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Abstract
A central question in the field of Network Science is to analyze the role of a given network topology on the dynamical be-
havior captured by time-varying simulations executed on the network. These dynamical systems are also influenced by global
simulation parameters. We present a visual analytics approach that supports the investigation of the impact of the parameter
settings, i.e., how parameter choices change the role of network topology on the simulations’ dynamics. To answer this ques-
tion, we are analyzing ensembles of simulation runs with different parameter settings executed on a given network topology. We
relate the nodes’ topological structures to their dynamical similarity in a 2D plot based on an interactively defined hierarchy of
topological properties and a 1D embedding for the dynamical similarity. We evaluate interactively defined topological groups
with respect to matching dynamical behavior, which we visually encode as graphs of the function of the considered simula-
tion parameter. Interactive filtering and coordinated views allow for a detailed analysis of the parameter space with respect
to topology-dynamics relations. Our visual analytics approach is applied to scenarios for excitable dynamics on synthetic and
real brain connectome networks.

1. Introduction

Network Science is “the study of network representations of phys-
ical, biological, and social phenomena leading to predictive mod-
els of these phenomena” [Cou05]. A core research question is how
topological structures of networks influence dynamical processes
that operate on the networks [MHKH15,PS15]. A prominent exam-
ple of network dynamics are excitable dynamics [MLHH08,HL09]
that play an important role in many biological processes such as
brain activity [SCKH04].

When running dynamical simulations on network structures, the
dynamics typically depend on a number of global model parame-
ters. The choice of these parameters affects the dynamics and, con-
sequently, may also change the effect of topology on the dynamics.
Such investigations have been conducted by observing the correla-
tion between topological and dynamical matrices, where the topo-
logical matrices are computed to reflect the topological structures
of either modules or hubs, while the dynamical matrices reflect the
dynamical similarities of the network’s nodes [HL09, MLHH08].
Such analyses reside on the level of a few specific observations.
A more exhaustive investigation requires a systematic approach on
entire simulation ensembles.

We work towards closing this research gap by proposing a visual
analytics approach for analyzing the influence of global simulation
parameters on the role of network topology for the dynamical be-
havior. Our approach takes as input an ensemble of simulation runs
that have been executed with various global parameter settings on
a given network, see Section 2. To relate topology to dynamics, we

propose to use a 2D plot that embeds dynamical similarities of the
networks’ nodes and relates them to interactively detected topolog-
ical features, see Section 3. Furthermore, we propose a parameter
space visualization that illustrates the matching of selected topo-
logical groups with their dynamical behavior as graphs of a func-
tion over the investigated simulation parameter. Interactive filtering
operations and coordinated interaction among the proposed views
allow for an intuitive and effective analysis of the entire ensem-
ble at different levels of aggregation. The proposed methodology
is a combination of interactive visual analysis steps with automatic
data mining/statistical computations. The analytical workflow con-
sists of selecting topological structures, followed by analyzing their
relation to dynamics, and eventually of parameter space investiga-
tions, which allow for analytical reasoning on which parameter set-
tings reflect which behavior. We apply our methods for the analysis
of excitable network dynamics simulation ensembles on synthetic
networks and cortical connectivity networks of the cat brain. We re-
port our findings in Section 4. Our main contributions can be sum-
marized as:

• A novel visual analytics approach to analyze the influence of
global parameters on the role of network topology for the dy-
namical behavior in excitable network dynamics.
• A user-centric network topology analysis to define potentially

relevant topological structures for relating them to dynamics in
further analysis steps.
• A 2D plot for relating topological structures to dynamical node

similarities.
• A parameter-space visualization that reveals topology-dynamics

submitted to Vision, Modeling, and Visualization (2019)



2 Q. Q. Ngo, & M-T. Hütt, & L. Linsen / Visual Analytics of Simulation Ensembles for Network Dynamics

matches at an overview level and allows for coordinated interac-
tion with more detailed views.
• Application to synthetic and real-world data for novel findings.

2. Background and related work

Simulating dynamics on networks requires the scientist to choose
a network architecture that is to be investigated and a dynamical
model that is to be executed on the network. Varying the global
parameters of the dynamical model leads to a network dynamics
simulation ensemble. In the following, we will provide the neces-
sary background of such simulation processes.

Network architecture. A network is an abstract concept represent-
ing the connectivity between entities, to which we refer to as its
topology. A network is represented by an undirected graph.

