This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3030404, IEEE
Transactions on Visualization and Computer Graphics

SineStream: Improving the Readability of Streamgraphs by
Minimizing Sine lllusion Effects

Chuan Bu, Quanijie Zhang, Qianwen Wang, Jian Zhang, Michael Sedimair, Oliver Deussen, Yunhai Wang

® ® (5 1)
—

SineStream

Bartolomeo & Hu

Byron & Wattenberg

Fig. 1. SineStream minimizes sine illusion effects stemming from strong slopes and improves the readability of streamgraphs by
aligning the orthogonal and vertical orientations of each layer. We show the results on the COVID dataset [23] (top) and the Bank
Interest dataset [30] (bottom). Sine illusions appear because the human eye is not able to accurately estimate the vertical distance
between two curves with similar slopes. As indicated by the arrows on the top, our approach (A3, B3) better reflects the real thickness
of layers (A2, B2) than previous works by Byron & Wattenberg [4] (A1) and Bartolomeo & Hu [10] (B1).

Abstract—In this paper, we propose SineStream, a new variant of streamgraphs that improves their readability by minimizing sine
illusion effects. Such effects reflect the tendency of humans to take the orthogonal rather than the vertical distance between two curves
as their distance. In SineStream, we connect the readability of streamgraphs with minimizing sine illusions and by doing so provide a
perceptual foundation for their design. As the geometry of a streamgraph is controlled by its baseline (the bottom-most curve) and the
ordering of the layers, we re-interpret baseline computation and layer ordering algorithms in terms of reducing sine illusion effects. For
baseline computation, we improve previous methods by introducing a Gaussian weight to penalize layers with large thickness changes.
For layer ordering, three design requirements are proposed and implemented through a hierarchical clustering algorithm. Quantitative
experiments and user studies demonstrate that SineStream improves the readability and aesthetics of streamgraphs compared to
state-of-the-art methods.

Index Terms—Streamgraphs, Sine lllusion, Readability

1 INTRODUCTION

Stacked graphs are a common visualization technique for displaying
multiple time-series. In a stacked graph, the values of each time-series
are represented by the thickness of a colored layer. Stacking these
layers on top of each other allows to display the relative amount of each
time-series as well as their total sum. In 2008 the New York Times

Stacking layers, however, inevitably introduces distortions, which
affect the readability and aesthetics of the result. As a streamgraph
is mainly controlled by its baseline (the bottom-most curve) and the
ordering of layers, variants of streamgraphs have been proposed to
reduce distortions by optimizing these two factors. For example, the
above-mentioned streamgraphs [4] minimize the “wiggle”, the fluc-

published streamgraphs [4], a variant of stacked graphs with curved
baseline, and immediately these graphs gained great popularity. Since
then streamgraphs have been widely used for visualizing casual infor-
mation [24], such as music listening histories [3], box office revenue of
movies [4], and data from social media [26].

e C. Bu, Q. Zhang, Y. Wang are with Shandong University, Qingdao, China.
E-mail: {buchuanl023, zhangquanjie.cn, cloudseawang} @ gmail.com.

* Q. Wang is with the HongKong University of Science and Technology, Hong
Kong, China. E-mail: qgwangbb@ connect.ust.hk.

e J. Zhang is with CNIC, CAS. E-mail: zhangjian@sccas.cn.

e M. Sedlmair is with VISUS, University of Stuttgart, Germany. E-mail:
michael.sedlmair @visus.uni-stuttgart.de.

* 0. Deussen is with Konstanz University, Germany and Shenzhen VisuCA
Key Lab, SIAT, China. E-mail: oliver.deussen @uni-konstanz.de.

» Y. Wang is the corresponding author.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

tuation of layers, resulting in a good compromise between aesthetics
and readability. Their ordering, however, was specifically designed
for displaying box office revenues of movies by using the “onset time”
property, where the newly incoming layers are added at the top. To
visualize more general data, Bartolomeo and Hu [10] propose to incor-
porate baseline and ordering into an optimization framework combined
with a refined wiggle measure. This allows to further reduce distortions.
While many efforts have been made to improve their readability, the
design of streamgraphs still lacks a clear perceptual foundation. By-
ron and Wattenberg [4] speculate that the perception of such graphs
is related to the principle of banking to 45 degrees [5] but provide no
detailed discussion.

One elementary task for a streamgraph is to show the thickness of
layers over time. Its readability, however, is hampered by the difficul-
ties of humans to accurately estimate and compare the vertical distance
between two curves whose slopes have the same sign [6]. As shown
in Fig. 1, the human eye fails to perceive the actual thickness of lay-
ers, when they are slanted too much (A1, B1). This phenomenon also
manifests in classical visualizations such as Playfair’s trade-balance
chart [22]. Recently, VanderPlas and Hofmann [32] related this phe-
nomenon to the sine illusion [9] and provided a perceptual explanation:
our brain prefers to take the orthogonal distance rather than the vertical

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on October 26,2020 at 11:58:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3030404, IEEE

Transactions on Visualization and Computer Graphics

extent distance as the distance between two curves. This illusion is

most prominent when the angle between the two orientations is large.

Since one elementary task in reading stacked graphs (and streamgraphs)

is to compare the thickness of layers (the vertical distance between the

bottom and top curve), we were motivated to investigate the connection
between sine illusion and streamgraphs; and we wanted to exploit the
sine illusion to improve the readability of streamgraphs.

In this paper, we propose to use SineStreams, a variant of stream-
graphs that minimizes such illusions. Therefore we revisit the math-
ematical model of streamgraph optimization and interpret it in terms
of reducing sine illusions. This requires the slope of each layer to be
close to zero as much as possible. We show that minimizing the sine
illusion is equivalent to the original objective of optimizing stream-
graphs, which is minimizing the sum of the squared slopes of all layers.
However, to reduce the illusion over several layers stacked on top of
each other, we additionally introduce a Gaussian weight to penalize
layers with large variations and reduce the distortion imposed on other
layers. Since a flat baseline allows viewers to read the total sum easily,
we tried to order layers in a way that neighboring layers mutually cancel
out their distortions to the greatest possible extent.

To arrive at an effective ordering, we propose a compensation degree
measure, which tells us how well two layers would cancel out their
wiggles. We combine this measure with the thickness and length of
the layers, resulting in a pairwise distance measure between them.
Based on this distance measure, we apply hierarchical clustering [17]
to construct a binary tree representation for all layers. We compute
the final ordering from this tree by minimizing the sum of distances
between adjacent layers with a leaf ordering algorithm [1]. Once the
ordering is obtained, we compute the baseline by improving Byron and
Wattenbergs [4] method using a Gaussian weight.

‘We demonstrate the effectiveness of SineStreams by quantitatively
comparing them with other streamgraphs w.r.t. reducing wiggles and
sine illusion effects. In addition, conduct a user study to asses the
readability and aesthetics of SineStream by following the task design
of Thudt et al. [31]. The results demonstrate that SineStreams offer
an improved readability and aesthetics. The source code is available
for download on GitHub!. In summary, the main contributions of this
paper are:

* we revisit streamgraphs and show that their baseline computation
and layer ordering can be re-formulated in terms of minimizing the
sine illusion effect (Sect. 3);

¢ we introduce three design requirements for ordering layers in a
SineStream and propose an effective ordering algorithm (Sect. 4);

¢ we quantitatively compare SineStreams to state-of-the-art methods
and conduct user studies to show the effectiveness of our approach
(Sect. 5).

2 RELATED WORK

The use of streamgraphs can be traced back at least to Playfair’s trade-
balance chart of 1786 [22]. Later on, increased computing power
enabled users to create stacked graphs that incorporate large numbers
of time-series, as well as creating variants with different appeals.

When the design of streamgraphs was first discussed in The-
meRiver [15], the authors introduced a baseline algorithm that produced
a result symmetrical along the direction of the timeline. No specific
ordering algorithm was proposed here, even though the authors mention
the possibility of putting related layers close to each other. Because
in a ThemeRiver layers are stacked upwards and downwards from the
baseline, its outer layers are less distorted than the outer layers of the
original stacked graphs and therefore it displays a higher readability
and aesthetic appeal.

