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72076 Tübingen, Germany

Received 4 October 2018 / Received in final form 3 December 2018
Published online 8 March 2019

Abstract. We present MegaMol, a low-overhead prototyping frame-
work for interactive visualization of large scientific data sets. We give
a brief summary of related work for context and then focus on a com-
prehensive overview of the core architecture of the framework. This is
followed by the existing and novel features and techniques in Mega-
Mol that define its current functionality. MegaMol has originally been
developed to support the visualization and analysis of particle-based
data sets that, for instance, come from molecular dynamics simula-
tions. Meanwhile, the software has evolved beyond that. New algo-
rithms and techniques have been implemented to handle many diverse
tasks, including information visualization. Additionally, improvements
have been made on the software engineering side to make MegaMol
more accessible for domain scientists, like an easy-to-handle scripting
interface.

1 Introduction

The advancement of techniques and methods in scientific visualization often leads to
proof-of-concept prototypes. Specialized analysis tools often start as small prototypes
that are shared with domain experts so they can use them to solve their problems
and provide feedback that helps to further improve the tool. Usually, all of these
prototypes have a lot in common. They all include the same code for initializing
a graphical context, for file I/O, for data pre-processing, user interaction, etc. It
is an advantage to have a framework that supports all common processing steps,
so one can focus on developing new algorithms. The joint development and use of a
framework creates synergies, since it can be used in different projects and all common
functions have to be developed only once. Having these advantages in mind, the
development of MegaMol has started in 2006 in the context of the Collaborative
Research Center 716. This research center brought together scientists from physics,
material science, chemistry, biology, and computer science. Its goal was to advance
technologies regarding particle-based simulations and so the initial focus of MegaMol
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was to support particle-based visualizations. This focus has gradually been broadened
over time. But the core paradigms that govern the development of MegaMol remain
valid until now. We strive for an efficient usage of all available compute resources
including CPU and GPU. The processing pipeline is adjusted to achieve scalability.
The programming model is organized in a modular scheme to be highly adaptable.
Modularization also allows re-use of existing algorithms in different contexts, and
the duality of a stable core framework and cutting-edge (and partially experimental)
algorithmic modules represent the core idea behind MegaMol.

In this paper, we extend upon the overview on MegaMol given by [1–3] by present-
ing new features and improvements to MegaMol that are interesting to this audience.

2 Related frameworks

We briefly introduce the most relevant visualization frameworks available. They are
mostly more comprehensive and general than MegaMol, but conversely cannot be
tailored as much toward low overhead.

2.1 OSPRay

OSPRay [4] is a framework for ray-tracing based visualization of particles, volumes,
meshes, and more. Its kernels are optimized for CPUs to enable its usage on work-
stations and arbitrary HPC clusters, for instance, for in situ rendering purposes. The
framework can run independently but is also embeddable into other visualization
frameworks. While it contains a rather flexible data visualization tool, it lacks data
processing and analysis functionality in comparison to MegaMol. However, it excels
in rendering performance in scenarios where data sets do not fit entirely into the
GPU memory. The main advantage of OSPRay is its scalability. Especially, consid-
ering extensions such as the Pkd tree [5], which scales the rendering to billions of
spheres for point-based data without adding overhead to the source data. A sphere
is the main glyph type in scientific visualization for the rendering of molecules, and
is also used for astrophysical data or laser scans. OSPRay provides a simple API
to extend its functionality, for instance, to enable the rendering of new glyph types.
Performance-critical code portions are written in ispc [6] in order to utilize the vec-
tor extensions of modern CPUs. The ispc language is in principle similar to shader
languages used to program GPUs.

2.2 VTK

The Visualization Toolkit (VTK) [7] is a library that contains algorithms for the sci-
entific visualization of scalar, vector, and tensor fields. Different visualization frame-
works rely on VTK, also for their internal data representation. ParaView [8] is such a
framework that provides VTK functionality in a comprehensive application with GUI.
It supports the distribution of work on clusters using data parallelism. VisIt [9] is
another framework built on VTK. Its architecture is based on a client-server model.
This allows for parallelization in a remote rendering scenario of large data. Both
frameworks can be integrated into (or coupled with) simulation software for in situ
visualization.
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Fig. 1. MegaMol graph demonstrating the daisy chaining paradigm (see Sect. 4.3) that
combines several geometries for rendering in the singleton OSPRayRenderer.

