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Abstract

The development of new pseudo-random number generators (PRNGs) has steadily increased over the
years. Commonly, PRNGs’ randomness is “measured” by using statistical pass/fail suite tests, but the
question remains, which PRNG is the best when compared to others. Existing randomness tests lack means
for comparisons between PRNGs, since they are not quantitatively analysing. It is, therefore, an important
task to analyze the quality of randomness for each PRNG, or, in general, comparing the randomness property
among PRNGs. In this paper, we propose a novel visual approach to analyze PRNGs randomness allowing
for a ranking comparison concerning the PRNGs’ quality. Our analysis approach is applied to ensembles
of time series which are outcomes of different PRNG runs. The ensembles are generated by using a single
PRNG method with different parameter settings or by using different PRNG methods. We propose a
similarity metric for PRNG time series for randomness and apply it within an interactive visual approach
for analyzing similarities of PRNG time series and relating them to an optimal result of perfect randomness.
The interactive analysis leads to an unsupervised classification, from which respective conclusions about
the impact of the PRNGs’ parameters or rankings of PRNGs on randomness are derived. We report new
findings using our approach in a study of randomness for state-of-the-art numerical PRNGs such as LCG,
PCG, SplitMix, Mersenne Twister, and RANDU as well as chaos-based PRNG families such as K-Logistic
map and K-Tent map with varying parameter K.
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1. Introduction

Pseudo-random number generators (PRNGs) are deterministic algorithms to produce a unique sequence
of random numbers by inputting an initial condition (seed point). The quality of a PRNG can be charac-
terized by its ability to represent a uniform distribution, unpredictability and long periodicity of the output
number series, uncorrelated successive outputs, and portability of the algorithm. PRNGs are used in various
applications such as: (i) statistics and probability theory for data sampling; (ii) decision theory as a strategy
for the optimization of computational algorithms; (iii) numerical calculation, e.g., in the Monte Carlo inte-
gration method [36]; (iv) simulation and modeling of systems as a tool to simulate stochastic behavior, as in
phenomena of nature [7]; (v) gaming and entertainment industry, e.g., for rendering scenarios and textures
in films; (vi) programming languages and any algorithms or heuristics that require sampling, for instance,
pattern recognition, artificial intelligence, genetic algorithms, deep learning, and even in more critical sce-
narios; (vii) cryptography, e.g., as source of randomness, initialization vector, or password generation, where
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cryptographically secure random numbers generators [22, 29] are of paramount importance for encryption
algorithms that operate in military communications, intelligence tools, banking systems, e-commerce, etc.

Several PRNGs have been proposed in the literature. Typically, mathematical equations, or good sources
of randomness (quantum theory, chaos theory), among others, are used to design PRNGs. For instances,
classical PRNGs are based on numerical algorithms such as the Linear Congruential Generator (LCG) [24]
and Shift Registers [14], which were two of the first PRNGs proposed in literature. LCG is based on simple
mathematical operations (modulus and addition), while Shift Registers were inspired on digital circuits as
a cascade of flip-flop registers. From that starting point, several PRNGs have emerged such as nonlinear
LCG [8], Linear Feedback Shift Registers (LFSR) [41], andMersenne Twister [35] whose algorithm is based on
a matrix linear recurrence over a finite binary field and nowadays is the default PRNG on various software
systems, SplitMix [46], and Permuted Congruential Generator (PCG) [39] which is an improvement of
classical LCG with modulus power of two by using the most significant bits of the final state and applying a
bitwise rotation or shift operation to produce the output. Another variant of classical LCG is old-fashioned
RANDU, where parameters are allowed to be broken [33]. As an alternative to numerical PRNGs, other
PRNG approaches have considered chaos theory [32, 21, 10, 40, 42, 30] to extract time series in order to
randomize their outputs, which is motivated by the strong relationship of chaos properties to being suitable
sources of high pseudo-randomness quality.

In 2017, Machicao and Bruno [30] introduced an approach for producing a family of PRNGs whose
pseudo-randomness goes from weak to high accordingly to the increasing of its parameter K. These PRNGs
are based on chaos theory, specifically on the Logistic map and the Tent map. They deploy the exploration
of the K-digits to the right of the decimal separator (least significant digits) of a chaotic system, which is
referred to as deep zoom. Recently, the relationship between parameter K and the quality of the pseudo-
random sequences was analytically demonstrated [31], showing a rapid randomness increase as K increases.

Disproportionately to the growing effort to produce new PRNGs algorithms, the methods to evaluate
their randomness have stagnated. In general, when a new design is published, its PRNG performance is
only compared in terms of computational cost, speed, ease of implementation, efficiency, long periodicity,
portability, and complexity, yet its randomness is mainly given in terms of pass/fail statistical tests. Since
the output of the tests are usually pass/fail values rather than numerical values, they are of limited use
for a measure of randomness quality. Therefore, there is still a lack of methods that provide a measure of
PRNG quality in terms of pseudo-randomness tests. In fact, in literature, less attention has been given to
the exploration of new randomness tests and its commonly used statistical tests. Most existing randomness
tests are based on statistical hypotheses such as ENT [48], DIEHARD [34], NIST [43], or TESTU01 [26],
which are used to analyze the pattern distribution of sequences generated by PRNGs. In general, it would
be desirable to rank the randomness behavior of PRNGs and to classify their generators.

A first attempt to apply unsupervised machine-learning methods on encrypted data were made leading
to interesting results [23]. Machine-learning techniques have also been used for other purposes related to
pseudo-randomness such as to predict chaotic time series [27, 16, 9] and to classify encrypted data using
supervised methods [20, 6, 4, 13]. Other attempts aimed at crypto-analysis purposes using genetic algorithms
[45, 12], however with minor success.

Given the discussion above, one may ask whether there are ways to formulate a quantifiable estimator
of the strength of pseudo-randomness. Thus, in this manuscript, we aim to offer an alternative approach
to explore patterns and, consequently, the weaknesses of PRNG systems. We propose a visual method to
classify the outcome of PRNGs and build a framework that supports analyzing classification and ranking
tasks among PRNGs. We base our analysis on the Markovian transition matrix that exhibits features such
as randomness and predictability of PRNGs from the outcome time series, see Section 3.2. We enhance the
analysis by defining the Markovian transition matrix for a perfect time series and compare it to the PRNGs’
time series to form a ranking among PRNGs, see Section 3.3. We propose to define a similarity among
outcome time series based on the Markovian transition matrix and analyze the similarities within a visual
framework to classify PRNGs through their outputs, see Section 3.4 and Section 3.5. The framework is built
up in a top-down approach that starts with an overview and allows for iteratively zooming into regions of
interests, where a provenance graph allows for intuitive navigation between the levels of zooming and for
storing intermediate analysis results, see Section 4. To achieve the main goal, we made an analysis taking
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advantage of these chaos-based PRNGs, which shows a growing randomness from weak to high, and divided
the experiment analysis into three main tasks: First, to classify the chaos-based PRNGs based on their
pseudo-randomness; second, to rank the PRNGs by their pseudo-randomness quality; third, to investigate
the impact of the parameter K on the pseudo-randomness quality. Besides that, further analysis was made
to evaluate our visualization approach.

