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1 Introduction

Data visualization is the art and science of mapping data to graphical vari-
ables in a way that facilitates the identification of individual values and
aggregate patterns. The main motives are data exploration for analysts and
communication of information toward a recipient. One should not underes-
timate, however, some of the more circumstantial aspects of visualization:
decorative appeal, symbolism, and suggestiveness.

Networks pose unique challenges to data visualization because of inherent
trade-offs and dependencies among the elements in a graphical mapping. A
network diagram of a subway system, for instance, should facilitate travel
planning so that finding stations and following lines takes precedence over
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y 1 2 3 4 5
1 0 1 1 1 0
2 1 0 1 1 0
3 1 1 0 1 1
4 1 1 1 0 1
5 0 0 1 1 0

(a) y ∈ {0, 1}n×n (b) E ⊆ V × V (c) E ⊆
(
V
2

)
Figure 1: A network y and visualizations of the associated directed and
undirected graphs G(y) = (V,E) with different layouts and edge styles.

geographical accuracy. Changing the shape of subway lines, however, influ-
ences where stations can be placed. Layout problems such as this become
even more challenging when networks are large. In addition to visual clut-
ter, for instance, computational complexity of the layout algorithms is a
concern. Many other challenges beyond layout need to be addressed, includ-
ing additional information associated with nodes and links and alternative
representations such as adjacency matrices.

Our contribution to this volume is split into two main parts. The first
part, in Section 2, provides a high-level overview of the main challenges asso-
ciated with the visualization of networks and a glimpse at some of the more
common techniques to address them. In Section 3, we look more concretely
at the visualization of networks from two different applications domains and
how it is enabled by interactive software tools. The chapter concludes with
opportunities for future work in network visualization.

2 Principles

Adopting the notation used throughout this book, we define a (binary) net-
work with n nodes as a (binary) data matrix y ∈ {0, 1}n×n. More general
situations are considered briefly in Section 2.5.

Network visualizations are commonly produced using techniques devel-
oped for graphs. A graph representation G(y) = (V,E) of a network y con-
sists of the set V = {1, . . . , n} of vertices and the set E = {(i, j) ∈ V × V :
yij = 1} of (directed) edges. If y is symmetric and non-reflexive, i.e., yij = yji
and yii = 0 for all 1 ≤ i, j ≤ n, the network can also be represented as an
undirected graph in which the edges are unorderd pairs {i, j} ∈ E ⊆

(
V
2

)
.

For convenience we will concentrate on such undirected graphs for the most
part.

Multiple forms of visualization have been devised for graphs. Below we
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Figure 2: 12th century copy of a diagram showing musical relationships orig-
inally due to Boëthius (c. 480–524). Source: St. Gallen, Kantonsbibliothek,
Vadianische Sammlung, VadSlg Ms. 296, f. 89r. Boethius, De arithmetica, De
institutione musica https://www.e-codices.ch/en/list/one/vad/0296

introduce an intuitive design exemplified in Figure 1 that is also the most fre-
quently used, and since its spatial arrangement has more degrees of freedom
than a statistical chart, we briefly review the problem of layout in Subsec-
tion 2.2. In Subsection 2.3 we give special consideration to large networks.
This section ends with a discussion of alternative representations and some
ideas for the visualization of multivariate network data.

2.1 Standard representation

The most common representation of graphs are node-link diagrams in which
vertices are represented by point-like features and edges by curves or line
segments connecting them. Examples are shown in Figure 1 and alternatives
are discussed in Subsection 2.4.

Node-link diagrams appear long before Euler’s seminal work on the bridges
of Königsberg, which is usually considered the beginning of graph theory but
does not contain a drawing of a graph. For centuries, point-features and con-
necting curves had already been used on maps and for non-spatial relations,
including ancient board games, astrological and logical diagrams, ancestral
relations, and geometric drawings. Kruja et al. [26] give a short history of
graph drawing, and one is likely to turn up further stunning examples such
as the one shown in Figure 2 when digging deeper.
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Although the standard representation is intuitive, it is prone to a number
of potential shortcomings. Experiments show that small angles and cross-
ings of edges may hinder reading [34, 42] spatial proximity suggests cohesive
groups even when they are connected only loosely [28], and, quite obviously,
identification of elements becomes difficult in the presence of overlap.

2.2 Layout

The research field of graph drawing [38] is concerned with geometric rep-
resentations of and layout algorithms for graphs and hypergraphs whereas
visualization design, task appropriateness, and user interaction are more com-
monly studied in the areas of information visualization, visual analytics, and
human-computer interaction.

