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Abstract
The labeling of data sets is a time-consuming task, which is, however, an important prerequisite for machine learning and visual
analytics. Visual-interactive labeling (VIAL) provides users an active role in the process of labeling, with the goal to combine
the potentials of humans and machines to make labeling more efficient. Recent experiments showed that users apply different
strategies when selecting instances for labeling with visual-interactive interfaces. In this paper, we contribute a systematic
quantitative analysis of such user strategies. We identify computational building blocks of user strategies, formalize them, and
investigate their potentials for different machine learning tasks in systematic experiments. The core insights of our experiments
are as follows. First, we identified that particular user strategies can be used to considerably mitigate the bootstrap (cold
start) problem in early labeling phases. Second, we observed that they have the potential to outperform existing active learning
strategies in later phases. Third, we analyzed the identified core building blocks, which can serve as the basis for novel selection
strategies. Overall, we observed that data-based user strategies (clusters, dense areas) work considerably well in early phases,
while model-based user strategies (e.g., class separation) perform better during later phases. The insights gained from this
work can be applied to develop novel active learning approaches as well as to better guide users in visual interactive labeling.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Labeling data objects is a fundamental process in machine learning
(ML), data mining, and visual analytics (VA). Labeling refers to the
task of attaching a certain attribute to an instance in a data set, such
as a class label, a relevance score, or a similarity judgment with re-
gard to another instance. The major goals of (interactive) labeling
are to acquire knowledge from the user to guide the learning pro-
cess, to generate “ground-truth” data, and to model the user’s inter-
ests and intentions. The labeling of large amounts of data, however,
is a time-consuming and tedious task. Especially in the presence
of large data sets efficient labeling strategies are required to reduce
labeling effort and accelerate learning.

Active learning (AL) is an ML approach that tries to minimize
the amount of human interaction for labeling. To this end, AL em-
ploys candidate selection strategies that query the user only for
labels of those samples that the ML model will benefit most from.
AL is typically a model-centered approach that selects instances
with respect to the model that should be learned. A limitation of
AL is that users are not involved in the selection but only in the
labeling of candidate instances. Thereby the potential of exploit-
ing user knowledge (domain knowledge) and the user’s intuition
in identifying patterns, clusters, and outliers remains underutilized.

The success of AL thus heavily relies on the quality and suitability
of the applied selection strategy.

Labeling is also frequently required in VA where user feedback
from labeling is exploited to learn and support the user’s informa-
tion need. In contrast to AL, in VA the selection and labeling of
candidates is primarily user-driven, which makes it a user-centered
approach and thus complementary to AL. To bridge the gap be-
tween AL and VA, previous work has introduced the idea of Visual
Interactive Labeling (VIAL) [BZSA17]. VIAL allows for both the
user and the model to propose candidates for labeling and thereby
combines the strengths of both labeling perspectives into one uni-
fied process.

This paper aims at narrowing the gap between AL and VA by
comprehensively studying user-based selection strategies. To this
end, we perform an in-depth analysis of ten previously identified
user-based labeling strategies [BHZ∗17]. These strategies comprise
different ways of how users go about selecting data points to be
labeled from a 2D projection (scatterplot) of the data, and were
found through iterative user experiments. Users for instance se-
lected points in dense regions or outliers in the scatterplot (data-
based user strategies). Other users took information from the visu-
alized ML model into account, for instance by selecting instances
for labeling which are close to intersecting border regions of two
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classes (model-based user strategies). While these strategies have
been identified by observation [BHZ∗17], their systematic investi-
gation and formalization has not been performed so far. However,
this is important to understand how users actually select candidate
instances, how such strategies perform, and how knowledge about
these methods will support effective labeling. Based on this knowl-
edge novel methods for automated candidate selection in AL may
be developed as well as advanced user-inspired methods for visual
guidance in VA labeling approaches.

We analytically formalize the ten previously observed user
strategies for the selection of instances, identify their building
blocks, implement them, and integrate them into an automatic
evaluation toolkit. We run simulated labeling experiments with all
strategies on different data sets, analyze their performance, and
compare them with AL strategies. Additionally, we use two base-
lines to put the performances of all AL and user-based strategies
into context: (i) a random baseline to measure the lower perfor-
mance limit and (ii) a quasi-optimal selection strategy which al-
ways selects the best candidate in a greedy fashion (in a supervised
manner based on ground-truth labels) to provide an upper limit of
performance (ULoP).

In particular, our experiments seek to answer the following ques-
tions: (i) can we formalize and thereby automate user-based selec-
tion strategies? (ii) can formalized user-based strategies compete
with or even outperform existing AL strategies? And beyond this,
can we observe patterns and trends that hold across different data
sets and ML tasks and are thus generalizable? (iii) which building
blocks are common to the strategies and can they be carved out for
future use? (iv) can we improve existing labeling algorithms with a
better understanding of human labeling behavior, represented with
formalized user strategies and building blocks?

This work represents a first step towards user-centered AL algo-
rithms which may in the future facilitate labeling processes in ML,
VA, and VIAL. In summary, the major contributions are:

• We propose a formalization and implementation of 10 user
strategies to enable a systematic evaluation of user-based visual
labeling in comparison with AL.
• We break down these 10 user strategies and propose 11 low-level

algorithmic building blocks that in combination completely for-
malize the 10 high-level user strategies.
• We present the results of a performance analysis of the 10

user strategies and 9 alternative strategies (AL, upper and lower
bound), on four data sets. We investigate the quality of each strat-
egy in selecting useful labels as well as in its capabilities in solv-
ing the bootstrap problem.

2. Related Work

Related work comes from the different research areas that focus on
techniques in the interactive labeling processes: i.e. active learning,
interactive visualization, and the combination of the latter in the
VIAL workflow. In the following, we briefly review the most im-
portant approaches and labeling strategies employed in these areas.

