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Abstract
An overarching goal of active learning strategies is to reduce the human effort when labeling datasets and training machine
learning methods. In this work, we focus on the analysis of a (theoretical) quasi-optimal, ground-truth-based strategy for la-
beling instances, which we refer to as the upper limit of performance (ULoP). Our long-term goal is to improve existing active
learning strategies and to narrow the gap between current strategies and the outstanding performance of ULoP. In an obser-
vational study conducted on five datasets, we leverage visualization methods to better understand how and why ULoP selects
instances. Results show that the strategy of ULoP is not constant (as in most state-of-the-art active learning strategies) but
changes within the labeling process. We identify three phases that are common to most observed labeling processes, partition-
ing the labeling process into (1) a Discovery Phase, (2) a Consolidation Phase, and (3) a Fine Tuning Phase.

CCS Concepts
•Human-centered computing → Information visualization; •Theory of computation → Active learning;

1. Introduction

Labeling refers to the task of assigning additional information to
data instances, such as class labels, categories, or relevance scores.
Today, labels are essential for the supervised training of machine
learning (ML) models. Prominent examples for ML tasks include
the recognition of different objects (e.g. people, cars, street signs
[KSH12]), or between handwritten digits [LC10]. As such, labeling
data instances is a precondition for supervised ML.

Labeling is, however, an expensive and time-consuming task be-
cause in practice a large number of labeled instances is required to
enable successful training of accurate ML models. Active learning
(AL) [Set12] is an incremental learning methodology that aims at
reducing labeling costs. AL puts the user into the ML loop and ac-
tively selects candidates for labeling (according to a labeling strat-
egy) to improve the ML model in an efficient way. Recently, it has
been shown that AL can benefit substantially from the combination
with visual analytics approaches in a unified process, referred to
as visual-interactive labeling (VIAL) [BZSA18]. VIAL combines
the strengths of humans and active ML models in the selection of
meaningful candidates for learning.

Recent experiments with different labeling strategies have shown
that the selection of useful candidate instances is far from being
optimal both in pure AL as well as in combined VIAL approaches.
To assess the performance of strategies a quasi-optimal selection
strategy was defined that always queries the most useful instance
for the learner. The most useful instance is found simply by trying
out all possibilities in a greedy fashion. This strategy serves as an
upper bound for AL (which we call Upper Limit of Performance,
ULoP in the following). Experiments revealed a large gap in perfor-
mance between existing strategies and ULoP, which demonstrates
that there is a considerable potential for improvement of strate-

gies [BHZ∗17]. The observed performance gap raises interesting
research questions regarding how a good selection strategy should
work:

• how are instances selected by the ULoP strategy compared to
existing AL strategies and VIAL strategies?

• are there certain patterns or rules in the process of selecting in-
stances that can be observed from the ULoP?

• how to select samples for labeling in an optimal way and how to
formalize selection strategies that better facilitate learning?

We expect that a closer visual analysis of the ULoP strategy may
lead to new insights why the strategy considerably outperforms
other selection strategies. Based on these findings it may be pos-
sible to create better strategies to facilitate labeling.

The comparative analysis of different AL strategies has a long
tradition [RM01], providing insight into performances of different
classes of strategies as well as dependencies to data characteristics
see, e.g., Burr Settle’s survey [Set12]. Seifert and Granitzer [SG10]
investigated the performance of user-based picking strategies com-
pared to uncertainty based sampling (AL) [Set09]. Building upon
the former, a recent experiment analyzed the performance of for-
malized user strategies in detail, using the ULoP strategy as a
means to anticipate potential space for improvement [BZL∗18].

We present the results of an observational study of the ULoP
strategy and leverage visualization to obtain deeper insights into the
quasi-optimal labeling process. Our contributions are as follows:

• we present the results of the labeling process performed by
ULoP, visually observed by five analysts for five datasets

• we condense the observation results and identify commonalities
and differences in patterns observed for the five datasets.
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• we propose the partition of the labeling process into three prin-
ciple phases (Discovery Phase, Consolidation Phase, and Fine
Tuning Phase), where each of which requires individual labeling
strategies to achieve optimal performance.

