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a b s t r a c t 

Visual analytics (VA) systems help data analysts solve complex problems interactively, by integrating au- 

tomated data analysis and mining, such as machine learning (ML) based methods, with interactive visu- 

alizations. We propose a conceptual framework that models human interactions with ML components in 

the VA process, and that puts the central relationship between automated algorithms and interactive vi- 

sualizations into sharp focus. The framework is illustrated with several examples and we further elaborate 

on the interactive ML process by identifying key scenarios where ML methods are combined with human 

feedback through interactive visualization. We derive five open research challenges at the intersection of 

ML and visualization research, whose solution should lead to more effective data analysis. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Real-world data analysis usually relies heavily on both auto-

matic processing and human expertise. Data size and complex-

ity often preclude simply looking at all the data, and make ma-

chine learning (ML) and other algorithmic approaches attractive,

and even inevitable. However, the power of ML cannot be fully ex-

ploited without human guidance. It remains a challenge to trans-

late real-world phenomena and analysis tasks, which are often

under-specified, into ML problems. It is difficult to choose and ap-

ply appropriate methods in diverse application domains and tasks.

More importantly, it is crucial to be able to incorporate the knowl-

edge, insight, and feedback of human experts into the analytic pro-

cess, so that models can be tuned and hypotheses refined. 

In a typical setting, domain experts use ML and visualiza-

tion methods provided by common software tools (e.g., SPSS, R,

Tableau) “out of the box”. Realistically, the domain experts’ pro-

ficiency in ML may be limited, and the underlying computations

may not be transparent and comprehensive enough to provide

the feedback needed to guide model refinement. Visualizations are
∗ Corresponding author. 
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ften used to display the ML model results without offering in-

eractions that trigger recalculations. This results in a very stan-

ardized configuration of the ML and visualization pipelines based

n default parameters that domain experts may not know how

o adapt. The situation may be improved by having domain ex-

erts collaborate with data scientists, improving the effectiveness

f analysis, but also leading to a much more costly iterative design

rocess. ML researchers usually know how to tune models directly

n ML platforms (e.g., Matlab, R, Python) and provide results to do-

ain experts. However, domain experts generally find it necessary

o learn how models behave and how to evaluate results to provide

seful feedback. 

By integrating ML algorithms with interactive visualization,

isual analytics (VA) aims at providing visual platforms for an-

lysts to interact directly with data and models [1] . Tam et al.

2] illustrated in case studies that human-centric ML can produce

etter results than purely machine-centric methods. In such cases,

n analyst is enabled to steer the computation and interact with

he model and data through an interactive visual interface. Despite

uch effort to date, though, solutions from ML and VA are still

ot interwoven closely enough to satisfy the needs of many real-

orld applications [3,4] . For example, in existing toolkits (such

s WEKA, Elki, or javaML), tight integration between interactive

http://dx.doi.org/10.1016/j.neucom.2017.01.105
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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Fig. 1. Visual analytics framework by Keim et al. [1] . ML interactions are related to 

model building and parameter refinement. 
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isualization and ML process is missing. Most of these tools

resent modeling results as static visualizations; interactions are

ften limited to command line interfaces or user interface controls

hat are not intuitive and accessible to end-users. Toward better

ntegration of ML and VA, in recent years conceptual frameworks

hat characterize the interplay between them have been proposed

1,3–5] . It appears most frameworks were designed from the

erspective of interactive visualization, focusing on the role of the

human in the loop”. A closer connection between visualization

nd common ML paradigms (such as unsupervised and (semi-)

upervised learning; classification, regression, clustering, etc.) in-

luding specifics of these methods (e.g., SVM vs. random forests in

lassification) and their implementations is needed. In this paper,

e put a sharper focus on scenarios in which complementary

L and VA methods are combined, and propose a framework

or a tighter relationship between ML and VA. To do so, we

dentify aspects of automated ML techniques that are amenable to

nteractive control, and illustrate these with examples. We further

escribe human factors within this process that should be consid-

red carefully in the design of interactive visual ML systems, and

numerate analysis scenarios. The proposed conceptual framework

pens perspectives on new ways of combining automated and

nteractive methods, which will lead to better integrated, and,

ltimately, more effective data analysis systems. 

Researchers in both ML and visualization have realized for some

ime that closer collaboration could help to solve this problem. An

nterdisciplinary team with experts from the ML and visualization

ommunities was formed at a Dagstuhl Seminar on “Bridging Infor-

ation Visualization with Machine Learning” [6] . The framework

roposed in this study is the outcome of several iterations of dis-

ussions, feedback, and framework refinements made by this team.

he initial version of this framework [6] was based on a survey of

everal earlier frameworks and systems combining ML and interac-

ive visualization. Subsequently, the framework was refined by ap-

lying it to a larger set of example applications (identified in the

isualization, ML, and HCI literature) and by incorporating exter-

al feedback from experts, such as conference submission reviews.

his led us to a process of framework refinement, carried out over

.5 years, including extensions and simplifications, validation, and

valuation by analyzing existing VA systems and ML techniques.

his paper extends an initial report in ESANN 2016 [7] to include

n extended review of prior work, a more detailed framework, ex-

mples of providing automated support for each stage, identifica-

ion and description of scenarios where analysis and feedback take

lace, and additional discussion throughout. 

The rest of this paper is structured as follows. Section 2 dis-

usses related work on the interplay of machine learning and hu-

an feedback. Section 3 introduces our conceptual framework and

he key stages in its interactive pipeline, and they are illustrated

ith examples in Section 4 . Section 5 examines the human inter-

ction loop in more detail, describing the stages of action and anal-

sis scenarios where interaction occurs. Section 6 identifies five

hallenges and associated opportunities in creating systems that

ully use the framework. Section 7 gathers conclusions and final

iscussions. 