Topological structures. The network topology may exhibit certain
structures or features. Two universal patterns in the topology of net-
works are modular structures, which are common in biological net-
works such as the human brain connectome [PS15,MLHH08], and
central nodes (referred to as hubs) [MLHH08]. A subset of nodes
are said to form a module, if there exists a denser level of connec-
tivity among them than connections to nodes outside of the subset.
Hierarchical modular structures refer to nested levels of connectiv-
ity, i.e., a modular structure can be (iteratively) decomposed into
denser submodular structures. It is ongoing research in biology to
study the role of hierarchical modular structures in networks such
as the human brain connectome [KH10, PS15, MLHH08]. The de-
gree of a node is defined as its number of edges. A hub is a node
with dominant degree, i.e., its degree is larger than those of other
nodes of the network. Using the tool we present in this paper, the
user may define and investigate any topological structure, but due
to the general interest in modules and hubs, we focus on such struc-
tures in the application scenarios.

Network examples. Network architectures that we are going to in-
vestigate include a hierarchical modular network with 60 nodes
[KH10], which we generate using a hierarchical modular network
model [PS08], see Figure 1, and a hierarchical network with 256
nodes [RSM∗02, HL09] containing modules and hubs, which we
generate using the iterative scheme described in [RSM∗02], see
Figure 5. Moreover, we investigate the cat brain connectome net-
work with 55 cortical and subcortical regions obtained by tract trac-
ing [SCKH04, HK04], see Figure 8. It describes system-level con-
nections between different areas of the cat cerebral cortex, is based
on a global collation of cat cortical connectivity (892 interconnec-
tions of 55 areas) [SBY95], and is part of a larger database of
thalamo-cortical connectivity of the cat [SBH∗99], which was cre-
ated by the interpretation of a large number of anatomical reports
of tract-tracing experiments. It is an almost symmetric directed net-
work that is commonly transformed to an undirected network for
analyses [BS09].

Dynamical model. Many dynamical models have been studied to
elucidate the relationship between connectivity structures and func-
tional structures of networks. The outcome of a dynamics simula-
tion run is a time series for each node of a given network, where
the values of the time series change according to the chosen dy-
namical model operating on the given network. Since the real-

world examples in our application scenarios are brain networks,
we focus – as a proof of concept – on excitable network dynam-
ics that are commonly used to simulate brain activity [SCKH04].
A simple and parameter-sparse implementation of such dynam-
ics is a discrete stochastic cellular automaton, which is referred
to as the ‘susceptible, excited, recovering’ (SER) model and has
been extensively investigated to simulate excitable neural dynam-
ics, e.g., [MHKH15, MLHH08, NHL16]. To each node one of the
three states excited (E), recovering (R), or susceptible (S) is as-
signed. In each simulated time step, a node in state R turns into
state S with a probability p, which is called the recovery rate (or
otherwise stays in state R). A node in state S turns into state E, if at
least one neighbor node is excited. Even if no neighbor node is ex-
cited, a susceptible node may turn spontaneously into state E with
a probability f , which is called spontaneous ignition rate. Finally,
a node in state E always turns into state S in the next time step.

Simulation ensemble. The parameters p and f introduced above are
global parameters that affect the overall dynamical behavior. The
user may use our system to select the range in parameter space
and its sampling to generate an ensemble. To demonstrate how our
visual analytics approach supports analyzing the effect of these pa-
rameters, we analyze ensembles with varying values of f (while
keeping p = 0.1 fix) and between 1,000 and 8,000 simulation runs.

Dynamical similarity. In order to investigate, which topological
structures affect the dynamical behavior, we need to analyze, how
information propagates through the network. Thus, we need to
identify, which nodes of the network have a similar dynamical be-
havior, i.e., we need to define a similarity (or distance) measure for
the time series generated per node. The similarity measure can be
computed pairwise, i.e., for each pair of nodes in the network. The
pairwise similarities can be stored in a symmetric similarity matrix.
How the similarity is computed, depends on the dynamics that are
simulated. For excitable dynamics, one typically captures similar-
ity by a co-activation measure, which calculates how often a pair of
nodes is simultaneously active (excited) [MLHH08, NHL16]. For
the SER model, the co-activation coefficient between two nodes is
computed by

Ci j =
1
N

N−1

∑
k=0

δ(T i
k ,T

j
k ) (1)

where N is the number of time steps, T i
k the state of node i at time

step k, and δ(T i
k ,T

j
k ) = 1 if T i

k = T j
k = E and 0 otherwise. The ma-

trix C whose elements are the co-activation coefficients is called the
co-activation matrix. For each simulation run, i.e., each parameter
setting, we can compute one co-activation matrix.