Spatial arrangement, or layout, is a non-trivial issue with any graphical
representation. Unlike statistical charts such as scatterplots, time series,
or pie charts, however, node-link diagrams usually do not come with given
relative positions and thus exhibit more degrees of freedom. This is a curse
and a blessing, because on the one hand, we can adjust the layout to express
additional information and/or increase readability, and on the other hand,
edges create complex dependencies turning both into rather daunting tasks.

Readability criteria such as density distribution, size of angles, number
and angles of crossings, bends, area, symmetry, etc. are sometimes referred
to as aesthetic criteria, and their priorities may be influenced by the task at
hand. In graph drawing, these are turned into constraints or optimization
objectives for layout algorithms.

While specialized algorithms have been proposed for classes of graphs such
as trees and planar graphs, and for representation variants such as layered
or orthogonal layouts, one group of layout algorithms clearly dominates the
practical use of algorithms for general undirected graphs. They are referred
to as force-directed algorithms [25, 5] because they are inspired by physical
analogies of repelling nodes (for good distribution and little overlap) and
edges acting as springs between them (for uniform edge length and visually
recognizable group cohesion). As a byproduct, symmetries can often be
recognized well, and the simulation of physical forces facilitates modes of
interaction that feel natural to users.

On the negative side, the simple, intuitive, and widely available imple-
mentations are non-deterministic, sensitive to poor initialization, they often
get stuck in local minima from which the iterative improvements strategy is
unable to escape, and they have difficulties with graphs of low diameter or
large size.

The most robust and reliable variants are instances of multidimensional
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scaling, with the shortest-path distance as input and coordinates as output.
Instead of a force-calculation determining an update step, minimization of
a layout objective function is attempted. For a two-dimensional layout p =
(pi)i∈V ∈ Rn×2 with pi = 〈xi, yi〉 the squared relative error of shortest-path
distances in the graph represented by Euclidean distances in the layout is
defined as

stress(p) =
∑
i,j∈V

1

dist(i, j)2
(‖pi − pj‖ − dist(i, j))2 .

Exact minimization is computationally intractable but with good initializa-
tion and carefully designed iterative improvement procedures such as ma-
jorization [15, 40], low-stress layouts can be obtained reliably and efficiently [9].
Approximate minimization for large graphs is discussed in the next subsec-
tion.

Note that the stress objective can be modified by altering the notion of
target distances, by varying the relative contribution of dyads i, j, or by build-
ing auxiliary graph structures that may include virtual vertices and edges.
Other layout requirements may be expressed as constraints that restrict the
space of admissible layouts for instance by fixing vertices to certain areas or
relative to each other. The approach is thus more flexible and can be adapted
to more different application settings than one might initially suspect. This
includes dynamic graphs.

The importance of the stress-minimization approach is reinforced by the
fact that other important approaches turn out to be special cases. Spectral
layout, where coordinates are determined from eigenvectors of the Laplacian
matrix of a graph, and barycentric layout, where some vertices are fixed and
the others are placed in average position of their neighbors are examples.

A recent development are neighborhood embeddings, where distances are
determined only locally and patched together, appear to be especially suited
to highlight clustering structure [27, 35].

2.3 Large networks

With increasing size of a network, the problem of visualizing its graph changes
until it becomes qualitatively different.

An obvious challenge for layout algorithms is running time. Without
special precautions, a single iteration moving every vertex only once requires
time linear in the size of the graph. Speed-up techniques attempt to reduce
the number of iterations using fast methods that get the larger distances ap-
proximately right so that the iterative procedure does local adjustments only.
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Multilevel-methods obtain suitable initializations by recursively operating on
smaller graphs [13, 17, 22]. Simpler but no less effective is the use of approx-
imate classical scaling [8] a spectral decomposition method that prioritizes
larger distances, and requires near-linear running time. Additionally, the
time spent in iterations can be reduced by coarsening the stress function and
thus eliminating redundancies [32], or by parallelizing algorithms for GPU
computation [40].

Beyond runtime, display limitations are another concern. Even with suffi-
cient resolution to display tens of thousands of line segments for edges, it may
not be possible for a human viewer to discern the details. Worse, the nature
of the stress objective is such that low variance in distances leads to largely
uniform vertex distribution and cluttered edges. This is sometimes referred to
as the hairball-problem of small-world networks. Compensation techniques
include pre- and postprocessing during layout generation and level-of-detail
rendering of a given layout.

An example of a preprocessing technique particularly suited for graphs
with low variance in distances is the determination of a backbone, i.e., a
subgraph induced by edges that are contained in regions of relatively high
local density [31]. Absent many shortcut edges, average distances in such
backbone structures are generally larger which makes their layout easier.

Edge bundling is a technique that has been used in both, pre- and post-
processing. In the most common variants [21, 14], a given layout is modified
by bundling the middle segments of edges that would run close to parallel
anyway because they start and end in similar layout regions.

