
DRUIDJS — A JavaScript Library for Dimensionality Reduction
Rene Cutura*

TU Wien, University of Stuttgart
Christoph Kralj†

University of Vienna
Michael Sedlmair‡

University of Stuttgart

ABSTRACT

Dimensionality reduction (DR) is a widely used technique for vi-
sualization. Nowadays, many of these visualizations are developed
for the web, most commonly using JavaScript as the underlying pro-
gramming language. So far, only few DR methods have a JavaScript
implementation though, necessitating developers to write wrappers
around implementations in other languages. In addition, those DR
methods that exist in JavaScript libraries, such as PCA , t-SNE , and
UMAP , do not offer consistent programming interfaces, hampering
the quick integration of different methods. Toward a coherent and
comprehensive DR programming framework, we developed an open
source JavaScript library named DRUIDJS . Our library contains im-
plementations of ten different DR algorithms, as well as the required
linear algebra techniques, tools, and utilities.

Index Terms: Software and its engineering—Software no-
tations and tools—Software libraries and repositories; Human-
centered computing—Visualization—Visualization systems and
tools—Visualization toolkits;

1 INTRODUCTION

DIMENSIONALITY REDUCTION (DR) is a technique used to re-
duce the total amount of dimensions in a given dataset in order

to visualize the dataset or reduce the effects of the curse of dimen-
sionality in machine learning pipelines. DR methods are important
tools to project high-dimensional datasets into two or three dimen-
sions in order to visualize them. Python, R, and Matlab provide
extensive libraries for DR methods, while no extensive library exists
for JavaScript yet. With the increasing popularity of web applica-
tions using powerful visualization tools such as D3 [5] and Vega [34],
also the use of DR techniques has become popular. At the moment,
a dedicated library for DR methods is still missing though, which is
particularly problematic as different types of data require different
DR algorithms [28]. It is not possible to use the most appropriate
algorithm in every case as many DR methods have no JavaScript
implementation.

At the moment, DR methods often require either a server-client
structure or a precomputed embedding which can be loaded into the
browser. The latter approach is easy to implement, but no interac-
tion with the DR method is possible. It thus impedes the user from
loading their own data or to interactively change DR methods and
their parameterizations. Tools based on a server-client structure have
privacy issues as the data needs to be sent to a server, preventing
users from using those tools on sensitive data. To address these
concerns, users can create custom implementations, but this is dif-
ficult, time-consuming, and error-prone. Additionally, many DR
techniques are complex and need tools for unsupervised learning,
linear algebra, stochastic, etc. which makes efficient implementation
a difficult endeavour.

*e-mail: rene.cutura@tuwien.ac.at
†e-mail: christoph.kralj@univie.ac.at
‡e-mail: michael.sedlmair@visus.uni-stuttgart.de

To fill this gap, we contribute DRUIDJS
1, a JavaScript library for

DR methods, targeted at researchers and developers. The main goal
is to support them by providing access to the most frequently used
DR techniques. Based on our experience working with DR for many
years and the frequency of how they are used in the VIS literature at
the moment [33], we equipped DRUIDJS with an implementation of
ten DR algorithms — some of which have no existing JavaScript im-
plementations so far. The programming interface is designed based
on best practices used in other libraries such as Scikit-learn [30]
and D3 [5]. The DRUIDJS library is dependency-free and therefore
easily integrated into any project, by properly bundling all necessary
tools required to use DR techniques. These necessary tools include
matrix multiplications, LU-, QR-, and eigen-decompositions. In
the current version, we focused on code readability and ease-of-use
from a programmer’s perspective.

2 RELATED WORK

The main component of our framework is a set of dimensionality
reduction methods which are bundled into a JavaScript library.

There has been a plethora of work on DR methods and their usage.
Recent surveys [22, 28, 33] characterized the most important DR
algorithms and how they are used to interactively visualize high-
dimensional data. Generally, the literature distinguished between
two main groups of DR methods: linear and non-linear [39]. Linear
techniques, such as PCA [29] allow for easy interpretation of the
resulting space. In fact, this property makes PCA one of the most
commonly used DR methods [35]. The results of non-linear meth-
ods, such as t-SNE [38] and UMAP [24], can uncover more complex
high-dimensional structures. To do so, they most commonly try to
preserve the neighborhoods as well as possible. However, projec-
tions might look very different with different starting conditions and
might be harder to interpret by humans [40].

