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Abstract: We present the results of a comprehensive analysis of visualization paper keywords supplied for
4366 papers submitted to five main visualization conferences. We describe main keywords, topic areas, and
10-year historic trends from two datasets: (1) the standardized PCS taxonomy keywords in use for paper
submissions for IEEE InfoVis, IEEE Vis-SciVis, IEEE VAST, EuroVis, and IEEE PacificVis since 2009
and (2) the author-chosen keywords for papers published in the IEEE Visualization conference series (now
called IEEE VIS) since 2004. Our analysis of research topics in visualization can serve as a starting point
to (a) help create a common vocabulary to improve communication among different visualization sub-
groups, (b) facilitate the process of understanding differences and commonalities of the various research
sub-fields in visualization, (c) provide an understanding of emerging new research trends, (d) facilitate
the crucial step of finding the right reviewers for research submissions, and (e) it can eventually lead to
a comprehensive taxonomy of visualization research. One additional tangible outcome of our work is an
application that allows visualization researchers to easily browse the 2600+ keywords used for IEEE VIS
papers during the past 10 years, aiming at more informed and, hence, more effective keyword selections for
future visualization publications.
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Vers une meilleure compréhension de la visualisation à travers
l’analyse de mots-clés

Résumé : Nous présentons les résultats d’une analyse exhaustive de mots-clés pour 4366 articles
de visualisation soumis à cinq principales conférences de visualisation. Nous décrivons les mots clés
principaux, domaines thématiques, et les tendances historiques sur 10 ans pour deux jeux de données: (1)
les mots-clés standardisés de la taxonomie PCS actuellement utilisés pour la soumission d’articles à IEEE
InfoVis, IEEE Vis-SciVis, IEEE VAST, EUROVIS, et IEEE PacificVis depuis 2009 et (2) les mots-clés
choisis par les auteurs pour les articles publiés dans la série de conférences de visualisation IEEE (appelée
IEEE VIS depuis 2004). Notre analyse des sujets de recherche en matière de visualisation peut servir de
point de départ pour (a) aider à créer un vocabulaire commun pour améliorer la communication entre
les différents sous-groupes du domaine de la visualisation, (b) faciliter la compréhension des différences
et points communs entre ces différents sous-groupes, (c) mieux comprendre les nouvelles tendances de
recherche émergentes, (d) faciliter l’étape cruciale consistant à trouver les bons experts pour la relecture
de soumissions, et (e), à terme, conduire à une taxonomie complète de la recherche en visualisation.
Un résultat supplémentaire et tangible de notre travail est une application qui permet aux chercheurs en
visualisation de parcourir facilement les mots-clés utilisés dans plus de 2600 articles de la conference
IEEE VIS au cours des 10 dernières années. Cette application vise à faciliter la sélection mieux informée
et par conséquent plus efficace de mots clés pour les futures publications en visualisation.

Mots-clés : analyse de mots-clés, thèmes de recherche, taxonomie, l’histoire de la visualisation, la
théorie.
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Toward a deeper understanding of Visualization through keyword analysis 3

1 Motivation

One of the main reasons why the field of visualization is such a fascinating field of research is due to its
diversity. We not only refer to the diversity of applications, but the diversity of research methods being
employed, the diversity of research contributions being made, as well as the diversity of its roots.

Diversity of roots: The term visualization can be understood very broadly, expressing a long history
of its use in common language. Therefore, it is not surprising that concepts of visual thinking have
penetrated many areas of science, engineering, and philosophy. The field of modern (computer-based)
visualization has been greatly influenced by research methods from the fields of numerics and computer
graphics, which have given it its birth in 1990. The impact of human-computer interaction affected the
birth of the InfoVis community in 1995 and the influence of applied statistics (such as data mining) and
cognition has led to the establishment of VAST in 2006.

Diversity of research methods: Given its diverse roots, visualizations remains a highly inter-disci-
plinary field that borrows and extends research methods from other fields. Methods come from fields as
diverse as the broader computer science, mathematics, statistics, machine learning, psychology, cognitive
science, semiotics, design, or art.

Diversity of contributions and applications: Based on these diverse influences, the results of visu-
alization research can be manifold: from engineering solutions to dealing with large data sources (such
as real-time rendering solutions, distributed and parallel computing technologies, novel display devices,
and visualization toolkits) to understanding design processes (as in perceptual guidelines for proper vi-
sual encodings and interaction or facilitating collaboration between different users through visual tools)
to scientific inquiries (such as improved understanding of perceptual and cognitive processes).

While all these diverse influences make the field of visualization research an exciting field to be a
part of, they also create enormous challenges. There are different levels of appreciation for all aspects of
visualization research, communication challenges between visualization researchers, and the challenge of
communicating visualization as a research science to the outside. These issues lead, in particular, to the
frequently asked question “what is visualization?”—among funding agencies or even between colleagues.
Given our field’s broad nature, we need to ask how we can comprehensively describe and summarize all
on-going visualization research. These are not just theoretical and philosophical questions, but the answer
to these question has many real-world impacts—from such simple (but career-deciding) questions as
finding the right reviewers during peer-review to administrative strategic decisions on conference and
journal structures and foci.

So while “what is visualization?” is a fundamental question, it is little discussed within our commu-
nity. In fact, thus far the approaches have mostly focused on understanding some sub-field of visualization
(e. g., [16, 29, 34]) but the question for the broader community has rarely been tackled beyond general
textbook definitions (e. g., [7]). Those who have approached the problem, did so in a top-down approach.
For example, several taxonomies were suggested by experts based on tasks, techniques, or data mod-
els (e. g., [8, 29, 35]). Another way of splitting visualization into more focused areas has been through
specific application foci (e. g., VisSec, BioVis, SoftVis, etc.).

What is missing in this picture is a bottom-up analysis: What types of visualization research are
actually happening as expressed by single research contributions in the visualization conferences and
journals. Our paper is one of the first steps in this direction. We analyze author-assigned keywords from
the three IEEE VisWeek/VIS conferences of the past ten years as well as author-selected taxonomy entries
in the submission system for three IEEE VisWeek/VIS conferences, EuroVis, and PacificVis of the past
six years. Based on this analysis, we make the following contributions:

Mapping visualization research: In Sect. 4, through the vehicle of keyword analysis, we build a
conceptual map of all visualization work as indexed by individual authors. Our main assumption here is
that, while each single keyword might be understood in a slightly different way by different researchers,
their co-occurrence with other keywords clarifies their meaning, especially when aggregated over many
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4 Isenberg et al.

different usages (i. e., many research papers in a major publication venue). This co-occurrence analysis is
the basis for deriving clusters and, therefore, research sub-fields. The use of keywords seen over the past
ten years also allows us to understand historical trends and we report on the most prominent declining
and rising keywords within all of visualization.

keyvis.org: In Sect. 5 we describe a Web-based search tool that (a) makes the keyword meta-data
available to a broad set of people, that (b) helps researchers/users of visualizations to quickly find the right
papers that relate to a given topic, and that (c) helps visualization researchers find descriptive keywords
for their publications.