Our contributions can be summarized as presenting

• a novel method for classifying and ranking PRNGs with respect to the quality of pseudo-randomness,

• a visualization framework for the interactive analysis of PRNG classifications and rankings, and

• a study for classifying and ranking the current state-of-the-art PRNGs including numerical approaches
(LCG, PCG, Mersenne Twister, Splitmix, RANDU) and chaos-based approaches (K-Logistic map, K-
Tent map) using our framework.

2. Related Work

2.1. Comparing PRNGs
Several attempts have been made trying to compare PRNGs [47, 44, 37]. Vattulainen et al. [47] rec-

ommend comparing PRNGs with two types of tests, i.e., from the application perspective and by using
different standard tests. We, on the other hand, propose to use randomness similarity of PRNGs time series
by exploiting concepts of transition matrices and information entropy to focus on randomness of PRNGs
only.

Skanderova et al. [44] compare performances of pseudo-random numbers generators and chaotics number
generators on differential evolution (DE). They empirically measure the speed of convergence to the global
minimum by running DEs on different test functions using the numbers generators. We do not compare
PRNGs in a specific application perspective, but empirically compare them using their time series outputs.

Along the line with our work, De Micco et al. [37] review randomness quantifiers based on information
theory, recurrence plots, and intrinsic computation. They investigated their ability to discern the hallmark
of chaos in time-series used in connection with PRNGs, which focus on the main statistical characteristics
(namely invariant measure and mixing constant) of a chaotic map. A PRNG is indicated to be ideal,
if H(P ) = 1 and C(P ) = 0, where H(P ) denotes the Shannon entropy of the probability distribution
function P that is extracted from a time series under consideration and C(P ) denotes the intensive statistical
complexity. We employ the indication in an approximating fashion to numerically measure how close a
PRNG is to the ideal (or perfect) case as a demonstration for our approach when P is derived from the time
series histogram for its intuitive description. We also refer here to other work in the context of measuring
statistical complexity as a randomness quantifier of PRNGs [28, 25, 15]. We would like to emphasize the
universal applicability of our visualization framework, which can be applied using any provided similarity
measure derived from the quantifiers. Thus, our visualization framework would work with any pairwise
similarity measure of PRNG time series.

2.2. Visual Similarity Analysis for Ensembles of Time Series
Vattulainen et al. [47] recommended comparing PRNGs with visual tests that provide further qualitative

comparisons of PRNGs. However, the tests are rather raw depictions of the PRNGs’ random number series
outcome. Their plots have a low scalability in the number of time series, which makes it hard to compare
larger number of PRNGs. Moreover, the views require expertise knowledge about PRNGs to be able to
interpret.

In our visual approach, the similarity reflecting randomness of PRNGs is visualized in the form of 2D
scatterplots which is both simple (and thus intuitive) and effective. Moreover, each additional time series
to be investigated just adds one dot to the scatterplot, which leads to an excellent scalability for the size of
the PRNG ensemble. Points may still clutter if the PRNG runs are very similar, but then it is desired to
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see point clusters. Furthermore, visual clutter is addressed in our framework by interactively zooming into
regions of interest.

In terms of visualization tasks and methodology, the approach we present in this paper can be character-
ized as visually analyzing the similarity of time series ensembles. Our visual representation uses projection
methods to visually encode similarities. Visualization of the similarity of large sets of time series using
projection-based approach was also proposed by Alencar et al. [2]. Their method provides an overview
revealing groups of time series that share similar behavior. However, the clutter issue caused by dense clus-
ters in the embedding was not addressed. We, on the other hand, address this issue and propose zooming
operations into dense regions of interest, for which new projection layouts are computed. To keep track of
the zooming operations performed during an analysis session we build a provenance graph. Hao et al. [17]
proposed a recursive algorithm to lay out large sets of time series data, where a treemap is used to present
time series. The layout requires a prior importance measure of the time series. We also fulfill the task of
ranking time series in PRNGs datasets, but our method does not require any prior importance measure.
While there exist many approaches to visually analyze time series (we refer to the book by Aigner et al. [1]
for a comprehensive overview), Vattulainen et al.’s work [47] discussed above is to our knowledge the only
one that addresses visualization for generated time series from PRNGs.

3. Theoretical Concepts

3.1. Chaos-based PRNGs
Chaos theory is known to be affected by its sensitivity to initial conditions, ergodicity, transitivity,

complexity, instability, and its unpredictability, which are understood as adequate characteristics to be
sources of pseudo-randomness [32, 21, 10, 40, 42, 30]. Machicao and Bruno [30] proposed a novel PRNG
using a deep zoom approach on chaotic maps. The method generates a sequence of pseudo-random numbers
by extracting K-digits to the right of the decimal separator of the points from the map orbit. As a proof of
concept, the authors applied the proposed methodology to the K-Logistic map and K-Tent map.

In chaos theory, the classical Logistic map given in Eq. (1) and the Tent map given in Eq. (2) are two
of the most studied recurrence maps, mainly because of the fact that even relatively simple equations can
produce chaotic behavior as their parameters vary. They are given by:

xn+1 = µxn (1− xn), (1)

xn+1 =

{
δ xn, if xn < 0.5,

δ (1− xn), if xn ≥ 0.5.
(2)

In both equations, xn represents a point of the orbit at the n-th time step and the phase space is defined
in the unit interval [0, 1], while the parameters are chosen as µ ∈ [0, 4] and δ ∈ [0, 2], respectively. It should
be noted that, according to the deep-zoom method, the control parameter is fixed for every iteration, and
its value must guarantee a time series in a chaotic regime in order to be used for randomness purposes,
which can be verified by calculating a positive Lyapunov exponent. In this work, we have focused on the
parameters µ = 3.99999999 and δ = 1.99999999 as suggested by Machicao and Bruno [30].

