
Linking Unstructured Evidence to
Structured Observations

Information Visualization
XX(X):1–15
c©The Author(s) 2020

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Manuela Waldner1, Thomas Geymayer2, Dieter Schmalstieg2 and Michael Sedlmair1,3

Abstract
Many professionals, like journalists, writers, or consultants, need to acquire information from various sources, make
sense of this unstructured evidence, structure their observations, and finally create and deliver their product, such as
a report or a presentation. In formative interviews, we found that tools allowing structuring of observations are often
disconnected from the corresponding evidence. Therefore, we designed a sensemaking environment with a flexible
observation graph that visually ties together evidence in unstructured documents with the user’s structured knowledge.
This is achieved through bi-directional deep links between highlighted document portions and nodes in the observation
graph. In a controlled study, we compared users’ sensemaking strategies using either the observation graph or a simple
text editor on a large display. Results show that the observation graph represents a holistic, compact representation of
users’ observations, which can be linked to unstructured evidence on demand. In contrast, users taking textual notes
required much more display space to spatially organize source documents containing unstructured evidence. This
implies that spatial organization is a powerful strategy to structure observations even if the available space is limited.
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Introduction

Many professionals perform information-centric tasks,
where they need to acquire and make sense of information
from various sources (40). Examples are journalists who
need to research background information around which
they construct their story. Similarly, consultants first
need to understand their customers’ problems and extract
information from existing recommendations and guidelines
in order to come up with specific advice for their customers.
Intelligence analysts browse documents to identify and
synthesize relevant pieces of information (37), such as
the actors or the methods involved in illegal operations.
The challenge of effectively collecting, structuring, and
making sense of information is addressed by various
research communities, including cognitive psychology,
human-computer interaction, and visual analytics, and has
found its way into some commercial products.

Externalization, such as taking notes, is an essential
strategy to offload memory (“external storage effect”) and
to engage deeper into information processing (“encoding
effect”) (23). Manually creating additional, external rep-
resentations supplements internal memory representations
with external representations (41), and lets the user directly
perceive the information (28). Several studies have shown
that graphical structuring is more powerful than note-
taking (34; 39; 38). Spatial grouping of concepts in a graph-
ical structure with respect to semantic similarity supports
learning (34) and improves the perception of relations (28;
48). Spatial organization can be performed using concept
maps (36) or mind maps (16), which dictate a more or less
strict underlying structure. In a less structured form, spatial
organization can also be observed with paper documents on

people’s desks (33; 26) or shared tables (45). If a large
display space is available, users may utilize the digital space
to structure their pieces of information (1). In general, large
displays and display ecologies can improve analysis (12;
47; 30) and increase subjective satisfaction (1). Among the
opportunities of large displays are the ability to subdivide the
space into focus and context (20; 5), place reminders (21)
or cluster windows (1). In practice, users often employ a
combination of such sensemaking approaches. This allows
to combine their strengths, but it also leads to an unwanted
fragmentation of the users’ information and their work-
flow (25). How to avoid this fragmentation when extracting
and structuring observations from unstructured evidence is
not well studied yet.

In this paper, we contribute quantitative findings and
qualitative observations from a user-centered design process
to characterize the sensemaking processes of people with
the goal to minimize fragmentation. Our initial design
implications are derived from formative interviews with
knowledge workers from different professional domains.
Based on these design implications, we designed an
observation graph as a central sensemaking tool on a
large display sensemaking environment, which provides
flexible, yet simple methods to capture and structure
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observations. The goals of the observation graph are
to provide knowledge workers with a less fragmented
workflow to turn unstructured evidence into structured
observations and compact visual representation of their
captured observations. The most distinguishing aspect of the
observation graph to achieve these goals is that it maintains
clear connections between the user’s observations and their
underlying evidence.

To validate if the observation graph indeed leads to
a less fragmented workflow and a more compact visual
representation of users’ observations, we analyzed the
sensemaking processes of users performing an intelligence
analysis task. We let users analyze a large number of
documents containing a hidden plot on a large display,
which lends itself for spatial organization strategies, similar
to the ones observed on physical desks (1). In contrast to
the control group organizing their findings through note-
taking, observation graph users in our study rarely used the
large display space to spatially organize their observations.
The observations expressed through their graphs are more
compact than text-based notes, yet at the same time show a
much larger variety of structuring strategies. The results thus
indicate that the observation graph flexibly links structured
observations and unstructured evidence into one holistic
representation.

Related Work
Many tools have been developed that support externalization.
A prominent early example to construct concept maps is
CMapTools (36), where users can also link any digital
resource to a concept or a linking phrase. However,
Eppler (16) argues that the rigid rules of traditional
concept maps and their strict top-down structure limit their
applicability in practice. Tools like the nSpace Sandbox (46),
ScratchPad (19), CLIP (32), the collaborative KTGraph (50),
or texSketch (43) enable users to structure their knowledge
in an arbitrary graph, where they also can attach evidence
documents to the nodes. InkPlanner (31) aims to facilitate
structured prewriting, from early pen-and-paper ideation
to gradual linearization of a story. Others let users freely
arrange extracted entities from text editors or web browsers
on a free-form spatial interface (42; 6; 24; 35).

To support users in reaping benefits from increased
display space for sensemaking, several layout strategies
have been devised: The Analyst’s Workspace supports piling
window groups and connects entities with visual links (2).
Cambiera (22) supports the spatial arrangement and mutual
awareness of opened documents. Collaborative information
linking allows multiple users to organize windows on a large
display and have their dedicated sets of visual links (44).
VisPorter (11) combines spatial document arrangement with
a collaborative concept map, and Savil (10) draws visual
links between entities across multiple displays. In summary,
the main feature of most of these environments is to establish
visual links between unstructured evidences (2; 44; 10), as
well as between structured observations and unstructured
evidence (11). Most of these examples are implemented as a
specialized, monolithic software framework (22; 2; 11; 10).
In contrast, our goal was to support sensemaking with
minimal information fragmentation. We therefore sought to

design and implement a minimally invasive standard desktop
solution, which actively ties together evidences in arbitrary
information sources in native applications.

