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Fig. 1. Result of a case study with a professional writer who sought to visualize a BBC news feed: the left image shows the input
Wordle layout; the right image shows the layout that was created using EdWordle. The writer ordered related words into semantically
meaningful groups, one group per story. Each group was organized spatially together and color-coded, creating a layout that the user

referred to as a “storytelling cloud”.

Abstract—We present EdWordle, a method for consistently editing word clouds. At its heart, EdWordle allows users to move and
edit words while preserving the neighborhoods of other words. To do so, we combine a constrained rigid body simulation with a
neighborhood-aware local Wordle algorithm to update the cloud and to create very compact layouts. The consistent and stable behavior
of EdWordle enables users to create new forms of word clouds such as storytelling clouds in which the position of words is carefully
edited. We compare our approach with state-of-the-art methods and show that we can improve user performance, user satisfaction, as

well as the layout itself.
Index Terms—Wordle, consistency, text visualization

1 INTRODUCTION

Wordle [17] is a popular visualization tool that converts a piece of text
into a word cloud, in which each word is sized according to its number
of occurrences. Despite several concerns that have been raised by the
visualization community [1], Wordle has gained great popularity and
has been adopted by many non-expert users since its introduction in
2008. One of the major reasons for this success is the aesthetic and
participatory output that Wordle creates. In other words, Wordle is
mainly used as an authoring tool to produce visually pleasing word
clouds, which can be customized for appearance and shared with others.
It is very rarely used as a data analysis tool with the need of accurately
representing the underlying data [37].

To fine-tune the output so that it meets their aesthetic goals, users
often wish to further manipulate Wordles by adding, deleting, or mod-
ifying words [17]. The original method, however, only allows users
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to change the attributes of the whole word cloud. To fill this gap, Koh
et al. [26] introduced ManiWordle, a technique that enables users to
directly manipulate individual words with different operations such
as selection, movement or rotation. Jo et al. [24] extended this work
by developing WordlePlus for pen- and touch-enabled tablets. This
version of the method provides full control over a wordle that includes
resizing, adding, and deleting elements.

The manipulation of size, orientation, or position of words inevitably
involves a re-organization of the whole layout. For example, when a
user deletes a word, there will be empty space that needs to be filled. If
a word is moved to a new position, others need to be moved away. Cur-
rent state-of-the-art re-organization strategies [24,26] relocate words
that no longer fit anymore by simply moving them to empty spaces.
While this approach warrants a compact overall layout, it also results
in substantial global reordering with words being moved to completely
different positions. This approach hence contradicts the idea of con-
sistency, a core principle in many design-related areas [33]. A proper,
consistency-preserving editing approach will be even more important
in semantically-ordered word clouds [3,41]. Here, the neighborhood of
words is meaningful, so that words like “BBC” and “News”, or “presi-
dential” and “candidate” appear spatially close together, as shown in
Figure 1. In such a case, inconsistent and unpredictable layout changes
during editing would likely result in poor user experience.

To fill this gap, we designed EdWordle, a context-aware interaction
technique that seeks to preserve the local and global order of words in
a word cloud. Our technique is based on the coherent combination of
two components: a customized rigid body dynamics simulation and a
neighborhood-aware re-layout algorithm. Similar to morphable word
clouds [8], each word is viewed as a rigid body with a mass and the



dynamics simulation arranges words by applying forces. Representing
each body solely as a box might be too loose for producing compact
word clouds. Hence, we use a two-level box representation for each
word, where each letter is viewed as an individual box and the common
part of all letters as the other box. Based on this representation, we
construct two kinds of forces: neighboring forces between words pull
them to stay as close as possible, and a central force pulls each word
towards the center of the word cloud. Such a dynamic system is able
to generate compact and non-overlapping word clouds, but it cannot
guarantee that all empty spaces will be filled, especially at the boundary.
To alleviate this problem, we additionally propose a neighborhood-
aware local Wordle algorithm, which moves words that are far from the
center to fill nearby empty spaces.

Although EdWordle’s primary function is to edit word clouds, the
method can also be used to improve any existing word cloud. Thus,
we compare it to state-of-the-art word cloud creation algorithms [3,41]
by taking their outputs as our inputs and then investigating how much
our approach improves these layouts under experimental settings as
proposed by Barth et al. [4]. A quantitative analysis shows that our
approach is i) consistently better in preserving word neighborhoods, ii)
successfully avoids global changes to the layout, and iii) has similar
or even better results in avoiding empty spaces. In addition, we com-
pare EdWordle to ManiWordle to investigate its usability for Wordle
editing by conducting a laboratory study. The results show that people
were not only faster and more accurate with EdWordle, but also felt
they achieved better results. Finally, we invited some designers and
writers to investigate the value of EdWordle as an authoring tool. The
results demonstrate the advantages of our approach over Wordle and
ManiWordle in creating storytelling visualizations, for example laying
out headlines in a semantically meaningful way as shown in Figure 1.

2 RELATED WORK

We review previous work related to word cloud visualization and work
related to authoring tools for visual representations more generally.

2.1 Word Cloud Visualization

A word cloud, also known as a tag cloud, is a visual representation
of text data that has been used on the web since 1997 [36]. A word
cloud encodes the frequency of words of a given text into font size and
color [31], and spatially arranges the words on the canvas. Over the
years, a number of different spatial arrangements have been proposed.
Standard word cloud visualizations use a rectangular line-by-line layout,
where the words may be sorted alphabetically or by their importance.
To produce more compact and aesthetic visualizations, a large family
of alternative layout methods have been proposed [20,25,32,35,37].
Among them, the most well-known algorithm is Wordle [37], which is
the focus of the present study. Wordle uses a greedy approach to pro-
duce compact layouts, where words are placed in different orientations,
not just in a single direction. To improve the orthogonal ordering of
Wordle, Strobelt et al. [35] suggest to combine scan-line based tech-
niques [29] with the greedy layout strategy of Wordle. To enable the
user to easily create visually appealing word clouds, Tagxedo [28]
and WordArt [40] both allow the user to put word clouds into specific
shapes. However, such improvements still do not capture the relation-
ship between words, let alone the temporal coherence of time-varying
text data. Therefore, a variety of semantic and temporal word cloud
generation methods and editing tools have been proposed in recent
years.

