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Predicting User Preferences of Dimensionality Reduction
Embedding Quality

Cristina Morariu, Adrien Bibal, Rene Cutura, Benoı̂t Frénay, Member, IEEE and Michael Sedlmair, Member, IEEE

Fig. 1: Overview of the best embeddings, as predicted by our method, for three of the datasets we have collected:
MNIST, photos of flowers, and paintings. On the left of each sub-figure, we have an embedding of embeddings (called a
metamap) where each square represents an embedding that was considered in our study and the contour color coding
represents goodness of embedding (with dark blue tones meaning ”good” and dark red tones meaning “bad”). On the
right of the sub-figures, we have the top 3 best embeddings. The background of the metamap is visualized using a
“goodness” score for the embeddings outputted from our model. The top 3 MNIST embeddings (blue background - high
score) are of higher quality than the top 3 painting embeddings (red background - low score).

Abstract—A plethora of dimensionality reduction techniques have emerged over the past decades, leaving researchers and analysts
with a wide variety of choices for reducing their data, all the more so given some techniques come with additional hyper-parametrization
(e.g., t-SNE, UMAP, etc.). Recent studies are showing that people often use dimensionality reduction as a black-box regardless of the
specific properties the method itself preserves. Hence, evaluating and comparing 2D embeddings is usually qualitatively decided,
by setting embeddings side-by-side and letting human judgment decide which embedding is the best. In this work, we propose a
quantitative way of evaluating embeddings, that nonetheless places human perception at the center. We run a comparative study,
where we ask people to select “good” and “misleading” views between scatterplots of low-dimensional embeddings of image datasets,
simulating the way people usually select embeddings. We use the study data as labels for a set of quality metrics for a supervised
machine learning model whose purpose is to discover and quantify what exactly people are looking for when deciding between
embeddings. With the model as a proxy for human judgments, we use it to rank embeddings on new datasets, explain why they are
relevant, and quantify the degree of subjectivity when people select preferred embeddings.

Index Terms—Dimensionality reduction, Manifold learning, Human-centered computing.

1 INTRODUCTION

A wide-spread approach for data exploration is the use of dimension-
ality reduction (DR) techniques. DR is a process that projects high-
dimensional data to a lower-dimensional space, such that the resulting
embedding retains specific properties from the original data. An ap-
plication of DR is in visualization, where users can create scatterplots
based on two retained dimensions. DR methods are used in various
domains ranging from biology and medical research to social sciences
(e.g., [22, 26, 54]), and they are actively researched in both the machine
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learning (ML) and visualization (VIS) communities.
An extensive amount of techniques exists to produce such embed-

dings, such as principal component analysis (PCA) [7], multidimen-
sional scaling (MDS) [23], isometric feature mapping (Isomap) [44],
t-distributed stochastic neighborhood embedding (t-SNE) [46] and,
more recently, uniform manifold approximation (UMAP) [32]. These
methods can produce widely different results, all the more so given that
some have hyper-parameters (e.g., t-SNE perplexity).

Evaluating the quality of these results is, however, the burden of
users. In a typical process, a user generates a range of embeddings,
visualizes them in scatterplots, and selects a suitable one from the line-
up. Several attempts have been made to improve our understanding
of what users look for when evaluating embeddings. Some studies
focus on investigating whether human judgment is indeed reliable for
evaluating embeddings [29], while others focus on defining the tasks
that users perform when investigating embeddings [9]. Previous work
also shows that people use DR as a black-box mechanism without
necessarily understanding what the objective of the specific technique
is [28, 29]. To consolidate the evaluation of embeddings quantitatively,
both the ML and VIS communities proposed quality metrics that can
be used to select the best embeddings automatically (these metrics are
detailed in Section 2.1).

In this paper, we aim at bridging previous research on quality metrics
for DR and scatterplot visualization, with the work done on understand-
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ing human judgments of embedding quality. We evaluate to what extent
metrics in the literature can quantify subjective user preferences. To
this end, we gathered collections of images that we used to compute
widely-used DR techniques (DRTs). Image datasets are used so that
users have a glimpse of the high-dimensional space (via the image
pixels) in the image thumbnails of the scatterplots. In total, 11 image
collections were used, and 25 embeddings were computed for each,
resulting from different hyper-parametrizations of 7 DRTs (PCA, MDS,
Isomap, spectral embedding, Gaussian random projection, t-SNE with
10 different parameterizations, and UMAP also with 10 different pa-
rameterizations). Based on this data, we ran a 54-person user study to
collect preferences on these embeddings. We then investigated in how
far these human preferences can be formally expressed through existing
quality metrics. Our aim is thus not to survey all DR methods, but
rather to investigate whether quality metrics, or a combination thereof,
can capture user preferences.

Our problem can be framed as the analysis of a supervised learning
model, where a combination of quality metrics is used to predict human
judgments. ML models are therefore used to compute how these metrics
should be combined. The aim is to create and provide a model that can
both predict embeddings users would most likely prefer, as well as to
offer an explanation as to why they prefer them.

There are two main reasons for this choice. First, a supervised model
will allow us to derive a composite metric based on user perception.
The new metric can then be used to select embeddings that would
generally be considered interesting. This is specifically important when
many DRTs are considered, or for DRTs that have several non-trivial
hyper-parameters to tune. Second, this approach will enable us to
compare which quality metrics are important for expressing human
preferences. In summary, our work makes the following contributions:

• a supervised framework that can be used to learn the relationship
between a set of metrics and user preferences;

• the collection and analysis of data from a 54-participant user study
on subjective preferences in DR embeddings;

• a quantitative analysis that (a) explains what users like when
selecting DR embeddings, (b) sheds light on the feasibility of
predicting preferences with quality metrics, and (c) allows us to
better understand which ML and VIS metrics are important for
that. To that end, we use three modeling approaches to combine
quality metrics and to predict user preferences of embeddings, as
well as an analysis on which approach performs best.

2 BACKGROUND & RELATED WORK

Our work considers the two main types of evaluation in dimensionality
reduction (DR): the quantitative evaluation using visual and DR-specific
quality metrics, and the qualitative evaluation based on human judg-
ments. This section presents the latest work in these areas, as well as
how our contributions build on top of this knowledge.

2.1 DR Evaluation using Quality Metrics
Measuring the quality of embeddings is the work of two communities,
and each brought quality measures that have distinct properties. These
different quality metrics are presented in this section. We also include
a formal description of the metrics in our supplemental material.

2.1.1 Measures from the Machine Learning Community
The machine learning (ML) community has defined several measures
that can be used as objective functions within dimensionality reduction
techniques (DRTs). A good example is stress, the well-known objective
function of multidimensional scaling, which measures the preservation
of pairwise distances between the instances in the high-dimensional
(HD) and the low-dimensional (LD) spaces. Beyond that, the ML
community has investigated metrics that seek to define and measure
the quality of the DR process itself. The rationale for this choice is
that metrics that are used in objective functions are constrained in
their definition (e.g., being differentiable), constraints that may not be
necessary if the sole purpose is to measure quality [25]. Examples of
such measures are the local continuity meta-criterion (LCMC) [12], the
measure of Trustworthiness and Continuity [48] and AUClogRNX [24].

