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Abstract— Despite an abundance of technical literature on dimension reduction (DR), our understanding of how real data analysts
are using DR techniques and what problems they face remains largely incomplete. In this paper, we contribute the first systematic
and broad analysis of DR usage by a sample of real data analysts, along with their needs and problems. We present the results of a
two-year qualitative research endeavor, in which we iteratively collected and analyzed a rich corpus of data in the spirit of grounded
theory. We interviewed 24 data analysts from different domains and surveyed papers depicting applications of DR. The result is a
descriptive taxonomy of DR usage, and concrete real-world usage examples summarized in terms of this taxonomy. We also identify
seven gaps where user DR needs are unfulfilled by currently available techniques, and three mismatches where the users do not
need offered techniques. At the heart of our taxonomy is a task classification that differentiates between abstract tasks related to
point clusters and those related to dimensions. The taxonomy and usage examples are intended to provide a better descriptive
understanding of real data analysts’ practices and needs with regards to DR. The gaps are intended as prescriptive pointers to future
research directions, with the most important gaps being a lack of support for users without expertise in the mathematics of DR, and an
absence of DR techniques for comparing explicit groups of dimensions or for relating non-linear embeddings to original dimensions.

Index Terms—Dimension reduction, high-dimensional data analysis, taxonomy, tasks, usage.

1 INTRODUCTION

Dimension reduction (DR) is the process of reducing a high-
dimensional dataset to a lower-dimensional representation that retains
most of the important structure. It has been an active research area
throughout several decades and across many domains, from its ori-
gins in psychology [41, 51] through statistics [11] to machine learning
[5, 40, 45, 24] and visualization [22, 25, 50].

The DR literature is heavily focused on mathematical and algo-
rithmic descriptions of new techniques, including complexity analysis
and benchmarks. However, considering DR from the perspective of
problem-driven visualization, with a focus on the tasks and data of po-
tential users [35], leads to many open questions: how can we evaluate
whether a particular technique meets the needs of users? More fun-
damentally, what do DR practitioners actually do? And what are their
tasks, considered at the abstract level?

A close reading of the technical literature does reveal some implicit
assumptions regarding the concerns of a practitioner who seeks to use
DR, but these vary significantly between and even within practition-
ers’ domains. Synthesizing a coherent picture of what DR practition-
ers might care about is difficult because these assumptions have never
been explicitly articulated. Our interest in finding an understanding of
these needs grew as we moved from reading the previous work, to de-
veloping and validating DR techniques of our own [22, 48], and finally
to building a DR system around our own assumptions regarding user
needs [21].

Motivated by the lack of information on DR practices and needs of
data analysts, we embarked on a two-year qualitative research project
to gain insight into how DR was actually being used in the wild by
a broad sample of data analysts spanning many application domains.
We borrow the phrase “in the wild” from human-computer interac-
tion (HCI), where it differentiates investigation of users and tasks in
real-world settings from studying user behavior in artificial laboratory
settings; the goal of in-the-wild studies is maximizing the realism of
findings [31]. Our work has two primary goals: First, we sought a sys-
tematic understanding of how, when, and why analysts use DR. The
scope of our investigation also included circumstances where analysts
have high-dimensional data but opt not to use DR. Second, we wanted
to identify gaps and mismatches between analysts’ practices and the
capabilities provided in currently available DR techniques, with the
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hope of directing future technique research.

To achieve these goals, we collected information from 24 data ana-
lysts, primarily via semi-structured interviews. We also surveyed ex-
isting literature in order to collect more examples of DR usage, and
selected five papers with interesting descriptions of how DR algo-
rithms were used to solve a domain problem. From this rich corpus
of data, we extracted and distilled usage examples depicting DR as
it is used among data analysts. Around these usage examples we cre-
ated a descriptive DR-usage taxonomy characterizing real analysts and
their processes. This taxonomy allows for a discussion to occur around
which data analysis tasks are well served by current DR techniques, as
well as those that are not. We used the taxonomy to compare our find-
ings of analysts’ practices and needs to the capabilities of the current
state of the art in DR techniques. This comparison was possible given
our own experience in this area [48, 22, 21, 38] and our familiarity
with the DR technique literature. In so doing, we identified discrep-
ancies between the needs of real users and the capabilities of current
DR techniques. We classified these into two groups: gaps reflecting
user DR needs that were unfulfilled by the suite of currently available
techniques, and mismatches reflecting the opposite situation, where
offered techniques are in excess of actual user needs.

During our survey of the existing literature, we also sought to iden-
tify implicit assumptions about user tasks and data, especially when
we noted differences between domains. The most notable split was
between the visualization and machine learning literatures, particu-
larly in terms of benchmark dataset characteristics. Figure 1 shows
two canonical datasets: the Swiss roll dataset heavily used in the ma-
chine learning literature [5, 40], and a cluster dataset of the sort heavily
used in visualization [38]. The synthetic Swiss roll dataset shows off
the capabilities of the manifold following non-linear DR techniques,
such as Isomap [40] and Laplacian Eigenmaps [5], that assume that
the high-dimensional data lies on a densely sampled manifold that
should be “unrolled” to a lower-dimensional representation. The clus-
ter dataset appears to completely violate the manifold assumption. We
were skeptical that methods optimized for one would work well on the
other, and wondered which dataset were more accurately reflected in
analysts’ practices and needs. Our DR usage taxonomy shed light on
this question: both dataset types represent real-world scenarios. Some
users are focused on dimensions, and others on clusters. For those
concerned with dimensions, some focus on working with the existing
dimensions, and others on synthesizing new ones. For those concerned
with clusters of points, some focus on identifying implicit groups from
DR layouts, and others on matching between these and explicit groups
that are provided with the dataset as classes.

This paper addresses two groups of target readers. The first group
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Fig. 1. (a/b) The Swiss Roll dataset used to illustrate and justify manifold
DR techniques: a) Original 3D dataset; b) Isomap “unrolls” the manifold
in 2D [40]. (c/d) A synthetic dataset with visually separable clusters
that does not correspond to a uniform and dense sampling of a high-
dimensional manifold: c¢) Original 3D dataset; d) PCA reduction to 2D.

is that of general visualization researchers with little expertise in DR,
because it describes DR in a very accessible way from a usage perspec-
tive rather than from the usual highly technical perspective of previous
work. The second group is that of researchers actively engaged in de-
veloping DR techniques, to provide a systematic lens on what users of
their techniques are doing. In particular, we offer the summary of gaps
and mismatches in Section 6 to channel future research directions.

In short, the contributions of this paper are a taxonomy of DR usage,
a set of usage examples summarized according to it, and a set of gaps
and mismatches between real usage and available techniques.

2 RELATED WORK

We review related work on studies of high-dimensional data analysis
in the wild, and on the use of taxonomies for characterizing DR and
related analysis tasks.