. Related work 

The literature describes related models that capture the inter-

lay between ML system components and human feedback loops.

e will discuss several different perspectives on this topic, di-

ided into VA models, interaction taxonomies, interactive ML, and

uman-centered design. This section concludes with a high-level

ummary for interested readers without ML expertise. 
.1. Visual analytics models 

Pipeline-based models such as the Reference Model for Infor-

ation Visualization [8] or the Knowledge Discovery Process in

atabases (KDD) [9] usually contain feedback loops that cover all

he subcomponents with the potential for user interaction. In the

tandard VA model [1] , the analysis process is characterized by in-

eractions between data, visualizations, models of data, and users,

or knowledge discovery (see Fig. 1 ). ML interaction in this frame-

ork is aimed at model building and parameter refinement. Sacha

t al. extended this model [4] to encompass the process of human

nowledge generation. This extended model clarifies the role of

umans in knowledge generation, and highlights the importance

f supporting tighter integration of human and machine. Several

ther models focus on a clear depiction of the human data analy-

is process, including Pirolli and Card’s sensemaking process [10] ,

nd Pike et al.’s science of interaction [11] . Endert et al. character-

zed the interaction process between a human analyst and auto-

ated analysis techniques as the “human is the loop” [12] and pro-

osed a model for coupling cognition and computation [3] . More

ecently, Chen and Golan [13] provided an abstract model to de-

cribe six classes of human–machine workflows in combination

ith an information-theoretic measure of cost-benefit. Their model

llows one to analyze workflows composed of machine computa-

ions and human interactions supported by different “levels” of vi-

ualizations. All these models reflect a high-level understanding of

ystem and human concepts. 

.2. Interaction and task taxonomies 

Another set of models related to our endeavor seek to charac-

erize and organize the tasks and interactions in a visual data anal-

sis process. For example, Brehmer and Munzner [14] propose a

omprehensive visualization task taxonomy. However, model inter-

ctions only arise in tasks they refer to as “aggregate” or “derive”

asks. Landesberger et al. [15] define a taxonomy that includes in-

eraction and data processing. Their taxonomy provides two types

f data processing interactions: data changes, such as editing or

electing data, and processing changes, such as scheme or param-

ter changes. They incorporate Bertini and Lalanne’s [16] distinc-

ion of human intervention levels, that distinguishes, for example,

etween scheme tuning (e.g., parameter refinement) and scheme

hanging (e.g., changing the model) interactions. Mühlbacher et al.

17] investigate and categorize several types of user involvement

or black box algorithms with different characteristics. The charac-

erization of interactions in our framework is orthogonal to these

axonomies and extends them with a dedicated view on interac-

ion with ML components. 
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Fig. 2. Stages of interaction [24] . 
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2.3. Interactive machine learning 

While the above models were strongly framed from the view-

point of visualization and VA, there is also growing interest in the

ML community to incorporate human interaction more fully in the

analysis and learning processes. A typical scenario would be that a

human observes or explores the current state of a learning system,

and explicitly or implicitly guides an ongoing training process.

This is often referred to as human-in-the-loop machine learning , or

more broadly, interactive machine learning . The classical example

is recommender systems that infer users’ personal preferences

from previous choices. User can provide continuous feedback,

such as by recording additional choices, or by explicitly scoring

(liking/disliking) individual items [18–20] . In similar scenarios, the

user provides class labels, for which a machine learning classifier

is (continuously) trained. This concept is strongly linked to the

topic of active learning [21,22] , which aims at efficient choices of

samples during training epochs to achieve fast convergence of a

learning algorithm. An increased demand for involving user feed-

back is underscored by recent work investigating more elaborate

user models or more intricate forms of interaction. For example,

Amershi et al. [5] propose a set of high-level paradigms by which

user involvement in ML may be characterized, similar to models

that have been discussed in the VA community [1] . They also

stress the importance of accounting for user behavior, and the po-

tential benefits of collaborative research between ML experts and

the human-computer interaction community. Similarly, Groce and

colleagues investigate sample selection strategies to test classifiers

effectively via systematic feedback requests to end users [23] . 

2.4. Human-centered design 

Another perspective on the analysis process is provided by

the human–computer interaction (HCI) domain. We are able to

adopt commonly known concepts and terms in our interactive ML

setting, considering the interplay between human and machine. A

famous example is Norman’s Stages of Action cycle [24] , shown in

Fig. 2 . At the center of the cycle are the Goals that a human an-

alyst wants to achieve. Norman distinguishes between two major

stages of an interaction: Execution and Evaluation . In the Execution

phase, the human (1) forms an intention to act and (2) specifies

a sequence of actions that is (3) finally executed to the world.

Subsequently, in the Evaluation phase, the state of the world has

to be (1) observed, (2) interpreted, and (3) finally compared and

evaluated with respect to the initial goals. Norman further de-

scribes the distances or “gulfs” between the human goals and the

world that need to be bridged when humans interact with (digital)

interfaces. The Gulf of Execution describes the problem when the

human does not know how to perform an action, whereas the Gulf
f Evaluation indicates that humans are not able to evaluate the

esult of an action. Human-centered user interface design attempts

o bridge these gaps. User interface features need to be visible and

ffer Affordances to the end user. These (perceived) affordances

re relationships between a person and a physical/digital object,

nd suggest how the object might be used [24] . Visual Cues (e.g.,

isual elements, icons, or animations that attract attention) may

uide the end user during the analysis process. On the one hand, a

ystem should communicate the progress of ongoing computations

r the quality of results to the analyst. On the other hand, visual

ues may guide the analyst to “handles” or objects that can be

anipulated within the interface. In this respect, the concept of

irect manipulation [25] has been demonstrated to enable intuitive

perations to end users. Interactive visualizations of ML model

tructures and data items allow direct interaction that is more

onvenient and more easily interpreted than text commands. 

.5. Machine learning overview 

A wide range of ML algorithms and methods have been pro-

osed and employed in practice. One way to distinguish these

ethods is based on their learning paradigm, which is either

upervised (examples of system inputs and desired outputs are

oth provided), unsupervised (no desired outputs are specified), or

emi-supervised (not all outputs are available, typically only a few).

hile supervised methods aim to learn the input–output relation-

hip from the provided examples, unsupervised methods attempt

o extract hidden structures from them. These learning paradigms

an be instantiated into specific categories of ML tasks. Regression

ims to best predict any form of continuous outputs as a function

f the inputs. Classification aims to predict class labels or member-

hips associated with the inputs. On the unsupervised side, cluster-

ng aims to identify groups or hierarchies present in data. Similarly,

imensionality reduction and manifold learning both aim to identify

inear or nonlinear relationships between the observed variables

nd to represent the subspace where most of the data variation

appens with fewer latent variables. These are a few examples of

mblematic ML tasks, among many others, like association rule

earning, missing value imputation, time series prediction and

utlier detection, novelty detection. In practice, several of these

bstract tasks are combined in a data flow to solve real-world

roblems and analysis. For example, one might apply dimension-

lity reduction (to mitigate the computational impact of working

ith high dimensional data) before applying regression or time

eries prediction. Such combinations of methods, though useful in

ractice, lead to composite models with heterogeneous parameteri-

ation, which are difficult to train, and time-consuming to validate.