These measures typically check if the neighborhoods in the HD space
are preserved in the LD embedding. For instance, LCMC computes,
for each point, the average number of neighbors it has in common in
HD and LD for a certain neighborhood size k. Trustworthiness, on the
other hand, is defined by roughly summing the rank of all pairwise
distances from a point i in the original HD data to its nearest neighbors
in the LD embedding that are not among the k nearest neighbors of
i in the original data. This metric seeks to measure whether one can
trust what can be seen in the visualization. The measure of continuity
is the exact opposite, as it tells how well the patterns from the original
dataset are projected in the visualization. The continuity for a particular
neighborhood size k is defined by the rank of all pairwise distances
from the point i in the LD embedding to the nearest neighbors of i in
the original HD data that are not among the k nearest neighbors of i
in the LD embedding. While the previously mentioned approaches
focus on a specific neighborhood size k, AUClogRNX consider all
neighborhood sizes, with a focus on smaller neighborhoods. In order to
do so, AUClogRNX considers, for each point, the number of neighbors
in common in LD and HD for all neighborhood sizes with a logarithmic
importance.

2.1.2 Measures from the Visualization Community

The other community that tackles measuring embedding quality is
the visualization (VIS) community. Metrics from the VIS community
generally focus on the quantification of visual patterns in the embed-
dings/scatterplots. A venerable example of such measures are the
Scagnostics measures [52, 53], that quantify patterns such as Sparsity,
Skewness, and Outlierness.

Recently, a substantial amount of work has focused on measuring
class separability, that is, how well classes are separated in a DR embed-
ding. Distance consistency (DSC), for instance, computes the number
of instances that are closest to the centroid of their own class rather
than another class. Alternatively, SepMe [1] provides an ensemble of
separability metrics that use neighborhood graphs to assess how well
classes are separated. These metrics are currently the best performing
separability metrics in the literature. Other popular measures in this
category are the average between-within clusters (ABW) [28], the hy-
pothesis margin (HM) [20], the neighborhood hit (NH) [36] and the
Calinski-Harabasz index (CAL) [11]. All these metrics measure the
separability between clusters, albeit differently.

Similar to our goals, some works [1–3, 18, 27, 35, 39] focus on
evaluating quality metrics against human perception, although with
different use cases. Sedlmair and Aupetit [1, 40] examine perception
of class separability in color-coded scatterplots, Pandey et al. [35]
assess to what extent Scagnostics can be used as a proxy for human
perception, and Lehmann et al. [27] evaluate whether Scagnostics can
be used to filter perceptually interesting views for users. None of these
works, however, focus, as we do, on recommending DR embeddings
and explaining this recommendation using a large variety of quality
metrics.

2.1.3 Accuracy and Interpretability Measures

The main difference between the measures designed in ML and those in
VIS is their objective. ML metrics generally seek to measure how well
the information is preserved when reducing the number of dimensions.
In contrast, VIS metrics tend to focus on the presence of visual patterns
that make it possible for users to grasp their visualizations and get
insights about their data. Following the parallel of Bibal and Frénay [5]
with supervised learning, the ML measures would be “accuracy” mea-
sures, while VIS measures would be “interpretability” measures. And,
as in supervised learning, the two types of measures should be balanced
to obtain results that would satisfy users [4, 5]. Indeed, accuracy mea-
sures are necessary because visualizations with well-separated clusters
are not useful if they are not faithful to the high-dimensional space.
Likewise, interpretability measures are also necessary as if readable
patterns are not provided, nothing may be taken from the visualization.
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(a) Image scatterplot view of the interface. This view is used so that
users can see, through thumbnails, how the images from the
dataset have been projected in 2D.

(b) Point scatterplot view of the interface. This view contains points
instead of image thumbnails, with colors corresponding to class
labels.

Fig. 2: Two views of the same trial from the experiment for collecting user preferences. Each view contains 8 embeddings of
COIL-100 built by different DRTs. Black hearts correspond to the scores distributed among the embeddings. The use of the 2 views
is analyzed further in Section 6.2

2.1.4 Combining the Different Quality Measures
One idea, which is the one followed by this paper, is to combine the two
worlds by mathematically combining the metrics. For instance, Bibal
and Frénay [5] formulated the linear combination of quality metrics as
follows:

combination = (α1 ∗AM1)+ ...+(αi ∗AMi)+ ...+(αm ∗AMm)

+(β1 ∗ IM1)+ ...+(β j ∗ IMj)+ ...+(βu ∗ IMu),

where AM (respectively IM) means accuracy metric (respectively inter-
pretability metric). The different α and β , which are learned, represent
the contribution of the metric to which they correspond.

Ensembles of metrics are also discussed in the quantitative survey of
DR methods of Espadoto et al. [16]. The authors survey 44 DR methods
and compute the average of several metrics (trustworthiness, continuity,
neighborhood hit, normalized stress, Shepard goodness and local error)
on 18 datasets in order to assess the global performance of individual
DRT. Similarly, Nonato and Aupetit [34], as well as van der Maaten
et al. [47], extensively review DRTs alongside quality metrics for DR,
albeit without computing quality metrics on embeddings. We build on
these works and go beyond by investigating learning the combination
of measures that predict user choices.

2.1.5 Applications for Quality Metrics
Aside from the works mentioned above, the VIS community focuses
on bridging the gap between quality metrics and human judgments
by designing visual analytics (VA) systems that aid users in compar-
ing [13] or selecting [14,21,31] embeddings. The insights derived from
our contribution can be used as part of a VA system that recommends
embeddings. Lehman et al. [27] also propose using specific quality
metrics to filter out easily rejected embeddings, as scored by users.
Wang et al. [50] use previously evaluated quality metrics of subjective
class separability to propose a new DRT, which is implicitly optimized
to model human perception of separability. Tian et al. [45] use ac-
curacy metrics, alongside human judgments, to compare 2D and 3D
embeddings. They note in their paper that each metric measures partial
information captured by human judgment, which leads to the conjecture
that combining metrics could lead to a more complete picture of the
embedding quality.

2.2 Evaluation Driven by Human Judgments
Despite the existence of quality metrics, the burden in the evaluation
of embeddings remains mainly on users. This section discusses DR
research that collects and/or uses human judgments to assess quality.