High-dimensional Data Analysis in the Wild: A small body of work
exists that studies high-dimensional data analysis as conducted by real
data analysts in the wild. Most of these examples appeared in the
format of visualization design studies [37] providing a detailed de-
scription of real users and tasks, albeit focusing on a single domain
problem. One example is a recent design study by Pretorius et al. [34],
which describes DR for parameter optimization in the domain of im-
age analysis. Another is the Vismon design study [8], which supported
sensitivity analysis of high-dimensional data stemming from fish pop-
ulation models; it was informed by preliminary results of the study
presented here.

Others have raised the issue of user guidance in DR: In our own
previous work we presented DimStiller [21], a system for providing
user guidance via DR workflows. It addresses the conjectured needs
of “middle-ground users”: visualization generalists and application
domain experts who do not have a deep understanding of DR math-
ematics. Cunningham [13] also offers guidance for DR usage, with a
particular focus on real-world situations where the number of dimen-
sions in a dataset dwarfs the number of points.

No previous work has offered a cross-domain understanding of
tasks, needs, and problems of high-dimensional data analysts.

Taxonomies: There is a great deal of previous work in classifying DR
algorithms based on different distinctions, including feature selection

and feature extraction [13, 24, 49], linear and non-linear [24], glob-
ally and locally operating techniques [17], or convexity and spectrality
[46]. The corresponding DR algorithm component of our taxonomy is
simpler than these technically-driven taxonomies, because we focus
on concisely classifying DR from a usage point of view.

The use of the taxonomy as a comprehensive representation of
theory has a rich tradition in information visualization. For high-
dimensional data analysis, Bertini et al. conducted a systematic litera-
ture review of high-dimensional quality measures [7]. Our own recent
work [38] provides a taxonomy of the characteristics of visual separa-
tion factors of high-dimensional datasets in scatterplot visualizations.
That effort was also inspired by the preliminary results of this work.

All existing taxonomies in high-dimensional data analysis are
largely a product of DR technique- or data-driven enquiry; in contrast,
we aim to complement this body of work by providing a perspective
that is primarily usage- and task-driven. In information visualization,
there are several general examples of task taxonomies. Some are based
on the authors’ own experience in conjunction with a thorough consid-
eration of the current state of the art [2, 39], and others on observations
of user behavior in controlled settings [1].

Our work is the first descriptive taxonomy of high-dimensional data
analysis and DR usage that is based on interviewing domain expert
users about their tasks conducted in the wild.

3 PROCESS

We followed an iterative data gathering and analysis approach in the
spirit of grounded theory [12]. Grounded theory is a common ap-
proach in the HCI community; it has been used to identify best prac-
tices [19], to inform design [16], and to characterize user behavior
[33]. These methods are recently beginning to gain ground in visual-
ization as well [23, 42, 27]. A methodology in the spirit of grounded
theory allowed us to better understand the practices, tasks, and context
of a broad collection of high-dimensional data analysts across differ-
ent domains. The key aspects that we embraced were the alternation
between data collection and analysis, the identification and refinement
of conceptual relationships grounded in the data, and the subsequent
generation of theory and critical reflection.

Our process was further informed by survey methodology [43]. Sur-
vey methodology refers to studying a representative sample of individ-
uals, not to individual data collection methods such as questionnaires
or online survey tools. We selected this approach to address our initial
hypotheses regarding a potential mismatch between the characteristics
of benchmark datasets and those encountered by data analysts in the
wild.

Since high-dimensional data analysis spans many different do-
mains, we decided for a cross-domain approach, which distinguishes
us from the afore mentioned examples that focus on an in-depth inves-
tigation of a single culture, domain, or work context. Cross-domain
studies in the wild are still rare, and to the best of our knowledge, our
work provides the first in visualization. Examples in HCI include the
work of Dourish et al. on strategies and attitudes surrounding system
security [15].

3.1 Participants

Overall, we interviewed 24 data analysts from a range of different do-
main backgrounds. We distinguish between 19 primary interviewees
with practical DR usage examples and 5 secondary interviewees, col-
leagues or supervisors of the primary interviewees who worked on the
same problem and additionally attended group interviews. Intervie-
wees were chosen via convenience and snowball sampling [14]. All
had experience conducting analysis tasks with high-dimensional data
and were highly trained in their domain.

3.2 Data Collection

Our primary data collection method for studying high-dimensional
data analysts was semi-structured interviews. We used a set of closed-
and open-ended questions relating to high-dimensional data and DR,
which evolved over the 2-year span of data collection and analysis.



We conducted 1-2 interviews per data analyst, 22 in total, ranging in
duration from 30 minutes to 4 hours. Most interviews were individual
interviews (18) while others were group interviews with multiple data
analysts (4). Some interviews were conducted remotely via telephone
or Skype (8: 5 voice only, 3 voice and video). One to three interview-
ers guided the sessions and took detailed written notes for the purpose
of later analysis. In the case where only one interviewer was present,
audio recording was used (with interviewee consent). In addition to
interview notes and recordings, we also gathered documents from ana-
lysts, which included their published papers, unpublished manuscripts,
theses, datasets, screenshots of visualizations of their data, and their
email correspondence with us.

To broaden the corpus of data, we surveyed many papers involving
DR, including both those proposing DR techniques and those featuring
the application of DR for solving a particular domain problem.

3.3 Analysis

Using a grounded approach [12], we concurrently performed data col-
lection and analysis, culminating in the representation of our findings
in the DR usage taxonomy described in Section 4.

Coding: Interview notes and other materials collected from intervie-
wees were subject to open coding, a process for identifying themes and
concepts. This was followed by axial coding, the grouping of codes
with conceptual relationships, guided by our background knowledge
and insights accumulated from previous data analysis.

Usage Examples: This stage involved the creation of concise sum-
mary reports and the extraction of one or more usage examples for
each primary interviewee. While most of the interviews resulted in
one usage example, we also had several interviews in which data an-
alysts described multiple yet fundamentally different analysis tasks or
situations in which they used or wanted to use DR; these became mul-
tiple usage examples, allowing for their concise description in our tax-
onomy. In the case of one interviewee, we did not have enough infor-
mation to derive a concise usage example, so their data was excluded
from subsequent analysis. This process resulted in 22 usage examples
from 18 primary interviewees. The structure of the summary reports
and their contained usage examples reflected the results of our axial
coding. These codes reflected the interviewee’s domain background
and expertise, high-level research goals, characteristics and assump-
tions regarding their data, characteristics of their data analysis tasks,
the means by which they perform these tasks, and the problems they
encounter while performing them. Both codes and reports were itera-
tively revised and critiqued as data was collected.

From our literature survey, we derived 5 usage examples with inter-
esting descriptions of high-dimensional data analysis and dimension-
ality reduction usage [10, 11, 30, 36, 40]. Many others were excluded
as their DR usage examples were either too similar to those previously
identified, or they did not provide sufficient detail regarding DR usage.