In summary, both VA and ML communities have noticed the

aps between automatic ML and human interactions in data ana-

ytics systems, which limit their effectiveness in solving real world

pplication problems. Various models to conceptualize the po-

ential integration of ML and interactive visualizations have been

roposed. These models, however, still have either a strong hu-

an/visualization focus, or a strong algorithmic focus. In this pa-

er we propose a new conceptual framework that covers both as-

ects with the objective of providing a more systematic view of

ow interactive visualization and ML algorithms can be integrated

n practice. 

. Human-centered machine learning framework 

As shown in Fig. 3 , our framework unifies, embeds, and ex-

ends existing theories on interactive ML and VA by integrating and

eneralizing observations from emergent case studies and exam-

les. The framework combines typical ML and VA pipeline compo-

ents (A–D) with an analysts’ iterative evaluation and refinement
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Fig. 3. Proposed conceptual framework: a reference interactive VA/ML pipeline is shown on the left (A–D), complemented by several interaction options (light blue boxes) 

and exemplary automated methods to support interaction (dark blue boxes). Interactions derive changes to be observed, interpreted, validated, and refined by the analyst 

(E). Visual interfaces (D) are the “lens” between ML models and the analyst. Dashed arrows indicate where direct interactions with visualizations must be translated to ML 

pipeline adaptations. The colors of the pipeline components refer to the ones defined in the VA process model [1] shown in Fig. 1 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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rocess (E). An analyst can interact with the individual stages in

his pipeline through a visual interface (D), which acts as a media-

or or “lens” between the human and the ML components ( dashed

rrows ). Changes are then sent back to the visual interface and pre-

ented to the analyst ( solid arrows ). The dark blue boxes in the

gure denote examples of automated methods that support the

nalyst in performing specific interactions. Our framework illus-

rates that a multidisciplinary perspective combining ML and VA

s needed to provide usable and accessible access to end-users

domain experts). For example, data operations, visualization tech-

iques, and human–computer interaction (blocks A, D, and E in

ig. 3 ) are addressed in the visualization community, whereas ML

lgorithms, setups, and optimization (blocks B and C) are core to

L research. Next, we detail the interactions involved in each stage

f the analysis process, and discuss possible automatic support to

acilitate these interactions. 

.1. Edits and enrichment ( A ) 

In ML, data is often seen as fixed or immutable, but many

A tools support data cleaning, wrangling, editing, and enrich-

ent, which is essential in many applications [26] . For example,

n a typical active learning scenario in ML, a domain expert may

ant to incrementally add labels to data while training a classi-

er in order to inject domain knowledge and improve the quality

f the classifier. Another example of edits and enrichment inter-

ction is the testing of “what-if scenarios” on the data. The ana-

yst might want to change or remove some data points and see

he effect to test certain assumptions about the data. Data edit-

ng is often followed by a “warm restart” of the ML pipeline, it-

ratively propagating results to the analyst. From an ML perspec-

ive, data editing combined with user feedback can be seen as

 form of cross-validation/bootstrap. In these techniques, the ML

odel is re-trained with “modified” data, either data held out in

ross-validation and leave-one-out, or changed into some other ob-

erved instance that is then reintroduced in the bootstrap sample.

owever, traditional cross-validation/bootstrap are performed with

trict rules about how data are held out or modified, to pursue sta-

istical goals about generalization performance, whereas the edit-

ng and feedback discussed here are performed by the user to carry

ut a task, not constrained to a specific mathematical formalization

f the task. Hence data editing might be seen as a kind of “meta”

ross-validation, requiring proper quality assessment for the user’s

ask. 

Automatic support: Various statistical and ML techniques ex-

st for preconditioning and processing data. These techniques can

e implemented in interactive systems for data wrangling, such
s missing value detection and replacement, sampling, and data

ransformation. When datasets are large, the analyst can apply

ampling techniques (e.g., vector quantization or hierarchical clus-

ering) to derive a representative subset for interactive analysis.

imilar methods can also be used for efficient labeling, for exam-

le, by adding an annotated class label to all items in a particular

luster. 

.2. Preparation (B) 

Many ML pipelines or VA workflows incorporate preprocessing

teps that are selected and adjusted by a-priori domain experts.

eing outside of the scope of the central ML model, the design

ptions and parameters in these steps often have a different sta-

us. For instance, they may not be subject to cross-validation in

ome cases. While edit-and-enrich interactions focus on persis-

ent changes to data (possibly individual items), preparation in-

eraction applies a uniform, transient transformation of features to

 larger set of observations. Typical preparation activities include

ransformation of data such as standardization, scaling, Fourier or

avelet transforms, and weightings. Weightings include filtering

0-weights) of data items, as well as feature selection [27] . In this

espect, we often observe a gap in the “judgment of (dis)similarity”

etween a human and the “default” metrics used in ML methods.

nalysts usually focus on specific features or subsets within their

ata. This requires feature weightings, or defining more complex

dis)similarity functions. 

Automatic support: ML offers several measures and methods to

ptimize preparation . For example, feature weighting can be sup-

orted in the form of relevance [28] , metric [ 29 , 30 ], or kernel

earning [31] . Other setups make use of cost functions or stress

or optimizing parameterizations of preprocessing steps. Further-

ore, other methods such as correlation (e.g., Pearson correlation)

r factorial analysis support analysts in understanding feature de-

endencies within data. 