As mentioned above, Streamgraphs [4], a stacked graph with a
curved baseline, are a variant of stacked graphs that is a widely-used
visualization technique for displaying multiple time-series. The authors
propose a baseline algorithm that reduced the distortion of each layer,
thus further improving the readability with regard to ThemeRiver. By

1https ://github.com/VisLabWang/SineStream

finding a baseline that minimizes the distortions of the layers, stream-
graphs enable the user to easily read the thickness of each layer at
the cost of perceiving the overall thickness of the whole graph less
well. The authors discuss a set of distortion functions for baseline opti-
mization, including silhouette, deviation, wiggle, and weighted_wiggle.
They conclude that weighted_wiggle leads to the best balance between
readability and aesthetics. An ordering algorithm was developed specif-
ically for visualizing the box office revenues of movies. Since such
revenues usually have a sudden increase and then a rapid decrease, the
authors ordered the layers based on their “on-set” time so that layers
with the biggest bursts are put at the outside of the graph and do not
influence the layout of other layers. The authors also discuss the possi-
bility of designing an ordering algorithm that allows to minimize the
distortion function, but leave that as a promising direction for future
research.

Since the “on-set” ordering was tailored for displaying box office
revenues, Bartolomeo and Hu [10] propose a new ordering algorithm,
aiming to generalize streamgraphs to other types of data. Their ordering
algorithm first generates an initial ordering in a greedy manner, and
then iteratively refines the ordering to minimize the distortion value.
This ordering scheme not only generalizes streamgraphs for more
than box office revenues, but also further improves the readability
of streamgraphs. For baseline optimization, the authors present an
alternative definition of the wiggle distortion function based on the
L1-norm, which allows to reduce distortions caused by sudden jumps
in time-series.

Apart from optimizing baseline and ordering, interaction can also
improve the readability of streamgraphs. TouchWave [2] introduces
interactive layout adjustments and data queries to streamgraphs, aiming
to mitigate perceptual issues and improve readability. Thudt et al. [31]
propose an interactive baseline straightening for streamgraphs to im-
prove the readability of a selected layer. By clicking on one individual
layer, the baseline of this layer is straightened so that the thickness can
be easily observed without distortion. Even though this is an effective
operation, these interactions can not be applied to a wide range of
statistic visualizations (e.g., posters), where optimizing the baseline
and ordering is still the only solution to improve the readability.

In spite of these optimizations, streamgraphs still face considerable
problems for their readability. Studies have been conducted to better
examine the graphical perception of streamgraphs. In his blog post,
Kirk [19] reviewed a set of streamgraphs published on the web, in-
vestigated their usage scenarios, and compared their design trade-offs.
He concluded that a streamgraph is “a fantastic solution to displaying
large datasets to a mass audience”. A user study conducted by Thudt
et al. [31] validated the effectiveness of these optimizations and inter-
actions in improving the readability of streamgraphs. The authors com-
pare the relative readability among different variants of streamgraphs
with 16 participants in four types of tasks. The results show that base-
line optimization improves the readability for value comparison tasks.

A number of applications for streamgraphs in formal visual analysis
emerged recently, especially, but not exclusively, in the field of visual
text analysis. In these applications, such graphs have been proposed
to visualize complex relationships in time-series, such as merging and
splitting of layers [7], their hierarchical structures [8, 11], and the
competition among layers [26, 34]. Even though new ordering and
baseline algorithms are proposed in these applications, they mainly aim
to adapt streamgraphs to specific domain problems or scenarios, rather
than addressing key perceptual issues. For example, Topic Streams [13]
visualize online conversations about large-scale events using modified
streamgraphs. Layers are ordered here based on a global measure of the
novelty of a topic, which is similar to the “on-set” ordering proposed
in [4]. Tiara [20] adds word clouds inside layers of streamgraphs
to show visual summarizations of large collections of text. In Tiara,
layers are ordered based on several constraints, including semantic
similarity among topics and their starting time. These applications
demonstrate the usefulness of streamgraphs in formal analysis, but paid
little attention to address key perceptual issues involved in this form of
visualization.

In sum, while various baseline and ordering optimizations as well as

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on October 26,2020 at 11:58:46 UTC from IEEE Xplore. Restrictions apply.

https://github.com/VisLabWang/SineStream

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3030404, IEEE

Transactions on Visualization and Computer Graphics

interactions have effectively improved the readability of streamgraphs,
these optimizations are mainly based on empirical observations. The
design of such graphs still lacks a solid conceptual foundation. In this
study, we revisit the optimization goal of streamgraphs and interpret
it in terms of the sine illusion effect. New algorithms are proposed to
improve the readability of streamgraphs by minimizing sine illusions.

3 SINE ILLUSION IN STREAMGRAPHS

In this section, we introduce basic concepts of streamgraphs and after-
wards connect them to the sine illusion.

3.1

Unlike traditional stacked charts, which plot values along a straight
x-axis, the layers of a streamgraph are stacked upon a curved base-
line, thus resembling natural streams, which leads to an aesthetically
pleasing effect.

The geometry of a streamgraph is determined by two factors: the
order of the layers and the shape of the baseline. In a typical algorith-
mic pipeline to construct a streamgraph, we first order the layers, then
compute the shape of the baseline, upon which the ordered layers are
stacked. Following the notation of previous studies, the time-series that
form a streamgraph are modeled as lists of n real-valued, non-negative,
differentiable functions [f1, ..., f»] that determine the thickness of each
layer. This assumption is satisfied in many real world datasets and
widely used in previous data analyses [4, 10]. For simplicity, we as-
sume that the order of the list of time series indicates the order of the
layers in the streamgraph. Its baseline is denoted as gg and describes
the y-coordinate of the bottom. Therefore, the top of the i, layer can
be expressed as g; = go +Z’]-:1 fi

In pursuit of producing an aesthetic and legible streamgraph, differ-
ent baseline and ordering algorithms have been proposed. The core
of these algorithms is to optimize a metric that quantifies the quality
of a streamgraph, i.e., “what is the definition of a good streamgraph?”
A set of metrics, including silhouette, deviation, wiggle, have been
proposed [4, 10, 15]. Among these metrics the wiggle metric, which
describes the distortion of layers, leads to the best balance between
readability and aesthetics [4,31]. There are two common definitions of
the wiggle metric. Byron and Wattenberg [4] defined it as

Streamgraphs

n
) 1
Wiggle = Y. (5 (gi+gi-1)) - wi M
i=1
where g’ is the derivative of g and w; is a positive weight for each layer.
Bartolomeo and Hu [10] criticize that this definition only works
for smooth time-series, i.e., time-series whose values do not change
dramatically over time. To tackle this issue, they proposed an alternative
definition of the wiggle metric based on the L1-norm:
. n gl 418
Wiggle,, = ; % Wi
Ordering and baseline algorithms proposed by Bartolomeo and Hu [10]
are considered as the state of the art for streamgraph production. How-
ever, even though it is widely used, using the wiggle metric to optimize
a streamgraph layout is mainly based on empirical observation and
lacks a clear perception foundation. This is why we want to introduce
the sine illusion at this point.

(@3]

___ perceived

i i thickness
;/':/\i\l, ___. vertical

/; ' h .'\., thickness
N &
RIS

2] (C]

Fig. 2. (a) A line with uniform thickness is drawn along a sinusoidal
curve. Perception leads us to using the orthogonal distance rather than
the vertical distance to determine its thickness. (b) The green layer with
dotted border in the streamgraph seems to have a constant thickness.
However, a peak occurs in its vertical thickness (c).

3.2 From Wiggles to the Sine lllusion

The sine illusion reflects the difficulty humans have in visually measur-
ing the distance between two curves. In the cognitive literature, the sine
illusion was first documented in the context of sinusoidal curves [9]. In
Fig. 2(a), a line with uniform thickness is centered along a sinusoidal
curve. All line segments are of equal length (dashed lines) but viewers
have the illusion that the line thickness varies along the curve.

The sine illusion is not restricted to sinusoidal curves. It has been
reported and discussed extensively for other curves in the cognition
literature but also in graphics [6]. The strength of the sine illusion
is influenced by two factors: the slope of the curve and the distance
between the two borders of the curve [32]. Increasing the slope, or
decreasing the vertical distance leads to an increase of the sine illusion.