To the best of our knowledge, there is currently no
JavaScript framework that implements more than two DR algorithm
and works in the browser. For some implementations different li-
braries exist. MachineLearn.js [17] implements the PCA algorithm,
which does not allow users to set the desired dimensionality and
requires additional steps to create the reduced dataset. tSNEJS [16]
implements the t-SNE algorithm and UMAP-js [19] implements the
UMAP algorithm. Both use different programming interfaces (Ex. 7)
and are therefore complicated to use together. HDSP [15] and ml-
pca [18] are TypeScript libraries available for NodeJS only. Like
MachineLearn.js, the older pca-js [14] uses the SVD [11] algorithm
from numeric.js [23]. The library mdsjs [6] implements PCA and
LandmarkMDS [1], but has no documentation and we thus do not
include it in our comparative evaluation.

The alternative to JavaScript libraries are libraries in other pro-
gramming languages like Scikit-learn [30] for Python, dimRed [20]
for R, or drtoolbox [37] for Matlab. Our library does the projec-
tion directly in the browser and does not require a server to do the
computations in a different language.

3 DRUID

We now explain the features of DRUIDJS. We start by showing the
basic functions, before we depict some more advanced features.

1https://github.com/saehm/DruidJS

https://github.com/saehm/DruidJS


(a) Isomap projection with k = 34.
Visualized result of Ex. 1.

(b) Isomap projection with k = 50.
Result of Ex. 2.

(c) UMAP projection with default
parameters. (First transform Ex. 3).

(d) UMAP projection with individual
parameters. (Second transform Ex. 3).

Figure 1: DRUIDJS projections of the 4D Palmer Penguin dataset, which consists of 342 different specimens of penguins of the
species Adelie, Gentoo, and Chinstrap, living on one of the islands Torgersen, Biscoe, or Dream of the Antarctica.

We use the Palmer Penguin [12] dataset for illustration. The
dataset consists of 4 dimensions and 342 different specimens of
penguins of the species Adelie, Gentoo, and Chinstrap, living
on either one of the islands Torgersen, Biscoe, or Dream of
the Antarctica. The dataset contains features for the length and the
depth of the culmen/beak, the flipper lengths, and the body mass.
We normalized the values of each dimension and filtered data rows
with missing values. Fig. 1 shows examples of projections with
DRUIDJS.

Dimensionality Reduction We implemented the linear DR
techniquees PCA [29], LDA [4], and FASTMAP [9], and the non-
linear DR techniques Isomap [36], LLE [32], LTSA [41], MDS [21],
TriMap [2], t-SNE [38], and UMAP [24]. All algorithms have the
same interface, therefore we use only Isomap , UMAP , and t-SNE to
showcase our design decisions regarding the programming interface
(referred to as druid.DR). The values of the Palmer Penguin dataset
are stored in the 2D array penguins. One line of code (see Ex. 1)
is enough to project the data with Isomap in this case (Fig. 1a).

1 let projection = new druid.ISOMAP(penguins).transform();

Example 1: A new DR object isomap gets created
with new druid.ISOMAP. It takes as argument the data. The
data can be a 2D array or an object of the druid.Matrix
class. The method transform does the actual projection, and
returns the result in the input type.

Transform There are different ways to create a projection. The
simplest one is to just call the function transform or the async vari-
ant transform_async on the druid.DR object. We use the method
name “transform” to stick with the well established naming conven-
tion used in Scikit-learn, and as it describes best what happens to the
input data: it is transformed into a space of different dimensionality.

Parameterization Parameters influence the results of a DR
algorithm [8]. Therefore, it is often necessary to rerun a projection,
because the optimization process gets stuck in a local minimum and
the result is of bad quality. To tweak the parameters, each of them
can be changed by using the method parameter.

Fig. 1a (the result of Ex. 1) shows superimposed Gentoos and
Chinstraps. One reason for that could be a bad parameter value for

Isomap’s k: the number of neighbors per point taken into account
during the projection process of Isomap . The parameters depend on
the respective DR method. In our Palmer Penguin example a differ-
ent value for k changes the neighborhood connections and results in
better visual separability of the Gentoos and Chinstraps in the
final plot (Ex. 2 & Fig. 1b).

For users it is often unclear how to properly select these param-
eters. We thus offer reasonable defaults, but tweaking parameters
might still often be necessary.