.3. Model selection and building (C) 

An essential idea of VA is to enable analysts to interact directly

ith ML models so they can integrate domain knowledge into the

nalysis process. In model selection , analysts choose among various

L algorithm families, or a set of pre-built model results. Another

ossibility is to build ML model ensembles interactively. Model

uilding interactions focus on changing a given ML model through

he adjustment of model parameters. While internal model param-

ters are usually optimized automatically, others, such as design or

orm, and meta- or hyper-parameters, need to be adapted by the

nalyst according to their assumptions. Model building interactions
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Fig. 4. A selection of examples that effectively involve analysts into the ML process by interactive visualization. Courtesy of Jeong [34] , Mülbacher [35] , Endert [36] , van den 

Elzen [37] . 
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can lead to ML model changes that affect its form, constraints, qual-

ity , and accuracy. Form parameters define basic structures (such as

the number of nodes in a neural network), whereas constraints re-

flect more detailed assumptions (e.g., defining fixed anchor points

in a dimensionality reduction algorithm). In some applications it

is also desirable to tune the quality and accuracy of the ML result

(e.g., by interacting with the confusion matrix of a classifier). 

Automatic support: Model selection can be supported automati-

cally or semi-automatically, for example, with Akaike or Bayes in-

formation criteria, cross validation, bootstrap [32] , etc. These tech-

niques assess the quality of a model based on its complexity

(roughly, the number of free parameters) and the generalization er-

ror, which allows different ML models to be compared and ranked.

When there are too many models to exhaustively compare all us-

ing model selection methods, higher-level model building can also

be supported by automatic methods, especially for metaparameter

optimization (i.e., parameters that cannot be tuned by optimiza-

tion within the model family and where the analyst is not able to

provide “useful” feedback). For example, heuristic approaches such

as genetic algorithms can be applied to select features and a reg-

ularization parameter for support vector machine classifiers based

on the quality (cross-validated performance or theoretical perfor-

mance bounds) of the classification result [33] . 

3.4. Exploration and direct manipulation (D) 

The various characteristics, parameters, and results of all

pipeline stages can be presented to the analyst as visualizations

in a user interface. On the one hand, data can be visualized using

a plethora of known visualization techniques. On the other hand,

visualizations of ML components can be presented as well. VA
ims to combine the two variants by incorporating ML results or

atterns (e.g., identified groups, classes, or outliers) into data rep-

esentations. We found visual representations for different parts of

he ML pipeline, such as data and model spaces ( Fig. 4 a), pre-built

odel variants including their characteristics ( Fig. 4 b) and quality

 Fig. 4 a, b, and d), but also the ML structures ( Fig. 4 d). Interactive

isualizations that allow for direct manipulation of visual objects

ake ML interactions amenable to analysts. Usually, simple ex-

loration interactions, such as changing a graphical encoding, or

avigating within views, do not feed back to ML components but

elp the analyst to understand and interpret the visualization.

owever, the preceding discussion also mentioned several situa-

ions where interactions in visual interfaces are “passed through”

o ML changes that trigger recalculation of the ML pipeline, as

ndicated by dashed arrows in Fig. 3 . This concept has become

nown as “semantic interaction” that maps intuitive observation

evel interactions in a visualization to appropriate ML changes [36] .

Automatic support: Automated methods can be used to detect

nd highlight specific visual patterns, such as class separation,

orrelation, outliers, or sequences. These methods imitate human

erception with the goal of better helping human analysts find in-

eresting, visible patterns in the data. Aupetit and Sedlmair [38] ,

or instance, provide a rich set of over 20 0 0 measures that auto-

atically detect visual class separation patterns. Similarly, differ-

nt visualization techniques (e.g., scatterplots, parallel coordinates,

r matrices) may be employed to provide different perspectives of

ata and ML results. In summary, recommending “interesting’ vi-

ualizations has excellent potential for improving the effectiveness

f data analysis. 
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.5. Execution and evaluation (E) 

This step involves the entire interactive and iterative analy-

is process, including all the above-mentioned interaction compo-

ents A–D. Interactive visualizations (D) not only serve as an aid

r “lens” that facilitates the process of interpretation and evalua-

ion of ML results, but also make the execution of ML interactions

menable to analysts. In an ideal VA system, analysts actively en-

age in an iterative process of observing, interpreting, and eval-

ating the system’s outputs, followed by subsequent execution of

nteractions to refine the analysis. This duality of interaction de-

ign goals has been characterized by Norman’s pioneering work on

tages of Action [24] (see Section 2 for more details). However, the

ystem should actively enable and support this duality by provid-

ng usable and interpretable visual interfaces considering human-

entered design, such as affordances [24,39] , direct manipulation

25] , and interpretable representations. We will provide a more de-

ailed perspective on this human loop in Section 5 describing an

nalyst’s thinking, sense-making, and reasoning process influenced

y various human factors. 

Automatic support: Boy et al. [40] investigated visual cues as

erceived affordances in a “suggested interactivity” study, with the

oal of providing guidance to analysts. Furthermore, the analy-

is process itself can be recorded (as a sequence of interactions)

nd visualized to enable browsing through various analysis states,

dding analytic provenance capabilities [41] . In this context, the

uality of an interaction result can be measured and compared

ithin such a sequence to automatically distinguish beneficial from

etrimental changes. For example, Kapoor et al. measured the ac-

uracy of a classifier before and after interaction [42] . However,

uch measures are rarely available today, especially in more ex-

loratory or speculative types of analysis. 

. Example systems 

Our framework was inspired by studying current data analysis

ystems that engage analysts through interactive visualization. In

his section, we discuss ForceSPIRE [36] as an example of how in-

eractive visualization can be integrated into each stage of an au-

omatic analysis process. We will also briefly review some other

elevant examples, and map their interactions to our framework to

how how it covers many different types of interactive visualiza-

ion, as well as its potential for identifying interactions missing in

he analysis process. 

.1. ForceSPIRE 

ForceSPIRE [36] is an interactive text visualization and analy-

is system. It takes a collection of text documents as input and

hows them in a force-directed layout, driven by document sim-

larity (measured by comparing common terms). The analyst can

xplore documents in this spatial representation, and take advan-

age of domain knowledge about them by means of interactions

uch as document movement, highlighting, annotation and search.

elow is a mapping of these interactions to our framework: 

.1.1. Edits and enrichment (A) 

The data (text documents) can be enriched with annotations,

or example, by adding topic-terms that do not explicitly occur in

he text. 