2.3 OVITO

The Open Visualization Tool (OVITO) [10] is a GUI-based framework for the visu-
alization of atomistic data from, e.g. molecular dynamics. It provides a variety of
rendering and processing methods that can be connected into a “data processing
pipeline”. The processing pipeline, as well as the extension interface and the Python-
based scripting interface, aim at providing flexibility to users and developers, which
is similar to MegaMol. It offers specific analysis functionality for material science,
like dislocation detection and visualization.

2.4 Biomolecular visualization frameworks

Besides the more general visualization tools, there exist more specialized frameworks
specifically designed for biomolecular visualization. Among these, the most estab-
lished ones are VMD [11], Chimera [12], and PyMOL [13]. They all provide general
visualization methods for biomolecules like proteins or DNA, although each of them
has a different application area and, therefore, a different user group in focus. PyMol
incorporates a variety of tools to analyze the data produced by crystallographers, like
electron density maps, for example. In this aspect, Chimera acts similar as PyMol.
Both offer similar possibilities to analyze small molecular interactions like the inter-
action of ligand molecules at a binding site. VMD on the other hand is designed
towards the analysis of larger molecular trajectories. Especially when combined with
the Molecular Dynamics software NAMD [14] it is able to perform not only visualiza-
tion but also molecular modeling tasks due to the direct communication between the
simulation and visualization. Opposed to the other two tools, VMD also has the capa-
bility of being executed on HPC systems. All three programs offer a Python-based
scripting interface to allow more flexibility for the user.

3 Overview

MegaMol is designed to be primarily a prototyping framework for visualization tech-
niques and visual analysis applications. To achieve that, the design choices adhere
to paradigms, such as flexibility, re-usability, and zero-copy data management. The
backbone of MegaMol is represented by the Module graph (see Fig. 1). It is an acyclic
graph of functional entities as nodes including at least a data source and a data sink.
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Note that a window on the screen depicting a rendered image is a data sink, as
well. Edges in the graph represent data or information transported between nodes,
usually bi-directionally. However, the initialization of data transport follows the pull
paradigm. That means that the data sink always requests data from the source. That
choice aims at the support for dynamic data sets and at the same time at the reduc-
tion of data updates to the minimum. The primary results of MegaMol are interactive
visualizations. Therefore, data should only traverse the Module graph once a new
image has to be rendered. With a push paradigm, new data can be rejected at the
sink, if no new image is required to be rendered, for example, if data updates are too
frequent. That would require the caching of intermediary data possibly congesting
memory over time.

Each functional entity – the nodes in the Module graph – is organized as a Module.
A Module represents a component in the functional logic of the visualization or data-
processing pipeline depicted by the Module graph. The granularity of a Module is not
enforced by MegaMol and is left open to the developer. A Module can just represent a
single algorithm or an entire rendering pipeline. For instance, the entire functionality
of a deferred shading renderer can be encapsulated in a single Module with the
final image as output, or each rendering stage can be separated into its own Module
transferring intermediary buffers between the respective Modules. Note that a fine-
granular separation between Modules is best suited for the re-usability paradigm of
MegaMol. In the previous example, for instance, the final lighting stage could be
shared between different deferred shading renderers. Each data entity produced by
a Module is owned by this Module. This is an important invariant of the zero-copy
paradigm in MegaMol, which aims at scalability and at reducing memory footprint.

Modules in MegaMol are interconnected via Calls that model intents. An intent
specifies the reason for invoking a call, for instance, requesting new data, or asking for
data extents. Again the granularity of Calls is a choice of the developer. However, here
it is recommendable to bundle all intents that a Module can provide in a single Call.
This way a Call models the complete interface to a specific data type, for instance,
particle data, or volume data. Such a Call is reusable if the underlying data model is
reusable, i.e. all Modules processing particle data should implement the intents of the
generic particle data Call. In general, Calls transport only references to data owned
by a Module. This is another invariant of the zero-copy paradigm. The exception
is integral data types, which usually represent meta-information, that are directly
stored in the Calls.