1 let isomap = new druid.ISOMAP(penguins)

2 isomap.parameter('k', 50);

3 projection = isomap.transform();

Example 2: Changing the parameter k of isomap to 50, fol-
lowed by transform projecting the already defined Palmer
Penguin dataset in Ex. 1. Fig. 1b shows the result.

Generally, similar to the method attr of D3 for set-
ting and getting attributes of HTML elements, we used a
method parameter (Ex. 3) which takes as arguments the name
of the parameter (set and get) and the value of the respective pa-
rameter (set only). The method returns the druid.DR object itself
when setting a parameter-value to allow method chaining (see Ex. 3
lines 4–8). Otherwise the value of the parameter gets returned.

1 let umap = new druid.UMAP(penguins);

2 umap.transform(); // first run with defaults

3

4 umap.parameter('local_connectivity', 1)

5 .parameter('min_distance', 2)

6 .parameter('metric', druid.manhattan)

7 .parameter('dimensionality', 2)

8 .transform(); // second run with new parameters

9 let seed = umap.parameter('seed');

Example 3: Changing the parameters of umap, a druid.UMAP
object. The statement umap.transform() returns a projection
with those parameters (see Fig. 1c & 1d). The variable seed
gets the seed value from the druid.UMAP object.

Constructor The code used in Ex. 3 can be shortened by us-
ing the constructor of the respective DR class. The constructor
takes as arguments the input data (see Ex. 1), then DR-dependent
parameters, and then the hyper-parameters. The input data can be
either a druid.Matrix object or a 2D array which gets internally
converted to a druid.Matrix object.

1 new druid.UMAP(penguins, 1, 2, 2, druid.manhattan,

seed).transform();↪→

Example 4: Using the constructor shortens the code (from 5
lines to 1 line), but outputs the same as Ex. 3.



<100ms

Runtime

100ms
595ms
1090ms
1585ms
2080ms
2575ms
3070ms
3565ms
4060ms
4555ms
5050ms
5545ms
6040ms
6535ms
7030ms
7525ms
8020ms
8515ms
9010ms
9505ms
10s
>10s

PCA
D

N

1250
559
250
111
50
22
10
4

18 20 21 24 27 32 38 48 61 80 106
144
197
272
378
528
740
1040
1464
2064
2912
4112
5808
8208
11601
16400
23186
32784
46356
65552
92697

LLE

D

N

1250
559
250
111
50
22
10
4

18 20 21 24 27 32 38 48 61 80 106
144
197
272
378
528
740

t-SNE

D

N

1250
559
250
111
50
22
10
4

18 20 21 24 27 32 38 48 61 80 106
144
197
272
378
528

MDS

D

N

1250
559
250
111
50
22
10
4

18 20 21 24 27 32 38 48 61 80 106
144
197
272
378
528
740
1040
1464
2064
2912
4112
5808

Isomap

D

N

1250
559
250
111
50
22
10
4

18 20 21 24 27 32 38 48 61 80 106
144
197
272
378
528
740
1040

UMAP

D

N

1250
559
250
111
50
22
10
4

18 20 21 24 27 32 38 48 61 80 106
144
197
272
378
528
740
1040
1464
2064
2912

Figure 2: DRUIDJS runtimes of PCA [29], LLE [32], t-SNE [38], MDS [21], Isomap [36], and UMAP [24]. Each cell shows
the mean time of 5 runs of the respective DR method using a generated random dataset according N points (x-axis), and D
dimensions (y-axis). The gray cells indicate a runtime under 100ms, which allows for on-the-fly user interactions [7,26].

Generator Some DR methods like t-SNE (see Fig. 2) are com-
putationally complex and require more time. To integrate such
methods into an interactive visualization tool, the intermediate re-
sults can be plotted. Such intermediate results also provide insight
into the DR algorithm and allow for progressive approaches [27].
We use a generator function to provide the user access to the inter-
mediate results of the projection after each optimization step (Ex. 5).

1 let umap = new druid.UMAP(penguins);

2 for (let result of umap.generator()) {

3 do_something(result); // i.e. draw

4 }

Example 5: A generator yielding the preliminary result’s until
the optimization process of the DR algorithm stops.

Data Structure DRUIDJS’s matrix class druid.Matrix
stores the data values. The function from takes a 2D array and
checks for proper shape of the array, and stores it efficiently in
the memory as JavaScript typed arrays. The type of the return
value of a DR algorithm depends on the input type. Internally,d
DRUIDJS converts a 2D array to an object of the druid.Matrix
class. When more than one projection of a dataset is planned, using
a druid.Matrix object avoids redoing this step each time. To use
a druid.Matrix object, for instance, with D3, calling the func-
tion to2dArray converts the object to a JavaScript 2D array.