Network visualization. The most common network visualization
approaches use node-link diagrams based on a wide range of layout
algorithms such as the force-based one used in Figure 5(a), adja-
cency matrices as in Figure 5(b), or combinations thereof. Node-
link diagrams suffer from visual clutter when networks become
large and dense. Although the sizes of the networks in our appli-
cation scenarios rarely exceed tens or hundreds of nodes, they may
be dense and the node-link diagrams may exhibit clutter, cf. Fig-
ure 5(a). The topological structures are better recognized in ad-
jacency matrix visualizations as long as a suitable order is estab-
lished [BBHR∗16]. Thus, an adjacency matrix visualization is one
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of the main interactive views we are using to discover and select
modular structures of the network. To detect and select hubs, Ngo
et al. [NHL16] proposed a treemap layout, where size corresponds
to the nodes’ degrees. Their space-filling approach is compact, but
barcharts, generally, allow for better quantitative comparisons of
the sizes, which is why we chose them for hub selection.

Visualizing dynamical processes on networks. Early attempts for
visualizing dynamical processes on networks plotted time series in
conjunction with topological structures [JKS06]. Such time-series
visualization of individual nodes cannot reveal global topological
structures that govern the dynamics. Ngo et al. [NHL16] introduced
a visual analytics approach to discover how topological structures
such as hubs, modules, or hierarchies in networks influence the dy-
namical processes. However, they only looked at individual simu-
lation runs and not at simulation ensembles.

Ensemble analysis. In network dynamics models, there are pa-
rameters confirmed to be decisive factors on which outcome to
be expected [HJBS06]. The effect of those parameters in spatio-
temporal patterns has been intensively studied using purely analyt-
ical approaches [MLHH08, HL09]. These studies typically focus
on some selected parameter settings and some selected topolog-
ical structures. Our user-centric approach instead analyzes entire
ensembles of densely sampled parameter spaces to analyze how
patterns emerge as a function of the parameter settings. Moreover,
it allows for the interactive detection, selection, and exchanging of
multiple topological structures that are to be investigated.

Visualization of simulation ensembles has gained increasing at-
tention over the last decade [WHLS19]. A conceptual framework
for visual parameter-space analysis was presented by Sedlmair et
al. [SHB∗14]. Using their notation, we follow a global-to-local
strategy, where the task is related to parameter-space partitioning.
Like us, Luboschik et al. [LRB∗15] studied the influence of param-
eters on dynamical systems, but their dynamics are not defined over
networks and their task is, therefore, much different from ours.

3. Methodology

3.1. Design goals, space, and choices

There are three facets in our data that we want to relate to each
other. First, there is the topology of the network that is considered
to be static. Second, there are the dynamics that are simulated on the
network and we would like to relate the dynamics to the topology.
Third, there are global parameters that change the overall dynami-
cal behavior when being adjusted.

Since our goal is to determine which topological structures are
mainly responsible for the propagation of excitation in the dynam-
ics, we want to capture both topological similarity between nodes
of a network as well as their dynamical similarity. Following exam-
ples from literature (see above) one may compute a topological and
a dynamical similarity matrix for the nodes and try to relate them to
each other. However, this would require us to know, what topolog-
ical structures we should consider, which is what we are actually
trying to find out. Hence, we want to formulate the first design goal
that we need to have a flexible interactive analysis component for
the network topology that allows us to quickly and intuitively de-
fine topological structures for further investigation. Moreover, since

multiple topological structures may compete and different conclu-
sions may be drawn for different parameter settings, we want to
be able to define multiple topological structures simultaneously for
a joint analysis. We present a respective topological analysis for
defining possibly relevant topological structures in Section 3.2.

Our second design goal is to relate the defined topological struc-
tures to dynamical behavior. An obvious choice would be to use co-
ordinated views of topological structures and dynamical behavior
to interactively analyze their commonalities using filtering, selec-
tion, and highlighting mechanisms. However, since we may need to
analyze this relationship for many simulation runs, an excessive in-
teractive sessions should be avoided. Instead, a simple 2D view that
integrates both topological and dynamical aspects would be desir-
able. We propose a simple scatterplot-like visualization for relating
topology to dynamics, see Section 3.3.

Finally, we want to investigate an entire ensemble of simula-
tion runs with varying parameter settings. Hence, our third design
goal is a parameter-space visualization that provides an overview
in the form of aggregated topology-dynamics matching for all sim-
ulated parameter settings. We compute respective matchings of all
selected topological structures to the simulated dynamics and dis-
play them as a graph of a function over the investigated parameter,
see Section 3.4.