2.1. AL-Centered Labeling Strategies

Active Learning (AL) strategies have been introduced to support
the incorporation of user knowledge into the learning process. In
AL, an algorithmic model pro-actively asks an oracle (the user)
for feedback (labels) to improve the learning model [Set09]. Since
user interactions are time-consuming, AL aims at minimizing the
amount of required user interaction by querying only that infor-
mation that will most likely best improve the accuracy of the
given model. Different classes of AL strategies have been intro-
duced [Set09,Ols09,TVC∗11,WH11], which we partition into five
groups: (i) uncertainty sampling, (ii) query by committee, (iii) error
reduction schemes, (iv) relevance-based selection, and (v) purely
data-centered strategies.

Uncertainty sampling aims at finding instances the learner is
most uncertain about. Widely used strategies search for instances
near the decision boundary of margin-based classifiers [WKBD06,
TVC∗11,SDW01], or measure the entropy of instances’ class prob-
abilities [JPP09]. Query by Committee (QBC) [SOS92] strategies
measure the uncertainty of an ensemble of classifiers including the
assessment of the committees’ disagreement [Mam98,MM04]. Er-
ror reduction schemes focus on the selection of those instances
which may change the underlying classification or optimization
model most. Techniques focus either on the impact on the train-
ing error (expected model change) [SCR08] or on the reduction
of the generalization error (risk reduction [QHR∗09], energy re-
duction [VBF12], and variance reduction [HJL06]). Relevance-
based [VPS∗02] strategies select those instances which have the
highest probability to be relevant for a certain class, e.g., based
on positive examples for a class [WH11]. Finally, there are purely
data-driven strategies which are independent of the learning model,
such as density- and diversity-based instance selection [WKBD06,
BSB∗15,BDV∗17,DRH06]. Density-based selection of candidates
is a promising strategy for initiating an AL process in the case
when no labels are available at all (cold start problem or bootstrap
problem) [AP11]. Recently, approaches towards learning candidate
selection strategies have been introduced [KSF17]. This requires,
however, the availability of a series of previous active learning ex-
periments to draw useful conclusions from it.

2.2. User-Centered Labeling Strategies

User-centered labeling is implicitly used in many interactive visu-
alization and VA approaches to assign users an active role in the
learning process. For this purpose, visual interfaces are usually pro-
vided that show the data (or feature space) and the state of the learn-
ing process (ML model), e.g., by applying dimensionality reduction
in combination with scatter plots [BKSS14, SA15, HMdCM17] or
by visualizing instances as glyphs arranged by similarity in a 2D
spatial layout [BLBC12, BSR∗14, BRS∗17]. Mamani et al. use an
interactive labeling interface to adapt feature spaces, leading to op-
timized embeddings of image data calculated with dimensionality
reduction [MFNP13]. Once the data or feature space is visualized
adequately, the user is asked to select individual instances and pro-
vides the respective labels [BZSA17]. Labels in this context can be
of different type, such as categorical labels [HNH∗12], numerical
labels [BSB∗15], relevance scores [SSJK16], as well as labels that
represent a relation between two instances (e.g. for learning simi-
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larity and distance measures) [BRS∗17]. The type of the data to be
labeled differs among recent studies.

Bernard et al. propose an approach where users play an active
role in selecting data instances and assigning numerical well-being
scores for medical data to calculate regression models [BSB∗15].
Höferlin et al. [HNH∗12] propose a system that facilitates inter-
active classification of surveillance videos with user input based
on relevance feedback for video subsequences. A visual-interactive
and user-driven search system for text documents is presented by
Heimerl et al. [HKBE12], allowing users to label relevant and non-
relevant documents to improve the quality of a retrieval compo-
nent. In a system for interactively labeling human motion capture
data, users can select and label human gestures to build a classi-
fier [BDV∗17], visually guided by data- and model-centered ML
support. A more general approach for the labeling of time series
data has been introduced by Sarkar et al. [SSBJ16], including clus-
tering techniques for pattern detection and user guidance. Finally,
the user-centered selection and labeling of instances was applied
to learn similarity models for mixed data [BSR∗14]. In addition,
the authors reflect on a series of pitfalls for the design of labeling
approaches.

Although the latter approaches enable the user to select instances
and learn models from the provided labels, they do not investigate
strategies that motivate users to select certain instances in a pro-
vided visualization. To the best of our knowledge, this area has
gained very little attention so far. Seifert and Granitzer [SG10] were
the first that sought to simulate and formalize user-picking strate-
gies such as selection. In a small-scale, initial study, they used a
star coordinate interface to illustrate the potentially large impact
of combining active and user-based learning strategies. Bernard et
al. [BHZ∗17] built on this initial study and investigated user-based
and AL strategies in more details in an experimental user study.
In an experiment, the authors identified 10 different user strategies
for the selection of candidate instances, observed during three user
tasks followed by interviews. Users were asked to label instances in
a scatterplot visualization based on dimensionality reduction. Dif-
ferent coloring and convex hull techniques were used to depict data
and classifier characteristics and thus support users in the selection
of candidates. In this paper, we formalize, implement, and system-
atically evaluate these strategies.

3. Formalization of User Strategies

We build upon the 10 strategies of Bernard et al. [BHZ∗17]. After
briefly reiterating on them (Section 3.1), we present how we broke
down these strategies into recurring fundametal building blocks
(Section 3.2). We then use these building blocks to formalize the
10 user strategies algorithmically so that they can be implemented
for computational uses (Section 3.3). The intuition behind this ap-
proach is to integrate the users’ abilities to identify patterns directly
into automatable labeling algorithms. This allows to simulate how
humans go about labeling data and to compare the user strategies
to alternative strategies such as those from AL (see Section 4).

3.1. Background

Table 1 (left side) summarizes the 10 user strategies which repre-
sent the basis for our further analysis. The strategies were observed

in interactive labeling experiments where users were presented a
2D projection of the original feature space [BHZ∗17]. Unlabeled
items were represented as data points (crosses) while for labeled
items the class label was shown. To visualize class information and
the state of the iteratively learned classifier, different visualization
techniques were used, such as convex hulls and butterfly plots.