Initialization Some DR algorithms comprise computational
steps before the actual projection. For example, MDS and t-SNE
require a distance matrix before projection. Reusing such previous
computations reduces the runtime. These initialization steps are DR
technique-specific and require a lookup by the user, but can provide
precomputations to the DR algorithm (see Ex. 6).

1 let ∆ = distance_matrix(penguins);

2 let mds = new druid.MDS().init(∆).transform();

3 let tsne = new druid.TSNE().init(∆).transform();

Example 6: The function init provides the precomputed
distance matrix ∆ to the MDS- and TSNE object.

4 EVALUATION

We evaluated DRUIDJS in three steps. First, we did an individual
runtime analysis of DRUIDJS under different scales of data. Second,

we compared these runtimes to common Python and some existing
JavaScript DR implementations. Finally, we conducted a case study
comparing code readability and runtime of DRUIDJS to existing
JavaScript DR libraries.

4.1 Runtime analysis
To analyze the runtime of DRUIDJS, we generated random data
for each pair of datasize N ∈ {b16+2n/2c,n≥ 3} and dimensional-
ity D ∈ {b2 ·5d/2c,d ∈ {1, . . . ,8}}. Then, we projected each dataset
five times with six DR methods, measured the runtime for each, and
averaged the results. We picked the six most common ones due to
page limit; the full set of ten DR methods and more detailed data
can be found in the supplemental materials (also for the results in
Sec. 4.2). We stopped further projections for a specific D if a projec-
tion with length N needed more than ten seconds — a common time
limit for keeping a user’s attention [7, 26]. The computations were
run locally on a notebook with an Intel Core i7-8705G processor
with 16GB memory using the Chrome browser 83.0.4103.116.

Looking at the results (see Fig. 2), we observe that most tech-
niques are strongly affected by the number of points. PCA is less
affected by N, but much more by a high D, while t-SNE is less
affected by D, but much more by N. Besides PCA and t-SNE ,
all DRUIDJS methods have a reasonable runtime (under 1 second)
for N < 500. For N > 500, visualizing intermediate results with the
generator method can be a viable option.

We created an online demo2, so that users/readers can get a
qualitative “feeling” on the duration of these runtimes. The demo
allows to select an N×D dataset and then computes the respective
DRUIDJS projection on the fly.

4.2 Runtime comparison to other libraries
We now compare these runtimes to other frequently used imple-
mentations. In Python, we use Scikit-learn [30] and UMAP-
learn [25] (Fig. 3 sklearn*). In terms of JavaScript, we use Ma-
chineLearn.js [17], tSNEJS [16], and UMAP-js [19] (Fig. 3 js).

The results (Fig. 3) show that DRUIDJS performs better than
Scikit-learn for datasets with small N and small D for all methods.
At some point Scikit-learn starts to be faster than DRUIDJS. This
result is not surprising, as Scikit-learn has been heavily optimized
for runtime, while we have not engaged in such optimizations yet.
Scikit-learn implemented an iterative version of MDS , which is
slower than the direct version of DRUIDJS .

2https://renecutura.eu/druid_demo/

https://renecutura.eu/druid_demo/


PCA

LLE

t-SNE

MDS

Isomap

UMAP

18 20 21 24 27 32 38 48 61 80 106
144
197
272
378
528
740
1040
1464
2064
2912
4112
5808
8208
11601
16400
23186
32784
46356
65552
92697

D=1250
D=559
D=250
D=111
D=50
D=22
D=10
D=4

druid

js

sklearn*

none<10s

N

Figure 3: Each cell represents a dataset of N points and D dimensions. The rows represent the six most common DR techniques.
For each dataset cell, we let sklearn*, js, and our DRUIDJS implementations run 5 times each, and measured the
runtimes. We selected the two fastest ones and color-coded them. This results in a single color cell if the two fastest were from the
same implementation, and in stripes if they were from two different libraries. We can see, that for small N and small D, DRUIDJS
is consistently faster than sklearn* (green cells bottom left, yellow cells top right). For N < 106 DRUIDJS and the existing
js implementations lead to similar runtimes (striped green/blue cells).

