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Abstract
Dimensionality Reduction (DR) is a popular 
technique that is often used in Machine Learn-
ing and Visualization communities to ana-
lyze high-dimensional data. The approach is 
empirically proven to be powerful for uncover-
ing previously unseen structures in the data.  
While observing the results of the intermedi-
ate optimization steps of DR algorithms, we co-
incidently discovered the artistic beauty of the 
DR process. With enthusiasm for the beauty, 
we decided to look at DR from a generative art 
lens rather than their technical application as-
pects and use DR techniques to create artwork. 
Particularly, we use the optimization process to 
generate images, by drawing each intermedi-
ate step of the optimization process with some 
opacity over the previous intermediate result. 
As another alternative input, we used a neural-
network model for face-landmark detection, to 
apply DR to portraits, while maintaining some 
facial properties, resulting in abstracted facial 
avatars. In this work, we provide such a collec-
tion of such artwork.

Authors Keywords
dimensionality reduction; generative art.

Introduction

Dimensionality Reduction (DR) is a 
popular technique that is often used in 

Machine Learning and Visualization com-
munities to analyze high-dimensional data. 
The target lower dimension is normally 
either 2 or 3. A scatterplot (2D or 3D) is then 
usually used to visualize the outcome of 
the DR technique.  The approach is empiri-
cally proven to be powerful for uncovering 
previously unseen structures in the data.

Technically, given an analysis task, a DR algo-
rithm aims to preserve certain properties of 
the original dataset in the lower dimensional 
embedding, for instance, properties such as 
the neighborhood of data points or the simi-
larity or dissimilarity among the data points. 
For some DR algorithms, those properties are 
formulated as a cost function for an iterative 
optimization process. While developing the 
DR JavaScript library DruidJS [1], we gathered 
a collection of datasets to test the implemen-
tations of the DR techniques. Working with 
those algorithms and observing the results 
of the intermediate steps from the iterative 
process, we coincidently discovered the artistic 
beauty of the DR plots. Inspired by this find-

DaRt :  Generat ive  Art  us ing 
Dimens iona l i ty  Reduct ion 
Algor i thms

ing and also by the work of Tyler Hobbs1, we 
decided to look at DR from a generative art lens 
rather than their technical application aspects 
and use DR techniques to create artwork.

On one hand, by observing the inner work-
ing optimization process of DR algorithms 
one can gain insightful information about 

1.	 https://tylerxhobbs.com/essays/2020/

how-to-hack-a-painting
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what properties and how the original data gets 
projected. On the other hand, visualizing the 
intermediate results of the process surpris-
ingly provides aesthetic patterns that are artsy. 
Furthermore, the human face by its beautiful 
nature is the main objective topic in paint-
ing. Humans also can process faces very fast, 
which makes faces be reliable ground truth for 
detecting artifacts a DR method can produce. 
We further explore the artistic potential of DR 
algorithms by generating DR paintings from 
visualization and face recognization datasets.

DR also could be seen as a technique that 
takes this year’s VISAP’s theme literally on a 
higher non-technical level. DR connects data 
in the way it transforms and preserves cer-
tain properties of the original data in lower 
dimensional embeddings. At the same time, 

DR disconnects data by causing some distor-
tions that do not reflect the ground truth data. 
Particularly, DR creates “False neighbors” and 
“Missing neighbors” [2]. A “False neighbor” 
is a point that is a neighbor point in the lower 
dimensional embedding but not a neighbor in 
the original high-dimensional space. A “Miss-
ing neighbor” is a point that is not a neighbor 
point in the lower dimensional embedding 
but a neighbor point in the original space.

Given the coincident discovery in DR and 
the fact that DR matches with this year’s 
VISAP’s theme, we decide to exhibit our art 
collection generated by DR in this portfolio.

Related Work
According to Boden and Edmonds [3], gen-
erative art had its beginnings in the late 
1950s, with the rise of computer technology. 

They coined “computer generated art” as 

“[an artwork resulting] from some computer pro-

gram being left to run by itself, with minimal 

or zero interference from a human being”.

Nowadays, neural networks [4] or other intel-
ligent models [5] [6] are used for generating art.

As the ways a computer program could 
generate art grew more and more diverse 
over time, Dorin et al. [7] defined a more 
fine-grained framework. The table below 
shows our work within that framework.

Methods
We used the iterative DR methods imple-
mented in DruidJS v0.3.14 — t-SNE [8], 
UMAP [9], and SAMMON’ mapping [10] — 
with their default parameters and the string 
“cellar door” as seed for the random number 

Entities Initialization, 

termination

Processes Environmental interaction Sensory outcomes

Points, poly-
gons (vor-
onoi cells)

Random initialization, 
termination deter-
mined by a user, or by 
the stopping criteria of 
the used DR method.

The positions of the projected datapoints, 
defining the polygons, get optimized by a op-
timization method. The change in position, 
change the appearance of the polygons. After 
each optimization step, the polygons get drawn 
onto the canvas with a user defined opacity.

User defineable 
parameters.
With webcam input, reac-
tivity to facial expression.

