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Figure 1: Neighborhood effects: the difference in perceived target bar rank between the highest and the lowest neighborhoods
(from one dataset in study 1). The baseline chart before neighborhood manipulations is shown in (a). The target bar at 25th

percentile is either surrounded by the top four highest bars in (c) or the top four lowest bars in (e). A substantial difference in
estimation error is found in (f).

ABSTRACT
In this paper, we report three user experiments that investi-
gate in how far the perception of a bar in a bar chart changes
based on the height of its neighboring bars. We hypothesized
that the perception of the very same bar, for instance, might
differ when it is surrounded by the top highest vs. the top
lowest bars. Our results show that such neighborhood ef-
fects exist: a target bar surrounded by high neighbor bars, is
perceived to be lower as the same bar surrounded with low
neighbors. Yet, the effect size of this neighborhood effect is
small compared to other data-inherent effects: the judgment
accuracy largely depends on the target bar rank, number
of data items, and other data characteristics of the dataset.
Based on the findings, we discuss design implications for
perceptually optimizing bar charts.
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1 INTRODUCTION
Bar charts are arguably on the most ubiquitous visualization
techniques. Their usage ranges from casual users that seek
to understand their personal data, to professional decision
makers making delicate choices on such data representations.

As a natural consequence, many researchers have focused
on gaining a detailed understanding of how bar charts and
other common statistical graphics are perceived and inter-
preted by users. This line of research has unveiled many
interesting and surprising facets. Previous work has, for in-
stance, shown how contextual factors, such as biased social
signals [17], priming and anchoring effects [14, 40], fram-
ing effects [22], decorations [26], luminance [37], plotting
density [16, 37], and neighboring objects’ size [12, 42], can
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influence visual perception. Better understanding such fac-
tors is critical to design proper statistical graphics, and to
avoid potential misinterpretations of the data.
The goal of our work is to contribute a novel factor to

this line of work: understanding neighborhood effects in
bar charts. Given the prevalence of other visual biases, we
were wondering in how far the perception of a bar’s height is
influenced by the height of its neighboring bars. For instance,
can we observe any perceived differences when the very
same target stimulus bar is surrounded by the top highest
vs. the top lowest bars?

The main psychological foundation that guides the neigh-
borhood manipulation in our study is Parallel Line Illusion
(PLI). PLI illustrates how the perceived length of a target stim-
ulus line is altered by different contextual lines positioned
in parallel to it [11, 18–20]. There are two distortions in PLI:
length contrast and length assimilation [18, 20]. Length con-
trast occurs when the target line is distorted away from the
contextual line, e.g., the target line perceived to be shorter
when accompanied by a long contextual line as opposed to
a short one; see Fig. 2. Length assimilation occurs when the
target line is distorted towards the contextual line, e.g., tar-
get line perceived to be longer when accompanied by a long
contextual line than by a short one. These two distortions
shift from one to the other under certain conditions.

A similar work to ours is Peebles’ empirical investigation
on whether two adjacent bar values affect the perception of
a target bar value in a simple five-bar chart [29]. The author
observed a significant difference in target bar value judg-
ments between two conditions (the target bar measuring
‘5’ surrounded by bars measuring ‘4, 4’ vs. by ‘1, 1’). Our
goal is to expand on this work and provide a more system-
atic investigation into potential neighborhood effects in bar
charts. Simultaneously, we aim at moving from this highly-
controlled, artificial setting towards a more realistic setting
by examining real world datasets. Therefore, in this work
we change the order of bars to keep datasets the same (con-
straint from real applications) instead of only changing the
neighboring bar values (highly-controlled research setting).

Towards that goal, we contribute three Amazon Mechani-
cal Turk (MTurk) experiments with overall 52,101 trials and
587 participants, in which we study these neighborhood ef-
fects.We tasked participants with rank estimation tasks. Rank
estimation is a common, yet so-far mostly overlooked task
in bar charts, in which users seek to relate a specific target
item to the whole dataset. For example, one might want to
learn about the ranking of one’s own university, company,
or sports club, according to some performance metric.

The results of our studies show that neighborhood effects
exist in rank estimation tasks. When the same target bar is
surrounded by the highest bars, the perceived target bar rank
is lower than when it is surrounded by the lowest neighbors.