Terminology: Visualization research is influenced by a diverse set of application domains. The vo-
cabulary of visualization is influenced by all these application areas. However, the resulting diversity of
terms are only understood by a small set of visualization researchers and, therefore, hinders the dissemi-
nation of research results and insights across all visualization sub-fields. This is very well articulated in
the collection of keywords throughout all of visualization in the past ten years. We are the first that col-
lected and “cleaned” this data, making it available to the benefit of our community, allowing its systematic
analysis. In Sect. 6 we argue for a unification of different vocabulary.

2 Related Work

We are not the first to have made an effort to summarize a large set of visualization papers in order to
understand topics or trends. One of the earliest such efforts was a summary and clustering of visualization
research papers by Voegele [36] in 1995 in the form of a two-dimensional clustering of all visualization
papers up to this point. Other efforts have focused on specific aspects of visualization research. Sedlmair
et al. [28], for example, did a thorough analysis of all design study papers to summarize practices and
pitfalls of design study approaches. Further, Lam et al. [22] studied the practice of evaluations in Infor-
mation Visualization papers which was then extended to include all visualization papers by Isenberg et
al. [20]. Others have surveyed, for instance, the literature on interactive visualization [21, 39], on tree
visualizations [27], on quality metrics in high-dimensional data visualization [2], on human-computer
collaborative problem-solving [11], or on visualization on interactive surfaces [19].

In other disciplines, specific techniques have been used to analyze the scientific literature more
broadly: to get a better sense of global research trends, links and patterns within the scientific litera-
ture. Co-word analysis is one approach among others (e. g., co-citation analysis) that has tackled the
problem by analyzing the scientific literature according to the co-occurrence of keywords, words in titles,
abstracts, or even in the full texts of scientific articles [5, 9, 13, 15, 23, 38]. Callon et al. [6], in particular,
wrote a seminal book on the topic that provides several methods that others have used and extended upon.

Co-word analysis has been used in different research areas, e. g., polymer chemistry [5], acid rain
research [23], or education [26]. Others further restricted the scope of the literature to specific countries,
such as Hu and Liu et al.’s [18, 24] co-word analysis on library and information science in China. The
closest co-word analysis studies to our work are Coulter et al.’s [10] work on the software engineering
community, Hoonlor et al.’s [17] general investigation of the computer science literature, and, most re-
cently, Liu et al.’s [25] analysis of the human-computer interaction literature. Liu et al. examined papers
of the ACM CHI conference from 1994–2013, identified research themes and their evolution, and clas-
sified individual keywords as popular, core, or backbone topics. We employ similar approaches as used
in particular in Liu et al.’s work. Naturally, however, we differ as our focus is on a different research
community, visualization, with different keywords, trends, and patterns and and a different historical
evolution.

In the visualization and data analysis literature, the closest work to ours is Chuang et al.’s [9] machine
learning tool for topic model diagnostics, and Görg et al.’s [14] visual text analysis using Jigsaw, and
the CiteVis tool [30]. These lines of work are not per se co-word analyses. However, their data sources
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Toward a deeper understanding of Visualization through keyword analysis 5

Table 1: Keyword datasets we collected.

conference author IEEE INSPEC years PCS years

IEEE InfoVis X X X 2004–2013 X 2008–2013
IEEE Vis/SciVis X X X 2004–2013 X 2008–2013
IEEE VAST X X X 2006–2013 X 2008–2013
EuroVis X 2008–2013
IEEE PacificVis X 2009–2013

also include visualization research papers. In contrast, we primarily focus on the results of our analysis
of themes and trends in the visualization literature rather than on the description of any specific tool or
algorithm.

3 Co-Word Analysis of the Visualization Literature
For our analysis of the visualization research literature we considered several data sources and analyzed
two in detail.

3.1 Datasets
We collected the following datasets:
Author-assigned keywords: Keywords freely assigned by the authors to their research paper. We col-

lected this data manually from paper PDFs as the IEEE digital library contained partially incorrect
data.

IEEE terms: These index terms are manually assigned by an IEEE-hired “university expert” [33] using
the IEEE taxonomy [31, 32].

INSPEC terms: These index terms are automatically derived [33] either using the same IEEE taxonomy
(controlled) or without constraints (non-controlled).

PCS taxonomy keywords: These keywords chosen from a pre-defined visualization keyword taxonomy
and are assigned by the authors during the submission of their research paper.

Details of the data collected can be found in Table 1. Table 2 provides an overview of the top ten
keywords from each data source for IEEE VisWeek/VIS papers for 2004–2013. After a first inspection of
the IEEE and INSPEC terms, we found these datasets to be unsuitable to answer our research questions
and chose not to analyze them further.

3.2 Keyword Analysis
Our general approach was first to extensively clean the data and then to analyze similarities and differ-
ences of both keyword sets. We largely followed Liu et al.’s [25] process for analyzing keyword data for
the ACM Conference on Human Factors in Computing Systems (CHI), extending it with expert coding
and an analysis of the taxonomy use.

3.2.1 Author-Assigned and Expert-Coded Keyword Datasets

Our collection of papers from the three IEEE VisWeek/VIS conferences (see Table 1) contained 1097
published papers (excluding posters). Out of these, 58 contained no author-assigned keywords, yielding
a set of 1039 papers we considered in our analysis. These papers contained a total of 2823 unique
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6 Isenberg et al.
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Toward a deeper understanding of Visualization through keyword analysis 7

density
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Figure 1: Strategic diagram to characterize the topic clusters (after [15]).

keywords. Next, we engaged in an extensive manual cleaning pass in which we consolidated keywords
that were the same but presented either as singulars/plurals, with spelling mistakes, or as acronyms. This
yielded a cleaned dataset that contained 2629 unique keywords that occurred a total of 4780 times across
all papers.

Next, we engaged in a manual expert coding of these keywords in order to find higher-level clusters
of keyword topics in this dataset. All authors of this paper participated in a multi-pass coding of the
cleaned keywords and assigned one or more higher-level cluster codes from a freely evolving, personal
code set. Next, we calculated the clusters that emerged from each expert’s coding, encoded them in
individual keyword-coocurrence matrices, and performed a hierarchical clustering (e. g., [1]) on the joint
matrix using average linkage with the Bray-Curtis distance metric [4]. This clustering yielded an ordering
of keywords that most strongly matched the consensus of each expert’s clustering but did not yet yield
satisfactory final clusters. We, thus, engaged in a final manual clustering pass in which we labeled the
clusters that emerged or broke them apart if the clustering had not provided meaningful distinctions. The
resulting set of keywords contained 156 unique higher-level keywords that occurred a total of 4026 times
across all papers (this number is lower than for the cleaned data as potentially generated duplicates per
paper were removed). Throughout our paper we refer to this keyword set as “expert keywords.”