As it is difficult to directly compare the effectiveness of
monolithic sensemaking environments to a baseline, most
of the previously proposed systems have been evaluated in
isolation (22; 44; 2; 11; 10). A notable exception is a study by
Bradel et al. (8), who compared collaborative sensemaking
strategies on a large display between a visualization-centric
environment (using Jigsaw (42)) and a document-centric
environment using a simple document viewer. They could
show that, using a document-centric environment, users
make more use of the large display to lay out individual
document windows. A major difference between the two
compared environments is the way how windows and
visualization views are managed by the underlying system.
It is unclear whether the observed space usage difference
was caused by the window management or the way how
users structured their observations. In a study using a
similarly large display as Bradel et al. (8), we could confirm
the increased display space usage when having to solve
a sensemaking task with just a simple document viewer
(18). In contrast to the study by Bradel et al. (8), however,
our minimally invasive observation graph could be studied
in the same environment as the baseline. This means that
the window management was consistent across the two
conditions. In this extended paper, we present the core
findings of this study in the context of its larger design
process, including a formative interview study and the design
of the observation graph-centered sensemaking environment
based on the findings from this study. We present qualitative,
exploratory findings from the previously presented study
(18) that give indications how the sensemaking environment
affects the structuring of observations to qualitatively explain
the observed differences and guide future research.

Formative Interviews

To get a better understanding of possible mechanisms to
structure observations, we conducted formative interviews
with six knowledge workers from different fields (an
experience strategist, two content-experience designers, a
communication scientist, a video producer, and a journalist;
three females and three males). What these professionals
have in common is that their primary task is to create a
product, such as design guidelines, a website, a scientific
paper, a movie script, or a newspaper article. To reach
these goals, they need to find and consume various pieces
of information, for instance, to understand customer needs,
to research related work, to understand the domain of a
science movie, or to gather background information for a
newspaper story. These professionals were recruited through
the authors’ professional and private networks, and received
a small monetary compensation for their participation.

In total, we gathered seven hours of interview data, which
was audio-recorded and transcribed. In addition, we took
photos of work items and screenshots of tools they used.
We iteratively coded the interview transcripts along the
following questions:

• What kind of data sources are users working with?
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• Which tools do they use to collect evidence and
structure observations?

• Which kind of observations do they extract from their
data sources, and how are these observations enriched
by their own reflections?

• How are the (enriched) observations structured?
• What are the shortcomings of their tools?

Summary of Findings
While the professions of our interview partners are quite
diverse, there are some commonalities in their workflows:
Every professional has a clearly defined output format – such
as a newspaper article to be entered into a dedicated layout
software – and clearly defined information sources – such
as web search engines or a press database. All professionals
use dedicated tools for collecting and structuring their
observations and ideas. However, none of the professionals
has a clear workflow or fixed set of tools to perform
these steps. Instead, our interview partners reported a rather
opportunistic usage of tools, depending on their task and
data format. We identified three types of information that are
extracted from information sources:

• All six interview partners extract raw text observations
from their information sources. Five of the six
professionals use a text editor to paste text data from
their information sources, but also to quickly capture
insights or ideas. Two professionals additionally
use a physical notebook, and one often prints out
interesting articles and annotates them on paper. A
video producer, for instance, appreciates the physical
notebook, as “it is difficult to draw an arrow from here
to there digitally”∗.

• Four of the six interview partners store links to
entire web resources. Three professionals use note-
taking software to store and summarize links, two
(additionally) use a text editor, and two often share
interesting links through social media channels.

• Three professionals regularly extract images from
their information sources, which are stored either in a
text editor, in a layout program (together with textual
annotations), or by taking screenshots and saving them
using an elaborate naming scheme to be able to find
them again.

Four interview partners reported that they tend to keep
potentially useful information sources – primarily web
browser tabs – open. This is generally considered to be a
work-around, as these users also sometimes involuntarily
close tabs and are not always able to find certain tabs again.
Two users therefore would prefer having a multitude of
(large) monitors. According to the communication scientist,
for instance, the optimum would be to have “everything
visible at the same time”.

We observed that the creation of the final product is
often tightly intertwined with collecting observations. The
professionals described this interplay as “iterative” and as
a “fluid process”. The creation of the final product was
also described as applying a structure onto the gathered
information and one’s own thoughts. We observed different
strategies how to structure the gathered evidence:

• The most commonly observed structuring approach
was through text: Four of the six professionals
structure their observations linearly by creating blocks
of text, either in a note-taking software, in a paper
notebook, or directly in a newspaper layout software.

• Three interviewees also use a mind mapping tool
to hierarchically organize thoughts and extracted
information. Apart from one professional who has
never attempted to use a mind map at all, all others
explained that the hierarchical structure imposed by
the mind map is perceived as too restrictive.

• Three users mentioned that they would like to have
a tool allowing them to build a network instead of a
strict hierarchy.

• Two professionals often switch to analog tools to
perform structuring by spatially arranging labeled
paper cards. One participant explained this choice as,
“What I am missing [with digital tools] is a way
to visually represent things [...]. You often only have
hierarchical options to organize that data”.

The professionals reported very little integration between
their tools of choice. Switching between tools was described
as “stressful”, especially between digital and analog tools. It
was mentioned that “it would ease the workflow if there were
bridges between apps”. One consultant mentioned that he
would like to have “links, kind of anchors in the mind map”.
Another user stated that “I would like to have a true hybrid
between [the mind mapping tool], a graphics program, and
the text editor.” In addition, users also reported that the
information fragmentation across multiple tools makes it
hard to relocate original information sources. Professionals
reported that they “don’t have a good filing system so far”
and that they “use many different tools, [...] so I don’t know
where the things are”.

Discussion
In summary, the most widely used sensemaking tools by
our users were simple text editors to edit or write short text
passages. This confirms findings from earlier investigations,
which showed that users often create short textual notes as
cognitive support to “think it through on paper” (4), and
that users copy or summarize relevant information more
frequently than expressing it through a concept map (49).
We also observed that many users store links to the original
information sources or keep many information sources open
in browser tabs. The users’ strategy to store URLs has
also been reported by Zhang and Soergel (49). Maintaining
multiple open browser tabs is also a known strategy for
multitasking and to create short-term bookmarks (14).