The illusion originates from our preference in evaluating the curve
width as an orthogonal width rather than the difference along the vertical
axis (Fig. 2(a)). This preference is based on our perceptual experience
with the surrounding three-dimensional world: tilting an object does
not change its orthogonal width. Misapplying this preference to two-
dimensional charts leads to the sine illusion. Therefore, minimizing
sine illusion requires orthogonal and vertical orientations to be aligned
as much as possible. In other words, the slope of each layer should be
as close to zero as possible.

Streamgraphs, consisting of many layers with curved boundaries
(0,81, ---8n), commonly produce sine illusions for the above reason.
As shown in Fig. 2, the peak in the data (c) is barely visible in the
layer of the streamgraph shown in (b). Thus, viewers can easily be
misled by their visual perception and obtain a wrong understanding
of the underlying data. Since an elementary task for understanding
streamgraphs is to read and compare the thickness of layers, the sine
illusion dramatically threatens their readability. It is therefore natural
to measure the quality of a streamgraph in terms of the sine illusion,
which can provide a solid perceptional foundation for their design.

As mentioned above, to minimize the effect of the sine illusion in
streamgraphs, the slope of each layer 1|g/+g/_,| needs to be mini-
mized. Interestingly, the wiggle based optimization (Eq. 1) can there-
fore be reinterpreted from the perspective of reducing the sine illusion:

n

1
Hlusion = Wiggle =Y (5 (gl +g/—1))? - wi
usion iggle l;(z (8i+&i—1))" - wi

n 1 i—1
=Y (s0+ Efi/‘i‘ Y wi
= =

1

3

4 SINESTREAM

Even though Byron and Wattenberg [4] unintentionally reduced the
sine illusion with minimizing their wiggle value during baseline opti-
mization, they did not take the sine illusion into account when ordering
the layers. Therefore, in the obtained streamgraphs the illusion was
not minimized. Moreover, the authors choose an inappropriate weight
w; = f; in their optimization that ignored the stronger sine illusion
for thin layers. As shown in Eq. 3, the corresponding distraction of a
streamgraph is determined by both gj, and the order of [f7, /3, ..., f3]-
SineStreams (Sine Illusion Minimized Streamgraphs), therefore aim
to minimize the sine illusion in streamgraphs by using a refined base-
line computation and an optimization algorithm for ordering layers
appropriately.

4.1 Baseline Optimization

As shown in Eq. 3, the sine illusion is a function of g, and can be

minimized when g, is properly chosen. As the w; are positive, we
2 [llusion

can get aazT(,))
% = 0. Therefore, we share the solution of gg with Byron and
0

=Y, 2w; > 0 and minimize the sine illusion when

Wattenberg [4], since their choice of gg simultaneously minimizes the
value of the L2-norm-based wiggle measure in Eq. 1 and the value of

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on October 26,2020 at 11:58:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3030404, IEEE

Transactions on Visualization and Computer Graphics

Ooa

e Byron & Wattenberg Bartolomeo & Hu Ours
e $IEEEESaaSS S
@ Byron & Wattenberg Bartolomeo & Hu Ours

Q

e Byron & Wattenberg Bartolomeo & Hu Ours

Fig. 3. Each row represents streamgraphs with the same data and layer
order, but different baseline computations. (a) Byron & Wattenberg [4]
encourages [g},¢;_,] to have equal absolute values and opposite signs,
regardless of the increased sine illusion it causes to other layers. (b)
This leads to unpleasant distortions when layers have sudden changes
in thickness. (c) Bartolomeo & Hu [10] prefer a single distortion of a large
layer rather than two smaller ones, which also leads to a larger illlusions.

sine illusion in Eq. 3:
, 1 noq i , i—1 ,
0=y B (BT L v
i=1"1i=0“ j=1 j=1 ()

L wilf X ()
22?:1 Wi

This choice of gy has been widely been used since it was proposed, but
recently it was challenged by Bartolomeo and Hu [10], who claimed
that an L2-norm-based optimization only works well for relatively

smooth time-series.

Limits of Existing Techniques. According to Bartolomeo and
Hu [10], an L2-norm-based optimization will lead to two main prob-
lems: a) it encourages [g;,ggfl] with equal absolute values and opposite
signs, regardless of the increased distortion this might cause to other
layers; b) it leads to unpleasant distortions when layers have sudden
and big changes in thickness (i.e., data jumps). To eliminate these
two issues, Bartolomeo and Hu propose an alternative L1-norm-based
baseline optimization (Eq. 2).

Even though these two shortcomings do exist in Byron and Wat-
tenbergs L2-norm-based optimization, we find that Bartolomeo and
Hu’s criticism is not accurate, since such unpleasant distortions are
mainly caused by inappropriately chosen weights w; = f; instead of
the L2-norm-based definition. In other words, the distortion of thinner
layers is treated as less important than the one of the thicker layers
during baseline optimization.

As shown in Fig. 2(a), the thickness f; of the light green layers grows,
which leads to a large weight w; = f;. Therefore, the L2-norm-based
wiggle value of the thick layer is reduced to a great extent even though
this significantly increases the 2-norm wiggle value of the two thin
layers (dark green and dark blue). The same goes for the distortions
caused by data jumps (Fig. 3(b)). If less weight is given to layers when
they have a sudden data jump, i.e., the start of the dark green and the
light green layer, the distortion of the other layers can be minimized
during baseline optimization.

More importantly, an L1-norm-based optimization, even though
solving the aforementioned two shortcomings, potentially introduces
severe distortions and increases the effect of the sine illusion, as shown
in Fig. 3(c). Compared to the L2-norm-based optimization, it prefers a
large distortion over several small ones. Thus, the baseline optimization
by Bartolomeo and Hu increases the slope of the dark blue and the
dark green layer. Since the sine illusion increases with the slope of the
curves, an L1-norm-based optimization results in stronger illusions.

Gaussian Weight for Baseline Optimization. To solve these issues
with existing techniques, we propose to use a modified weighting
scheme for the baseline optimization in SineStreams. First, we propse
to use the L2-norm, rather than the L1-norm as it allows to measure the
effect of the sine illusion and avoids big slopes that might be introduced

T SO oo,

(a) Byron & Wattenberg (b) Bartolomeo & Hu (c) Ours

Fig. 4. Three streamgraphs that use our ordering algorithm but different
baseline optimizations: Wiggle,orm2, Wigglenorm1, and sine illlusion.

by the L1-norm (Fig. 3(c)). We modify the original weight w; = f; by
a Gaussian weight to reduce the influence of a layer when its thickness

undergoes big changes:)
!

wi=exp(- 101,

where ¢ can be either the median, arithmetic mean, harmonic mean,
or geometric mean of the |fi|,|f5|,...,|f3]- By adjusting the weight
with the change of the thickness, streams with large fluctuations are
penalized so that the ones with small fluctuations will have lower slopes
(Fig. 3(a)). In doing so, streams with large fluctuations can be perceived
more easily. Based on our experiments, we choose to set ¢ to be the
median. When ¢ = 0, we define w; = f;.

When the weight of a layer f; is lowered according to this formula,
its neighboring layers gain a relatively larger weight and thus distor-
tions caused by f; can be removed more effectively during baseline
optimization. As shown in Fig. 3(a), the dark blue and the dark green
layers suffer from distortions caused by the thickness change of the
light green layer. Our Gaussian weight increases their relative impor-
tance, thus flatting these two layers during baseline optimization and
reducing the effect of the sine illusion. The same goes for Fig. 3(b).
At the beginning, the dark green and light green layers have a sudden
thickness change and accordingly introduce distortions to the neighbor-
ing layers. By reducing the weights of these two layers at their start
time, the Gaussian weight effectively removes the distortions of the
neighboring layers.

Meanwhile, using a Gaussian weight also increases the relative
weight of thin vs. thick layers. In real word datasets, a layer with large

thickness changes f is usually a thick layer. The term exp(— f/ 2 /2¢%)
is a monotonously decreasing function of f; and thus increases the
relative weight of thin layers. As aresult, our baseline optimization pays
more attention to reducing the distortions of thinner layers. As the effect
of the sine illusion increases with decreasing vertical distance between
curves [32], a Gaussian weight helps minimizing the total amount of
sine illusion in a SineStream. It is determined by the following function:
nooq) f/2
. / /
Hlusion = Z{(E(gi-i—gi,l)) -exp(—2’7)~fi 5)
i=

As shown in Fig. 4, using the same ordering, the method of baseline
optimization substantially influences the quality of the resulting stream-
graph. Our proposed baseline optimization leads to the most satisfying

layout.