Semantic Word Clouds While Wordle and its variants produce aes-
thetic visualizations, their layout algorithms do not incorporate the
neighborhood relationships between words and thus they do not place
semantically related words close to each other. This was mentioned by
Hearst [22] as one of the critical limitations of traditional word cloud
visualizations. To overcome this limitation, Wu et al. [41] proposed an
approach that places similar words close to each other. To do so, they
first compute a distance matrix between words and then use multidi-
mensional scaling to place words onto a 2D canvas, while removing
blank spaces through a carving scheme. Paulovich et al. [30] extended

this idea to document collections by using multidimensional projec-
tion techniques to compute neighborhood relationship and arrange the
words accordingly.

For pre-specified neighborhood relationships, Barth et al. [3] show
that creating a semantic word cloud that strictly respects the relation-
ship between words is a NP-hard problem. They consequently present
approximation algorithms and conduct a comparison [4] between Wor-
dle and the carving method [41]. Their findings show that semantic
word clouds were not as compact as Wordle. Recently, Buchin et al. [6]
pushed this line further, proposing geo word clouds that respect not
only the neighborhood relationships but also the relative (geo-spatial)
position associated with each word. All these algorithms, however, do
not allow the user to re-position words, which means that semantics
cannot be adjusted once the layout is generated. Our neighborhood-
preserving editing approach is specifically important for semantic word
clouds, and plays a crucial role for keeping the neighborhood between
words. Globally re-positing words upon edits, as pursued by current
state-of-the-art editing approaches (see below), would naturally inter-
fere with the goal of keeping a semantic order. With our approach users
are able to order words in a way that even tells a story within the word
cloud, a feature that has not yet been possible.

Temporal Word Clouds Given a time-varying set of words, temporal
word clouds attempt to visualize temporal trends while preserving
temporal coherence. Collins et al. [10] introduce Parallel TagClouds
that combine parallel coordinates and traditional word clouds, where the
words of each document are distributed along each coordinate axis. Lee
et al. [27] present Sparkclouds that visualize trends between multiple
word clouds by integrating sparklines into a word cloud. Both methods
perform well in the visualization of trends, with Sparkclouds being
the better one in terms of scalability. Cui et al. [11] combine a trend
chart and multiple word clouds together to illustrate temporal changes
of the underlying data. By combining multidimensional scaling and
force-directed layout, this method can create semantic and stable word
clouds over time. Recently, Chi et al. [8] propose morphable word
clouds where a sequence of spatial shapes is specified as a boundary
for a set of time-varying word clouds. By using rigid body dynamics,
they arrange words within the given shape sequence so that temporal
changes are encoded by both the shapes and the content of the word
clouds. In this paper, we also use rigid body dynamics to rearrange
words after editing. Representing each word as a rigid body, however,
might result in large empty spaces between words. To address this
issue, we propose a two-level rigid body representation for each word
and combine rigid body dynamics with a local version of the Wordle
placement algorithm.

Word Cloud Editing Almost none of the existing word cloud visu-
alizations allows users to edit typographical properties of individual
words. While this might be plausible for pure data analysis settings,
Viegas et al. found that Wordles are mainly used as an authoring tool
for participatory visualizations [37]. In this scenario, users often want
to manually customize and edit the visual output. To address this need,
Koh et al. proposed Maniwordle [26], which allows the user to move,
rotate and remove a word with a mouse. Wordleplus [24] by Jo et
al., extended Maniwordle to multi-touch settings and enriched it with
natural interactions. Since user interaction might result in empty space
between words, ManiWordle re-runs the Wordle layout algorithm for
the un-edited words and Wordleplus repeatedly uses the words at the
boundary of Wordle to fill empty space within the cloud. Both ap-
proaches result in global and unpredictable layout changes, as can be
seen in Figure 7 on page 6. Our approach, EdWordle, overcomes these
limitations by striving to preserve a consistent neighbor-relationship
before and after editing. It can also be used for other applications such
as semantic word cloud generation and temporal cloud generation.

2.2 Visualization Construction and Authoring Tools

For the last few decades, there has been considerable effort to create
easy-to-use visualization construction tools. Grammel et al. [21] pro-
vide a survey of various types of such visualization construction tools.
Among them, visual builders provide large flexibility by allowing the
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Fig. 2. Overview of our method: (a) given a Wordle, (b) we use our customized rigid body dynamics to move words close to each other; (c) if a word
is moved, the forces update the words accordingly; (d) empty spaces are removed by using a local version of the Wordle algorithm.

user to move and resize visual elements in order to create custom visu-
alizations. Two typical examples are Dust & Magnet [34] and flexible
linked axes [9]. EdWordle also belongs to this type of interfaces that
allows the user to freely control elements.

Today, designers can create visualizations with a large variety of
tools [23,38], and further edit visualization with drawing tools like
Adobe Illustrator, if needed. Very recently, Bigelow et al. [5] pointed
out that current tools leave a gap between producing and later editing
of visualizations, which can considerably hinder designers in their
creative process. Towards bridging this gap, they proposed a model
which allows for a much easier iteration between visualization creation
and editing. Along similar lines, Fulda et al. [19] proposed an authoring
tool that allows designers and journalists to create and edit timeline
visualizations for temporal story telling. Our work was inspired by
this recent trend towards authoring tools in visualization, and eases the
transition from an automatically generated word cloud to a manually
adapted visual output.