However, the closer to the final product, the more structure
the professionals wish to impose on their information and
ideas. Thus, they sometimes use mind map tools or physical
post-its to spatially structure their information artifacts,
similarly to physical information organization strategies
observed, for instance, by Kidd (26). These approaches,
however, often lack the desired flexibility, for instance, to
be able to link artifacts like analog post-its and nodes in a

∗User quotes partially translated from German to English.
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Table 1. Design implications derived from the formative interviews.

Observation Implication

The most widely used tool for gathering and structuring
observations is a text editor or a physical notebook.

I1 A sensemaking environment should support easy capturing
of text-based observations.

Users often store links to online information together with
their notes.

I2 A sensemaking environment should be able to link any
observation artifact to an external evidence.

Users wish to gradually apply a network-like spatial
structure onto their observations that goes beyond linear
text lists and strict hierarchies.

I3 A sensemaking environment should allow spatial arrange-
ment and arbitrary semantic connections between casually
collected observations.

Having to switch between tools for storing information,
capturing notes, and structuring knowledge requires consid-
erable cognitive effort and leads to loss of overview.

I4 A sensemaking environment should support fluid switching
and maintain clear connections between structured observa-
tions and unstructured evidence.

mind map with external information sources. In general, the
structuring capabilities of digital tools are considered low.
To circumvent these limitations, users employ multiple tools,
which leads to unwanted information fragmentation. In a
study by Kang and Stasko (24), who analyzed how groups
of students perform intelligence analysis tasks using tools of
their choice, fragmentation of the sensemaking workflow due
to the usage of a lot of different tools was perceived as one
of the major challenges in the workflow.

From these observations, we extracted the design
implications listed in Table 1. In the following, we will
describe how these design implications can be translated to a
flexible sensemaking environment.

Observation Graph

In the following, we describe the design of the observation
graph guided by the design implications listed in Table 1.
While the basic principle of the observation graph with links
to external evidences (I1, I2, I3) is similar to some existing
tools (36; 19; 32), it is distinguished by its visual connection
of users’ observations with the underlying evidence (I4).

Make Capturing of Observations Easy (I1)

The observation graph supports users in the organization
of their evidence into observations, displayed as a node-
link diagram. Observations can be either created manually
in the observation graph, or directly in a document opened
in a web browser window, based on mouse selection. In
either case, users can assign a label and node position, as
well as an optional color and comment, to the observation.
When generating observations from within a document,
the observation automatically attaches a deep link to the
selected evidence statement inside the document. Users can
generate edges between observation nodes by selecting two
observation nodes in the graph. Given two selected nodes,
links can either be created from a context menu within the
graph, or by designating evidence in a source document
as link between two observations. Such direct capturing of
observations and their relations allows users to easily build
an observation graph expressing the user’s understanding of
the discovered evidence.

Provide Deep Linking to Evidence (I2)
The observation graph lets users link each observation to
multiple pieces of evidence from the source documents,
supporting the observation’s validity. Deep links are
automatically established when creating observations from
document evidence. Deep links to evidence can also be added
to observations and relations later by dragging a document
selection onto a node or link in the observation graph.
Evidence can be in the form of entire documents, but also
individual phrases or terms inside the documents. Deep links
allow a user to quickly revisit the exact piece of evidence
they were previously investigating.

Allow Structuring of Observations (I3)
To imitate behavior of physical post-its, we allow users
to freely arrange the nodes of the observation graph. In
addition, users can manually create and label edges between
any pair of nodes to express a semantic relation between
the two selected concepts. Observations can be color-coded
to classify nodes. Every observation can be given a unique
name and can be associated with additional data, such
as textual notes (see Figure 1). Details about a selected
observation are provided on demand in a side-panel.

Visually Connect Observations & Evidence (I4)
The observation graph is designed to allow users to not only
manually externalize their observations through the graph,
but to actively connect this externalization with evidence
in unstructured information sources. The observation graph
provides two functionalities to fluidly connect these two
information structuring strategies:

First, deep links are bidirectional. This means that users
can revisit evidence from observations, or they can revisit
observations from evidence. In the observation graph, deep
links are represented as small glyphs adjacent to the
observations. Upon selection, a corresponding visual link
is drawn across the desktop to the evidence. Following
a link results in a window being opened or brought into
focus. The document is automatically scrolled to the location
of the evidence. The evidence itself is highlighted with a
colored frame and connected to the graph with a visual
link (see Figure 1). Conversely, when a document is opened
or receives the focus, all deep links referencing it are
highlighted in the observation graph. This enables analysts
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Figure 1. Observation graph with manually color-coded concepts. Details of the selected node “POK” are shown on the detail
panel on the left (user notes and deep links to all attached evidence). Visual links connect an observation graph node (“Jeroen
Karel”) with a referenced piece of evidence in an open document window on the right.

to quickly identify how important it is with respect to the
overall information captured in the the observation graph.

Second, the observation graph actively manages the
placement of the opened windows, so that their arrangement
reflects the user’s conceptual layout in the observation graph.
If a user opens a window to review a linked piece of
evidence, the layout algorithm tries to place a window as
closely as possible to the selected evidence’s associated
observation node in the graph. This leads to a dynamic spatial
organization, prioritizing the current working set. Users are
free to arrange their source documents on a display, with or
without attributing meaning to the placement.

Supported Sensemaking Strategies
Given these features, the observation graph users can
spontaneously adopt one of several work styles: During
initial information gathering, observation graph nodes can
serve as labeled containers (Figure 2, top). Each node can
store a list of deep links to external evidence, as shown in the
left side panel of Figure 1.

Users can also roughly categorize their information
sources by spatially organizing document windows on the
large display. In this case, cross-application visual links (17)
maintain the connection of the evidence in open windows to
the structured observations in the graph (Figure 2, bottom).
When the users wish to apply more structure to their gathered
observations, they can carefully organize the observation
graph through a spatial node layout, labeled edges, and node
color (Figure 2, bottom).