AN\ N

_—

o

Byron & Wattenberg

f

Perceived in the streamgraph

Perceived on a flat baseline

Fig. 5. The Ebb and Flow of Movies [28], produced using the method
of [4]. A dramatic difference exists between the perceived thickness of
the streamgraph and the actual thickness perceived with a flat baseline.

4.2 Optimizing the Layer Order

In streamgraphs, layers are stacked on top of each other. In some cases,
they have a semantically intrinsic order, e.g., alphabetical [33]. But in
all other cases, layers can be reordered to enhance the readability.
Limits of Existing Techniques. Two main techniques exist for
the ordering in streamgraphs: 1) LateOnset ordering [4]; 2) TwoOpt

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on October 26,2020 at 11:58:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3030404, IEEE

Transactions on Visualization and Computer Graphics

o 088 7.00
o.ssu 8.17{.}
0.48

4.35
dist(i, j)=comp(i, j) dist(i, j)=comp(i, j)*wu(i, j)

ol o
0'75&) 1.86& 4
0.78 <1.94

dist(i, j)=comp(i, j)

.

dist(i, j)=comp(i, j)*Wien(i, j)

Fig. 6. Examples about how the thickness weight and length weight help
improve layer ordering. In the distance graph, each node represents a
layer and the number on the edge indicates the distance value dist (i, j)
between the two layers. Layers with low distances values (red edges)
are put together in the streamgraph. For reducing the sine illustion effect,
the thickness weight helps moving thin layers to the middle (a) while the
length weight helps moving short layers to the outside (b).

ordering [10]. Other ordering implementations are mainly based on
modifications of these two techniques [13,20].

As mentioned above, LateOnset ordering was specifically tailored for
displaying trends within box office revenues of movies in streamgraphs.
In this ordering, layers are first sorted by their “on-set” time. Then the
layers are stacked alternatively on either the bottom or the top of the
existing streamgraph in order to achieve an even visual effect. The main
purpose of LateOnset ordering is to pursue a better aesthetic appeal
when displaying the revenues, which typically have a sudden increase
and then decrease over time. LateOnset ordering can effectively move
the maximum “burst” of each layer to the outside of the graph and thus
achieves a smooth layout. While this leads to a smooth streamgraph
that is visually pleasing, it tends to place layers on slanted edges, thus
potentially introducing severe sine illusion effects, as shown in Fig. 5.
Moreover, it is difficult to apply this algorithm to general time-series,
for example when all time-series in a dataset have the same start time.

Contrary to LateOnset, TwoOpt ordering is designed for general time
series. In TwoOpt ordering, an initial ordering is obtained by sorting
all layers in a greedy manner. At each time step, a layer that introduces
the lowest wiggle value to the streamgraph is selected and stacked on
the graphs. Then, the initial ordering is iteratively refined by swapping
adjacent layers if the swapping reduces the wiggle value. Swapping
stops after a given number of iterations. Such iterative swapping is able
to cancel out the total wiggle value of neighboring layers. This idea is
already discussed in [4], but left to future work.

While successfully allowing streamgraphs to be applied to general
time series, TwoOpt has several limits. First, being a greedy strategy,
TwoOpt cannot always produce the same ordering. The method requires
users to define the number of swapping operations and can generate
different layer orderings for the same set of input data. During the
refinement, iterative swapping also only considers canceling out the
wiggle values of the two neighboring layers, wiggle canceling through
merging more than two layers is not discussed. Moreover, TwoOpt
ordering also suffers from inappropriate weights w; = f;, which give
higher priority to reducing the wiggle of thick layers, as discussed
above. As a result, during optimization thick layers are more likely
to be put in the middle of a streamgraph, where layers are flatted and
have small distortions. But as thick layers in practice tend to have
larger thickness changes than thin layers, putting them in the middle
introduces more distortions to the neighboring layers and the overall
visualization. For example, in Fig. 8(b), the thickest layer (6) in light
green is put to the middle of the streamgraph. Its thickness changes
will distort all neighboring layers.

Design Considerations for Layer Ordering. In SineStreams, we
try to avoid thickness changes and examine layer ordering from the
perspective of reducing sine illusions. We propose an ordering algo-
rithm based on hierarchical clustering to produce a layer ordering that
is better than the results of greedy neighbor swapping.

In the original streamgraph algorithm, the ordering of layers not
only influences the sine illusion for individual layers (whose sum is
represented by Eq. 3) but also the readability of the whole stream,

which is related to the value of g,. As shown in Eq. 4, the solution of
g(, can be re-formulated as the sum of differences between the slopes
of every two adjacent layers f7 + f/_,.

It has been reported that a flat baseline can help alleviating sine
illusions for the whole stream [4, 6] and increase its aesthetic qual-
ity [31]. This observation motivates us to order layers in a way that
neighboring layers mutually compensate their thickness changes. In
other words, the absolute value of f{ + f/_; should be minimized to
ensure an as-flat-as-possible baseline gg. We define the compensation
degree comp(i, j) to describe the mutual compensation for every two
layers f;, f; as:

1 &A@+ £0)]

comp(i,j)== Y —r— (6)
L,ga O]+ 1750)]

where L indicates the length of the combined layer. We define

I O+f01 / AT

s = O when [(O +1£5(0)] = 0.

Apart from the amount of compensation, thickness and length of
layers have also to be considered when ordering them. Since the sine
illusion increases with decreasing vertical distance between curves
[32], it is better to merge a pair of thinner layers if two pairs of layers
have similar compensation degrees. The rationale behind this is that,
compared to thicker layers with the same compensation degree, thinner
layers have fewer changes in their thickness, and therefore introduce
fewer distortions to their neighboring layers, and thus should be given
higher priority during merging.

We introduce a thickness weight to describe our preference for the
compensation of relatively thinner layers:

win(i; j) = max{fi(t) + fj(t) : 1 € [1,m]}

where f;(¢) denotes the value of f; at the time point 7 and m indicates
the number of time points. Apart from computing the maximum, we
experimented with different functions for computing the thickness
weight, including arithmetic mean, harmonic mean and geometric mean.
The maximum, however, lead to the best results in our experiments.

Meanwhile, we observed that the merging of shorter layers will
create a slanted baseline for the later merging of longer layers, but
not the other way round (Fig. 6(b)). Since a slanted baseline will
enhance sine illusions within surrounding layers, we give priority to
the merging of longer layers if two pairs of layers have similar amounts
of compensation. We use a length weight to describe our preference for
the compensation of relatively longer layers:

m m
max()
where L; is the length of layer f;. Sometimes, a layer can be too thin to
be observed. Therefore, when calculating the length of a layer, we only
consider their parts with a thickness exceeding a threshold value (1/9
of the maximum thickness of each layer based on our experiments).

Fig. 6 gives examples about how thickness weight and length weight
can help improving layer ordering. Each node represents a layer and
the number of an edge indicates the distance dist(i, j) between the
corresponding two layers f;, f;. Layer ordering is now obtained by
minimizing the distance between neighboring layers. By adding wy,
to the distance function (a), the layer ordering tends to place thinner
layers in the middle. By adding wy,,, to the distance function (b), layer
ordering is prone to place short layers on the outside.

So far, we have translated the three design considerations, com-
pensation, thickness, and length, into a quantitative form. Within our
optimization we multiply the corresponding values to get a distance
function that reflects the relative importance of putting two layers to-
gether.

Wlen(i7]) =

dist (i, j) = comp(i, j) - Wien (i,) - win (i J) @)

The smaller dist(i, j), the higher the priority that should be given to
ensure that layer f; and layer f; are adjacent to each other.

Hierarchical-Clustering-Based Ordering. We employ a hierarchi-

cal clustering algorithm [17] for layer ordering, see Fig. 7 At each time

step (numbered in the blue circle), the two layers f;, f; with the shortest

distance are merged to obtain a new combined layer f; = {fi + f;}.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on October 26,2020 at 11:58:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3030404, IEEE

Transactions on Visualization and Computer Graphics

(a)

| =L

Ao
P hal| TP

(b)

Fig. 7. Layer ordering based on hierarchical clustering: (a) we hierarchically cluster layers with shortest distances and build a binary tree. Each node
of the tree is a layer. The two children of an internal node are the two layers that are put together in the ordering. (b) Flipping internal nodes leads to
different layer orderings, which incorporate different amounts of sine illusions. (c) We compute our ordering from the binary tree by minimizing the

sum of distances between adjacent layers.