Each Module exposes Parameters that provide the means for a user to interact
with the functionality encapsulated in a Module. Every Parameter represents a value,
e.g., a scalar, a color, or a file path. It also stores meta-information such as value
bounds, or can be associated with a callback that is triggered once the corresponding
value has changed. The Parameters are accessible through the API of MegaMol such
that a user can interact either through command line options, scripting, or through
a GUI.

Every entity of data that traverses the Module graph, including intermediary
results of processing algorithms, is attributed with a hash value. With that attribute,
a processing or rendering method can decide whether it already has calculated or
rendered results based on this specific data entity or not. For dynamic data sets, the
combination of frame ID and data hash identifies the data and can be used to reduce
unnecessary re-computations.

The native GUI of MegaMol exposes all Parameters of all Modules within a Mod-
ule graph. It is based on the AntTweakBar library and is currently in the transition
towards the more common ImGui [15]. The GUI is a minimalistic, straightforward
front end that follows MegaMol’s characteristic as prototyping framework.
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MegaMol is written in C++ and provides a Lua-based scripting interface. The
rendering is primarily done on the GPU via OpenGL. Additionally, MegaMol provides
experimental DirectX rendering modules, and currently, the focus is shifted more
towards CPU-based rendering.

4 Focus features

In this section, we want to highlight several existing as well as recent additions and
extensions of the MegaMol visualization framework.

4.1 Particle-based visualization

The original design of MegaMol was oriented towards the rendering, visualization,
and analysis of particle-based data. Therefore, most Modules available in MegaMol
still handle that data type. There are a set of loader Modules that handle data input.
MegaMol is able to read data produced by a variety of simulation software, e.g.,
ls1 [16], ESPResSo [17], and IMD [18]. The loaded data can be processed further
within MegaMol prior to rendering. It provides Modules for filtering or clustering
data. Missing attributes, for instance, the velocity or local temperature (in the form
of kinetic energy), can be reconstructed (the quality depending on the granularity of
time steps written by the simulation). Additionally, pre-processing Modules required
for some rendering methods are included, as well, e.g., neighborhood search, density,
or some order. Data sets from different sources can be concatenated. They are auto-
matically aligned if they have similar spatial domains. Some data type conversions
are also possible, such as particles to volume, or particles to trajectories.

The primary rendering primitive for particles is a van-der-Waals sphere. Mega-
Mol provides several rendering Modules for that representation, each with a different
purpose, e.g. approximating global illumination effects. Additionally, there exist Mod-
ules for particle trajectories rendering them as arrow glyphs or pathlines, and volume
rendering Modules for a density-based representation. The most generic renderer for
depicting spheres is the SimpleSphereRenderer, which is also best suited for a first
look at unknown data. If the data set is too large in terms of particle count, we can
leverage occlusion effects with respect to a specific camera view by utilizing occlusion
queries, or early-z tests as shown by Grottel et al. [19]. If a better depth-perception
is required to analyze the structure of a particle-based data set, we use object-space
ambient occlusion, which is a comparatively fast approximation of global lighting
as presented by Grottel et al. [20]. Shadows can further improve the perception of
structure and shape in combination with ambient occlusion. Thus we developed the
method of Implicit Sphere Shadow Maps, described by Krone et al. [21], which is an
extension of the method presented by Story [22]. Additionally, MegaMol is able to
combine transparency and ambient occlusion for particle-based data sets through a
method by Staib et al. [23].

MegaMol’s architecture allows using every render pipeline in a data-parallel dis-
tributed setup, leveraging the MPI integration in MegaMol. This has been mostly
used to provide images for tiled and large displays, see Section 4.8 for details. Recent
advances, such as MPI-based data exchange Modules, push MegaMol to support
data-distributed rendering, as well, which is especially useful for in situ rendering
setups.