3.2. Topology analysis

In the topology analysis, one wants to explore the existence of cer-
tain topological structures using respective visual encodings and
layouts and to have means for interactive selections of observed
structures. Moreover, one wants the system to support automatic
extraction of groups that are formed by certain topological proper-
ties. Since different structures are best conveyed in different visual
encodings, we propose to use two visual encodings that allow for
the interactive definition of potentially interesting structures.

Arguably the most commonly used visual encoding of network
topology is a node-link diagram, where node positions are deter-
mined by a range of different layout methods. As discussed above,
such node-link diagrams can quickly lead to visual clutter when the
networks are not sparse, cf. Figure 5(a). Although our implementa-
tion supports node-link diagrams with a force-based layout, we do
not recommend to use them, unless networks are sparse.

Another common visual encoding of network topology are ad-
jacency matrices. When using a suitable ordering such as the
barycenter ordering [McG12], an adjacency matrix supports the de-
tection of modules. They can also be easily selected within the vi-
sual representation. Figures 1(a),(b) show an example where the
adjacency matrix reveals some modular structures. The individual
modules are selected and each module is assigned to a topologi-
cal group and labeled accordingly with user-defined colors chosen
from a color picker. If the modules form a dominant topological
structure for the dynamics, one would expect the dynamics of each
module’s nodes to synchronize, i.e., the time series of all nodes
within the selected topological structures would assimilate over
time.

Hubs are also visible in adjacency matrix layouts, but the ex-
act degree and sorting of multiple hubs within a network is not so
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easily recognizable. The degrees of nodes can be most easily quan-
tified and compared using barcharts with decreasing order, see Fig-
ure 5(c). When a hub is selected, layers around the hub (i.e., groups
of nodes with same distance to the hub) are automatically generated
to form topological groups. If the hub forms a dominant topologi-
cal structure for the dynamics, one would expect the dynamics of
the nodes in each layer to synchronize.

3.3. Relating topology to dynamics

Having defined the topological groups that are to be investigated,
we want to relate them to the dynamics. We propose an integrated
view of both aspects that exhibits the relation using an intuitive
2D scatterplot-like encoding, where each point corresponds to one
node for a selected simulation run. To position the nodes in the
plot, the vertical axis shall reflect dynamical similarity, while the
horizontal axis shall reflect topological groupings.

The vertical axis is defined by a 1D embedding of the dynamical
similarity. Starting with the co-activation matrix defined in Equa-
tion 1, we normalize the values to the range [0,1] and take one
minus the normalized values to compute a distance matrix. This
distance matrix can be fed to a dimensionality reduction method
to compute the 1D embedding. Multi-dimensional scaling (MDS)
and its variants are common strategies to generate such embeddings
trying to preserve distances. Various distance measure calculations
exist, leading to the different variants. Recently, the t-stochastic
neighborhood embedding (t-SNE) algorithm [vdMH08] has proven
to be very effective in a range of applications, where groups of
similar data points shall be preserved. Since our goal is to observe
groups of nodes that have similar dynamics, t-SNE is a suitable
approach for our purposes.

Since we plan to investigate the dynamical similarities over vary-
ing parameter settings for the dynamical simulation ensemble, we
would like to have a coherence of the embeddings for similar
parameter settings. Since the embeddings depend on the initial-
izations, such coherence cannot be assured when computing an
embedding for each parameter setting independently. Instead, we
adopt the dynamic t-SNE concept by [RFaT16]. Dynamic t-SNE
modifies the t-SNE cost function by adding a terms that penal-
izes movement of points from one layout to the next. While the
dynamical t-SNE approach tries to generate embeddings that vary
smoothly over time, we use the dynamical t-SNE algorithm to cre-
ate embeddings that vary smoothly over a given parameter. Thus,
when using the dynamical t-SNE algorithm, a user may select not
only a single simulation run, but also a range of parameter settings
in the form of an interval of parameter values. Then, the points
should stay at similar heights in the 1D embedding, if the outcomes
of the simulation runs within the selected parameter interval do not
vary much. To generate the embeddings, we follow the guidelines
in literature to appropriately set the parameters [vdMH08,RFaT16].
Assuming the distance matrix to be of size N×N, the t-SNE per-
plexity parameter ρ is chosen such that 3 · ρ < N. For dynamic t-
SNE, the trade-off hyper-parameter is set to be λ= 1.5, the learning
rate to η = 250, and the momentum coefficient to µ = 0.5, where
the momentum rate is changed from iteration 250 on and the max-
imum number of iterations for each optimization step is 1,000.