Figure 2: Parallel Line Illusion. The target line on the right
side in both figures has exactly the same lengths. However,
when put next to a long contextual line (left figure) it is per-
ceived shorter as it actually is. In contrast, when the contex-
tual line is short (right side) the target line is overestimated
as too long. Length contrast is at play.

This finding is in line with the length contrast distortion
in PLI. Yet, the effect size of neighborhood effects is small.
Altering from the highest to the lowest neighborhood leads
to an approximate 1.32 increase in the target bar rank. This
means that a target bar being perceived as at rank 60 in its
highest neighborhood will be perceived as at rank 61.32 in
its lowest neighborhood. However, this small effect is largely
masked by other data-inherent effects, which reveal that
the accuracy of this task mostly depends on true target bar
rank, number of data items and two other data characteris-
tics (skewness and kurtosis) of the datasets. After isolating,
identifying and quantifying both data-inherent effects and
neighborhood effects, we draw three possible implications
for future bar chart designs based on our results:

• Compared to random order, sorting bars according
to real heights is of higher accuracy for conveying
rank-related information.

• Despite their existence, there is no need to worry too
much about neighborhood effects in bar chart rank
estimation tasks.

• Skewness has a comparatively large effect on rank
estimation though; additional clues might be used to
convey rank-related information more precisely.

2 RELATEDWORK
Empirical Studies on Ordering
The neighborhood manipulation is related with ordering
graphical components (i.e., how to map data to different
graphical characteristics). This kind of mapping is a funda-
mental challenge in visual design, such as mapping rays in
star plots. Various empirical studies exist that investigate
effects of such ordering decisions. Klippel et al., for instance,
studied how aligning variables to rays in star plots influences
perceptual comparison tasks. They found that solely altering
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the assignments of two rays in an 8-ray star plot resulted
in significant differences in response time and participants’
grouping behavior whereas this alter only evoked very few
difference in perceived similarity [23]. Saket et al. compared
between five different basic visualization types and revealed
how they differ in effectiveness in ordering tasks [32]. To
the best of our knowledge, no empirical studies had been
conducted on ordering effects within bar charts.

Graphical Perception in Bar Charts
Much empirical work has been conducted to better under-
stand the widely adopted visual encoding of bar charts. Uti-
lizing a common scale, bar charts for instance were found to
offer higher accuracy for estimating component parts than
other square-, circle-, or cube-based encodings [5, 7, 35, 38].
These works focused on tasks such as larger/smaller com-
parison, difference comparison and proportion extraction
between a pair of bars [5, 16, 24, 35]. Cleveland & McGill
studied 10 different pairs of bar values in simple bar charts
ranging from .18 to .83 and found that the accuracy would
decrease with increasing distances between the graphical
elements [5], a finding that was further confirmed by Talbot
et al. [39]. These studies focused on the accuracy of judg-
ing absolute bar heights or comparing the relative height
between a pair of bars. No work had shed light on the visual
judgment of bar ranks, namely the relative position within
the whole group.

Parallel Line Illusion
Theoretically, our work is grounded in neighborhood ef-
fects in Parallel Line Illusion (PLI) research. PLI was used
to explain many different illusions [19], such as the famous
Miller-Lyer [21], Baldwin [30], and Ponzo illusions [4].
Within the PLI framework also two different length dis-

tortions were described. The perceived length assimilation
describes perceiving a test line length towards a context line.
Length contrast describes distorted perception of a test line
length away from the context line. Which direction an effect
has (assimilation or contrast) depends on the spatial [18, 19]
and temporal [20] distance between the two lines. Based on
PLI, Zacks et al. [44] attributed the difference in accuracy
of judging absolute bar height to potential length assimila-
tion and length contrast distortions. They hypothesized that
these effects might be produced by the relative heights of
bars in a figure and the relative heights of judged bars to
its surrounding graphical frame [44]. Closest to our work,
Peebles [29] explored whether the surrounding bar values af-
fected perceived bar values in a simple bar chart (comprised
of five bar components). They compared the perceived values
of a target bar measuring ‘5’ under two conditions (the two
adjacent bar values to be ‘1,1’ vs. ‘4,4’) [29]. Results showed
a significant difference that the mean perceived value for

‘1,1’ condition was ‘5.07’ while for ‘4,4’ was ‘4.96’. This is
consistent with length contrast in PLI. Yet, this study only
tested one, highly artificial stimulus chart. Building on PLI
and these initial findings, we study length assimilation and
length contrast effects in much more realistic settings of bar
charts, with an eye towards making this theory applicable
in visual design.