Overall, this process led us to 27 usage examples: 22 from inter-
views, 5 from literature.

Taxonomy: By the end of the 2-year data collection and analysis pe-
riod, it became apparent that we were reaching data saturation; no new
axial codes were emerging. In other words, we could now describe
each of our identified usage examples using the set of axial codes. The
descriptive taxonomy is the result of selective coding, a process of
arranging our axial codes, based on their importance and representa-
tiveness, into hierarchical relationships.

Judgement of Usage Examples: Finally, relying on our background
in this area, we assessed each usage example with regards to whether
the analyst was ultimately successful in achieving their analysis goals
(succeed), successful but having experienced considerable difficulty
or uncertainty (struggle), or unsuccessful (fail). The struggle and fail
cases contributed to our identification of research gaps and mismatches
discussed in Section 6.

4 TAXONOMY

The taxonomy that we derived from our systematic data analysis is de-
scriptive rather than prescriptive, in the same spirit as the taxonomy of

Lam et al. on visualization evaluation [28]. It can be used to describe
DR usage at the level of specific DR techniques and tasks, and also at a
more general level, pertaining to high-level analysis goals. The usage
examples in Section 5 are discussed at both of these levels.

Figure 2 presents the taxonomy. The root node is high-dimensional
data, which splits into three top-level branches of User, DR, and Task.
The hierarchical structure of the taxonomy is meant to reflect the struc-
ture of our data; it does not represent a decision tree, as the branches
are not mutually exclusive. A single usage example can be represented
by several nodes: an analyst may have multiple task interests, or use
different DR algorithms to approach a single problem.

The major contribution of the taxonomy is the task branch, which
abstracts data analysts’ interests into a set of low-level tasks. The user
and the DR branches also help in providing an understanding of our
usage examples, but are less novel and thus are minor contributions.

41 User

We describe domain and DR expertise as important user factors.
The domains captured by our usage examples include bioinformat-
ics, machine learning, mathematics, computational chemistry, struc-
tural chemistry, computer vision, fisheries sciences, journalism, life
sciences, marine and ocean sciences, HCI, search engine optimization,
and statistics.

We differentiate between a DR-Math expert, one with a deep math-
ematical understanding of DR techniques, and one who isDR-naive,
without this technical understanding. DR-naive individuals treat DR
algorithms as black-box tools for acquiring insight into their data. Cer-
tainly, DR-naive individuals are experts within their own domains of
data analysis; some have strong mathematical backgrounds, but not
in the specific mathematical niche that is DR. These users seek to ap-
ply DR algorithms to their high-dimensional data, but struggle with
selecting the right techniques, and cannot always be sure of whether
they should trust what they see in low-dimensional visualizations.

The distinction between expert and naive in our taxonomy is binary,
in order to be concise and provide a simple lens for considering exper-
tise. However we acknowledge that in reality expert and naive are
points along an axis traversed by analysts as they learn about and use
DR. We classified 13 interviewees as being closer to DR-naive, 8 as
being DR-Math experts, and 3 as having aspects of both, sitting some-
where between an expert and naive. The high number of individuals
classified as being DR-naive is interesting considering that very little
research focuses on these users; DimStiller is a notable exception [21].

4.2 DR: Dimension Reduction

At the top level of the DR component, we differentiate between usage
examples that involve DR (yes), and those that do not (no). A key
point is that only some high-dimensional data analysis tasks require
DR. There are many visualization and analysis techniques, such as the
use of parallel coordinates or scatterplot matrices, that can be used
without reducing the number of dimensions in a dataset. Despite this
broad set of options that do not require DR, some interviewees had
attempted to use DR even in situations where it was perhaps not the
most appropriate choice; one such example is covered in Section 5.

Purpose of DR: In cases where DR is used (yes), the first of two boxes
is the purpose of using DR. We differentiate usage of DR for data anal-
ysis, versus for algorithmic input. For the data analysis case, we found
that analysts often used DR techniques to reduce the dimensionality
of the data to be able to visualize it, with 2D scatterplots (20 of 27
usage examples), 3D scatterplots (3 of 27) or scatterplot matrices (2
of 27). Some analysts used DR techniques for data analysis directly,
rather than as a precursor to visualization. For instance, the MUSIC
usage example is an example where the analyst used PCA to identify
and name the principal components of her data, and to understand how
the original dimensions contributed to these principal components.

A different purpose of DR is algorithmic input, a common case
in machine learning. In this case, the goal is to reduce the dataset’s
dimensions in order to improve the performance of downstream al-
gorithmic processing. This practice can improve an algorithm’s com-
putational efficiency by avoiding the curse of dimensionality [6], or



[T TTTTITITITT
Domain? IRl LAE
Expert [T
Data
LTI TTTTITITT Analysis T
DR A Manual
LaLLs Expertise PIRHTELTD i R e.g. DOSFA
PR T —— A|gor|thm|c
BT L Input TN
High-dim 2 DR? No Purpose of Automatic
Data ’ ’ Using DR T e.g. SFS
JI T TTTTTT I 7T} Filtering
- DR | General
- 1as Yes Algorithm | memmmem T
Synthesis T
IR T Non-linear — Manifold
Point i e.g. Isomap
Clusters RIS
Do you have explicit groups?
m — IO
: Oid New
— TR
No Yes [l i
(Monochrome Plot) (Colored Plot) compare
given name
DA name mateh correlate
=3 ” into
[ o NI
> > £ T compare /
s find ¥~ unmap
g— important
° improve / stop improve / stop
3 5 I
@ (s}
=] om
S
% =
© Legend: || Succeed [| Struggle | Fail [| Not applicable

Fig. 2. DR usage taxonomy with three components (1) User, (2) DR, and (3) Task. The taxonomy is a classification rather than a decision tree
allowing usage examples to constitute multiple paths through it. The color-coded bars atop many of the boxes indicate the overall number of usage
examples in the box, colored according to our judgement of the DR usage outcome: blue for success, yellow for struggle, and red for fail.

make a predictive model more reliable, robust and accurate. We iden-
tified 7 usage examples where DR was used algorithmic input. DR
for algorithmic input can be done without any further data analysis
at all, which happened in 2 out of 7 usage examples. Examples of
data analysis in the other 5 cases included inspecting the original high-
dimensional data and/or the reduced low-dimensional data that is in-
tended for algorithm input.

DR algorithm: The next DR usage box accounts for the choice of
DR algorithm. Following the vocabulary of visualization commu-
nity [32, 50], we divide algorithms into dimensional filtering, in which
less interesting dimensions are filtered out, and dimensional synthesis,
in which old dimensions are combined into new synthetic dimensions.
In the machine learning literature, these categories are known as fea-
ture selection and feature extraction, respectively [49].