2.2.1 Taxonomies for High-Level Tasks Related to DR
Brehmer et al. [9] aim to define what tasks users perform when they
investigate embeddings. Following interviews, the authors introduce a

characterization of tasks: manifold tasks, where users try to name the
synthesized dimensions, and cluster tasks, where users verify, name,
or match clusters with class names. These tasks have been considered
in the selection of our datasets to ensure our study participants deal
with different settings. This is important because our article focuses
on an exploratory setup where users do not know in advance if clus-
ters, outliers, or trends will be present. An alternative taxonomy of
tasks, which partly overlaps with that of Brehmer et al. [9], is also pro-
posed by Etemadpour et al. [17, 18] for high dimensional embeddings.
The authors proposed pattern identification, relation-seeking, behavior
comparison, and membership disambiguation tasks. Another closely
aligned work is the one of Sedlmair et al. [42], which proposes a cluster
analysis taxonomy, one of the most important analysis tasks in the DR
data exploration process.

2.2.2 Assessing User Preferences in DR

Lewis and van der Maaten [29] investigate whether human judgments
are consistent by running a user study with groups of experts and
novices. They offer the users little information regarding the original
dataset and find out different users prefer different embeddings, infer-
ring that user preferences are vastly subjective. They show that the
more users have expertise, the more they are coherent in their judgment.
Our study setup builds up on this one, as both studies focus on the
real-life task of users selecting embeddings from a line-up. However,
our goal is (i) to deepen the understanding about how users make their
decisions and (ii) to model these for recommending embeddings.

Bibal and Frénay [4] also ran a user study collecting user prefer-
ences of t-SNE embeddings of the MNIST dataset. The objective of
the authors is to study how cluster separability measures and their
combination (using a modified Cox model) can predict user prefer-
ences. The study presented in this paper is larger in scale at all levels:
more datasets, more DRTs (not only t-SNE), more quality metrics and
different ways to frame the problem and to combine metrics. This en-
largement in scope allows us to perform original analyses and to draw
insightful conclusions. For instance, we can extract the quality metrics
from the literature that can be used to predict user judgments, we can
assess the importance of the accuracy of the DR process with respect
to the visual quality for users, we can highlight the DR techniques that
are both accurate and visually appealing for users, etc.

2.2.3 Selecting DR embeddings

Oftentimes, when new DR methods are introduced, a comparative study
to other techniques is proposed as an evaluation. The embeddings get
visualized in scatterplots and the reader assesses the line-up and decide
for themselves which is the superior embedding. This can also be the
case for the selection of hyper-parameter values inside a particular
DRT. For instance, the authors of t-SNE invite users to try various
hyper-parametrizations and select the embedding they prefer [46].
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Wattenberg et al. [51] show that blindly trying hyper-parameters and
selecting appealing embeddings has downfalls, in that it can mislead
users on the faithfulness of the embedding. In our work, in order
to avoid this issue, image thumbnails are provided in the scatterplot
in order for users to check if the visualization reflects the HD space
(characterized by the pixels of the projected images). Another issue is
that user guidelines given by authors often are technique-specific. To
overcome such issues, Sedlmair et al. [41] assess the best visualization
methods to use during DR exploration, and provide guidelines on
selecting DRTs using visualizations based on data collected in a user
study.

Etemadpour et al. [18] designed a user study to assess which em-
beddings can best enhance users’ abilities to detect clusters, outliers,
or estimate density. The best embeddings were recommended based
on the performance on different tasks. Not all embeddings perform
well for all tasks, but in general, two techniques, Isomap and LSP,
outperform the others. Recent popular DRTs, such as t-SNE or UMAP,
were not included in this study.

3 USER STUDY & DATA COLLECTION

The main idea behind our approach is to (a) generate a sample of DR
embeddings from a set of datasets, (b) collect human preferences for
them, and (c) calculate quality metrics for them in order to see how
far they can predict human DR preferences. Here, we describe these
three components in more detail and provide motivation for our design
choices.

3.1 Motivation for Considering Image Datasets
We first select suitable datasets that allow users to provide quality
judgments for different DR embeddings. We need users to consider
both the patterns seen in the scatterplot, for example whether there are
clusters forming, and the accuracy of the embedding visualizations, for
example if the clusters make semantic sense.

Assessing preferences by only supplying minimal information about
the original data can result in highly subjective and inconsistent judg-
ments across participants [29]. It might not be possible to properly
judge whether meaningful clusters appear or whether a manifold was
adequately unrolled when users have limited or no access to the high-
dimensional space [9].

To ensure users can process the HD data they are analyzing, we only
use collections of images for our study (as the HD data are characterized
by the pixels of the projected images). Under this setup, the embeddings
visualized as scatterplots have each position encoded as the thumbnail
of the image getting projected at this location. For example, in the
case of the COIL-100 dataset, a collection of objects photographed
from different angles, the scatterplot contains thumbnails of objects
as shown in Figure 2a. By showing images as thumbnails, access to
the HD attributes (the pixels) is given along with the projected 2D
position in the visualization. We hypothesize that users can see that the
visualization does not reflect the HD space if different image thumbnails
are close together (forming false clusters or clusters of mixed content)
or if similar image thumbnails are far from each other. The same pixel
values considered by our users are also used as input to the DRTs and
for calculating metrics when the HD space is required.

3.2 Selected Datasets & Criteria
We collected 11 image datasets (see Table 1) based on two criteria.
First, we selected datasets that implicitly cover different potential tasks,
because our user study is intentionally not framed around a specific
task, like looking for clusters, but rather as an exploratory data analysis.
For example, in the case of the MNIST digits dataset, the most common
visualization task is matching class names (the digits) to various clusters
formed. In contrast, for the Stanford face dataset, users would look for
a manifold with semantic properties such as the lighting going from
light to dark or the orientation of the figure changing from left to right.

We sought to collect datasets of various complexity on the premise
that it is much easier to state a preference on embeddings from a dataset
like MNIST, as opposed to a more complex dataset like the Paris Build-
ing dataset consisting of larger and more messy real-world photos

where the potential number of analysis tasks also increases (e.g., a
user could be assessing day-to-evening lighting changes or could group
photos by buildings). As a consequence, we considered both datasets
analyzed in literature and real-life photography collections. As part of
our study, users were asked to score the difficulty in rating their prefer-
ence after each trial. Then for each dataset, its empirical difficulty was
aggregated from the user responses (see Table 1). While participants’
answers show that our selected datasets vary both in terms of task type
(see Section 3.6) and complexity, measured both by response time and
self-reported dataset difficulty (see Table 1), we do not claim that our
datasets cover the entire space of image datasets. We mainly aimed to
collect a set of datasets that is representative enough to show that we
can use metrics to model preferences.