We then calculate the distances between this new layer f; and all other
layers, and repeat merging (see Fig. 7(a)). Once the clustering is done, a
hierarchical clustering tree is formed (see Fig. 7(b)), however, multiple
orderings among layers can be generated by flipping internal nodes in
this tree. Some orderings, however, might result in large sine illusions,
see the red layer of the top streamgraph in Fig. 7(b).

To guarantee an ordering that minimizes sine illusions, we create
the final order by minimizing the sum of distances between adjacent

layers:
n—1

argmin Z dist(i,i+1) (8)
i=1

where the i th and i + 1th layers correspond to two adjacent leaf nodes
of the hierarchical clustering tree. An leaf ordering algorithm [1] is
used to quickly obtain this final order. Most layers have smaller slopes
in Fig. 7(c) than in Fig. 7(b). It is worth noting that our goal is not to
find the ordering that minimizes the sum of distances of adjacent layers
but to enforce a compensation-based ordering.

A comparison of different ordering algorithms is illustrated in Fig. 8.
Using LateOnset, layers are added to the streamgraph based on their
start time. New layers (e.g., Layer 2 in Pink) are usually put on a slanted
baseline, which introduces distortions and sine illusion effects to these
new layers. TwoOpt tends to put thick layers (Layer 6 in Light Green)
in the middle, resulting in large distortions and strong sine illusion
effects at the neighboring layers. Compared to LateOnset and TwoOpt,
our ordering algorithm (c) leads to a visually pleasing streamgraph.
Orthogonal and vertical orientations are aligned in most layers, thus
sine illusions are minimized.

6 , - 6 2 6
(4 e ———— |
b‘ e P~ P o
(a) LateOnset (b) TwoOpt (c) Ours

Fig. 8. Three streamgraphs using the same baseline optimization but
different ordering algorithms: LateOnset, TwoOpt, and our algorithm.

4.3 Time Complexity

SineStream has a comparable time complexity to previous methods.
The following discussion assumes that each of the n time-series has m
time points, i.e., the total data size is nm.

Like the baseline optimization proposed by Byron et al. [4] and
Batholomeo et al. [10], our baseline optimization has a time complexity
of O(nm). For each of the m time points it needs O(n) steps to calculate
gy in Eq. 4.

The ordering optimization in SineStream consists of four parts: com-
puting the compensation degree, length weight, and thickness weight
as well as the hierarchical clustering. Calculating the first three parts
requires going through all m time points, resulting in a time complexity
of O(m). The original hierarchical clustering proposed by Johnson [17]
has a time complexity of O(n?). Therefore, the total time complexity
of ordering would be O(n®m). However, the hierarchical clustering
can be improved to O(nz) using the methods presented in [18,35]. In
other words, the total time complexity of the ordering can be reduced
to O(n?m), but in practice n will not be a large number, typically below
20.

LateOnset has a time complexity of O(mn+nlogn). Layers are first
sorted based on their “on-set” time (O(nlogn)) and then added to the

graph to balance the “weight” for summing up the whole time series
(O(mn)). LateOnset has a lower time complexity than SineStream, but
has an inferior performance for reducing sine illusions, see Fig. 3.

The time complexity of TwoOpt is O(r(n + snm + nm)), where s
and r are custom parameters: s denotes the scanning time and r the
time needed for iterative refinement. In practice, we set s = n, which
leads to a time complexity of O(rn?m). The value of r depends on
the data properties, therefore the optimal setting varies from dataset to
dataset. In sum, our ordering algorithm is not slower than TwoOpt ,
while significantly reducing the sine illusion effects.

5 EVALUATION

In this section, we compare SineStream with other existing streamgraph
algorithms, first through quantitative measures and then through a
controlled user study. Note that we only focus on streamgraphs in this
evaluation. The comparison between streamgraphs and other multiple
time-series visualizations is beyond the scope of this study. We refer
the interested reader to Javed et al. [16] for more details.

5.1 Quantitative Evaluation

Experimental Design. We evaluated the effectiveness of the algo-
rithms (LateOnset [4], TwoOpt [10], and Ours) in reducing layer dis-
tortion through three numerical metrics: the L2-norm wiggle defined
in Eq. 1, the L1-norm wiggle defined in Eq. 2, and the sine illusion de-
fined in Eq. 5. Since ordering algorithms are not specifically designed
for certain baselines, we computed three baselines for each ordering
algorithm and recorded the respective metric value for each baseline,
generating 3 values for each ordering, that is, 3 x 3 combinations in
total.

To achieve a comprehensive assessment, we collected 36 real world
datasets from a variety of data sources:

* Agriculture statistics provided by the Food and Agriculture Orga-

nization of the United Nations [14].
* GDP and population statistics provided by the National Bureau
of Statistics of China [21]

» Finance statistics provided by the World Bank [30]

 Disease statistics provided by the World Health Organization [27]

* Sports statistics provided by Sports-Reference.com [25]

For each dataset, we selected multiple time-series with a varying
number of layers and time points, m ranging from 12 to 265 and n rang-
ing from 6 to 35. For each dataset, the metric value was first calculated
for each time point, then summed over time, and finally normalized to
[0, 1]. We then ordered the layers in streamgraphs using the three meth-
ods LateOnset, TwoOpt, and our algorithm. Then, for each ordering, we
computed baselines that optimize the L1-norm wiggle, L2-norm wiggle
and the sine illusion. Since TwoOpt is not a deterministic algorithm,
we calculated average metric values after running the ordering process
20 times, following the practices of the original paper [10]. In this ex-
periment, all algorithms were implemented in Javascript using Node.js
and all experiments were executed on a computer with an i5-3320 core,
8G RAM and Windows 10 operating system.

Results. Fig. 9 summarizes the results of the quantitative evaluation.
Except computation time, all values were normalized to the range of
[0,1]. The lower the values, the better the performance of an algo-
rithm. We used a violin plot to show the distribution of the results.
The white dot in the middle indicates the median value and the black
bar represents the interquartile range. The width of the curved shape
corresponds to the approximate frequency of data points in each region.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on October 26,2020 at 11:58:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3030404, IEEE

Transactions on Visualization and Computer Graphics

LateOnset || TwoOpt Ours

1.0 <o ° ° 20

lx lx!

Time (ms)

SNy

Wigglenorm2

Wigglenorm1 Sine lllusion

Fig. 9. Performance of three algorithms in terms of L1-norm wiggle,
L2-norm wiggle and sine illusion. The violin plots summarize the value
distribution for 36 datasets, smaller values are better.

The streamgraph layouts of all 36 datasets, computed with the three al-
gorithms (LateOnset, TwoOpt and Ours), together with their respective
metric values, are provided in the supplementary material.

For all three metrics, TwoOpt and SineStream clearly outperform
LateOnset. This scenario was expected since LateOnset is designed
specifically for box office revenues and does not perform well for
general time series.

Our algorithm outperforms TwoOpt for all three metrics. For the L2-
norm wiggle measure, the median values of our algorithm and TwoOpt
are zero. For the L1-norm wiggle and the sine illusion measure, the
median values of TwoOpt are slightly higher than that of our algorithms
(L1-norm wiggle: 0.117 vs. 0, sine illusion: 0.023 vs. 0). In terms
of value distribution, our algorithm led to a more concentrated distri-
bution than TwoOpt for all three metrics. This is caused by the fact
that TwoOpt is not a deterministic algorithm. Sometimes it produces
unsatisfactory orderings that lead to large values for all three metrics.

The time complexity of the three algorithms has already been dis-
cussed in Sect. 4.3. The time complexity of LateOnset is O(mn +
nlogn), for TwoOpt it is O(rn*m), and for our algorithm O(n3m). We
employed the default setting for the source code of TwoOpt and set
s =n,r =15 in this experiment. LateOnset has, as expected, the lowest
computation time, but at the cost of increasing layer distortions. With a
small mean value and a more concentrated distribution, our algorithm is
more efficient than TwoOpt, but all three algorithms are able to compute
reasonable streamgraphs within less than 20ms, allowing interactive
computation rates.