The identified user strategies form two groups: data-based
strategies, where the user focused mostly on the data itself and its
distribution as well as model-based strategies where the user rather
focused on class characteristics such as predicted boundaries, e.g.,
depicted as convex hulls. Different visualizations inspired different
strategies. As convex hulls of different classes may overlap, strate-
gies trying to reduce this overlap were observed (e.g. “Class Inter-
section Minimization” and “Class Borders Refinement”). Finally,
“Ideal Labels First” is driven by the content of individual instances
while the remaining strategies primarily focus on structural infor-
mation of the data and the class predictions. Note further that “Ideal
Labels First” in contrast to all other strategies requires as input one
representative instance for each class and is thus not completely
unsupervised.

3.2. Building Blocks

We systematically investigated the individual user-based strategies
and identified basic recurring units (building blocks) that are shared
between strategies. In total, we identified 11 building blocks that
form a minimal and complete set of blocks necessary to implement
the 10 user strategies. In the following, we describe and specify
formally the individual blocks.

To define the building blocks, we use the following notation. Let
Vc be the set of all (unlabeled) candidate feature vectors and Vt the
set of all already labeled training feature vectors. The entire data
set is then V = Vc∪Vt . To measure distances between instances of
V we define a distance function as d : V ×V →R. Furthermore, we
define a subset T with T ⊆Vc which represents an arbitrary subsets
of Vc

†. Variable x∈Vc refers to a candidate instance from Vc in our
notation and is represented by a feature vector of potentially high
dimension in the feature space of V . Predicted labels of individual
instances are referred to as y′ and stem from the set of possible class
labels yi ∈ Y with n = |Y | is the number of classes. The identified
building blocks are defined the following.

Nearest Spatial Neighbors (NSN) retrieves instances in the
neighborhood of a candidate instance, allowing the assessment
of local data characteristics around it. It can be implemented in
a straight-forward manner based on k-nearest neighbor (kNN)
search. Let v1, ...,vn be an ordering of instances v ∈ S⊆V with x /∈
S, such that d(x,v1)≤ ...≤ d(x,vn). Then the k-nearest neigbors of
instance x are represented by function: kNN(x,S,k) = {v1, ...,vk}.
Note that alternatively, the neighborhood around instance x can be
specified by defining a radius (orbit epsilon) around x.

Spatial Balancing (SPB) tries to locate instances in so far undis-
covered areas of the feature space and thereby tries to uniformly

† Note that the definition of building blocks on a subset makes their defini-
tion more general which is beneficial for reuse and flexible combination.
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Strategy
Name

Illustration Description
Details about the strategies

Formalization
In terms of building blocks from Section 3.2.

Equal Spread
data-based

Users prefer to label instances in unlabeled areas,
i.e., far away from other labeled instances, to dis-
tribute labels uniformly across the data.

The implementation builds upon Spatial Bal-
ancing (SPB) which identifies instances with
maximum distances to the already labeled in-
stances.

Dense Areas
First
data-based

Users prefer to label instances located in dense re-
gions in the feature space. In contrast to centroid-
based strategies instances do not have to be at the
center of a dense region.

This strategy combines a spatial Density Es-
timator (DEN) with Spatial Balancing (SPB),
we weight both building blocks equally
(50%:50%).

Centroids
First
data-based

Similar to “Dense Areas First” but users prefer to
label instances located at cluster centers uniformly
across the feature space.

This strategy combines a Clustering (CLU)
algorithm with Spatial Balancing (SPB),
we weight both building blocks equally
(50%:50%).

Cluster Bor-
ders First
data-based

Users prefer to label instances located in the bor-
der regions of clusters. These areas may potentially
represent class boundaries and thus may contain
relevant instances for labeling. Additionally, candi-
dates should be spread across the feature space.

Applies a Clustering (CLU) algorithm first.
Then, for every cluster, an Outlier Detection
(OUT) algorithm is combined with Spatial
Balancing (SPB), we weight both building
blocks equally (50%:50%).

Outliers First
data-based

Users prefer to label instances located in sparsely
populated regions, i.e. outliers in different areas
across the feature space. This strategy is used to la-
bel potentially untypical instances of a class.

This strategy combines an Outlier Detec-
tion (OUT) algorithm with Spatial Balancing
(SPB), we weight both building blocks equally
(50%:50%).

Ideal Labels
First
data-based

The user selects instances for labeling she believes
are most characteristic for a class, by comparing in-
stances to an a priori given example instance, which
is typical for the class. We refer such typical in-
stances to as “ideal instances”.

This strategy combines the Ideal Instance
Identification (III) building block with Spatial
Balancing (SPB), we suggest to weight both
building blocks equally (50%/50%).

Class Bor-
ders Refine-
ment
model-based

Users try to refine the spread of class boundaries in
regions with overlapping class borders (in the low-
dimensional representation of the data).

This strategy uses the results of a classifier (CL
and CP) and then applies Local Class Diver-
sity (LCD) assessment to emphasize border re-
gions.

Class Outlier
Labeling
model-based

Users select instances for labeling that are far away
from the class center. Referring to convex hull visu-
alizations of class borders such outliers are salient
spikes of the hull polygon.

This strategy applies classification (CL and
CP) first. The individual predicted class distri-
butions are assessed with an Outlier Detection
(OUT) algorithm.

Class Distri-
bution Mini-
mization
model-based

Users try to minimize the area covered by an indi-
vidual class distribution. This can, e.g., be achieved
with instances that probably help to reduce the size
of the convex hull or another visualization of class
boundaries.

This strategy applies classification (CL and
CP) first. Compactness Estimation (CE) assess
the compactness of each class; distances to
the class centroid allow weighting of instances
within each class.

Class In-
tersection
Minimization
model-based

Users try to minimize areas where classes intersect
(e.g. represented by convex hulls in scatterplots).
Counting the number of overlapping convex hulls
is one means to assess class intersection.

This strategy applies classification (CL and
CP) first. Then Local Class Separation (LCS)
retrieves the Nearest Spatial Neighbors (NSN)
per class and assesses the degree of class sep-
aration.

