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Figure 1: The evolution of our technique. We adapt the commonly known technique of 1D function plots (a) to multiple dimensions by
taking a small multiples approach and repeating each plot for each dimension (b). We address the focus point selection problem by sampling
over the parameter space and then projecting the slices in the corresponding plot (c). The user can mouse over a particular slice in one plot
and the corresponding slices are highlighted in the other dimension plots (d). This allows one to see the corresponding function behaviors in
the other dimensions. Finally, we can cluster the function slices (e), to show groups of similar behavior in the manifold.

Abstract
Multi-dimensional continuous functions are commonly visualized with 2D slices or topological views. Here, we explore 1D
slices as an alternative approach to show such functions. Our goal with 1D slices is to combine the benefits of topological
views, that is, screen space efficiency, with those of slices, that is a close resemblance of the underlying function. We compare
1D slices to 2D slices and topological views, first, by looking at their performance with respect to common function analysis
tasks. We also demonstrate 3 usage scenarios: the 2D sinc function, neural network regression, and optimization traces. Based
on this evaluation, we characterize the advantages and drawbacks of each of these approaches, and show how interaction can
be used to overcome some of the shortcomings.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Motivation

The visual analysis of multi-dimensional scalar functions is a fun-
damental aspect in many areas, from computational sciences (based
on computer simulations) to data sciences (based on machine learn-

ing techniques) and general optimization algorithms. Neural net-
works, for instance, have shown to produce very good results that
come in the form of highly non-linear response manifolds. While
understanding these manifolds would greatly help to verify the re-
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sulting models, there is currently no established way to inspect
these multi-dimensional manifolds. In case of an optimization al-
gorithm, a good visualization of response manifolds could, for in-
stance, help to see where possible “holes” (local extrema) are that
the algorithm may get trapped in and fail to find the global opti-
mum. By visually examining the functions that we are trying to
optimize, one can develop new insights on how to improve the op-
timization algorithm. Our work is based on the assumption that vi-
sual analyses of these functions will help to increase understanding
of what they are doing, as argued by Gleicher [Gle16].

To examine these functions visually we must reduce them to be
displayed on a 2D screen. Currently, the two major approaches
used to visualize these spaces are either two-dimensional slices,
a technique known as HyperSlice [vWvL93] or dimension trans-
formation techniques. This includes dimensionality reduction and
topological methods [CLB11, CSA03]. HyperSlice shows two-
dimensional slices (using either a heatmap or contour view) of the
function directly around a particular focus point. It clearly shows
the behavior of the function with respect to the parameters. How-
ever, one can only view one focus point at a time and the approach
does not scale well to many dimensions. With each additional di-
mension one must substantially shrink the subplots so less detail
can be seen just like in scatterplot matrices. Topological and dimen-
sionality reduction techniques take the opposite approach. They
morph the space to produce a 2D global view. However, the mor-
phing process is rather complex and it is unclear what the resulting
layout means. This reduces comprehension. Ideally we would like
to somehow combine the global view with local detail.

In this paper, we explore the idea of 1D slices to fill this gap.
We focus on multi-dimensional continuous scalar functions which
we define as functions that take two or more scalar parameters as
input and produce a single scalar as output. Towards illustrating
the benefits, we propose a concrete technique using projections of
1D slices, which we call Sliceplorer (Figure 1). 1D slices are tradi-
tional function line plots familiar to anyone with basic mathemat-
ics knowledge: one dimensional curves with respect to changes in a
single parameter. Like HyperSlice, we show a separate subplot for
each input dimension. For 1D slices, the number of subplots scales
linearly with the number of dimensions, not quadratically as with
2D slices. We address the issue of having to choose a focus point
by sampling focus points and then showing all slices as a projec-
tion. Therefore, our 1D approach can be seen as a hybrid method
of slicing and projection techniques.

In order to evaluate any new technique, we need to consider
what data characteristics and tasks each method is good for. As
of yet, there has not been a comprehensive listing of the tasks a
user would want to perform when looking at multi-dimensional
continuous functions. To this end, we begin development of this
task summary by extending the task classification of Amar, Ea-
gan, and Stasko [AES05]. We use this classification to evaluate our
1D approach and compare it to 2D slices and different topological
approaches. This comparison allows us to characterize what tech-
nique is best for which tasks and reveals that 1D slices is the most
flexible of the current approaches. That is, it supports the broadest
range of different tasks.

We also provide three usage scenarios comparing our technique
with other state of the art techniques. These scenarios illustrate that
1D slices can reveal structure in the functions that could not have
been seen before. For example, we discuss how one can use our
method to compare the global prediction manifold of a neural net-
work algorithm against a support vector machine to guide and bet-
ter understand the architecture of a neural network. This is currently
an open research question in the machine learning community.

In summary our contributions are:

• exploring the idea of 1D slices with a concrete software proto-
type called Sliceplorer,

• a task-based analysis of multi-dimensional functions, comparing
1D slices to 2D HyperSlices and topological techniques, and

• three usage scenarios illustrating the value of 1D slices in com-
mon function visualization scenarios.

2. Related Work

The question of how to comprehend multi-dimensional data is a
heavily researched area in visualization. There are two principal
approaches, projection techniques (such as scatterplots) and slic-
ing techniques (such as HyperSlice). Projection techniques gener-
ally show all of the data and, therefore, represent a more global
view. On the other hand, slicing techniques present more of a lo-
cal view around a point of interest (which we call focus point).
The lion’s share of previous work is concerned with projection ap-
proaches of discrete data. In contrast, we are focusing on contin-
uous multi-dimensional scalar functions and seek to combine the
strengths of projection and slicing. Given our focus on continuous
data, our options for a visual exploration are limited and could be
categorized into three areas (a) discretization, (b) local methods, (c)
global methods.

2.1. Discretization

There is a number of different approaches to display discretized
multi-dimensional functions. The typical approaches are scatter-
plot matrices [Har75], parallel coordinates [Ins85], star coor-
dinates [Kan00], and RadVis [HGM∗97]. Star coordinates and
RadVis were generalized into one framework by Lehmann and
Theisel [LT16]. These can all be combined with a variety of dimen-
sionality reduction techniques [Hol06]. However, all of these seem
inappropriate if the mental model of the function we are studying
is a continuous one. In such a case all of these projection tech-
niques would fail to properly convey the complexity of the under-
lying continuous phenomenon. Hence, while discretization seems
like an easy way out, it is not a proper alternative for studying con-
tinuous multi-dimensional functions, such as regression functions
or classification boundaries. Here, one of the main concerns is un-
derstanding a continuous phenomenon and a good visualization de-
sign should thus respect this mental model [TM04,SMM12,LS10].