3 OVERVIEW
The three studies were conducted in chronological order
between May 2018 and September 2018. Study 1 (pilot) ex-
plored the existence of neighborhood effects with target
bars at three different ranks being surround by three neigh-
borhood conditions (highest, similar and lowest neighbor-
hood). After identifying that other data-inherent effects had
a strong confounding influence on our results, we conducted
study 2 (pilot) to isolate and quantify these other effects by
testing each bar in the chart under two baseline orders. In
study 3 (main study), we offset the impact from these other
data-inherent effects and validated the presence of neigh-
borhood effects with target bars at six different ranks being
surrounded by two neighborhood conditions (highest and
lowest neighborhood). All three studies were conducted on
MTurk. Details of each study are shown in Tab.1.

Hypothesis
Following Peebles’ results [29] and fundamental PLI research
[18], we hypothesized that neighborhood effects exist in bar
charts. Jordan et al. [18] found that in very close neighbor-
hoods/spatial separation (5mm) assimilation effects domi-
nate, while in larger neighborhoods (100mm) contrast effects
aremore common. In our case, thewidth of the neighborhood
around the target bar (distance from the leftmost neighbor-
ing bar to the rightmost neighboring bar) was roughly in the
range of 100mm. We thus hypothesized that contrast effects
would occur. Surrounded by the top highest bars, the target
bar rank would be perceived lower than that surrounded by
the top lowest bars.

Datasets and Participants
To increase ecological validity, we carefully handpicked 15
nominal datasets which could be applied to a univariate
bar chart from online resources statistics.com [36] and New
York Times [28]. These 15 datasets were equally distributed
into three groups with 9-13 bars (referred to as approx. 10
bars group), 18-24 bars (20 bars group), and 30-32 bars (30
bars group). Participants were recruited from MTurk and
compensated at an hourly payment of $7.5.

Experimental Setting
We task participants with the rank estimation task.We regard
it as the simpler testbed (mainly involves one target bar and
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Table 1: Overview of studies. Details include main results, number of participants recruited and remained after
quality control, and number of tasks in each MTurk HIT.

Study Result Recruited Used Tasks

Pilot 1 Neighborhood effects seem to exist; however, various confounds mask the effects. 105 94 135
Pilot 2 Modeling data-inherent effects that explain the confounds from study 1. 200 184 63 (61)
Main 3 With controlled confounds, the neighborhood effect is present with small effect size. 283 200 72

the others) for investigating neighborhood effects than other
tasks, e.g., to compare heights between two bars (involves
two targets and the rest). We calculate rank as

Rank =
OR

N
× 100 (1)

where OR denotes the ordinal rank, and N denotes number
of data items in the dataset.

We defined a manipulation neighborhood covering 20% of
the entire chart (i.e., 2, 4, and 6 bars in the three groups); see
gray shadow in Fig. 1 (c) & (e). Fig. 1 exemplifies our neigh-
borhood manipulation process. Starting with a quasi-random
alphabetical order, we first identified the set of highest or
lowest neighboring bars (Fig. 1 (b) & (d)); we then swapped
them with the initial neighborhood bars around the target
(Fig. 1 (c) & (e)). The target bar (orange) was randomly cho-
sen within the possible range. Choices that would cut off the
neighborhoods at the sides of the chart were excluded.
We formulated the rank estimation task as “How do you

think about the height of the target bar highlighted in or-
ange among the whole group?” We chose this formulation to
avoid misunderstanding the task as comparing the target bar
with another bar such as the highest one. We only showed
each chart to participants for exactly one second. With this
setting, we sought to prevent participants from precisely
counting how many bars are above or below a target. We
tested different time durations before the studies and found
that one second gave the best tradeoff between bar chart
perception and avoiding counting strategies.
The whole chart (measuring about 960:500 pixels) was

rendered in the center of the screen, below a control panel
containing the question and a slider (measuring about 600
pixels). The target bar was highlighted in orange while the
other bars filled in blue. Titles of data items are replaced with
ordinal numbers. For all conditions, the visual appearance of
bars and tasks were exactly the same. The auxiliary materials
contain all stimuli and screenshots of the setup.
Participants’ responses were collected on a continuous

slider with #bar-times tick marks. The two ends were clearly
marked as ‘Lowest’ and ‘Highest’ in order to avoid partici-
pants accidentally swapping the scale direction. Every time
a new task started, the slider handle was visually hidden.
The handle appeared after a click on the slider and could be

further adjusted then, always snapped to the nearest tick po-
sition though (ordinal rank). We measured estimation error
in target bar rank as follows:

Error =
Perceived OR −True OR

N
× 100 (2)

Perceived OR denotes ordinal rank collected on sliders and
True OR denotes the actual ordinal rank of the target bar.