Table 1: Ten user strategies from a previous experiment [BHZ∗17]. The strategies can be partitioned into data-based and model-based
strategies. The data in the original study was represented with dimensionality reduction in a 2D scatterplot. Class boundaries in model-
based strategies were visualized among others by convex hulls of the labels predicted by the underlying classifier.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



J. Bernard & M. Zeppelzauer & M. Lehmann & M. Müller & M. Sedlmair / Towards User-Centered Active Learning Algorithms

distribute the labeling candidates across the space. For each sam-
ple x ∈ Vc first the minimum distance B to the labeled samples
t ∈ Vt is determined: B(x) = mint∈Vt d(x, t). Second, the sample x
with maximum distance to a labeled sample is selected: SPB(Vc) =
argmaxx∈Vc

(B(x)).

Clustering (CLU) partitions a set of instances into disjoint groups
or clusters C1, ..,Cn of similar instances. Clustering provides a
meta-structure on the original data and is a common building
block for several selection strategies where it facilitates the selec-
tion of candidates at e.g. cluster centroids, cluster border areas,
or at spatially close clusters. Clustering can be implemented in
many different ways [Jai10]. To stay general we define a generic
clustering function CLU on the set of unlabeled instances Vc as:
CLU(Vc) = min( fcost({C1, ...,Cn})) such that all instances are as-
signed to exactly one cluster, i.e., ∀x ∈ T : ∃Ck : x ∈ Ck and
∀x ∈ T : (x ∈Ck ∧ x ∈Cl) =⇒ k = l. Function fcost represents the
cost function to be minimized during clustering.

Density Estimation (DEN) identifies maximally dense areas in
the feature space. It can be used to select instances that seem typi-
cal for the data set and that have many similar neighbors. Density
estimation is defined by a scoring function DEN(x) = scoreDEN(x)
which is applied to all instances x ∈ Vc to find candidates in
maximally dense areas. Density can be estimated by different ap-
proaches, such as averaging the distances to the k-nearest neighbors

of x: scoreDEN(x) =−∑v∈kNN(x,V,k)
d(x,v)2

k

Outlier Detection (OUT) In contrast to density estimation
(above), outlier detection tries to find instances in sparsely popu-
lated regions. It can be used to select instances with untypical char-
acteristics and helps to better sample the variability that exists in the
data and its classes, respectively. Outliers can be identified by using
different outlier scoring functions: OUT (T ) = {scoreOUT (v,T ) ≥
t : v ∈ T}, where t ∈ R is a decision threshold. Outlier detection
methods can be partitioned into classification-based, clustering-
based, nearest neighbor, and density-based [KN98] approaches. A
straight-forward implementation would be to use the negative den-
sity scoreOUT (v,T ) =−DEN(v).

Compactness Estimation (CE) determines the compactness of
groups of instances. Groups may be clusters obtained from cluster-
ing or sets of instances with the same predicted class. This mea-
sure can be used to favor instances for labeling in either com-
pact or spatially distributed groups. A compactness function has
the following general signature: CE(T ) = scoreCE(T ). A typi-
cal realization of CE is the variance of the instances in a group:
CE(T ) = 1

|T | ∑
x∈T

(d(x,mi))
2, where mi is the average of the group.

Ideal Instance Identification (III) requires a set of representative
instances as input which a user considers “ideal” for certain classes.
This makes it structurally different from the other building blocks.
It requires the user first to specify which instances are considered
ideal. This can be formalized as follows. The function U specifies
which samples are considered ideal (by the user in the loop):

U(x) =

{
1, if x is considered ideal by the user
0, otherwise

In a second step, this building block estimates the rele-
vance of any instance x ∈ Vc with respect to the set of rep-
resentative instances. The score for an instance x is the mini-
mal distance to one of the “ideally” labeled instances: III(x) =
minu∈{v∈V :U(v)=1} d(x,u).

Class Likelihood (CL) represents the likelihoods l provided by
a given (pre-trained) classifier for an unlabeled instance x as:
CL(x) = l, with l ∈ R|Y | is a vector of probabilities for each of
the classes in Y .

Class Prediction (CP) estimates the most likely class y′ for set of
class predictions l: y′ =CP(x) = argmax(CL(x)).

Local Class Diversity (LCD) assesses the diversity of class pre-
dictions in the neighborhood of an instance x. Thus, each in-
stance needs to have a most likely class y′ assigned by a classi-
fier. Given an instance x and a class label yi ∈ Y , we can compute
the portion pi of neighbors with the class prediction y′ = yi as:
pi(x,yi) =

|{v∈kNN(x,Vc,k):CP(v)=yi}|
k . The local class diversity can

then be estimated by a diversity measure div as follows: LCD(x) =
div(p), where p is the vector of all portions pi for the n classes:
p= (p1, .., pn). The entropy of p is one possible realization of func-
tion div.

Local Class Separation (LCS) is similar to Local Class Diver-
sity but estimates how well the predicted classes around a given
instance are separated from each other. It can be used to iden-
tify regions with high class uncertainties. We define this build-
ing block based on subsets Ci, i = 1, ..,n, which are the k-nearest
neighbors of instance x found for each of the n classes: Ci =
kNN(x,{v ∈ V : CP(v) = yi},k). Local Class Separation LCS is
then defined as a separation function fsep over all subsets Ci:
LCS(x) = fsep(C1, ..,Cn). Such a scoring function could be based
on Dunn-like indices [Dun74], the Davies-Bouldin Index [DB79],
or Silhouettes [Rou87].

3.3. Formalized User Strategies

Having identified the building blocks from Section 3.2, we can
now formalize the user strategies from Section 3.1. To implement
the user strategies, we first implemented the underlying building
blocks. For implementation details, we refer the interested reader
to the supplemental material. In a next step, we constructed the
original user strategies from the building blocks according to the
formalizations in Table 1 (column “Formalization”). To better un-
derstand how the implementation was performed, consider the ex-
ample of “Centroids First” strategy. “Centroids First” focuses on
cluster centers on the one hand and thus requires building block
“Clustering”. On the other hand, users at the same time tried to
select and label centroids spatially distributed, i.e. from previously
unlabeled clusters before re-visiting already labeled clusters, which
refers to “Spatial Balancing”. The scores of both building blocks
can be combined by taking their average. The result is a strategy
that selects cluster centers which are distributed across the entire
space. In all cases where several building blocks are used to vote
for instances, we use equal weights to keep the number of free pa-
rameters in the evaluation limited. Other weightings will be subject
to future work.
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Building Blocks→
User Strategy ↓

N
SN

SP
B

C
L

U
D

E
N

O
U

T
C

E
II

I
C

L
C

P
L

C
D

L
C

S

Equal Spread x
Dense Areas First x x x
Centroids First x x
Cluster Borders First x x
Outliers First x x
Ideal Labels First x x x x
Class Borders Refinement x x x
Class Outlier Labeling x x x
Class Distribution Min. x x x
Class Intersection Min. x x x x x

Table 2: Mapping between user strategies and building blocks.
Most user strategies build upon two or more building blocks. From
a building blocks’ perspective Spatial Balancing is included in
six user strategies, Nearest Spatial Neighbor, Density Estimation,
Class Likelihood and Class Prediction in four.