The K-Logistic map [30] is given by an initial condition x0 (seed point), a real-valued hyper-parameter
µ, and a positive integer K to compute {xn} according to Eq. (1) by:

xKn = xn · 10K − bxn · 10Kc , (3)

where b·c is the floor operation. It can be observed that the xKn values remain in the unit interval. Finally,
each xKn value is discretized using parameter d by

Rn = bxKn · 10dc . (4)
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The resulting series {Rn}n>0 is a sequence of pseudo-random integers ranging from 0 to 10d − 1 generated
by the K-Logistic map PRNG. In our tests, we used d = 1 and varied K (see Section 3.6). The quality of
the generated series {Rn}n>0 is subject to the presented study.

Similarly, the K-Tent map is computed by applying Eqs. (3) and (4) to the outcome of Eq. (2), effectively
replacing Eq. (1) with Eq. (2) and considering parameter δ instead of µ.

3.2. PRNG as Markov Process
According to the definition of the Logistic map and Tent map in Eqs. (1) and (2), the entire subsequence

{xi}i>n depends only on the value of xn for any n ≥ 0 and µ being fixed. Such independence is referred to
as the Markov property in the field of stochastic processes and is usually written as follows:

P(xn+1 = sn+1 |xn = sn, . . . , x0 = s0) = P(xn+1 = sn+1 |xn = sn). (5)

Here, P is a probability measure and si, i = 0, . . . , n+ 1, are possible states.
Obviously, the deep-zoom approach does not break the Markov property, so that {Ri}i>n is still inde-

pendent of all previous values except Rn. Thus, the series {Ri}i≥0 can be considered as a Markov chain.
Since Eq. (1) or Eq. (2) do not explicitly depend on n, the Markov chain is time homogeneous. Further, it
has a finite number of states, which is determined by the value of hyper-parameter d only and is equal to
10d.

The study of a Markov chain with a finite number of states 10d can be fulfilled by examining its transition
matrix. Entries pij of the transition matrix M of dimensionality 10d × 10d are the probability values of
being in state i and reaching state j in the next step. Then, all pij ∈ [0, 1] and each row of M sums up to
unity. Thus, we can consider each row of the matrix to be a discrete probability distribution. Knowing the
transition matrix, one can numerically characterize each separate state and the whole stochastic process in
terms of periodicity, steady states, and limiting distribution.

The transition matrices are not known a priori for the series generated with the proposed PRNGs.
However, one can numerically compute the empirical Markov transition matrix for any given finite time
series {Rn}Nn=0 and a sufficiently large number N . In particular, we calculate pij to be the number of
occurrences where state i is followed by state j in the sequence {Rn}Nn=0 divided by N . Specifically, given
a sequence {Rn}Nn=0 that is a realization of a PRNG, an empirical transition matrix T of size 10d × 10d

is a matrix that counts the frequency of the time series transits from one state to another among the 10d

states. We will make use of the following notations: let M = max
n≥0
{Rn}, m = min

n≥0
{Rn}, h = M−m

N , and

hj = m+ jh with j ∈ {0, 1, . . . , 10d − 1}. Then, we set T = (pij)i,j∈{0,1,...,10d−1}, where pij is the frequency
that Rk ∈ [hi, hi+1) and Rk+1 ∈ [hj , hj+1), i.e.,

pij =
|{Rk+1 ∈ [hj , hj+1)|Rk ∈ [hi, hi+1), k = 0, 1, . . . , N − 1}|

N

where |.| denotes the cardinality (or size) of a set. As N increases, the approximation quality of the empirical
transition matrix to the Markov transition matrix associated with the underlying PRNG also increases.

3.3. Entropy as a Measure of Randomness
For a given PRNG and a sufficiently long finite sequence of pseudo-random numbers {Rn}Nn=0 generated

from the PRNG, an empirical Markov transition matrix can be calculated as described in the previous
section. Each row of the empirical matrix is a probability vector characterizing the transitions between
respective states. Then, such probability vectors can be used for evaluating the randomness of the studied
PRNG and for a comparative analysis of a family of PRNGs. Entropy

Ei = −
∑
j

pij log pij (6)

is a well-known measure of randomness of the probability vector pij with i fixed. If pij = 0, the corresponding
term in Eq. (6) vanishes.
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In particular, fully predictable number generators would result in empirical transition matrices having a
specific structure, where each row of such a matrix would consist of only zeros except for one single entry
that would be equal to one. Note that the entropy of such a probability vector vanishes. Such generators
represent the worst case of PRNGs. On the other hand, an ideal random number generator should have no
dependence of its outcome on the previous state, i.e., it should be perfectly unpredictable. Thus, entries of
the empirical transition matrix associated with the ideal generator should all be equal to 10−d. Note that
the resulting probability vectors (rows of the transition matrix) then all have the maximal possible entropy,
which is equal to d. Thus, the entropy of the probability vectors forming the empirical Markov transition
matrix can serve as a measure of randomness of the corresponding PRNG.

Based on the concept of entropy for a probabilistic distribution, we propose three entropy measurements
for an empirical transition matrix T that reflect the randomness of the corresponding PRNGs. First,
the average of the entropies of all rows of the transition matrix provides the average entropy of the matrix.
Second, the maximum among the rows’ entropies provides the maximum entropy for the matrix. It measures
the entropy of the state where the randomness of a transition from this state to others is highest. Thus, it
provides an upper boundary of the entropy of the transition matrix. Third, we also recommend to use the
minimum among the rows’ entropies (referred to as minimum entropy) as an entropy measurement for the
transition matrix. This measurement provides the entropy of the state where the randomness of transition
from this state to others is lowest. Thus, it gives a lower boundary of the entropy for the transition matrix.

3.4. Characterization of PRNG
Our goal is to numerically estimate and visually encode the impact of parameters on the quality of a

given PRNG. The PRNG’s quality is understood as the randomness of the generated time series, i.e., its
low predictability, long periodicity, and weak correlation. Further aspects of PRNGs such as complexity and
portability of the algorithm are left out of the scope of this study.

For the proposed analysis method, the input is a set of finite sequences of pseudo-random numbers, i.e.,
an ensemble of time series data. It is of no theoretical significance if distinct sequences in the ensemble
have been generated by varying one or several parameters of a single PRNG or by using different PRNGs
to generate the sequences. An important requirement is that all generator algorithms used to produce the
sequences satisfy the Markov property. Then, for each ensemble member, we compute an empirical Markov
transition matrix. Here, one can control if the length of each time series is sufficient for a reliable estimation
of the matrix entries. For instance, if length N is sufficiently large, then further increasing length N should
have a negligible effect on the statistical properties of the sequence, i.e., the resulting transition matrix
should remain approximately the same. In fact, the lengths of different ensemble members may vary but
the number of states has to be the same for all sequences.