5.2 User Study

We conducted a user study to compare the readability of
SineStream with other variants of streamgraphs. The design and analy-
sis of the user study follow the practices of assessing stacked graphs
by Thudt et al. [31]. Here we report on the main findings. More
information can be found in the supplementary material.

Participants & Apparatus. We recruited 24 participants (20 male
and 4 female, age 18-26, u = 23.375, § = 1.64) through university
mailing lists. All participants had no prior experience in designing
streamgraphs.

Conditions. We again compared the readability of SineStream with the
LateOnset-based streamgraphs proposed by Byron et al. [4] (called La-
teOnsetStream), and the TwoOpt-based ones by Bartolomeo et al. [10]
(called TwoOptStream). LateOnsetStream is the most widely used type
of streamgraph; TwoOptStream is considered to be the state of the art.
To reduce the impact of colorization on the results, all streamgraphs
used the same color scheme that was also used in [31]. The names
LateOnsetStream and TwoOptStream were only used during recording
and analyzing of results. In the user study, we did not use any names
for streamgraphs to avoid a potential user bias. Instead, they were ran-
domly ordered and named based on their positions such as “left/right
graph”.
Datasets. Following the experimental design in [31], the study was
conducted on six datasets, including two real world datasets and four
randomly generated datasets:
¢ A Call dataset [29] that contains 10 time-series over 35 time
points (n = 10,m = 30). Each time-series represents the number
of complaint calls made to the New York 311 line on a topic over
35 days. All time-series have non-zero values over the whole time
period and share a similar weekly pattern.

* A Movie dataset that contains 30 time-series with 20 time points
(n =30,m = 20). Each time-series represents the revenue of a
single movie over 20 weeks. The time-series in this dataset have
non-zero values over an average of 36.35% of the time points
(weeks).

» Four datasets that are randomly generated using the data gen-
erator by Byron et al. [4], where n = 15,20,25,30 and m =
30,35,35,40. The datasets show varying temporal patterns.

Tasks. All participants were required to complete three tasks designed

by Thudt et al. [31] to assess the readability of the streamgraphs.

T:na This task evaluates the ability of the participants to read the
thickness of individual layers. Participants were asked to compare
the thickness of two individual layers at two given time points.
Compared with comparing two timepoints of the the same layer
(or two layers at the same timepoint), this task is more commonly
performed in streamgraphs [16,31]. We thus selected this task to
help us better assess readability.

Tire This task evaluates the ability of the participants to perceive the
trend of an individual layer. Given an area chart on a straight
baseline, participants were asked to select a layer whose thickness

is presented by the line chart.

This task evaluates the ability of the participants to read the
thickness of the whole streamgraph. Participants were asked to
compare the thickness of the whole streamgraph at two given time
points.

Procedure. A within-subject design was employed for the user study.
The independent variables were the streamgraph technique, the task,
and the dataset and the dependent variables were the accuracy and the
completion time. Each participant had to perform tasks for all inde-
pendent variables, resulting in 3(technique) x 3(task) * 6(dataset) = 54
trials. With 24 participants, this user study produced a total of 1296
trials. The three types of streamgraphs were randomly associated with
the six datasets using a balanced 3 * 6 Latin square in order to mitigate
learning effects.

Before each task, participants familiarized themselves with the task
and the question format through two training questions, whose correct
answers were available to the participants. During each task, partic-
ipants answered 3 = 6 = 18 single choice questions, covering 3 types
of streamgraphs and 6 datasets. Each question for T;,,; and Ty, had
two options. For Ty, the participants answered a question by clicking
the corresponding layer in the streamgraph. Participants were not al-
lowed to use any measuring device and completed all tasks only based
on their observation with the naked eye. After answering a question,
participants had to move their mouses and click a “next” button to
move to the next question. The “next” button was designed to ensure
that the position of the cursor was reset for each question, reducing
the possibility that the participants to just repeat the answer of the last
question. We recorded the completion time and the participants’ answer
for each question.

After the tasks, we asked participants to score the three streamgraphs
based on their aesthetic preference and perceived readability using a 7
point seven point likert scale. The user study took around 25 minutes
for each participant.

Tagg

Hypothesis. We have the following hypothesis:
H1 For the accuracy in readability tasks (Ti,q & Tire & Tygg),
SineStream leads to higher accuracy than the other two stream-
graph variants.

H2 For the completion time in readability tasks (Tj,,qy & Tire & Tygg),
SineStream cost less time than the other two streamgraph variants.

We formulated H2 & H1 because SineStream, with a reduced effect
of sine illusion, should facilitate participants in reading the thickness of
layers, thus reducing the completion time and improving the accuracy.

Results & Analysis. The analysis follows the practices in [31] and is
based on effect sizes with bootstrapped confidence intervals. As the
limits of null hypothesis significance testing (NHST) are concerned
in various studies (summarized in [12]), this approach is an alterna-
tive to NHST and is recommended by the American Psychological

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on October 26,2020 at 11:58:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3030404, IEEE

Transactions on Visualization and Computer Graphics

Completion
. Accuracy (% .
Mean: Y (%) Time (seconds)
LateOnsetStream —e- ‘et
Tina TwoOptStream = -
SineStream e -
LateOnsetStream —e— —
T TwoOptStream —— —e—+
tre
SineStream —e- —.—
LateOnsetStream —— ol
T TwoOptStream Ze- -
agg
SineStream —e- S

0% 25% 50 % 75 % 100% | 0 5 10 15 20 25

Pairwise Mean

Accuracy Completion Time
Comparisons: (difference) (log-ratio)
- SineStream vs LateOnsetStream +o— —e—
HE SineStream vs TwoOptStream —e— —e—
LateOnsetStream vs TwoOptStream e —eT—
SineStream vs LateOnsetStream —eo—— —e—
Hg SineStream vs TwoOptStream —lo— —o—
LateOnsetStream vs TwoOptStream —e—1 —e—
SineStream vs LateOnsetStream —e— ——
3 SineStream vs TwoOptStream —e— 7.1—
LateOnsetStream vs TwoOptStream ———— -~
30% -20% -10% 0% 10% 20% 30% 08 09 10 L1 12

Fig. 10. Mean comparison and pairwise comparison in terms of accuracy
and completion time. Error bars show 95% bootstrapped confidence
intervals.

Accuracy Completion Times
High accuracy Low accuracy | Faster Slower
5 SineStream
SineStream !
Tind = TwoOptStream LateOnsetStream
LateOnsetStream
TwoOptStream
SineStream .
SineStream \
Tlre LateOnsetStream LateOnsetStream
TwoOptStream
TwoOptStream WoOp
SineStream
LateOnsetStream
Tagg SineStream \ LateOnsetStream
1Ot TwoOptStream

o—) Strong and large effect (>10%) H Strong and small effect (<10%)

Fig. 11. Summary of differences among the three variants of stream-
graphs in accuracy and completion time. Within each cell, the horizontal
position of the icons encode their performance, ordered from best (left)
to worst (right). The same horizontal position indicates a similar perfor-
mance.

Association.

The readability for each type of streamgraphs is evaluated based on
accuracy and completion time. Fig. 10 shows the mean comparison
and the pairwise comparison. The pairwise comparisons for A vs. B
are computed by A — B for accuracy and log(A)/log(B) for completion
time. When performing pairwise comparisons, the values are computed
for each participant. In terms of accuracy, SineStream has the highest
mean accuracy in all three tasks. Among the three tasks, 7. has the
highest mean accuracy, indicating the task is relatively easy. In terms
of completion time, all three streamgraphs show similar times except at
Tire, Where SineStream < TwoOptStream < LateOnsetStream. Among
the three tasks, T;. has the longest completion time. This is expected
as the questions in 7;,, have more options (n options) than the questions
for T4 and T;g¢ (2 options).

We interprete the pair-wise difference to be small if it is less than
10% and to be large if it is greater than 10%; the difference is treated
as weak if the confidence interval crosses the 0/1 vertical line and
otherwise is treated as strong. Fig. 11 summarizes our findings, the
thickness of the lines to represent whether the effect was small or large.

For the readability task (H1), on average, SineStream outperformes
LateOnsetStream and TwoOptStream. The advantage is most obvious

Q1: This graph has good aesthetic appearance.