For more details on MegaMol’s capabilities with respect to particles, we refer the
reader to [1].
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4.2 Lua scripting

We decided to use Lua [24] as scripting interface of MegaMol because it is lightweight
and can be effectively sandboxed. We use this scripting language to interface directly
with the MegaMol core functionality. All core Parameters, as well as all Parameters
of Modules in an active Module graph, are exposed through the Lua interface. The
Module graph and all its elements can be retrieved and manipulated at runtime.
The scripting interface can also be accessed remotely via a command line client
or the graphical Configurator utility. Since changes to entities in the graph, while
it is being traversed, results in undefined behavior, graph updates are queued for
execution in the main thread. Configuration files and project files to initialize a
Module graph upon start-up of MegaMol are written in Lua using the same API, in
order to keep all MegaMol functionality encapsulated within the same script engine.
This is a major change with respect to the original XML-based interface. The last
XML-based functionality is technique files for shaders, which will also be replaced by
Lua in the near future.

4.3 Sofware-defined visualization

Running MegaMol on HPC systems in order to enable in situ visualization, render
large amounts of data, and run remote visualizations from a cluster to a large tiled
display was not possible on clusters without a GPU. Since the majority of HPC sys-
tems are affected by this problem, we enabled software-defined visualization (SDVis)
for MegaMol [25]. As an SDVis framework, we chose to integrate OSPRay [4] – an
interactive ray tracing engine – into MegaMol. OSPRay offers an efficient renderer for
scientific visualization applications, distributed rendering, advanced rendering effects
(e.g. ambient occlusion), and it is extensible. With the OSPRay ray tracing engine,
a new Module graph paradigm was introduced to MegaMol (cf. Sect. 3). The daisy-
chaining paradigm allows stacking of an arbitrary amount of geometries and lights
for lazy evaluation (see Fig. 1).

We utilize the capability of software rendering in MegaMol to run in situ visualiza-
tions of muscle fiber simulations [26] and thermodynamic simulations [16]. Addition-
ally, the rendering of high-quality images for publications [25,26] and exhibitions [27]
using OSPRay’s SciVis renderer or path tracer is a useful new feature of MegaMol.
Figure 2 shows a high-quality rendering (16k resolution) that was produced for the
SFB 716 exhibition [27].

4.4 Video creation/movie making

Usually, researchers want to communicate gained insight through interesting visual-
izations. MegaMol provides support for this through an integrated movie maker tool,
the Cinematic Camera. It is fully integrated into MegaMol and can be applied to
any Module graph that renders images. Within the Cinematic Camera, a user can
define an arbitrary tracking shot based on keyframes. The Cinematic Camera distin-
guishes two types of time. There is the animation time, which relates to the time of
the motion path. Additionally, there is the simulation time which describes different
time steps of the data set. By distinguishing these two types of time, effects like
slow motion or freeze frames can directly be rendered by MegaMol without relying
on external movie editing tools. The rendering of high-quality movies can be very
time-consuming, especially when using advanced shading techniques, high output
resolutions, or the OSPRay path tracer. The Cinematic Camera circumvents this
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Fig. 2. Visualization of crystal structure defects of an aluminum-nano-polycrystal during
a pulling test simulation. Only the atoms that are not in the face-centered cubic structure
are clustered and colored. The ambient occlusion of the OSPRay SciVis renderer improves
the impression of depth, for example, the brown cluster consists of two thin plates that can
only be distinguished because of the illumination.

limitation with a significant reduction of the overall rendering time by utilizing the
support of synchronized execution on a GPU cluster and applying distributed ren-
dering on image-space subdivided tiles. The Cinematic Camera has been successfully
used to produce the movie material for the full dome movie used in the SFB 716
exhibition [27].

4.5 Information visualization

While MegaMol was initially built with scientific visualization in mind, several infor-
mation visualization techniques have turned out to be useful in the presence of high
dimensional point data. Unlike other tools for abstract visualization of point data
such as Excel or R, MegaMol is capable of rendering large quantities of high dimen-
sional points at interactive frame rates. We achieve such a good performance through
the adaption of particle rendering techniques, e.g., point-sprite-based splatting, and
SSBO-based streaming. Figure 3 shows the result from rendering modules for par-
allel coordinates [28,29] (PCP) and scatter plot matrices [30] (SPLOM). Both of
these techniques correlate two dimensions while maintaining a detailed impression of
data distribution. Moreover, the information visualization Module supports several
dimension reduction techniques such as principal component analysis (PCA), metric
multi-dimensional scaling (MDS) and t-Distributed Stochastic Neighbor Embedding
(t-SNE). Technically speaking, these techniques project a high dimensional space
down onto a two or three-dimensional space. This approach is useful if users want
to analyze high dimensional distances without existing dimensions providing a good
low dimensional insight.