Table 2 shows the exact mapping between building blocks and
strategies and shows which blocks contribute to which strategies
and beyond this, which blocks appear how often and are thus of par-
ticular importance. “Spatial Balancing” for example appears most
often. Nine of ten user strategies build upon combinations of build-
ing blocks. Only the “Equal Spread” consists of a single block
(“Spatial Balancing”). Furthermore, the table reveals which user
strategies share similar blocks and are thus similar, e.g. “Cluster
Borders First” and “Class Borders Refinement” or “Class Distri-
bution Minimization” and “Class Intersection Minimization”. The
representation in Table 2 further shows which combinations of
building blocks are used by previously identified strategies. Finally,
we note that, the set of possible building blocks may be much larger
than the 11 building blocks needed to formalize the investigated
user strategies. This set opens up a design space for novel strate-
gies not yet observed.

4. Experiments & Results

After having formalized the user strategies, we now can algorithmi-
cally compare different labeling strategies. Our overall goal was to
investigate the different performances of the 10 user strategies for
different classification tasks, compared to AL algorithms as well as
to lower and upper bound baselines. In addition, we investigate the
performance of the individual building blocks based on the perfor-
mance of the user strategies. We broke down the analysis into the
following three research questions:

• RQ1 How well do the 10 formalized user strategies perform in
the very early bootstrap phase of the labeling process; compared
to lower and upper baselines, as well as AL strategies?
• RQ2 How well do these strategies perform after the bootstrap-

ping phase when at least one instance per class was labeled?
• RQ3 How do the low-level building blocks contribute to the per-

formance of the user strategies under different conditions?

4.1. Candidate Selection Strategies

Overall, we conduct performance analysis for 19 strategies, with
an emphasis on comparing 10 user strategies with each other and
to compare them to 7 AL strategies and two baselines (upper and
lower limit of performance).

10 User Strategies. We implemented the 10 user strategies ac-
cording to the formalization described above (in Java on a stan-
dard desktop computer). We use kMeans for the CLU building
block (k = label cardinality), the number of instances to be re-
trieved with nearest neighbor operations (NSN, DEN, LCD, LCS)
is min(max(5;Vc × 0.05);50). CLS adopts the Silhouettes Index
[Rou87] for cluster/class separation, Entropy [Sha48] is used to
measure diversity (LCD). To simulate our experiments, we ap-
ply the user strategies in the original feature space (instead of in
the projected low-dimensional space). This allows the formalized
strategies to fully exploit the potential of high-dimensional data
structures, and allows for a fair comparison to AL and baseline
strategies that operate in the same space.

7 Active Learning (AL) Strategies. We integrate 7 AL strate-
gies into the experiments aiming for robustness, generalizabil-
ity, and variability. Techniques include Smallest Margin [SDW01,
WKBD06], Entropy-Based Sampling [SC08], Least Significant
Confidence [CM05] representing simple, fast, and frequently ap-
plied uncertainty sampling strategies [Set12]. In addition, Aver-
age Kullback Leibler Divergence [MN98], Probability Distance
(distance of classifiers’ likelihoods), Vote Comparison (diversity
of predicted labels), and Vote Entropy [Sha48, DE95] build the
set of Query-By-Committee (QBC) [Mam98] strategies. AL tech-
niques based on error/variance reduction are computationally ex-
pensive [Set12] as classifiers need to be trained for every instance
and iteration. Hence, we do not include these AL techniques since
they do not allow interactive execution [MPG∗14].

2 Baseline Strategies. We also include a lower and upper-bound
baseline. As the lower bound, we use a series of trials conducted
with randomly selected instances (Random Baseline). As an upper
bound, we pre-compute the quasi optimum performance that can
be achieved by always selecting the instance with a maximum per-
formance gain. A simple algorithm that fulfills this criterion is a
Greedy search using the ground truth data (Upper Limit of Perfor-
mance ULoP). In every iteration, the algorithm trains and tests the
model for every single candidate instance, and finally chooses the
winning instance. Note that Random Baseline and ULoP are ad-
ditional strategies allowing the comparison and assessment of per-
formance [Caw11]. Neither Random Baseline nor ULoP are user
strategies and thus, do not consist of the building blocks described
in Section 3.2.

4.2. Data Sets

The concrete results of the experiment depend on the data set of
choice. We thus compare the strategies with different data sets, se-
lected according to the following considerations:

• Numerical attributes/features
• A size of at least several thousand instances
• Public availability
• Intuitiveness, wide distribution in research community
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Figure 1: Average performance of strategies in the first 50 iterations of the labeling process (MNIST data set). Most data-based user strategies
perform particularly well in the very first iterations (Ideal Labels First, Centroids First, Dense Areas First). Most model-based user strategies
perform below Random. Focusing on the distinction between density-based and outlier-based strategies, the density-based strategies perform
particularly well, while outlier-based strategies perform poorly. The performance of AL strategies is rather low at start, but increases with
more iterations. Boxplots at the bottom show the distribution of the iteration numbers when strategies produced at least one label for each
class. The Ideal Labels First strategy visits all class labels remarkably early (all 10 labels in 11 iterations on average), thus, it uses the set
of a-priori given ideal representatives as expected. Model-based strategies require more iterations to see each label at least one time. As a
general rule, strategies with good accuracies also visited every class label earlier. We conclude that data-based strategies are better suited to
tackle the bootstrap problem than the other strategies. At the beginning of the labeling process the class boundaries generated in model-based
strategies seem to be less expressive (i.e. they may jump around chaotically) and thus it is more robust to go for data and structure.