3.3 Dimensionality Reduction Techniques
The dimensionality reduction techniques used to generate the embed-
dings are:

• principal component analysis (PCA) [7]
• multidimensional scaling (MDS) [23]
• isometric feature mapping (Isomap) [44]
• t-distributed stochastic neighborhood embedding (t-SNE) [46],

with 10 perplexity values ranging from 5 to 100
• uniform manifold approximation (UMAP) [32], with 10 combina-

tions of number of neighbors, ranging from 2 to 15, and maximum
distances, from 0.1 to 0.8

• spectral embedding (SE) [33]
• Gaussian random projection (GRP) [6]

These seven DRTs selected for this paper are a representative set of
what is popular in the literature [16]. Considering different hyper-
parametrizations of the DRTs, 100 embeddings were initially generated
for each dataset and, 25 embeddings for each dataset were uniformly
sampled based on the metric space to be used in the user experiment.
The metrics computed for each embedding and that we use to down-
sample the initial 100 are described in Section 3.7. Last, we manually
down-sampled embeddings that appeared very similar, e.g., rotated
variants, or duplicates of one another. This resulted in 15 to 20 distinct
embeddings per dataset. Finally, for each trial of the study, we selected
8 embeddings from the pool. We opted for uniformly sampling 8 embed-
dings from the pool rather than by DRT. On the one hand, this mean that
PCA might not have been selected in each trial of the study, but on the
other hand, it gave each hyper-parametrization and pattern a fair eval-
uation opportunity. A good example is UMAP, which produces some
of the most preferred embeddings for specific hyper-parametrizations,
and some of the worst otherwise (see Figure 3). Without equal chance
for all hyper-parametrizations to be seen, we could by chance reach
the conclusion that UMAP is a bad DRT overall if the less preferred
embeddings were shown more often. We believe this sampling decision
ensured that each pattern and hyper-parametrization is evaluated fairly.
The DR hyper-parameter value ranges were selected from the original
paper recommendations of what tends to work well [7, 32, 44, 46] and
can be seen on the axes of Figure 3. We believe each DRT has a fair
chance to produce good embeddings.

3.4 Visualizing the Embeddings
One issue with scatterplots is over-plotting. Since we are trying to
model human preferences, it would not be fair to apply the metrics on
points that are not seen by our participants. For this reason, we first
created a set of scatterplots and measured the over-plotting of each point.
When creating them, we made sure that the plotting order was random
so that no sample with a particular property would be systematically
occluded. We then removed from our embeddings datasets, from the
HD datasets, and from the final scatterplots all points that would be
invisible to the eye. This approach is inspired by Sedlmair et al. [40,41],
who also remove occluded points when evaluating separability metrics
based on human judgments.

3.5 User Preferences Dataset
This section describes the user experiment that has been set up to collect
user preferences on embeddings.
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Table 1: List of the datasets used in our experiment. For each dataset, we provide the name, description, the proportion of difficulty
ratings given by users (easy - green, medium - amber, hard - red), the percentage of disagreement in user rankings for projections in
that dataset (% DA), and the median response time in minutes (Median RT).

Dataset Name Description Difficulty (as scored by users) % DA Median RT

COIL-100 Objects photographed from different angles (128 x 128) 11% 1.38

MNIST Handwritten digits (28 x 28) 13% 2.93

Fashion MNIST Images of clothes (28 x 28) 20% 2.33

Stanford Faces Bust from different angles/light conditions (50 x 50) 19% 2.04

Yale Faces 14 people displaying happy, neutral or sad faces (320 x 243) 20% 2.45

Flowers Photos of 6 different species of flowers (500 x 500) 20% 2.29

Caltech plants Photos of 6 different species of plants (320 x 243) 18% 1.90

Caltech vehicles Photos of 6 different types of vehicles (320 x 243) 22% 2.11

Caltech instruments Photos of 6 different types of instruments (320 x 243) 21% 3.35

Paris Buildings Photos of buildings in Paris (1024 x 768) 14% 1.95

Oxford Buildings Photos of attractions in Oxford (1024 x 768) 24% 2.95

Fig. 3: User aggregated preferences of DRTs, overall (first) and
hyper-parametrized (second). A score higher than 0.5, depicted
in blue, means that more than 50% of the users preferred the
DRT specified in the row (DR Considered: y-axis) over the one
specified in the column (DR Compared Against: x-axis). Scores
lower than 50% are encoded in red.

Participants In total, 54 users participated in our study, out of
which 4 had finished a Ph.D., 38 had a master’s degree and the remain-
der 12 had a bachelor’s degree. We reached our users by advertising the
study within the university network of the co-authors. Participation was
voluntary and unpaid. We asked participants for their domain expertise
in ML, VIS and dimensionality reduction, and over 85% of our user
base reported familiarity with all these concepts. Seven participants
reported no prior knowledge of dimensionality reduction, and one re-
ported no prior knowledge of ML or VIS. An overview of what we
asked to all participants can be seen in the supplemental material and
in the data we released.

Study Procedure We conducted a web-based user study that took
place online and on various display sizes (the minimum size was 700
x 500). The study began with a page explaining the subject of the
study and its duration (40 to 60 minutes). Users were then presented a
consent form, an explanation of what DR is and of the user interface,
and a questionnaire to collect demographic and experience data. The
study then proceeded with the trials. At the end, participants were
asked about the overall difficulty of the setup and any other feedback.

Trial Setup Our study consisted of trials in which users had to rate
embeddings. The stimuli in each trial were the embeddings generated
by applying DRTs to the aforementioned datasets. Participants were not
given a particular visualization task like finding clusters, but were rather
asked to select the most appealing embeddings as part of an exploratory

analysis task. No time limit was given for any section of the study,
including the trials, as exploratory tasks are usually open-ended.

Eight embeddings of the same dataset were shown per trial. They
were randomly selected from the total embeddings available for a
dataset, placed on a 2-by-4 grid in random order, and shown as scat-
terplots of images on a white background. The views were connected
by brushing and linking. At the beginning of each trial, participants
received 15 points to distribute across the 8 embeddings. A higher
number of points assigned to an embedding means that the participant
preferred this embedding more. One embedding could receive a total of
4 points. A user could mark an embedding as bad by clicking a dislike
button, rather than distributing any point to it. Participants could sort
the grid by preference. This interaction is visualized in the supplemen-
tal material. Sorting enabled them to focus on a local comparison of
embeddings with their better and worse direct neighbors. The sorting
mechanism and the restricted number of points per trials were designed
to force users into deciding which embeddings they liked more. Our
intention was to avoid a situation where a user would award every
embedding an equal number of points. Clicking on a dislike button was
implemented to ensure the fact that the user actively decides something
is disliked, rather than not rating something because of running out of
points. A rated and sorted example of a trial, with both assigned liked
and disliked examples, is presented in Figure 2. As Figures 2a and
2b show, the embeddings can either be visualized as non color-coded
image-thumbnails or as color-coded points. The default view is the
non-color coded thumbnail view, but the user can click a radio button to
see the secondary color-coded dot view. In Section 6.2, we analyze how
often users made use of this secondary view and the implication of in-
cluding it. The user study is available at https://kix2mix2.github.
io/DumbleDR/public/index.html and was tested on Firefox and
Chrome. Screenshots of the entire study are also available in the supple-
mentary material. Upon completion of a trial, participants were asked
to score the difficulty of the trial and whether they would like to score
another dataset. Users could complete up to 11 trials, each trial testing
one dataset. The datasets across trials appeared in random order.