2.2. Local methods

The idea of a local technique is to focus on a part of the function.
Interaction is used to explore other parts of the function. One of the
oldest approaches here is the HyperSlice technique by van Wijk and
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van Liere [vWvL93]. HyperSlice is a technique where the function
is shown directly but in multiple 2D slices laid out similar to a scat-
terplot matrix. In many ways, our work was inspired by this work.
One of the drawbacks of HyperSlice is that one has to choose a
focus point — a point common to all 2D slices. Exploring the full
data set then shifts over to exploring all possible focus points. Al-
though not created for HyperSlice specifically, techniques like the
grand tour [Asi85], projection pursuit [Hub85], and optimal sets
of projections [LT15] might be appropriate to tackle this issue. All
of these approaches are still local though. A mental image of the
global function can only be built up over time and with mental ef-
fort by browsing through the focus points. Our approach seeks to
overcome this limitation while keeping the benefits of ease of un-
derstanding.

Note that for some tasks a local view might in fact suffice, such
as when one is interested in the robustness of an extrema value. For
example, Tuner [TWSM∗11] used 2D continuous slices, letting the
user navigate them via selecting Pareto optimal focus points in a
separate view. Berger et al. [BPFG11] use coordinated views of
scatterplots and parallel coordinates to show additional (continu-
ous) prediction uncertainty. Having a discrete approach provided
extra space to display information about the prediction uncertainty
for the currently selected point.

2.3. Global methods

The visualization community has developed many global views
of multi-dimensional continuous functions. Continuous scatter-
plots [BW08] and continuous parallel coordinates [HW09] can en-
code a multi-dimensional density field into either two dimensions
or more than two dimensions respectively. Here, we are not as con-
cerned with the density field, rather we are concerned with the man-
ifold created from a continuous multi-dimensional scalar function.

Topological methods like topological spines [CLB11], the work
by Gerber et al. [GBPW10], and contour trees [CSA03] extract ex-
trema and saddle points from a function and then show these. These
methods are good for seeing the relative relation of extrema in a
function. However, they do not work for important tasks like ro-
bust optimization. Here, one does not necessarily want to find the
global optimum but wants an optimum in a relatively “flat” area of
the parameter space.

In our case, we use line plots together with the widely-used tech-
nique of projection to overdraw 1D slices. This approach is simi-
lar to the work by Hall et al. [HKC14] but differs in two major
ways. (1) They showed 2 primary dimensions with slices and then
used the third for color limiting their view to three dimensions and
(2) they were concerned with isosurface extraction. Our technique
can scale to any number of dimensions and we evaluate based on a
much broader set of tasks and applications, such as parameter space
analysis.

3. Sliceplorer

When developing our technique, we first identified design require-
ments with respect to tasks that a user would perform when ana-
lyzing multi-dimensional scalar functions. We continuously evalu-
ated how our technique fits with these requirements and iteratively

adapted it to encompass as many tasks as possible. A static slice
view itself does not address many of the tasks required so we use
interaction methods to address these and create a comprehensive
technique.

3.1. Design requirements

When analyzing a function visually, there are a number of features
that the user wants to see.

R-peaks: The most obvious feature is identifying peaks and val-
leys. This is primarily done to find the global optimum of a func-
tion.

R-robust: The relative height around each optima is important
to detecting the robustness of that optimum. In some cases, one
may prefer a local optimum over a global one if it is more stable.
This is very common in simulations of manufacturing processes
where variations in manufacturing tolerances should not affect the
performance of a part too much [BPFG11].

R-bowl: Similarly, we may be interested in how “bowl”-shaped
the area around an optimum is. The goal is similar to robust op-
timization but rather than looking for “flat” areas of the function
we are looking for areas with smooth gradients. The amount of this
smoothness is important for correctly parameterizing optimization
algorithms [Bäc96]. An incorrect parameterization can either cause
them to get “stuck” at some local minimum or make unreasonably
slow progress towards the global minimum.

R-overall: Finally, we want to view the overall “shape” of the
function. It is important to understand if it is smooth everywhere
and how much variance there is in the function. When building a
surrogate regression model we need to know if the function has
consistent variance and we need to choose a model that captures
this behavior.

All of these requirements mean that we need to view more than
just the maxima and minima of a function.

3.2. Intuition

If we were analyzing one-dimensional continuous functions then
the choice would be obvious: a line plot like the one in Figure 1a.
The x-axis is used for the independent variable or parameter setting
and the y-axis is used for the dependent variable or scalar value
of the function. The function response is shown with a line. This
is a metaphor that anyone who has taken high-school algebra can
comprehend. The vertical and horizontal location channels visually
encode the primary values of interest. These are the “best” visual
channels to use in terms of accuracy and sensitivity to differences
according to Bertin and others [Ber67, Mac86].

We show the evolution of our technique from a one-dimensional
function to the full multi-dimensional Sliceplorer view in Figure 1.
To extend this simple technique to multi-dimensional functions we
simply repeat the one-dimensional function plot for each parameter
(Figure 1b). We will have d plots where d is the number of dimen-
sions in the function. In the same way that HyperSlice [vWvL93] is
inspired by the SPLOM layout, we can use any layout technique for
multiple histograms. 2D slices scale as O(d2) which is worse than
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theO(d) for 1D slices. 1D slices also give us separable channels re-
maining for encoding of additional information such as uncertainty
or optimization traces (see Sec. 5.3).

Slicing offers a number of advantages over projection-based
views like scatterplots and histograms. Slices give context around
a particular focus point. We can see the precise shape of the func-
tion at this point. For example, peaks and valleys (R-peaks), flat
areas (R-robust), and variance in the function can all be seen di-
rectly. While scatterplots and histograms can be used to see general
trends, they suffer from “false distances” where points that are vis-
ibly close to each other are not actually close to each other.