2. Observation Methodology

Observation Goal and Guiding Questions: We conduct an ex-
periment† that seeks to understand what makes the ULoP strategy
particularly powerful compared to existing strategies. For this pur-
pose, we use a visual analysis approach that allows the in-depth
investigation of each iteration of the ULoP labeling process. We
conducted five observation trials for each dataset, each performed
by a well-informed data analysis expert from our team (all of them
authors of this paper). The procedure was repeated for five differ-
ent datasets. The experiment time roughly took one minute for ev-
ery iteration The goal was to derive insights for every dataset. Ad-
ditionally, we describe the commonalities and differences of find-
ings across the characteristics of individual datasets to draw more
general conclusions and formulate guidelines. Overall, we investi-
gate three guiding questions with the overall goal to improve can-
didate selection in future approaches. Given the assumption that
low-dimensional visual representations reveal interesting patterns
about ULoP’s characteristics, our guiding questions were: Can we
infer common denominators for visual patterns? Are there changes
in the course of the labeling process? Are there commonalities and
differences between datasets?

Formalization of the Upper Limit of Performance: Many la-
beling strategies have in common that they try to determine the
particular instance from the unlabeled dataset for labeling which is
most likely to improve the ML model most [Set09]. To simulate a
quasi-optimal labeling strategy, our ULoP strategy is modeled by
executing a greedy search for instances based on ground truth data.
In each labeling iteration, the algorithm evaluates the benefit of
each individual unlabeled instance by retraining the classifier with
that instance and finally selects the instance which contributes most
to classification performance. We use an ensemble of four clas-
sifiers including Random Forest [Bre01], NaiveBayes [HKP12],
SVM (based on SMO) [Pla98], and a MultilayerPerceptron clas-
sifier [RHW86] to reduce the influence of a particular classifier and
its learning strategy on the experiment outcome.

Datasets: We employ five different datasets with heterogeneous
characteristics to reduce dataset bias in the experiments and to in-
vestigate the labeling behavior in different situations. Table 1 pro-
vides an overview.

Experimental Setup: A pre-condition for the success of the ob-
servational experiment is the ability to identify visual patterns of
the ULoPs strategy. The output of the ULoP algorithm is a continu-
ous value between zero and one, reflecting the performance gain of
a given instance for the next labeling iteration. For balanced label
sets, we use accuracy [FHOM09] and for unbalanced datasets the
F1 score [SWY75]. The performance scores are computed on an
independent test set for every dataset.

A core benefit of our visual approach is the ability to show not
only winning candidates, but the distribution of gains across all
candidate instances. In our labeling experiment, we map the accu-
racy gain of candidates to a continuous univariate color map (gain

† we use the term experiment in its general meaning, and not the narrow
interpretation as null-hypothesis testing experiments, which is sometimes
associated with it in the VIS and HCI communities.

Figure 1: Visual interface used for the observational study. Two it-
erations of the labeling process for the MNIST dataset are shown.
Dimensionality reduction (here: t-SNE) allows the representation
of instances in 2D. Color encodes how much the learning model
will benefit from labeling a candidate (orange is best). Left: The Re-
sults of ULoP strategy suggest that labeling instances from classes
8 or 9, after all remaining classes (digits) have already been la-
beled once, is most beneficial. Right: Every class has been labeled
exactly once. The Output of ULoP then suggests that choosing dig-
its of class 1, located at the left margin of the manifold would yield
the strongest improvement.

increasing from dark blue to saturated orange). Instances are de-
picted with a textual information about their true class (unlabeled
as well as labeled). Instances already labeled by ULoP are colored
black. To represent the high-dimensional instances in 2D, we ap-
ply dimensionality reduction. The resulting data representation is
depicted in Figure 1. To account for reconstruction errors, the the
data experts were informed to switch between four algorithms in
the labeling process (PCA [Jol02], t-SNE [vdMH08], non-metric
MDS [Kru64], and Sammons Mapping [Sam69]). According to the
informal feedback of the experts, t-SNE was predominantly used
during observation.

We always start with completely unlabeled data to investi-
gate how ULoP resolves bootstrap problems (e.g., occurring in
AL [AP11]). However, we randomize the selection of the very
first instance for labeling resulting in unique trials for every ana-
lyst. This is important since ULoP is a deterministic process and
a randomization is necessary to avoid biases. The observation of
a labeling process ends when the performance measure converges
(stop criterion). The longest trials were conducted for the ISOLET
dataset with 26 classes (criterion reached with approx. 80 itera-
tions).