3.2.2 PCS Taxonomy Keyword Dataset

The PCS taxonomy keyword data consists of the authors’ classification of their papers according to a
visualization taxonomy (called “PCS taxonomy” from now on). This PCS taxonomy was created in its
present form in 20091 and was used for the different visualization venues starting that year (for PacificVis
starting 2010). For the year 2008 (and 2009 for PacificVis) we mapped keywords from a previous to the
current taxonomy. We analyzed anonymized data on 3,927 paper submissions that included the submis-
sion IDs and keywords, but the titles only of papers that were finally accepted to the conferences. The
dataset included 1070 accepted and 2857 rejected papers. We did not have access to author names or
any other identifying information for rejected papers. Considering data from both accepted and rejected
papers allowed us to analyze the types of topics that the community was working on in a given year.
In total, the PCS taxonomy includes 14 higher-level categories and 127 lower-level keywords (4–17 per
higher-level category. In addition, the dataset also included the paper submission types (one of technique
paper, system paper, application/design study paper, evaluation paper, or theory/model paper) for IEEE
InfoVis, IEEE Vis/SciVis, IEEE VAST, and EuroVis, but not for PacificVis.

1The first version of the taxonomy was created by the 2007 EuroVis paper chairs, Ken Museth, Torsten Möller, and Anders
Ynnerman. This version was iterated by several people over the next two years. After a broad consultation within in the visualization
community, the final version was assembled by Hans-Christian Hege, Torsten Möller, and Tamara Munzner. This effort was
supported by the VGTC—the IEEE Visualization and Graphics Technical Committee.

RR n° 8580

ha
l-0

10
55

30
9,

 v
er

si
on

 1
 - 

12
 A

ug
 2

01
4



8 Isenberg et al.
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Figure 2: The frequency of the author-assigned keywords (2004–2013, published VIS papers), sorted by
their rank (both axes log-transformed).

3.2.3 Analysis Process

To analyze these keyword datasets (cleaned author-assigned keywords, expert keywords, PCS keywords)
we first filtered each dataset. We removed keywords that occurred less than a minimum threshold and
also excluded higher-level terms as outlined in Table 3. Next, we generated document-keyword matri-
ces for each dataset with the keywords as variables (rows) and documents as observations (columns).
Each cell contained a 0 if a keyword was not present in a paper and a 1 if it was. On each matrix, we
performed a correlation computation using Python’s NumPy corrcoef function that yielded a correla-
tion matrix holding keyword-keyword correlation coefficients. On each correlation matrix we performed
a hierarchical clustering using Ward’s method [37] and a squared Euclidean distance metric. We also
generated a keyword network in which two keywords were linked if their correlation was > 0 and each
link was assigned its respective correlation value. From this network we computed the density of each
cluster with the median of all inter-cluster links and the centrality by computing the sum of square of
all links from within a cluster to another cluster. We plotted centrality and density in strategic diagrams
[5, 10, 15, 18, 24, 25]. These diagrams distinguish four quadrants (Fig. 1) that characterize the different
clusters based on their centrality within the research domain and on how developed they are. The diagram
axes are centered on the median of the observed density and centrality values.

We found that the frequency distribution of the author-assigned keywords followed a power law (α =
1.66, R2 = 0.80) as is evident from the linear shape of the log-transformed frequency over rank plot
(Fig. 2). Similar to the CHI keywords [25], this indicates that the research structure within visualization
is a scale-free network. This means that the research network includes a small number of popular nodes
that represent topics on which researchers in the field concentrate. These central nodes serve as hubs to
which other research clusters are connected [24, 25]. In contrast to the author-assigned keywords, the
distributions of expert keywords and PCS taxonomy keywords do not follow a power law distribution.
For the PCS taxonomy, for example, this means that we do not observe that the majority of keywords
would rarely get used at all, which indicates that the present taxonomy does not contain a majority of
topics which would be irrelevant.

4 Results

Two main research questions drove our analysis of the data. In particular, we were interested in under-
standing major research themes and their relationship to other themes (Sect. 4.1) and the importance and
evolution of individual keywords (Sect. 4.2).
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Toward a deeper understanding of Visualization through keyword analysis 9

Table 3: The analyzed keyword datasets with their occurrence thresholds applied to keywords, number of
remaining keywords analyzed, and target number of clusters set for the cluster analysis.

dataset occur. excluded terms remaining target
thresh. keywords clusters

author 6
}{

visualization, information visualization,
scientific visualization, visual analytics

}
101 16

expert 10 101 16
PCS 0 none 127 15

Table 4: Cluster result for author-specified keywords. Keywords are sorted by frequency with the two
most frequent keywords highlighted in bold.

ID keywords (InfoVis, Vis/SciVis, VAST; 2004–2013) N #̃ cw-# centr. dens.

A1 isosurfaces, direct volume rendering, transfer function, gpu, time-varying data, molecular
visualiz., raycasting, sampling

8 11.5 1.2 0.286 0.085

A2 volume visualization, illustrative visualization, focus+context techniques 3 16.0 3.3 0.182 0.219
A3 volume rendering, graphics hardware, interpolation, visualization systems, level-of-detail,

vector field visualization, unstructured grids, astronomy, programmable graphics hardware
9 7.0 0.6 0.318 0.047

A4 focus+context visualization, coordinated & multiple views, interactive visualization,
interactive visual analysis

4 7.0 0.7 0.185 0.094

A5 interaction, sensemaking, multiple views, network visualization, time series data, social
networks, exploratory visualization

7 9.0 0.8 0.316 0.063

A6 geovisualization, spatio-temporal data 2 9.5 4.0 0.165 0.449
A7 graph visualization, clustering, treemaps, node-link diagrams, hierarchies 5 15.0 1.8 0.278 0.143
A8 parallel coord., multi-variate data, user interfaces, high-dimensional data, scatterplots,

visual data mining, user interaction
7 12.0 1.3 0.218 0.091

A9 evaluation, design, framework, animation, knowledge discovery, taxonomy, experiment 7 8.0 1.0 0.196 0.081
A10 focus+context, multi-variate visualization, uncertainty, classification, dimensionality

reduction, time-varying, visual analysis, principal component analysis
8 9.0 0.5 0.239 0.047

A11 user study, human-computer interaction, visual knowledge discovery, design study, medical
visualiz., collaboration, diffusion tensor imaging, linked views, graph layout, text visualiz.,
non-photorealistic rendering, tiled displays, social data analysis, bioinformatics, applications
of visualiz., glyphs, illustrative rendering, intelligence analysis, geographic visualiz.