Abstractions and simplifications can also be accomplished in graphical
space, for instance by adjusting the level of detail at which a graph with
a given layout is drawn [44]. A more comprehensive overview is given by
von Landesberger et al. [39].

2.4 Other representations

The standard representation in the form of node-link diagrams is not the only
way of visualizing networks. Straightforward variants include drawings with
orthogonal edges (as are common for circuit schematics) or other restricted
slopes (as in metro maps). Implicit representation of edges appears, for
instance, in inclusion drawings of trees where vertices are represented as
areas and these areas are placed within other areas such that parent-child
relationships can be inferred from area inclusion.

Many other representations exist but are often feasible only for graphs
that satisfy structural properties such as acyclicity or planarity.
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A common alternative that applies to general graphs are matrix repre-
sentations where rows and columns are indexed by the vertices and edges are
represented in matrix cells. A one-dimensional layout problems remains: the
(joint) ordering of rows and columns. This ordering is important as it relates
to the recognizability of structural features in the form of cell-arrangement
patterns such as on- or off-diagonal blocks (density within or between groups)
and crosses (high-degree vertices brokering between groups).

Just like graph layout algorithms, many ordering criteria and algorithms
have been considered [3]. Most of the objectives are computationally in-
tractable [10] giving rise to interesting computational challenges.

A comparison between standard and matrix representations suggests that
they have complementary strengths and weaknesses [16]. Consequently, there
are approaches that transition between these representations at different res-
olution levels [1] or combine them in a single representation based on local
density [20] or select paths [37]. Attempts to alleviate some of the weaknesses
include modifications adding cues at the boundaries [19] and decomposing
the rectangular area into patches [2, 11]. Matrix representations are also
particularly suited for certain forms of interaction such as resizing or folding
rows and columns [12].

Finally we mention that hypergraphs, where edges are subsets of vertices
of any cardinality, can be represented as bipartite graphs in which both the
original vertices and edges are represented as vertices, and each vertex-edge
incidence is represented by an edge. While this representation allows to use
common graph visualization techniques, more specific representations such
as Venn diagrams exist as well.

2.5 Multivariate networks

A network as defined above is a single variable representing relationships
between entities. In realistic data-analytic scenarios, it is unlikely to be
the only variable. Often, there will be additional node-level attributes and
multiple types of relations, possibly on changing sets of nodes. Even more
dimensions are introduced if one or more of the variables vary over time,
which results in a dynamic network. Networks made up of multiple relations
are often referred to as multilayer networks [24] and their visualization is
discussed in [23].

As an example consider the visual encoding of two node variables in co-
ordinates. Their quantitative, ordinal, or categorical values constrain the
spatial layout and in the extreme case node positions are fixed as in a scat-
terplot [43]. Note that choosing such a graphical mapping favors the nodal
attribute data over network structure which was the sole criterion in the
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layout algorithms above.
Many other ways of visually encoding multivariate networks exist. Often,

additional graphical elements are added such as labels, colors, and glyphs for
enriching nodes, line thickness, shapes, and gradients for enriching links, or
additional separating lines and boundaries to compartmentalize information.
Figure 3 shows an example in which the fixed location of each dyad in a
matrix representation is leveraged for aligning time series data.

The more a network graphic is visually enriched, the more relevant the
importance of general visualization guidelines. When using color to group
nodes into categories it is, for instance, important to understand that a viewer
will only be able to distinguish reliably six to twelve of such categorical color
bins. An overview of work that helps to properly ground designs in human
perception is provided by Munzner [29].

3 Application Examples

From a data visualization perspective, the graphical representation of a net-
work should be designed such that relevant information can be perceived
with ease and accuracy. Since data, information, and tasks differ across ap-
plication domains, so does appropriate visualization. Domain traditions and
prior knowledge of recipients require further adaptation.

We next discuss network visualization in two very different scenarios to
illustrate the breadth and depth of issues arising.

3.1 Social Networks

When social phenomena are described as networks of social relations, the
information to be conveyed in their visualizations may be manifold, with
different foci, different aspects, and on different levels [18, 4]. Thus, an
especially rich set of tasks and visualization techniques has evolved around
the concept of social networks [6].

On the macro level, the interest is generally in characteristics of the social
network as a whole. Such characterics may include whether the network
consists of a dense core and a loosely connected periphery or whether it
is polycentric, whether there are many shortcuts that accelerate diffusion
or whether there are bottlenecks, and whether subnetworks are organized
hierarchically or whether the network is flat. Certain characteristics that
are commonly encountered in social networks require adaptation of layout
algorithms as described for small-world networks in Section 2.2.
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Figure 3: Evolution of a social network of co-habitating students [30] with
15 waves of observation stacked from bottom to top in each cell [7]. Length
and tilt of each line indicate how the two students involved ranked each other.

