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Abstract 
We introduce AVAR, a prototypical implementation of an 
agile situated visualization (SV) toolkit targeting liveness, 
integration, and expressiveness. We report on results of 
an exploratory study with AVAR and seven expert users. 
In it, participants wore a Microsoft HoloLens device and 
used a Bluetooth keyboard to program a visualization script 
for a given dataset. To support our analysis, we (i) video 
recorded sessions, (ii) tracked users’ interactions, and 
(iii) collected data of participants’ impressions. Our pro-
totype confirms that agile SV is feasible. That is, liveness 
boosted participants’ engagement when programming an 
SV, and so, the sessions were highly interactive and par-
ticipants were willing to spend much time using our toolkit 
(i.e., median ≥ 1.5 hours). Participants used our integrated 
toolkit to deal with data transformations, visual mappings, 
and view transformations without leaving the immersive en-
vironment. Finally, participants benefited from our expres-
sive toolkit and employed multiple of the available features 
when programming an SV. 
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Figure 1: A user wears a 
Microsoft HoloLens device to 
interact with an SV. 

Raw Data

Data Tables

Visual Structures

Views

Data Transformations

Visual Mappings

View Transformations

Figure 2: The 3-process 
reference model of visualization. 

Introduction 
Situated visualization (SV) promotes interactive analytical 
reasoning by embedding data visualizations in the physical 
environment through immersive augmented reality (AR) [8] 
(see Figure 1). Users can interact with an SV using the third 
spatial dimension, which stimulates cognitive aspects such 
as engagement, embodiment, and recall [5, 10]. To boost 
reasoning, an SV toolkit has to support users in quickly 
building visualizations that combine real objects with vi-
sual representations of data. Yet, we observe that existing 
SV toolkits lack such agility, which hinders the applicability 
of SV in practice. 

To enable users to create and modify data visualizations sit-
uated in a real context in an agile fashion, we hypothesize 
that an SV toolkit must offer (i) live feedback when they cre-
ate or modify a visualization, (ii) an integrated environment 
that supports all processes involved in visualization, and 
(iii) expressive means to support increment visualization 
design. We implemented a prototype that supports agile 
SV, which we call AVAR. 

We conducted an exploratory study with seven expert users 
and carefully analyzed their behavior when creating an SV. 
We observed that live feedback boosted participants’ en-
gagement when programming an SV, and so, they were 
highly interactive and willing to spend long time spans (i.e., 
median ≥ 1.5 hours) performing incremental modifications 
to visualization scripts. Our integrated toolkit allowed par-
ticipants to deal with the visualization as a whole without 
leaving the immersive environment. Finally, our expressive 
toolkit allowed participants to employ multiple available fea-
tures when programming an SV. 

Our contributions are (i) an exploratory user study and 
(ii) an open source prototype released under MIT license, 
thus making it fully available to practitioners and researchers1. 

1https://github.com/bsotomayor92/AVAR-unity 

Related work 
There is a lack of toolkits to guide authoring SVs that offer 
ready-to-use building blocks to speed up development [10]. 
Amongst the few existing ones, none of them focuses on 
agility (i.e., incremental visualization construction). For 
instance, SiteLens [13] is a situated analytics system for 
supporting site visits in urban planning. In it, users can vi-
sualize an already curated dataset with a limited number of 
techniques. Munin [1] is a middleware for ubiquitous ana-
lytics that focuses on large scale distributed visualization 
for collaborative environments. In it, visualizations can be 
displayed in mediums such as wall displays, smartphones, 
and tabletops, but not in immersive devices for AR (e.g., 
Microsoft HoloLens). VRIA [4] is a Web-based framework 
for creating immersive analytics experiences that involves a 
programming language with limited capabilities of expres-
siveness and reflection, posing a barrier for data transfor-
mations. 

As opposed to our SV toolkit, existing toolkits for immer-
sive analytics such as NiwViw [14], DXR [12], IATK [6], and 
ImAxes [7] support a limited number of fixed and ready-to-
use templates for visualization techniques, impairing ex-
pressiveness. These toolkits offer only partial integration, 
and so, they require users to perform data transformations 
using a desktop computer, which hinders agility. 