3 EDWORDLE

Figure 2 illustrates the overall approach behind EdWordle. The process
starts by simply loading some text that can be copied and pasted into
the tool. Alternatively, we also can start from an existing word cloud
as input. For illustrative purposes we assume the case that an initial
word cloud has already been created, as illustrated in Figure 2(a). After
the wordle is loaded, we first apply a customized rigid body dynamics
approach, which helps us to make the layout more compact while
preserving the neighborhood relationships. This process results in a
compact representation of the input.

The user can then freely edit the cloud until the desired result is
obtained. In our example, the user would like to move the word “ded-
icate” closer to the word “nation”. For each interaction, EdWordle’s
main goal is to allow for predictable changes, as well as to produce a
compact and aesthetic result after each editing step. More specifically,
we seek to preserve neighborhoods of words to allow for consistency
when changing the layout (instead of words that might jump around
unpredictably). To do so, after each step the rigid body dynamics step
is automatically invoked again (Figure 2(b)-(c)). At any time, the result
can be further improved by performing a Re-Wordle, a local Wordle
layout process, in which empty spaces at the boundary are filled by
nearby words. All steps are based on our two-level box representa-
tion for the words, which allows us to create compact representations
without words squeezing in between characters of other larger words.

Using this approach, EdWordle gives the user full creative control
including the ability to drag, rotate, add, delete, or resize a word or
multiple words at the same time. Moreover, it allows previewing of
the intermediate outcome actions by continuously updating the layout
while words are moved around by the user [33]. In the following, we
describe each of the core components of EdWordle in more detail. We
first briefly introduce the general rigid body dynamics, then explain our
two-level box representation, as well as our customized external forces
approach (Fig. 2(a)-(c)), and finally explain the local Wordle layout
algorithm that we designed (Fig. 2(d)).

3.1 Rigid Body Dynamics Based Layout

By representing each word as a rigid object, rigid body dynamics allow
us to avoid word overlapping by enforcing non-penetration constraints.
We provide a brief review of rigid body dynamics, for more details
please refer to Witkin [39]. Rigid body dynamics systems deal with
the motion of bodies that are subject to external forces. Rigid bodies
cannot penetrate each other, so their motion is simulated using two
major components: unconstrained and constrained dynamics. The
former updates position and velocity in response to (outer) forces, while
the latter detects collisions between bodies and creates corresponding
responses, please refer to Appendix A for unconstrained rigid body
dynamics. In general, however, the state of a rigid body is described by
the vector Y(#) = (x(¢),R(¢),P(¢),L(¢)), which includes its position x,
orientation R, linear momentum P and angular momentum L.

A constraint is a restriction to the position or motion of a rigid
body [16]. To satisfy a non-penetration constraint for instance, an
appropriate collision detection and response between the rigid bodies
is required. By representing each body as a convex hull with corre-
sponding bounding box hierarchy, collisions can be detected by any
efficient algorithm, such as the separating axis method [15]. After
a collision is detected, the non-penetration constraint is enforced by
impulse-based dynamics, which solve the imposed constraints using
linear equations [7].

——
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Fig. 3. Comparison of three different body representations for a word
with collision responses shown by black arrows (upper row) and resulting
layouts (lower row). (a) the word-level box representation introduces
large empty spaces between words; (b) the letter-level boxes result in a
compact layout but introduces overlapping words; (c) The two-level box
representation combines the advantages of the representations in (a,b).

3.1.1

Previous approaches [3, 8, 11,35,41] typically represent words with
a single bounding box, which is simple but results in non-compact
layouts (see Figure 3(a)). An alternative way is to represent each word
as a combination of multiple letter-level bounding boxes, which allows
compact layouts to be generated but might result in word overlaps.
Figure 3(b) illustrates this issue: the collision response from the letter
‘i’ and ‘0’ of the word “dedicate” cancel out each other so that “dedicate”
and “nation” are getting stuck due to their letter-level boxes. Since
the collision detection is done for all boxes attached to the body, the

Adaptive Two-level Word Representation
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Fig. 4. lllustration of our rigid body dynamics: (a) Neighboring forces
(black solid lines) and central forces (black dashed lines) act on the

central box (neighbours are shown with blue outline); (b) Motion before
and after collision between two words.

letter-level box representation also incurs a substantial computational
overhead.

Thus, we propose to combine the two representations in an adaptive
way. Directly using the bounding box of the entire word will make the
letter-level boxes useless. As a consequence, we compute the bounding
box of the common part of all letters to form our word-level box, shown
as a red dashed box in Figure 3(c). The width of our word-level box
is the width of the bounding box of the whole word and the height is
the minimal height of all letters. To reduce the computational cost, we
use this two-level box representation only for words whose relative
sizes compared to the largest word are larger than a fixed threshold. In
this way we do not introduce large empty spaces between words, since
gaps between letters in small words are typically too small for placing
other words. In our experiments, the threshold was set to 0.5. This
means all words with at minimum half the font size of the largest word
will be subject to our two-level box representation. For all other words
we use normal word-level boxes. Our collision detection is based on
this two-level box representation. In this study we primarily work on
compact wordle layouts, but users are allowed to offset the proposed
two-level bounding box for creating more whitespace if they want to
make words more outstanding.

3.1.2 Customized External Forces

To produce a compact layout while preserving the neighborhood, we
apply two external forces to the objects: neighboring forces and central
forces. While the former pushes neighboring words close to each
other, the latter drags all words to the canvas center. For computing
neighboring forces, we first determine the neighborhood relation among
the words in the given word cloud and then apply the external forces
accordingly to move them (see Figure 4(a)). If two words collide,
they will bounce off each other, see Figure 4(b). Note that forces are
enforced to the center of the mass of each rigid body represented by
our adaptive two-level boxes.

Neighborhood Search: The body center of each word is connected
to the centers of all other words. If the line segment connecting two
words does not intersect a third word, these two words are considered
to be neighbors. As shown in Figure 4(a), the word with the red border
is thus not taken as a neighbor of the selected word.

