIR,SYM,MUT)
for directed neighborhood graphs, and class-focus (A,T) and tie-
breaking rules (O,P) for class-purity functions where applicable.
We did not consider the scale parameters of the neighborhood
graphs as a feature, but simply took the best performing across all
possible scale parameter values.

Results for these different groups of features are shown in Fig-
ure 9. Two groups are significantly different at a ∼1% significance
level if their confidence intervals do not overlap [10] (pink bars in
Figure 9). Hence, our significance interpretation in the following is
more conservative than the common 5% level.

The RNG is the neighborhood with the highest AUCBA me-
dian. RNG, KNCG, KNNG, GONG and CBSG have a similar small
spread and have all a significantly higher median of the AUCBA
score than SIG and EBG. The RNG having the lowest spread could
be used as a conservative option to replace the GONG.

The AUCBA median of the CPT purity function is significantly
better than all others except MVPT, MVOT and CET, but it has
a lower spread than these. Averaging over the target class (T) is
significantly better than over all classes (A). There is neither a sig-
nificant difference between directed (DIR) graphs and their variants
(SYM, MUT), nor between Pessimistic (P) and Optimistic (O) tie-
breaking rules.

4.1.4 Summary

Our results indicate that the human judgment of class separation in
scatterplots seems to be based on averaging over local neighbor-
hoods (RNG, KNCG, KNNG, GONG and CSBG with small scale
parameter as seen in the Figure 8), and Class Proportion (CP) or
Majority Vote (MV) class-purity functions, focused on the target
class only (T). Global statistics (MCEC) or possibly distant neigh-
bors (fixed scale DG, GG, MST, SIG or non-density-adaptive AS
and EBG) did not perform as well. These findings can help to study
the human visual perception of class separation, and to further im-
prove separation measures.

4.2 Case Study
To qualitatively illustrate our findings, we compare the best new
separation measure GONG 0.35 DIR CPT (short GON) and the best
state-of-the-art measure DSC [21] on scatterplots generated from
the UCI Wisconsin Breast Cancer data [16]. This dataset includes
569 instances of normal (357) and tumor (212) cell images, char-
acterized by 30 dimensions. Among the resulting 435 scatterplots



(a) (GON, DSC)

(b) (40, 64)

(c) (79, 64)

(d) (19, 3))

(e) (19, 37)

Figure 10: (a) GON and DSC scores for all pairs of Wisconsin Cancer
data scatterplots. Scatterplots with DSC fixed and low (b) and high
(c) GON values (magenta circles in (a)). Scatterplots with GON fixed
and low (d) and high (e) DSC values (black circles in (a)).

(axis-aligned projections), the goal is to identify those that visually
separate the two classes.

We linearly scaled all dimensions between 0 and 1, and com-
puted the DSC and GON scores for each of these scatterplots. We
then also linearly scaled these scores between 0 and 100. Figure
1 shows the best and the worst scatterplots with respect to both
measures. While there is no strong qualitative difference, we note
that the scatterplots are not ranked in the same order. Figure 10(a)
shows all pairs of (GON, DSC) scores from all 435 scatterplots. The
distribution resides nearby the diagonal and shows, as expected, a
strong correlation between DSC and GON scores. We pick the two
pairs of scatterplots for which one measure is identical while the
other has the largest variation (magenta and black circles in Fig-
ure 10(a)). When DSC equals 64 for both scatterplots, GON varies
from 40 (b) to 79 (c). The separation looks greater when GON is
greater whereas DSC remains oddly fix. When GON equals 19 for
both scatterplots, DSC varies from 3 (d) to 37 (e). DSC varies a
lot despite the separation looks pretty similar in both views as cor-
rectly measured by GON. Both these extreme cases confirm our
quantitative results that GON is better than DSC at mimicking hu-
man class separation. Inspecting scatterplots in decreasing order
of GON scores is likely to be more efficient to discover interesting
patterns than using DSC scores.

5 CONCLUSIONS AND FUTURE WORK

We have proposed a broad set of 2002 separation measures for
color-coded scatterplots. Through systematic evaluation, we iden-
tified the average Class-Proportion of the 0.35-Observable Neigh-
bors of each points in the Target class (short GON) to be the best
separation measure. It predicts human judgment with a 92.9% ac-
curacy (AUC bootstrapped average), and outperforms the best state-
of-the-art measure, Distance Consistency, by more than 11.7%.

While 92.9% is a high score, specifically compared to current
measures [19], we envision even better measures in the future. For
instance, one could consider adapting the parameters of a measure
for each scatterplot separately. Also, the evaluation framework that
we currently use [19] is based on a binary setting, that is, a class
is either labeled separable or not. While it is the best framework
available at the moment, this binary setting over-simplifies the rich
nature of human separation judgments. Further improving the un-
derlying framework will facilitate more accurate testing and open
doors for even better measures. Ideally, such measures would then
provide a degree of separation that resembles human perception.
Finally, while we have focused on the case of separation measures,
we hope that our approaches and insights will inspire researchers to
improve other types of visual quality measures as well [5].

ACKNOWLEDGEMENTS

This work was partly funded by FFG project 845898 (VALID).

REFERENCES

[1] G. Albuquerque, M. Eisemann, and M. Magnor. Perception-based
visual quality measures. In IEEE VAST, pages 11–18, 2011.

[2] M. Aupetit and T. Catz. High-dimensional labeled data analysis with
topology representing graphs. Neurocomputing, 63:139–169, 2005.

[3] M. Aupetit, P. Couturier, and P. Massotte. γ-observable neighbours
for vector quantization. Neural networks, 15(8):1017–1027, 2002.

[4] F. Baker and L. Hubert. Measuring the power of hierarchical cluster
analysis. J. of the American Statistical Assoc., 70(349):31–38, 1975.

[5] E. Bertini, A. Tatu, and D. A. Keim. Quality metrics in high-
dimensional data visualization: An overview and systematization.
IEEE TVCG, 17(12):2203–2212, 2011.
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