The horizontal axis shall reflect the similarities with respect to

the selected topological structures. Each selected topological struc-
ture defines groups (e.g., modules, submodules, or layers around
one or multiple hubs). The nodes are then sorted along the hori-
zontal axis to represent the groups. The groups are further visu-
ally encoded by drawing horizontal bars below the axis that are
colored according to the colors chosen by the user when defining
the topological structures. Since we are typically interested in ana-
lyzing multiple topological structures, the user can prioritize them.
The first topological structure is then used to build the main groups
for sorting the nodes. Within each group of the first topological
structure the nodes are sorted with respect to the second topologi-
cal structure, and so on. The prioritization of the topological struc-
tures forms a hierarchy, which we visually encode by cascading
colored bars below the horizontal axis. The cascaded bars visual-
ize the hierarchy similar to a bottom-up Icicle plot or a non-radial
Sunburst diagram [SHS11]. The user may interactively change the
prioritization by simple drag-and-drop operations on the rows of
the cascaded layout, see Figure 7.

Given the 1D embedding of the dynamical similarity and the
Sunburst layout of the topological groupings, the relations can be
investigated. If the heights of all nodes of one topological group are
equal or very similar, then the dynamics of the topological group
seems to have synchronized. If the heights within a topological
group are similar and, in addition, dissimilar to heights of nodes
not part of the topological group, then one may deduce that the
topological feature that was used to define the topological group
directly impacts the dynamics. Following this rationale, one can in-
teractively analyze different topological groups and their interplay.

3.4. Parameter-space visualization

For a large ensemble, it may be rather cumbersome to go through
all simulation runs to detect matches of topological groups with
dynamical behavior. Thus, we want to provide some guidance that
allows the user to decide which parts of the parameter space may
be interesting to investigate. We propose a parameter-space vi-
sualization, where the topology-dynamics matching is visualized
over the entire range of the investigated parameter at an aggregated
overview level.

As explained above, a topological group matches well the dy-
namics, if the co-activation of the nodes within the group is high
and the co-activation of nodes inside the group to nodes outside the
group is low. This formulation is close to the investigations made
when trying to quantify the quality of a cluster. Hence, we can use
concepts from judging clustering quality for our purposes.

A well-known measure for evaluating the quality of a cluster
is the silhouette coefficient [Rou87]. We can adopt this measure
to compute our topology-dynamics matching for each topological
group. Let M be the topological group. Then, we can compute the
average of the co-activation distances di j from a node pi ∈ M to
any other node p j ∈M by

ai =
1

|M|−1 ∑
p j∈M,i 6= j

di j .

Following the idea of the silhouette coefficient, we can also com-
pute the average co-activation distance from node pi ∈M to nodes
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p j ∈ N, where N is the closest group to M by

bi =
1

|N|−1 ∑
p j∈N,i 6= j

di j .

The silhouette equivalent for node pi is defined by

s(pi) =


1− a(i)

b(i) if a(i)< b(i)
0 if a(i) = b(i)

b(i)
a(i) −1 if a(i)> b(i)

.

The silhouette equivalent for the entire topological group M is then
given as the average of the silhouette measures of all its nodes, i.e.,

s(M) =
1
|M| ∑

pi∈M
s(pi) .

With the given measure, we can judge the match of topologi-
cal group M to the dynamics of each simulation run. The resulting
values can be plotted over the parameter that has been varied when
generating the ensemble. Thus, we get a parameter-space visualiza-
tion in the form of a graph of a function that represents the match-
ing quality of group M over changing parameter values. The user
can interactively select which topological structures shall be exam-
ined. The respective graphs can be plotted in one diagram, which
allows for a direct comparison of the matching quality of differ-
ent topological structures. Figure 6 shows such a parameter-space
visualization: eight topological groups are defined and the respec-
tive graphs of the matching quality are displayed over the param-
eter space. The colors of the graphs relate them to the topological
groups defined in Figure 5.

3.5. Analytical workflow

The analytical workflow of a user when applying the methods, vi-
sual encodings, and interaction mechanisms outlined above for the
analysis of excitable network dynamics simulation ensembles may
be put into an iterative three-step process. The interactions made
during a session are best documented in the accompanying video.

The first step is to analyze topological structures using the ad-
jacency matrix and the degree barchart and to define which topo-
logical structures shall be analyzed. Our designs aim at selecting
modules or hubs, but the user is free to define any group of nodes
as a topological structure.