19 7.0 0.1 0.283 0.011

A12 feature extraction, unsteady flow visualization 2 10.0 3.0 0.143 0.308
A13 uncertainty visualiz., perception, graph drawing, multi-dimen. visualiz., multi-dimen.

scaling, data mining, qualit. eval.
7 9.0 0.5 0.213 0.049

A14 flow visualization, vector fields, streamlines, 3d vector field visualization 4 8.0 2.3 0.264 0.155
A15 isosurface extraction, hardware acceleration, point-based visualization 3 7.0 1.3 0.126 0.176
A16 topology, comparative visualization, morse-smale complex, data exploration, contour tree,

feature detection
6 7.5 0.5 0.148 0.066

4.1 Analysis of Major Topic Areas
To understand major themes we analyzed the results of the clustering and the generated network graphs.
We first report on the results per keyword set and then discuss how these results relate with each other.

4.1.1 Author-Assigned Keywords

CLUSTER ANALYSIS: We created 16 clusters from the 101 author-assigned keywords. The number of
clusters we chose was based on manual inspection of the content validity of the hierarchical clustering
result. Table 4 summarizes the clusters (A1–A16) that were created. In the table we report the keywords
assigned to each cluster, the size of the cluster, the average amount of times each keyword occurred in the
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10 Isenberg et al.

whole corpus, the average amount of times the keywords in each cluster co-occurred (CW-frequency), the
centrality of the subnetworks created from each cluster, and the density of the subnetworks. Keywords
are sorted by number of occurrences in the dataset and the top two keywords are bolded and are used to
refer to the clusters in the text.

By inspecting of the clusters we found that several of them seemed to form more coherent themes
than others; many keywords made intuitive sense together, while some other clusters seemed to include
outliers. A11, in particular, contains a large number of diverse keywords around applications, encodings,
and specific visualization techniques. There were only few exceptions where individual keywords seemed
slightly out of place. For example, the keywords astronomy in A3 or multi-dimensional scaling in A13, at
first, may seem misplaced. The correlation matrix, however, reveals that astronomy was highly positively
correlated with interpolation, the second most frequent keyword in this cluster, same as multi-dimensional
scaling with graph drawing and multi-dimensional visualization. We similarly checked other keywords
that seemed out of place and confirmed their placements in the respective clusters to be meaningful with
respect to the correlation scores. The network graph in Fig. 4 can also further serve as an analysis aid to
check the strongest correlations among keywords.

Table 4 also includes several clusters with similar keywords but using slightly different wording.
For example, A1 (isosurfaces, direct volume rendering), A2 (volume visualization, illustrative visualiza-
tion), and A3 (volume rendering, graphics hardware) center around volumes. Similarly, Clusters A12
and A14 relate to flow visualization. Both volume and flow visualization have been central topics in
the IEEE Vis/SciVis conference, illustrated by the fact that both volume rendering and flow visualization
were the top two non-generic keywords in this dataset. Thus, the emerged clusters around these two
general topic areas suggest that the two topics are established and sub-areas of research have emerged.
It was more surprising to us that other related terms emerged under different terminology. For exam-
ple, three focus+context-related keywords were not clustered together: focus+context techniques (A1),
focus+context visualization (A4), and focus+context (A10). Similarly, graph visualization was placed in
A7 and graph drawing in A13. This suggests that sub-communities within visualization may use slightly
different terminology to label similar or related topics.

NETWORK ANALYSIS: Next, we analyzed the strategic diagram in Fig. 3(a) and the keyword cluster
map in Fig. 4. Fig. 3(a) shows that topic areas emerge in each of the previously mentioned quadrants. In
the following we do not discuss clusters A1, A4, A8, A9, and A13 as their density or centrality measures
were very close to the median and, thus, their membership in specific quadrants was not very strong.

The topics in Quadrant I of the strategic diagram (top right) are considered motor themes or “main-
stream” topics as they are both internally coherent and central to the research network. In our network,
clusters A7 (graph visualization, clustering) and A14 (flow visualization, vector fields) are considered
motor themes.

Topics in Quadrant II (bottom right) are A3 (volume rendering, graphics hardware), A5 (interaction,
sensemaking), A10 (focus+context, multi-variate visualization), and A11 (user study, human-computer
interaction). These themes are weakly linked together but present strong ties to other themes (clusters)
within the network. They are considered basic and transversal themes.

Quadrant III (top left) includes developed but isolated themes. These are the smaller sub-networks A2
(volume visualization, illustrative visualization), A6 (geovisualization, spatio-temporal data), and A12
(feature extraction, unsteady flow visualization), and A15 (isosurface extraction, hardware acceleration).
Their high density scores indicate that they are relatively strongly tied within themselves—also evident
in the network graph in Fig. 4 where these clusters remain mostly tied together through strong (thick)
links. While all four subnetworks also had the low centrality scores, they remained connected to the
larger central network in Table 4.

Finally, Quadrant IV (lower left) contains emerging or declining topics as they are neither very dense
nor central to the network. In particular, A16 (topology, comparative visualization) lies in this quadrant.
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Figure 3: Strategic diagrams of the cluster results for (a) author-assigned, (b) expert, and (c) PCS key-
words. Black lines indicate the medians.
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Figure 4: Keyword map from hierarchical clustering of author-assigned keywords; showing only con-
nected nodes with correlation strength ≥ 0.13. Circle areas correspond to number of occurrences of the
keyword in the dataset, link width corresponds to correlation strength, and color distinguished node clus-
ters. We chose a link threshold based on visual inspection of the resulting graph to generate a manageable
and readable layout. Isolated nodes were removed from the image.

4.1.2 Expert-coded Keywords

CLUSTER ANALYSIS: We created 16 clusters from the 101 expert-coded keywords (after removing 53
whose frequency was < 10). Again, we chose the cluster number based on a manual inspection of the
hierarchical clustering result. Table 5 gives an overview of the created clusters (E1–E16) as well as the
same cluster metrics as in Table 4.

It is important to note that many of the keywords contained in these 101 expert keyword clusters
capture topics that were not covered in the cluster analysis of the author keywords. Specifically, 46 of
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12 Isenberg et al.

Table 5: Cluster result for expert-coded keywords. Keywords are sorted by frequency with the two most
frequent keywords highlighted in bold.

ID keywords (InfoVis, Vis/SciVis, VAST; 2004–2013) N #̃ cw-# centr. dens.