.1.2. Preparation (B) 

Document similarities are derived from common terms, which

re transferred into a weighted feature vector for each document.

erm weights are adapted based on user interactions, such as high-

ighting and searching for specific terms. In addition, term weights
ay be updated if the analyst rearranges document positions in

he layout. Documents that are moved closer are considered more

imilar, and the term weights are adapted accordingly. 

.1.3. Model selection and building (C) 

A force-directed graph model is derived to create a two di-

ensional spatialization of the documents. Document nodes are

reated as physical objects, where the number of entities or terms

er document defines its mass, so larger documents move more

lowly. Document similarities are represented by graph edges or

deal springs connecting related document nodes. Spring forces are

alculated from common terms and an importance value or weight

er term. The analyst may add constraints to the document layout

y pinning specific nodes to fixed positions. 

.1.4. Exploration and direct manipulation (D) 

Documents are visualized as nodes that can be opened or

losed on demand. This allows the analyst to explore documents,

nspect details on demand, and provide feedback as needed. The

isualization offers direct manipulation interactions that can be

ranslated to ML-pipeline adaptions. These “semantic interactions”

dapt the underlying term-weight model or add constraints into

he document layout. In this way, the analyst can enrich the spa-

ialization with semantic meaning to support the human reasoning

rocess. 

.1.5. Execution and evaluation (E) 

Each interaction that is performed results in an observable be-

avior within the visualization. For example, new clusters may

merge as a result of pinning a document in the layout, as some

ocuments may move further away, and others may move closer to

he pinned document. In such cases, the analyst needs to interpret

nd validate the results and provide further feedback. 

.2. Other examples 

We found many other examples of VA systems described in the

iterature that support aspects of the proposed analysis process.

n this section, we briefly review a few examples that illustrate a

ide variety of realizations. Table 1 summarizes these examples in

erms of the framework components (A–E). 

Inter-Active Learning [43] is a concept proposed by Höferlin

t al. aimed at extending active learning. In line with standard ac-

ive learning approaches, the proposed system allows the analyst

o iteratively add class labels (A) to train a classifier. In contrast

ith traditional active learning, the analyst can also pose queries

o identify points to be labeled. Additionally, the analyst is pro-

ided with multiple views that visualize the classifier quality (D)

nd let the analyst tune parameters of the classifier (C). 

DataWrangler [44] provides a good example of supporting ed-

ts and enrichment (A). The system automatically validates selected

ata and suggests data transformations to the analyst to imple-

ent data editing operations. 

iPCA [34] ( Fig. 4 a) is an interesting example that offers dif-

erent perspectives and interactions within data and model space.

he analyst can edit or remove data items (A) in linked views (e.g.,

catter plot, parallel coordinates, or matrix views) (D) and observe

he results (E). It is also possible to define dimension loadings us-

ng sliders (B). 

Dis-Function [45] learns distance functions from user feedback.

hen the analyst rearranges data points in a two dimensional em-

edding (D), a calculation of a new distance functions (or feature

eights) is triggered (B). By immediately revealing the resulting

hanges (updated scatter plot and bar chart), the approach gives
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Table 1 

Examples grouped by framework components (A–E). 

Part Examples 

(A) Adding class labels [43] , adjusting & removing data [34] , adding textual annotations [36] , suggesting 

transformations [44] 

(B) Re-arrange data points [45] , dimension loadings [34] , term weightings [36] , preparation parameters [35] 

(C) Parameter tuning [43] , making model selections [35] , building ensemble classifiers [46] , defining 

constraints in a force-directed layout [36] , tree operations [37] 

(D) Multiple linked views [34,43] , 2D-spatialization with direct interactions [36,45] , pre-built ML variants [35] , 

tree-visualizations [37] , (confusion) matrix [34,37,46] , browsing visualizations [47] 

(E) Responsive visualization updates [34–37,45] , ML workflow design [48] , measuring interaction quality [42] 

Fig. 5. Human-centered ML process loop shown in more detail. The loop reveals important characteristics of analytic activity; the right hand side shows different analysis 

scenarios. 
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analysts a convenient way of exploring alternative configurations

of preprocessing steps (E). 

The partition-based framework by Mühlbacher and Piringer

[35] ( Fig. 4 b) provides the analyst with different pre-built re-

gression model variants that can be selected and refined (C). The

system visualizes these regression models in a matrix view in

combination with further features and quality information (D). The

analyst can apply feature-transformations and offers preparation

parameters that are used for feature partitioning (B). All interac-

tions trigger recalculations of the regression model variants and

quality metrics enable the analyst to evaluate these changes (E). 

BoababView [37] ( Fig. 4 d) visualizes the structure of a decision

tree in combination with data, feature, and quality information (D).

The analyst can perform tree operations (e.g., split or merge nodes)

and adapt specific parameters, such as split points values (C). The

analyst can inspect and follow changes of the data flow within the

tree, and evaluate the precision of the classifier at any stage (E). 

EnsembleMatrix [42,46] lets analysts build classifier ensembles

by discovering several combination strategies (C). The system of-

fers several confusion matrix visualizations for each classifier with

a combined main matrix, as well as a linear classifier combination

view (D). An extension of the tool further measures the accuracy of

an ensemble classifier before and after user interaction to support

analysts in their evaluation process (E). 

Voyager [47] provides the analyst with visual recommendations

for faceted browsing through a series of automatically generated

visualizations (D) that match the underlying data’s characteristics

with user preferences. 

DimStiller [48] allows analysts to design and validate several

steps of a dimensionality reduction workflow (A–D). This approach

makes it possible to compare alternative workflows and validate

each step of the ML pipeline to identify which phases can be im-

proved (E). 
i  
. Human-centered machine learning loop 

In this section, we focus more closely on the analyst’s feedback

oop, described as an iterative cycle of Executions and Evaluations

shown in Fig. 3 E and in more detail in Fig. 5 ). This loop “con-

ects” an analysis system and an analyst whose ability to provide

eedback depends on individual factors, as well as the visual in-

erfaces of the system. We will outline individual human factors of

he analyst, and elaborate on potential stages of action in more de-

ail ( Fig. 5 -left). Subsequently, we enumerate several analysis sce-

arios to illustrate types of feedback that can be provided by an

nalyst ( Fig. 5 -right). 