Finally, we aimed at covering a broad range of data-based charac-
teristics, such as (1) binary classification versus multi-class classi-
fication, (2) equally-balanced label distribution versus unbalanced
distribution, (3) proof-of-concept versus real-world complexity, as
well as (4) few versus many outliers. These considerations led
us to four data sets. The supplemental material contains a de-
tailed overview of the data sets including visualizations of low-
dimensional projections.

Handwritten Digits The MNIST data set [LBBH98] perfectly
meets all requirements to the data. It consists of thousands of raw
images showing handwritten digits, each represented by a 28x28
image (784 dimensional vector). For faster classification, we use a
descriptor that extracts slices in horizontal, vertical, and diagonal
direction, yielding feature vectors with 42 numerical dimensions.

IRIS The IRIS data set [Lic13] does not fulfill the criterion of
thousands of instances, rather it consists of three classes with 50
instances each. However, we consider IRIS as a low-dimensional
and easy to interpret proof-of-concept dataset.

Gender Voices The Gender Recognition by Voice data
set [Bec16] contains acoustic properties of voices to identify the
gender of speakers. This data set consists of 3,168 instances which
are pre-processed by acoustic analysis with an analyzed frequency
range of 0-280 Hz. The outcome is a 21 dimensional vector of
acoustic properties; many instances have a tendency to be outliers.

Fraud Detection The Credit Card Fraud data set [PCJB15] con-

tains transactions of credit cards recorded in Europe in two days in
September 2013. Overall, 492 frauds are included in the 284,807
transactions (0.172%), we use the data set to assess a highly un-
balanced classification problem. The data consists of 28 numerical
features; many instances have a tendency to be outliers.

4.3. Data Analysis

We use classification accuracy as the main dependent measure
for our performance comparisons of balanced data sets (percent-
age of correctly predicted instances compared to ground truth data
[FHOM09]). For unbalanced data sets we compute the class-wise
f 1 measure from recall and precision [SWY75] and average the
f 1 scores over all classes (in a macro averaging fashion). We mea-
sure performances each time a new instance has been selected by a
certain strategy for labeling, and in doing so, observe how perfor-
mance changes over the labeling process. For our experiments, we
use 50 labeling iterations. The labels are set automatically accord-
ing to the ground truth that we have for all our data sets. We average
the results of an ensemble of classifiers to achieve robust predic-
tions, including Naive Bayes [DHS∗73], Random Forest [Bre01]
(RF), Multilayer Perceptron [HSW89] (MP), and Support Vector
Machine [CV95] (SVM).

We examine the performance of iterative labeling with 19 strate-
gies (cf. Section 4.1) with all four data sets (cf. Section 4.2).
All strategies are executed in an automated batch process. To
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Building Block MNIST IRIS GEND. FRAUD

Nearest Spatial Neighb. ++ ++ ++ +
Spatial Balancing ++ ++ ++ ++
Clustering ++ ++ ø ++
Density Estimation ++ ++ ++ ø
Outliers Detection – – – – – +
Compactness Estim. – – ø – – –
Ideal Instance Ident. ++ ++ + –
Class Likelihood – ø ø +
Class Prediction – ø ø +
Local Class Diversity – – – – +
Local Class Separation ø ø ø +

Table 3: Analysis of the bootstrap phase at the granularity of build-
ing blocks. The performance of building blocks (implemented in
user strategies) is depicted with discrete ordinal scores from very
bad to very good ( – – , – , ø , + , ++ ). Blocks employing
data characteristics help to tackle the bootstrap problem.

achieve robust results the calculation of each strategy is repeated
50 times [KCH∗17]. The order of candidate instances is random-
ized in each trial with a constantly incrementing seed, in order to
have distinct and reproducible repetitions.

To analyze these results, we use superimposed line-charts that
depict the strategies’ performance progressions over the labeling
process. The large number of trials allows for robust average per-
formance curves for the strategies. To keep the number of colors
manageable, we use dashed lines to distinguish ULoP and Random
Baseline, and the AL strategies. The ULoP and Random baseline
are white; AL strategies are blue; and user strategies have categor-
ical colors from green to purple (data-based to model-based).

Finally, we assess the performance of individual building blocks.
To that end, we use the mapping of building blocks to formalized
user strategies depicted in Table 2 as a basis. To assess the perfor-
mance of a building block, we are interested in the maximum per-
formance a building block can provide. Thus, we assess the max-
imum performance within a set of user strategies which all imple-
ment a particular building block. We use a discrete ordinal scale to
depict the performance of building blocks ( – – , – , ø , + ,
++ ), ranging from very bad to very good.

4.4. Results

4.4.1. RQ1: Analysis of the Bootstrap Problem

The first part focused on the bootstrap (cold start) problem which is
well-known in machine learning field. The challenge here is to start
the learning in the very first phase without any labels at all [MN98].
We are interested in strategies that are able to cope well with the
bootstrap problem, i.e. that sample at least one item of each class
as early as possible in the labeling process. This is essential for the
performance of further learning progression.

User Strategies Figure 1 shows the result of the MNIST data set.
Figures with results for the remaining three data sets are provided
in the supplemental material. We start the result analysis with three
generalizable patterns, each occurred in at least three of the four

Building Block MNIST IRIS GEND. FRAUD

Nearest Spatial Neighb. ++ + + ++
Spatial Balancing ++ + ++ –
Clustering ++ + – – – –
Density Estimation ++ + ++ ++
Outliers Detection – ø – – –
Compactness Estim. – – + – – – –
Ideal Instance Ident. ++ + + –
Class Likelihood ø ++ – ++
Class Prediction ø ++ – ++
Local Class Diversity – – – – –
Local Class Separation – + – ++

Table 4: Analysis of building blocks after the bootstrap. The perfor-
mances of building blocks differ from Table 3, e.g, blocks capturing
model characteristics show a stronger potential for the later phases
of the labeling process (Class Prediction, Class Separation). Data
characteristics are still beneficial for the labeling performance.

data sets. First, data-based strategies (Centroids First, Dense Ar-
eas First, Ideal Labels First) show particularly good performances
in the very early phase of the process. Furthermore, Ideal Labels
First manages to visit every available class label considerably ear-
lier than Random and AL. We infer that data-based strategies are a
valuable means to tackle the bootstrap problem. However, in the un-
balanced FRAUD dataset these strategies failed; we assume that the
strategies predominantly selected instances of the dominating class
while neglecting the smaller class leading to a weak performance.
Second, most model-based strategies approximately perform at the
pace of AL and Random in early iterations. Model-based strategies
seem to be less appropriate to address the bootstrap problem. Third,
labeling outliers or border regions (Outliers First, Cluster Borders
First, Class Outliers) cannot compete with Random and AL in most
cases and seem to be unsuitable for very early labeling passes.