3.3. Focus point projection

Showing a local 1D slice requires the selection of a single focus
point, i.e. a point in multi-D through where all 1D slices intersect.
Once this focus point is selected, we can use an off-the-shelf 1D
function plot drawing method to draw the slice itself. Rather than
only showing one focus point (i.e. one slice line per dimension) at
a time and having the user choose a focus point we select multiple
focus points automatically. This enables a more global view of the
function (R-overall). Now, all 1D slices (one per focus point and
dimension) are projected onto the same plot (see Figure 1c). In do-
ing so, users do not need to memorize the previously seen slices,
they can look among them to see general trends. This approach
combines the ideas of slicing and projection, and fosters one of the
core strengths of visualization: “perception beats recall” [Mun14].

We are using a Sobol sequence [Sob67] to select the focus points
themselves. The Sobol sequence is a space-filling, quasi-random,
low-discrepancy sequence that is designed for sampling in high di-
mensional spaces. The Sobol sequence will give us a sampling of
the multi-dimensional parameter space with an economy of sam-
ples. This will maximize the chances that we will see extrema (R-
peaks), plateaus (R-robust), and bowls (R-bowl) in our 1D slices.
In addition, using a Sobol sequence makes it easy to adjust the num-
ber of 1D slices shown (i.e. focus points) on the fly. Specifically, it
avoids a complete resampling of the parameter space like we would
need with a Latin hypercube sampling.

3.4. Linked selection

One disadvantage with 1D views over 2D views is that we cannot
see the two-dimensional interactions anymore. We compensate for
this with interaction. The user can mouse over a particular slice
which will highlight all slices corresponding to that focus point.
That is, one slice in each view is highlighted. We also superimpose
the focus point itself on these lines. In doing so, the user can see
the behavior of the function with respect to the other parameters
around that focus point (see Figure 1d).

3.5. Clustering

Similar to visual encoding techniques such as parallel coordinate
plots, projected 1D slices might mask certain patterns due to over-
drawing. Figure 2a is an example where it is difficult to tell if
the slices are monotonic or bowl-shaped (R-bowl). The interactive
slice highlighting can give some insight into how individual slices

(a) (b)

Figure 2: 500 projected slices of the 5th dimension of the 5D Za-
kharov [Bäc96] function. It is difficult to see if the slices are bowl
shaped or two sets of monotonically decreasing and increasing
curves. It is much clearer in the cluster view that there are actu-
ally three sets of curves: there is a set of monotonically decreasing
curves and a set of monotonically increasing curves. The very low-
value curves form a third set.
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Fig. 13. Topological spines of high dimensional functions. (a) Ackley’s path function in 2–5 dimensions, which reveals structural properties, such as
the 2d-fold radial symmetry and the exponential increase in complexity (the number of extrema is 3d ). (b) Schwefel’s function in 2D–4D. Note that
the fractal structure and the cardinality of the different geometric structures are preserved.

Structure-preserving Topological Landscapes. Topological
landscapes were introduced by Weber et al. [34] as intuitive visual-
izations of the contour tree of scalar fields. These landscapes lever-
age our ability to read and interpret elevation maps to understand the
shape of a function. This metaphor has also been extended to higher-
dimensional data sets [17, 22]. Since contour trees do not inherently
encode spatial information, as shown in Section 3, proximity relation-
ships in topological landscapes are usually arbitrary.

We here extend topological landscapes to preserve spatial locality.
Our topological spine representation can be thought of as an approxi-
mate 2D contour map of the underlying scalar field. By extruding these
contours in the third dimension according to their associated function
values, we readily obtain a structure-preserving topological landscape.

One example is shown in Fig. 9(b) for the neghip data set. The
shape and height of each hill here makes the density and persistence
of each extremum more salient. Fig. 11(b) reveals the hierarchical
structure of the density field of the isopentane molecule. The differ-
ence in scalar value of the H and C atoms (smaller and larger hills,
respectively), is now more evident than in the 2D topological spine.

6 LIMITATIONS

Topological spines, and the underlying extremum graphs, offer a
mechanism for displaying the structure and topology of a scalar field.
Due to its construction, we consider the maximum and minimum
graphs as independent. Therefore, the interplay between maxima and
minima may not be evident from looking at the two corresponding
topological spines. Topological spines and their landscape counter-
parts are most effective when the extremum graph is reduced to a pla-
nar graph. We have seen that this is the case for many complex struc-
tures such as the Bucky ball. In fact, many of the MS complex arcs
that make these structures non-planar connect extrema via non-ridge
and non-valley like saddles, and seldom help understand the structure.
Nonetheless, there may be cases where the visualizations of these con-
nections is important. Our algorithm allows the user to explore the two
persistence thresholds, noise and variation, at runtime, and enables the
exploration of structures from the global MS complex to more mean-
ingful local structures. Topological spines rely on setting two persis-
tence thresholds. The notion of stability of the extremum graph proves
effective to finding suitable threshold values. In certain cases, no ob-
vious stability regions are found. Again, interactivity is key and the
ability to explore these in real-time minimizes the effort required to
find good values. Topological spines are designed to preserve struc-
tural properties, including the local symmetries and cardinalities of
extrema, and the relative volume of different spatial regions. Other
geometric properties, such as shape and curvature, are usually not pre-
served in our approach. We believe our technique is an abstraction

suitable for spatial reasoning that may be combined with other tech-
niques to supply missing geometric information.

7 SUMMARY

When confronted with tasks that involve spatial reasoning, direct vi-
sualization of complex, possibly high dimensional datasets proves im-
practical. Even for 3D data sets, we have shown that contour trees do
not preserve the locality of extrema and other critical points.

In this paper, we have presented a data structure—the extremum
graph—and a visual representation that augments this structure with
geometric information—the topological spine. After our study of
this representation and validation on a number of scalar fields, we
have identified a number of practical use cases for this representa-
tion: For 3D scalar field visualization, the topological spine provides
an overview of the data set as a network of 1D embedded structures
that are usually sparse. This approach solves the occlusion issues of di-
rect volume rendering and the clutter associated with projections. Al-
though 3D exploration is still an important task, the topological spine
provides an occlusion-free 2D map that helps identify structures faster
and more accurately. For higher-dimensional exploration, there is no
direct counterpart to 3D volume rendering, and one usually resorts to
projections. Because the topological spine encodes geometric infor-
mation, it can suggest to the user where to steer their attention.

