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ABSTRACT

Automatic clustering techniques play a central role in Visual Ana-
lytics by helping analysts to discover interesting patterns in high-
dimensional data. Evaluating these clustering techniques, however,
is difficult due to the lack of universal ground truth. Instead, clus-
tering approaches are usually evaluated based on a subjective visual
judgment of low-dimensional scatterplots of different datasets. As
clustering is an inherent human-in-the-loop task, we propose a more
systematic way of evaluating clustering algorithms based on quantifi-
cation of human perception of clusters in 2D scatterplots. The core
question we are asking is in how far existing clustering techniques
align with clusters perceived by humans. To do so, we build on a
dataset from a previous study [1], in which 34 human subjects la-
beled 1000 synthetic scatterplots in terms of whether they could see
one or more than one cluster. Here, we use this dataset to benchmark
state-of-the-art clustering techniques in terms of how far they agree
with these human judgments. More specifically, we assess 1437 vari-
ants of K-means, Gaussian Mixture Models, CLIQUE, DBSCAN,
and Agglomerative Clustering techniques on these benchmarks data.
We get unexpected results. For instance, CLIQUE and DBSCAN are
at best in slight agreement on this basic cluster counting task, while
model-agnostic Agglomerative clustering can be up to a substan-
tial agreement with human subjects depending on the variants. We
discuss how to extend this perception-based clustering benchmark
approach, and how it could lead to the design of perception-based
clustering techniques that would better support more trustworthy
and explainable models of cluster patterns.

Index Terms: H.1.2 [User/Machine Systems]: Human factors;
I.5.3 [Clustering]: Algorithms; I.5.2 [Design Methodology]: Pattern
analysis

1 INTRODUCTION

Cluster analysis is a pivotal task for domain experts to categorize
and abstract concepts from raw signals. A cluster can be loosely
defined as a group of data more similar to each other than they are
to data from any other groups. A clustering technique produces such
groups based on specific definitions of data similarity and modeling
assumptions [17, 36, 38].

Despite a long history of research in this area, understanding
the outcome of clustering techniques and evaluating their quality
are still challenging problems [4, 19, 22]. Evaluating clustering
techniques is difficult due to the lack of a universal ground truth
[35]. Thus, the most typical approach has been by subjectively
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judging their results in 2D scatterplots. However, this approach is
not systematic and does not generalize well across different datasets
and users. To overcome these issues, researchers have proposed to
evaluate clustering techniques based on heuristics and mathematical
frameworks [30]. While this is good in terms of objectivity, it
does not involve human judgments in any way. Yet, clustering
is essentially a task that heavily relates to the perception of what
humans deem as similar and dissimilar. Without a good alignment
of clustering results with human expectations the understanding and
trust in these automatic techniques will remain low [32], and the
use of the best techniques might be impeded (Kmeans is still widely
used despite its known limitations).

The goal of our paper is to propose a new way of benchmarking
clustering algorithms based on human perception, and in doing so
open the way for the design of clustering techniques that better align
with the perception of the human analyst. The basic idea is to gather
a large and reliable set of human judgments of clusters in 2D scat-
terplots. Such judgments could be gathered through controlled user
studies or online studies. Such data would on the one hand reflect
the human nature of the clustering task. On the other hand, however,
it rules out individual biases due the number of participants that
provide judgments for the same clustering patterns. Clustering tech-
niques can then be benchmarked by computing their performance
on the same 2D scatterplots and check their consistency with the
group of human raters.

To illustrate this approach, we use data collected in a recent study
on class separability in 2D scatterplots [1]. In this data, 34 human
subjects were tasked to decide if they can see one or more than
one clusters in 1000 monochrome scatterplots. While the previous
work used this data for developing a new visual quality measure
of grouping patterns in monochrome scatterplots, we use it here to
benchmark existing clustering approaches.

Our claim is that this basic counting task can be used as a first
filter to assess clustering techniques by comparing the number of
clusters they output to the one found by the group of human raters
for the same data. Techniques that do not pass this test would likely
be not trustworthy for non-expert users to be used on more complex
cluster patterns in 2 dimensions. The remaining techniques would
further pass a set of cascading filters, getting more credit the further
they go into these refined perception-based evaluations, possibly
considering higher-dimensional spaces as well. Building such a
cascading evaluation pipeline is an interesting challenge for the
future.