For dimensional filtering, we further differentiate between manual
and automatic filtering techniques. Examples of manual filtering tech-
niques user-defined quality metrics for finding interesting dimensions
[25], or Yang et al.’s DOSFA approach of dimensional filtering, order-
ing and spacing [50]. An example of an automatic filtering technique
is Sequential Forward Selection (SFS) [24] in which the “best” di-
mension is selected and others are added iteratively until no further
improvement is made, relative to a threshold selected a priori.

In terms of dimensional synthesis, we further differentiate between
linear and non-linear techniques. Linear techniques such as PCA
[26] or classical MDS [41, 51] produce new dimensions that are a
linear combination of the original old dimensions. However, many
datasets have structure that can only be adequately revealed by non-
linear techniques. These are further divided into manifold and gen-

eral techniques. We define manifold techniques as the subset of non-
linear techniques with the underlying assumption that the data lies on a
densely sampled manifold, such as Isomap [40] and Laplacian Eigen-
maps [5]. Although the machine learning literature often uses man-
ifold synonymously with non-linear, we distinguish manifold tech-
niques from general non-linear techniques; Section 6.4 discusses our
rationale. An example of the general techniques is the distance scaling
MDS approach of Glimmer [22].

4.3 Task

At the top level of the task component, we differentiate between two
interests a high-dimensional data analyst might have: interests in point
clusters and interests in dimensions. We are aware that from a purely
mathematical perspective, points and dimensions could be transposed.
However, most of our interviewees clearly considered these to have
fundamentally different semantic meanings, so the taxonomy pre-
serves this distinction.

Point Clusters: These tasks pertain the identification and verifica-
tion of point clusters in the data (21 of 27 usage examples). In
terms of visual data analysis, clustering is strongly tied to visualiz-
ing dimensionally-reduced data in scatterplots: 19 of the 21 usage
examples associated with an interest in clusters involved the use of
scatterplots.

In our taxonomy we frame cluster analysis in terms of the intersec-
tion between two questions: do explicit groups exist?, and are implicit
groups visible? An explicit group means that the dataset has an asso-
ciated class structure; the classes are typically shown by color coding
the points in a scatterplot. These classes might come directly with the



data, or be assigned using a clustering algorithm run by the analyst, or
may even be the result of manual labeling. If explicit groups do not
exist, then there are no class labels for the points and corresponding
scatterplots are displayed in monochrome. By visible implicit groups,
we refer to proximity relationships in the lower-dimensional layout of
points, forming a distinguishable structure; that is, there are multiple
separated blobs in the scatterplot. If no implicit groups are visible,
then the entire scatterplot is a single undifferentiated blob. We found
that the fundamental reason that people look at scatterplots of dimen-
sionally reduced data is to see if the implicit groups match their mental
model of the dataset.

These two questions can be answered with yes or no, resulting in
the 2x2 outcome matrix (Figure 4, lower left). The four cells are:

Yes explicit, yes implicit (top-right): If explicit groups are available
for color-coding the points and if visually separable implicit groups
are visible, a typical task is to evaluate the match between explicit
and implicit groups: that is, checking whether the colors match with
the spatial structure in the layout. When they match, an analyst will
often declare victory, as the spatial layout indicates a true positive: the
classes in the explicit grouping are in fact trustworthy. When they do
not match, an analyst may attempt to improve the explicit grouping.
For instance, this could involve adjusting the parameterization of a
clustering algorithm.

No explicit, yes implicit (top-left):  As we discuss in previous
work [38], the visual separability of monochrome groups differs per-
ceptually from the separability of color-coded groups. When no ex-
plicit groups are available, but implicit groups are visible, an analyst
could assume that these groups represent meaningful clusters; the spa-
tial layout is once again indicating a true positive. These implicit
groups may then be subsequently named and labeled, resulting in ex-
plicit groups; the analyst has thus crossed into the previous cell.

Yes explicit, no implicit (bottom-right): In this cell, the color-coded
points of the explicit groups are mixed together in the spatial layout,
with no visually distinguishable class separation. An analyst may con-
sider this result to be a frue negative, meaning that the proposed class
structure of the explicit group does not truly reflect the structure of the
dataset. She may decide to discontinue this part of the analysis process
at this point. Alternatively, she may also conjecture this visual result
to be indicative of a false negative, meaning that clusters are just not
visible with the current set of choices and parameters for clustering
algorithm, DR technique, and visualization. In these cases, an analyst
may iteratively select alternative choices and parameters until either
separable class structure is visible (thus crossing into the upper right
cell), or when they are confident that the results are indicating a true
negative, that no structure is indeed the reality.

No explicit, no implicit (bottom-left): In this case, there is no visi-
ble structure in the monochrome spatial layout: an analyst sees a single
large blob. This situation is similar to the previous one, in that an ana-
lyst may either infer a true negative and stop, or infer a false negative
and continue trying other choices and parameter changes for DR tech-
nique and visual encoding. If these changes do not reveal any apparent
structure, data analysts may try crossing into another cell by applying
a clustering algorithm to create explicit groups.

These four situations should be interpreted as end points of axes that
aid thinking about point clusters, rather than fixed states. It is common
that data analysts start with few or no visible implicit groups, and then
move upwards towards visible implicit groups by incrementally im-
proving their clustering algorithm and/or DR parameter settings. It is
also common to move from left to right, a sign that clusters are being
iteratively detected and labeled.

Dimensions: These tasks pertain to the analysis of the dimensions of
the dataset (18 of 27 usage examples), rather than clusters of points.
We differentiate between interests in the original high-dimensional, or
old, dimensions, and interests in the new dimensions that are the result
of dimensional synthesis DR algorithms. Once again, the hierarchy is
not a decision tree: a data analyst can be interested in both old and
new dimensions within the same usage example.

We identified three common tasks within the old category. Some
involve single dimensions, and others groups of dimensions. The find

important task is about finding which among the old dimensions are
important, according to some particular metric of interest. A common
metric is the variance that a single dimension contributes to the overall
variance (7 of 18 usage examples).

Analysts may also be interested in groups of old dimensions (13
of 18 usage examples). A task is to consolidate singleton dimensions
into groups of correlated dimensions. If explicit groups of dimensions
exist within the dataset, a task may be to compare explicit groups. A
common case is when a dataset was produced by a predictive simu-
lation model, where there exists a group of input dimensions and a
group of output dimensions. This often calls for sensitivity analysis,
which assesses whether small changes among the input dimensions
yield small or large changes among the output dimensions [8]. While
sensitivity analysis is typically conducted without DR, if there are a
large number of dimensions in either group, then DR would be helpful;
we discuss the challenges of this intersection in Section 6.2. In usage
examples involving explicit groups of dimensions, the most common
case was two groups of dimensions, either having an input/output or
cause/effect relationship (5 of 8). The remaining 3 examples involved
the more general case of n groups of dimensions.