Our approach differs from previous works as it targets users 
with programming knowledge. This fundamental difference 
can explain limitations of existing authoring toolkits. To the 
best of our knowledge, our SV approach is the first one that 
supports the three processes of programming an interactive 
visualization (shown in Figure 2). We consider that integrat-
ing support for all these processes in a live and expressive 
programming environment can lead to agile SV. 
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Figure 3: The distributed 
architecture of AVAR. 

AVAR: An Agile Situated Visualization Toolkit 
Agile SV is a highly dynamic iterative process for exploring 
multiple facets of a dataset. In it, for instance, users can 
add previously filtered data to a view and analyze how it 
changes without having to leave the immersive environment 
(e.g., removing an AR headset): script building, data ex-
ploration, and visualization exploitation happen in the AR 
environment. We identify three main challenges for agile 
SV: (C.1) an infrastructure that supports live programming, 
i.e., short feedback loop when evaluating a (visualization) 
script, (C.2) an integrated immersive environment in which 
users can type and read visualizations scripts, and (C.3) a 
language that is sufficiently expressive to define multiple 
visualization designs but simple enough to be used in im-
mersive AR. 

We introduce AVAR, our prototypical implementation for ag-
ile SV. Figure 3 presents a diagram with the software stack 
and the components used in the implementation of AVAR. 
We employ a Microsoft HoloLens and a Bluetooth keyboard 
as input/output devices that support user interaction, see 
Figure 4. Figure 5 shows a virtual panel that enables users 
to type visualization scripts, load visualization examples, 
and receive error notifications. 

In the design of AVAR, we maximize reusing existing tools. 
As a consequence, the implementation phase mainly con-
sists of integrating these third-party tools in the immersive 
AR environment. We integrate a fully operational program-
ming language into an immersive environment. To this end, 
we adopt Pharo2, a modern implementation of Smalltalk. 
Pharo is a dynamically typed message passing language 
that has an expressive syntax that allows users to perform 
complex operations by typing short scripts [2]. Pharo is in-
terpreted, that is, users do not have to wait for a script to 
compile, but they can evaluate scripts in a live environment. 

2http://pharo.org/, accessed 15.12.2019 

Pharo is highly reflective, which eases integration to ex-
ternal environments. Users can define data visualizations 
using Roassal23 and Woden4, 2D and 3D data visualization 
engines, respectively. These engines implement multiple 
2D and 3D visualization techniques that are shipped out-of-
the-box such as parallel coordinates, treemaps, node-link 
diagrams, and space-time cube matrices. Finally, we imple-
ment a thin application in Unity 3D5 that communicates with 
Pharo as a backend, handles user interaction, and renders 
a graphical user interface in AR. Our toolkit supports the 
following 3-step process: 

1. Data Transformations. To build a data visualization, 
users first apply several transformations to a given 
raw dataset to create data tables, e.g., filtering, for-
matting, normalizing. As these transformations are 
available in Pharo, users have access to multiple 
functionalities for data transformations. To the best of 
our our knowledge, this process is not fully supported 
by existing SV toolkits. 

2. Visual Mappings. Next, users choose visual map-
pings to apply to data tables toward creating visual 
structures. To this end, we rely on multiple existing 
"builders" in Roassal2 and Woden, which are domain-
specific languages (DSLs) that support the rapid con-
struction of particular interactive visualizations. 

3. View Transformations. Finally, a view is rendered 
in immersive AR to which users apply various view 
transformations (programmatically as well as using 
natural user interfaces). For instance, through hand 
gestures users can rotate a view to obtain a different 
perspective. Users can also combine a hand gesture 
with walking to relocate a view to a different place. 

3https://github.com/ObjectProfile/Roassal2, accessed 15.12.2019 
4https://github.com/ronsaldo/woden, accessed 15.12.2019 
5https://unity3d.com/, accessed 15.12.2019 
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Figure 4: In the study, 
participants wore a Microsoft 
HoloLens device and used an 
Apple Magic Bluetooth keyboard. 

Figure 5: The graphical user 
interface in AR of AVAR: (center) 
code editor, (upper-right corner) 
examples browser, and (bottom) 
console panel. 

Exploratory User Study 
We adopted a template previously introduced [11] to de-
scribe the scope of our study: 

We examine the usage of the AVAR toolkit for author-
ing situated visualizations displayed in a Microsoft 
HoloLens device in the context of an exploratory analy-
sis from the point of view of expert users. 