Neighboring Forces: Suppose the selected word has ny neighbor
words, then the exerted neighboring force is:

nf

neigh . 2

=Y mixmj/ri; e
Jj=1

where 7; ; is the Euclidean distance between the body centers of the
selected word i and the n neighbor words j. The mass m is a given
weighting factor for each word. Since this force is inverse proportional
to the distance (we divide by ri% ;)» it will pull neighboring words more
closely together. Figure 5(a,b) shows an example where the neighboring
force pulls “struggled” and “testing” as well as “resolve” and “liberty”
together after deleting the word “conceived”.

Central Forces: Since the magnitude of neighboring forces decreases
with their distance, neighboring words with large distances cannot be
pulled together. This could result in considerable gaps. For example,
there is a large gap between the words “struggled” and “‘score” in

Figure 5(b). To address this issue, we introduce a central attraction
source. That is, we place a virtual body with a large mass M at the
center of the canvas to attract all words toward it using the following
formula:

FFem =mi x M x 1}, @)

where M is a unit mass, and r; . the distance between word 7 and the
canvas center. Central forces are proportional to the distance between
the words and the virtual object in the center (we multiply by riz‘ -
Thus, they will especially attract those words that are farthest from the
center. Figure 5(c) shows an example where the central force pulls the
words “resolve” and “fought” more closely to the center.

Joining the Forces We now can simply join the forces by computing a
weighted sum for each word body i, at each iteration step ¢:

Fi(t) = F""(t) + aF" (1) 3)

where « is the weight. Large central forces might destroy the neigh-
borhood relationship, for example, during movement from Figure 5(a)
to (c), the neighboring words “vain” and “resolve” are not neighbors
anymore. We heuristically found & = 0.1 to be a good compromise
between the forces.

Damping Strategy: Directly applying this force F; to the words will,
however, cause the system to halt in a non-equilibrium state since (i)
the forces move words so that collisions occur and (ii) the collision
forces pull them back into the opposite direction. This results in an
unstable, oscillating system. The words would jitter and shake around
at each iteration step. To address this issue, we apply an attenuation
function g(#) to the force. In combination with the the force F; for each
word body, we receive the following final equation at each iteration ¢:

F™ (1) = Fy(1) x g(t) )

Since neighboring forces become much larger when words are close
and the system is getting compact, the attenuation function should
become smaller as the number of iteration increases. Thus, we set
g(r) = B/(r+1) with B an attenuation constant.

Nonetheless, only applying an attenuation function to the forces
is not enough to avoid jittering. Words keep moving as long as their
velocity is not zero. Thus, we also decay the velocity with a damping
coefficient A: v;(r) = v;(¢) x A, where we set A to 0.8. This damping
strategy reduces the movement of the rigid bodies until they reach their
resting positions.

Driven by these two strategies, any change to the position of a word
has an effect on the forces being exerted on it. Such effect in turn
changes the moving velocity of the word and subsequently its updated
position, leading to an iteratively updating framework. Since different
words have different velocities, we specify a maximum number of
iterations to stop the simulation. In our experiment, we found that 80
iterations are enough for achieving convergence for all of our word
clouds, where the running time is typically around 0.6s with our not yet
optimized implementation.

Algorithm 1 Local Wordle Layout

1: identify the boundary word list
: for each word w in the sorted boundary word list do
compute a initial position for w
search k candidate positions for w
pick the position that best preserves the neighborhood
end for

AN A

3.2 Local Wordle Layout

When the rigid body simulation stops, most word body motions are
blocked by neighboring words so that words are packed compactly.
Since the spatial distribution according to the neighbourhood relation
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Fig. 5. The resulting word clouds after (a) deleting the word “conceived”
in the input word cloud. (b) The results generated by applying the
neighboring forces; (c) central forces in combination with neighboring
forces, and (d) central forces with a weight a = 0.1.

might not be uniform, the arrangement of words might be biased to-
wards some direction, which results in gaps among the words in the
obtained layout. As shown in Figure 2(c), such gaps often appear at the
boundary of a cloud. To fill them, we propose to re-arrange the related
words using the original Wordle layout algorithm. However, this layout
algorithm will, according to its greedy strategy, potentially destroy the
neighborhood relationship among words. This would produce inconsis-
tencies with the rigid body system. In other words, the re-layout has to
take the neighborhood relationship into account. Thus, we propose a
local version of the Wordle layout algorithm as outlined in Algorithm 1.
It has two key components: i) identification of boundary words; and ii)
searching a new position. Note that this algorithm might destroy the
original neighborhood relation a little to improve the compactness and
thus we leave it as an option for the user.

Identification of boundary words (line 1). We compute the width
and height of an axis-aligned bounding box b of the current word cloud
and then construct a circle centered at the center of the layout and with
a radius f3 x min(widthy, height,). All words that lie outside of this
circle need to be re-placed, indicated as red boxes in Figure 6(a). After
identifying such words, we sort them in terms of their font sizes.

Picking the best position (line 3-5). Before searching for a new posi-
tion using the spiral scheme of Worlde (cf. [17]), we define its initial
position as the midpoint of the line segment that connects the mass
centers of the current word and the center of the entire word cloud.
Then we find k candidate positions along the spiral and select the one
that preserves the largest number of neighborhood relations on its new
position. If more than one position preserves the same number of neigh-
borhoods, we pick the one that is found first, because it is closer to the
word cloud center. Figure 6(b) illustrates the procedure for the orange
box highlighted in Figure 6(a).

In our experiment, 3 and k are set to 0.8 and 20, which works well
for most of our data. In this way, our local Wordle layout algorithm not
only fills gaps but also preserves the original neighboring relationship
as much as possible. Figures 2(c,d) show a comparison of the word
clouds without and with adaptation by the local Wordle layout.