E1 graphs, visualiz. techniques & tools, clustering, hierarchies, layout, charts/diagrams/plots,
networks, scatterplots, matrices

9 34.0 3.9 0.355 0.063

E2 evaluation, perception, design & guidelines, visual encoding, color, human factors/hci, art &
aesthetics, provenance & history

8 28.5 3.2 0.377 0.068

E3 geography/geospatial/cartography, motion, spatiotemporal, maps 4 20.5 4.0 0.276 0.152
E4 displays, toolkits/systems/environments, interfaces, theory/models/methods, knowledge

discovery, cognition, metrics, video & multimedia, virtual environments
9 29.0 1.4 0.394 0.040

E5 interaction, analysis process, multidimensional/multivariate, multiple & linked views, queries
& search

5 83.0 11.5 0.350 0.081

E6 data & data management, dimensionality reduction, social data/media/vis, databases & data
mining, collaboration, programming, internet/web, scale & multiscale, curves & curvature

9 25.0 1.5 0.413 0.038

E7 applications, text & documents, physics, patterns & pattern detection, semantics/semiotics,
storytelling

6 20.5 2.2 0.317 0.052

E8 machine learning & statistics, images & image/signal processing, uncertainty,
segmentation/classification, simulation

5 34.0 3.0 0.295 0.067

E9 interpolation, sampling, grids & lattices 3 14.0 4.0 0.267 0.261
E10 surfaces, numerical methods/math, isosurfaces, meshes & grids, geometric modeling, point

based data, raytracing/raycasting
7 32.0 4.0 0.384 0.097

E11 flow, topology, vectors, features & attributes, 3d visualization, streamlines/pathlines/streaklines 6 42.0 6.6 0.380 0.122
E12 volume rendering, hardware & computation, rendering & illumination, textures 4 68.5 14.8 0.387 0.159
E13 large scale data, cameras & views, resolution/multiresolution, astronomy/astrophysics,

computer networks, particles, information theory, level of detail
8 15.0 1.1 0.403 0.048

E14 medical, tensors, tractography, glyphs, climate/environment, biomedical 6 20.0 1.9 0.358 0.058
E15 design studies & case studies, biology, molecules, bioinformatics 4 19.0 2.2 0.302 0.107
E16 time, focus+context, illustrative visualiz., comparison/comp. visualiz., spatial,

events/trends/outliers, animation, comp. graph.
8 22.0 1.6 0.391 0.039

the expert keywords in Table 5 do not contain any of the 101 most frequent author-assigned keywords in
Table 4 that we used for author keyword clustering. In other words, these 46 expert keywords capture
topics in which none of the contained author keywords occurred more than 5 ×. Out of these 46, the fol-
lowing ones were among the top two most common themes in one of the expert keyword clusters: motion
(E3), data and data management (E6), machine learning & statistics (E8), images and image/signal pro-
cessing (E8), surfaces (E10), numerical methods/mathematics (E10), large-scale data (E13), cameras &
views (E13), tensors (E14), biology (E15).The top three of these keywords occurred more than 50 × in
our corpus and would not have emerged as important without the expert coding.

NETWORK ANALYSIS: The strategic diagram for expert keywords can be seen in Fig. 3(b). From the
following discussion we exclude clusters E1, E2, and E8, as their centrality and density scores were very
close to median centrality or density and, thus, quadrant membership was not strong for these clusters.

Three central and developed motor themes emerged in Quadrant I (top right): E10 (surfaces, numer-
ical methods/mathematics), E11 (flow, topology), E12 (volume rendering, hardware and computation).
All three themes are traditional topics of IEEE Vis/SciVis which also has the longest history of the three
IEEE VIS conferences. Hence it is perhaps not surprising that these topics emerged as central and dense.
Flow visualization and vector fields also proved to be a motor theme in the author keywords, further
emphasizing E11’s place as motor theme.

As undeveloped yet still central themes in Quadrant II (bottom right), clusters E4 (displays, toolk-
its/systems/environments), E6 (data and data management, dimensionality reduction), E13 (large scale
data, cameras & views), and E16 (time, focus+context) emerged most clearly.
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Figure 5: Keyword map from hierarchical clustering of the expert-coded keywords; showing only con-
nected nodes with correlation strength ≥ 0.11.

Themes in Quadrant III (top left; peripheral to the general research network) were E3 (geogra-
phy/geospatial/cartography, motion), E5 (interaction, analysis process), E9 (interpolation, sampling),
and E15 (design studies & case studies, biology). E9 is an extreme case as it exhibits the highest density
and lowest centrality score in the network and is also quite small. This theme is thus the most devel-
oped but isolated of the themes in this Quadrant. E5, in contrast, was very close to the median for both
centrality and density and is thus unspecific.

Among the emerging or declining themes in Quadrant IV (lower left) were clusters E7 (applications,
text and documents) and E14 (medical, tensors). Interestingly, the graph visualization-related cluster
A7 for the author keywords was characterized as a motor theme during the author-keyword analysis but
exhibited much lower centrality and lower density for the expert-coded cluster E1. The network diagram
in Fig. 5 gives a visual overview of how words and clusters correlated and how central certain keywords
are placed within the general network.

4.1.3 PCS Taxonomy Keywords

Before discussing the analysis of PCS keywords, it is important to note that their usage in practice is
different than for author keywords. Author keywords are generally used to label a paper and to explain in a
few words what research topics it covers—for example, with the intention to make the paper discoverable
in searches. While the PCS keywords can be used in the same way, the choices are limited and it is
not always possible to find the one keyword that exactly expresses a contribution. For the PCS data we
analyzed, authors were instructed to choose only a limited subset of PCS keywords (e. g., a primary and
up to four secondary keywords). Authors, thus, had to balance their choices among all possible keywords
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14 Isenberg et al.

that describe a paper contribution. A fundamental difference to author keywords, however, is that the
PCS taxonomy is used not only by the paper authors but also by the reviewers to describe their expertise
levels for each topic. The selection of PCS keywords for papers and by reviewers then informs how
reviewers are assigned to papers. Since this process is known to many paper authors, PCS keywords are
often carefully selected to rank more highly for reviewers with a certain expertise.

Given these differences in use, PCS keywords may not as accurately reflect the topic of a paper as the
author keywords do. Nevertheless, by conducting the same analysis on this keyword set as we did before
for author keywords, we can speculate on differences in use as well as on topics that may be missing in
each type of keyword set.

Overall, we observed that, similar to author and expert keywords, a small number of PCS keywords
appeared very frequently while a larger number of keywords did not. The five least frequently used
PCS keywords for the entire period of the dataset were volume graphics hardware (8 ×), haptics for
visualization (7 ×), embodied/enactive cognition (6 ×), sonification (5 ×), and special purpose hardware
(3 ×).