Tasks involving an interest in new dimensions (8 of 18 usage ex-
amples) necessarily imply the usage of dimension synthesis tech-
niques. One common task is to name new dimensions; that is, the
analyst attempts to ascertain the semantic meaning of the proposed
new dimensions. A common way to do this is to inspect the origi-
nal high-dimensional data plotted within the context of the new low-
dimensional layout in a scatterplot, wherein the analyst may be able to
discern an interesting semantic relationship along the low-dimensional
axes. For instance, image databases are easy to show as thumbnail
images next to their corresponding points in a scatterplot: inspecting
thumbnails of an image database of faces reduced to 3 dimensions via
Isomap reveals three axes: up-down pose, left-right pose, and illumi-
nation [40]. Similarly, using MDS to lay out the similarities between
Morse codes in a 2d scatterplot reveals that one axis is the number
of clicks per letter, while the other axis is the number of long clicks
relative to the number of short ones [11].

Another task associated with new dimensions is comparing, or
more specifically, unmapping new dimensions to corresponding old
dimensions. This task only occurs when an analyst has an interest
in both old and new dimensions (2 of 8 usage examples associated
with new dimensions) This task can be conducted in a straightforward
fashion with linear techniques, by inspecting the extent to which any
particular old dimension contributed to the synthesis of a new one. In
PCA the relation between old and new dimensions is often referred to
as the “loading” of the (new) principal components [26]. Most non-
linear techniques do not support unmapping, since the mapping that
occurs between old and new dimensions is hard to interpret in a mean-
ingful way.

Note that while determining correlation between old dimensions is
a task in the taxonomy, we have not found any examples of analysts
being interested in correlation between new dimensions. This is not
surprising, as many DR techniques, such as PCA, produce new syn-
thetic dimensions that have as little correlation between them as pos-
sible. In such cases, searching for correlation between new synthetic
dimensions is unlikely to yield meaningful results.

5 USAGE EXAMPLES

We now describe 8 concrete usage examples. 7 of which are based
on interviews with 5 analysts; MOCAP and MUSIC each describe two
usage examples. The remaining usage example was extracted from a
DR usage paper [30]. We selected these so as to have good coverage of
the taxonomy described in the preceding section. Table 1 summarizes
all 27 usage examples, beginning with the 8 described in this section.

DR for Algorithmic Input (MOCAP A & B): The MOCAP usage ex-
ample pertains to a researcher in the domain of machine learning who
is interested in building predictive motion capture models [44]. Using
45 carefully calibrated accelerometers, gyroscopes, and magnetome-
ters, each attached to a part of the body of human subjects, he captures
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of 18 interviewees and 5 papers of 27 usage examples

Table 1. 27 Usage examples we extracted from interviews and papers. Each line reflects a usage example summarized in terms of the taxonomy
described in Section 4 (left side), and the gaps described in Section 6 (right side). The usage example at the top are further described in Section 5.

motions while walking, standing up, sitting down, lying down, kneel-
ing, etc. From these sensors, a large number of time-varying derived
variables (~25 per sensor) are recorded, resulting in datasets of ~10K
points and ~1K dimensions. These datasets are subsequently used to
train a motion classifier.

DR is used for two different purposes, algorithmic input (usage ex-
ample MOCAP A) and data analysis (MOCAP B). In the former, linear
PCA or SFS automatic filtering [24] are used to reduce the number of
dimensions from ~1K to roughly 30, a number chosen by manually
inspecting scree plots. The reasons for applying DR, typical for ma-
chine learning domain problems, are data compression, algorithmic
efficiency, and avoiding the curse of dimensionality [6]. For the latter,
the analyst is interested in verifying that the clusters of explicit groups,
those corresponding to the ground truth of his motion capture record-
ings (the type of movement), do indeed exist as visibly distinct blobs
within the layout of points in a scatterplot. To this end, he further re-
duces the data using the same DR techniques, PCA or SFS, to either 2
or 3 dimensions, then visualizes the result with color-coded 2D or 3D
scatterplots. However, he often finds himself in the cell of yes explicit,
no implicit: the color coding of the explicit groups does not unambigu-
ously match the implicit groups. Despite this failed attempt to verify
his explicit groups, he continues to use the low-dimensional reduced
data for training the classifier and usually attains satisfying classifica-
tion results. We conjecture that his result was a false negative.

PCA of Listening Histories (MUSIC A & B): The MUSIC data ana-
lyst is an HCI graduate student interested in the listening behavior of
digital music consumers. For this purpose, she gathered listening his-
tory data and demographic information from ~300 users of the last.fm
music streaming service. The resulting dataset had 48 dimensions,
which included continuous dimensions, such as the number of tracks
streamed per day or per login session, as well as categorical dimen-
sions, which included the user’s gender and geographical location.

Her initial interest was to cluster users into groups with similar lis-
tening behavior (usage example MUSIC A). She hypothesized several
groups a priori, such as users who listen to the same music repetitively
vs. users who listen to new music, or users who listen during the day

vs. those who listen at night. She used PCA and scatterplots in hopes
of both verifying these hypotheses and generating new ones, with both
monochrome scatterplots as well as the application of k-means clus-
tering to generate colored scatterplots. However, this approach did
not result in meaningful results. Problems included uncertainty about
what k to use for the number of clusters, and whether the undifferenti-
ated blob from no implicit groups represented a true or false negative.
We thus classify this case as fail, since her needs were not met.

Giving up on her original goal of identifying clusters, the data an-
alyst changed her focus to finding important dimensions and consol-
idating dimensions by correlate them into groups (MUSIC B). To do
so, she again used PCA and examined the first 13 principal compo-
nents, which accounted for 75% of the variance. For each of these
13 principal components, she related them back to the original old di-
mensions; by closely analyzing this unmapping, she identified proper
names and meanings for the new synthetic 13 dimensions. These new
dimensions were meant for guiding other researchers designing music
recommender systems. In terms of DR, the goals were therefore to
account for as much of the variance of the original data as possible
with a small number of new dimensions, while maintaining an under-
standable semantic mapping between old and new dimensions. No
visualization was involved in this second usage example [4].

MDS for Clustering Research Concepts (CONCEPT): The CON-
CEPT data analyst is a Computer Science graduate student with a re-
search focus on the visualization of social networks. In one of her
projects, she is interested in visualizing the expertise of researchers in
the life sciences domain. Her goal is to create a concept relationship
visualization, to be used by researchers in the life science, providing
them with an overview of the dataset via higher-level concept clusters,
and allowing them to identify others working in areas related to their
own. The dataset stems from a database of all researchers in life sci-
ence domain in which each researcher is represented by a set of ranked
research concepts. Overall there are 20,000 concepts, including terms
such as “DNA”, “cancer”, or “North Carolina”.