Topological spines create shape signatures in 2D to represent com-
plex relationships between extrema. In our studies, we have encoun-
tered that patterns such as hierarchies of extrema, cycles (e.g., tori in
3D), and fractals, can be identified with ease using our representation.
This proves useful for understanding complex structures by analyzing
the formation of structures that are smaller and easier to comprehend.

As shown in our examples and the accompanying video, interac-
tivity plays an important role in understanding structure. Here, inter-
activity refers to the ability to explore the structural parameters of a
scalar function, in terms of what defines noise vs. a feature, and how
well connected features are. We introduced a parameter space as a
range in persistence, which extends the idea of topological simplifi-
cation towards the preservation of structurally important connections
between extrema. We found that the notion of stability of persistence
is a valuable hint that aids in the selection of parameter values.

Our approach defines structure in terms of low-level parameters that
govern the topology of a scalar field. Higher-level properties, such as
symmetry, appear as a side-effect. Alternatively, one can formulate the
problem of structure-preserving visualization as the generation of an
image that best depicts a target structure. Our approach currently em-
ploys local strategies, but topological spines can also leverage global
strategies, including automatic symmetry detection.

1850 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 12, DECEMBER 2011

(b) Topological spine [CLB11]

1
2

3

4

5

6

7

8
9

10

(c) Contour tree [CS03]

Visual Exploration of High Dimensional Scalar Functions
Samuel Gerber, Peer-Timo Bremer, Valerio Pascucci, and Ross Whitaker

Fig. 1. The proposed visualization illustrated on several two-dimensional scalar fields. In the bottom row, each curve represents a
monotonic region of the 2D domain, a geometric summary for each crystal of the Morse-Smale complex of the function above.

Abstract—An important goal of scientific data analysis is to understand the behavior of a system or process based on a sample of
the system. In many instances it is possible to observe both input parameters and system outputs, and characterize the system as
a high-dimensional function. Such data sets arise, for instance, in large numerical simulations, as energy landscapes in optimization
problems, or in the analysis of image data relating to biological or medical parameters. This paper proposes an approach to analyze
and visualizing such data sets. The proposed method combines topological and geometric techniques to provide interactive visual-
izations of discretely sampled high-dimensional scalar fields. The method relies on a segmentation of the parameter space using an
approximate Morse-Smale complex on the cloud of point samples. For each crystal of the Morse-Smale complex, a regression of the
system parameters with respect to the output yields a curve in the parameter space. The result is a simplified geometric representa-
tion of the Morse-Smale complex in the high dimensional input domain. Finally, the geometric representation is embedded in 2D, using
dimension reduction, to provide a visualization platform. The geometric properties of the regression curves enable the visualization
of additional information about each crystal such as local and global shape, width, length, and sampling densities. The method is
illustrated on several synthetic examples of two dimensional functions. Two use cases, using data sets from the UCI machine learning
repository, demonstrate the utility of the proposed approach on real data. Finally, in collaboration with domain experts the proposed
method is applied to two scientific challenges. The analysis of parameters of climate simulations and their relationship to predicted
global energy flux and the concentrations of chemical species in a combustion simulation and their integration with temperature.

Index Terms—Morse theory, High-dimensional visualization, Morse-Smale complex.

1 INTRODUCTION

Visual representations of high-dimensional scalar fields are becoming
an increasingly important challenge in a variety of fields. To illus-
trate the problem, consider the manufacture of concrete. The recipe,
or ingredients, for concrete consists of various mixtures of a variety of
constituents, such as rock, cement, and water, as well as age. A quan-
titative measure of the success of such a particular recipe is compres-
sive strength. Different aspects, or parameters, of the concrete recipe
can interact to impact the compressive strength in complicated, non-
linear relationships. A typical regression analysis provides the math-
ematical relationship, but visualizing and understanding the resulting
high-dimensional structure is still quite difficult and does not directly
answer many of the relevant questions. In particular, a civil engineer
might like to know if there are multiple distinct recipes for strong con-
crete. Additionally, one may want to understand how the recipes for

• Samuler Gerber, Valerio Pascucci and Ross Whitaker are with the
Scientific Computing and Imaging Institute, University of Utah.

• Peer-Timo Bremer is with the Center of Applied Scientific Computing
(CASC), Lawrence Livermore National Laboratory.

Manuscript received 31 March 2010; accepted 1 August 2010; posted online
24 October 2010; mailed on 16 October 2010.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

weak concrete differ from these optimal mixtures, and what particu-
lar deviations from ideal should be avoided. Furthermore, an engineer
might like to know how to make small modifications to a current recipe
in order to realize incremental improvements, and what the risk is that
these changes could make things worse. A similar set of problems
arises in numerical simulations, where a great variety of free param-
eters can interact to affect the results. Indeed, the parameters in a
simulation are the recipe for achieving certain quantitative outcomes,
and there exists a set of questions analogous to those in the concrete
example. Our proposition is that this kind of analysis demands new
visualization tools that can aggregate data and effectively reduce the
dimensionality while respecting the important structure introduced by
the output variable. These tools need to capture not only global in-
formation, such as the overall topology of these relationships, but also
local information, such as the geometry of these functions.

The relationship of concrete mixtures and compressive strength can
be represented as a high dimensional scalar function y = f (x), where
x � Rd are the parameters (ingredients and recipe) and y � R is the
output (compressive strength). Conventional multiple regression of f
assumes a set of samples yi = f (xi), and attempts to reconstruct f for
the entire domain. Of course, the number of samples must be larger
than the degrees of freedom in the model, and in high-dimensional
spaces model selection becomes a critical problem. The resulting sur-
rogate model of f may subsequently be used to predict the output for
new inputs and for analysis in lieu of f . The goal of this paper is sub-

(d) Gerber et al. [GBPW10]

Figure 3: The four techniques we used to compare with 1D slices.
With the exception of HyperSlice, the images are from the respec-
tive papers and show different datasets used in their context.

are behaving but lacks a global method to distinguish groups. We
offer a clustered slice view to address this (Figure 2b). The clus-
tering is done with a k-nearest neighbor algorithm using the L2

distance between two slices as the distance metric. This allows us
to group the slices into distinct groups of behavior and color-code
these groups to distinguish them.