In the second step, the dynamics of the entire ensemble shall be
matched against the topological groups defined in the first step. The
user would investigate the ensemble as a whole by analyzing the
parameter-space visualizations. The selected topological structures
are fed to the Icicle layout, where the user can adjust the priorities
to his/her liking and select groups for the display of its graph in the
parameter-space visualization.

In the third step, the user would select individual simulation runs
or parameter ranges from the parameter-space visualization based
on the properties of the silhouette plots. The selection is performed
by a simple horizontal slider within the parameter-space visualiza-
tion. The selected simulation runs are then shown in the scatterplot
that relates the topology to dynamics for the selected parameter set-
tings. The horizontal slider allows for an intuitive traversal of the

(a) (b)

Figure 1: Adjacency matrix of hierarchical modular network: Se-
lection of modules (a) and sub-modules (b).

parameter space, while observing how patterns form or vanish in
the scatterplots.

Based on the insight obtained during this interactive visual anal-
ysis, the user may want to refine certain structures or iterate the
process after re-ordering the attributes in the Icicle plot.

4. Results

We applied our methods proposed in Section 3 to the network archi-
tectures and simulation ensembles detailed in Section 2. The per-
formed interaction operations are best observed in the accompa-
nying video. The analytical workflow and analyses were discussed
with a domain expert in the field of Network Science with applica-
tion in Systems Biology, who was involved in the project from the
beginning.

4.1. Synchronization in hierarchical modular networks

First, we are analyzing the hierarchical modular network shown
in Figure 1. We can immediately see from the adjacency matrix
that two large modules exist that split further into two submodules
each. Hence, there are in total six modules at two levels. The figure
shows their selection and color assignment. The Icicle plot is built
according to these selections as in Figure 4. The modules can be
selected to generate the parameter-space visualization, see Figure 2.
The Silhouette curves are computed independently for each level,
which satisfies the condition that clusters need to be disjoint for
their computation.

When investigating the parameter-space visualization in Fig-
ure 2, we observe that all curves have a similar shape, i.e., they
seem to be monotonically decreasing with a decreasing slope. How-
ever, the curves of the first-level modules are almost always lower
than second-level ones. Thus, the sub-modules exhibit a slightly
stronger influence on the synchronization pattern. However, for
small values of parameter f , the Silhouette curves of first-level
modules seem to be slightly larger. To observe that in more detail,
we zoom into the range of low values. For a proper sampling, we
computed further simulation runs in that range. Figure 3 exhibits
that the curves are actually not monotonically decreasing, but first
increase before they start decreasing. Moreover, it becomes appar-
ent that the curves of the first-level modules are indeed higher than
those of the second level. Thus, for small values of f , it is actu-
ally the first-level modules that exhibit a stronger influence on the
synchronization pattern.
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Figure 2: Parameter-space visualization for parameter f ∈
[0.00001,0.8] with sample rate 0.0001 for topological structures
selected in Figure 1. Silhouette curves are similar, but those of first-
level modules are mostly slightly lower (see zoomed-in inset in the
upper right). P1 marks interval [0.117274,0.117496] and P2 inter-
val [0.549701,0.549923] for further investigation.

Figure 3: Parameter-space visualization for parameter f ∈
[0.00001,0.01] with sample rate 0.00001 for topological structures
selected in Figure 1. Silhouette curves are similar, but those of
first-level modules are mostly slightly higher. P3 marks interval
[0.00036625,0.00037735] and P4 interval [0.00271,0.0027211]
for further investigation.

We validate this observation using the 2D dynamics-topology
plots in Figure 4 for intervals P1-P4 selected in Figures 2 and 3.
P3 selects smallest values f ∈ [0.00036625,0.00037735]. As ex-
pected, we see that the points assemble roughly at two heights
matching the two first-level module structure, i.e., the nodes of the
modules synchronize (Figure 4(a)). For slightly larger values of f ∈
[0.00271,0.0027211] selected by P4, the influence of the second-
level modules is stronger, such that the points arrange themselves at
roughly four heights matching the submodules (Figure 4(b)). This
holds true for quite a large range of values for f , for example, it
is still true for selection P1 with f ∈ [0.117274,0.117496] (Fig-
ure 4(c)). Finally, for large values of f ∈ [0.549701,0.549923] as in
selection P2, the Silhouette values are low, i.e., the modules should
not form visible structures anymore. This is confirmed by the 2D
plot, where the point heights are rather random (Figure 4(d)).