The result is also reflected in Figure 1 (MNIST). For data-based
strategies, we observe a steep increase from the start, which flattens
out after about 20 iterations. AL strategies start to outperform data-
based strategies beginning with the 35th iteration. Surprisingly, be-
fore this point Centroids First, Dense Areas First, and Ideal Labels
First strongly outperform AL strategies. Interestingly, Ideal Labels
First is the best strategy to visit each class as soon as possible (see,
e.g., the boxplot in Figure 1). This raises the question how future
VIAL approaches may provide good overviews of the candidates
data to allow labeling ideal labels at first. In this connection, the
notion of “ideal” may also be subject to semantical meanings or
subjective judgment.

Implications of Building Blocks We reflect on the results of the
user strategies and bring the analysis to the granularity of building
blocks (RQ3). A compact overview of the building-blocks’ perfor-
mances is presented in Table 3. The analysis of the bootstrap per-
formance reveals the following insights. First, data-based building
blocks perform particularly well. Second, cluster and density-based
support is more valuable than outlier detection. Third, model-based
building blocks can compete with data-based building blocks in the
outlier-prone FRAUD data set.
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Figure 2: Average performance of strategies after the initialization with one labeled instance per class (MNIST data set). The ULoP still
outperforms remaining strategies significantly. Three data-based user strategies (Centroid First, Dense Areas First, Ideal Labels First)
perform considerably good at start. AL strategies start at a moderate level, but achieve particularly good performances in later phases.
Using the aforementioned data-based user strategies and the AL strategies, we assess a break-even point in the performance at the 35th
iteration. Class Intersection is at random level, remaining model-based strategies perform below Random. In general, data-based strategies
with a focus on dense areas perform particularly well.

4.4.2. RQ2: Performance Comparison after Bootstrap

We investigate the performance of all strategies in the phase of
the labeling process after bootstrapping is solved. For this purpose
the bootstrap problem is resolved in advance with an initial set of
instances including one training label per class. Thus, all strate-
gies start with the same representatives. One core question is how
model-based strategies that intrinsically suffer from the bootstrap
problem will perform in this later phase, compared to the remain-
ing strategies. Again, we evaluate all strategies on all data sets.

User Strategies Figure 2 shows the result of the MNIST data
set, Figure 3 provides insight about the GENDER voice data set.
Figures of the results for the two remaining data sets are provided
in the supplemental material.

We identify three generalizable aspects. First, some data-based
strategies still tend to outperform the performance of model-based
and AL strategies at the beginning. However, the performance of
data-based strategies heavily depends on the characteristics of the
data and the labeling task. AL strategies are more robust than data-
based strategies and start to surpass the performance of the latter
in the course of the labeling process (MNIST: 35th iteration, IRIS
5th iteration, GENDER voice: 14th iteration). The in-depth inves-
tigation of identifying sweet spots where labeling should automati-
cally switch to AL strategies may be an interesting subject to future
research. Second, the performance of Class Intersection Minimiza-
tion is the best-performing model-based strategy in all four data
sets. Still, Class Intersection Minimization does not outperform
most AL strategies. Third, we observe that model-based strategies
are more robust to outliers.

We make a specific finding when observing the very small IRIS
data set: the performance of Centroids First and Dense Areas First
decreases considerably after 20 iterations. We assume that small
data sets do not require labeling many centroid-like instances. It
is even possible that there are no centroid-like instances left in
the candidate set. Figure 2 confirms another insight: instances be-
ing outliers or located in border regions contribute less to the per-

formance. We hypothesize that these strategies may have their
strengths in very late phases of the labeling process when robust
class boundaries have been found which just have to be further re-
fined. We further observe that outliers in the GENDER voice data
set strongly degrade the performance of Centroids First. Another
problem observed for data-based strategies is caused by unbalanced
label distributions. The comparatively weak performance may orig-
inate from clustering, i.e., both clusters (in case of a binary classifi-
cation problem) may be located in regions of the same, dominating
class (observed for the FRAUD data set, depicted in the supple-
mental material).

Implications of Building Blocks Again we analyze the indi-
vidual building blocks (RQ3) and observe interesting patterns in
the results, see Table 4. First, algorithms focusing on data char-
acteristics (Nearest Spatial Neighbors, Spatial Balancing, Cluster-
ing, Density Estimation) are in particular valuable for this particular
phase of the labeling process. Second, the analysis of outliers seems
less relevant in this phase. Third, model-based building blocks in-
dicate their potentials and may be more tightly coupled with build-
ing blocks used in AL. From a data set perspective, we identify
problems for GENDER voice and FRAUD. Clustering in particular
suffered from outliers and class imbalance.

5. Discussion and Future Work

Our experiments provide an in-depth analysis of different user-
based candidate selection strategies. The long-term goal of our
work is twofold. First, the development of better AL algorithms
that also include user-centered aspects. Second, the use of these
algorithms for better guidance of users in future visual-interactive
labeling systems. During our experiments, we identified a number
of issues relevant to the realization of our goal and which we dis-
cuss in the following.