3.3

The above approach allows us to provide a set of new or refined types of
interactions that enables users to create visually pleasing word clouds:

Interactions

Neighborhood-preserving editing. After importing a word cloud, Ed-
Wordle allows the user to move, rotate, resize, add and delete words
while preserving the neighborhood relationship. Although ManiWor-
dle [26] and WordlePlus [24] both also support most of these opera-
tions, neither of them respects the original neighborhood relationships

% ® ﬂ L= = ‘()
(a) (b)

Fig. 6. lllustration of the local Wordle layout method, the point shown with
the cross is the center of the entire word cloud. (a) The words outside of
the circle are taken as boundary words and are shown with red borders;
(b) k candidates (shown as triangles) are found for the word highlighted
in orange, where the green circle indicates the starting position and the
yellow triangle is the position finally selected.

of words. Figure 7 compares the re-layouted results generated by Mani-
Wordle and EdWordle after moving and rotating the word “dedicate”.
In ManiWordle (b), this editing step evokes global repositioning of the
words marked in orange, and results in a non-compact layout. Our ap-
proach overcomes these limitations, retaining the word neighborhoods
and compactness of the layout.

Note that resizing words does interfere with the validity of word
clouds, but only if used as a pure data/text analysis tool. As Mani-
Wordle [26] and WordlePlus [24] , we take Wordle more as a commu-
nication and artistic tool, where users start with an initial layout and
then want to adjust it to their needs. In this case, a precise representa-
tion of word counts through word size is not of primary concern, and
users even request the ability to resize words as shown in the FAQ and
discussion forums of Wordle [17].

Multi-word editing. To simultaneously manipulate multiple words,
EdWordle allows the user to select multiple words by pressing the Ctrl
button or with the help of rectangle selection. Once multiple words
are selected, the user can move, rotate, delete, re-color, re-font and
re-wordle them. With traditional editing approaches, such multi-word
interactions would be impracticable as manipulations would result in
substantial global changes and would introduce large gaps between
words.

Re-Wordle. As mentioned in Section 3.2, our local Wordle layout
algorithm can re-arrange the words so that gaps at the borders can be
closed. We refer to this operation as Re-Wordle. While the standard
Re-Wordle process has the default parameters (8 and k), we also allow
the user to play around with the parameters, or only use it on specific
subsets of words. To select specific words, EdWordle allows the user
to interactively adjust the circle center, circle radius and de-select some
boundary words if they want to keep their positions.

Other interactions. To make EdWordle a full and usable creative edit-
ing environment, we also provide other common interactions, such as
undo, redo, save and load, or edit data. We furthermore provide an
additional multi-touch version of EdWordle, allowing users to select,
drag, rotate, and resize words with multi-touch interactions similar
to WordlePlus [24]. Such an approach is interesting specifically for
collaborative Wordle creation where concurrent interaction of multi-
ple users is now possible because the user does not get interrupted
by words jumping around from another user editing the word cloud
simultaneously.

3.4 Implementation and Tool

EdWordle is written in JavaScript and runs in the web-based environ-
ment, which is is available as an online tool'. The Hammer.js library
(http://hammerjs.github.io/) is used for touch interaction. The accom-
panying video shows examples of the above described interactions.

1http ://www.edwordle.net/


http://www.edwordle.net/
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Fig. 7. Comparison between Maniwordle [26] and our method for movement and rotation. (a) Input word cloud where the word “dedicate” is moved
down and rotated about a small angle; (b,c) Results generated by Maniwordle and our method, respectively.
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Fig. 8. (@) Realized adjacencies for various word clouds; higher is better. The dashed and continuous lines match up well, indicating that EdWordle is
able to preserve neighborhoods well. (b) Mean and standard deviation of compactness for various word clouds; higher is better. EdWordle (dotted)
produces substantially more compact results. (c) An example for refining a semantic word cloud (top) with EdWordle (bottom).

4 EVALUATION

We evaluate our approach in three different ways. First, we illustrate
how EdWordle allows us to refine and improve existing word clouds.
Second, we present a small-scale quantitative lab study with 16 partici-
pants. And third, we discuss the results of a qualitative case study with
10 designers and writers. The purpose of these studies is to compare
our approach to current state-of-the-art approaches for generating and
editing word clouds. Further details on experimental designs and results
can be found in the supplemental materials.

4.1 Quantitative Comparison

In this section, we validate that EdWordle can improve the quality of
existing word clouds by enhancing their compactness, while preserving
most of the neighborhood relations. To do so, we use Barth et al.’s
semantic word clouds layout [4] as input for Edwordle for further
processing. The resulting layouts produced by Edwordle are expected
to be more compact, while at the same time we expect them to largely
retain word neighborhoods. Such a quality refinement is specifically
interesting for semantic word clouds, because under this condition
the semantic neighborhood of words does not get destroyed by the
quality optimization process. We illustrate the quality improvement by
comparing the initial layout with the processed layout. For most word
clouds with 50 words, the improvement procedure can be done in less
than 0.5s.

4.1.1 Study Design

Metrics. According to Barth et al. [4], there are six common metrics
for evaluating word cloud layouts: realized adjacencies, distortion,
compactness, uniform area utilization, aspect ratio, and running time.
Here, we focus on the realized adjacencies, and compactness, which
are especially relevant for our goals. The metric of realized adjacen-
cies is defined as the sum of edge weights of all pairs of boxes that
share a common boundary. This metric mainly reflects how well the
semantic relatedness between pairs of words is “realized” in the word

cloud layout. Compactness indicates how much area is used to render
the actual words in relation to the entire area the cloud covers, that is,
used area/all area. Compactness therefore indicates how efficiently
the drawing area is used. To define all area, we simply use the bound-
ing box of the whole word cloud, while we set the used area as the
sum of bounding box areas for all words.

Existing Algorithms. We use two different word cloud layout algo-
rithms: Star Forest, and Cycle Cover, which have been found to out-
perform the other methods in realized adjacencies, and are competitive
with respect to the other metrics [4].

Data. We use two datasets taken from Brath et al. [4]. For each

algorithm, we tested both datasets.