Pilot We used a pilot study with two participants to fine-
tune the study factors: task and datasets that could be un-
derstood quickly, and the inclusion of more examples to 
demonstrate the capabilities of visualization engines. 

Participants As our prototype uses a Smalltalk scripting 
language, we decided to conduct our study at ESUG’196. 
We sent an open invitation through the conference mailing 
list. In the end, we scheduled sessions with seven partic-
ipants, who were not paid and freely opted to participate 
in the study. All participants were male. Their median age 
was 31 ± 8.5 years, and they had a considerable experi-
ence using Smalltalk (i.e., experience ≥ 6 years). We also 
asked for their familiarity with the technologies involved in 
the study. In summary, participants declared to (i) frequently 
build data visualizations, (ii) know little of the API of the 2D 
visualization engine, (iii) do not know details of the API of 
the 3D visualization engine, and (iv) have used a device like 
the Microsoft HoloLens no more than once. 

Dataset We selected two datasets used in previous stud-
ies [12, 7]. One dataset contains co-authorship information 
along a period of time, which we considered adequate to 
minimize the complexity of Task 1 (e.g., it has 209 items 
and 4 properties). In Task 2, participants used a second 
dataset that contains 6,497 samples of wine (1,600 red and 

6European Smalltalk Users Group, accessed December 15, 2019, 
https://esug.github.io/2019-Conference/conf2019.html 

4,897 white) described by 12 data attributes. Both datasets 
are publicly available7,8. 

Tasks Task 1. We asked participants to build a space-time 
cube visualization (results shown in Figures 6). Each cube 
represents the relation between two co-authors. The X 
and Z axes (co-planar to the room’s floor) represent the list 
of authors, and the Y axis represents time. Time is over-
loaded in the color of the cubes, which use a color ramp 
from blue to yellow. To clarify the given task, we handed to 
participants a printout of the expected resulting visualiza-
tion. Task 2. As a second, and optional task, we asked par-
ticipants to analyze main differences between white and red 
wine based on the given dataset. To this end, participants 
were encouraged to use the multiple features available in 
the visualization engines. 

Apparatus Participants wore a Microsoft HoloLens 1 head-
set. The headset was complemented with an Apple Magic 
Bluetooth keyboard (see Figure 4). Participants used the 
keyboard to interact with the three main sections of the 
graphical user interface: (i) code editor, (ii) examples browser, 
and (iii) console panel (as shown in Figure 5). Participants 
could scroll through the code either using the keyboard or a 
hand gesture. Participants could interact with visualizations 
in three ways by (1) hovering over an element using head 
movements to obtain contextual information, (2) rotating 
a visualization using an airtap and hold combined with an 
horizontal hand gesture, and (3) translating the visualization 
to a new location by using an airtap hand gesture and body 
and head movements. 

Procedure The sessions with each participant were con-
ducted in a quiet room. The room had enough space for 

7https://github.com/ronellsicat/DxR/blob/master/Assets/ 
StreamingAssets/DxRData/collaboration.csv, accessed 15.12.2019 

8http://www3.dsi.uminho.pt/pcortez/wine/winequality.zip, ac-
cessed 06.01.2020 
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Figure 6: Visualizations by 
participants in the user study. 

Simulator Sickness Rating 

General discomfort Moderate 
Fatigue Slight 
Headache None 
Eye strain Slight 
Difficulty focusing Slight 
Increased salivation None 
Sweating None 
Nausea None 
Difficulty concentrating None 
Fullness of the head Slight 
Blurred vision Slight 
Dizzy (eyes open) None 
Dizzy (eyes closed) None 
Vertigo (Giddiness) None 
Stomach awareness None 
Burping None 

Table 1: Median ratings using the 
Simulator Sickness questionnaire. 

the participants to move around. The room had a high ta-
ble for stand-up coding and a normal table for participants 
who preferred to sit on a chair. At the beginning of the ses-
sion, participants were asked to read and sign a consent 
form that informed them of the characteristics of the study. 
Next, the experimenter read an introduction to explain the 
details of the phases in the study. We encouraged partici-
pants to share their thoughts using a think-aloud protocol. 
Participants were free to stop the session at any time. Once 
participants finished a task, we asked them about the per-
ceived difficulty of the task. To examine the (lack of) comfort 
experienced by participants, we asked them to fill in a Sim-
ulator Sickness questionnaire [9]. To assess the perceived 
usability of our system, participants were asked to fill in a 
System Usability Scale questionnaire [3]. 