Her data analysis task was to identify point clusters of concepts. To
do so, she computed a distance matrix of concepts based on their co-



occurrence in the researcher database. This matrix was then used as
input to classical MDS to be displayed as a 2D scatterplot. As classical
MDS did not scale, she manually filtered the dataset from ~20K to 400
concepts and used the 400 x 400 distance matrix as input. However,
the scatterplot did not reveal any meaningful cluster structure, only an
undifferentiated blob of points (no explicit, no implicit groups). She
also tried Glimmer MDS, but that did not reveal visible cluster struc-
ture either. Eventually, she remained uncertain as to whether she was
seeing a true negative or false negative; we thus classify her case as
struggle.

Reduce Parameters of Algorithms (NPALGO): This usage exam-
ple involves a computer science professor with a strong mathematical
DR background. He uses empirical methods to study algorithms. One
particular project addresses the question of how to construct good pre-
diction models for NP-hard algorithms, such as the traveling salesman
problem [29]. He measures the time required to run an algorithm for a
NP-hard problem across many different parameter settings, where the
settings are regularly sampled from the available range.

This process results in a dataset with between ~100K and one mil-
lion points. There are two groups of dimensions: ~100 features in
the group of input dimensions, and the measured runtime as a sin-
gle output dimension. The dataset is then used to train a predictive
model for the algorithm at hand. Although the prediction model that
is constructed in this fashion works well, humans have a hard time un-
derstanding this 100D feature space. The data analyst therefore would
prefer to reduce the dataset to a lower dimensional set of 5-10 features,
with a resulting model that retains nearly the same predictive power as
the one that uses the entire feature space. Abstractly, this goal can be
described as getting insight into groups of dimensions and to synthe-
size new dimensions without diminishing predictive power.

The data analyst knows that the input dimensions are highly cor-
related to each other, so he would like to use a dimensional synthe-
sis technique. However, he has not succeeded in finding a technique
that meets his needs, because the critical relationship of the input di-
mensions to the output dimension is not taken into account in the DR
process. For example, a specific input dimension that contributes very
little to the overall variance may nevertheless have a huge impact on
the output run time; the converse is also possible. It is not useful to ap-
ply a DR technique solely on the input dimensions, because the crucial
information about the intrinsic relation of the input dimensions to the
output dimensions is not considered in the computation. Neither can
he run synthetic DR on all 101 dimensions at once, because the distinc-
tion between input and output groups of dimensions is not maintained
by any existing algorithm. That is, the importance of original input
variables with regard to their influence on the output variable is not
acknowledges by common DR metrics, such as maintaining variance
as in PCA, or reducing stress as in MDS. He thus has no choice but to
use manual filtering instead of synthetic DR techniques.

A Data-driven Reflectance Model (BRDF): This successful usage
example is extracted from Matusik et al.’s paper “A Data-Driven Re-
flectance Model” [30]. The researchers constructed a generative re-
flectance model for image synthesis, based on a large database of
photographs of 104 physical objects made from different materials.
Successive pictures of each material were taken as the light source
was systematically moved with respect to the camera, resulting in
a densely sampled set of measurements. Extensive resampling and
post-processing led to a dataset with ~4M derived dimensions and 104
points representing the way that light reflects off the object. The goal
was to drastically reduce this data to a set of new meaningful dimen-
sions. This lower-dimensional representation could be used to con-
struct a simple model that would allow for the generation of new ma-
terials with characteristics that were a blend of other physical materials
photographed. After using PCA to reduce the data to 45 dimensions,
Matusik et al. showed that the result model of this linear DR technique
generated physically implausible reflectances, whereas the non-linear
DR method of charting [9] resulted in a correct model with 15 dimen-
sions to which they could assign meaningful names, such as “redness”,
“metallic-like” or “dustiness”.

Sensitivity Analysis, not DR (FiISHPOP): Finally, we describe an ex-
ample from a biologist with a strong statistics background who stud-
ies fish population models. Using these, she gives recommendations
about balancing the risks of overfishing with commercial and private
fishing interests. She compares and evaluates several different math-
ematical models that simulate the behavior of fish populations. All
of these take a set of input parameters, such as carrying capacity and
productivity, typically generated via regular sampling in the space of
possible parameter configurations. This sampling pattern is clearly
visible in the fisheries dataset example in our visual cluster separation
taxonomy [38]. The output of these models is an indication of the
probability that a fish population will die out [20].

This dataset is a canonical example of explicit groups of old di-
mensions. Her main concern is sensitivity analysis: checking whether
small changes in input dimensions lead to small or large changes in
output dimensions. Here, there is no need for DR. She was not using
DR at the time of the initial interview. However, she did apply several
DR techniques over the following months, but ultimately resolved that
no off-the-shelf DR technique was appropriate for her dataset, thereby
continuing with sensitivity analysis.

We include FISHPOP as an example of a situation where DR is not
required despite a high dimensional dataset. In this case, sensitivity
analysis was sufficient and there was no need to reduce dimensionality.

6 DISCREPANCIES: GAPS AND MISMATCHES

We derive seven gaps and three mismatches from the analysis of 27
usage examples. The gaps describe problems of users that are not suf-
ficiently addressed by current DR literature. Table 1 illustrates the
usage examples which fell into these gaps. The mismatches are sit-
uations where the capabilities of techniques proposed in the literature
were not required to solve the particular problems of these users. Gaps
and mismatches are also summarized in Table 2. We consider our us-
age examples to be an existence proof of these gaps; we do not make
quantitative claims about their prevalence. We discuss them here given
that we identified each of them at least in one usage example, and be-
cause their description may be useful for directing future research.

6.1 User: DR-naive Gaps

More than half of our interviewees can be considered as being DR-
naive, suggesting that this type of user is not uncommon, exists in
many domains, and should not be neglected by the research commu-
nity. DR-naive users have high-dimensional data, a potential need for
DR, and extensive domain knowledge. However, they have markedly
less technical knowledge about DR, as discussed in Section 4.1. We
identified three DR-naive gaps:

Conceptual: What is DR doing? — Most of the current technical DR
literature requires a sophisticated grasp of the underlying mathematics
in order for techniques to be used effectively. It explains DR solutions
from an implementation model point of view; that is, with a strong
focus on how the technical DR solution works. End users, especially
those who we call DR-naive, would benefit from simplified yet faith-
ful conceptual models of these techniques, models which can easily be
incorporated into a user’s mental model. An analogous example from
the HCI domain refers to withdrawing money from an ATM machine:
the conceptual model presented to the users is rather simple (use debit
card and PIN to get money), hiding the full complexity of the imple-
mentation model, which involves time-critical transaction processing.
In DR, PCA is easy to understand in terms of finding principal com-
ponents, and even MDS has an intuitive analogy of springs and forces
between points. These are simplified yet faithful conceptual models
which hide the full mathematical complexity. As a result, PCA and
MDS are often the first choice of DR-naive analysts. The conceptual
gap is a hurdle that prohibits many potential users from selecting and
applying DR, and can lead to misapplications of DR techniques.