2 RELATED WORK

We review different approaches for evaluating clustering techniques
and discuss briefly how they relate to our proposition to rely on
human perception.
Clustering validation indices. Many clustering validation indices
exist either internal or external, quantifying the within and between
clusters similarities, or the cluster stability in various ways based on
different mathematical frameworks [4, 19, 22, 30, 35]. Our general
approach and the specific benchmark we propose are the first to con-
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sider human perception in a quantitative way to evaluate clustering
techniques.
Subjective eyeballing evaluation. Another very common, but only
qualitative non-systematic approach, is to ask reviewers and readers
of scientific reports of novel clustering techniques, to eyewitness
the quality of the clustering results by looking at a handle of class
color-coded scatterplots using the Match Clusters and Classes in
Map described in [10, 28].

In a practical setting, users often resort to their own subjective
visual judgment based on low-dimensional scatterplot views of the
data, solely or in complement to existing quality metrics. This type
of evaluation is common to evaluate dimension reduction techniques
through the way they represent cluster patterns [5]. For lack of a
consensus on what is a good quality clustering technique, we propose
to evaluate clustering techniques based on perceptual judgments
more consistent with the way they are finally evaluated in practice,
but benefiting the robust framework of controlled user studies to get
a more objective benchmark.
Benchmark datasets Benchmark clustering datasets labeled by hu-
mans exist to support quantitative analysis of automatic clustering
techniques [12, 15]; but the class labels are usually not reliable for
clustering tasks because, for synthetic data, they are assigned by
few designers with no collective validation [15]. And for real data
typically used in supervised classification tasks [12], the labels come
from external knowledge rather than the intrinsic cluster structure of
the data. In our benchmark, we rely on a simpler cluster counting
task where scatterplots are labeled by human subjects.
Collecting data of perception of patterns in scatterplots A set
of works developed around the concept of Visual Quality Metrics
[8].Several of them attempt to exploit the collected perceptual data
to improve modeling techniques, either to model a similarity metric
between scatterplots [3, 26] or to design new measures for class
separation [7, 33]. A similar approach [1] tackles the case of cluster
patterns using Gaussian Mixture Models and merging techniques.
Our work builds on the data collected from this previous study to
define a perception-based benchmark for clustering techniques.

3 A PERCEPTION-BASED BENCHMARK FOR CLUSTERING
TASK

In this section, we discuss how the human subject experiment con-
ducted in a previous study [1] can be used to define a perception-
based benchmark for clustering techniques.

3.1 Human subject experiment
In the experiment described in full details in [1], 34 subjects were
tasked to judge whether each of 1000 monochrome scatterplots,
generated from a mixture of 2 Gaussian distributions with various
parameters, displays one or more than one cluster. Five of these
scatterplots are shown in Figure 1 with the corresponding percentage
of human raters judging that these scatterplots display more than
one cluster.

3.2 Assessing clustering techniques with perception-
based data

We propose to run the clustering technique to be evaluated, on the
data from each of the 1000 scatterplots, and to compute the number
of clusters it detects, then to compare this number to the one counted
by the human subjects. Below, we argue that these data and tasks
are relevant for setting up such a perception-based benchmark for
clustering techniques.
Basic cluster analysis task

The basic counting task of that human-subject experiment fits
well with our objective of benchmarking clustering techniques.

Indeed, the number of clusters is a typical parameter of clustering
techniques, and it is a primary characterization of cluster patterns in
scatterplots [34]. In partition-based techniques like K-means [23]

2.9% 17.6% 58.8% 64.7% 100%
Figure 1: Subset of the 1000 scatterplots judged by the 34 human
subjects with the percentage of them judging they display more than
one cluster.

or model-based like Gaussian Mixture Models [17], this number is
set directly as one of the parameters, while in hierarchical [21] or
density-based techniques like DBSCAN [14] and Mean-Shift [11],
thresholds or scaling parameters control the number of clusters
indirectly. The best number of clusters can be selected as one that
makes the clustering technique produce a partition which optimizes
some quality measure.

In short, the correct number of clusters is a necessary by-product
of a good clustering with respect to some measure of quality, and so
an incorrect number of clusters can prove a bad clustering. Therefore
counting clusters can be viewed as a proxy for the clustering quality.
Low dimension and low pattern complexity

The cluster patterns displayed in the 1000 scatterplots are only 2-
dimensional, generated by a parametric family of Gaussian Mixtures
with 2 Gaussian components.