Descriptive Results We first analyze the degree of consensus
between users when it comes to preferences. Previous work [29] shows
that there is a high degree of subjectivity when it comes to users record-
ing preferences of DR embeddings. Users’ ability to select good quality
embeddings is called into question. In our study, however, we report
that while there were disagreements in ratings, the majority converged
towards well-defined preferences. For each pairwise comparison be-
tween two embeddings, the best case scenario is that all judgments are
in agreement, i.e. 0% of disagreement. The worst case is that opinions
are evenly split when comparing the embeddings, i.e. half of the judg-
ments are in disagreement with the other half (50% of disagreement).
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On average, 18.5% of the ratings are in disagreement with the majority.
A breakdown of disagreement in conjunction with the difficulty of the
dataset as scored by users can be seen in Table 1. Datasets perceived as
harder incur a higher percentage of disagreements. The same applies
the other way around, where easy datasets such as MNIST have a low
percentage of disagreements. In terms of response time per task, we
observe a difference in the median response time dependent on the
difficulty: easy trials took 1.69 minutes to answer, medium tasks 2.4
minutes, and hard ones 3.1 minutes. The average response time by
dataset is also reported in Table 1. It can be observed that easy and
medium scores are correlated to shorter response times.

From the ratings awarded in each trial by each user, a preference
matrix is calculated by counting how many times an embedding is
scored higher than another one. The results are aggregated to assess
if particular DRTs are preferred. In Figure 3, the user preferences are
aggregated on a DRT level. The heatmap encodes often users agree that
one DRT (row-wise) is better than another (column-wise). The bluer the
cell, the more people agree that the DRT in the row is better than the one
in the column. Overall, a hierarchy can be observed: GRP and SE ≤
PCA and MDS ≤ Isomap ≤ t-SNE ≤ UMAP, where DRi ≤ DR j means
that the visualizations generated by DR j are more often preferred to the
ones generated by DRi. These observed preferences are already very
much inline with the metrics-based results from Espadoto et al. [16],
which indicates that a correlation could exist between the metrics and
user preferences.

3.6 Qualitative Feedback from the Users
In our user study, users had the option to give three types of feedback:
for each embedding in particular, after each trial where the users com-
pared embeddings stemming from a particular dataset, and at the end
of the entire study. The supplemental material provides screenshots
from the study for each type of recorded user feedback.

In total, 100 comments on the embedding level were provided, out
of the 3713 embedding judgments that were made. These comments
can be grouped into the following categories:

• The embeddings appear random or wrong, 39 related com-
ments from 11 distinct participants, e.g., “no pattern visible”,

“only visible pattern is background color”.
• Whether more hearts would have been needed for proper as-

sessment, 9 comments from 2 participants.
• Presence of outliers, 4 comments from 3 participants, e.g.,

“strange outliers”, “outliers are maybe not meaningful”.
• Presence of manifolds, 21 comments from 7 participants, e.g.,

“just seems to order by lightness of the images.”, “Sad people are
on the left and happy ones are on the right.”

• Whether clusters are formed or classes are separable, 25 com-
ments from 9 participants, e.g., “clustered by people, not emo-
tions”, “We can identify 4 clusters. One for each angle, and one
for each lighting condition.”

At the trial level, comments were provided for 129 out of the 365
trials. People gave information about their ratings or ranking strat-
egy. These comments aligned with the tasks introduced by Brehmer
et al. [9], where people mentioned manifold tasks (e.g., “If the face
directions change continuously and consistent from left to right/top to
bottom”, “manifold of flowers”) and cluster tasks (e.g., “class sepa-
rability”, “Looked for very tight groupings when images were very
similar, e.g., tightly grouped portraits with a dark background.”, “I
found only vague ordering with regards to overall color or lightness,
and was dissatisfied.”). By manually coding each of these comments,
we grouped the comments into 66 clustering tasks, 54 manifold tasks,
and 9 trials with no patterns. At the end of the study, 25 out of the
54 participants gave us a study level feedback. Of these, 9 reported a
positive experience, 10 provided us with potential study improvements
(e.g., being able to access instructions again later on, or going back to
redo ratings), 3 people reported the experience was “mentally taxing”,
had a “high cognitive load”, or was “confusing”.

All data from our experiments, as well as the qualitative com-
ments at all 3 levels, are available online (at https://cloud.visus.
uni-stuttgart.de/index.php/s/2tCMwl92LjISQ5a).

Table 2: List of measures used in our analysis. If the metric is
said to be applied on LD, then it only measures the quality of (or
check patterns in) the visualization. These measures capture
how interpretable the visualization is. If the metric is applied on
HD to LD, it measures the accuracy of the DRT.

Metric Name Type Applied on
Outlying [52, 53] Scagnostics LD
Skewed [52, 53] Scagnostics LD
Clumpy [52, 53] Scagnostics LD
Sparse [52, 53] Scagnostics LD
Striated [52, 53] Scagnostics LD
Convex [52, 53] Scagnostics LD
Skinny [52, 53] Scagnostics LD
Stringy [52, 53] Scagnostics LD

Monotonic [52, 53] Scagnostics LD
ABW [28] Cluster separability LD
CAL [11] Cluster separability LD
DSC [43] Cluster separability LD
HM [20] Cluster separability LD
NH [36] Cluster separability LD
SC [37] Cluster separability LD
CC [19] Correlation btw distances HD to LD

NMS [23] Stress HD to LD
CCA [15] Stress HD to LD
NLM [38] Stress HD to LD

LCMC [12] Small neighborhoods HD to LD
T&C [48] Small neighborhoods HD to LD
NeRV [49] Small neighborhoods HD to LD

AUClogRNX [24] All neighborhoods HD to LD

Even though our study was set with an exploratory task in mind,
some users reported qualitatively undertaking a varied set of tasks.
Taking into account these qualitative comments and our quantitative
results, we are confident that our set of metrics is able to capture a
well-rounded spectrum of DR tasks.