Implementation
The observation graph is implemented using a minimally
invasive web-based approach. It enhances a standard
desktop interface, while letting the users work with their
native applications instead of proprietary ones. It consists
of three main components, which communicate through
WebSockets:

First, the observation graph itself is a simple web-
application using HTML5 and D3 (7) for rendering.
The second component is a plug-in for the Firefox web
browser, which allows users to extract evidence from online
documents and re-open evidence from the observation graph.
Using this plug-in, users can select observations, such as
a text passage on a website, and image, or other DOM
elements. Users can add observations to the graph via a
context menu for the selected content. The selection is
stored in a record consisting of the document’s URL and
two XPath pointers, bounding a section of the DOM. To
revisit evidence from the observation graph, the plug-in
accepts remote control commands to open new windows or
tabs and scroll the contents of a displayed website to the
given selection. If the user requests visual links to stored
evidence, the plug-in reports window-relative coordinates

Figure 2. Overview of the observation graph workflow: Users
can quickly capture text-based observations (I1), which
maintain a deep link to the original evidence (I2). They can then
organize and semantically connect their observations (I3) and
visually relate their observations to the original evidence (I4).
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of the bounding rectangle around the text selection. This
approach works for static web pages and many dynamic web
applications, as long as the DOM does not change in a way
that invalidates the XPath pointers.

Third, the embedding of the observation graph and its
associated online information sources on a large display is
enabled by a service process, which controls the window
layout and renders cross-application visual links. The service
process is a C++ native application, which runs in the
background and accepts connections from other applications.
These can be web applications or other native applications,
for example, office applications that have been extended
with a plug-in. The service process optimizes placement
of windows containing links to the graph, so that they are
close to their referring node. The service process also draws
visual links between a node shown in the observation graph
viewer and its source section in a web browser window
using visual links for hidden content (17). These visual links
are rendered using OpenGL on a full-screen transparent Qt
window, covering the entire desktop.

Experiment
We conducted a user study to validate whether the central
observation graph indeed leads to a less fragmented
workflow and a more compact representation of user
observations. We therefore compared users’ sensemaking
processes while conducting an intelligence analysis task
– supported either by the observation graph or by a
plain document in a text editor to collect findings as a
baseline condition. In both cases, users were situated on a
large display, supporting spatial organization of document
windows and linking these evidences in these documents
using visual links (17). Similarly to many classic note-taking
studies (9), our focus lies on the analysis of the process of
the users’ sensemaking rather than its product. Therefore,
we asked users to perform a complex sensemaking task with
several thousands of short articles to be investigated without
dedicated computational analysis support. In such a setting,
the expected success rate is diminishing within a reasonable
time frame (and therefore not comparable), but the complex
process requires creative sensemaking strategies.

Hypotheses and Research Questions
The goal of the observation graph is to make the sensemaking
process less fragmented, yet let users create more compact
representations of their observations compared to using
standard tools. In other words, users should be enabled to
structure their observations in an expressive and effective
way without having to use any complimentary sensemaking
methods.

The compactness of the representation can be measured by
coding the amount of observations in the observation graph
and notes document, respectively. In the field of educational
psychology, it has also been reported that students tend to
create verbatim textual notes; but despite the extensiveness
of the notes, they sometimes fail to capture the essential
information (29). In contrast, an exploratory analysis of
mind maps created by tens of thousands of users revealed
that most mind maps have a small number of nodes, which
mostly consist only of a single word (3). Davies argues

that concept maps or mind maps represent observations in a
more “usable” way and therefore also facilitate learning (13).
This would imply that, with the observation graph, users can
create a more condensed representation of their observations
than expressing their observations through text, yet without
losing quality. With a complex task like ours, measuring
the quality of sensemaking process is difficult, yet we
can measure the amount of investigated documents to get
an impression of how much evidence could have been
discovered. Indeed, in a pilot study with ten users, we could
confirm that the number of noted observations in a text
editor by users of the baseline condition was higher than
the number of nodes created by users of the observation
graph condition. In contrast, the number of opened text
files was fairly similar. Therefore, our first hypothesis H1
was that users’ text notes in the baseline will be more
detailed (i.e., containing more observations) than the created
observation graphs. However, the amount of analyzed data
(i.e., the number of investigated source documents) will be
comparable.

Fragmentation of the sensemaking workflow can be mea-
sured by comparing how much complimentary sensemaking
strategies were employed by the user. In our study environ-
ment, sensemaking is also facilitated by a large “space to
think” (2) on the multi-monitor display, in addition to the
observation graph and the notes document. In their compar-
ative study, Bradel et al. (8) could confirm their hypothesis
that “a higher percentage of screen space [...] would be
used in a dynamic way to represent semantics in [the users’]
findings”. An alternative explanation could be that the simple
document viewer alone is not sufficient as cognitive support,
so that the large display space was utilized as complimentary
vehicle to structure observations. The utilization of the
display space can be measured by the number of concurrently
open document windows and the amount of display space
covered by these windows, as well as subjective user reports
about their display space usage strategies. Indeed, in our pilot
study, users only utilized a small fraction of the available
display space when provided with the observation graph,
while users provided with a notes document applied various
spatial organization on document windows, using the entire
available display space. Therefore, our second hypothesis
H2 was that more users would spatially organize document
windows containing evidences in the baseline, while users of
the observation graph condition would rather organize their
structured observations inside the observation graph.

Due to the complexity of sensemaking tasks, such as
the one tested in our study, it is usually not possible to
directly assess the effectiveness of the users’ organization
strategies. We therefore perform a qualitative exploration of
the users’ structuring approaches to better understand their
sensemaking process with respect to the following three
research questions:

RQ1: How do users structure their observations?
RQ2: How does the sensemaking environment affect the

structuring of observations?
RQ3: How do observation graph and deep linking affect

display space usage?
It has been observed that users’ externalizations, such

as mind maps, can differ considerably between users (3).
Kinchin and Hay (27) described student concept maps
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Figure 3. A user solving the sensemaking task on a large
display with the observation graph. The heat maps show the
display space usages of all the users in the two study conditions
overlaid (left: observation graph, right: baseline).

qualitatively and could identify three broad types of concept
maps: spoke (hierarchical), chain (sequential, describing a
logical order), and net (graph structure with cycles). They
argue that the net type requires the deepest understanding
of the underlying topic during learning. On a large display,
Endert et al. (15) observed that most users spatially cluster
document windows topic-wise when solving an intelligence
analysis task. We qualitatively analyze if we can observe
similar topic-wise window structures, and whether such
structures are also reflected in the observation graph or the
users’ text document. In case display usage differs between
the two experimental conditions (H2), we qualitatively
analyze complimentary spatial structuring approaches using
document windows and nodes of the observation graph.