4. Task-based evaluation

We first evaluate 1D slices in terms of their flexibility to deal with
a broad set of different low-level tasks. Task taxonomies give a ba-
sis for comparing visualization techniques to each other [Mun14].
If a technique addresses a large number of tasks, that is usually a
good indicator of its flexibility. Over the last years, many different
taxonomies have been proposed [AES05, BM13, HS12, SHB∗14].
However, to the best of our knowledge none of these taxonomies
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Task Task	description	for	discrete	data	items	from	[AES05] Our	adaption	to	continuous	scalar	functions

Retrieve	value "Given	a	set	of	specific	cases,	find	attributes	of	those	cases" Given	an	x,	what	is	the	function	value? 3 1 1 1 3 2 0 0 0 2

Filter
"Given	some	concrete	conditions	attribute	values,	find	data	cases	satisfying	
those	conditions." For	what	parameter	values	is	the	function	equal	or	over	x? 2 3 2 2 3 1 0 1 0 2

Compute	derived	value
"Given	a	set	of	data	cases,	compute	an	aggregate	numeric	representation	
of	those	data	cases" Summary	statistics:	variance,	mean,	SA 0 1 0 1 2 2 0 0 1 2

Find	extremum
"Find	data	cases	possessing	an	extreme	value	of	an	attribute	over	its	range	
within	the	data	set" Find	local/global	min/max 0 3 3 3 3 1 1 2 2 2

Determine	range
"Given	a	set	of	data	cases	and	an	attribute	of	interest,	find	the	span	of	
values	within	the	set" What	is	the	range	of	possible	outputs? 1 1 3 3 3 2 0 1 1 2

Characterize	distribution
"Given	a	set	of	data	cases	and	a	quantitative	attribute	of	interest,	
characterize	the	distribution	of	that	attribute’s	values	over	the	set" What	types	of	shapes	do	the	manifolds	have 1 0 0 0 3 1 1 1 2 2

Find	anomalies
"Identify	any	anomalies	within	a	given	set	of	data	cases	with	respect	to	a	
given	relationship	or	expectation,	e.g.	statistical	outliers" Do	areas	of	the	manifold	have	shapes	unlike	any	others 1 0 0 0 3 1 1 0 1 2

Cluster 	"Given	a	set	of	data	cases,	find	clusters	of	similar	attribute	values" Areas	of	the	manifold	have	similar	shapes 0 0 0 1 3 0 0 0 0 2

Correlate
"Given	a	set	of	data	cases	and	two	attributes,	determine	useful	
relationships	between	the	values	of	those	attributes" 1D	vs	2D	relationships 3 0 0 0 1 2 0 0 0 1

QRI	results Expert	study	results

Table 1: We summarize our task-based evaluation here. We extended the discrete data-focused tasks of Amar, Eagan, and Stasko [AES05] to
directly address continuous data, with the exception of “sort” (see section 4). We show the scores from our qualitative results inspection as
well as our expert study on a scale from “none” , “partially” , “mostly” , to “fully” where “none” means that the task is not addressed
at all and “fully” means that this task is directly supported by this view. We provide quotes of the general description from Amar, Eagan, and
Stasko’s paper in the “discrete” column for convenience.

thus far had a dedicated focus on the visual analysis of multi-
dimensional continuous data. We thus took a popular taxonomy for
tasks on discrete data, by Amar, Eagan, and Stasko [AES05], and
extended each of their task categories to directly address continu-
ous data. We see this as an initial step towards more consideration
of multi-dimensional continuous data as a first class citizen when
developing task hierarchies.

Using this list of tasks, we compare 1D slices to other
state of the art techniques for multi-dimensional continuous
data: HyperSlice [vWvL93], topological spines [CLB11], contour
trees [CS03], and the technique by Gerber et al. [GBPW10] (see
Figure 3). We refer to topological spines, contour trees, and the
work by Gerber et al. as topological techniques when it makes sense
to compare them as a group. We evaluate based on all tasks, ex-
cept for “sort”, for which we could not find a suitable extension to
continuous functions. The guiding theme in our extensions is that
users want to view the relationship of independent variables to the
dependent variable and to see how the dependent variable changes
with respect to the independent values. The extensions are shown
in Table 1 along with the results of two investigations we conducted
based on them, as detailed in the following section.

4.1. Study design

To perform a task-based evaluation, we investigated the different
techniques in two different ways. First, we used a qualitative result
inspection approach [IIC∗13]. We (the authors) iteratively analyzed
the techniques with different datasets and summarized our discus-
sion and analysis on a four-point scale: “None” means that it is not
possible to perform the task with the technique, “partly” means that
it requires major interaction with the view to accomplish the task,
“mostly” means that one can accomplish the task with little inter-
action, and “fully” means that this task is directly addressed by the
technique.

Second, in order to get a more objective judgment we also
asked four visualization experts familiar with examining multi-
dimensional spaces like parameter space exploration to examine
the eight datasets with different techniques and rate how well each
task can be accomplished with each technique on the same scale.
We averaged these results and show them along with the results of
our qualitative result inspection in Figure 3.

For the techniques, we use our own implementation of Hyper-
Slice and topological spines since no code was available. We used
the msr R package [GP12] which implements the algorithm of
Gerber et al. [GBPW10]. For the contour tree we used the lib-
tourtre library and then rendered the trees using GraphViz using
the Sugiyama [GKNV93] layout. As datasets we chose the 2D sinc
function, 5D Rosenbrock [Ros60] function, 6D Ackley function,
a 26 node hidden layer neural network built on the Boston hous-
ing dataset [Lic13], a support vector machine with Gaussian kernel
built on the housing dataset, the fuel 3D volume dataset [Roe17],
and the neghip 3D volume dataset [Roe17]. Not all datasets could
be rendered with all techniques due to software errors.

4.2. Results

In this section, we summarize our discussion about the strengths
and weaknesses of each technique in terms of performing the
task. For more details, we also include as supplemental material
a website that contains details of how each visualization tech-
nique can solve each task. The website is available at http:
//sliceplorer.cs.univie.ac.at.

Retrieve value: In the discrete case, the user should be able to
look at a point and get the detailed values of it. In the continuous
case we are interested in what the function value is for a certain
input parameter setting. All the techniques support this although
with the topological methods this is only possible for the extrema
and saddle points as all other points are filtered out. For example,
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there could be many points between node 4 and 5 in the contour
tree (Figure 3c). With slicing techniques, both 1D and 2D, the val-
ues can be read directly off the chart. Of course, for all techniques
the adding of interaction, such as a tooltip, can make retrieving
concrete values even easier.