On the micro level, the interest is in individual differences and special
configurations such as node centrality and the prevelance of substructures
which are sometimes referred to as motifs. Network-analytic techniques fo-
cusing on characteristics of nodes or links typically yield additional attribute
data and therefore lead to multivariate network visualization problems.

The example in Figure 3 depicts a series of social networks in a single
matrix representation by combining all observations pertaining to the same
dyad into one stacked glyph that captures extent and asymmetry of mutual
preference.

3.2 Overlay Networks for Automotive Engineers

In the second example, we discuss a network anlaysis tool called RelEx [36],
which was built to support automotive engineers in understanding in-car
communication networks. The challenges of analyzing such networks are
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Figure 4: Screenshot of the RelEx (Relation Explorer) tool [36]. The
tool comprises three main views: (top-left) the physical network diagram,
(bottom-left) a filtered version of the physical network showing a signal path
of a selected signal, (right) a matrix view showing an overview of the logical
network.

very different as the ones from analyzing social networks. Instead of the
node scalability issue in social networks, the main complexity stems from
the interplay of different network types that form an overlay network. While
there are only a few nodes (up to 100 control units), the network is very
dense, which makes a matrix representation a viable design choice.

Abstractly, in-car communication networks can be viewed as an overlay
network. The physical network builds the foundation and consist of up to 100
electronic control units (ECUs) as nodes, connected by 10-15 different bus
systems as undirected hyperedges1. Overlaid on that is a logical network,
that specifies how signals are exchanged between ECUs. Abstractly, the
logical network forms a multigraph2: the nodes are again ECUs, and the
signals are directed edges between them. The engineers’ primary task is now
to map the logical to the physical network. While there are algorithmic ways
of mapping, the many ill-defined constraints and dynamic processes in an
automobile company make an interactive visual analysis tool a viable choice.

1A hyperedge connects multiple nodes
2A multigraph can have multiple edges between nodes
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Figure 4 shows a screenshot of the RelEx tool. As many visual anlaysis
tools, RelEx follow a multiple coordinated views which are connected by
linking and brushing3. On the top-left, the physical network is shown in an
automotive-typical way. The bottom-left shows the specific path a selected
signal takes over this network.

The view we want to focus our discussion the most on is the matrix view
on the right side. The matrix view provides an overview over the logical
network. The ECU nodes are the lines and columns. Each cell in turn is
marked with a box in case one or more signals are exchanged between the
pair of ECU nodes. The number of signals exchanged is encoded by the size
of the box so that important connections that exchange many signals visually
pop out (this visual “pop out” effect is further support by adding a black
frame for the communication hotspots with more than 100 signals). We see
that many signal boxes exist, that is, the logical network is very dense. In a
node-link diagram, this characteristic would lead to extreme clutter making
it almost impossible to perceive relevant information (the so-called “hairball
effect”). Here, the matrix view offers a viable alternative.

In addition, it supports tasks that might be harder to conduct with clas-
sical node-link representations. For instance, the ECU nodes in the figure
were ordered based on which bus system they are connected to. This is shown
as the light blue background stripes in the matrix. Ordering the matrix in
this way allows to better understand how much within-bus communication
and how much between-bus communication is going on, by observing the
intersection between these bus stripes. The within-bus communication is
represented by the signal boxes that lie on the diagonal intersections of bus
stripes. For instance, the intersection rectangle at the top left, shown as blue
highlight in Figure 4, indicates the communication that is going on among
ECUs connected to the J-CAN. The orange highlight at the bottom right
shows the communication within the A-CAN. While for both CAN busses
there is much within-bus communication on the diagonal, the J-CAN also
comprises much communication to other bus systems. This can be seen by
the signal boxes that are in the stripes but not on the diagonal, as indicated
by the dotted lines in Figure 4. Such insights, can be of high importance for
automative engineers when making decisions in how to change and optimize
the network design.

3Selections in one view get also highlighted in all other views.
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4 Challenges and Opportunities

As the requirements change with origin, structure, content, representation,
and interest, network visualization tasks abound and new challenges arise
continuously. New approaches to network analysis and applications of net-
work science in other domains inspire novel forms of network visualization.

Visualization tools therefore often combine tested and generic methods
for layout with flexible means for attribute mapping and interactive explo-
ration. Still, as visualization can be seen as the human lense to data, further
research is needed to assess which visualization designs are understood by
targeted groups of recipients. Display technologies, 3D printing, and aug-
mented reality provide further opportunities to explore networks.

An important challenges for users of network visualization systems is not
to fall for images of complexity and decorative beauty but to concentrate
on the essential purpose of network visualization, namely to facilitate explo-
ration and hypothesis formation as well as communication and the provision
of evidence for conclusions.
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