Either, an image with 
hints to its origins in 
data, or a image, i.e. for 
a personalized avatar .
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generator. We use the available continuous 
colorscales from d3-scale-chromatic [11] 
v3.0.0. For the Voronoi tesselation we 
use d3-delaunay [12] in version 6.0.2. 

To generate the following images, we use the 
intermediate results of the respective optimi-
zation process. We then compute the Voronoi 
tesselation [13] of the intermediate result. We 
use the polygons from this tesselation to color 
all pixels of the image with the color of their 
closest data point. Then we draw each voronoi 
cell with a color from the selected color scale 
with a user-defined opacity onto the canvas. 

Important for an aesthetic result is the order-
ing of the points. Unordered points create 
turbulent images. Almost all of the datasets we 
used are pre-labelled and sorted accordingly. 

Tabular 
numerical 

data & 
color scale

Webcam

Input

Face-landmark 
detection & 

colors

DR method

t-SNE
UMAP

SAMMON

Voronoi 
tesselation

Optimization 
step

Result

OR

DaRt process

Image 

As alternative input we used images of faces, 
or a webcam input, where we use the face-
landmark detection model [14] (v0.0.3 in 
combination with tfjs [15] v3.7.0), which 
detects specific landmarks on the face and re-
turns those as 3D coordinates. We then project 
this 3D data with the iterative DR methods, 
and draw them as with the previous input.
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The dataset used of the previous image is 
the IRIS dataset [16]. This dataset consists 
of measurements of 50 exemplars of the 3 
species “Iris Setosa”, “Iris Versicolor”, and 
“Iris Virginica”. The measurements con-
sists of the sepal length, the sepal width, 
the petal length, and the petal width.

Example
T H E  I R I S  D A T A S E T .

Glyphs for all 150 exemplars 

of the IRIS dataset..

Iris Setosa

Iris Versicolor

UMAP projection of the IRIS dataset.UMAP projection of the IRIS dataset.
(default parameters, seed: “cellar door”, 350 iterations)(default parameters, seed: “cellar door”, 350 iterations)

The dataset consists of two clusters, where the 
exemplars of the Iris Setosa are distant to the 
other two species, because the sepal- and the 
petalwidth is bigger compared to the other two 
species. Iris Versicolor und Iris Virginica have 
exemplars which have similar measurements, 
therefore those are close to each other. 

Iris Virginica

sepal width

petal widthpetal length

sepal length

Glyph design.
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60 120 180 240 300 350

Generat ion
T H E  I R I S  D A T A S E T .

For generating the images, we use an iterative 
DR method — here UMAP — to compute a pro-
jection of the dataset. In this case, we project 
the 4-dimensional Iris dataset to 2 dimensions. 
The first row shows the intermediate results 
as classical scatterplot. The second row shows 
the voronoi cells of the intermediate result. 

The last row shows the artistic generation of its 
image. For this example we used the colorscale 
“Inferno” and colored the points and voronoi 
cells with the colors from the colorscale. 
After initializing the projection with random 
point placement, UMAP “finds” the “two clus-
ter” structure in the data very early in the opti-

mization process and pushes those two apart.
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UMAP projection of the IRIS dataset.
(default parameters, seed: “cellar door”, 350 iterations)
colorscale: Inferno
fill opacity: 0.015
stroke opacity: 0.045
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Mammoth dataset. 

UMAP, default parameters, seed: “cellar 

door”, 400 iterations, fill opacity: 0.015, 

stroke opacity: 0.045, colorscale: “Cool”.

Here we also drawed the points 

slightly darker and with opac-

ity 0.09 onto the canvas.

Swissroll dataset. 

UMAP, default parameters, seed: 

“cellar door”, 400 iterations, fill 

opacity: 0.015, stroke opacity: 

0.045, colorscale: “Spectral”.

S-shape dataset. 

UMAP, default parameters, seed: “cellar 

door”, 400 iterations, fill opacity: 0.015, 

stroke opacity: 0.045, colorscale: “RdGy” 

Examples
Here, we show further examples of some artistic images generated, together with 
their “classical” scatterplot counterpart and the voronoi tesselation.

The images of the Mammoth dataset (a) shows an example for False and Missing neigh-
bors. A foot of the mammoth is disconnected and gets crossed by another foot. This be-
comes also visible in the artistic image, where the green area cuts through the cyan part. 

Fashion-MNIST dataset.