Quality Control
We set quality control tasks to ensure serious participation
from crowdsourcing workers. In study 1 and 3, quality con-
trol trials which shared the same task (rank estimation) and
setup with the main experiment were randomly inserted into
the study. The target bars in quality control trials were either
the top highest, the top lowest or the median bar in a sorted
order according to heights. If a participant failed (absolute
error of OR exceeded 25%) more than 50 percent of all the
quality control tasks, his/her entire response was discarded.
In study 2, we control data quality based on outlier detection
in main study tasks.

Statistical Analysis
Following advise on good statistical practices [2, 6, 8, 25], we
use a graphical presentation approach to present effect sizes
and 95% confidence intervals (CIs). Specifically, we adopt
the 95% corrected Cousineau-Morey CI generating method
[2, 6], which is recommended for within-subject designs as
it can strip out individual differences [2].
In regression analysis, we use adjusted R2 and stepwise

model selection which is based on Akaike Information Crite-
rion (AIC) [1] from both backward and forward directions
to compare models. ANOVA tests (F-test and p-value) are
adopted to test significance of models and predictors.

4 EXPERIMENT
Study 1
Objective: We set out to investigate neighborhood effects
with target bars at three different ranks. Each target was
surrounded by three neighborhood conditions. We expected
to see substantial differences in the perceived rank task for
different neighborhood conditions.
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Setup: The three target bars were chosen to be low bars
(rank = 25,mean = 27.07, SD = 2.83), median bars (rank =
50,mean = 51.10, SD = 1.84), and high bars (rank = 75,mean =
77.52, SD = 1.73). The three neighborhood conditions con-
sisted of the shortest bars, bars similar to the target (e.g.,
for target bars ranked at 50%, neighboring bars ranged from
40% to 60%), and the highest bars. Followed by manipulation
procedures discussed in Section 3, reordering was performed
on the alphabetical baseline.
A within-subject study was conducted with 105 MTurk

workers. The whole study lasted about 10 minutes. After 9
training tasks presented in a fixed order at the beginning,
the main experiment contained 135 perceptual ranking tasks
(135 Trials = 3 Tarдets × 3 Neiдhborhoods × 15 Datasets)
and five quality control tasks was presented. Task order in
the main experiment was randomized. To eliminate fatigue,
we gave participants a 30s break after 5 minutes.

Results:We accepted 94 responses after quality control
and plotted the mean error (effect size and CI). Fig. 3 shows
the results aggregated over all trials and datasets: mean er-
rors above zero indicate overestimation, while errors below
indicate underestimation. The figure is first organized by
the target bar rank condition (25%, 50%, 75%), and then by
neighborhood conditions (lowest, similar, highest).

Looking at the three different target bar rank groups (25%,
50%, 75%), we see a neighborhood effect within each of them.
The highest neighborhood condition is always more underes-
timated than the other two (lowest, similar). That is, people
tend to perceive target bar rank in its lowest neighborhood to
be higher than that in its highest neighborhood. The similar
neighborhood conditions have a substantial overlap with the
lowest neighborhood conditions, so we cannot make reliable
judgments about potential differences between them.

Considering the results for each dataset separately (screen-
shots are available in the auxiliary material), we observe
these neighborhood effects in 11 out of 15 datasets (19 out of
45 targets). In three other datasets (three out of 45 targets),
we see a reversed pattern that is consistent with length as-
similation distortion. Bar orders in the alphabetical baseline
could be the confounds for inducing the reversed pattern.
While we could see neighborhood effects within each of

the three groups, we were surprised by the much stronger
effects that exist between these groups. In Fig. 3, it is obvious
that a large difference in error exists between the three target
rank groups (25%, 50%, 75%). There is a substantial underes-
timation at 75%, a slight underestimation at 50%, and a slight
overestimation at 25%. These are likely caused by other fac-
tors such as the choice of the target bar, or potentially also
other data-inherent characteristics. One possible explanation
for these effects might be anchoring and insufficient adjust-
ment [10]. It is possible that participants swipe a horizontal
line between the highest and lowest bars to be the ‘median’