1 import { tSNE } from 'tsnejs';

2 import { PCA } from 'machinelearn/decomposition';

3 import { UMAP } from 'umap-js';

4 import iris from 'IRIS_DATASET';

5 // compute t-SNE embedding

6 const tsne_dr = new tSNE();

7 tsne_dr.initDataRaw(iris);

8 for (let k = 0; k < 350; ++k) {

9 tsne_dr.step();

10 }

11 const tsne = tsne_dr.getSolution();

12 // compute PCA embedding

13 const pca_dr = PCA();

14 pca_dr.fit(iris);

15 const pca = iris.map(specimen => {

16 return [

17 specimen.map((col, i) => col *

pca_dr.components[0][i])↪→

18 .reduce((a, b) => a + b),

19 specimen.map((col, i) => col *

pca_dr.components[1][i])↪→

20 .reduce((a, b) => a + b)

21 ]

22 });

23 // compute UMAP embedding

24 const umap_dr = new UMAP().fit(iris);

Example 7: Projection of the IRIS data [10], without DRUIDJS.
The library for PCA computes the principal components only,
therefore a manual computation of the projection is needed.

When looking at js implementations all of them performed
worse than DRUIDJS, except PCA on high dimensions.

4.3 Case Study
We use a common use case — the projection of a dataset to two
dimensions for visualization purposes using different DR methods —
to illustrate the code readability of DRUIDJS. We chose the well
known IRIS dataset [10], consisting of 150 points with 4 dimensions
for our example. We compare three existing JavaScript libraries with
DRUIDJS based on the runtime and the number of lines of code. To
compare the runtime we executed the scripts Ex. 7 and Ex. 8 1000
times with equal parameterization. We performed 100 warm-up runs
before taking measurements to ensure similar JIT compiler states and
therefore improve the comparability. One run with DRUIDJS (Ex. 8)
took on average 922±109.82ms, and with existing implementations
(Ex. 7) on average 1051±70.64ms. DRUIDJS is, thus, roughly 10%
faster and has just 5 (Ex. 8) lines of code instead of 21 (Ex. 7).
In addition, tSNEjs requires to do the iterations manually (Ex. 7,

1 import druid;

2 import iris from 'IRIS_DATASET';

3 // compute t-SNE embedding

4 const tsne = new druid.TSNE(iris).transform();

5 // compute PCA embedding

6 const pca = new druid.PCA(iris).transform();

7 // compute UMAP embedding

8 const umap = new druid.UMAP(iris).transform();

Example 8: Same as Ex. 7, but with DRUIDJS. Same results,
but with just one line of code for each DR method.

lines 8–10) which requires good knowledge about the method to
choose the right iteration count. MachineLearn.js’s PCA computes
only the principal components and requires the user to create the
projection manually, worsening the code readability (Ex. 7, lines 15–
22). The UMAP-js implementation has a state-of-the-art interface
and requires only one line. With DRUIDJS every DR method requires
only one line and is likely easier to use (Ex. 8).

5 LIMITATIONS & FUTURE WORK

During the creation of DRUIDJS, our focus was the support of in-
experienced users by offering reasonable default parameterizations.
This brought us some feature limitations we plan to fix in future
releases of DRUIDJS. One of these limitations regards the addition
of more points, so called “out-of-sample extensions”. Some DR al-
gorithms allow the addition of more points to an existing projection.
We do not support this so far as it is not possible for all algorithms
and we wanted to keep the interface consistent over all algorithms.
We implemented a few important DR techniques, but others such
as SVD [11] are still missing. Of course, there is also still plenty
of room for implementations that scale JavaScript DR methods to
larger datasets, e.g., with GPU acceleration like tfjs-tsne [31].

6 CONCLUSION

In this paper, we present the JavaScript library DRUIDJS, which
allows to consistently use different DR methods directly in the
browser and integrate them into interactive tools. DRUIDJS is based
on a comprehensive programming interface using tried-and-tested
coding conventions. As most VIS-tools are online nowadays [3,
13], we hope that DRUIDJS will help to lower the entry barrier for
developers who want to use DR, and will support applications where
data privacy is of concern.

ACKNOWLEDGMENTS

This work was supported by the FFG ICT of the Future program via
the ViSciPub project (no. 867378).



REFERENCES

[1] Sparse Multidimensional Scaling using Landmark Points. Technical
report.

[2] E. Amid and M. K. Warmuth. TriMap: Large-scale Dimensionality
Reduction Using Triplets, 2019.