UMAP, default parameters, seed: 

“cellar door”, 400 iterations, fill 

opacity: 0.015, stroke opacity: 

0.045, colorscale: “RdYlBu”

(a)
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Other  DR techniques
S A M M O N S  M A P P I N G  A N D  T - S N E

t-SNE SAMMON t-SNE SAMMON

Iris dataset.

both with default parameters, seed: “cellar door”, 400 iterations, fill 

opacity: 0.015, stroke opacity: 0.045, colorscale: “Inferno” 

S-shape dataset. 

both with default parameters, seed: “cellar door”, 400 iterations, fill 

opacity: 0.015, stroke opacity: 0.045, colorscale: “RdGy” 

t-SNE and SAMMON use a different optimiza-
tion technique (gradient descent) than UMAP 
(stochastic gradient descent) which runs 
“smoother”. With that optimization technique 
only small changes occur between the inter-

mediate results. The smaller changes then lead 
to a more stable voronoi tesselation, which is 
visible in the artistic images as more visible 
voronoi cells. t-SNE and SAMMON have also 
different optimization goals. SAMMON, for 

instance tries to maintain all distances between 
the points, t-SNE maintains the neighbor-
hood of the datapoints, which helps unfold-
ing potential manifolds in the original data.
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Face  Landmarks  I
D R  A P P L I E D  O N  P O R T R A I T S

UMAP projection of the face landmarks of the portrait of 
Vincent van Gogh.

(default parameters, seed: “cellar door”, 350 iterations)
fill opacity: 0.15

stroke opacity: 0.3

                   tfjs face landmark detection

Here, we run a face landmark detection model using tensorflowjs, to 
get 3d points of faces detected in images. We then use this 3D data 
as input for a DR algorithm and draw the intermediate result like 
before. Instead of using a colorscale we use the colors of the image. 
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More  Examples
D R  A P P L I E D  O N  P O R T R A I T S

Original portrait Face landmarks UMAP projection t-SNE projection Sammons mapping

“Girl with a Pearl Earring”

Johannes Vermeer, 1665

“The Lady in Gold”

Gustav Klimt, 1907

“The Birth of Venus”

Sandro Botticelli, 1480

“Vertumnus”

Giuseppe 

Arcimboldo, 1591

We selected these portraits because they are public domain and 
known. Other than that, the face-landmark detection model needs 
to work on the portrait. Portraits from Picasso for instance do 
not work, because the model cannot find the face landmarks. In-
teresting is the last image “Vertumnus” because the model found 
the face, altough the image shows only fruits and vegetables.
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Face  Landmarks  I I
D R  A P P L I E D  O N  P H O T O S

UMAP
This method generates more “blurry” images 
than the others, because the points get moved 
stronger in UMAP’s optimization process. 
t-SNE
The method t-SNE computes for each point 
the probabilities for the other points to be a 
neighbor. The optimization tries to maintain 
this probabilities in the lower-dimensional 
space. With this formulation large distances 
are more or less ignored, which is well known 

for t-SNE [17]. The keypoints which get de-
tected in the face have some dense areas with 
close distances, which then get prefered or 
focused by t-SNE. The other connections are 
more irrelevant for this technique. This is 
observable by the eye distances in the projec-
tions of the first two rows. The projection 
in the third row contains some Missing and 
False neighbors in the nose and mouth area.
SAMMON
SAMMON’s mapping tries to maintain all 

distances as good as possible. This leads to 
the “round shapes” artefact. From a projec-
tion perspective it 
produces the best 
results, because 
the datapoint 
given by the 
face-landmark 
model are already 
on a 2D surface.

UMAP projection t-SNE projection SAMMON’s mapping

The method works 
also on real photos. 
Also, the three DR 
methods, UMAP, 
t-SNE, and SAM-
MON’s mapping 
show different 
“artefacts”, based on 
their optimization 
process and goals. 
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Face  Landmarks  I I I
D R  A P P L I E D  O N  W E B C A M  I N P U T

As another alternative input 
we use the webcam. 
The face-landmark detection model keeps 
predicting the face-landmarks. The 3D 
data updates the running DR method, 
by exchanging the data on which the DR 
method is optimizing the 2D projection. So, 
if distances change, for instance one opens 

😠 😢 😴😛😲😐

the mouth, or closes an eye, then the DR 
method captures this change in the original 
data in the next optimization steps.

The emojis show the facial expression. Each row was taken from one webcam stream, where each of the columns show the projection 

after adapting to the new facial expression. For the first row SAMMON’s mapping was used, and for the second row t-SNE. Only with 

these two DR method implementations it is possible to run the optimization process without stopping criteria.
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Each row shows three UMAP projections, but we shuffled the ordering 
of the points. Left: Here we applied DaRt on randomly shuffled 
dataset, which results in a turbulent image. Middle: For the second 
image, we ordered each intermediate result with the help of a hilbert 
curve [18], which leads to rectangular artefacts following the hilbert 
curve. Right: We ordered the points with hierarchical clustering 
(optimal leaf ordering) after shuffling and before applying DR, which 
orders the points by similarity, in this case the euclidean distance.

Discuss ion

Mammoth dataset

Iris dataset

shuffled
shuffled & hilbert 

curve ordering

shuffled & ordering with 

hierarchical clustering

shuffled
shuffled & hilbert 

curve ordering

shuffled & ordering with 

hierarchical clustering

The generated images are strongly influenced by the ordering of 
the datapoints, because the ordering defines which color from the 
colorscale gets used. The expected behaviour of DR is to put similar 
points close in the projection. If the points are ordered by similarity, 
and ending up close in the projection by the DR method, then DaRt 
generates rather large areas with smooth color transitions. Otherwise, 
DaRt produces more unsteady images with a lot of changes in color.
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