Mapping the sequences of pseudo-random numbers to the space of probabilistic matrices Tj of size 10d×
10d is an effective dimensionality reduction method, which preserves important stochastic characteristics of
the ensemble members. When equipping this space with a proper similarity measure, one can efficiently
compute similarities of distinct time series, thus, performing classification or cluster analysis on the set of
original PRNGs. The existence of transition matrix T∗ corresponding to the ideal random number generator
(all entries of T∗ are equal to 10−d), allows us to compute similarity of each PRNG to the perfect case, i.e.,
rate its randomness (e.g., for ranking purposes).

3.5. Similarity Measure
Given empirical transition matrices of generated time series from different PRNGs, a similarity among the

matrices shall provide a quantity measurement comparing the randomness among the PRNGs. Given two
empirical transition matrices T1 and T2 of same size, various metrics can be applied to measure the similarity
between them. As a proof of concept, we propose to investigate the metric based on Euclidean distance.
The Euclidean distance is calculated by computing the difference in the L2-norm after vectorization of the
matrices. Thus, for the given matrices T1 and T2, we first copy all their entries row by row into respective
vectors v1 and v2, respectively, and then compute their Euclidean distance ‖v1 − v2‖2. Using this metric,
we expect that different realizations of the same PRNG will have small distances to each other due to the
expected dissimilarity in the transition pattern.
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3.6. Datasets
We conducted experiments with three distinct types of PRNGs in order to evaluate our methodology

as well as to compare with classical statistical random methods and even to generated streams from the
decimal digits of the irrational π. We created various PRNG time series ensembles, each of them containing
sequences of integers {Rn}Nn=0 with a range from 0 to 10d − 1. In this study, we focused on d = 1, but
the same analysis could be applied for any d. The first dataset consists of chaos-based PRNGs, the second
dataset is composed of numerical-based PRNGs, and the third dataset comprises sequences of π digits.
Detail information about them is given as follows:

• Chaos-based PRNG dataset: We used both the K-Logistic map and the K-Tent map PRNGs [30]
with different parameter settings K (K ∈ {0, 1, . . . , 10}) to create time series of different lengths N
(N ∈ {100, 1000, 10000, 1000000}). For each combination of parameter values K and lengths N , we
generated 30 time series using different arbitrary seed points, leading to 1320 runs in total for each of
the two PRNG approaches (K-Logistic map and K-Tent map).

• Numerical PRNG dataset: five numerical PRNGs were considered, namely LCG, RANDU, Mersenne
Twister, SplitMix, and PCG. More information about their algorithms and implementations is given in
Table 1. Similar to the chaos-based PRNG dataset, we also generated 30 series with different lengths
(N ∈ {100, 1000, 10000, 1000000}) for each of the five listed PRNG algorithms. Thus, a total of 600
time series was generated. (For the sake of brevity, the Mersenne Twister and the SplitMix PRNGs
names are abbreviated as MT and SM in the following.)

Table 1: Details about the numerical PRNGs used for the experiments.

PRNG Description

LCG [24] Implemented using Equation xn+1 = (axn + c) mod m and parameters
a = 25, 214, 903, 917, c = 11, and m = 248 − 1, which are the default
values within the Java library java.util.Random.

RANDU [24] It is a variation of LCG. We used the parameters a = 65, 539, c = 0, and
m = 231.

Mersenne Twister [35] We used a Java implementation given in https://cs.gmu.edu/~sean/
research/mersenne/MersenneTwister.java Copyright (c) 2003 by
Sean Luke.

SplitMix [46] We used the implementation from the Java SDK http:
//hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/
classes/java/util/SplittableRandom.java.

PCG [39] We used a Java implementation given at https://github.com/
KilianB/pcg-java.

• π-digits dataset: We also considered to use the sequence of π digits. We treated a sub-sequence of n
digits at a time and divided the digits by 10n such that every number obtained is within the range
[0.0, 1.0]. We downloaded the first 240 million digits from Ref. [38]. For this particular dataset, we
generated 30 samples with N ∈ {1000000} using n = 8 as the length of each number.

4. Interactive Visual Analysis Framework
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4.1. Analysis Tasks
Given an ensemble of PRNG runs, we want to analyze the quality of the PRNG runs based on their

pseudo-randomness. First, we are interested in examining whether there are groups of PRNG runs that have
similar quality. Thus, the first goal of the interactive visual analysis is to (T1) classify the PRNGs based
on their pseudo-randomness. Then, we are interested in investigating, which PRNGs perform better than
others. Thus, the second task is to (T2) rank the PRNGs by their pseudo-randomness quality. Classifying
and ranking PRNG runs shall be performed in a way such that PRNG ensembles generated by varying
a PRNG parameter can be analyzed to (T3) investigate the impact of PRNG parameters on the pseudo-
randomness quality. In this regard, it is also of interest to (T4) relate the pseudo-randomness quality to
the entropy measures. Finally, when interactively refining the analysis, all steps that were taken within an
analysis session shall be recorded and made available to allow for reproducibility of the analysis process and
for traversing the various zoom levels of the analysis interactively. Thus, the interactive visual analysis shall
(T5) allow for visual documentations of the steps and findings made during the interactive sessions.

4.2. Visual Encodings and Interactions
Task T1: To address Task T1, we need to investigate the similarity of all ensemble members. Since

many PRNG runs may be considered simultaneously, a manual investigation of all pairwise similarities
would be very tedious. Visualization methods can help, as graphical representations are intuitive and can be
efficiently processed by humans. Hence, our goal is to develop a visual encoding that represents all pairwise
similarities with as few loss of information/precision as possible. Pairwise similarities of a set of objects
can be depicted in the form of a similarity or dissimilarity matrix. However, such matrices are difficult
to analyse when the number of objects is high. For better visualization and exploration, dimensionality
reduction algorithms can be applied to generate embeddings of the high-dimensional similarity space into
a low-dimensional (commonly two-dimensional) visual space. Scatterplots are classical representations of
projected data in a form of a set of two-dimensional points. Many different embeddings aiming at preserving
various characteristics of high-dimensional data in the projection space exist. The multi-dimensional scaling
(MDS) [5] approach optimally preserves (dis)similarities of high-dimensional samples in the projection space.
Dissimilarity of samples is computed as the Euclidean distances of points in the original or visual space.
Thus, we apply a classical MDS approach to create 2D scatterplots, where each PRNG run is represented
by a point in the projection space and the 2D (Euclidean) distances of the points reflect the dissimilarities
of the respective PRNG runs (according to the dissimilarity measure defined in Section 3.5).