T
6% 12% 27% 29% 2% 78%

SineStream| 22%
|
LateOnsetStream| 67% 9% 28% 24% 17% | 13% 33%
TwoOptStream | 58% 1% 14% 30% 19% 14% (9% 42%

|
Q2: This graph has good readability.
T

SineStream | 37% 19% 14% 24% 25% 14% 63%
!
LateOnsetStream| 68% 12% 22% 31% 16% 1% 32%
TwoOptStream | 67% [9%1 12% 22% 24% 19% | 1% 33%
I
Total 50% 0 50% Total

Totally Disagree — Neutral — Totally Agree

Fig. 12. Comparison of aesthetics and readability for three streamgraph
versions from a post-study questionnaire (using a 7-point Likert scale).
Agreeing scores are placed on the right, disagreeing on the left.

for Tugg. For Ting, SineStream and LateOnsetStream have higher ac-
curacy than TwoOptStream,with a strong and large effect, which is
surprising. TwoOptStream, as the current state-of-the-art and an im-
provement of LateOnsetStream, actually has a lower accuracy than
LateOnsetStream in representing the true thickness of individual layers
(T;,,0)- We believe this is because the L2-norm-based optimization in
LateOnsetStream also reduces the effect of sine illusions in each layer.
For T; /., all three types of streamgraphs have a similar accuracy. We
suspect this is caused by the easiness of the task, which has the highest
mean accuracy among three readability tasks. For Ty, SineStream has
higher accuracy than LateOnsetStream (strong the small effect) and
TwoOptStream (strong and large effect). This is expected since we
flatten g¢ to improve the readability of the whole streamgraph during
layer ordering.

Another aspect is the completion time for the readability tasks (H2).
Overall, the three streamgraphs require similar completion times, ex-
cept at T, where LateOnsetStream requires more time. For T;,; and
Tagg, the similar completion time among the three streamgraph ver-
sions might indicate that users are equally certain about their answers
across different versions, even though their answers have low accuracy
for a certain version. For T, SineStream (with a strong and large
effect) and TwoOptStream (with a strong and small effect) require less
completion time than LateOnsetStream. We suspect the advantage of
SineStream and TwoOptStream is caused by their ordering algorithms,
which work well for general time-series in conrast to the specially-
tailored ordering algorithm in LateOnsetStream.

Self-reported preferences of the participants for aesthetics and read-
ability are presented in Fig. 12. Overall, the participants reported that
SineStream is more aesthetically pleasing and readable than TwoOpt-
Stream and LateOnsetStream. Participants also said that TwoOptStream
is more aesthetically pleasing than LateOnsetStream. We suspect this
is caused by the unpleasant distortions that appear in LateOnsetStream
when layers have sudden jumps. There is no significant difference
between the self-reported readability of LateOnsetStream and TwoOpt-
Stream. In general, the self-reported readability of the three variants
agrees with the results of the tasks.

5.3 Case Study

To further demonstrate the effectiveness of SineStream, we conducted a
case study and compared it with LateOnsetStream and TwoOptStream
for four real world datasets (Fig. 1 and Fig. 13 illustrate the compari-
son):
e (Call dataset: the number of complain calls made to New York 311
line about 10 topics over 35 days (n = 10,m = 35) [29].
* Bank Interest dataset: the bank interest rate of 10 developing
countries from 1972 to 2019 (n = 10,m = 48) [30].
» Assistance dataset: Net official development assistance received
by 11 countries over 59 years (n = 11,m = 59) [30].
e COVID dataset: the top 10 number of daily confirmed COVID-19
cases per country from Mar 1st to Apr 13th (n = 10,m = 34) [23].
LateOnsetStream orders the layers to balance the weight (i.e., the
sum of time series) between the top and bottom and the baseline is
calculated to minimize the weighted L2-norm wiggle value (Eq. 1).
Since w; = f; in the weighted wiggle measure, LateOnsetStream mainly
reduces the distortions in thick layers, e.g., the “Street light condition”
layer in the Call dataset, the “UKR” layer in the Bank Interest dataset,

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on October 26,2020 at 11:58:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3030404, IEEE

Transactions on Visualization and Computer Graphics

LateOnsetStream

Blocked criveway

=
©
@)

Street light condition

Noise

Bank Interest

Assistance

(9)

TwoOptStream

Street ight condition

.- E @ = Blocked driveway
Noise

(b) (c)

Street light condition

(h)

Fig. 13. Comparing LateOnsetStream [4], TwoOptStream [10], and SineStream for the Call dataset [29] (top), the Bank Interest dataset [30] (middle)
and the Assistance dataset [30] (bottom). The streamgraphs are drawn using different baselines and layer orderings.

the “PRE” and “MNA” layers in the Assistance dataset. Thus, the
thickness of these thick layers can be read accurately. The thinner
layers, however, suffer from strong effects of sine illusion, which
are caused by the large thickness changes of the thick layers. These
thin layers include the “Blocked driveway” layer in Call dataset, the
“BOL” and “EGY” layer in the Interest dataset, and the “SAS” layer
in the Assistance dataset. The top and bottom boundaries of these
thin layers have the same sign, thus misaligning the orthogonal and
vertical orientations and making it difficult to visually estimate the
actual thickness.

TwoOptStream, employs a heuristic algorithm, “TwoOpt”, to order
layers; the baseline is calculated to minimize the weighted L1-norm
wiggle value (Eq. 2). As discussed in Sect. 4.2, “TwoOpt” tends to place
thick layers in the middle, such as the “Noise” layer in Call dataset
and the “PRE” layer in the Assistance dataset. The thickness changes
of these thick layers will inevitably distort their neighboring layers.
Meanwhile, the L1-norm-based baseline optimization in TiwoOptStream
prefers one big distortion over several small distortions. As a result,
the distortion caused by the middle thick layers is mainly imposed to
layers on one side and causes strong sine illusions. For example, in the
Call dataset, the rapid thickness decrease in “Noise” introduces huge
distortions to the layers below, i.e., the “Blocked driveway” and “Street
light condition” layer.

Compared to LateOnsetStream and TwoOptStream, SineStream min-
imizes the effect of sine illusion and improves the readability through
an improved baseline and ordering algorithms. In all four datasets,
SineStream decreaes sine illusion effects for thin layers without signifi-
cantly increasing such illusion for the thick layers. For example, in the
Assistance dataset, SineStream significantly improves the readability of
the “SAS” layer and the purple layer by flatting their baselines. The
“PRE” layer is slightly distorted in SineStream, but the degree of this
distortion is much smaller than the distortion of “SAS”. Furthermore,
the thick layers are more resistant to the sine illusion. This improve-
ment is mainly cause by two factors: Compared to LateOnsetStream,
SineStream introduces a Gaussian weight for the baseline computa-
tion and penalizes layers with large thickness changes. Compared to
TwoOptStream, SineStream introduces a thickness weight in the or-
dering and tends to place thin layers in the middle. Moreover, our

efforts to minimize Zl’.'z_ll dist(i,i+ 1) let the slope of the baseline g,
(Eq. 4) be closer to zero than the other two methods. For example, the
SineStream result for the Call dataset is more flat than TwoOptStream;
for the Interest dataset, SineStream is more flat than both LateOnset-
Stream and TwoOptStream. This allows an easier comprehension of the

thickness of the whole graph.

6 CONCLUSION & FUTURE WORK

In this paper, we relate the optimization of streamgraph to the sine
illusion and propose SineStream, a new version of streamgraphs with
improved readability. The sine illusion provides a cognitive foundation
for quantifying the readability of a streamgraph, i.e., how easy users
can accurately read the layer thicknesses. Therefore, we re-formulate
baseline computation and layer ordering in terms of minimizing the sine
illusion effect. Apart from individual layers, SineStream also considers
sine illusions for the whole stream when ordering layers. A quantitative
comparison and a user study demonstrate that SineStream effectively
improves the readability and aesthetics of streamgraphs compared to
the state-of-the-art methods.

In the future, we plan to conduct large-scale user studies and a
comprehensive evaluation to better understand SineStream and sine
illusion effects in streamgraphs. SineStream models sine illusion using
Eq. 5 and achieves good results in improving readability. However,
how to precisely quantify the effect of sine illusion is still an open
question. VanderPlas and Hofmann [32] conclude that the sine illusion
effect increases with the slope of curves but provided no further details,
e.g., whether the relationship is linear or nonlinear. Cognitive studies
are needed to help us better understand and capture the relationships
between sine illusion effects and other visual variables in streamgraphs.