1. WIKI, consisting of 112 plain-text articles from the English
Wikipedia, each has 200 distinct words or more; and

2. PAPERS, consisting of 56 scientific papers from two experimental
algorithms conferences (SEA and ALENEX, 2011-2012).

4.1.2 Results

Fig. 8 shows the results of our experiments. Fig. 8(a) demonstrates
that the neighborhood relations in all word clouds created by EdWordle
are well-preserved. The metrics of realized adjacencies for the output
layouts created by EdWordle (dotted lines) are almost equal to the input
lines by the original layouts (continuous lines). Only for the PAPERS,
Cycle Cover case, we see that the EdWordle output is slightly worse
than the original input. The loss, however, is very minor, and we deem
it acceptable.

Fig. 8(b) shows the results for compactness. After applying EdWor-
dle to the initial layout, the compactness of these word clouds improved
substantially. This suggests that EdWordle indeed is able to further
improve given semantic word clouds, by making them more compact
while at the same time preserving their word neighborhoods. Fig. 8(c)
illustrates this effect with an example.



4.2 Lab study

In this study, our goal was to evaluate how well different editing ap-
proaches perform in tasks related to keeping word neighborhoods. For
instance, a user might like to move a word next to another word or
to create a semantic layout where the position of words is meaning-
ful [3,4,30,41]. He might even like to create a storytelling cloud, which
shows complete headlines as a sequence of words inside the cloud.

4.2.1 Experimental factors

We had two experimental factors (independent variables): editing ap-
proach and tasks.

Editing tools. We compare our EdWordle approach with ManiWordle,
the current state-of-the-art approach for editing Wordles. To ensure a
fair comparison, we only test the basic functionality of both approaches,
that is, moving and rotating objects. For EdWordle, we initially consid-
ered three variants to be tested: (1) without preview, (2) with preview,
and (3) a version that “pushes” words away. We thought that a ver-
sion with preview will be easier to use as it allows users to see how
the overall-layout will change, even though necessarily adds response
time to the system. The variant without preview is fast but not as user-
friendly since users cannot foresee the impact of their actions. The
third version was inspired by how moving physical objects would push
away other objects while moving, such as stones that lie on a table.
To determine which of the three versions to use in our study, we first
conducted a pilot study with 6 participants. We found that users consis-
tently preferred version (2) with preview, deeming the slight increase of
response time as acceptable. We also considered including WordlePlus
into the study, but refrained from it as WordlePlus uses very similar
basic functions as implemented in ManiWordle.

Tasks. We carefully explored different test tasks and evaluated them
based on how they can be measured, and how realistic they are. This
process led us to the following two tasks for our study:

Task 1—Pairwise placement: This task is meant to test simple and
common pairwise interactions of word placements. It encompasses
three subtasks: put word x on top of word y; put x on left of y; put x on
top of y and rotate them to a certain angle. For different users, x and y
were randomly sampled. We visually illustrated the task in an abstract
spatial way as shown in Fig. 9(a). Our goal with this approach was to
allow participants to easily infer spatial target positions, while keeping
it abstract enough to avoid a focus on superficial details.

Task 2—Semantic misplacement. The second task relates to the
ability to form groups of related words, for instance, as common in
Semantic Wordles [3,41]. Instead of testing the entire ordering process,
we opted for simply correcting four randomly sampled misplaced words
into their correct groupings, as shown in Fig. 9(b). We also opted to
let users group words by color, instead of the actual semantic meaning
of words. On the one hand, color can be perceived much quicker than
semantic meaning, which avoids potential learning effects between the
two conditions. On the other hand, semantic interpretation would leave
too much room for subjective interpretation, making it hard to measure.
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Fig. 9. (a) Example picture for Task 1. (b) Example picture for Task 2.

4.2.2 Hypotheses

Based on EdWordle’s ability to preserve local and global neighbor-
hoods, we had the following hypotheses before conducting the study:

e H]I: For both tasks, users will be more efficient with EdWordle
than with ManiWordle.

e H2: For Task 1 (pairwise placement), EdWordle will result in
more accurate results, that is, with fewer errors.

e H3: The layouts created with EdWordle will be more compact.

* H4: Subjective ratings will be slightly better for EdWordle than
for ManiWordle, as ManiWordle can lead to unpredictable word
changes.

4.2.3 Experiment Design

We used a within-subjects design: each participant conducted both
tasks with both editing tools (independent variables). The following
dependent variables were tested:

* Efficiency: We used three efficiency measures: the time (seconds)
a user takes to perform a task, the number of clicks needed, and
the distance of the mouse movement.
Accuracy: We counted the number of misplacements in each
resulting Wordle layout, that is, words that were not correctly
placed according to the subtask/task description.
* Compactness: As in the experiment above, we also computed the
compactness ¢ of the resulting layouts by ¢ = used area/all area,
using the bounding box approach to specify all area. Since we do
not have word box information of ManiWordle, we counted the
number of pixels with non-background color to define used area.
Subjective ratings: We used the ManiWordle questionnaire [26]
to gather subjective ratings of users on six questions, ranging from
strong disagreement to strong agreement (7-point Likert scale).
We attempted to avoid biasing effects by the interviewer in our
study.

Data. We used two different datasets in our study:
* DI: the paper “Participatory Visualization with Wordle” by Vie-
gas et al. [37]
* D2: the Wikipedia entry about the famous South Korean skater
Yu-Na Kim.
To limit the complexity of the study design, D1 was used only in task
1, and D2 in task 2.

Participants. We recruited 16 participants (8 male, 8 female), most of
whom are Computer Science students from the local university. The
age ranged from 20 to 29 years (median age 22). All participants
reported normal or corrected-to-normal vision, and had no color vision
deficiencies. None of them had prior experience with word cloud
generating tools.