Figure 2 shows examples of dissimilarity plots for different sets on PRNG runs. When subsets of runs
are more similar to each other than to other runs, they form clusters. The clusters can be observed visually
and interactively selected using a lasso tool leading to a interactive classification. However, one can also
observe, especially in Figure 2a, that points tend to clutter due to overplotting. This reason for the clutter
is that runs belonging to one cluster are much more similar to each other than to runs not belonging
to that cluster. While this is a desirable feature for interactive classification, it may be the case that a
detected cluster actually consists of multiple sub-clusters. Hence, one would be interested in splitting the
cluster into sub-clusters. We provide interaction mechanisms to support such an analysis: the user may
interactively select any subset of points in the similarity plot and recompute the embedding by applying the
MDS approach only to the selected subset. Thus, a user can interactively refine the visual representation
and analyze substructures of already detected structures (cf. Figure 2 and its discussion in Section 5).

The interactive analysis sessions follow a top-down approach, where the user first investigate the entire
ensemble to detect main structures, which are further refined in subsequent analysis steps. As a final step,
one may be interested in seeing the temporal behavior of some selected runs in the form time series. This is
supported by our system by selected quantities for selected runs and plotting them over the number of time
steps. Figure 10 shows examples of plotting maximum entropy for selected chaos-based PRNG runs. Such
plots allow for the investigation of whether the system has already converged to a stable entropy value or
whether more computation steps would be necessary.

Task T2: While Task T1 was concerned with identifying clusters of PRNG runs with similar pseudo-
randomness quality, it was not yet investigated which of the clusters perform better than others. Task T2 is
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concerned with ranking PRNG runs. Hence, we would like to know how close each run is to the perfect case.
We support this investigation by computing the empirical transition matrix for the perfect case as described
in Section 3.3 and adding it to the ensemble before computing the similarity matrix and the embedding.
Hence, the perfect case is now included in the similarity plot and distances to the perfect case provide a
visual clue of the (approximate) ranking. In Figure 2 the perfect case is displayed using a bright red color.
Points close to the bright red point indicate runs with high pseudo-randomness quality, while the quality
(at least, approximately) decreases with increasing distance to the bright red point.

Task T3: This task is concerned with the analysis of the impact of PRNG parameters on the pseudo-
randomness quality. Thus, we want to observe of systematic changes to the values of a parameter leads to
an increase or decrease of the quality. We provide means for such an analysis by generating a color map for
the parameter’s value range and color-code the points in the similarity plot according to that color map.
As the parameters are numerical values, one should choose a continuously changing color map. Perceptual
studies showed that a luminance color map has preferable properties for intuitiveness. Since we may have
multiple PRNG families with different parameter settings, we propose to use a single-hue luminance color
map for each PRNG family, where the hue is different for different families. Figure 1 uses a red luminance
color map for the investigated PRNG family, while Figure 6 uses two single-hue luminance color maps for
investigating two PRNG families. To distinguish different PRNG families and further PRNG runs that do
not belong to the families one should use hues that can be best distinguished. Since there is no order between
families and other PRNG runs, a categorical color map should be used. We used categorical color maps by
ColorBrewer [18] to generate the hues. A result can be found in Figure 8. When interactively hovering over
a point in the similarity plot, there will also be a label popping up that displays the name of the PRNG
method used to generate the run.

Task T4: While the similarity plots are based on the pseudo-randomness similarity, we may want to
relate them to the PRNG entropy values, which was formulated as Task T4. These values can be added to
the visual encoding by enhancing the point renderings. Entropy is a numerical attribute and different visual
cues could be considered for mapping. Color and size of the points are easier to perceive and interpret than
orientation, shape, or texture. Since the visual cue of color was already taken for mapping the parameter
values, we decided to map the entropy values to the points’ size. Figure 4 shows point sizes that vary by
the maximum entropy values of the PRNG runs.

Task T5: Finally, Task T5 is concerned with allowing for visual documentations of the findings made
during the interactive sessions. As the interactive top-down approach allows for diving deeper into details
of subsets of ensemble, it is important that the user is aware of the current level of detail that is provided
and that the user can go back to an earlier intermediate result to continue from there. Also, the findings
made during the analysis should be documented as well as which analysis steps were taken to get to the
result, which is required for reproducibility of the findings.

The history of the analysis steps taken can be stored in a provenance graph. In the provenance graph,
the nodes reflect the states of the interactive visual analysis, while the edges reflect the transformations
made to get from one state to the next. For our top-down analysis strategy, a typical pattern is to start the
analysis with the overview of all ensemble members, interactively select subgroups, reconfigure the similarity
plot for selection, possibly repeat the selection and reconfiguration steps several times, before going back to
an earlier step and investigating a different subgroup in the same manner. Hence, the provenance graph has
a tree structure with the root being the overview visualization. We provide a visualization of the provenance
graph for visual documentation and for interactively switching between any of the analysis steps. Figure 1
shows such a visualization of the provenance graph. The first analysis steps describe a linear path, which
we depict as row. Any branching from this linear path then shows up as a new row with respective lines
being drawn that depict the branching. The states of the interactive visual analysis are represented by the
respective similarity plots. The transition between two states is shown by depicting the interaction that
triggered the transition when performed on the similarity plot. For example, the first row of Figure 1 shows
three pictures: the first represents the overview, which is the state before the transition; the second is the
transition in the form of a selection that triggers a reconfiguration; and the third shows the state after the
transition. Using the provenance graph visualization, the user can easily go back to earlier steps in the
analysis and continue from there, while all steps and findings are being kept in the provenance graph. The
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provenance graph can be saved and loaded to a new session at a later time.

5. Results and Discussion

In this section, we apply the interactive visual analysis approach of Section 4 based on the theoretical
concepts described in Section 3 for the classification and ranking of PRNG runs. We analyze the influence
of PRNG parameters and compare the different PRNG methods discussed above (Section 5.1). We further
discuss the number of time steps computed for each PRNG run (Section 5.2). Finally, we also compare our
findings with results obtained by the DIEHARD randomness test (Section 5.3).

5.1. PRNG Classification and Ranking
5.1.1. K-Logistic map

In a first experiment, we want to analyze the influence of the parameter K on the randomness quality of
the K-Logistic map. Hence, we compute the similarity map for all K-Logistic map runs, where parameter
K is color-coded using a single-hue luminance color map, see Figure 2a. The entropy measure is encoded
by the point size. Furthermore, we compute and add the perfect case shown with a bright red color. In
Figure 2a, we observe that the PRNG runs form five clusters. We systematically analyze all five clusters and
their sub-clusters. The provenance graph of the analysis is shown in Figure 1. All the individual similarity
plots that are analyzed within this interactive sessions are shown in Figure 2 including some labels and the
color legend.