Interpretation: What do the results mean? — Many of our DR-naive
interviewees struggled with gauging the effectiveness of a DR tech-
nique, such as when inspecting the visual layout of a reduced dataset



in a scatterplot. These users know enough about DR to select a par-
ticular technique, but not enough to fully interpret its results. Their
uncertainty can be cast as concerns about potential false negatives and
positives. One frequently recurring example among many of our inter-
viewees, including some who we considered to be DR-Math experts,
was how to interpret a scatterplot of a reduced dataset that does not
contain visually separable clusters (no implicit groups). Such an in-
stance could either indicate a true negative, that there is no cluster
structure in the dataset, or as a false negative, an artifact of inappropri-
ate choices of DR techniques and/or parameters. Some interviewees
stated this concerns explicitly. However, a worse case is a user who
unquestioningly assumes that no visible implicit groups are always in-
dicative of a true negative.

Guidance: What algorithm/parameterization to use? — This gap fol-
lows from the previous one, and points to a lack of support for the
user’s questions regarding how to proceed. In the undifferentiated
blob example, the problem of true negative vs. false negative leads
them to ask: when should attempts to use other techniques be made?
At what point should analysis stop? For DR-naive users, these ques-
tions are hard to answer without guidance, often resulting in trial-and-
error approaches. Guidance in these situations may be provided by
matching data and task characteristics with the assumptions of the DR
algorithms. The concise description of abstract tasks offered in this
paper is a step towards such systematic guidance. Our previous work
with DimStiller [21] was another step in this direction, however, there
is much left to do.

6.2 Task: Dimension Gaps

We describe two gaps of unfulfilled DR needs arising from dimension
tasks, as characterized in our taxonomy (Section 4.3).

Dependent groups: Many of our usage examples involved comparing
explicit groups of dimensions. Some analysts, such as in the FISHPOP
usage example, perform this comparison and have no need for DR at
all, and sensitivity analysis alone may represent an adequate solution
for them. However, many other analysts have an additional need to
reduce the dimensions of their data. This combination does not in-
herently result in a problem. For instance, the FLOCKSIM analyst was
able to meet her needs with DR in the form of filtering; the STRUCGEN
analyst was satisfied by reducing each group of dimensions indepen-
dently from one another, then comparing the reduced groups. How-
ever, in other cases, such as in the NPALGO example, the groups pos-
sessed an inherent and important dependency which is not accounted
for by off-the-shelf DR algorithms. NPALGO is a specific instance of
this gap, where there is a need for DR combined with a need for sen-
sitivity analysis between input and output groups. Reducing the input
(or output) dimensions without taking into consideration their inherent
relation leads to meaningless results. Reducing both groups together
also results in the loss of the critical distinction between the dimen-
sional groups. In general, this problem may occur in situations with
n groups of dimensions and an arbitrary arrangement of relations be-
tween these groups. No existing DR technique (to our knowledge, or
that of our interviewees) handled dependent dimensional groups ap-
propriately.

Non-linear unmapping: In Section 4.3, we mentioned the task of
relating the new synthetic dimensions back to old ones, or unmap-
ping the new dimensions. When interviewees performed this task, they
used PCA because there was no support for unmapping with any non-
linear technique. However, in many cases their data was not linear,
leaving their analysis needs poorly met. For example, the MUSIC B
data analyst needed intuition about the mapping between old and new,
and would have benefited from a non-linear synthesis technique. The
SEARCH analyst faced the same problem, where linear methods fell
short when synthesizing and unmapping new dimensions.

While we are well aware that unmapping non-linear combinations
is a difficult undertaking, even a partial solution would improve the
state of the art. Interactive visualization may well be a fruitful avenue
to pursue, for helping users explore a complex non-linear dimensional
mapping space.

6.3 Data: Assumption Gaps

Finally, assumptions about data characteristics that make certain DR
synthesis techniques unusable were apparent in several usage exam-
ples. Although there were many instances of noisy, sparse, or incom-
plete data, we do not belabor these well-known issues here. We identi-
fied two further stumbling blocks with respect to data characteristics:

Categorical dimensions: Categorical data is poorly handled by most
existing DR algorithms, which are designed to work efficiently with
continuous, numerical data. Workarounds, such as mapping categori-
cal data with k values into k new binary dimensions, are stopgap mea-
sures. Correspondence analysis is designed for categorical data, but
does not solve analysts’ problems, as it lays out the dimensions, not
the individual points, which is particularly problematic if analysts look
for pointclusters [18].

Scalability: Many real-world datasets are far too large for commonly
used DR algorithms, causing inconvenient breakdowns for many ana-
lysts. A large number of points or dimensions challenges most algo-
rithms, however the scalability problem is particularly severe for dis-
tance matrices, which grow quadratically with the number of points.
Extreme ratios between dimensions and points, when there are many
more dimensions than points, also pose scalability challenges [13, 47].

6.4 Mismatches

We identified three mismatches that should evoke caution on the part
of both DR users and DR technique developers. As opposed to gaps
where users have unmet needs, these mismatches represent the oppo-
site situation, where offered techniques are in excess of user needs.

DR: The first mismatch to note is that some users with high-
dimensional data have no need for DR. While this statement might
sound obvious to some, DR-interested researchers might be quick to
assume a need for DR where it does not in fact exist; we have certainly
noticed this tendency in our prior research. The DR—No box in the
taxonomy serves as an explicit reminder of this fact. The FISHPOP an-
alyst’s goals were met with sensitivity analysis, gauging whether small
changes in the input dimensions result in small or large changes in the
output dimensions; there was no need for DR per se.

Vis: The second mismatch is that some users do not need visualiza-
tion. The DR Purpose box relates to this question: when the purpose
of using DR is solely for algorithmic input, there is no need for vi-
sualization. More subtly, even if the user has a goal of data analysis,
there still may not be a need for visualization. NPALGO and MUSIC
B usage examples illustrate non-visual data analysis.

Manifold DR Techniques: Our in-the-wild investigation led us to a
better understanding of our original hypothesis and we indeed identi-
fied mismatches between user needs and the assumptions of manifold
following techniques. We note that none of the interviewees chose
to apply manifold techniques; both usage examples where these tech-
niques were applied were found in papers.