4.2. Interplay of hubs and modules

In the second scenario, we analyze a network containing hubs and
modules, see Figure 5. For this network, it is even possible to see
the topological structures in the node-link diagram (Figure 5(a)).
Still, we use the adjacency matrix to select the four modules that
can be observed (Figure 5(b)). The degree barchart exhibits one
strong hub, which we select and highlight in yellow (Figure 5(c)).
The selection of the hub triggers the automatic generation of lay-
ers around the hub as topological structures and a respective color
assignment using a multi-hue luminance color map. The Icicle plot
in Figure 7 allows for switching priorities between module and hub
structures and for selection of the groups to generate the parameter-
space visualization in Figure 6.

The parameter-space visualization in Figure 6 exhibits a pattern
of module-hub interplay: For small values of parameter f , the Sil-
houette curves for hub layers are higher, but they decrease quickly
with increasing values of f . At the same time, the Silhouette curves
for modules are lower for small values of f , but increase at the
beginning. Hence, the hub structures dominate over the modular
structures for small values of f . However, with increasing values
of f the hub is losing influence, while modules are gaining influ-
ence.

We validate this observation using the 2D dynamics-topology
plots in Figure 7 for intervals P5-P7 selected in Figure 6. For
small values of f , e.g., f ∈ [0.0061583,0.00626941] selected in
P5, the layers around the hub synchronize, i.e., there are exci-
tation waves that emerge from the hub and traverse through the
network (Figure 7(a,b)). For increasing values of f , e.g., f ∈
[0.191485,0.191596] selected in P6, the modules start to synchro-
nize, while the hub loses influence (Figure 7(c,d)). For large val-
ues of f , e.g., f ∈ [0.62363,0.623852] selected in P7, the influence
of all topological structures diminish and eventually vanish (Fig-
ure 7(e)) .

4.3. Cat cortical network

In the last scenario, we investigate the cat cortical network. Again,
we start by analyzing the topology to define meaningful topological
groups: We use the adjacency matrix to observe and select modules
and the degree barchart to select the largest hub (despite its degree
not being significantly larger than those of others), see Figure 8.
We use the Icicle plot in Figure 10 for selection of the groups to
generate the parameter-space visualization in Figure 9.

The parameter-space visualization in Figure 9 exhibits that the
Silhouette curves related to the modules are higher than those re-
lated to the hub, except for the curve of the bright-green module,
which is lower than the curve of the second layer around the hub.
However, the curve of the second layer appears to be rather noisy
with high fluctations. When selecting a lower value of f , we can
give modules higher priority in Figure 10(a) and observe that the
modules synchronize, i.e., the modules are the dominant topologi-
cal structures and govern the dynamics. It can be observed that the
synchronization of the three modules appears until f = 0.577956.
When changing the Icicle plot such that the hub layers are prior-
itized, these topologicals structures do not synchronize, see Fig-
ure 10(b). Since the hub was not so dominant, it is a valid assump-
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(a) (b) (c) (d)

Figure 4: Relating topology to dynamics for increasing parameter ranges (a) P3, (b) P4, (c) P1, and (d) P2 selected in Figures 3 and 2. For
small values of f , the modules are dominant (a), for middle-range values the submodules become dominant (b,c), and for large values the
modular structures lose their influence (d).

(a) (b) (c)

Figure 5: Network with modules and hubs shown (a) as a node-link diagram, (b) in an adjacency matrix, and (c) with the degree barchart.
Modules are selected in the adjacency matrix (4 colors), while the largest hub is chosen in the degree barchart (yellow color). Layers around
the hub represent topological structures encoded with a multi-hue luminance color map: - hub, - 1st layer, - 2nd layer, - 3rd layer,

- 4th layer.

Figure 6: Parameter-space visualization for topological structures
selected in Figure 5. Silhouette curves show higher synchronization
of hub layers for small f , higher synchronization for modules in
middle-range f , and low synchronization of topological structures
for large f . P5 marks interval [0.0061583,0.00626941], P6 inter-
val [0.191485,0.191596], and P7 interval [0.62363,0.623852] for
further investigation.

tion that other hubs may have some influence, as well. We looked
into the subsequent five largest hubs, but made the same observa-
tions. Hence, we can conclude that for the cat cortical network the
three modules are governing the dynamical process for values of
f < 0.577956. For larger values of f , all topological structures lose
their influence, see Figure 10(c).