The five clusters in Figure 2a are analyzed in a systematic way by decreasing distance to the perfect
case, i.e., in the reverse order of their rankings. The first cluster includes all the runs with parameter K = 0.
The first observation here is that the runs with K = 0 produce the lowest randomness quality. The second
observation is that all runs with K = 0 group in one cluster, i.e., the impact of the choice of the seed point
is negligible when compare to the choice of K. We will see that this holds true for all K. This was to be
expected from a theoretical point and shows that our approach was able to validate this expectation. A
third observation is that the entropy for K = 0 is much smaller than for all other runs.

Similarly, we can investigate the second, third, and fourth cluster. We observe that they consist of runs
for K = 1, K = 2, and K = 3, respectively, see Figures 2c, 2d, and 2e. Thus, the different values of K form
homogeneous clusters and higher values of K lead to higher randomness quality.

When analyzing the fifth cluster, which includes the perfect case, we observe that the cluster exhibits
four sub-clusters, see Figure 2f. As before, we systematically analyze all four sub-clusters by their decreasing
distance to the perfect case as documented by the provenance graph in Figure 1. The first, second, and
third sub-cluster correspond to the runs for K = 4, K = 5, and K = 6, respectively, see Figures 2g, 2h, and
2i.

The fourth sub-cluster contains more run including the perfect case, see Figure 2j. There are no very
obvious “sub-sub-clusters”, but two clusters can still be distinguished, see Figures 2k and 2l as well as the
respective selections in the provenance graph in Figure 1. The first sub-sub-cluster in Figure 2k consists
mainly of the runs with K = 7, while the second sub-sub-cluster in Figure 2l mainly consists of the runs
with K = 8, K = 9, and K = 10 as well as the perfect case. In the second sub-sub-cluster, there is no
visible separation of the runs with K = 8, K = 9, and K = 10.

In general, though, we can report that runs with the same parameter K form clusters and that the
randomness quality increases with increasing K.
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Figure 1: Provenance graph for interactive visual analysis session of K-Logistic map PRNG ensemble. The analyzed similarity
plots are shown in Figure 2
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2: Similarity maps for classifying and ranking K-Logistic map PRNG runs using a single-hue color map for parameter
K. Entropy is encoded by size. Perfect case of randomness quality is shown in bright red. The runs split into 5 clusters
(a), of which 4 clusters correspond to runs for K = 0 (b), K = 1 (c), K = 2 (d), and K = 3 (e), while the fifth cluster
exhibits 4 sub-clusters (f). 3 of the sub-clusters correspond to runs for K = 4 (g), K = 5 (h), and K = 6 (i), while the fourth
sub-cluster contains the remaining runs (j). The latter roughly splits into a sub-sub-cluster containing runs for K = 7 (k) and
a sub-sub-cluster containing runs for K = 8 to K = 10 and the perfect case. Thus, the higher K, the closer one gets to the
perfect case. Provenance graph for interactive visual analysis session is shown in Figure 1.
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5.1.2. K-Tent map
In our second experiment, we want to analyze the influence of the parameterK on the randomness quality

of the K-Tent map. Hence, we compute the similarity map for all K-Tent map runs, where parameter K
is color-coded using another single-hue luminance color map, see Figure 4a. As above, the entropy measure
is encoded by the point size and we compute and add the perfect case shown with a bright red color. In
Figure 4a, we observe that the PRNG runs form, again, five clusters. We systematically analyze all five
clusters and their sub-clusters by decreasing distance to the perfect case. The provenance graph of the
analysis is shown in Figure 3. All the individual similarity plots that are analyzed within this interactive
sessions are shown in Figure 4 including some labels and the color legend.

The first cluster in Figure 4b includes all the runs with parameter K = 0. Again, runs with K = 0 form
a cluster, produce the lowest randomness quality, and have a much smaller entropy value than other runs.

The second cluster forms two sub-cluster as shown in Figure 3. The first sub-cluster consists of runs for
K = 1, K = 2, K = 3, K = 4, and K = 5, see Figure 4c. No further sub-sub-clusters can be observed. The
second sub-cluster consists of runs for K = 6, see Figure 4d.

The third and fourth cluster consists of runs for K = 7 and K = 8, respectively, see Figures 4e and 4f,
while the fifth cluster contains runs for K = 9 and K = 10 with no sub-sub-clusters, see Figure 4g.

Overall, we can, again, report that runs with the same parameter K tend to form clusters and that the
randomness quality tends to increase with increasing K.

Figure 3: Provenance graph for interactive visual analysis session of K-Tent map PRNG ensemble. The analyzed similarity
plots are shown in Figure 4.
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(d) (e) (f)

(g)

Figure 4: Similarity maps for classifying and ranking K-Tent map PRNG runs using a single-hue color map for parameter K.
Entropy is encoded by size. Perfect case of randomness quality is shown in bright red. The runs split into 5 clusters (a), which
correspond to runs for K = 0 (b), K = 1 to K = 6 with two sub-clusters (c,d), K = 7 (e), K = 8 (f), and K = 9 to K = 10 plus
the perfect case. Thus, the higher K, the closer one gets to the perfect case. Provenance graph for interactive visual analysis
session is shown in Figure 3.
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5.1.3. Chaos-based PRNGs
In our third experiment, we compare the two chaos-based PRNGs, i.e., the K-Logistic map and the K-

Tent map, against each other. Figure 6a shows the respective similarity map with the same two single-hue
color maps as before and the perfect case in bright red. We observe a cluster around the perfect case as well
as some clusters “above” the perfect case and some clusters “to the right” of the perfect case.

We first select all clusters to the right of the perfect case as shown in the provenance graph in Figure 5.
The respective similarity map in Figure 6b reveals that the selected clusters include all runs from the K-Tent
map for K = 0 to K = 8.

Then, we select all clusters above the perfect case as shown in the provenance graph in Figure 5. The
respective similarity map in Figure 6c reveals that the selected clusters include all runs from the K-Logistic
map for K = 0 and K = 1.

Eventually, we select the cluster that contains the perfect case. The respective similarity map in Figure 6d
exhibits five sub-clusters, of which four contain the runs from the K-Logistic map for K = 2 to K = 5,
while the fifth contains the perfect case is selected for further investigation. This sub-cluster contains three
less separated sub-sub-clusters that correspond roughly to the runs from the K-Logistic map for K = 6 and
K = 7, respectively, and the one that contains the perfect case, see Figure 6e. Investigating the latter as in
Figure 6f shows a mixture of runs from the K-Tent map as well as the K-Logistic map for large values of
K around the perfect case.