[3] L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and M. Stone-
braker. Beagle: Automated Extraction and Interpretation of Visualiza-
tions from the Web. In ACM Conf. on Human Factors in Computing
Systems (SIGCHI), pp. 1–8, 2018. doi: 10.1145/3173574.3174168

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation.
Journal of Machine Learning Research (JMLR), 3:993–1022, 2003.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3 Data-Driven Documents.
IEEE Trans. Visualization & Computer Graphics (TVCG), 17(12):2301–
2309, 2011. doi: 10.1109/TVCG.2011.185

[6] U. Brandes and C. Pich. Eigensolver Methods for Progressive Multi-
dimensional Scaling of Large Data. In M. Kaufmann and D. Wagner,
eds., Graph Drawing, vol. 4372 of Lecture Notes in Computer Science,
pp. 42–53. Springer, 2007. doi: 10.1007/978-3-540-70904-6 6

[7] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The information
visualizer, an information workspace. In ACM Conf. on Human Factors
in Computing Systems (SIGCHI), pp. 181–186, 1991. doi: 10.1145/
108844.108874

[8] R. Cutura, S. Holzer, M. Aupetit, and M. Sedlmair. VisCoDeR: A
Tool for Visually Comparing Dimensionality Reduction Algorithms. In
Euro. Symp. on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN), pp. 641–646.

[9] C. Faloutsos and K.-I. D. Lin. FastMap: A Fast Algorithm for Indexing,
Data-Mining and Visualization of Traditional and Multimedia Datasets.
In ACM Conf. on Management of Data (SIGMOD), pp. 163–174, 1995.
doi: 10.1145/223784.223812

[10] R. A. Fisher. The Use of Multiple Measurements in Taxonomic Prob-
lems. Annals of Eugenics, 7(2):179–188, 1936. doi: 10.1111/j.1469
-1809.1936.tb02137.x

[11] G. H. Golub and C. Reinsch. Singular Value Decomposition and Least
Squares Solutions. In Linear Algebra, pp. 134–151. Springer, 1971.
doi: 10.1007/978-3-662-39778-7 10

[12] K. B. Gorman, T. D. Williams, and W. R. Fraser. Ecological Sexual
Dimorphism and Environmental Variability within a Community of
Antarctic Penguins (Genus Pygoscelis). PloS one, 9(3):e90081, 2014.
doi: 10.1371/journal.pone.0090081

[13] E. Hoque and M. Agrawala. Searching the Visual Style and Structure
of D3 Visualizations. IEEE Trans. Visualization & Computer Graphics
(TVCG), 26(1):1236–1245, 2019. doi: 10.1109/TVCG.2019.2934431

[14] https://github.com/bitanath/pca. pca-js.
[15] https://github.com/IBM/projections. HDSP.
[16] https://github.com/karpathy/tsnejs. tSNEjs.
[17] https://github.com/machinelearnjs/machinelearnjs. MachineLearn.js.
[18] https://github.com/mljs/pca. ml-pca.
[19] https://github.com/PAIR-code/umap js. UMAP-js.
[20] G. Kraemer, M. Reichstein, and M. D. Mahecha. dimRed and

coRanking—Unifying Dimensionality Reduction in R. The R Journal,
10(1):342–358, 2018. doi: 10.32614/RJ-2018-039

[21] J. B. Kruskal. Multidimensional Scaling by Optimizing Goodness of
Fit to A Nonmetric Hypothesis. Psychometrika, 29(1):1–27, 1964. doi:
10.1007/BF02289565

[22] S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci. Visu-
alizing High-Dimensional Data: Advances in the Past Decade. IEEE
Trans. Visualization & Computer Graphics (TVCG), 23(3):1249–1268,
2016. doi: 10.1109/TVCG.2016.2640960

[23] S. Loisel. numeric.js.
[24] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction, 2018.
[25] L. McInnes, J. Healy, N. Saul, and L. Grossberger. UMAP: Uniform

Manifold Approximation and Projection. The Journal of Open Source
Software (JOSS), 3(29):861, 2018. doi: 10.21105/joss.00861

[26] R. B. Miller. Response time in man-computer conversational trans-
actions. In Fall Joint Computing Conference (AFIPS), pp. 267–277,
1968. doi: 10.1145/1476589.1476628

[27] T. Mühlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and M. Streit.