5. Discussion and domain expert opinion

As detailed above, our visual analytics approach allows us to inter-
actively explore the relationship between network architecture and
dynamics with an emphasis on collective dynamical states involv-
ing a subset of nodes of the network. The novel interactive visual-
ization approaches incorporated in this toolbox guide the users in
their search for fundamental principles relating network topology
and dynamical features.

Our approach is the first to allow for an interactive analysis of
the parameter space of a network dynamics simulation ensemble.
In particular, we allow for the joint analysis of multiple topological
features that can be defined and modified interactively. We docu-
ment that even the interplay of topological features can be exam-
ined.

Our emphasis is on excitable dynamics, with a special focus on
network architectures and dynamical properties relevant to compu-
tational neuroscience, as exemplified by the hierarchical networks
(see [BS09] and [BBV∗08] for a corresponding discussion in neu-
roscience) and the dynamical patterns of modular synchronization
or wavelike activity (see [ZZZL∗07], [ZZZ∗06] and [MLHH08] for
a corresponding discussion in neuroscience).

From the requirement analysis to the development of the system,
our efforts were accompanied by a domain expert who has been
working in the field of Network Science with application in Sys-
tems Biology for more than 20 years. His background is on study-
ing correlations in term of biological self-organization in biologi-
cal systems on different scales, ranging from genomes to interact-
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(a) (b) (c) (d) (e)

Figure 7: Relating topology to dynamics for increasing parameter ranges (a,b) P5, (c,d) P6, and (e) P7 selected in Figures 6. Priorities for
hub layers and modules are swapped interactively to examine both. For small values of f , the hub is dominant (a,b), for middle-range values
the modules become dominant (c,d), and for large values the topological structures lose their influence (e).

(a) (b)

Figure 8: (a) Adjacency matrix and (b) degree barchart of the cat
cortical network are used to select modules and largest hub, re-
spectively. Layers around the hub are encoded with a multi-hue
luminance color map: - hub, - 1st layer, - 2nd layer.

Figure 9: Parameter-space visualization for f ∈ [0.00001,0.8]
and topological structures selected in Figure 8. Silhouette curves of
modules are high for most values of f (except for the bright-green
module). P8 marks interval [0.1141,0.1146] for further investiga-
tion.

ing cells. We also received encouraging feedback from practition-
ers in Computational Neuroscience. They considered our tool to
be highly relevant and helpful, but also emphasized the need to in-
terface our tool with the existing infrastructure in Computational
Neuroscience (e.g., The Virtual Brain), thus suggesting a roadmap
for our future work.

The result presented here on the topological scale selected by
the noise level (or rate of spontaneous activity, f ) in the system
(see also the accompanying video) is an extension of the work
from [MLHH08]. The fact that at different noise levels modules of
different sizes (i.e., different topological scales) explain the activ-
ity patterns is reminiscient of the time-scale dependence of modular

synchronization of phase oscillators as discussed in [ADGPV06].
This example illustrates, how our toolbox can facilitate the discov-
ery of such relationships between topology and dynamics.

The scenarios presented here assumed a 1D parameter space, but
they can principally be extended to multiple parameters. The sizes
of the networks presented in this paper are typical for the given
application. Still, the visual encodings (adjacency map, bar chart)
scale sufficiently well to larger networks, while the other visual en-
codings do not depend on the network size. When looking at the
scalability in the number of defined topological features, one lim-
itation is the number of distinguishable colors, but this problem
is diminished by our interactive analysis process. The same holds
true for the parameter-space visualization, which may suffer from
overplotting, but that can, again, be diminished by interactively se-
lecting subsets.

Given that the generation of the ensemble may take a long time,
it is feasible to also perform the computations of the distance matrix
and the 1D t-SNE embedding in a pre-processing step. Afterwards,
all analysis steps can be performed in an interactive session without
significant delays, as it is documented by the accompanying video.
To achieve low computation times, our tool integrates parallel com-
putations of silhouette coefficients using the CUDA framework.

6. Conclusion

We presented a visual analytics approach for the analysis of for
which parameter settings which topological features govern ex-
citable network dynamics. Understanding the relationship between
network architecture and dynamics is of upmost importance to a
diverse list of application scenarios ranging from neuroscience and
systems biology to social sciences and technology. The scenario
outlined above is generic.

The discovery of novel relationships between network topology
and dynamics is an important research trend in computational neu-
roscience. A decisive component of future development steps of
this toolbox will, therefore, be to interface this tool with the main
databases in computational neuroscience, thus allowing for upload
of network topologies and experimentally observed activity pat-
terns from these databases directly into our visual analytics tool-
box.
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