Procedure. We defined the following procedure for the study:

1. introduction video, familiarization with both tools (2 min. each),

and explanation of tasks by the interviewer;

2. Task 1, with both editing tools;

3. Task 2, with both editing tools; and

4. questionnaire and short interview.
The orders within (2)-(4) were counterbalanced to avoid systematic
bias through potential learning effects. During (4), the participants
were allowed to play around with the respective editing tools again, and
were shown the wordles they created with this tool before. The study
was run on a quad-core PC with a 23” LCD widescreen, using a mouse
as input and a 1920 x 1080 px display as output. The system was
equipped with a AMD FirePro W2100 GPU with 2048 MB of memory.

4.2.4 Results

We followed recent recommendations of statistical analysis practices
and used an estimation-based approach with effect sizes and confidence
intervals [2]. This approach overcomes several biases and limitations
of classical null hypothesis testing with p-values (NHST) [12, 14].
Cumming and Finch offer guidance on how to interpret statistical tests
using confidence intervals (CI) [13]. Specifically, if there is no overlap
between CI error bars we can assume a statically significant result with
a p-level of p ~ .01 (if the bars touch each other) or smaller (if there is
a gap between them) [13].

The results of our quantitative measures are summarized in Figure 10.
For time, clicks, and distance, lower values are better. For compactness,



higher values are better. The results are consistent with the trends we
initially predicted with our hypotheses. All three efficiency measures,
(a) time, (b) clicks, and (c) distance show a clear and strong effect of
EdWordle being more efficient than ManiWordle.
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Fig. 10. Mean values and errors as 95% Cls of (a) time, (b) clicks, (c)
distance, and (d) compactness. For (a)-(c), lower values are better; for
(d) higher values are better

In terms of accuracy, we counted the errors that were made under
each condition. For Task 1, an error is defined as an incorrect neigh-
borhood between an indicated pair of words (e.g., because a word had
jumped unpredictably around). For ManiWordle we counted 10 errors
across all users, for EdWordle only 2. Screenshots of all errors are
shown in the supplemental material. For Task 2, there were no errors
under either condition. We expected this result, as Task 2 is based on
pre-attentive color sorting that allows users to easily spot and correct
for errors.

The results of the compactness scores, which we computed for each
resulting word cloud layout, are shown in Figure 10(d). For Task 1,
EdWordle is only slightly better than ManiWordle. For Task 2, the effect
is much more pronounced and EdWordle created more compact results.
When inspecting the resulting clouds of the participants, we noticed
some EdWordle layouts in which words would purposely “stick out”
from the bulk of other words, such as the word “culture” in Fig. 9(a).
While this behavior is not negative per se, the bounding box-based
compactness measure is very sensitive to it and explains the small effect
on compactness values of EdWordle in Task 1. As a more sensitive
alternative, Barth et al. [4] proposed basing the compactness measure
on the convex hull of a word cloud. This hull-based approach would
indeed avoid this issue, but was impractical in our case because we only
have images available for ManiWordle layouts, and not the word-box
information.

Finally, we looked at the subjective ratings of the ManiWordle
questionnaire. The results are shown in Table 1, and they indicate
that EdWordle was consistently better rated than ManiWordle by our
participants. In particular, questions related to usability (Q2 & Q3)
and to the generated results (Q6) show clear evidence that EdWordle
subjectively outperformed ManiWordle.

Table 1. Subjective Responses to Six Questions(Average Ratings)

Questions ManiWordle EdWordle
Q1: It was easy to learn this visualization. 6 6.41
Q2: It was easy to use this visualization. 4.94 6.18
Q3: I liked to use this visualization. 4.56 6.09
Q4: It was fun to use this visualization. 5.12 5.74
QS5: I felt creative while using this visualization. 5.12 5.53
Q6: Overall, I am satisfied with the result layout. 4.69 6.08

4.3 Case Studies with Designers

In our last evaluation we wanted to determine the value of EdWordle in
a more qualitative way. We thus conducted a set of case studies with
designers and writers, two of our primary target audiences.

4.3.1 Study Design

Overall, we invited 10 participants to our study. All participants worked
in some sort of creative profession, such as graphic design or journal-
ism, and had different interests, such as international political affairs
or technology. We asked them to use EdWordle to create a layout
according to their own taste, desire, and needs. To do that, they were
allowed to pick an article of their choice. The only prerequisite was that
they had to be familiar with the selected article, in order to resemble a
data presentation rather than a data exploration scenario. In contrast to
the quantitative lab study, we offered the participants the full spectrum
of EdWordle’s functionality. The design process of each participant
was closely observed and recorded. After each session, we collected
their results and comments on EdWordle, as well as information about
their background. Overall, every case study took 1-2 hours.

4.3.2 Results

We were happy to observe that all 10 participants engaged in a very
creative design process, and came up with interesting and inspiring
layouts. Fig. 11 as well as Fig. 1 show 6 of the resulting Wordle layouts.
All of the created word clouds involved some sort of semantic layout,
which is inherently fostered by our approach as it allows designers to
manly organize words according to their semantics.

Fig. 1 shows an example done by a writer who is strongly interested
in international affairs. Her EdWordle is based on a news feed from
BBC, which included different threads of daily news. Deciding to
reveal these different threads in her layout, she ordered the words that
belong to a specific story spatially together, and also color-coded them
with the same colors. With this layout it becomes very clear that the
article is made up of five news pieces: (1) America supporting the
Israeli-Palestinian solution; (2) President Trump’s administration did
fine-tune and publish the travel ban; (3) Marine Le Pen, a presidential
candidate in France, was under investigation; (4) 70 people were killed
in Pakistan because of a suicide attack, and (5) 50 people in Baghdad
died of a car bomb by the IS.

Fig. 11(a) shows the result of another participant with a background
in journalism, who sought to visualize an article about “deleting some of
your apps will make you happier”. As the article was heavily referring
to iPhones and Apple’s App Store, the journalist decided to design the
overall shape of the Wordle as an Apple logo. While creating such a
shape-oriented Wordle would also have been possible with previous
approaches [8], the user went beyond that in that he carefully designed
the leaf of the apple as a catchy headline “delete and you will thank
me later”. There are also other semantic groups in the layout, such as
“2 million apps”, and the two numbers that refer to a central message
in the article: deleting “54%” of the apps freed up “24%” of the disk
space.