3. Results

We first summarize the observations of the labeling process for
each of the five datasets. The results are presented in a supplemen-
tal material document in detail and exemplified in Figures 1, 2, 3, 4,

Dataset Cls. Train Test Bal.
MNIST [LC10] handwritten digits 10 500 1000 yes
FRAUD [PCJB15] credit card frauds 2 500 2500 no
IRIS [Lic13] classes of iris plants 3 75 75 yes
GENDER [Bec16] female/male voices 2 500 1000 yes
ISOLET [CMF90] spoken letters 26 650 650 yes

Table 1: Employed datasets. The table summarizes the number of
classes and the number of training and testing instances for each
dataset, and whether the label distribution is balanced or not.
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Figure 2: Visual observation of the IRIS dataset observed with PCA (iterations two to four). Class 1 (setosa) is clearly separated and was
labeled first. Second, class 2 is labeled (versicolor) and finally, class 3 (virginica) is labeled with an instance near the class center of gravity.
The fourth label is again of class 1 (not shown). Thus, ULoP accessed one instance of each class first, as it did for every other dataset.

and 5. In the following, we reflect on differences and similarities of
these findings, and draw generalizable conclusions.

3.1. Generalization of ULoP Results
During the observations of labeling processes across the five
datasets, we have identified different behaviors and labeling pat-
terns. Individual observation results for the different datasets are
compiled in the supplementary material due to limited space. Here
we have consolidated our observations to derive general behav-
ioral patterns of ULoP that are similar across all datasets. A ma-
jor insight gained in all five datasets was the existence of three
core phases in the labeling process, which we refer to as Discovery
Phase, Consolidation Phase, and Fine Tuning Phase. According to
these phases, we structure the following result descriptions.

3.1.1. Discovery Phase
The discovery phase starts with the completely unlabeled dataset.
In the very first labeling iterations, the ULoP strategy always la-
beled each class exactly once as soon as possible, and thereby ef-
fectively solved the bootstrap problem (5/5 analysts, 5/5 datasets).
We have the impression that some classes were preferred by the
ULoP strategy. In case of the MINST dataset the classes 0, 1, 6,
and 7 were labeled comparatively early, while classes 2, 4, 5, 6, 8,
and 9 were addressed later. For the ISOLET dataset, early classes
were A, I, Y, X, and C in contrast to the late classes B, V, and P.
Overall, we identified the following influencing factors:

• Compact classes are favored. This is most probably because they
facilitate the inference of class predictions for a series of in-
stances from labeling a single representative
• Similar to the former, cluster structures are favored for labeling
• Classes with a clear separation from other classes are favored
• Classes located in marginal areas of the manifold are preferred

Additionally, a driving principle of the ULoP strategy during the
discovery phase is to obtain a uniform sampling of the (projected)
feature space, i.e. ULoP tries to spatially distribute the labels across
the entire space. To sum up, the primary goal in the discovery phase
is to discover how many classes the dataset is composed of and
to solve primarily the bootstrap problem to obtain a first complete
classification model. The discovery phase ends with the selection
of exactly one representative instance for every class.

3.1.2. Consolidation Phase
In the second phase, we observed that different strategies were ap-
plied by the ULoP algorithm.

• We infer that ULoPs results always lead to a balanced number
of instances, even though classes are not selected in a strictly
alternating way.

• Dense structures in the data (i.e. clusters) were preferred. In par-
ticular, compact and well separated classes were favored (simi-
lar to our observations in the discovery phase). We were able to
clearly observe this behavior for all datasets except the ISOLET
dataset for which the 2D projection is particularly dense and the
large number of classes impedes a clear clustering.

• Inside of clusters, it is not necessarily the (visible) centroid
which is considered as most important. We cannot decide if this
is a particular characteristic of the ULoP strategy or a visual
artifact. In fact, there is a tendency to label centroid-near in-
stances for datasets with low number of classes (GENDER voice,
FRAUD, IRIS), while in datasets with many classes inter-class
dependencies may introduce additional constraints.

• The ULoP strategy favors instances within clusters, which have
already been labeled once. We assume this pattern to be benefi-
cial for classification because it may help to strengthen the trust
of the classifier in a cluster and thereby in its class model.

• In cases where a class is split into two clusters, both clusters are
covered before one cluster is further consolidated. This shows
that in the consolidation phase ULoP’s results (mostly) capture
the coarse structure (topology) of the classes.