CLUSTER ANALYSIS: The result of the analysis of the PCS taxonomy is reported in the same way as
that of the other two keyword sets. Table 6 has the overview of the generated clusters, their keywords, and
metrics. Fig. 6 shows a filtered network graph generated from the keyword correlations, while Fig. 3(c)
depicts the strategic diagram.

The cluster analysis includes several interesting observations. First—and perhaps not too surprising—
most clusters include keywords that belong to different higher-level taxonomy keywords. For example,
flow visualization in P1 is considered an application according to the PCS taxonomy, while vector field
data belongs to the category spatial data and techniques. Yet, many clusters include keywords from a
predominant subset of the higher level of the PCS taxonomy: P2 (spatial data and techniques), P4 (non-
spatial data and techniques), P6 (display and interaction technology), P7 (visual analytics applications),
P11 (evaluation), and P13 (data handling, processing and analysis).

NETWORK ANALYSIS: Next, we analyzed the strategic diagram in Fig. 3(c). From the following
discussion we exclude P2, P3, P7, and P11, as their density or centrality scores were too close to the
media to derive conclusive quadrant memberships.

The most evident motor theme in Quadrant I (top right) was P13 (data transformation and representa-
tion, data filtering). P14 (focus+context techniques, zooming and navigation techniques) also fell within
Quadrant I but was relatively close to median centrality. The network diagram in Fig. 6 illustrates the
high density and centrality of P13 and its keywords (colored in light orange) well.

The themes in Quadrant II (bottom right; undeveloped topics that are central to the research net-
work because they are well connected) are P5 (graph/network data, visual knowledge discovery), P10
(illustrative visualization, animation), P8 (scalability issues, streaming data), and P15 (user interfaces,
visualization system & toolkit design).

Quadrant III (top left; developed but isolated themes) contained, in particular, P1 (flow visualization,
vector field data)—the theme with highest density—and P4 (multidimensional data, high-dimensional
data)—the theme with the lowest centrality. The other two themes in Quadrant III are P6 (collaborative
and distributed visualization, large and high-res displays) and P12 (visualization models, taxonomies.

Finally, Quadrant IV (bottom left; emerging/declining themes—undeveloped and peripheral to the
network) contains P9 (time-varying data, geographic/geospatial visualization).

4.1.4 Relationship between Expert and PCS Keywords

As both expert and PCS keywords present a higher-level assessment of the visualization topics, we were
interested in analyzing their relationship. Yet, we found it difficult to generate an exact match from PCS to
expert keywords and vice versa—in part because PCS and expert keywords were not always on the same
levels. For example, many specific application domains in the expert keywords could not be matched
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Toward a deeper understanding of Visualization through keyword analysis 15

Table 6: Cluster result for PCS taxonomy keywords. Keywords are sorted by frequency with the two
most frequent keywords highlighted in bold.

ID keywords (EuroVis, PacificVis, InfoVis, Vis/SciVis, VAST; 2008–2013) N #̃ cw-# centr. dens.

P1 flow visualization, vector field data, feature detection and tracking, topology-based
techniques

4 210.0 26.3 0.328 0.216

P2 volume rendering, gpus and multi-core architectures, scalar field data, extraction of
surfaces (isosurfaces, material boundaries), point-based data, irregular and unstructured grids,
molecular visualization, pde’s for visualization

8 143.0 11.5 0.404 0.079

P3 biomedical and medical visualization, visualization in physical sciences and engineering,
geometry-based techniques, multi-field, multi-modal and multi-variate data, uncertainty
visualiz., mathematical foundations for visualization, glyph-based techniques, tensor field
data, volume modeling, visualiz. in mathematics, data registration, sonification

12 124.5 4.1 0.484 0.028

P4 multidimen. data, high-dimen. data, parallel coordinates, dimensionality reduction,
statistical graphics, tabular data

6 125.0 11.9 0.314 0.095

P5 graph/network data, visual knowledge discovery, coordinated & multiple views, time
series data, text & document data, data clustering, visual knowledge represent., hierarchy data,
visualiz. in social & information sciences, bioinformatics visualiz., visual analysis models,
integrating spatial & non-spatial data visualiz., machine learning, pixel-oriented techniques,
software visualiz., hypothesis testing, visual evidence, hypothesis forming, business & finance
visualiz., data segmentation, data fusion & integration, visualiz. in the humanities

21 119.0 8.1 0.704 0.032

P6 collaborative & distributed visualization, large & high-res displays, immersive & virtual
environments, stereo displays

4 74.5 3.8 0.376 0.155

P7 intelligence analysis, situational awareness, emergency/disaster management, knowledge
externalization, network security and intrusion, time critical applications, privacy and security,
distributed cognition

8 29.5 1.4 0.594 0.080

P8 scalability issues, streaming data, data warehousing, database visualization and data mining,
parallel systems, distributed systems and grid environments, petascale techniques, cpu and
gpu clusters

7 47.0 2.5 0.511 0.073

P9 time-varying data, geographic/geospatial visualization, visualization in earth, space, and
environmental sciences, multiresolution techniques, view-dependent visualization,
compression techniques, terrain visualization, sensor networks

8 98.5 4.8 0.462 0.048

P10 illustrative visualization, animation, visualization for the masses, aesthetics in visualization,
multimedia (image/video/music) visualization, human factors, color perception, mobile and
ubiquitous visualization, scene perception, visualization in education, motion perception,
texture perception, attention and blindness

13 51.0 1.7 0.617 0.035

P11 quantitative eval., qualitative eval., laboratory studies, metrics & benchmarks, percept.
cognition, cognitive & percept. skill

6 69.5 10.0 0.489 0.116

P12 visualization models, taxonomies, cognition theory, perception theory, embodied / enactive
cognition

5 42.0 5.8 0.448 0.117

P13 data transformation and representation, data filtering, data aggregation, data acquisition
and management, data smoothing, data editing, data cleaning, volume graphics hardware

8 36.0 5.1 0.714 0.122

P14 focus+context techniques, zooming and navigation techniques, manipulation and
deformation, multimodal input devices, haptics for visualization, special purpose hardware

6 44.0 3.6 0.546 0.087

P15 user interfaces, visualiz. system & toolkit design, interact. design, human-computer
interact., visual design, design studies, usability studies, design methodologies, task and
requirements analysis, presentation/production/dissemination, field studies

11 159.0 11.1 0.703 0.069

well because we had matched many applications into a generic applications group due to their relatively
infrequent use. On the other hand, in the expert coding we had explicitly labeled specific application
domains that only existed as relatively large groups in the PCS taxonomy (e. g., expert keywords physics,
material science, automation, traffic vs. visualization in physical sciences and engineering; or expert
keywords astronomy/astrophysics, climate/environment, earth sciences vs. visualization in earth, space,
and environmental sciences).