3.7 Quality Metrics Dataset

To predict user preferences, we gathered metrics from different commu-
nities that measure various aspects of visualizations, such as accuracy
of representation or presence of observable patterns. Among the met-
rics in Table 2 that have not been presented in Section 2.1, one can
find the silhouette coefficient (SC), the correlation coefficient (CC),
the non-metric stress (NMS), the nonlinear mapping stress (NLM), the
curvilinear component analysis (CCA) and the neighbor retrieval visu-
alizer (NeRV). SC [37] is a classic metric in clustering that measures
how clusters are separated from each other, versus how instances inside
a same cluster are grouped together. This metric is similar to ABW,
but diverges in its mathematical definition. CC [19] is a metric that
computes the correlation between the vector of all pairwise distances in
the original dataset and the corresponding vector of pairwise distances
in the visualization. NMS [23], CCA [15] and NLM [38] are three
stress measures that are considered in our study. Stress measures have
in common that they measure how well pairwise distances in the high-
dimensional space are preserved in the low-dimensional space. Each of
the three measures have their particularities. For instance, NMS [23],
as a non-metric measure, does not compare pairwise distances directly,
but their ranking. Finally, NeRV [49] is a metric based on information
retrieval, as it translates the concepts of precision and recall to a mea-
sure similar to the Trustworthiness and Continuity. NeRV redefines the
distances in the original dataset and in the visualization as probabilities,
like t-SNE. It also contains a perplexity hyper-parameter that defines
the σ parameter of the distribution used to represent the size of the
neighborhood to consider for each element in the visualization. Based
on preliminary experiments, NeRV perplexity has been fixed at 5, as a
single value should be chosen. Otherwise, the same NeRV metric would
be duplicated several times in our set of metrics, with small differences
due to the different perplexity values. The separability metrics are all
highly correlated (see the supplementary material). Between pairs of
highly correlated measures (more than 95%), only the most popular
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one in each pair was kept. In consequence, the metrics dropped from
further analysis were: SepMemv f , SepMemvt , Continuity, NH, and CC.
Additionally we removed ABW and CAL, as they were low variance
features.

4 MODELING USER PREFERENCES

In this section, we propose three ways to predict users’ quality judg-
ments of DR embeddings by using combinations of quality metrics. In
order to do that, we model our data with incremental levels of detail:

• The first model classifies “good” and “bad” embeddings, as de-
cided by users’ consensus. In this case, only whether the heart of
the embedding was crossed out or not is taken into account.

• The second model linearly learns which embeddings are preferred
by users, by answering the question “Would embedding A be
preferred over embedding B on average?”.

• The third model provides a ranking of the embeddings, implicitly
answering the same preference task as Model 2. In this case,
we examine whether a nonlinear combination of the metrics can
further improve the performance.

From all three models, we extract the most important metrics that
help to predict user preferences. Despite disagreements in the data,
no data and no participants were discarded from the training process.
Hence, the models were trained on noisy annotations, as the same
embedding may have conflicting annotations.

4.1 Modeling Setup
The evaluation of our models is operated on a leave-one-group-out
basis. This is a cross-validation setup where the data is split into
distinct groupings and a model is trained on the collected preferences
related to all groups but one. The remaining group is used as a test
set. The process is repeated for all combinations of groups. This is a
special case of k-fold cross validation where the k folds correspond to
well identified groups of the dataset. Throughout this section, we use
the datasets in Table 1 as our different groups. We call this procedure
leave-one-dataset-out (LODO). This setup allows us to check if our
models generalize to unseen datasets.

Given the variety of datasets used and their different degrees of
complexity (see Table 1), it is expected that all our models slightly
vary in performance from dataset to dataset. Furthermore, computing a
prediction score for each group also enables us to build a measure of
prediction uncertainty on unseen data, by calculating the confidence
interval over all test dataset results.

4.2 Model 1: Classifying Good and Bad Embeddings
Model 1 is set up to learn the distinction between “good” and “bad”
embeddings. Each embedding was scored by multiple users, either
with a set amount of points (i.e. hearts in the UI) or by crossing out
the embedding (i.e. a crossed out heart in the UI). To aggregate all
these potentially distinct scores across users for each embedding, we
selected the median of the scores. We selected the median as opposed
to mean, as this is an unbiased non-parametric estimator that is less
susceptible to outlier annotations. Then, we classified an embedding as
good (binarized to 1) if the aggregate score was at least one heart, and
as bad (binarized to 0) otherwise. We also considered an alternative
scenario where only embeddings scored with at least 3 hearts count as
good, discarded embeddings whose median was 1 or 2, and rated the
remainder as bad. Figure 2 shows these two categories with scatterplots
highlighted either in green (good) or in red (bad). The data was fed to a
boosted tree ensemble and evaluated on a LODO basis to determine the
prediction performance for each dataset. We have selected this model
as boosted trees are state-of-the-art models in supervised learning for
tabular data like our dataset of metrics.

The area under the receiver operator curve (AUC) metric was opti-
mized in the LODO setup. This AUC analysis resulted in the predictive
performance of 89.81% with a confidence interval (CI) of ± 6.70%. In
the 3-heart setup, the performance raises slightly to 90.2% (± 5.9%).
In terms of feature importance computed with SHAPley values [30],
Scagnostics [52, 53] features such as Sparsity, Skinny and Outlying
are the most important ones. For the majority of the embeddings, low

Sparsity and high Skinniness increase the chances of an embedding
to be disliked by participants. The embeddings selected by users as
bad tend to be random (see example in the last position on the grid of
Figure 2) or skinny embeddings (see example in the second and third
to last places on the grid of Figure 2), where the 2D visualizations have
no apparent meaning.

4.3 Model 2: Linear Preference Learning
For Model 2, we re-defined the problem as a linear preference learning
problem. To do that, for each pair (vi,v j) of visualizations in a dataset,
the percentage of time vi is preferred over v j is considered. For instance,
90% means that 90% of the time, when vi and v j were presented in
the same trial to users, vi received a larger number of hearts than
v j. Because the comparisons are aggregated to get percentages, the
number of instances becomes 2268 for this dataset. The goal is to
linearly reconstruct the preferences between visualizations based on
the percentage of time a particular visualization has been preferred
to another visualization. The advantages of linear models are their
robustness to overfitting and their interpretability.

Bradley-Terry models (BTm) [8] are used as linear preference learn-
ing models. BTm linearly combines features to derive probabilities of
being preferred:

P(vi > v j) =
ew0+w1∗m1,i+...+w23∗m23,i

ew0+w1∗m1,i+...+w23∗m23,i + ew0+w1∗m1, j+...+w23∗m23, j
,

where w0, w1, ..., w23 are 24 weights to learn, and mk,i (respectively
mk, j) are the kth metric evaluated on the visualization vi (respectively
v j). We trained the BTm with a Lasso penalty in order to encourage
sparsity among weights.

The metrics that have been selected by the sparse BTm are, by order
of importance, AUClogRNX, NLM, Monotonic, Skewed, Sparse and
DSC. The accuracy of the BTm is 62.30%, with a 95% CI of ± 3.91%.
The accuracy is obtained by counting the number of time the model
is right when it says vi > v j, over the total number of predictions. To
obtain accuracy on data that have not been used for training, the LODO
strategy has been used. The final accuracy is the mean of the test
accuracy scores of the 11 involved datasets. This way, the reported
final accuracy offers some guarantees on the use of the presented sparse
linear model on new datasets. If only the data where users strongly
agree on good and bad visualizations (at least 80.05% of agreement)
is used, the accuracy becomes 65.93% ± 4.51%. The λ balancing the
importance given to the error and the Lasso penalty was 0.021.