.1. Stages of action 

We adopt Norman’s Stages of Action [24] to distinguish two

hases within the human-in-the-loop model, shown in Fig. 5 . This

odel describes the interplay and collaboration between the sys-

em and the analyst. While the previous section described de-

ails of the analysis system, we now shift our focus to the ana-

yst, and describe the phases of Execution and Evaluation in more

etails. 

The analyst: The analyst forms goals based on individual prior

nowledge, and assumptions about the data/visual interface. The

bility of analysts to provide feedback depends on factors such as

echnical competence (e.g., expertise in data analysis, ML, mathe-

atics, statistics, or visualization) and application domain knowl-

dge (e.g., biology, business, digital humanities, or sports). Analysts

ay have highly diverse backgrounds and therefore varying level

f skills and related capabilities. Consequently, they may provide

ifferent kinds of feedback and “take on different roles”. Typically,

ata scientists, such as ML experts with strong mathematical skills,

an train specialized ML models and techniques, but may miss sig-

ificant anomalies in data generation or collection. Conversely, do-

ain experts may be very aware of these details, but overlook

mportant properties of models they might approach as off-the-
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O  
helf black boxes. To overcome this, in interdisciplinary research,

L experts, visualization experts, and data owners usually work in

ollaborative teams. In this case, visualization provides a common

latform for communication. These differences and gaps between

ifferent types of users can be addressed by a Liaison , a person

haring language and knowledge from the application domain and

rom the visualization domain, with the goal of mediating commu-

ication issues [49] . 

Execution: Applying Norman’s Stages of Execution to our in-

eractive ML setting (1) the intentions to act may be based on

ssumptions about the ML model or the data at hand, (2) the

equence of actions describes the different ML pipeline adaptions,

nd (3) the actual execution is realized through the visual in-

erface (or visualization) and heavily depends on its usability. As

ointed out in the previous paragraph, analysts usually need user

nterfaces tailored to their individual capabilities. Visual metaphors

nd actions (e.g., moving points, or providing labels) need to be

ccessible and familiar. Command line interfaces and specific pa-

ameters are often operable for data scientists, however application

omain experts often expect simple and intuitive user interfaces

o provide feedback. Note that the visual interactions should faith-

ully reflect and translate the analysts assumptions to ML pipeline

daptions. If the analyst is not able to perform a desired action

e.g., because of poor usability of the user interface) there is a gap

etween human and machine, also known as “gulf of execution”

24] . 

Evaluation: Before the analyst is enabled to provide (further)

eedback, he/she has to Evaluate the current state of the system.

n our described VA/ML pipeline, changes made by the analyst or

eedback given by the analyst (should) cause (1) observable reac-

ions in the analysis system. These observations – in our context

sually represented as visual patterns (e.g., groups, sequences,

utliers) – have to be (2) interpreted by the analyst who can

everage his/her domain knowledge. Finally, the analyst has to

3) validate and verify the derived insights according to previous

oals and assumptions. Visual interfaces should therefore allow

he analyst to compare different states of the analysis system,

y switching between visualization results before and after the

omputations. Animations and transitions between states or pro-

ressive/intermediate ML results may enhance the interpretability

f complex ML models. Design studies have to be conducted in or-

er to “bring the entire ML pipeline closer” to the domain experts

ental models, language, and metaphors [50] . Interpretability is

ssential for evaluating the obtained results and also for providing

urther feedback in subsequent loops/iterations [51] . Note that

isinterpretations may cause poor feedback and therefore impair

he ML pipeline configuration. This gap between machine and the

uman is known as “gulf of evaluation” [24] . Especially in ML

hen the analyst is presented with a final result, it is often a

hallenge to find out “why” the result is not good enough. Several

ethods may be combined into complex pipelines, making it hard

o assess the quality of the individual blocks. 

.2. Analysis scenarios 

This section enumerates six analysis scenarios illustrating a va-

iety of strategies and feedback that can be incorporated in a visual

nteractive ML setup. Notice that some scenarios overlap, and can

e combined or switched during an analysis session. Specifically,

he first two scenarios ( confirmatory analysis and hypothesis form-

ng ) can be seen as higher level analysis goals, in contrast with the

atter four scenarios. 

Confirmatory analysis: An ML model is built on assumptions

bout the domain and data at hand. In an interactive ML ses-

ion, analysts may make use of different ML types to model and
onfirm hypotheses. In this activity, they often correct and refine

odel parameters to more closely match their assumptions; they

lso may need to generate and collect evidence to either verify or

alsify hypotheses [4] . Such evidence may be provided by statis-

ical tests, or by inspecting visual patterns generated by a more

omplex ML algorithm. For example, a grouping of similar obser-

ations can be computed by clustering, or classification. However,

nalysts also have expectations about groupings and may need to

heck whether their assumptions are consistent with the ML re-

ults. In many cases, techniques do not fit “out of the box” and

eed to be refined by an expert. 

Hypothesis forming: Another analysis goal is to generate, form

nd refine hypotheses. In this case, the analysis is more ex-

loratory, and ML models can be invoked and visualized to get

road overviews. Several unsupervised ML methods are effective

or revealing certain structures that are otherwise hidden in data

e.g., feature selection, dimensionality reduction, clustering, outlier

r novelty detection). Visualizations support the analyst in spotting

atterns that can be investigated in more detail. Such patterns can

e, for example, manifolds, outliers, sequences, clusters, or trends.

ote that spotting patterns may be the result of pure serendip-

ty during analysis. However, once a pattern has been spotted, an

nalyst generally needs to discover “why” the pattern exists, and

onsequently forms more concrete hypotheses and may switch to

onfirmatory analysis. 

Confronting ML results or structures: In an iterative ML process,

he analyst provides feedback about results to the ML pipeline. Do-

ain experts, who are able to exploit domain knowledge, can ef-

ectively adapt ML results if they spot errors within visualizations

hat do not match their assumptions or prior knowledge. For ex-

mple, they can re-organize automatically generated groups [52] or

djust class labels [53] . Furthermore, parameters or weights can

e tuned to adapt ML structures to focus the analysis on spe-

ific features, or to determine the granularity of the ML algorithms

e.g., the number of clusters desired). Reorganizing points (“declar-

ng distances”) can correct distances between specific observations

hen they are known to the analyst (e.g., [45] ). 