Filter: Amar, Eagan, and Stasko describe this task as a general
filtering query on data points. In the continuous case, the user wants
to understand the outputs of the function. This is a query as to where
the function value is in a certain range. With continuous data this
is the domain of isosurface extraction. This is possible with slicing
techniques by visual examination. With HyperSlice, though, one
must be careful to view sufficient focus points to get a general idea
of where the function equals certain values. Topological spines also
shows this directly and they use concentric areas (Figure 3b) to give
a general idea of the area that a particular value range takes up.
The other topological techniques allow one to see if a certain value
is possible, for example, we can see that the function represented
by the contour tree in Figure 3c takes the values greater than 4
somewhere by seeing that there are edges from node 4 to nodes 5
and 6. However, there is no relation back to the parameter settings
that will produce these values.

Compute derived value: The direct interpretation of this task to
continuous data is to compute derived value results about the curves
like mean and variance. Many of these values can also be perceived
visually. Topological methods compute the persistence value be-
tween the function to determine what to show but with the excep-
tion of topological spines this is hidden from the user. Topoplogical
spines show a graph of the persistence and “saturated persistence”
which allows the user to select which nodes to filter. Projections of
1D curves allows us to see the distribution. In Figure 1c we can see
that there are very few function values around the global minimum
and the function has two types of behavior: a periodic sine wave
across the domain and a general parabola shape.

Find extremum: All the topological techniques we evaluated
support this in some way. With HyperSlice one needs substantial
guidance on setting the focus point to find extrema (like a histogram
of function outputs). 1D slices is a global technique showing all
slices at once, one can find extrema by inspecting the graphs. As
previously mentioned, topological methods are purpose built to ex-
tract extrema from continuous data. For example, it is easy to see
that the function using the method by Gerber et al. (Figure 3d) has
five maxima and the function of the contour tree (Figure 3c) has
four maxima.

Determine range: Amar, Eagan, and Stasko describe this as
finding the range of possible values for a particular attribute. We
really have only one attribute of interest: the values of the multi-
dimensional scalar function. Any view from which we can read the
global minimum or the global maximum allows us to do this. Con-
tour trees, Gerber et al., and 1D slices all allow us to read these
off the view. Topological spines either show the global maximum
or the global minimum, but not both. HyperSlice has no way to do
this directly by adjusting the focus point. However, one expert no-
ticed that they could simply read the range of the function off of the
color legend.

Characterize Distribution: Here again there is one key value
of interest that we want to characterize: the function value. This

requires a global view. Projections of slices directly show how the
function slices are distributed. We can see in Figure 1d that there
are very few function values around the global minimum but many
around high values. It would be difficult to use HyperSlice to truly
understand the distribution of values. The user would somehow
have to browse around the focus points and then memorize the
function values. Topology throws away the spatial element and just
shows the relationships between extrema and saddles.

Find anomalies: Anomalies in the discrete case are single point
outliers. While that is also possible in the continuous case, we may
also have entire parts of the function that are unlike any other part.
These should also be identified. In a global view like projected 1D
slices these will show up visually. The slices will stand out from
the rest similar to other projection-based techniques like scatter-
plots. With HyperSlice we must browse around until we can see
one directly. However, we will see it if we can find it. Topological
methods will only show extrema in terms of maxima or minima
values but not shape and hence mask anomalies and outliers.

Cluster: Since we are looking at manifold behaviors, we want
to be able to group the functions into areas of similar behavior. For
example, are they monotonically increasing or decreasing? Further-
more, can we find areas where the variance changes? The topolog-
ical technique of Gerber et al. [GBPW10] was created to address
just this. They split the function into areas of monotonic behavior
and then show a line indicating how those monotonic regions are re-
lated to each other. However, the way they reconstruct the function
between extrema and saddle points does not allow us to view the
variance between these points as the 1D slice view allows. Clus-
tering the 1D slices tries to split the slices into groups of similar
behavior (see Figure 2b).

Correlate: Finally, we consider correlation. In the discrete data
case the goal is to find correlation between attributes. With contin-
uous data, we already have a dependency between the independent
and dependent variables. What we would like to learn is how many
variables have an influence on the function. With 2D views (that
only HyperSlice provides) one can see both 1D and 2D interac-
tions with the function. We can see that the function in Figure 3a
has radial behavior so the function value depends on both 1D and
2D interactions. None of the other techniques are capable of show-
ing 2D interactions between parameters.

4.3. Summary

From the summary in Table 1 we can see that the 1D slices tech-
nique addresses more of the tasks than any other technique. It is not
always the highest performing view though. HyperSlice is the only
technique we evaluated that could show more than one-dimensional
interactions but it does not do well on global tasks like extrema de-
tection. The various topological techniques directly address tasks
related to extrema detection and comparison but do not perform
as well on others. The experts often commented that they felt they
needed more knowledge about what exactly the topological tech-
niques were doing in order to interpret the results. Thus, the ratings
for these techniques may be artificially low. We conclude that 1D
slices are a very flexible technique indeed.
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(a) Surface plot (b) 1D slices

(c) pLevel = 0.0 (d) pLevel = 0.05 (e) pLevel = 0.1

Figure 4: Different views of the 2D sinc function. We show the
surface plot in (a) for reference. Our 1D slice view is shown in
(b). The central peak as well as the sub peaks are prominent. For
comparison we show the method of Gerber et al. [GBPW10] in (c)–
(e) at different levels of persistence filtering. With no filtering (c)
the graph looks much like the original function. The plot is very
sensitive to the filtering level. (d) and (e) are all very different from
each other.

5. Usage scenarios

In addition to evaluating 1D slices with a low-level task hierarchy,
we also provide usage scenarios to understand their value in real-
world applications. We begin with an illustrative example using the
2D sinc function. We then use our 1D slices approach to illustrate
how it can help better understand neural network architectures for
a regression problem. Finally, we use 1D slices to investigate the
effect of initial position on optimization algorithm performance.

The purpose of these evaluations is a proof of concept that 1D
slices can be used for real-world problems. In particular, it is not
meant as a comparative evaluation as provided in the previous sec-
tion. To the best of our knowledge, neither HyperSlices nor topo-
logical techniques have been applied to understanding neural net-
works nor optimization algorithms so far. A full adaption of, and
comparison to, these techniques for the provided use cases are be-
yond the scope of this paper, and are left for future work.