Figure 3: CIs for means of Error. We tested nine conditions:
Three target bars (25%, 50%, 75%), each tested with three
neighborhoods (lowest, similar, and highest).

height and then conservatively indicate whether the target
bar is higher or lower than this height. Another possible
explanation is the statistical phenomenon regression to the
mean [9, 15] in repeated measurements. When viewers make
decisions based on subjective probability distribution [13]
(e.g., generating a quantification of certainty on how likely
this target bar to be at certain rank), the estimates for an
unknown target tend to cluster to the mean of population
distribution, i.e., the median 50th percentile in our rank esti-
mation task. Both these two explanations help us understand
that estimations at 75% group are under- and those in the
25% group are overestimated.

Study 2
Objective: The purpose of study 2 was to isolate and quan-
tify other data-inherent effects that might influence the rank
estimation task. Two baseline conditions were chosen to
model these data-inherent effects: (B1) random condition
with data items randomly assigned to bar components and
(B2) sorted condition with bars sorted in an ascending order
according to real heights.

Hypothesis: Based on the lessons learned from study
1, we hypothesized that a large proportion of error could
be explained by the actual target bar rank and number of
data items. To some degree also data characteristics such as
coefficient of variance (ratio between standard deviation to
mean), skewness (asymmetry of the probability distribution),
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Figure 4: Hypothesized data-inherent effects from true rank
and number of data items in two baseline conditions.

kurtosis (“tailedness” of the probability distribution) and
normality might play a role.
We expected to see differences between B1 and B2 con-

ditions. Errors in B1 condition would have larger variances
and the same data-inherent effects would appear as in study
1. Errors in B2 condition would have smaller variances and
only little data-inherent effects would be observed consider-
ing the additional visual assistance from bars being sorted
along the x-axis.
Fig. 4 illustrates our anticipated effect of true target bar

rank. We represent it as a curvilinear relationship between
errors and true target bar ranks. We hypothesized that view-
ers would anchor and adjust their answers on median bars
(ranked at 50) and the two extrema (ranked at 1 and 100).
Means of error near these anchors would be close to zero,
while for the ranks in-between we expected their perception
to regress towards the anchors. The expected relationship in
B2 was a horizontal line very close to x-axis, which means
no effect. In terms of number of bars in a chart, we expected
that with increasing number of data items, also the absolute
error would increase in condition B1. This is illustrated with
different colors in Fig. 4.

In terms of regression analysis, we expected to see a con-
tribution to the model’s goodness of fit (increased adjusted
R2, and a smaller AIC value) from target bar rank and num-
ber of data items when adding each of them as variables into
the model. An increase in R2 indicates that the model better
explains the variance in the data. AIC deals with the tradeoff
between model’s goodness of fit and complexity (number of
predictors), with a lower AIC indicating a superior model.

Setup: We conducted a new study to have every single
bar component in 6 out of 15 datasets (randomly chosen)
being assessed under both B1 and B2 conditions. For practical
reasons we split the study into two blocks completed by
two groups of participants (Block 1: charts were chosen to
be N = 13, 18, 32; Block 2: N = 10, 20, 31). After the same
9 training tasks in pilot study 1, there were 126 tasks for
each participant in Block 1 and 122 tasks for Block 2. The
presentation order of main study tasks within each block was

randomized. Each block averaged 10 minutes. 200 MTurk
workers were randomly assigned to one block.

According to factorial analysis, the total number of per-
muted orders in B1 condition for a 10-bar chart is more than
106. To increase randomness, bar orders in B1 condition were
randomized when the charts got rendered in the front end.
Ideally, with 100 participants in each block, we could average
between 100 random orders. For the sorted condition (B2),
the order was always the same.

Result:To remove speeders (workers who rushed through
the study with low data quality), we used 1.5 × IQR rule to
detect outliers in B2 sorted baselines. There remained 95
and 89 participants for Block 1 and Block 2 respectively. In
total we kept 22,828 samples for data analysis. Comparing
between errors, we observe smaller variances in B2 (mean =
−1.62, SD = 11.40,CI [−1.79,−1.46]) than in B1 (mean =
−2.13, SD = 19.34,CI [−2.30,−1.97]). Large variances in B1
are plausible as we let participants judge different charts
for the same condition and there can be large individual
differences between participants in empirical studies.
We first tested the hypothesized curve by modeling re-

lationship between error and target bar rank. We applied
the 1.5 × IQR rule in each B1 condition to remove outliers.
10,863 out of 11,414 samples remained. We applied two re-
gression models: a polynomial regression model and Locally
Weighted Regression (LOESS) [27]. For the polynomial re-
gression model, we chose a cubic fitting function as the
simplest function capable of modeling our hypothesized rela-
tionship. By contrast, LOESS is a non-parametric regression
method that automatically finds the curve that best describes
the relationship between independent and dependent vari-
ables without the need to specify the fitting function.