Opening the Black Box: Strategies for Increased User Involvement
in Existing Algorithm Implementations. IEEE Trans. Visualization
& Computer Graphics (TVCG), 20(12):1643–1652, 2014. doi: 10.
1109/TVCG.2014.2346578

[28] L. G. Nonato and M. Aupetit. Multidimensional Projection for Visual
Analytics: Linking Techniques with Distortions, Tasks, and Layout
Enrichment. IEEE Trans. Visualization & Computer Graphics (TVCG),
25(8):2650–2673, 2018. doi: 10.1109/TVCG.2018.2846735

[29] K. Pearson. LIII. On Lines and Planes of Closest Fit to Systems of
Points in Space. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 2(11):559–572, 1901. doi: 10.1080/
14786440109462720

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research (JMLR), 12:2825–2830, 2011.

[31] N. Pezzotti, J. Thijssen, A. Mordvintsev, T. Höllt, B. Van Lew, B. P.
Lelieveldt, E. Eisemann, and A. Vilanova. GPGPU Linear Complexity
t-SNE Optimization. IEEE Trans. Visualization & Computer Graphics
(TVCG), 26(1):1172–1181, 2019. doi: 10.1109/TVCG.2019.2934307

[32] S. T. Roweis and L. K. Saul. Nonlinear Dimensionality Reduction by
Locally Linear Embedding. Science, 290(5500):2323–2326, 2000. doi:
10.1126/science.290.5500.2323

[33] D. Sacha, L. Zhang, M. Sedlmair, J. A. Lee, J. Peltonen, D. Weiskopf,
S. C. North, and D. A. Keim. Visual Interaction with Dimensionality
Reduction: A Structured Literature Analysis. IEEE Trans. Visualization
& Computer Graphics (TVCG), 23(1):241–250, 2016. doi: 10.1109/
TVCG.2016.2598495

[34] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive Vega:
A Streaming Dataflow Architecture for Declarative Interactive Visu-
alization. IEEE Trans. Visualization & Computer Graphics (TVCG),
22(1):659–668, 2015. doi: 10.1109/TVCG.2015.2467091

[35] M. Sedlmair, M. Brehmer, S. Ingram, and T. Munzner. Dimensionality
Reduction in the Wild: Gaps and Guidance. Technical Report TR-
2012-03, Dept. Comput. Sci., Univ. British Columbia, Vancouver, BC,
Canada.

[36] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A Global Geo-
metric Framework for Nonlinear Dimensionality Reduction. Science,
290(5500):2319–2323, 2000. doi: 10.1126/science.290.5500.2319

[37] L. J. P. Van der Maaten. An Introduction to Dimensionality Reduction
Using Matlab. Technical Report MICC 07-07, Universiteit Maastricht,
Faculty of Humanities Sciences, MICC/IKAT, Maastricht, The Nether-
lands.

[38] L. J. P. van der Maaten and G. Hinton. Visualizing Data using t-SNE.
Journal of Machine Learning Research (JMLR), 9:2579–2605, 2008.

[39] L. J. P. Van Der Maaten, E. Postma, and J. Van den Herik. Dimension-
ality Reduction: A Comparative Review. Journal of Machine Learning
Research (JMLR), 10(66–71):13, 2009.

[40] M. Wattenberg, F. Viégas, and I. Johnson. How to use t-SNE effectively.
Distill, 1(10):e2, 2016. doi: 10.23915/distill.00002

[41] Z. Zhang and H. Zha. Principal Manifolds and Nonlinear Dimensional-
ity Reduction via Tangent Space Alignment. SIAM Journal on Scientific
Computing, 26(1):313–338, 2004. doi: 10.1137/S1064827502419154