Apparatus
The study was conducted on a multi-display setup consisting
of 3× 2 monitors (22”, 1920× 1080 resolution). The user
was sitting approximately 70 cm from the central display
(Figure 3). The display setup was about 155 cm wide, hence
the displays covered about 95◦ of visual angle.

To search through the data, we provided users with
Recoll†, a full-text search tool operating in the web browser.
Selecting a document in Recoll opened it in a new window
using cascading window placement. At the beginning of the
session, the Recoll window was placed in the middle of the
lower central monitor. On the top central monitor, the empty
observation graph tool or the empty text editor was shown.

Data and Task
We used the task descriptions and data from the 2011
VAST MiniChallenge 3‡. The data comprised around 4,500
articles, of which 13 contained news regarding an imminent
terrorism threat in the fictious Vastopolis metropolitan area.
The remaining documents were modified from existing news.
In our study, the users’ task was to identify any terrorist
threats in Vastopolis and to provide detailed information on
the threat, such as who is planning what kind of threat, at
which location, at what time, and by which means.

Design
We used a between-subjects design, splitting twenty users
equally among two groups:

In the observation graph condition, participants (denoted
as PGn) could use the observation graph tool in combination
with deep linking between the graph and document windows.
Users could record information by creating nodes and edges
in the graph, as well as by adding notes to the nodes and
edges.

In the baseline condition, users (denoted as PBn) were
provided with an empty word processor document to take
notes.

In both conditions, users worked alone. They were
provided with visual links to synchronize keyword search
across open document windows. This means that every
participant had two complementary possibilities to structure
the information: (1) by annotating and structuring the
observation graph (or the text document in the baseline) and
(2) by organizing the document windows on the large display
and visually linking mutual pieces of evidence.

We chose a between-subjects design, as this allowed us
to use the same task for all subjects, limit the length of
the analysis session per user, and avoid learning effects.
On the downside, between-subjects designs can distort the
results due to individual variability. We will therefore not
only report quantitative results, but also qualitatively analyze
the artifacts created by the participants and their observed
and self-reported workflows.

Procedure
Users first were introduced to the tools using an unrelated
data set. The search tool and the use of visual links were
introduced for both conditions; the observation graph was
introduced only for participants in the graph condition. After
the introduction, users were asked to replay the demonstrated
actions and encouraged to ask questions about the setup.
They were free to test the system as long as they needed
to familiarize themselves with it. The subsequent analysis
session was limited to an hour, after which users were
asked to present their intermediate results. In a pilot study,
we observed that studies extending one hour tended to
get exhausting for our volunteer users, but one hour was
sufficient to observe a variety of structuring approaches.

The study was concluded by a semi-structured interview.
In this interview, we first asked users to answer the task
questions. Afterwards, we encouraged users to describe, on
a high level, their task solving strategy, how they liked the
display setup, and whether they had a particular strategy
how to use the available display space and how to position
the document windows. Users of the observation graph were
additionally asked to explain all nodes and edges in the
graph, and how they came up with these concepts and their
relations.

Logging and Analysis
All sessions were video-recorded, and all graph activities
(concept or edge creation, adding or removing references),
visual link activities (creation and deletion), window
activities (opening, closing, moving, resizing), and keyword

†http://www.recoll.org/
‡http://www.cs.umd.edu/hcil/varepository/
benchmarks.php#VAST2011
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searches were logged. In addition, we transcribed the post-
experiment interviews.

For each observation graph user, we counted the number of
nodes and edges created in the observation graph and coded
whether nodes represent entities, such as names or places,
or containers, such as “persons” or “committed crimes”.
Additionally, for each graph, we counted the connected
components, the number of labeled edges, the number of
colored nodes, and the number of deep links associated
with the nodes and edges, respectively. For the documents
created in the baseline condition, we counted the number
of words, we coded and counted the entities (i.e., persons,
places, organizations etc.) in the documents, the number
of paragraphs, as well as the number of manually added
references to associated documents. Within all coded entities
in the observation graphs and the text documents, we also
counted how many entities are considered ground truth
entities, as provided as solution to the VAST Challenge
2011. The ground truth solution contains a list of 28
entities, categorized into suspected threats, events, people,
organizations, places, and others. In addition, we analyzed
all post-experiment interview transcripts and noted if users
report on the bioterrorism event, which represents the ground
truth solution of the challenge. We performed statistical
comparisons between the two groups using Mann-Whitney
U tests.

Participants
We performed a power analysis using the results for the
number of noted entities (for H1) and maximum number of
open windows (for H2) obtained from the pilot study, where
ten users participated in total. The power analysis revealed
that a sample size of N = 10 per group is sufficient to
achieve a power of 0.85 and 0.94, respectively, for α = .05.

We therefore recruited twenty knowledge workers from
an academic environment – either students, researchers,
or administrators. Sixteen users had a background in
computer science. The other four had a medical, linguistics,
psychology, or mechanical engineering background. Ten
users were female, ten male, aged 22 to 49. Nine users
usually work with a single monitor, ranging from a 13”
laptop to a 24” monitor. The remaining users work with two
monitors up to 27”. By working in an academic environment,
users were familiar with sensemaking tasks, such as
literature research. Some users reported to have experience
with dedicated tools for information management, such as
Evernote, Mendeley, OneNote, or Trello.

Results
To test our hypotheses, we first analyzed activities of
the two groups concerning task and information retrieval
performance and display space management. Afterwards,
we qualitatively assessed users’ sensemaking strategies by
analyzing the created observation graphs, documents, and
the subjective reports about the users’ window management
strategies.

Sensemaking Process
We first report on the quantitative comparisons between the
activity logs of the two groups with respect to the amount of

Figure 4. Histograms of the number of conducted queries, the
number of unique documents opened, the number of coded
entities in the observation graph or document, the number of
ground truth entities, the maximum number of concurrently
open windows, the maximum fraction of available display space
covered by windows, and the number of visual links initiated for
the ten observation graph users (left) and the ten baseline users
(right) in the experiment.

information consumed and extracted, as visualized in Figure
4, row one to four.