We also found the higher-level PCS category data handling, processing and analysis to contain very
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Figure 6: Keyword map from hierarchical clustering for PCS taxonomy keywords; showing only con-
nected nodes with correlation strength ≥ 0.135.

fine-grained keywords which, in our expert coding, were simply mapped to data and data management.
Similarly, we had merged all author keywords related to scalability issues and petascale techniques into
one expert-keyword: large-scale data. On the other hand, we also found PCS categories that relate to
several expert keywords and are, thus, rather broad. For example the keyword visual design relates to the
expert keywords layout, visual encoding, and design & guidelines.

Despite these differences in categorization, we found a number of expert keywords that we could not
match well in the PCS taxonomy but did appear in our dataset 20 × or more. These keywords are: ren-
dering & illumination, images and image/signal processing, meshes and grids, charts/diagrams/plots,
queries and search, comparison/comparative visualization, interpolation, motion, programming, and
streamlines/pathlines/streaklines.

4.2 Analysis of Individual Keywords

In this section, we analyze individual keywords in more detail across all three of our data sources.

4.2.1 Common Keywords

The top three most frequently occurring keywords in the author keyword list were community-related
keywords: information visualization, visual analytics, and visualization (in this order). These are all
keywords that describe a research (sub)community and it is interesting to see that the term scientific vi-
sualization does not occur. The terms information visualization and visual analytics were predominantly
present on papers accepted to the respective conferences. We hypothesize that both IEEE VAST and IEEE
InfoVis have been the smaller of the three conferences and in the process of becoming more established,
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Toward a deeper understanding of Visualization through keyword analysis 17

authors may have chosen to tag their papers with these terms to strengthen associations to their respective
communities. This hypothesis is also supported by the observation that information visualization was
the most frequent keyword for the period of 2004–2008, while visual analytics was the most frequent
keyword for period of 2009–2013 during which IEEE VAST became an established venue.

Next, we analyzed the top individual keywords per visualization conference to get an understanding
of main topics and concerns in these subcommunities. We excluded the community-related keywords
from this analysis. For author-assigned keywords, the top three for each IEEE VIS conference were:

VAST: sensemaking (13), visual knowledge discovery (8), geovisualization (7)
InfoVis: interaction (25), graph visualization (19), evaluation (17)
Vis/SciVis: volume rendering (72), flow visualization (48), isosurfaces (25)

Among these, no common keywords exist between the conferences. When expanding the analysis
to the top 10, VAST and InfoVis share the keyword interaction but no other overlaps emerged. This
may indicate that the three conferences do focus on different areas of visualization—or use different
terminology for related concepts.

In order to understand whether terminology plays a role, we looked at the top three expert keywords.
Here, the keyword interaction emerges for both IEEE InfoVis and VAST but remains the only shared
keyword:

VAST: analysis process (53), interaction (31), applications (24)
InfoVis: graphs (73), interaction (69), evaluation (53)
Vis/SciVis: volume rendering (148), hardware and computation (89), flow (70)

When expanding the analysis to the top 10 keywords, application emerges as a keyword common
to all three conferences. InfoVis and VAST also share the keyword evaluation (ranked 14 in Vis/SciVis)
while VAST and Vis/SciVis share the keyword time (ranked 12 in InfoVis). Among the top 100 keywords,
17 were used only on Vis/SciVis papers (ignoring a up to one occurrence at each of the other two confer-
ences). The top 3 of these keywords were: volume rendering, isosurfaces, and geometric modeling. We
can conclude that all three sub-communities share some joint concerns, e. g. on applications, evaluation,
and temporal data but that they do have their respective foci. However, there appears to be more overlap
between VAST and InfoVis than we observe between Vis/SciVis and the other two conferences according
to the expert keywords.

The top three PCS keywords only for the IEEE VisWeek/VIS were:

VAST: visual knowledge discovery (160), text and document data (78), coordinated and multiple
views (74)

InfoVis: graph/network data (197), visual knowledge discovery (99), user interfaces (98)
Vis/SciVis: volume rendering (235), biomedical and medical visualization (193), flow visualization (154)

It can be seen that the top three keywords for the three datasets relate to each other in that graphs
and volume rendering remain the top keywords for InfoVis and Vis/SciVis, respectively, and that visual
knowledge discovery was in the top 3 for VAST in the author keywords and also covered under analysis
process for the expert keywords. When looking at the top 100 PCS keywords, 6 emerged that were only
used by submissions to Vis/SciVis (ignoring up to one occurrence at each of the other two conferences).
These keywords all belong to the higher-level category of spatial data and techniques: vector field data,
scalar field data, extraction of surfaces, tensor field data, irregular and unstructured grids, and volume
modeling. Conversely, there were two keywords never or only once used for submissions to Vis/SciVis:
business and finance visualization and tabular data.
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18 Isenberg et al.

4.2.2 Rising and Declining Keywords

Next, we were interested in historic trends for individual keywords. We used Tableau to calculate linear
trend lines for the 15 most frequently used keywords in the author, expert, and PCS datasets. Table 7 gives
an overview of this data by dataset, ordered by slope from increasing to decreasing. Significant results
are highlighted in bold (note that not all significant trends are shown due to the selection by frequency).

RISING KEYWORDS: Across all three IEEE VIS conferences, the use of the term interaction is
significantly increasing according to author-chosen keywords. If one only considers the expert keywords,
the terms interaction, evaluation, multidimensional/multivariate, and machine learning & statistics are
on the rise. The analysis of the PCS keywords yielded 8 keywords that are significantly increasing:
coordinate and multiple views, visual knowledge discovery, time-series data, data transformation and
representation, high-dimensional data, interaction design, multidimensional data, and graph/network
data. There is overlap between these increasingly popular topics. We attribute the strongest overall
increasing trends to: interaction, evaluation, multi-dimensional/high-dimensional/multi-variate data.

DECLINING KEYWORDS: According to author-chosen keywords, both volume visualization and flow
visualization have been significantly decreasing in frequency of occurrence over the past 10 years. The
expert-coded keywords confirm this and add hardware and computation as a declining topic. Inter-
estingly, no significantly declining topics were found for the PCS taxonomy keywords (but GPUs and
multi-core architectures—not shown in the table—trended that way, p = 0.07). This may be due to the
fact that we only had data for six years for PCS but 10 years for the author/expert keyword sets.

For the author/expert keywords, it is interesting to note that two very core and frequent keywords for
the IEEE Vis/SciVis conference are in significant decline. This could perhaps be due to the fact the many
fundamental research questions have been tackled and that researchers are now using more specific or
other keywords.