Data Collection We (i) video recorded the sessions (i.e., 
13 hours and 30 minutes), (ii) tracked events of participants’ 
interactions with the graphical user interface and with the 
environment (i.e., 1029 interaction events), and (iii) col-
lected filled-in questionnaires (i.e., 28 pages in total). 

Results 
A set of charts that summarize the results of the study is 
presented in Figure 8. Due to the limited space, we opted 
to present only the results of Task 1, even though 5 partic-
ipants also solved Task 2. Charts are sorted by time (e.g., 
participant 1 , who had the longest session, is presented at 
the top). A horizontal black bar, at the middle of each chart, 
encodes the length of a session. Such bars split charts into 
two sections. In the upper section, gray circles are vertically 
arranged to indicate which area in the graphical interface 
has the focus of a participant. A green circle indicates a 
script that is successfully executed, otherwise, the circle is 
red. An additional horizontal bar encodes, using three col-
ors, which visualization process participants are address-
ing. The lower section of a chart supports a temporal anal-

ysis of visualization scripts: Vertical bars (in green) show 
additions and (in red) deletions of code. Additional circles 
depict the total size of a script at certain points in time. Cir-
cles are connected with lines to indicate the evolution of the 
script size. The median values of the ratings of participants 
using the Simulator Sickness questionnaire are presented 
in Table 1 and results of the System Usability Scale (SUS) 
questionnaire are presented in Figure 7. The median SUS 
score by participants was 58, with a maximum of 70 and a 
minimum of 53. The median rate at which participants inter-
acted with our system was 1.5 ± 0.7 events per minute. 

Discussion 
AVAR confirms the feasibility of an agile SV toolkit based on 
liveness, integration, and expressiveness. All participants 
were able to solve the first task, even though they experi-
enced moderate discomfort wearing the headset for a long 
period of time. Participants agreed with the observation 
that "most people would learn to use the system quickly" 
as they did not need to learn lots of things to get going with 
the system. However, they considered that AVAR requires 
improvements to be easy-to-use. 

Liveness. More experienced users (e.g., 6 and 7 ) solved 
the Task 1 with fewer interactions in a shorter time than 
less experienced users (e.g., 1 and 2 ). We also observe 
that our live environment boosted participants engagement, 
as five out of seven participants were willing to solve the 
second (optional) task. All sessions were highly interactive. 
In agile SV, users rely on liveness to obtain feedback of 
script executions, which indeed, were uniformly distributed 
in time (see Figure 8). 

Integration. Participants engaged in long experimental 
sessions that lasted a median of 106 minutes±27.5 (with a 
maximum of 148 minutes and a minimum of 82 minutes). In 
them, participants were able to deal with all the processes 
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Figure 8: Charts that present the interactions of the seven 
participants who used our SV toolkit. 

required to solve the tasks without leaving the immersive 
environment. In agile SV, users require to address visual-
ization processes in a continuous loop (and not sequen-
tially) as show in Figure 8. 

Expressiveness. Our included expressive language en-
abled participants to use various features that they found 
amongst the visualization engines available. For instance, 
participants 1 and 3 used RTTabTable to manipulate 
data tables, participants 2 and 7 used RWElement for 
handling 3D elements, participant 2 used RWAlign to lay-
out elements in a 3D space, participant 3 used RWCylinder 
to produce cylinders as visual elements, and participant 7 
used RTScale to scale elements and maximize the use of 
the available space in the room. Other features used by all 
participants were RWView to specify views, RWXZGridLayout 
to layout elements as a 3D grid, and RWCube to define cube 
shapes for elements. In agile SV, users depend on having 
multiple features available to express SV designs in an iter-
ative fashion. 

Conclusion 
We introduce AVAR, an agile SV toolkit based on liveness, 
integration, and expressiveness. We report on an exploratory 
study with seven expert users who were asked to program 
an SV script. We analyzed how our design choices im-
pacted participants’ behavior. We found that live feedback 
boosted the engagement of the participants, who worked 
highly interactively and were willing to spend much time 
using our toolkit. Participants were able to deal with visual-
ization as a whole without leaving the immersive environ-
ment. Finally, we observed that participants employed mul-
tiple of the available features when programming an SV. In 
the future, we plan to improve our design, investigate other 
means for interaction, and conduct further evaluations. 
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