Queries and Files. Users of the baseline condition
conducted a significantly higher number of queries for files
(35.2 vs. 18.2 average queries in the observation graph
condition, U = 90; p = .002, Figure 4, first row). However,
the number of queries conducted by a user does not correlate
with the number of opened files (r = .33; p = .89). The
number of opened files was similar in the observation graph
condition (31.1) and in the baseline (29.3, U = 44; p =
.650). The number of distinct files that were opened was
almost equal (21.5 in the observation graph condition and
21.3 in the baseline, on average, see Figure 4, second
row). This implies that both groups consumed approximately
the same amount of provided text information, as also
observed in the pilot study. On average, though, users of
the observation graph had a lower fraction of files that were
opened only once (74% vs. 81%), but this difference is
not statistically significant (U = 34; p = .247). The average
number of file revisits was 8.4 for the observation graph and
5.6 for the baseline. This means that, using the observation
graphs, users had a slightly higher tendency to re-open files
that had already been closed.
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Figure 5. Final window arrangement of PB7 with windows partitioned into four different topics and visual links highlighting all
occurrences of the term “Vastopolis” from the search window.

Figure 6. Number of entities per participant in the observation
graph condition (left) and in the baseline (right). The green
portion of the bar shows the fraction of ground truth entities.
The asterisk indicates participants that reported parts of the
ground truth plot in the post-experiment interview.

Entities. In total, we counted more entities noted by
baseline users in the text document (28 on average) than
nodes created by observation graph users (15.7 on average,
Figure 4, third row). This difference was expected, but it did
not reach statistical significance (U = 73, p = .082). Users
of the baseline noted slightly more ground truth entities,
but this difference is not significant (U = 42.5; p = .267).
As visualized in Figure 4, fourth row, most users of either
condition did not note any ground truth entities at all. As
shown in Figure 6, the number of noted ground truth entities
contained in the graph or noted in the text editor does not
necessarily depend on the overall number of noted entities.

Plot. Two users of the observation graph condition and
three users of the baseline condition mentioned parts of the
ground truth plot in the post-experiment interview. Note,
however, that only around 0.3% of the provided documents
contained information related to the ground truth solution.
On average, users opened 30 files during the study, which
is around 0.6% of all provided documents. We therefore
do not have sufficient evidence to conclude whether the
sensemaking environment had an influence on the ability to
reveal the ground truth plot. This was expected, since one
hour per participant is not sufficient to genuinely judge the
plot understanding. To explore potential alternative success
criteria, we performed an a-posterior exploratory analysis
of the measures in Figure 4 between the five users that

revealed parts of the ground truth plot and to the remaining
15 users. The largest mean difference between these two
groups was found for the number of opened documents
(41.2 documents opened on average by successful users
compared to 26.6 by unsuccessful users). This difference is
not statistically significant (U = 57.5; p = .081), but it can
be considered as indication that the participants’ success
was primarily determined by how much information they
managed to consume.

We therefore cannot confirm our first hypothesis H1:
There is only an insignificant tendency by participants
of the baseline condition to note more observation
entities. Baseline users conducted significantly more keyword
queries, but did not consume more information than users of
the observation graph condition.

Display Space Management
To verify our second hypothesis, we analyzed the activity
logs related to window management, display space usage,
and visual links usage (see Figure 4, rows five to seven).

Document windows. As expected, we found a significant
difference between the groups with respect to the number
of document windows the users kept open on the display.
As shown in Figure 4, fifth row, the maximum number
of open windows was significantly higher for the baseline
(10.3 on average) than for the observation graph group
(5.9 on average; U = 83; p = .012). As the number of
opened files was similar between the groups, we can
conclude that baseline users tended to keep their documents
open and visible for a considerably longer period of time
compared to users of the observation graph. Indeed, in
the post-experiment interview, baseline users reported more
frequently that they did not close any file windows at all
(PB4 and PB9) or closed windows only when the content
was clearly irrelevant (PB1, PB5, PB7, PB8). As an example
of such a workspace, the final window arrangement of PB7
is shown in Figure 5. In contrast, the majority of observation
graph users reported that they closed documents “right after
usage” (PG1, PG4, PG5, PG6, PG7, PG9).
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(a) fragmented graph (PG6) (b) small graph (PG3) (c) container (PG1)

(d) large graph (PG9) (e) dense graph (PG5)

Figure 7. Examples of user-created graphs for each cluster.

Display Space. The maximum number of open windows
positively correlates with the maximum used display
space (r = .699; p < .001, Figure 4, sixth row): while the
observation graph users covered no more than 49% of display
space, on average, the baseline users had an average peak
display coverage of 71%. This difference is also statistically
significant (U = 82.5; p = .014). This indicates that baseline
users did not just leave the windows open in the original
cascaded structure, but positioned them to increase the
content visibility (see heatmaps in Figure 3).

Visual links. In accordance with the higher number
of open document windows, visual links were utilized
significantly more often in the baseline condition (five to 34
times) than in the observation graph condition, where half of
the users did not use visual links at all (U = 90.5; p = .002).
Visual link usage is shown in Figure 4, last row. There is
a weak positive correlation between the maximum number
of concurrently open windows and the frequency of visual
link usage (r = .447; p = .048). Indeed, many baseline users
explained that they kept windows open to be able to find
related information (again) using visual links. For instance,
user PB6 stated: “Especially for finding words again in a
large text it was very important. [...] Because you don’t have
time to read everything.” PB4 especially appreciated linking
to hidden content: “[Links were helpful] especially when
documents were overlapping, so that you could see that there
is something hidden behind.”

This also confirms our second hypothesis H2: Even though
baseline participants did not open more text files, they tended
to keep the document windows open and visible unless the
content was really irrelevant. The number of open windows
correlates with the amount of used display space and the
usage of visual links, which were both significantly higher
for the baseline users.

Graph Structure

The average observation graph created during the study had
around 20 nodes and 16 edges with 15 deep links to text
files associated with nodes and just one deep link attached
to edges. As expected from prior work (3), there were
considerable differences in the way users structured their
observation graphs. However, the observation graphs created
by the users did not necessarily correspond to the three
concept map types reported by Kinchin and Hay (27), i.e.,
spoke, chain, and net. We observed no instance of a chain
structure. Only three users (PG5, PG9, and PG10 created
graphs with cycles, i.e., net graphs. PG9 and PG10 manually
created multiple high-level nodes at the very beginning of the
task. PG9 explained: “First, I created who, what, where, how,
when, why.” Then, sub-nodes were added as new text files
were investigated: “The main nodes, I created manually [...].
But whenever there were keywords in the text, I took them
directly out of the document (PG10).” Edges and references
were also gradually added: “When I found, for instance, a
super-group, like a terrorist group, then I created a node for
it. As soon as I found more information about the different
groups, I added nodes to them, which are more special [...],
and they get connections on the fly, during the research
(PG5).” In Figure 6, it is illustrated that two of these three
users had mapped some ground truth entities, which may
indicate that they had already obtained a solid understanding
of the potential plot. This would support the speculation by
Kinchin and Hay (27) that a “net-like” structure in a concept
map may be an indication of a deep understanding of the
topic.