Adapting ML pipelines: Depending on the data and analysis task

t hand, the ML pipeline may not be “comprehensive” enough and

ay require reconfiguration to accommodate additional ML com-

utations or features of the dataset. ML models can be thought

f as atomic components that can be combined and then require

ome meta-assessment, with the difficulty that validation faces

ombinatorial growth and can become intractable. An ML algo-

ithm could, for example, require additional pre-processing, spe-

ific feature selections and transformations. If ML models become

too complex” some parts of the ML pipeline may need to be sim-

lified or even removed (for example, in case of model overfitting).

“What-If”-analysis: Interactions enable the analyst to experiment

ith an ML pipeline and observe how it reacts to changes or

eedback. This may contribute to better understanding of how the

odel behaves, even without ML expertise. An example is to in-

estigate how the final ML results are affected by adapting dimen-

ion loadings in a problem of dimensionality reduction (such as

n iPCA [34] ). In such a case, the analyst can identify which data

tems are affected and related to specific features. The same can be

one with manipulating data observations. The analyst may exam-

ne what happens if a particular observation is present or absent

n the data. 

Expert verification: ML models aim to detect structure and pat-

erns in data, such as trends. However, in a real world use case,

atterns have to be cross-checked based on “external” knowledge.

ne possibility is to apply the ML model to other external data
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sources to test whether the pattern recurs as in a kind of manual

validation or test procedure. These data sources may be obtained

from another database or repository. However, if such data is not

available, the domain expert has to judge whether observed struc-

tures or patterns are plausible and useful. In this case, several do-

main experts may collaboratively discuss the outcome, or design

further experiments. 

6. Challenges and opportunities 

On the path toward systems that fully implement the proposed

framework, we encounter several important research challenges

that must be overcome. We identified five relevant challenges at

the intersection of ML and visualization research. We will describe

how joint research in these areas opens up novel opportunities to

advance practical data analysis. 

6.1. Designing interaction for ML adaption 

A variety of ML algorithms, offering a broad set of design

options and parameters, have been described in the literature. Yet,

we find no generic way to interface ML with visualization. Current

visual analytics systems are often restricted to working with a

small set of ML techniques and parameters. Furthermore, within

current interfaces, switching between ML models is likely to dis-

rupt a human’s sense of context in the analysis process. To address,

this, new approaches are needed that support analysts in making

sense of such model changes. In addition, existing examples such

as ForceSpire and iPCA nicely illustrate how understandable direct

interactions can be combined with model changes in a straightfor-

ward manner. Direct manipulation has proven effective and easy-

to-learn for accessing computational tools [25] . It has, however,

not been extensively explored in the context of ML so far. Often,

ML models are designed for unique, static configurations, whereas

in VA iterative refinement is needed. Mapping user inputs to more

complex algorithmic actions along the entire ML pipeline remains

an open problem. One key question is how to translate “simple”

interactions within the visual interface to data manipulation,

preprocessing, or ML model-adaption operations and combinations

thereof. – Opportunities: central to our conceptual framework

is the idea that the underlying ML design options and meta-

parameters, which usually cannot be optimized automatically, can

often instead be steered by convenient, iterative user interactions.

Accessible interactions and smooth transitions between different

ML models will help analysts to develop intuition or form mental

models [54] about the underlying data, as well as about the

function or behavior of complex ML methods. Consider the case

of switching between different ML models: at what point does the

system realize – from user feedback – that the current ML model

might not be the most appropriate one anymore? It could then

suggest an alternative model, and smoothly transition to it. Instead

of linear projection with PCA, it might, for instance, suggest a more

complex nonlinear dimensionality reduction method like multidi-

mensional scaling or t -SNE. Continuous model spaces [55,56] con-

tribute some preliminary ideas towards such solutions, which are

dependent on the ML models’ meta- or hyper-parameters and their

interpretability. Further, more general ways to apply and adapt ML

through expert feedback (e.g., labeling or rating) would allow us

to take advantage of a larger, more powerful set of ML methods.

The previous examples demonstrate that there is vast space for

future research, given the great variety of available ML techniques

and their associated parameter spaces. A joint effort from both the

ML and VA communities is needed to face this research challenge. 
.2. Guidance 

Another major challenge is to adequately support application

omain experts in steering the ML pipeline. Analysts can be over-

helmed by the wide range of ML models and parameters, along

ith the challenges of working with large data sets. Moreover,

nalysis problems are often incompletely defined, and change over

ime, resulting in a complex analysis process with much trial-and-

rror. Consequently, analysts may change, adapt, or switch tasks

requently. While analysts may bring crucial domain-dependent

nformation to problem-solving, they often lack advanced pro-

ramming skills and statistical expertise, and therefore require

ssistance and guidance (e.g., by providing recommendations about

perations on data and alternative models.) – Opportunities: it is

mportant to better understand the tasks, practices, and stumbling

locks of domain experts (which likely differ from those of visual-

zation or ML experts). Adopting a design study methodology is a

iable approach towards gaining better understanding of such user

haracteristics [50] and providing appropriate guidance. Further-

ore, enhanced measures and tools could point analysts to inter-

sting data, parameterizations, and ML models through automatic

ecommendations. While many measures exist, both depicting data

nd perceptual characteristics (e.g., [57] ), currently it is not well

nderstood how they can be effectively exploited in interactive an-

lytical processes. Consider a relevance feedback approach where

he learning system retrieves a set of interesting visualizations

ased on iterative user feedback. In each iteration the analyst

arks the presented results either as positive (interesting) or neg-

tive (uninteresting) [53] . How could the system detect if a pattern

as spotted and the analysis task changes from overview to detail?

herefore, we envision the usage of analytic provenance which

captures the interactive exploration process and the accompanied

uman reasoning process during sensemaking” [41] . This informa-

ion could guide the analysis process to meet the analysts’ needs,

hich might be derived from their behavior. In the VA community,

esearch has been carried out on capturing, visualizing, and reusing

nalytic provenance. However, more work is needed on modeling

uch information to shape or refine the overall analysis as well as

pecific ML methods. Doing this is an interesting research problem

hat will require expertise from the ML community. 