To derive prediction models, we averaged all the repeated
measurements for the same condition (124 conditions) in-
stead of using the 10,863 original samples. While models
derived from different #regression samples have different
R2, their coefficients and the ANOVA test results are identi-
cal. Thus, we reported the model derived from 124 averaged
samples as it introduces less uncertainty in the prediction.
After applying stepwise model selection, we derive a cu-

bic model with the lowest AIC (denoted as Model 1). Fig. 5
illustrates the fitting line and prediction intervals (i.e., 95%
CI and 95% PI) of Model 1, fitting results from LOESS and
regression samples. LOESS results (Residual Standard Error
is 11.07) are consistent with the hypothesized curvilinear
relationship between error and target bar rank. The results
from the cubic model and LOESS are identical. All predictors
in Model 1 are significant, revealing their associations with
the dependent variable. The curvilinear relationship can be
expressed as:

Error = 6.79 − 0.00735 × Rank2 + 0.0000640 × Rank3 (3)



Neighborhood Perception in Bar Charts CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

Figure 5: Model 1 predictions and regression samples (scat-
terplots, alpha = 0.03): Errors against true target bar ranks,
indicating the influence from ranks.

However, thismodel does not yield a goodmodel fit, F (2, 121) =
11.51,p = 2.66e-5, with adjusted R2 to be 0.14 and AIC to be
957.74. Even though the curvilinear relationship we see in
Fig. 5 follows our hypothesis, only using rank to account for
estimation errors is insufficient.

To investigate the potential influence of other data charac-
teristics, we plotted error means and CIs for each target bar
(keep all the raw samples to avoid biases in CIs) as shown
in Fig. 6. The pattern varies across datasets. For charts N =
13 and 32, there is the curvilinear relationship that we hy-
pothesized. In the other charts, however, we only see large
slopes or other curvilinear relations. In the two charts N = 13
and 32, x-intercepts are very close to 50, but the other four
charts do not show similar patterns. We cannot confirm the
hypothesis about the effects from number of data items with
these graphical presentations in that the plots differ vastly.

We further hypothesized that besides target bar rank and
number of data items, other data characteristics might also in-
fluence the accuracy of rank estimation tasks. We thus added
Coefficient of Variation (CV), skewness, kurtosis and the
p-value in Shapiro-Wilk test [34] (a preferred method to test
whether the dataset is drawn from normal distribution [43])
of each dataset to the model to see whether these additions
can further explain the errors we see. After stepwise model
selection, we derive a new multiple cubic regression model
denoted as Model 2. As shown in Tab. 2, p-values for each
predictor in Model 2 are statistically significant, meaning
that changes in true target bar ranks, number of data items,
skewness, kurtosis and the interaction between target bar
rank and number of data items are related to the changes
in the estimation error. Model 2 yielded a good model fit on
the same 124 samples, F (6, 117) = 48.62,p < 2.2e-16, with
adjusted R2 to be 0.70 and AIC to be 832.22.

Figure 6: Error against rank, indicating the data-inherent ef-
fects from datasets. Error means and 95% CIs are plotted for
each target bar.

Table 2: Coefficients of multiple cubic regression us-
ing six predictors, i.e., two polynomial components of
target bar rank (Rank), linear components including
number of data items (N), skewness, kurtosis, and the
interaction between Rank and N (N:Rank).