Only two graphs were organized strictly hierarchically
(PG2 and PG3), similarly to the previously described spoke
structure (27) of concept maps. PG2 described this approach
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as follows: “I created a big node ‘potential attacks’, and
from there on, I abstracted it.”

Unexpectedly, more than half of users (PG1, PG4, PG6,
PG7, PG8, PG10) created observation graphs that were
fragmented into up to 13 connected components. Five of
these graphs contained at least one isolated node. For
example, PG6 created isolated trees for questions like “who”,
“where”, “when”, etc. (see Figure 7a). He described his
strategy as follows: “nodes for basic questions, roughly
structured what you suspect where and when [...] If I found
an interest keyword during my search, I roughly put them [the
file references] inside, so that I can browse them later.” This
implies that the observation graphs were, at least partially,
structured rather casually and abstract.

To systematically categorize the characteristics of the user-
created observation graphs, we obtained six graph features:
the number of nodes, the number of edges, the number
of deep links attached to nodes, the number of deep links
attached to edges, the number of connected components,
and the percentage of container nodes, i.e., nodes that do
not refer to an observation but describe a general topic,
such as “people”. The graph features were standardized
by removing the mean and scaling them to unit variance.
In this standardized feature space, we clustered the 10
observation graphs using k-means. We obtained the best
clustering resulting in a silhouette coefficient of 0.55 with
k = 5 clusters. A qualitative description of these clusters is
provided below:

• fragmented graphs (users PG4, PG6, PG7) with a
relatively high number of nodes (∼25), few edges
(∼13), and therefore many isolated sub-graphs (∼11),

• small graphs (users PG2, PG3, PG8) with very few
nodes (∼9), a very low number of edges (∼7), and few
deep links (∼9),

• one container “graph” (user PG1) with only five
container nodes, two edges, but 14 deep links,

• large graphs (users PG9, PG10) with a large number
of nodes (∼35), a lot of edges (∼33), and many deep
links attached to nodes (∼27), and

• one dense graph (user PG5) with a lot of edges (29)
and a high number of deep links attached to edges (6).

Examples for each graph type are given in Figure 7. As
illustrated by the examples in Figure 7, observation graphs
were structured topic-wise – often along multiple orthogonal
aspects, such as persons, places, or events.

Document Structure
The text editor we provided offered standard features to
structure text-based information, such as font size, font
color, font style, background color, etc. However, none of
the participants used any of these text structuring features.
What all users mainly relied on was to structure the
collected observations through paragraphs. The documents
were primarily structured into topic-wise paragraphs – either
person-wise (PB1), by potential terrorist targets (PB8, as
shown in Figure 8a), by a larger variety of topics (PB6
and PB9), or by a mixture of topic- and document-wise
structuring (PB2 and PB10). In contrast, the remaining
documents were structured into paragraphs summarizing the
individual investigated source files (PB3, PB4, PB5, PB7).

(a) short document (PB8) (b) container [excerpt] (PB5)

Figure 8. A short document and the container document
created by two baseline users in the study.

Except for one user, every participant added file references
into their document. Being able to more easily return to the
original documents was explicitly mentioned as a desirable
feature by user PB10: “That you are really able to access the
file from your note document. That would be a hit!”

To qualitatively describe the finally created document
structures, we therefore considered the following four
document features: the number of coded entities in the
document, the number of paragraphs, the number of file
references in the document (either by document title or
document name, which was a four digit number in this
study), and the number of words. The best silhouette
coefficient was reached with k = 3 (0.66) in the standardized
feature space, leading to the following clusters:

• short documents (users PB1, PB2, PB3, PB6, PB7,
PB8 shown in Figure 8a, PB9, PB10) with ∼170
words, ∼27 entities, little structure (∼6 paragraphs),
and few file references (∼7),

• one long document (user PB4) with almost 500
words, 18 paragraphs, 99 entities (see Figure 6), and
20 file references,

• one container document (user PB5, Figure 8b)
containing ∼1,600 words copied from four text files.

In summary, a major difference to the observation graph
users was that almost half of the baseline users did not
structure their observations topic-wise, but rather created
short summaries of the source evidence files. In addition, text
documents only contained around eight references to source
files – compared to an average number of 15 deep links per
observation graph.

Window Structure
To finally characterize how users structured their document
windows on the large display, we analyzed their strategies
described in the post-experiment interviews. The reported
strategies could be grouped into three categories:

• topic-wise window organization (as employed by
users PG2, PG8, PG9, PB1, PB4, PB7; see Figure 5),
where windows of text files with similar content (e.g.,
the same terrorist group, a similar threat, or the same
people) were spatially grouped together, sometimes
also using a similar spatial arrangement as in the
observation graph (see Figure 9) or a similar topic-
wise grouping as in the document (cf., Figure 8a),
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Figure 9. Screenshot of the display of PG2 after the study: This user spatially arranged document windows similarly as the nodes
in the small observation graph according to the topics “rebel attack” (left), “computer hackers” (top right), and “kurds” (bottom right).

• function-wise window organization (as employed by
users PB2, PB6, PB10), such as highly important
documents on one side of the display and temporarily
relevant documents on the other side, and

• unstructured window arrangement (as employed by
users PG1, PG3, PG4, PG5, PG6, PG7, PG10, PB3,
PB5, PB8, PB9), where windows were placed only for
collision avoidance or closed after reading.

This shows that more than half of the baseline users
organized their file windows either according to their content
or function. For instance, PB4 grouped windows according
to the potential terror groups: “The left upper part is this
Mr. Eldred and his terror stories. Right bottom is this
Afghanistan connection with the different war lords. Left
bottom is the Asia group and right top were connections
between the different things – not possible to categorize after
discovery.” This is similar to previously reported topic-wise
window clustering strategies on large displays (15).