4.3 Limitations
While our analysis has revealed a wealth of information, the study results have to be read in light of
several analysis limitations. One obvious limitation is, of course, that we only analyzed a subset of
publications from the visualization domain. To determine this subset, however, we followed advice from
Bradford’s law [3] for selecting our data sources. This law states that a small core of publications will
account for as much as 90% of the literature in terms of citations received—trying to achieve 100% will
add publications at an exponential rate. Thus, it is unreasonable to attempt to cover the whole literature
for a field. Given the size and importance of IEEE VisWeek/VIS, we focused on a ten-year dataset from
this conference (plus the additional data on the use of the PCS taxonomy). This analysis enabled us to get
a rich overview of the field. Yet, compared to several past keyword analysis studies (e. g., [6, 25, 24]), the
visualization field is still young and the overall number of keywords was comparably low, in particular
for the author-assigned keywords. The low number of overall keywords and the vast difference in number
of papers accepted to the IEEE VisWeek/VIS conferences is also one of the main reasons we did not
study the difference between IEEE VAST, InfoVis, and Vis/SciVis in depth but looked at the whole
field together. By expanding the dataset back to 1995 (the first year of InfoVis) a comparative analysis
may be more meaningful. Yet, another peculiarity of the field may further impact such a comparison:
for a long period of time it was possible to send information visualization papers to both the InfoVis
and Vis/SciVis conference. The Vis/SciVis conference even included information visualization sessions.
Thus, the borders between the conferences were not always as clear as their current names may suggest.

For the PCS data we discussed a major limitation earlier that pertains to the different use of these
keywords compared to author-assigned keywords. In addition, we also found that several older papers
included ACM classifiers and it is possible that authors back then only selected author keywords in ad-
dition to these classifiers and did not provide duplicates. As we did not want to speculate on what may
have happened, we collected the author keywords as present on each paper.
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The expert coding process that led to the expert keywords also, of course, includes an inherent sub-
jective coding bias. While our team consisted of 5 experts with varying backgrounds in VAST, InfoVis,
Vis/SciVis, and HCI, it is entirely possible that with other coders other clusters and cluster names may
have emerged. Finally, this keyword analysis was conducted by experts in the field of visualization and
not professional social scientists. Our own experience and views of our field have certainly tainted our
interpretations of the data—as is common with any kind of qualitative analysis [12].

5 keyvis.org: A Keyword Search Tool
To make our data accessible for others, we created a webpage that makes author and expert keywords and
related papers search- and browsable: http://www.keyvis.org/ . Visitors can search all 2629 unique
author-assigned keywords, find out which keywords co-occurred how frequently, which manual expert
clusters they belong to, and the actual research papers they appear on.

Our main goal was to generate an easy-to-use, lightweight interface to our keyword data in order to:
(a) support visualization researchers in making more informed decisions when picking keywords for their
papers, and (b) give a new lens on identifying relevant related work. We have used the site ourselves for
choosing keywords and finding related work that we were not aware of before. We hope that others will
find it similarly useful. In the long run, our goal is to maintain the website as a platform for visualization
keyword access and analysis.

6 Discussion and How to Move Forward
The analysis of the keyword data has revealed several major themes and declining and rising keywords
in visualization. Based on the strategic diagrams, we have identified, in particular, motor themes of the
field. While we have collected a large amount of author keyword data, invested heavily in clustering
related author keywords, and compared this data to a standardized taxonomy, our analysis is only a first
step in the direction of two larger research goals:

Creating a common vocabulary: In particular the analysis of raw author keywords has revealed
that authors choose many variants of similar keywords based on: singulars and plurals (e. g., glyphs
and glyph), abbreviated versions (e. g., DTI vs. diffusion tensor imaging; InfoVis vs. information visu-
alization), spelling (multidimensional vs. multi-dimensional), or specificity (e. g., multi-dimensional vs.
multi-dimensional data vs. multi-dimensional visualization). Such a diversity of terms may be a reflection
of the diversity of influences on the visualization field—but is is not helpful, in particular when one wants
to search for keywords or—like us—gain an overview of the research themes of a community. We hope
that keyvis.org will help paper authors find common terms and reflect on their keyword usage before
submitting a camera-ready paper. In addition, one can think about the problem of creating a common
vocabulary for visualization more broadly. By identifying key terms and providing clear definitions, sub-
communities in visualization may be able to communicate more clearly about similar approaches and,
this, in turn can help to also collaborate more effectively with people outside the community. Finally, a
common vocabulary can also facilitate to more easily understand emerging and declining research trends
within the field.

Establish a comprehensive taxonomy of visualization research: One of the goals that we had
initially set out to accomplish is not yet achieved. Perhaps the holy grail of a keyword analysis is to
amount into a taxonomy of the analyzed field, in our case visualization research. This could serve two
purposes. One the one hand, a taxonomy will help to better communicate “what is visualization” to other
disciplines, i. e., researchers and practitioners not part of the VIS community. On the other hand, we are
hoping to be able to facilitate the crucial step of matching reviewers with papers and grants such that the
peer review process improves and new contributions is seen in the right context.
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Yet, how to exactly created and maintain a comprehensive taxonomy of visualization keywords is
still an open question. As can easily be seen from an inspection of both the top IEEE and INSPEC terms
in Table 2, broader taxonomies are not very successful in capturing the diversity of the visualization field.
The PCS taxonomy, in turn, has been developed by a team of dedicated experts with the goals to improve
the reviewing system for visualization papers. Yet, what is the right process for maintaining and changing
the taxonomy? The visualization field is evolving and, thus, a visualization taxonomy should be regularly
updated. Should an analysis such as ours be used to find trends (and keywords representing these trends)
that have not been captured? Would it be possible to automate our process without requiring experts to
clean and code the data? Should certain keywords be split or merged as sub-areas increase or decrease in
popularity? Does it make sense to keep keywords in the PCS taxonomy that are rarely used—or should
the taxonomy provide a broad view of the field in order to capture its topic diversity? Even when one
has answers to these questions, how would one choose the right level of granularity for keywords? For
example, the keyword evaluation emerged as a significantly increasing topic for our expert-clustered
keywords but did not for the PCS keywords. The reason being that the topic is split into seven sub-topics
in PCS, out of which none showed an increasing trend taken alone. Finally, should there be separate
taxonomies: one for visualization as a whole (e. g., to conduct analyses on emerging and declining topics,
topic coverage across subcommunities, etc.) and one for the submission process for academic research?
The former taxonomy could be large and evolving while the latter would have to be reduced in size and
remain stable across conferences for given time periods to remain manageable for papers chairs, editors,
reviewers, and authors.

In summary, the 25th anniversary of the IEEE Vis/SciVis conference and thus of the whole IEEE
VisWeek/VIS conference series is a good moment to take a look back at the diverse and evolving history
of our field. We managed to provide only a glimpse at the available data in this paper but hope that our
discussion will spark others to discuss and consider the importance of keywords, common vocabularies,
and taxonomies for the field as a whole.
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