ACKNOWLEDGMENTS

This work is supported by the grants of the NSFC (61772315,
61861136012) and Deutsche Forschungsgemeinschaft (DFG) Project-
IDs DE 620/26-1, as well as 251654672 (TRR 161 Quantitative meth-
ods for visual computing).

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on October 26,2020 at 11:58:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3030404, IEEE

Transactions on Visualization and Computer Graphics

REFERENCES

(1]

(2]

(3]
[4]

(51

(6]

(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. Fast optimal leaf ordering
for hierarchical clustering. Bioinformatics, 17(suppl-1):S22-S29, 06 2001.
doi: 10.1093/bioinformatics/17.suppl_1.522

D. Baur, B. Lee, and S. Carpendale. Touchwave: Kinetic multi-touch
manipulation for hierarchical stacked graphs. In Proceedings of the 2012
ACM International Conference on Interactive Tabletops and Surfaces, ITS
’12, p. 255-264, 2012. doi: 10.1145/2396636.2396675

L. Byron. Last. fm listening history—what have i been listening to, 2008.

L. Byron and M. Wattenberg. Stacked graphs — geometry aesthetics. IEEE
Trans. Vis. & Comp. Graphics, 14(6):1245-1252, Nov 2008. doi: 10.
1109/TVCG.2008.166

W. S. Cleveland, M. E. McGill, and R. McGill. The shape parameter of
a two-variable graph. Journal of the American Statistical Association,
83(402):289-300, 1988. doi: 10.1080/01621459.1988.10478598

W. S. Cleveland and R. McGill. Graphical perception: Theory, experimen-
tation, and application to the development of graphical methods. Journal
of the American Statistical Association, 79(387):531-554, 1984. doi: 10.
1080/01621459.1984.10478080

W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and X. Tong.
Textflow: Towards better understanding of evolving topics in text. I[EEE
Trans. Vis. & Comp. Graphics, 17(12):2412-2421, Dec 2011. doi: 10.
1109/TVCG.2011.239

W. Cui, S. Liu, Z. Wu, and H. Wei. How hierarchical topics evolve in large
text corpora. IEEE Trans. Vis. & Comp. Graphics, 20(12):2281-2290,
Dec 2014. doi: 10.1109/TVCG.2014.2346433

R. H. Day and E. J. Stecher. Sine of an illusion. Perception, 20(1):49-55,
1991. doi: 10.1068/p200049

M. Di Bartolomeo and Y. Hu. There is more to streamgraphs than movies:
Better aesthetics via ordering and lassoing. Computer Graphics Forum,
35(3):341-350, 2016. doi: 10.1111/cgf. 12910

W. Dou, L. Yu, X. Wang, Z. Ma, and W. Ribarsky. Hierarchicaltopics:
Visually exploring large text collections using topic hierarchies. IEEE
Trans. Vis. & Comp. Graphics, 19(12):2002-2011, Dec 2013. doi: 10.
1109/TVCG.2013.162

P. Dragicevic. Fair Statistical Communication in HCI, pp. 291-330.
Springer International Publishing, Cham, 2016. doi: 10.1007/978-3-319
-26633-6_13

M. Dork, D. Gruen, C. Williamson, and S. Carpendale. A visual backchan-
nel for large-scale events. IEEE Trans. Vis. & Comp. Graphics, 16(6):1129—
1138, Nov 2010. doi: 10.1109/TVCG.2010.129

Food and Agriculture Organization of the United Nations. Fao stat. http:
//www. fao.org/. Accessed: 2020-03-20.

S. Havre, E. Hetzler, P. Whitney, and L. Nowell. Themeriver: visualizing
thematic changes in large document collections. /[EEE Trans. Vis. & Comp.
Graphics, 8(1):9-20, Jan 2002. doi: 10.1109/2945.981848

W. Javed, B. McDonnel, and N. Elmqvist. Graphical perception of multiple
time series. IEEE Trans. Vis. & Comp. Graphics, 16(6):927-934, Nov
2010. doi: 10.1109/TVCG.2010.162

S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241—
254, Sep 1967. doi: 10.1007/BF02289588

G. Karypis, Eui-Hong Han, and V. Kumar. Chameleon: hierarchical
clustering using dynamic modeling. Computer, 32(8):68-75, Aug 1999.
doi: 10.1109/2.781637

A. Kirk. Making sense of streamgraphs. www.visualisingdata.com/
2010/08/making-sense-of-streamgraphs/, 2010. Accessed: 2020-
01-30.

S. Liu, M. X. Zhou, S. Pan, Y. Song, W. Qian, W. Cai, and X. Lian.
Tiara: Interactive, topic-based visual text summarization and analysis.
ACM Trans. Intell. Syst. Technol., 3(2), Feb. 2012. doi: 10.1145/2089094.
2089101

National Bureau of Statistics of China. National data. http://data.
stats.gov.cn/. Accessed: 2020-03-20.

W. Playfair. The commercial and political atlas (london). 1786.

R. Pombo. time-series of coronavirus cases. https://github.com/
pomber/covidl9. Accessed: 2020-04-06.

Z. Pousman, J. Stasko, and M. Mateas. Casual information visualization:
Depictions of data in everyday life. IEEE Trans. Vis. & Comp. Graphics,
13(6):1145-1152, Nov 2007. doi: 10.1109/TVCG.2007.70541

S. References. Sports references. https://www.sports-reference.
com/. Accessed: 2020-03-20.

G. Sun, Y. Wu, S. Liu, T. Peng, J. J. H. Zhu, and R. Liang. Evoriver:

[27]

[28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

Visual analysis of topic coopetition on social media. IEEE Trans. Vis.
& Comp. Graphics, 20(12):1753-1762, Dec 2014. doi: 10.1109/TVCG.
2014.2346919

The New York Times. Disease. https://www.who.int/emergencies/
diseases/en/. Accessed: 2020-03-20.

The New York Times. The ebb and flow of movies: Box office receipts
1986 — 2008. http://archive.nytimes.com/www.nytimes.com/
interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.
html, 2008. Accessed: 2020-01-30.

The New York Times. Nyc open data. https://nycopendata.socrata.
com/, 2008. Accessed: 2020-01-30.

The World Bank. Global development data. https://data.worldbank.
org.cn. Accessed: 2020-03-20.

A. Thudt, J. Walny, C. Perin, F. Rajabiyazdi, L. MacDonald, R. Vardeleon,
S. Greenberg, and S. Carpendale. Assessing the readability of stacked
graphs. In Proceedings of Graphics Interface, pp. 167-174, 2016. doi: 10.
20380/GI2016.21

S. VanderPlas and H. Hofmann. Signs of the sine illusion—why we need
to care. Journal of Computational and Graphical Statistics, 24(4):1170-
1190, 2015. doi: 10.1080/10618600.2014.951547

L. Wattenberg. Babyname wizard: Namevoyager. Online: http://www.
babynamewizard. com/voyager, 2005.

P. Xu, Y. Wu, E. Wei, T. Peng, S. Liu, J. J. H. Zhu, and H. Qu. Visual
analysis of topic competition on social media. /EEE Trans. Vis. & Comp.
Graphics, 19(12):2012-2021, Dec 2013. doi: 10.1109/TVCG.2013.221
T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data
clustering method for very large databases. SIGMOD Rec., 25(2):103-114,
June 1996. doi: 10.1145/235968.233324

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on October 26,2020 at 11:58:46 UTC from IEEE Xplore. Restrictions apply.

http://www.fao.org/
http://www.fao.org/
www.visualisingdata.com/2010/08/making-sense-of-streamgraphs/
www.visualisingdata.com/2010/08/making-sense-of-streamgraphs/
http://data.stats.gov.cn/
http://data.stats.gov.cn/
https://github.com/pomber/covid19
https://github.com/pomber/covid19
https://www.sports-reference.com/
https://www.sports-reference.com/
https://www.who.int/emergencies/diseases/en/
https://www.who.int/emergencies/diseases/en/
http://archive.nytimes.com/www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.html
http://archive.nytimes.com/www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.html
http://archive.nytimes.com/www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.html
https://nycopendata.socrata.com/
https://nycopendata.socrata.com/
https://data.worldbank.org.cn
https://data.worldbank.org.cn
http://www.babynamewizard.com/voyager
http://www.babynamewizard.com/voyager