Fig. 11(b)-(e) show the results of another four case studies. We see
that the designers of these layouts also engaged in producing creative
and semantically-inspired layouts, often with some sort of “story” be-
hind it. Participants (b)-(d) made strong usage of different orientations,
and sought to order words into meaningful groups. In (b), for instance,
the participant visualized a speech of Obama by semantically ordering
its four parts into separate corners, while having recurring themes in
the center. Result (e) was the closest to a classical Wordle layout, with
the difference that the participant sough to put the central message into
the center: “All men are created equal”. More details about the case
studies, as well as the other studies can be found in the supplemental
materials.

5 CONCLUSIONS AND FUTURE WORK

In this work, we presented EdWordle, a novel approach for editing
word clouds. EdWordle’s main benefit is that it allows a neighborhood-
preserving editing process, which keeps words at predictable and close
locations during and after the editing process. In a set of quantitive
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Fig. 12. Pushing bars can push words into specific directions. Once
some words collide with the pushing bar, they will be moved along the
pushing direction: (a) cloud before moving pushing bar; (b) intermediate
result; (c) after using the pushing bar from two sides to customize the
word cloud shape.

experiments with and without users, we found that this approach outper-
formed other state-of-the-art editing approaches. In our qualitative case
study with 10 designers and writers, we furthermore found that, with
its neighborhood-preserving character, EdWordle fosters new ways
of creating and editing Wordles. Designers and writers would, for
instance, automatically engage in creating some sort of semantically
meaningful Wordles, which represented some aspects of the underlying
stories, or simply storytelling clouds. This finding is in line with the
increasing amount of recent research on semantic word clouds. So far,
however, it has been very hard to edit such clouds without destroying
their semantic layout. EdWordle fills this gap. We also believe that our
neighborhood-preserving approach opens various doors for new forms
of interactions. For instance, we experimented with pushing bars that
allow users to interactively customize desired shapes by pushing the
entire layout around. Figure 12 as well as the video illustrate this idea.

We believe that there are many other ideas that could be realized
based on our consistency-preserving approach. Extending the pushing
bar metaphor to multi-touch, one could, for instance, think about a so-
lution that allows users to literally “shape” a word cloud with the hands.
Another idea is to allow the user to draw a lasso or a shape, and pull at
the ends of this “rope” to “tighten” the word cloud — an idea that is sim-
ilar to shape word clouds [28,40]. Or one could simply combine their
shape constraints [8] with our approach of neighborhood-preserving
editing. Such an approach would even better support editable shape
Wordles as the one described in our “apple” case study (Fig. 11(a)).

A more general avenue for future work is to develop more sophis-
ticated authoring tools for the generation of storytelling word clouds.
Eight of our 10 designers/writers mentioned that they would have liked
creative support through a more direct link to the underlying text. Our
system still requires a considerable amount of user interaction to gen-
erate the final storytelling clouds as shown in Fig. 1. In the future,
we thus plan to combine our consistency-preserving editing approach
with advanced text analysis algorithms [18] to inform better initial
layouts so that user interaction can be further reduced. Furthermore,
our system is designed to preserve local word neighborhoods while
reducing whitespace. The resulting word clouds might be too compact
in some cases so that some distinct words might be hard to identify (e.g.,
when all words are horizontally aligned). For a word cloud consisting
of multiple topics, separating topics by whitespace might also make
storytelling clouds more understandable. It would be interesting to
learn more about how compactness and whitespace affect the usability

and readability of word clouds. These ideas indicate the potential of
more sophisticated authoring tools that connect word cloud generation,
editing, and text analysis tools.

ACKNOWLEDGMENTS

The authors would like to thank Haifeng Zhang for making the evalua-
tion. This work is supported by the grants of NSFC-Guangdong Joint
Fund (U1501255), NSFC (61379091, 91630204), the National Key
Research & Development Plan of China (2016YFB1001404), Shan-
dong Provincial Natural Science Foundation (11150005201602), NSF
of Jiangsu Province (BK20150634), National Foreign 1000 Talent
Plan (WQ201344000169), Leading Talents of Guangdong Program
(00201509), the Fundamental Research Funds of Shandong University,
and the FFG project 845898 (VALID).

APPENDIX A: UNCONSTRAINT DYNAMICS

Given the center of mass x(¢) as the origin of the body space and its
orientation represented by rotation matrix R(#) in world space at a time
t, a position r;, in body space can be mapped to a position r(¢) in world
space by:

r(t)

To describe how position and orientation change over time, we define a
linear velocity v(¢) and an angular velocity @(¢). The quantity v(¢) =
x(t) = %x(z) gives the velocity of translation, while @(z) specifies the
rotation speed and the axis about which the body is rotating. By using
the relation R(r) = () x R(z), the velocity of the body at the position

r(t) is:

=x(t)+R(t)rp. &)

i(t) =

When external forces act on the body with the mass m, the position
and velocity of the body will be changed. Suppose, an external force
F(z) is given, then the torque 7(¢) acting on the body is:

(t) = (r(t) = x(t)) < F(1), ™

where 7(¢) depends on the location r(¢) of the body relative to its center
of mass x(z).

Since momentums are conserved in nature, it is recommend to de-
scribe the state of a moving body with a linear momentum P(¢) and
an angular momentum L(r). They are computed from the linear and
angular velocity, respectively:

v(t) + o(t) X R(t)rp. (6)

P(t) =mv(r), L(t)=Lr)w() (®)

where I(¢) is an inertia tensor describing how the mass in a body

is distributed relative to the center of mass. The change in linear

momentum can be described as
P(t) =m—-v(t) = F(1), ©)

dt
where the acceleration is & = F(¢) /m. By analogy, the derivative of the
angular momentum is formulated as L(r) = ©(z).
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