The result of the consolidation phase is a label set that (i) is bal-
anced, (ii) captures the coarse shape of the class distributions, and
(iii) samples instances in areas of overlapping classes.

3.1.3. Fine Tuning Phase

After the consolidation phase, different strategies are addressed by
the ULoP strategy to further improve the labeling. At a glance, we
observed a transition from synoptic to elementary behavior, i.e., in-
stances such as outliers are selected which are not necessarily rep-
resentative for larger structures (e.g. clusters). The most frequently
observed labeling strategies include:

• Examination of local unexplored structures in the data
• Refinement of not yet well separated classes
• Focus on areas with multiple overlapping classes
• Labeling of outlier instances

At the start of the fine-tuning phase, the classifier’s performance
usually had already achieved a high level for the respective dataset.
Further labeling merely caused small changes in the classifier per-
formance. The major purpose of the fine tuning phase seems to be a
refinement of the classes with respect to special cases (e.g. outliers)
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Figure 3: Visual observation of the GENDER voice dataset after
six iterations (three male, three female labels, see the six black in-
stances with rectangles). A pattern can be seen in iteration seven
and eight: two male instances are chosen to consolidate the large
male cluster at the center. With that, the accuracy increases to 0.88.

which are difficult to model statistically. This may also be a reason
why performance decreases are sometimes observed in this phase,
i.e. the trained statistical models get biased by outliers.

3.2. Discussion

ULoP The greedy ULoP strategy is limited (and thus only quasi-
optimal) by the fact that it looks exactly one iteration into the
future. Especially in the IRIS experiment with its similar-looking
classes 2 and 3, it became apparent that the shortsighted nature of
ULoP causes problems. In IRIS, ULoP labeled 31 instances of class
1 and only three instances of class 2 and 3 each during the label-
ing process. The limited search range of ULoP yields a strongly
imbalanced distribution of class labels which may impede further
labeling iterations.

Allowing to query two or three additional instance labels in such
cases could solve this imbalance and could yield a much better ac-
curacy in the medium term. Such an extension of ULoP raises fur-
ther questions like: how many instances should we take into con-

Figure 4: Visual observation of the FRAUD dataset after 25 iter-
ations using a class-based color coding. Frauds (1-labels) build a
separate cluster with all dimensionality reduction techniques. In t-
SNE it can be seen that few fraud instances in the large 0 cluster
are still classified as no fraud requiring individual treatment (fine
tuning). After iteration 10 the average F1 score remained at about
0.96. F1 was chosen to account for the unbalanced class priors.

Figure 5: Visual observation of the ISOLET dataset in iteration 24
and 27. In iteration 24 only the labels B, P, and V are still missing.
Interestingly, those letters are phonetically similar and mostly lo-
cated in a distinct region of the manifold. In iteration 27 every label
has been seen exactly once. The preferences for the next label have
a slight tendency towards compact clusters in border regions.

sideration? And how do we deal with combinatorial explosion of
possible solutions? Looking only two instances into the future in a
dataset of n instances would yield a computational complexity of
O(n2), and would in practice require the classifiers to be trained
millions of times in every iteration.

Dimensionality Reduction Dimensionality reduction has
shown to be useful for the analysis of labeling strategies in
many cases. However, especially for the ISOLET dataset (with 26
classes) we observed that dimensionality reduction also poses some
challenges. This became most apparent for datasets with a large
number of classes where we observed many class confusions in the
embedding manifold. Further research into visual interfaces may be
useful to support dimensionality reduction with additional views.

4. Conclusion

We presented the results of an observational study of a quasi-
optimal strategy for labeling data, conducted on five datasets. The
major conclusion of our investigation is that the labeling process
can be partitioned into different phases where each phase follows
different instance selection strategies. This is an interesting finding,
especially due to the fact that in today’s active learning approaches
usually one strategy is employed over the entire labeling process.
In the Discovery Phase every class is labeled exactly one time, in
the Consolidation Phase the coarse class structures are sampled
with additional labels, and in the Fine Tuning Phase class bound-
aries and outliers are refined. With the results, we made one step to-
wards better understanding existing potentials and mechanisms to
improve future labeling strategies. Future work includes research
and experiments with alternative criteria for upper limits of perfor-
mance, other visual interfaces for the analysis of labeling strategies
(especially for multi-class problems), as well as research into sce-
narios with unknown class cardinality.
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