PB10, on the other hand side, distinguished between
different types of window functions: “Left side: storage,
always open, important. right side: more temporary.” This
is comparable to findings by Bi and Balakrishnan (5), who
found that users tend to separate their large display space
into a central focus region for primary tasks and a peripheral
region for secondary application windows.

Note that most observation graph users did not report any
structured approach towards window management. PG6, for
instance, closed the windows “right after usage to keep the
space tidy”, and PG1, “when I believed that I had extracted
the relevant information.” In particular, no observation graph
user employed function-wise window organization. This can
partially explain the lower number of open windows and used
display space by the observation graph users.

Discussion

With this study, we could partially confirm our two
initial hypotheses: Using text notes, users have only a
weak tendency to record more observations than using an
observation graph, but users utilize significantly less display
space if they structure their observations in a graph. From our
qualitative, exploratory analysis, we derive possible answers
for our three open-ended research questions. We present
these observations as hypotheses for further research, shown
as italic text, in the following sections.

RQ1: How do Users Structure Their
Observations?
One commonality between the two groups of users was
that no user of the baseline and only a single observation
graph user employed the option to color-code the text-
based observations, to change the font, or font size. Both
groups relied almost exclusively on linear structuring of
the notes in the text document or spatial organization and
connection of observation graph nodes. This corresponds to
the information structuring strategies our users reported in
the formative interviews, where highlighting, colors or fonts
played a negligible role. We conclude that users rarely use
any structuring methods beyond linear text structuring or
spatially arranging concepts and connecting them.

Observation graph users employed a variety of ways to
structure their graphs. Contrary to structures observed in
concept maps (27), observation graphs were often only
casually organized and fragmented into disconnected sub-
graphs (Figure 7a). This observation is also supported by our
interviews, where users explained that the hierarchical struc-
ture of mind maps is too restrictive. We therefore speculate
that many users expect to connect their observations into a
rather casual graph structure.
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From our study, it is not possible to determine if the degree
of structure in the observation graph is beneficial for solving
a sensemaking task. We have a weak indication that users
that created a well-structured graph (i.e., strictly hierarchical,
dense, or large) had a higher fraction of ground truth entities
as nodes compared to users creating more unstructured small
or fragmented graphs. Reports from the formative interview
support this assumption as users explained that they wish
to apply more detailed structure on their information and
ideas the closer they are to reaching the end of their task.
It therefore seems that the better the users’ understanding of
the information, the more structured they wish to organize
their observations in the graph.

RQ2: How does the Sensemaking Environment
Affect the Structuring of Observations?
A considerable, yet statistically insignificant, difference
between the two groups was the number of entities noted by
the users, which was higher in the baseline (see Figure 6).
One explanation could be that structuring the observation
graph requires more effort than making textual notes. This
explanation is supported by the higher number of queries
conducted by the baseline users. It is also supported by some
user feedback, such as PG7 who stated that creating edges
was a bit tedious. This is an indication that design implication
I1 was not sufficiently supported by our prototype. Future
work should investigate how observations can be recorded
more effortlessly without compromising the ability to apply
rich structure.

However, the amount of information consumed was
comparable. Therefore, another explanation is that the
observations are indeed more condensed in a graph than
in a text document. This assumption is also supported by
prior work, which has shown that mind maps are often
surprisingly small (3). In contrast to the observation graphs,
text documents were often less abstract, with individual
paragraphs merely summarizing the content of dedicated
source files. We see this as indication that an observation
graph facilitates a more abstract, compact reporting of
observations compared to textual notes.

RQ3: How do Observation Graph and Deep
Linking Affect Display Space Usage?
Users of the observation graph employed the large
workspace much less than the baseline users. There are
several possible explanations for this behavior:

First, Bradel et al. (8) argue that it depends on the window
management approaches of the employed sensemaking tools
how display space is utilized. In our study, however,
we observed a significant difference between the two
experimental conditions in terms of display space usage
despite identical window management of source documents.
We therefore conclude that the window management is
not the only factor influencing users’ display space usage
strategies.

Second, it might be that observation graph users already
express their knowledge spatially by placing nodes in
the graph, while, for baseline users, spatially arranging
document windows is the only option to apply spatial
organization to the information. It seems that users prefer

to spatially organize their observations on a high level of
abstraction.

An alternative explanation is that users had a stronger
tendency to keep file windows open, if there was no easy
option to re-open them. This is supported by ample positive
feedback about the ability to return to the original evidences
from graph nodes, as well as by the fact that nine out of
ten baseline users manually entered the names of the files
containing evidence related to a noted observation. Note
that, in the formative interview, users also reported that
they often store links to online resources to be able to
find information again. Finding the relevant evidence again
was clearly easier in the observation graph by virtue of the
deep links. Therefore, we believe that deep links to source
evidence reduce the need to keep information sources open.

In addition to the reduced display space requirement, users
of the observation graph also used visual links across the
document windows much less frequently. It may be that the
need to determine connections between pieces of evidence
via visual links was not required in the observation graph,
where observations could be connected manually. Even
though our visual links also reveal hidden content, users tried
to maximize content visibility: The more frequently users
employed visual links, the more display space they seemed to
require. Visual links are appreciated to visualize connections
between pieces of evidence, but only if no other way to reveal
connections (e.g., through edges in an observation graph) is
provided – and they require a lot of display space.

Conclusions and Future Work

Through a user-centered design approach, we designed and
validated an observation graph to capture and structure
observations during information-rich tasks. In formative
interview, users reported that taking text-based notes is
most effortless and that dedicated sensemaking methods,
like mind maps, are often too restrictive, even though
spatial structuring is considered powerful. In contrast to
more rigid mind maps and concept maps, it seems that
users prefer to gradually construct a spatial observation
structure, where entities can be spatially organized, sparsely
connected with each other, and linked to their respective
source information. Indeed, our study has shown that users
structure their findings primarily within the observation
graph, leading to a less fragmented and more compact
structure of their observations compared to users taking
textural notes. This shows that spatial organization strategies
previously observed on physical desks (33; 26) or large
displays (1; 15) can also be supported on considerably
smaller display space through flexible observation graphs.
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