4.6 Biomolecular visualization

MegaMol offers many possibilities to process and visualize biomolecules, especially
proteins. It is able to load files obtained from the Protein Data Bank [32] as well as
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Fig. 3. Excerpt from wine data set. The parallel coordinates (left) shows correlation using
parallel lines between dimensions and anti-correlation using crossed lines. The scatter plot
matrix (right) depicts correlation and anti-correlation using an angle of a thought linear
regression line. The visual impression of density stems from splatting, i.e. kernel density
estimation. The red line (left) denotes a selected high-dimensional point.

from simulation tools like GROMACS [33]. This covers single files and even whole
trajectories.

Proteins can be shown in many of the classical representations, like the licorice
model or the ball-and-stick representation. Especially for molecular surfaces, like the
Solvent Excluded Surface [34,35] or Gaussian density surfaces [36], many state-of-
the-art implementations are available. The used algorithms are accelerated using
OpenGL shaders or the CUDA framework to achieve interactive frame rates even
for large molecules. More abstract representations of proteins, like Cartoon render-
ings [37] are also supported using various techniques, like tessellation, for example. It
is also possible to enrich this representation by showing an additional value, e.g. char-
acterizing uncertainty [38]. All of the mentioned representations can be arbitrarily
combined by the user.

The more advanced protein visualization capabilities of MegaMol include detec-
tion and tracking of molecular cavities, the tracing of solvent and ligand molecules
over the course of a simulation, and various other techniques. Cavities in the molec-
ular surface are recognized using either volume-based techniques [39] or ambient
occlusion, which is typically used for illumination [40]. A special method worth men-
tioning is the Molecular Surface Maps method [31]. It creates a two-dimensional map
by projecting a protein onto a circumscribed sphere. An example of a Molecular Sur-
face Map is given in Figure 4. To make this possible, cavities in the molecule have to
be detected and closed beforehand. Opposed to the originally published paper, our
current implementation now uses Voronoi diagrams, utilizing the method of Lindow
et al. [41], to perform this operation.

4.7 Mesh rendering

Modern mesh rendering in MegaMol is designed around a strong decoupling of render
logic and the actual mesh data. It offers very high flexibility with almost arbitrary
vertex attribute layouts and shader inputs. Unlike most render modules in MegaMol,
the mesh renderer does not use a specific shader program, but rather requires the
data source Module to supply a matching shader program to use with the given mesh
data.

The mesh data, all necessary format descriptors as well as any additional input
data for the shader are prepared and batched by the data source Module and then
simply passed on to the renderer, which directly uploads the data to various large
OpenGL buffer objects. Therefore, the renderer itself requires very little knowledge
about the given mesh data and the core render loop is reduced to a minimal amount
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Fig. 4. Overview of the pipeline of the Molecular Surface Maps [31]. The Solvent Excluded
Surface (left) is projected onto a sphere (middle). Using general map projection techniques,
this is then projected onto a map (right). Colors encode the B-factor of the atoms, where a
blue color corresponds to a low value and red to a high one.

Fig. 5. Mesh data set that consists of 3624 individual objects (shown by randomized colors
for each object) and a total of 5.5 million triangles. Using a single draw call, it is rendered
in less than 4ms.

of OpenGL API calls, centered around the glMultiDrawElementsIndirect draw call
that is available since OpenGL 4.3. Costly OpenGL state changes are thus limited to
switching the shader program or vertex layout, making it possible to process complex
scenes with thousands of unique and individual objects with a single draw call, such as
in Figure 5. This modern, optimized approach follows the Approaching Zero Driver
Overhead paradigm that is also frequently adopted by modern high-performance
game engines [42,43].