From User Strategies to Parameterizable Building Blocks.
The implementation of the identified building blocks requires the
specification of a number of parameters and choices to be made,
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Figure 3: Average performance of strategies after the initialization with one labeled instance per class (GENDER VOICE). ULoP shows the
best performance by far. Dense Areas First, Ideal Labels First, and Equal Spread start strong, but get outperformed by AL strategies between
the 10th and 20th iteration. Class Intersection Minimization is the best model-based strategy that almost competes with AL. The remaining
model-based strategies perform below Random. Centroid First shows particularly weak performance, potentially suffering from outliers.

such as the selection of k in K-NN or the selection of a suitable
clustering algorithm. In addition, we also want to note that, be-
yond the 11 building blocks, other building blocks might exist to
formalize other strategies. While the formalization of user strate-
gies may reduce the amount of interaction needed from the user, it
opens up large design space for the implementation of the strategies
and thereby shifts the users’ responsibility from selecting instances
rather to selecting parameters for strategy automation. The auto-
matic selection of appropriate parameters is an interesting direc-
tion of future research. In terms of the VA principle our proposed
formalization opens up new possibilities. A better understanding
of user strategies allows for the development of better visual guid-
ance methods. Furthermore, it may become possible to automate
the candidate selection process as a whole.

Dependency on Characteristics of Data Sets. We used four
different data sets for the assessment of strategies, varying in car-
dinality, size, class balance, and outlier rate. The performance dif-
ferences between the user strategies depend on these factors. Data-
based user strategies (Centroid First, Dense Areas First, and Ideal
Labels) performed well for MNIST which is large, pattern-rich
(10 classes), and cleansed. The potential of these strategies de-
creased quickly for the small IRIS data set. Additionally, data-
based strategies (especially Centroids First) had problems in the
presence of outliers (GENDER voice and FRAUD detection). In
contrast, model-based strategies with their potentials in later phases
of the labeling process seemed to be more robust against outliers.
However, model-based strategies had problems with data sets with
many classes, which requires further research. In general, taking
local data characteristics into account (particularly density estima-
tion, as well as class prediction) can help to support the labeling
process. A challenge that remains for all strategies are very large
datasets, which are difficult to tackle by VIAL approaches. For such
datasets, on the one hand classifiers are required with a large ca-
pacity to enable the modeling of the large-scale data. On the other
hand, user strategies may be useful in this context to accelerate the
labeling process by finding better candidate instances for labeling
in less time making the overall labeling task more efficient.

Comparison with AL Strategies. Data-based user strategies
demonstrated their potential in early phases of the process, e.g.,

to support AL strategies suffering from the bootstrap problem.
The experiments also showed that AL strategies become increas-
ingly strong in the course of the labeling process. This raises ques-
tions about the sweet spot between these two classes of algorithms,
which poses an interesting subject to future work. Figure 2 demon-
strates such a sweet spot visually, at iteration 35 when AL strate-
gies start to outperform the user strategies. We confirm the supe-
rior performance of AL to model-based user strategies in average.
Given the potentials provided with the underlying building blocks
(cf. Tables 3 and 4), the improvement of model-based strategies in
combination with AL strategies poses another interesting future di-
rection. Leverage points that may foster the performance are using
the Class Likelihood building block to incorporate label uncertainty
and Equal Spread to better respond to data characteristics.

Complexity of User Actions. With the variety of the four
data sets, we observed that many formalized user strategies have
strengths, but also weaknesses. Considering that the performance
of users in a recent experiment [BZSA17] was as good as AL or
better, we conclude that users often applied more than one particu-
lar strategy during the labeling process. More formally, we assume
that no single formalized user strategy can replace real users in the
VIAL process. This implies several aspects for future investigation.
First, research in the observation of users may reveal other strate-
gies that can be formalized. Second, the observation of changes in
user strategies in the course of the labeling process may yield new
insights and potentials. Finally, the combination of existing user
strategies may improve the performance and come closer towards
the ULoP.

Relations between Strategies. A similar aspect is the analysis of
relations and complementing strengths between strategies as well
as between building blocks. Tighter coupling of AL strategies with
user strategies may lead to novel powerful selection strategies. An-
other dimension in the analysis is the temporal domain of the label-
ing process itself. Which strategy is best suited at a given phase in
the labeling process? Further insights are necessary to select, com-
bine or detach strategies for different points in time in the labeling
process. The analysis of the very early phase (bootstrap phase) and
the later phase brings a first evidence that the series of user strate-
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gies and building blocks require individual weighting in the course
of the labeling process.

Exploratory Interactive Labeling. Our experiments are based
on data sets with a known number of classes, known class cardi-
nalities (balance), and we only observed instances which, by no
doubt, were assignable to a single true label. In our experiment,
we identified that knowledge about the label alphabet and the ex-
pected distribution of labels in the data are key criteria for effective
labeling. For real world cases the ability to formalize a given label-
ing task becomes more difficult. We expect that VIAL combining
visual-interactive interfaces with AL and ML-support are a bene-
ficial means to address such complex real-world learning tasks. In
such situations, we assume that users in the loop are, and remain,
indispensable to conduct effective and efficient labeling.

6. Conclusions

We presented the first formalization of user strategies for select-
ing instances in the labeling process. The formalization of these 10
high-level user strategies builds upon 11 low-level building blocks
resembling techniques from data mining, machine learning, statis-
tics, and information retrieval. We assessed their performance with
four data sets varying in size, cardinality, label balance, and de-
gree of outliers. The results showed that data-centered user strate-
gies work considerably well in early phases of the labeling process,
while model-based strategies (and active learning strategies) in this
phase suffer from the bootstrap problem. Furthermore, cluster- and
density-based algorithms outperformed outlier-based strategies for
early candidate selection. Model-based user strategies performed
better during later phases of the labeling process, possibly indicat-
ing room for further improvement. In general, we conclude that
1) no single strategy is consistently outperforming others for the
different data sets we used, 2) formalized user strategies partly out-
perform active learning strategies, and 3) formalized user strategies
may not replace real users selecting instances.

Follow-up research may include the analysis of relations be-
tween strategies and the combination of user strategies to lever-
age complementary strengths. We believe that both the machine
learning and the visualization/visual analytics community can ben-
efit from the proposed approach of formalizing user strategies. On
the one hand, our approach might help to shift the development
towards user-centered active learning approaches, which leverage
user knowledge. On the other hand, it might foster designing better
user-guidance concepts for visual interactive labeling approaches.
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