We can conclude, that the two chaos-based PRNG methods approach the ideal case “from different
directions” in the similarity plot when K increases. It can also be observed that the K-Logistic map quicker
approaches the perfect case for increasing K when compared to the K-Tent map. Finally, we observe that
for large K, i.e., K = 9 or K = 10, both PRNG families have a similar randomness quality.

Figure 5: Provenance graph for interactive visual analysis session of comparing K-Logistic maps and K-Tent maps. The
analyzed similarity plots are shown in Figure 6
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(a) (b) (c)

(d) (e) (f)

Figure 6: Similarity maps for comparing K-Logistic map and K-Tent map PRNG runs using two single-hue color maps for
parameter K. Entropy is encoded by size. Perfect case of randomness quality is shown in bright red. The runs split into
multiple clusters (a), of which the ones to the right of the perfect case correspond to K-Tent map runs for K = 0 to K = 8
(b), the ones above the perfect case correspond to K-Logistic map runs for K = 0 and K = 1 (c), and the cluster surrounding
the perfect case splits into 5 sub-clusters (d). The sub-clusters correspond to K-Logistic map runs for K = 2, K = 3, K = 4,
and K = 5, respectively, and a bigger sub-cluster. The latter roughly splits into a sub-sub-cluster containing K-Logistic map
runs for K = 6 and K = 7, respectively, and one containing all runs from K-Logistic map and K-Tent map for large values
of K as well as the perfect case. K-Logistic map converges faster to the perfect case with increasing K, but for large K the
two approaches are comparable with respect to randomness quality. Provenance graph for interactive visual analysis session is
shown in Figure 5.
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5.1.4. Comparing Chaos-based to Numerical PRNGs
We also compare the chaos-based PRNG families to common and classical numerical PRNG methods.

The similarity map in Figure 8a is similar to the one we had seen in Figure 6a. We used the same colors
as before, but added the numerical PRNG runs using the concept of a categorical color map. Given the
similar structure of the similarity maps, we perform a similar analysis to the one above. Figure 7 shows the
provenance graph of the interactive analysis session.

The first group of clusters “to the right” of the perfect case consists again of K-Tent map runs for small
and middle-range values ofK, see Figure 8b. The second group of clusters “above” of the perfect case consists
again of K-Logistic map runs for small K, see Figure 8c. Finally, the cluster that contains runs close to the
perfect case splits into four sub-clusters with K-Logistic map runs the middle-range values of K and the
fifth sub-cluster containing the perfect case, see Figure 8d. The latter sub-cluster contains again some less
separable sub-sub-clusters for K-Logistic map runs with K = 7 and K = 8 as well as the sub-sub-cluster
containing the perfect case, see Figure 8e. This sub-sub-cluster contains again the chaos-based PRNG runs
for large K, but also basically all the numerical PRNG runs.

Hence, we can conclude that chaos-based PRNGs for large K have a randomness quality comparable to
that of numerical PRNGs.

Figure 7: Provenance graph for interactive visual analysis session of comparing chaos-based PRNGs and numerical PRNGs.
The analyzed similarity plots are shown in Figure 8
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(a) (b) (c)

(d) (e) (f)

Figure 8: Similarity maps for comparing chaos-based and numerical PRNG runs using two single-hue color maps for parameter
K of chaos-based approaches and categorical color map for assigning hues. Entropy is encoded by size. Perfect case of
randomness quality is shown in bright red. The structure of the similarity maps is similar to Figure 6. The numerical PRNG
runs are mainly contained in the sub-sub-cluster that also contains the perfect case (f). For large K, the chaos-based PRNGs
have randomness quality comparable to numerical PRNGs. Provenance graph for interactive visual analysis session is shown
in Figure 7.

18



5.1.5. Comparing Chaos-based PRNGs with π-digits as Random Sequence
Although answering the old and still open question of whether the digit expansion of π is random or

only appears to be random [3, 11, 19] goes beyond that scope of this work, here we are intrigued to compare
the chaos-based PRNG with the PRNG based on the π-digits dataset as proposed in Section 3.6. Thus,
we applied our method to the random numbers derived from π, see Figure 9. We observe that the π-digits
sequence is comparable with K-Logistic map for K = 9 and K = 10 in terms of randomness quality and is
superior to K-Logistic map from K = 8 downwards. Moreover, thd π-digit dataset tends to be close to the
perfect-case.

(a)

(b) (c)

Figure 9: (a) Provenance graph for interactive visual analysis session of comparing K-Logistic maps for K = 7 to 10 with
π-digits dataset and (b-c) respective similarity maps. The first map (b) contains all runs from the K-Logistic map for K = 7
to 10, the π-digit samples, and the perfect case. The second map (c) excludes samples for K = 7. The π-digits dataset is
comparable with the K-Logistic map for K = 9 and K = 10 with respect to randomness quality.

5.2. Convergence Analysis
For our computations, we needed to restrict ourselves to a finite number of time steps. The question

that remained was how many time steps would suffice to capture the randomness characteristics of the
PRNGs. To address this question, we apply our approach for data of ascending number of time steps and
plot the maximum entropy over time. Figure 10 shows the temporal pattern for maximum entropy for the
chaos-based PRNGs. We observe some fluctuations at the beginning of the time series, but they stabilize
quite quickly. After 900 time steps, we can state that the maximum entropy for all runs is stable. Hence,
N = 900 was a sufficiently large choice. Larger values of N do not change the behavior.

Figure 10 also compares the entropy time curves for K-Tent map (a) and K-Logistic map runs (b). We
had observed in the preceding section that the randomness quality for K-Logistic map increased faster for
increasing K. Here, we observe a matching behavior for maximum entropy. Hence, the entropy values for
K-Logistic map are also quicker increasing towards the perfect case with increasing K. In more detail, we
observe that for K = 0 and K = 1, the K-Logistic map curves lie clearly above the respective K-Tent map
curves. For K = 2 on, the K-Logistic map curves approximate the perfect case, while for the K-Tent map
curves this is only true for K = 9 and K = 10. Hence, the findings match those of the similarity maps.
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(a) (b)

Figure 10: Max Entropy as a function of time steps for the chaos-based PRNGs. (a) K-Tent map for K0 to K10. (b) K-Logistic
map for K0 to K10.

The convergence plots in Figure 10 used the maximum entropy. We also proposed to investigate average
and minimum entropy. According to our observation with the given datasets, the three entropy measures
lead to equivalent results. Specifically, given two empirical transition matrices of PRNGs, the result of the
comparison among two matrices for the given datasets is the same using any of the three entropy measures.
Still, we believe that for other datasets, there may be differences among the entropy measures. Thus, we
decided to provide the description of all three options in this paper.