https://arxiv.org/abs/1910.00204
https://arxiv.org/abs/1910.00204
https://arxiv.org/abs/1910.00204
https://arxiv.org/abs/1910.00204
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1145/3173574.3174168
http://portal.acm.org/citation.cfm?id=944937
http://portal.acm.org/citation.cfm?id=944937
http://portal.acm.org/citation.cfm?id=944937
http://portal.acm.org/citation.cfm?id=944937
http://portal.acm.org/citation.cfm?id=944937
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.1007/978-3-540-70904-6_6
https://doi.org/10.1145/108844.108874
https://doi.org/10.1145/108844.108874
https://doi.org/10.1145/108844.108874
https://doi.org/10.1145/108844.108874
https://doi.org/10.1145/108844.108874
https://doi.org/10.1145/108844.108874
https://doi.org/10.1145/108844.108874
https://doi.org/10.1145/108844.108874
https://doi.org/10.1145/108844.108874
https://doi.org/10.1145/223784.223812
https://doi.org/10.1145/223784.223812
https://doi.org/10.1145/223784.223812
https://doi.org/10.1145/223784.223812
https://doi.org/10.1145/223784.223812
https://doi.org/10.1145/223784.223812
https://doi.org/10.1145/223784.223812
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1007/978-3-662-39778-7_10
https://doi.org/10.1007/978-3-662-39778-7_10
https://doi.org/10.1007/978-3-662-39778-7_10
https://doi.org/10.1007/978-3-662-39778-7_10
https://doi.org/10.1007/978-3-662-39778-7_10
https://doi.org/10.1007/978-3-662-39778-7_10
https://doi.org/10.1007/978-3-662-39778-7_10
https://doi.org/10.1007/978-3-662-39778-7_10
https://doi.org/10.1371/journal.pone.0090081
https://doi.org/10.1371/journal.pone.0090081
https://doi.org/10.1371/journal.pone.0090081
https://doi.org/10.1371/journal.pone.0090081
https://doi.org/10.1371/journal.pone.0090081
https://doi.org/10.1371/journal.pone.0090081
https://doi.org/10.1371/journal.pone.0090081
https://doi.org/10.1371/journal.pone.0090081
https://doi.org/10.1109/TVCG.2019.2934431
https://doi.org/10.1109/TVCG.2019.2934431
https://doi.org/10.1109/TVCG.2019.2934431
https://doi.org/10.1109/TVCG.2019.2934431
https://doi.org/10.1109/TVCG.2019.2934431
https://doi.org/10.1109/TVCG.2019.2934431
https://doi.org/10.1109/TVCG.2019.2934431
https://doi.org/10.1109/TVCG.2019.2934431
https://github.com/bitanath/pca
https://github.com/bitanath/pca
https://github.com/IBM/projections
https://github.com/IBM/projections
https://github.com/karpathy/tsnejs
https://github.com/karpathy/tsnejs
https://github.com/machinelearnjs/machinelearnjs
https://github.com/machinelearnjs/machinelearnjs
https://github.com/mljs/pca
https://github.com/mljs/pca
https://github.com/PAIR-code/umap-js
https://github.com/PAIR-code/umap-js
https://doi.org/10.32614/RJ-2018-039
https://doi.org/10.32614/RJ-2018-039
https://doi.org/10.32614/RJ-2018-039
https://doi.org/10.32614/RJ-2018-039
https://doi.org/10.32614/RJ-2018-039
https://doi.org/10.32614/RJ-2018-039
https://doi.org/10.32614/RJ-2018-039
https://doi.org/10.1007/BF02289565
https://doi.org/10.1007/BF02289565
https://doi.org/10.1007/BF02289565
https://doi.org/10.1007/BF02289565
https://doi.org/10.1007/BF02289565
https://doi.org/10.1007/BF02289565
https://doi.org/10.1007/BF02289565
https://doi.org/10.1007/BF02289565
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2016.2640960
https://doi.org/10.1109/TVCG.2016.2640960
https://github.com/sloisel/numeric
https://github.com/sloisel/numeric
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1109/TVCG.2019.2934307
https://doi.org/10.1109/TVCG.2019.2934307
https://doi.org/10.1109/TVCG.2019.2934307
https://doi.org/10.1109/TVCG.2019.2934307
https://doi.org/10.1109/TVCG.2019.2934307
https://doi.org/10.1109/TVCG.2019.2934307
https://doi.org/10.1109/TVCG.2019.2934307
https://doi.org/10.1109/TVCG.2019.2934307
https://doi.org/10.1109/TVCG.2019.2934307
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2016.2598495
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.23915/distill.00002
https://doi.org/10.23915/distill.00002
https://doi.org/10.23915/distill.00002
https://doi.org/10.23915/distill.00002
https://doi.org/10.23915/distill.00002
https://doi.org/10.23915/distill.00002
https://doi.org/10.1137/S1064827502419154
https://doi.org/10.1137/S1064827502419154
https://doi.org/10.1137/S1064827502419154
https://doi.org/10.1137/S1064827502419154
https://doi.org/10.1137/S1064827502419154
https://doi.org/10.1137/S1064827502419154
https://doi.org/10.1137/S1064827502419154
https://doi.org/10.1137/S1064827502419154