Densely sampled: Manifold techniques assume densely sampled
data, however, we encountered many situations in which it was not
clear to data analysts, in particular DR-naives, whether their datasets
meet the assumptions of a densely sampled manifold or not. We have
identified two rules of thumb to understand when a dataset is likely to
qualify as a densely sampled manifold. First, all dimensions should
be numerical and continuous, which negates any datasets containing
categorical dimensions. Second, the dataset should be generated by
a process that has the characteristics of continuous sampling. For
example, in BRDF pictures were taken of materials where the light
source moved in small and regular intervals and in MOCAP the sen-
sors measure body part motion over small time intervals. Real-world
measurements are a common case for manifolds, but manifolds may
exist elsewhere: with NPALG, the regularly changing values reflected
algorithm parameters. We note that these aspects seem not to be met
by many real-world datasets. Consider, for instance, the survey data in
the MUSIC example, or the research CONCEPTS dataset.

Single vs. multiple manifolds: In addition to densely sampled data,
many of the well-known manifold techniques such as Isomap [40] and



User Gaps Conceptual Missing conceptual models for many DR algorithms.
Interpretation Difficulties understanding and trusting the visual layout of reduced datasets, in terms of true/false positives/negatives.
Guidance Difficulties in selecting which algorithms to use, and realizing when one has reached a stopping condition.
Task Gaps Dependent groups Need for DR that takes into account dependencies between explicit groups of dimensions.
Unmapping Need for non-linear DR that supports relating synthetic new dimensions to original / old dimensions.
Data Gaps Categorical Assumption that dimensions are continuous or ordered, rather than categorical.
Scalability Assumption that the number of points, or dimensions, or ratio between them is constrained.
Mismatches DR User has high-dimensional data but does not need DR.
Vis User has no data analysis needs, or can perform analysis without visualization.
Manifold User does not need to name new synthetic dimensions, or the dataset was not generated via dense sampling.

Table 2. Summary of gaps and mismatches. Gaps are user needs that are not sufficiently addressed by current algorithms and tools. Mismatches
describe situations where offered algorithms/techniques were not needed by the analysts.

Laplacian Eigenmaps [5] have a further assumption, that the data re-
sides on a single manifold. Formally, the data distribution along all
continuous dimensions needs to be homogeneous rather than hetero-
geneous or clumpy; this third rule of thumb indicates single mani-
folds. The Swiss Roll dataset is the canonical example for a single
manifold, with the goal being to carefully unroll the single manifold.
This assumption matches only with the needs of users who care about
the name new dimensions task. In particular, such techniques are less
likely to meet the users’ need in cases where they care about point clus-
ters. Point clusters would be due to either a non-uniform distribution
of samples on a single manifold, or that the clusters represent sam-
ples taken from multiple different manifolds. MOCAP is an example
from our study where a multiple manifold structure is likely, with one
densely sampled manifold per movement type. The machine learning
community has noted the instability of these older single manifold al-
gorithms [3, 46] and newer techniques such as t-SNE [45] have been
proposed for following multiple manifolds and better supporting clus-
tering tasks. However, the question of whether a dataset reflects the
result of dense sampling along continuous dimensions remains.

7 DIsScUSSION

Our taxonomy provides the first systematic analysis and description
of DR usage in the wild, adding a new usage-based perspective to the
large body of technique-driven DR literature. Following the nature
of descriptive taxonomies [1, 28], our main contribution is not a rad-
ically new perspective on a problem; rather, our taxonomy provides
a structured description, a holistic lens, and a concise vocabulary for
talking and thinking about high-dimensional data analysis with respect
to DR. In particular, we introduced a differentiation between tasks in-
volving point clusters and those involving dimensions, the idea of ex-
plicit and implicit groups of points as a way to think about visual clus-
tering, and of old and new dimensions for framing dimension-related
tasks. We also emphasize true/false positives/negatives as a way to
consider whether the the visual representation of a dimensionally re-
duced dataset is faithful to its true structure. We envision several ways
in which the descriptive understanding we offer could prove helpful to
researchers and practitioners of visualization and DR. Those conduct-
ing design studies [37] involving high-dimensional data can use the
taxonomy to guide the categorization and abstraction of user problems
and tasks, including the decision of whether the application of DR is
an appropriate choice.

Researchers presenting new DR techniques can use the taxonomy
to concisely state assumptions about which tasks are supported, rather
than leaving this description implicit in a way that places a burden on
the reader. We also hope to stimulate and inspire future research direc-
tions in DR techniques through the seven gaps and three mismatches
identified here. The most critical open areas are the DR-naive gaps,
and dimension gaps of group-aware DR and support for non-linear un-
mapping of new dimensions. The classification of 27 usage examples
in Figure 2 reveals that while nearly half of DR usage for algorithmic
input led to successful outcomes (3 out of 7), most users who used
DR for data analysis struggled or failed in their attempt (of 22, 13
struggled and 6 failed). These numbers clearly underline the need for

further usage-centered DR development and research.

Limitations and Future Work: This work is not without its limi-
tations. Our own background is in visualization, and our particular
interests for this project were in high-dimensional data analysis with
a strong focus on, yet not an all-encompassing knowledge of, DR. As
is inevitable with qualitative research [12], this lens influenced which
participants we invited to our study, how we questioned them, which
papers we selected and read, how we coded the data, and eventu-
ally also what we decided to report in the paper. This is, we do not
claim a complete coverage of all possible and relevant DR and high-
dimensional usage patterns. High-dimensional data analysis is a di-
verse and rich area full of many other interesting real-world aspects.
While our data gathering and analysis process has focused on the usage
of DR, we naturally encountered other aspects including such as data
cleaning, outlier detection, model optimization, and subspace cluster-
ing. We see our work as a first step towards a better and more sys-
tematic understanding of data analysis “in the wild”” and hope that oth-
ers will build upon our work and methodological approach, extend the
taxonomy with new findings, and broaden our understanding with new
and different perspectives.

Lessons Learned: Interviewing a broad set of users across many do-
mains proved to be a difficult adjustment for us, compared to the famil-
iar design study approach where the goal is to attain a deep understand-
ing of a single domain problem. Many of the data analysts we talked
to worked on difficult questions in complex domains, such as compu-
tational chemistry. To understand data analysts’ needs and problems
a certain amount of domain understanding is imperative. On the other
hand, attaining an in-depth understanding for all 19 domain problems
would have resulted in years or even decades of work. Finding the
balance between those two extremes was a challenging process. Our
approach was to engage in task and data abstraction on the fly during
the interviews, in order to get immediate feedback without iterative
refinement through multiple interviews.

8 CONCLUSIONS

In this paper, we presented a descriptive taxonomy of DR usage in the
wild, grounded in the analysis of usage examples from many different
domains. The taxonomy provides an abstract understanding of what
practices data analysts with high-dimensional data and DR needs are
engaging in. Together with the usage examples we described, it serves
as a new usage-centered lens on DR, complementing the rich corpus
of technical DR literature. We also specifically outlined research gaps
and mismatches between real usage and available techniques which
became apparent to us during the course of our study. We hope that
this usage-centered approach to high-dimensional data analysis and di-
mensionality reduction encourages others to continue in this method-
ological spirit.
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