5.1. 2D sinc function

Imagining how a function in more than 3-dimensions looks is dif-
ficult if not impossible. In order to illustrate how Sliceplorer vi-
sualizes functions we show the 2D sinc function. We are using
the formulation where y(x1,x2) =

sin(πx1)
πx1

sin(πx2)
πx2

. In Figure 4a we
show a 3D surface plot of this function. The global maximum is at
x1,x2 = 0,0 where y = 1. There are a number of local maxima and
minima of decreasing value radiating out from the origin.

We show the 1D slice view using Sliceplorer in Figure 4b. We
are showing 50 slices in each of the 2 plots. We can clearly see that
the maximum value occurs when x1,x2 = 0,0 in the graph at around

y = 1. We can also see the decreasing extrema radiating out from
the origin. We can also precisely measure the height and x-location
of the extrema. If we want to examine a particular trace then we can
highlight it in the view and see the full slice highlighted on screen.

For comparison, we show visualizations of the 2D sinc function
rendered using the msr package [GP12] in R. This package im-
plements the visualization of the Morse-Smale complex from Ger-
ber et al. [GBPW10]. We sampled the function with 2000 sample
points using a Sobol sequence. The 1D slices view is showing 50
focus points with 21 samples for each slice so this was done to
use a similar sampling method and number of samples to the Sli-
ceplorer method. The function can do persistence-based filtering of
the graph before rendering. This is controlled by the pLevel pa-
rameter which filters all persistences less than a certain value. In
Figure 4c we show the view with the filtering level set to 0, i.e. no
filtering. The view does a very good job showing the critical points
of the graph. It looks very similar to the surface plot (Figure 4a).
However, the visualization is very sensitive to the filtering level. In
Figure 4d and Figure 4e we show the sinc function with the filtering
level set to 0.05 and 0.1 respectively. The 1D slice view does not
suffer from this issue of parameterization.

5.2. Neural networks

Artificial neural networks are currently gaining a lot of attention
in machine learning. The goal of these algorithms is to produce a
multi-dimensional function fitted to the training points. Neural net-
works, in particular, have proven to be very good at producing ac-
curate, generalizable predictions. One of the major challenges for
designers of such models, however, is to properly architect these
networks. For instance, how many hidden layers does one need and
how many nodes should be put into each layer? These architec-
tural choices can drastically change the predictions. While these
choices are crucial, currently, there is only little guidance available
for designers. A typical rule of thumb is to use a hidden layer two
times the size of the input dimensions. There are also some general
proofs regarding what type of functions neural networks can repre-
sent [HSW89, ES16]. However, there are no formal guidelines for
designing these networks [GBC16] and the way these models make
predictions is still obtuse.

One of the ways we can increase the understandability of neu-
ral network regression models is by viewing the response func-
tion directly [Gle16]. If we want to understand how the network
architecture affects the prediction we could compare the predic-
tion manifold to one produced by a “simpler” machine learning
model [RSG16], for example a support vector machine [SS04].
Support vector machines have known guarantees on error rate with
the number of training samples. With this comparison we may be
able to get some better insight about how the neural network learn-
ing algorithms are performing.

To compare, we chose the Boston housing dataset [Lic13] from
the UCI repository. This dataset contains median home prices given
13 factors including crime rate, age of the house, and proximity to
highways. We then trained a neural network with a single hidden
layer of 26 nodes, a neural network with 2 hidden layers: one of
5 and one of 3 nodes, a support vector machine with a polynomial
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Neural network - 26 SVM - polynomial Neural network 5+3 SVM - radial

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Two different views of the predictions of four different machine learning regression models on the Boston housing dataset. The top
row (a – d) shows predictions by each model compressed to two dimensions with t-SNE. We colored the points on a continuous color scale
with dark blue being 0 and light blue the highest value. The bottom row (e – h) shows a 1D slice view of the first dimension of the dataset,
crime rate. We show the slices of the remaining dimensions in the supplemental material. The 1D slices reveal interesting information about
how the models perform and can assist with model selection. We may not want to use the SVM with polynomial kernel (f), for example,
since it predicts that home price will go up with higher crime rates.

kernel, and a support vector machine with a radial (Gaussian) ker-
nel.

We compare 1D slices with an adaption of the common way
of viewing classification algorithms to continuous data. The re-
sults of classification models are commonly visualized by using
MDS [Kru64] or t-SNE [vdMH08] to reduce the input dimensions
to two and then present a scatterplot with the predictions colored
by class. We extended this by sampling the prediction model with
1,000 samples from a Latin hypercube [Tan93] (a space-filling de-
sign) converting the points to two dimensions with t-SNE and then
coloring the points on a continuous scale which we show in Fig-
ure 5 (top row). The bottom row of the figure shows the 1D slice
view of the same four prediction models. We only show the first
dimension due to space reasons. The full 13 dimension slice view
image is in the supplemental material.

Showing the changes in home price as it corresponds directly to
the crime rate can help to increase confidence in a model. From
the prediction lines, one may not want to use the SVM with a
polynomial kernel. By and large the prediction lines are increas-
ing. This means that the home price is increasing as the crime rate
goes up. This does not really make sense. The model is not general-
izing well. Similarly, the neural network with a single hidden layer
(left column) also has a number of curves that increase as crime in-
creases. The neural network with two hidden layers does not have
this problem. Maybe this is the best model to use in this case.

In summary, this usage scenario illustrated that a direct inspec-
tion of a model’s response surfaces can give intuition of its behav-
ior, and can lead to a better model selection and a better intuition of

the modeling process. 1D slices can help to gain important insights
in this process.

5.3. Optimization algorithm

General purpose optimization algorithms try to find the global min-
imum (or equivalently, the global maximum) of a function of ar-
bitrary dimension. Many optimization algorithms such as Nelder-
Mead [NM65] work by starting at a particular parameter setting and
evaluating the “shape” of the function around that point. The algo-
rithm then determines where the function is decreasing the greatest,
and “jumps” a certain distance in that direction. The “jump”, start-
ing position, and termination tolerance parameters are user-settable
parameters. Depending on how they are set, the algorithm can get
stuck in a local minima or take unreasonably long to finish.