However, this setting allows generating a large variety of non
trivial patterns (Figure 1) that could serve as a first base filtering
step for clustering techniques: the ones which do not get sufficient
agreement with human subjects, would be assumed not trustworthy
to provide good quality clustering on more complex cluster patterns.

4 BENCHMARKING CLUSTERING TECHNIQUES

We first describe the clustering techniques, then how we use the
human judgment data to benchmark them.

4.1 Clustering techniques
We selected 6 clustering techniques from available R packages and
consider a total of 1437 variants summarized in the table 1. We
focused on techniques for which the number of clusters is set auto-
matically. Gmeans [20] and Xmeans [29] are variants of Kmeans [23]
which search for clusters with convex shapes and equal density. We
considered the Gaussian Mixture Models (model-based clustering)
from the Rmixmod package which offers multiple criteria to find the
parameters and the optimal number of components (clusters). We
also tested the 7 non-parametric merging technique [22] which take
a decision to merge two components of a GMM when they overlap
too much. We considered the ground truth (GT) merging techniques
used in the ClustMe study [1]: the 7 merging techniques applied to
the parameters of the GMM which generated the 1000 datasets used
in our benchmark. In all other cases, the GMM parameters and other
clustering parameters are inferred from the data point actual coordi-
nates in the 2D space (We do not consider the pixels of the scatterplot
image graphically representing that 2D space). We also tested the
CLIQUE [2] and DBSCAN [13] clustering techniques for different
settings of their parameters. CLIQUE assumes clusters are made of
union of high density rectangular areas, while DBSCAN considers
clusters formed around core points having minimal minPts number
of neighbors closer than a Euclidean distance epsilon. We aim to
compare them with the GMM approach to investigate the impact of
the model assumption in model-based clustering techniques.

At last we used the R package NbClust which offers to combine
agglomerative clustering (model-agnostic clustering) with a large
choice of metrics and aggregation methods, and propose 30 different
selection criteria to select the optimal number of clusters.

We set the default range for the grid search of the optimal number
of clusters between 1 and 5 for all techniques having a selection
option, then assign rate 1 for clustering techniques (machine raters)
finding a single cluster, rate 2 when more than one cluster is found,
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and rate 0 when the technique did not provide a solution in reason-
able time. Note that a clustering technique with a specific set of
meta-parameters as listed in Table 1, is called a technique for short
in the sequel. Some of the 624 variants for agglomerative clustering
did not provide a result in reasonable time, ending up to 576 of them
remaining in the final set.

We evaluate the usefulness of this benchmark using two criteria:
C1: We rank the clustering techniques based on the agreement value
of each isolated one with the full set of 34 human raters, using the
multinomial Vanbelle’s Kappa κV index [31]. This index allows
us to handle cases where the clustering technique gives rate 0 in
disagreement with any human judgment on a scatterplot, without
discarding that scatterplot. So all techniques are compared on the
same basis against all the scatterplots. This benchmark will prove
useful as a way to rank the clustering techniques if the κV indices
are not equally distributed for the different techniques.
C2: We make 7 hypotheses based on predictions informed by the
technical characteristics of the clustering techniques, as known by
the authors. Our perception-based benchmark will prove useful
if at least some of these hypotheses are not supported, showing a
mismatch between the results we expect from the technical design
of clustering techniques, and the one we observe when applied on
the perception-based data.

We make the following technical hypotheses:
H1: We expect GMM to be better on average than other techniques
given the data are generated from a GMM.
H2: We expect merging techniques based on the parameters of the
generative model (GT) should be among the best techniques.
H3: We expect model-based techniques like GMM with model
matching the one generated in the data, should be better than model-
based with non matching model like CLIQUE and non model-based
DBSCAN.
H4: We expect Gmeans performing similarly to the best GMM
without merging, because Gmeans assumes a Normal distribution of
each final clusters
H5: We expect Xmeans performing similarly to the best GMM
with CEM inference as Xmeans and Kmeans are equivalent to
GMM+CEM
H6: We expect Agglomerative Clustering should not be as good as
any GMM because it might not handle smooth density properly
H7: We expect CLIQUE and DBSCAN should be better than
Xmeans and Gmeans as they can handle non convex clusters