So far, support for STL and glTF [44] mesh formats have been implemented,
but more formats can be easily added as additional data source Modules. Due to the
data-driven and minimalistic approach of the core rendering routine, a high geometry
throughput and overall high rendering performance are achievable. On a consumer
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grade GPU (Nvidia GTX 1070), we measured a throughput of 1.46 × 109 triangles
per second.

4.8 Powerwall support

MegaMol also supports large high-resolution displays and stereo rendering on such
displays. This is realized by means of a synchronized execution approach on a GPU
cluster and built-in image-space subdivision based on a display topology provided by
the user. Technically, MegaMol uses MPI for synchronization and communication,
leveraging the high-bandwidth and low-latency networks usually available on such
clusters. At startup, all instances perform a node coloring step, which allows MegaMol
to work with other applications also using MPI as their means of communication.
This paves the way for integrating MegaMol as in situ visualization into simulation
code.

The instances in the cluster are controlled by a single master instance, called
the operator node. This operator node distributes the project files to the rendering
nodes and also serializes and transmits all parameter changes, including the camera
state, to keep the slaves in sync. The mechanism can also be used to attach other
applications controlling the MegaMol cluster, for instance, mobile devices or spatial
input devices.

4.9 Web and remote visualization

While MegaMol is typically used as a standalone application that directly renders
the data, it can also be used for remote visualization on the web. To this end, we
implemented a Module that establishes a WebSocket server. If a client issues an
HTTP request via the browser, a two-way connection is established. We defined a
protocol that allows streaming data from MegaMol to the JavaScript client applica-
tion running in the browser. This protocol supports particle data as well as triangle
meshes [45]. We implemented a prototypical client application that renders molecular
data in the browser using WebGL. Particle data gets rendered using GPU-based ray
casting, similar to MegaMol [46]. Meshes can be used to render complex molecular
representations in the browser by computing them in MegaMol first and sending just
the triangle data to the client. This, for example, allows the visualization of molecular
surfaces on devices that lack the hardware capabilities to compute them. The data
transfer protocol was subsequently extended by using quantization, which reduces
the amount of data that has to be transferred from the server to the client [47]. Ren-
dering performance is not on par with native executables. For data sets of around
one million atoms, with the optimized transfer scheme, rendering performance never
drops below 20 frames per second on the tested hardware (Intel Core i7-2600, Nvidia
GeForce GTX 660 Ti PC and Intel Core i7-3520M, Nvidia GeForce GT 640M LE
laptop).

5 Conclusion and outlook

The development of MegaMol started with a focus on particle-based visualization
on workstations. Thanks to the flexible architecture for rapid prototyping, a lot of
different Modules for particle-based data set were soon available within the MegaMol
environment. Over time the functionality grew to support general information visu-
alization, biomolecules, and other data types. Starting from the original paradigm
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of renderers pulling data from sources and contributing to a common frame buffer,
we extended upon this via daisy-chaining, as required by the singleton OSPRay ren-
derer, and via the shifted responsibilities represented by the new mesh renderer: Here
data sources have to contribute more than metadata about buffer contents, for exam-
ple shader code for accessing the data to make sure the renderer is lightweight and
universally applicable.

We already experimented with data distribution and in situ visualization, which
is in our opinion important to tackle future challenges with respect to supercomput-
ing and large simulation runs. During these experiments, we learned that the current
architecture of MegaMol limits our possibilities to extend it in these directions: The
Module graph is designed to be traversed on a single thread. Only the functional-
ity within Modules can be executed in parallel. We are currently re-designing the
core architecture of MegaMol towards a model that can also bridge between single-
threaded and multi-threaded parts of the code.

First and foremost, we want to thank Sebastian Grottel, who started the MegaMol project
in 2006 and was the main developer until 2012. We also want to thank the German Science
Foundation (DFG) for funding MegaMol development as part of CRC (SFB) 716 project
D.3 and via the sustainability call for research software in project ER 272/12-1 “Research
Software Sustainability for the Open-Source Particle Visualization Framework MegaMol”.
We also want to thank Joachim Staib, Alexander Straub, Oliver Fernandes, and all students
for their contributions to MegaMol.
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