When one is trying to parameterize or build optimization algo-
rithms then one wants to evaluate the trace of the optimization on
an easy function that is fast to compute first. This analysis helps to
better understand how to parameterize for more complex problems
but are too computationally expensive to analyze directly. Visual
inspection of the easy function before running the optimization al-
gorithm, as well as viewing the trace of the optimization algorithm
(the sequence of steps it took) is a good way to ensure that the al-
gorithm is converging towards the global minimum.

We compare 1D slices with HyperSlice [vWvL93] as this is the
only technique that also directly visualizes the parameter space.
We ran the Nelder-Mead optimization algorithm on the 5D Ackley
function [Ack87], a popular optimization algorithm testing func-
tion. To examine the effect of starting position, we tried different
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(a) (b)

(c) (d)

Figure 6: 1D slice and HyperSlice views showing traces of an op-
timization algorithm searching for the global minimum of a 5D
Ackley function. (a) and (b) show the trace starting at the point
(1,1,1,1,1) while (c) and (d) show the trace starting at the point
(2,2,2,2,2).

starting positions: x = (1,1,1,1,1) and x = (2,2,2,2,2). We over-
lay the optimization trace on top of both 1D slices and HyperSlice
and the results are shown in Figure 6.

The 1D slice view allows us to see the path that the algorithm
took and the general shape of the function simultaneously. In ad-
dition, the 1D slice view shows that the distribution of values
around the global minimum is small. Most of the slices are clus-
tered around y = 10 with only one slice descending close to y = 0.
Since the sampling is uniform in the parameter space this means
that it is very difficult to select slices around the global minimum.
In fact, this is a known property of the Ackley function. It is easy to
see that the optimization algorithm got stuck at a local minimum
when started at x = (2,2,2,2,2). However, with the HyperSlice
view it is difficult to see the difference in value and steepness of
the function at x = (1,1,1,1,1) versus x = (2,2,2,2,2). Humans
are not good at perceiving fine differences in color [Mun14], but
is required for this task. We learn a lot more about the behavior of
the optimization algorithm from the 1D slice views (see Figure 6a
and Figure 6c) than the HyperSlice view. However, the HyperSlice
view does clearly show that that optimization algorithm is mov-
ing in multiple directions at once. This is not clear in the 1D slice
views.

6. Discussion

The above examples illustrated that the technique of 1D slices as
presented in our paper is quite flexible and useful for various low-
and high-level tasks. However, we do not intend to claim that it
is the only and best method for all problems out there. We rather
would like to argue that it is a valuable (and thus far overlooked)
technique in a toolbox of visual inspection methods for multi-

dimensional functions. We hope that this paper inspires a discus-
sion and exploration of guidelines for tasks, proper visual encod-
ing, and interaction techniques for various tasks. Along these lines
we would like to put forth our current experience with various tech-
niques.

Topological techniques are helpful for a global overview:
Topological techniques allow us to compare between optima but are
not as good at evaluating the area around an optimum since these
areas are typically abstracted away. Topological spines attempts to
compensate for this by showing the area covered by a particular op-
timum as an area around the node. However, many of the tasks like
“correlate” and “cluster” are best served by viewing the response
manifold directly. In a larger system, the topological techniques
could be used effectively as a global overview of the function with
a HyperSlice or 1D slice showing local context. Selecting a point
in the topological view would change the focus point in the local
view.

HyperSlice is good when you need to show 2D interactions:
HyperSlice is the only technique that can display more than one
dimension of data interaction. So, if this is a requirement then Hy-
perSlice is the best option. However, one can use 1D slices to get a
general overview of the dependence of the function on each dimen-
sion. The dimensions that are not interesting because, for example,
the function is not sensitive to them could easily be eliminated from
further consideration. This would reduce the number of subplots
that we need to view in the HyperSlice plot.

1D slices should be used for a “first pass” visualization: 1D
slices addresses many of the tasks that a user wants to perform.
The technique does a very good job on a wide variety of tasks. 1D
slices are easy to implement, easy to understand, and the static view
provides a lot of information.

7. Limitations and future work

Our 1D slice view consists of a projection of many lines. We
are showing the distribution of slices through direct projec-
tion. Techniques like contour boxplots [WMK13] and curve box-
plots [MWK14] build a distribution model of curves which could
help to address the “characterize distribution” task in Table 1. How-
ever, neither of these or any of the other time curve visualization
techniques have been applied to multi-dimensional functions. Eval-
uating these techniques for this purpose is an exciting topic for fu-
ture work.

When developing the 1D continuous slicing technique we only
considered multi-dimensional continuous scalar functions in terms
of requirements, tasks, and comparisons. We do not consider multi-
field (i.e. functions with multiple outputs) or complex-valued func-
tions in our analysis. There are multi-field topology techniques to
address this [DCK∗12, HHG14, CGT∗15] which we do not con-
sider but our technique and analysis would need to be extended to
this domain. We leave this for future work.

The x-axis of each 1D slice is independent of the x-axes of the
other 1D slices. This allows each plot to scale individually if the
range of inputs have different values. The x-axis and y-axis au-
tomatically change to incorporate their respective minimum and
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maximum ranges. While the x-axis scales itself independently, the
y-axis is the same for each plot. This is also the default behavior
in many of-the-shelf plotting packages. The plots will adjust auto-
matically to shifts. For the x-axis we use axis-aligned projections.
Therefore, the views are sensitive to rotational transformations of
the function.

Finally, our technique is also based on sampling, just like the
other techniques we are comparing to. As with any technique based
on sampling one must be careful to take an adequate number of
samples in order to properly capture all desired behavior. If the
function is not smooth we may see a slice that is an “outlier,” i.e.
one slice is much higher or lower than all the others. In this case
all other slices will be compressed into either the top or bottom of
the chart. This is often a problem with many common visualization
techniques like bar graphs or scatterplots and can be addressed with
log scaled axes, for example.

8. Conclusion

In this paper we have presented Sliceplorer, a visualization method
for multi-dimensional functions based on one-dimensional slices.
We defined a task taxonomy specific to multi-dimensional contin-
uous functions and found that, while some state of the art tech-
niques are very good at addressing specific tasks, our method sup-
ports a wide variety of tasks. Consequently, our technique may
be a good first pass when visualizing multi-dimensional continu-
ous functions. It is easy to implement, easy to understand, and ad-
dresses a greater variety of tasks than any other technique.
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