4.2 Benchmarking results
The figure 2 shows the distribution of Vanbelle Kappa κV index for
the main families of techniques. Gaussian Mixture Models (GMM)
with dipUni and dipTantrum merging techniques, EM parameter
inference method, and ICL number of cluster selection method (see
also figure 3 right), come first with Kappa index indicating between
substantial and almost perfect agreement with human raters, as per
the scale proposed by Landis and Koch [24]. We notice that the
Demp technique selected in [1] based on the GMM having generated
the data, rather than a more realistic GMM with parameters inferred
from the data, is not as good as dipUni and dipTantrum when that
more realistic setting is used. Then come most of the GT techniques
and quite surprisingly, several variants of the Agglomerative Clus-
tering (AggloClust) techniques are in substantial agreement with
human raters (see top 30 table in supplemental material).

Regarding our hypotheses:
H1 is not supported: Despite the data are generated from a GMM,
not all GMM-based techniques are in at least substantial agreement
with human raters (Range from 0 to 0.81, with median 0.27).
H2 is partly supported: the predictive and ridgeUni merging tech-
niques get a lower agreement than expected.
H3 is supported: CLIQUE and DBSCAN are very bad for the pa-
rameters we tested. The rectangular grid approach of CLIQUE or the

Table 1: List of variants of clustering techniques and their meta-
parameters.

]Var. Tech. Meta-parameters

1 Gmeans None
1 Xmeans None

72 GMM Merg. {dipUni;dipTantrum;demp;ridgeUni; . . .
. . .ridgeRatio;bhat; predictive;none}

Infer. 6m-1 GMM param. {EM;SEM;CEM}
Select. m components {BIC; ICL;NEC}

7 GT Merg. {dipUni;dipTantrum;demp;ridgeUni; . . .
. . .ridgeRatio;bhat; predictive}

No inference from data
No selection (m=2 components)

576 Agglo. Metric {euclidean;maximum;manhattan}
Aggreg. {ward.D;ward.D2;single;complete; . . .
. . .average;mcquitty;median;centroid}

Select. {all} except { f rey; tau;gamma;gplus}
380 CLIQUE Grid {2;3;4; ...;20}

Density {0.05;0.1;0.15; ...;1}
400 DBSCAN minPts {3;4; ...;10}

epsilon {0.02;0.04;0.06; ...;1}
1437

core points density-based approach of DBSCAN do not allow a good
fit with the Gaussian distribution as per human perception, despite
the fact that both techniques are based on reasonable assumptions to
approximate density-based clusters.
H4 is partly supported: Gmeans is in moderate agreement with
human raters similar to the best subset of GMM techniques. Gmeans
being faster than GMM could be recommended as a first approach
to count clusters.
H5 is not supported: Xmeans happens to always find more than
one cluster, leading to a poor agreement (0 kappa index).
H6 is partly supported: the median is close to 0 as in many cases,
the agglomerative techniques provide either always one, or always
more than one clusters for all scatterplots leading to poor agree-
ment with a Kappa near 0. But 16% of the variants are at least in
moderate and even substantial agreement with humans. The best
setting is shown in the figure 3 left, with Duda threshold selection,
Average aggregation metric, and either Maximum (L∞ norm)(0.74),
Manhattan (L1 norm) (0.77), or Euclidean(L2 norm)(0.78) base
metric. Single linkage and median aggregation perform poorly while
the ward aggregation method assumed to be better for unequal clus-
ter densities is not the best in our setting.
H7 is partly supported: CLIQUE and DBSCAN are not able to go
beyond slight agreement with human raters, while Gmeans reaches
moderate agreement, possibly because it uses a Normality test in its
hierarchical splitting process.

Several of our technically-based hypotheses are partially or not
supported by the perception-based benchmark, and the distribution
of the κV agreement index is clearly heterogeneous for the different
techniques, fulfilling the criteria C1 and C2, proposed to evaluate
the usefulness of the benchmark.

5 DISCUSSION

Our work serves mainly as a proof of concept, that we can obtain a
quantitative assessment of clustering techniques on a human gold
standard data. We further discuss the benefits and limitations of this
work in the next section.