4.4 Model 3: Nonlinear Ranking of Embeddings
In our final setup (Model 3), like for Model 2, we output a measure
of how good each embedding is. This makes it possible to answer
the question “By how much is embedding A better than embedding
B?”. This measure acts as a popularity score and can also be used to
compare if the embeddings generated for some datasets have a higher
quality than for other datasets. We call this measure the ranking score.
The ranking score is visualized in the teaser Figure 1, which will be
discussed in detail in Section 5.

As opposed to Model 2, we chose for Model 3 a nonlinear model to
exploit more complex relationships among the metrics and to potentially
increase our performance. We used a boosted tree ensemble [10] again,
in order to find out whether a nonlinear combination of our features,
unlike the one in Equation 2.1.4, can lead to better results.

Model 3 is fed with embedding lists that are sorted according to
the hearts awarded by the participants. The model then learns to rank
embeddings from the 3713 ones, but sorted into 458 groups of 8 embed-
dings, as initially ranked by our participants. Model 3’s objective is to
create a ranking for a new, unseen, dataset of embeddings. This set of
embeddings can be of any length, not just 8 embeddings, and the model
learns to minimize the number of incorrect pairwise comparisons, as
described by the LambdaMART algorithm [10]. The LODO error is cal-
culated the same way as for Model 2. Overall, the accuracy is 70.03%,
with a confidence interval (CI) of ±4.40%. When the LODO error is
calculated only for comparisons where there was a strong agreement,
such as 80% agreement, the accuracy increases to 78.09%, ±6.51%.
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Fig. 4: Performance of the 3 experiments evaluated for each
dataset. For the first experiment, we report the AUC on all data
where a positive label is any positive “heart” ranking (dark blue),
as well as when only a score greater or equal to three hearts
counts as positive and a crossed heart counts as negative (light
blue). For the two other experiments, we report the results on
the entire dataset (dark orange for Model 2, and dark green for
Model 3), as well as on data with more than 80% consensus
(light orange for Model 2, and light green for Model 3).

5 RESULTS & DISCUSSION

This section discusses facets ranging from the performance of our setup
to the generalization capacity of our models.

5.1 Performance on Unseen Datasets
In terms of generalization to other datasets, the LODO generalization
performance of Model 1 (∼90%) is our best result, which is expected
given that a coarser classification between “good” and “bad” is the
easier task. Models 2 and 3 achieve a LODO accuracy of 62.30%
and 78.09% respectively on the more challenging preference ranking
task. The 95% confidence intervals around these expected results are
across all three models between 4 and 6.51%. These expected values
alongside their CIs are a good indicator of how our trained models
would perform on new unseen image datasets. As a further breakdown
of our LODO performance, Figure 4 displays the accuracy for each
dataset. Unsurprisingly, the model performs better on datasets that are
rated as easier and with less disagreements between user annotations
(see Table 1).

Some may wonder if the error could be further reduced. We offer two
possible explanations for the cases of lower accuracy: 1) the metrics
set that we have selected does not provide sufficient coverage over
the space of user preferences, and 2) that it is difficult to mimic users’
preferences with quality metrics given that users themselves disagree
with each other.

5.2 Interpreting the Ranking Scores
Although with Model 3, we generate ranked predictions for each dataset,
the top n embeddings are not equal in quality across datasets. This is
reflective of reality: people might be more pleased with the results of
DR on some datasets, but not on others. Similar to people’s preferences,
the ranking scores computed by Model 3 also vary from dataset to
dataset. This can be seen in Figure 1, which shows the metamap of
three datasets, MNIST, Flower photography, and ART UK paintings,
and their corresponding top three embeddings according to Model 3.

Defined by Cutura et al. [14], metamaps are embeddings of embed-
dings. They are primarily used to find similar embeddings, encoded
by the distance in between points in the metamap. However, another
use of a metamap is to collect the most different embeddings in order
to get different views of the same data. Indeed, as embeddings are
clustered by similarity in the metamap, users can explore the different
embeddings that can be produced. To do that, a user would compute
hundreds of embeddings for the same dataset, produce the metamap,
and consider the embeddings that are most distant from one another.
We produced the metamaps for this use case by taking all the embed-
dings generated by our datasets in Table 1, computing the metrics in
Table 2 for each of the embeddings, and finally applying UMAP on

the metrics (which are the 23 features) describing each embedding
(which are the instances) to obtain the metamaps. The left-hand side of
each subfigure from Figure 1 represents a metamap, where each point
symbolizes a particular embedding used in our study and rated by our
study participants. The separability metrics took as labels the dataset
associated with the embedding. We followed the same procedures as
the ones described in Section 3.

The colors in the metamaps from Figure 1 represent the ranking
scores of the visualizations: from dark blue for “good” visualizations,
according to Model 3, to dark red for “bad” ones. The color interpola-
tion is performed using inverse distance weighting. It can be seen that
the top 3 embeddings of MNIST are good according to Model 3 (they
are in a blue region and, so, have a high Model 3’s score), barely good
for Flowers (they are in a clearer blue region) and somewhat bad for
Paintings (they are in a red region and, so, have a low Model 3’s score).
The information encoded in the metamap contours can be used to deduct
that many embeddings from MNIST could be considered of good qual-
ity despite being outside of the top 3. For the paintings dataset, however,
only few embeddings are good (there is a large red area, and few amber
regions), and Model 3 helps to find the slightly better embeddings (in
the amber area). The flower dataset, in the middle of Figure 1 contains
both good and bad embeddings. A low ranking can also be interpreted
as a result where subjectivity and disagreement are higher among
humans. To further explore metamaps and top embeddings for the
datasets used in our experiments, we have created a tool called Dumb-
leDR (available at https://renecutura.eu/dumbledr/). The tool
is described in the supplemental material.

5.3 Accuracy versus Visualization Metrics

All three models show that metrics from both the VIS and the ML
communities are important. In addition to Scagnostics and cluster
separability measures from the VIS community for detecting bad em-
beddings, our models also rely on accuracy measures to find accurate
embeddings among the ones that contain readable patterns. This is
quantitatively observed by a drop in performance when accuracy mea-
sures are removed from the training of our models. This drop is roughly
2% across all three models. This systematic decrease logically stems
from the fact that users do pay attention, to some extent, to the seman-
tics inside visualizations, in addition to looking for readable patterns.
All in all, users pay more attention to the visual disposition of points
in the visualization instead of the accuracy of the embedding. A more
comprehensive breakdown of which metrics are better within the VIS
and ML categories is available in the supplemental material.