.3. Measuring quality and consistency 

In the rich human-in-the-loop analysis process we envision, it

s crucial to ensure both ML model quality and visualization qual-

ty . Yet, these two types of quality assurance do not always align

ell. For example, in a visual representation of a data embed-

ing, after dimensionality reduction, there might be a trade-off be-

ween preservation of the original data structure, and readability of

atterns, due to intrinsically high dimensionality. While measures

ave been developed that describe each of these aspects of qual-

ty in data analysis (e.g., [55–58] ), the challenge is to help analysts

o find the right balance between them, so that meaningful anal-

sis is enhanced. Beyond measuring ML and visualization quality,

ur framework suggests a third type of quality assessment, which

s the level of consistency between the ML model and the analyst’s

xpectations. The goal of data analysis is to extract reliable and

elevant knowledge from data. Assuming that there exists some

ground truth” to back up such knowledge, it is the goal of ML and

isualization to reveal it with high fidelity. At the same time, the

ser will have a priori knowledge and expectations, which in the

deal case should closely match what the analysis reveals. While

n ML model will surely seek to accurately describe the data, es-

ential pieces of information or context known by analysts may be

navailable to an algorithm. In this case, the set of ML assumptions

ay be incomplete, a challenge often encountered in exploratory
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ata analysis. – Opportunities: to externalize this missing informa-

ion, it is important to check consistency between what the ML

odel presents and what the analyst expects. If inconsistent, the

nalyst should either suspect a problem with the ML model and

rovide feedback about missing information, or accept that the ex-

ected patterns were not found in the data. If consistent, analysts

sually conclude there is a confirmation of their expectation. Note,

lthough consistency between human and machine is desirable,

t does not guarantee correct reflection of the underlying ground

ruth in the data per se. Currently, consistency checks are often

one manually. Automatic methods that systematically check con-

istency, highlight inconsistencies and recommend any needed re-

ediation could help. Joint effort from both ML and VA communi-

ies is needed to enhance these measures, especially by combining

nd bridging them. 

.4. Handling uncertainty 

There are several stages in our framework where uncertainty

ight be dealt with explicitly. Uncertainty may arise from several

ources of unreliability or vagueness, such as data described by

robability density descriptions, missing data, or even systematic

rrors in modeling. Visualizations themselves can also introduce

ncertainty, for example, due to resolution or contrast effects [59] .

n our framework, uncertainty implicitly propagates through the

ipeline and eventually may affect the analyst’s trust-building pro-

ess [60] . Properly describing, quantifying, and formally propagat-

ng uncertainty in all pipeline stages will be a major challenge in

eveloping robust, effective tools. – Opportunities: alternative visu-

lizations can be generated and investigated to raise the analyst’s

wareness of the sources of uncertainty within the ML pipeline.

urthermore, analysts can be supported in (interactively) explor-

ng, understanding and reducing uncertainty [61] . Better integra-

ion of uncertainty measures from data, preprocessing, ML models,

nd visualization can be expected to provide a holistic perspective

nd understanding of uncertainty. There is much previous work on

isualization techniques to display data uncertainty of spatial data,

uch as volume or flow visualization [62,63] . We find less work on

ncertainty visualization of abstract data, such as high-dimensional

ata visualization [64] . As abstract data is typical in ML applica-

ions, there is a need for improved uncertainty visualization along

he analytical pipeline outlined in our framework. A joint effort by

L and visualization researchers is needed to handle uncertainty

ithin the entire pipeline. 

.5. ML-vis interoperability 

A final challenge arises because most existing ML algorithms,

oolkits and libraries were not designed to support interactive

isualization. Scalability problems in computation may cause long

elays that impede interaction; parameters may not be adapt-

ble or visible; and relevant information (e.g., quality measures

r internal ML structures) may be inaccessible. The ability to

ommunicate these types of algorithmic information and to take

dvantage of them to construct better user interfaces is often

escribed as “opening the black box” [17] . Especially in the case of

irect human interactions, it is often difficult to speed up the ML

omputations enough to provide the desired responsive behavior

f the visualization. Another challenge is to train ML techniques

rom interactive inputs, which typically are few in number. –

pportunities: the visualization community could benefit from ML

lgorithms and libraries that meet specific requirements, such

s exposing intermediate or progressive results, and providing

eaningful and interpretable parameters or handles to integrate

hem with interactive visualizations. Additional information, such

s model structures, preprocessings, and quality information can
e visualized. Recently, novel VA systems have been described

hat provide approximated or progressive computations with

nteractive and steerable visualizations (e.g., progressive t-SNE

65] or progressive PCA [66] ). These examples suggest consider-

ble potential for an expanded, generalized integration of ML with

isualization. In summary, both communities could gain much

rom library and framework designs informed by the requirements

f both interactive visualization and ML. 

. Conclusions 

We propose a framework that characterizes important forms of

nteraction that are possible with ML components in a VA process.

n general, such interaction offers considerable potential for im-

roved support of ML interpretability, understandability, evaluation

nd refinement. We found that a multidisciplinary perspective can

ridge the gaps between automated ML methods and human rea-

oning. The proposed framework offers a balanced perspective on

he design and configuration of the analytic pipeline, incorporating

mportant aspects of both automated techniques and human inter-

ction. Of course, current VA tools and ML components pose many

nteresting challenges for future work at the intersection of visu-

lization and ML. To address these challenges, closer collaboration

etween ML and visualization researchers will be vital. 

The conceptual framework proposed in this report was devel-

ped over a period of 1.5 years. During this process, this frame-

ork was iteratively validated and refined, comparing it with pre-

ious models and real-world systems as illustrated in Section 4 .

y doing this, we were able to verify how well the framework fits

uch models and systems. This process lead to both extending the

ramework to add missing features, and summarizing and general-

zing common aspects of it across multiple example systems and

xisting models. The main benefit was to ground our theoretical

ramework in real-world systems and applications. 

A full evaluation of any theoretical framework, assessing how

seful it will be to others, is beyond the scope of a single paper. An

ffective theoretical model should be expected to stand the test of

ime, and to repeatedly demonstrate its validity [67] . It is our hope

hat empirical evaluations of future systems and solutions imple-

enting the proposed framework will add evidence to prove its

orth [68] . By guiding researchers and practitioners in the design

f novel data analysis solutions, in the long run its “real” value can

e established. 
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