5.1 Is counting cluster enough?
The data we used [1] was encoded using a very basic class counting
task, that is, deciding if there is one, or more than one cluster.
By increasing the order of difficulty, naturally also the ecological
validity of the study would increase, but at the same time also its
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Figure 2: Box plots summarizing the distribution of Vanbelle Kappa
index κV of all families of clustering techniques, ranked by decreasing
maximum index from top to bottom. The index κV measures the
agreement of each technique variant (dots) with the 34 human raters
counting ”one” or ”more-than-one” clusters in the 1000 scatterplots.

Figure 3: Variants of agglomerative clustering (top) and GMM (bottom)
with the selection method leading to the maximum κV index (Redder
color codes for higher agreement).

complexity and time needed. In the future it would be interesting to
also investigate more complicated tasks such as counting the exact
number of clusters, judging the absolute quality of a scatterplot, or
interactively selecting clusters using a lasso.

While we deem counting clusters only as a baseline task, it re-
sulted in several interesting findings. First, our baseline test revealed
that not all clustering techniques can detect generic cluster patterns.
Second, it also indicates that the techniques that failed this test
(CLIQUE, DBSCAN, Xmeans, and some GMM and Agglomerative
techniques) should not be considered as model-agnostic clustering
techniques, while the others which are at least in substantial agree-
ment with human raters (κV > 0.6) are trustworthy for these kind of

cluster patterns, and candidates for being assessed against other sorts
of cluster patterns (e.g non Gaussian, more clusters or dimensions).

5.2 Is 2D enough?
The data we used inherently came in 2D. We deem this a natural
choice as 2D scatterplots as very standard charts for data scientist.
Also, the Gestalt law of proximity [37] allows humans to detect
cluster patterns pre-attentively in this sort of visualization. Never-
theless, it is an interesting question whether other dimensionalities
might provide better results. Ideally, the evaluation of clustering
techniques would take place in the actual high-dimensional space.
However, here the human perception is the limiting factor. Going
beyond 2D, 3D scatterplots, Scatterplot Matrices or parallel coor-
dinate plots could be used, but would also require more expertise
to understand [9] and interact with the visualization [6, 27]. In the
other direction, 1-dimensional histograms might be used, but might
loose much of the pattern complexity either due to over-plotting or
to the smoothing introduced by the binning process. Extending the
perception-based approach to higher dimensional spaces is clearly a
challenge and we don’t know yet how much it could be beneficial,
but the surprising results we found in this simple case are a strong
incentive to explore this approach further.

5.3 Beyond Gaussian Mixtures
Gaussian mixtures are used to model any continuous data distribu-
tion. We expect that covering the parameter space of this model
enables generating a wide variety of cluster patterns. It seems we
could follow this principle with more than 2 components to generate
even more complex patterns still in 2 dimensions, but a linear in-
crease of the number of parameters leads to an exponential increase
of the parameter space to cover. Using some experiment design or
active learning approach could be a way to explore such larger pa-
rameter space querying human subjects only where cluster number
is not clear. Other generative models could be used to diversify the
cluster patterns, for instance to generate manifold structures [16, 18].

5.4 Can we use crowdsourcing?
Another intersting question is how to gather the human data. The
data used stemmed from a controlled experiment. Crowdsourcing
would be a natural alternative, increasing the number of raters but at
the same time lowering the reliability of the judgments [25]. Another
intersting idea is to combine both approaches and, for instance, use
lab data to validate crowdsourced data.

6 CONCLUSION AND FUTURE WORK

As far as clustering techniques are designed to support human dis-
covery, human beings are part of the decision process. Overall, we
think that evaluating clustering techniques on perceptual data even
if those are available only for low dimension space and low pat-
tern complexity, could guide the design of more efficient clustering
techniques for more complex patterns and possibly in higher dimen-
sion space. Moreover, it could be a way to improve trust in using
such techniques because they would be designed based on human
perception rather than heuristics or mathematical abstract concepts.

Beyond this first benchmark setting, we want to design perception-
based benchmarks for more complex patterns and cluster analysis
tasks, and possibly higher dimensional clusters, to determine which
technique could be used to detect which type of cluster patterns as
perceived by humans. Evaluating how this approach could improve
non-experts trust in clustering techniques is also interesting for future
research. This work starts paving the way in that direction.
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