5.4 Performance of DRTs

A bias spanning from the selection of image collections is that linear
techniques such as PCA get rated down. Given the fact that images
lie on a nonlinear manifold in the HD space, it makes sense that linear
DR methods such as PCA underperform in comparison to UMAP
and t-SNE. To evaluate the generalization to new DRT, a leave-one-
dimensionality reduction-out (LODRO) AUC is calculated for Model
1. Rather than splitting by dataset during our cross-validation, as in
LODO, we train to detect “good” and “bad” embeddings by considering
all DRT but one. The LODRO procedure allows us to check if our
analysis applies to unseen DRTs. Overall, our LODRO AUC to new
DRTs is settling at 63.03%, with a confidence interval of ± 3.1% (see
the supplementary material for results per DRT).

GRP and MDS have the worst generalization performance. These
methods might generate very different patterns than the other DRTs.
Users in our study graded the embeddings resulting from GRP, SE
and some UMAP configurations as universally bad across all datasets
(see Figure 3) and, have even commented about how these embeddings
appear to be random. However, visualizations that appear to be random
to the human eye have in fact a very different quality according to
quality metrics, meaning that bad embeddings are not all bad in the
same way. The LODRO strategy cannot be easily applied to Models 2
and 3, since, in these setups, we require more DRT, and more than 20
total embeddings per dataset in order to achieve significant results.
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6 LIMITATIONS & FUTURE WORK

As all research, our work comes with a set of limitations, which specifi-
cally attain to the modeling approach (Section 4) based on inherently
imperfect human subject data (Section 3).

6.1 On the Existence of Misleading Embeddings
A concern is that users can select appealing embeddings that are wrong
with respect to the HD data. Based on the availability to information
regarding the HD space (image thumbnails), we are confident that if any
such “false positives” existed, they would have been caught and marked
as bad. Our different models show that the majority of embeddings
flagged as bad by participants can be detected using Scagnostics and
separability measures. Given that no accuracy metric is needed for
spotting bad embeddings, it rises the question of whether embeddings
where meaningful clusters are formed in the visualization when these
clusters do not exist in the HD space are actually possible.

6.2 On the Use of Labels and Color-coded Scatterplots
In our experiments, we provided an additional color-coded version of
the visualizations, as seen in Figure 2b. We asked the participants to
consider it as further information, but not to form their preferences.
One may argue that the colors could have biased their preferences (e.g.,
by looking for separable, color-coded clusters). To shed light into this,
we recorded every click users made in our study and, we analyzed
how users made their decisions. About 17% of all rating decisions
were made from the color-coded view. Moreover, only 4.10% of the
time was spent in the color-coded view. In fact, for 50% of all trials,
users did not use the color-coded view at all. Future work should be
considered to examine if color-codes are beneficial or detrimental.

6.3 On the Limited Breadth of Dataset Types
A weakness of our study is that we only use image-based datasets.
We did so as images give a natural anchor into the HD space, which
was essential for our purpose. We speculate that our analyses can also
be performed on other types of data because (1) users maintain their
preferences for different datasets, and, (2) that the metrics applied on
different dataset types generate a similarly distributed metric dataset.

To have some intuitions about these claims, we performed a qualita-
tive analysis on a tabular dataset. Instead of images described by pixels,
the tabular data is formed of visualizations described by quality metrics.
We then passed these meta-embeddings through Model 3 and assessed
the top 3 recommendations. These can be seen in Figure 5, which
shows on the right-hand side the top 3 meta-embeddings (or metamaps)
and their respective hyper-parametrizations. As with the results on the
other dataset, Model 3 selects UMAP for the best embeddings when a
certain hyper-parametrization is chosen. The best metamaps show that
the embeddings are loosely clustered in accordance to the dataset, rather
than DR technique, with the implication being that the same DRTs do
not produce similar embeddings across datasets. This dataset would be
difficult to test-drive via a user study because of the knowledge needed
in DR techniques and quality metrics, but the authors of this paper were
familiar enough with the dataset and the quality metrics to be able to
make qualitative judgments on how good the produced embeddings
are. The authors selected their preferred embeddings without knowing
which algorithm generated them and their decision aligned with one
of the top 3 best embeddings. The metamaps in Figure 1 are produced
using UMAP with 7 neighbors and a minimum distance of 0.8. We
invite our readers to further inspect this data in our DumbleDR tool
(available at https://renecutura.eu/dumbledr/).

With this preliminary example in mind, we believe an interesting
research direction would be to look at extending our study with tabular
and text data datasets such as the ones used in Espadoto et al. [16].
Such studies would necessitate adequate LD representations of the HD
tabular or text space, similar to the image thumbnails for image datasets
or expert users acquainted with a particular dataset. Once the datasets
and visualization methods are ironed out, our evaluation framework
can be followed. An interesting line of analysis would be to check if
noisiness in user preferences varies depending on the data type and how
it is conveyed to the user.

Fig. 5: Top 3 embeddings given by our tool on the set of
metamaps. The ranking is provided by Model 3 and shows
that UMAP with some particular hyper-parametrizations offers
visualizations of good quality.

6.4 Extending to Other Metrics and DRTs

One can argue that new DRTs and quality metrics can be invented in
the future. While this is true, one contribution of this paper is to present
a framework on the use of quality metrics to predict user preferences.
This means that new metrics can be plugged into our framework so
that a new combination is automatically learned and analyzed without
needing additional user feedback. Similarly, the combination can be
re-trained on embeddings produced by new DRT, which would require
a new user evaluation of these embeddings.

6.5 Predicting Behavior when Comparing Embeddings

Future work can consist of using the characteristics of users in our
models to derive a different combination of metrics per user profile. The
BTm model could be used to analyze how user characteristics influence
their comparisons of embeddings. While BTm was used in this paper to
predict the preferences based on features of the compared objects (the
embeddings), BTm can also be used to predict the preferences based
on the features of the users that stated their preferences. Another kind
of behavior that can be modeled is when different tasks are performed.
One can consider our framework as a basis to build models that would
make it possible to understand what users consider for each task (finding
clusters, outliers, trends, etc.), and how similar the tasks are when user
preferences are modeled. One key question can be: does the importance
of accuracy metrics change for each considered task?

7 CONCLUSION

This paper proposes a framework and an application of this framework
to assess the quality of DR visualizations using metrics from the ML
and VIS communities. We intended to open the black box of how
users make up their preferences. We implemented three ML models to
predict human preferences and examine to what extent metrics from
both communities are used. The final model (Model 3) achieves 78.09%
accuracy on ranking embeddings by user preference. Furthermore,
Model 3 was implemented in a tool, called DumbleDR, to demonstrate
the capabilities of our technique to highlight top quality embeddings.

In all three models, Scagnostics (in particular Sparsity, Skewed and
Skinny) and separability measures (in particular DSC) have a large
impact for predicting user choices. These metrics were able to easily
discriminate between visualizations deemed good or bad by users. It
seems that accuracy metrics from the ML community (in particular
AUClogRNX) are secondary, but they make it possible to discriminate
between accurate and misleading visualizations with readable patterns.
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