We also examined the provenance graphs for increasing number of time steps. We observed that larger
number of time steps lead to a better capability in separating PRNG groups of similar randomness. There-
fore, in all figures of similarity plots and provenance graphs presented in this paper, we used a large number
of time steps. We consistently used 1000000 time steps for all the generated visualizations.

5.3. Comparison to DIEHARD Randomness Tests
The DIEHARD [34] tests comprise of a number of statistical tests to measure the randomness quality of

PRNGs. It consists of 18 tests enclosing 221 sub-tests in total. Each of these tests are designed to analyze
an input file (a binary sequence generated by a PRNG), for instances, by checking overlapping windows of
bits, blocks of bits, and so on. According to the DIEHARD manual [34], each of these tests is formulated to
test a null hypothesis (H0: the input file being tested is sufficiently random) associated with an alternative
hypothesis (H1: the input file is not sufficiently random). Then, the χ2 goodness-to-fit technique is used
to compute a probability p-value, which should be uniform on the interval [0, 1). For each test applied, a
decision is derived that accepts or rejects the null hypothesis. It is assumed that these p-values follow a
normal distribution. Thus, a test is passed when the p-value satisfies 0 � p � 1, i.e., the file is considered
statistically random. Otherwise, the test is failed when the p-value is close to 0 or 1, i.e., it deviates from
normal distribution, which implies that the input file is not sufficiently random. However, it should be noted
that even for good PRNGs, it may happen that p-values fall into the “fail” region, cf. [34].

To carry out the DIEHARD experiment, we generated 100 files each containing 11.2 MB, equivalent to
28 × 105 numbers, for each of the PRNGs studied in this paper. The DIEHARD tests require file sizes of
more than 10MB [34]. Each input file was generated from a random seed, when necessary was transformed
by a 32 bit mask, and written in a bit stream format.

The results of the DIEHARD experiment are reported in Figure 11a. For the sake of clarity, we only
show some sub-tests (see accompanying supplementary material for the complete table). The table includes
values for the numerical PRNGs as well as the chaos-based PRNGs (K-Logistic map and K-Tent map with
K = 0 (K0) to K = 10 (K10). Each column shows the number of files whose p-values passed a corresponding
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test (rows). It is assumed that a high number of passed files indicates a high quality in terms of statistical
randomness tests.
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Figure 11: (a) Number of files that passed DIEHARD tests using the PRNGs studied from 100 input files. Severely failed tests
are shown in gray. All tests passed using the interval 0.0001 < p-value < 0.9999. (b) Bar chart of average number of files that
passed the 221 DIEHARD test including standard deviation (whiskers).

A large number of failed sub-tests can mainly be observed for RANDU and LCG as well as for the chaos-
based methods when K = 0. Concerning the K-Logistic map, it shows major fails for K = 0 to K = 3,
e.g., for Ranks6x8, Monkey20bitWords, Count1sStreamBytes, and Count1sSpecificBytes, where the number
of fails decrease for increasing K. A similar behavior is observed for K-Tent map for K = 0 to K = 5. On
the other hand, it can also be observed that most of the 100 files were successfully passed for K-Logistic
map when K ≥ 4 and for K-Tent map for K ≥ 6, which was already reported in literature [30]. For the
numerical PRNGs, it can be observed that all but RANDU and LCG perform quite well for all tests.

The outcome of all 221 tests can be summarized in a bar chart as shown in Figure 11b, where the bars
indicate the average number of passed files and the whiskers display the standard deviation. We observe that
it is hard to draw conclusions from here. For example, we cannot distinguish SM, MT, PCG, K-Logistic
map with K > 6, or K-Tent map with K > 8. In fact, the only conclusion we can make from statistical
randomness tests is that many PRNGs cannot be distinguished at all, which can also be verified using a
pairwise Wilcoxon test. This observation shows the need for further methods such as the one we present in
this paper.

In order to make a fair comparison between pairs of PRNGs we used the Wilcoxon T-test for comparing
paired data samples. We used the complete results from DIEHARD, i.e., 221 values for each PRNG. By
using this strategy we aim to verify if there is a significant difference between the number of files that passed
the tests in relation to the performance of the other PRNGs, the Wilcoxon test was applied, which is a
non-parametric statistical hypothesis test to determine whether two data samples have the same or different
distributions. To perform this test, a significance level of 5% was assigned to investigate if the results of
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the Wilcoxon test exhibit a significant difference between the performances of the PRNGs studied. Table 2
shows the outcome of the statistical tests in a matrix, where an asterisk (∗) indicates that the method listed
on the left-hand side (row) obtained significantly better DIEHARD results than the respective method listed
on top (column). For examples, we can read from the table that LCG outperformed the K-Logistic map for
K = 1 and K = 2 as well as the K-Tent map for K = 1, K = 2, and K = 3 in terms of randomness. On
the other hand, K-Logistic map for K = 5 is superior to LCG but not to SM, MT or PCG.

Table 2: Paired comparison of PRNGs using Wilcoxon test applied to the number of files that passed the DIEHARD test.
Asterisks (gray) indicate which PRNG on the left-hand side (rows) obtained significantly different distributions of samples from
the PRNG on top (columns).

In summary, when comparing the outcome of Figure 8 to the outcome in Table 2, neither the proposed
method nor existing statistical randomness methods allowed us to distinguish the numerical PRNG methods.
However, our tool allowed us to separate the different families of K-Logistic map and K-Tent map even
until K = 8 in some cases.

6. Conclusion

We have presented an interactive visual analysis approach that addresses the issue of classical pass/fail
randomness tests failing to provide a fine granularity to distinguish and rank PRNGs from weak to strong.
We proposed a method that allows for checking randomness quality by clustering families of PRNGs when
generated time series are provided. Additionally, our work can be extended to seek for randomness on
sequences of irrational digits such as π, e,

√
2,
√
3. Our experiments have focused specifically on the chaos-

based PRNGs K-Logistic map and K-Tent map. With our tool, we have found that their corresponding
clusters get far apart from each other and converge to the “perfect” case asK is increased. This same fact has
been previously analytically demonstrated [31]. In this work, we not only reinforced this statement but also
provided means to distinguish among families of PRNGs. However, classical PRNGs with good randomness
properties are still hard to distinguish. The developed visualization tool places samples corresponding to
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such PRNGs very close to the “perfect” case. This finding is subject to further investigations. Perhaps it
retains for them to be good randomness sources until a new method says otherwise.
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