Estimate Std.Error t value Pr (>|t|)

(Intercept) 6.37e+00 6.65e+00 0.96 0.34
Rank3 8.50e-05 1.47e-05 5.80 5.81e-08***
Rank2 -1.08e-02 1.78e-03 -6.06 1.71e-08***
N -1.26e+00 1.53e-01 -8.26 2.61e-13***

Skewness -2.39e+01 2.07e+00 -11.53 < 2e-16***
Kurtosis 1.50e+01 3.02e+00 4.97 2.31e-06***
N:Rank 6.41e-03 2.47e-03 2.59 0.01*

Comparing between the two models, we find that Model
2 is superior to Model 1. Adjusted R2 increases from Model
1 to Model 2 (Adj .R2

Fit1 = 0.14,Adj .R2
Fit2 = 0.70) while AIC

drops (AICFit1 = 957.74,AICFit2 = 832.22), which validates
that number of data items, skewness, kurtosis and the interac-
tion between rank and number of data items are explaining a
large and unique proportion of variances that target bar rank
related terms cannot. Adding rank related terms as the last
additions results in an increase in adjusted R2 (from 0.61 to
0.70) and a decrease in the AIC score (from 862.08 to 832.22),
which shows the contribution from true target rank.

In Fig. 7, we plot the predictions of Model 2 together with
the data we trained it with. As reported in Tab. 2, there is a
negative correlation between error and number of data items,
which means a larger number of bars in the chart will bring
more underestimation in rank. However, in Fig. 7, the chart
of 20 data items seems to be an outlier as it does lie on top, not
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Figure 7: Model 2 predictions (color encodes datasets) and
regression samples (scatterplots, alpha = 0.03) for B1 random
condition. Data-inherent effects are salient.

following this negative relationship.When looking into more
details, we find that this is related to the predictor skewness.
Skewness has a large negative coefficient -23.86 and the
chart N = 20 has the smallest skewness score -0.62 (mean =
0.17, SD = 0.60) among all the datasets. Thus, we see the
largest amount of overestimation in this chart, which further
indicates the large influence from other data characteristics.
We will leave a full and systematic characterization of the
influence from such data-inherent factors to future work.

In addition, Model 2 satisfies the assumptions on both the
curvilinear relationship between predictors and dependent
variables and the independence of predictors. Stepwisemodel
selection helps us guard against multicollinearity. Model 2
also satisfies other Ordinal Least Square (OLS) assumptions
with residuals (i.e., vertical distances between observed val-
ues and fitted values) randomly scattered around zero, which
means there is no heteroscedasticity. We performed out-of-
sample testing onModel 2 with the same 6 datasets from pilot
study 1 and adjusted R2 is 0.81. In out-of-sample testing with
the 9 datasets not leveraged for deriving Model 2, adjusted
R2 averages 0.87 (SD = 0.16). We also test against overfitting.
Observations per term in Model 2 are 20.67, which is suffi-
cient (rule of thumb: 10-15 observations per term) in multiple
linear regressions (including polynomial terms and interac-
tions). The predicted R2 for Model 2 is 0.68, indicating only
2% (70% - 68%) of variances is explained by too many factors
or random correlations. As predicted R2 is close to adjusted
R2, we know that our model is not severely overfitting.

For B2 sorted baseline, we applied the same fitting function
as that for Model 2 (see predictions in Fig. 8). Adjusted R2

for B2 equals 0.48 with only the interaction between target
bar rank and number of data items to be non-significant.
Compared with B1, there is less data-inherent effects in B2.

Figure 8: Predictions (color encodes datasets) and regression
samples (scatterplots, alpha = 0.03) for B2 sorted condition.
Data-inherent effects are of smaller effect size.

We conclude that there are different data-inherent factors
that influence rank estimation tasks. We can build a rough
model based on our data as a means to filter out noise in our
investigations of neighborhood effects. Yet, further work is
needed to clearly investigate these data-inherent effects.

Study 3
After accounting for data-inherent effects, we conducted a
new study to validate the effect from neighborhoods.

Hypothesis: We hypothesized that neighborhood effects
still exist after offsetting the influence from data-inherent
effects. We hoped to explain the difference between two
neighborhood conditions by a new linear predictor: neigh-
borhood rank (100 for the highest vs. 1 for the lowest) and
anticipated its coefficient to be negative.

Setup: Similar to pilot study 1, we generated two neigh-
borhood conditions (i.e., the highest and the lowest) on ran-
domly ordered bar charts. Target bar ranks were chosen to
be 30, 40, 50, 60, 70, 80 in the 6 datasets we used in study
2. In total, there were 9 training tasks, 72 main study tasks,
and five quality control tasks in the study. Task order was
randomized. We increased the number of target bar ranks
to 6 for eliminating potential learning effects. 283 MTurk
workers were recruited and the study lasted about 5 minutes.

Results: 200 participants remained in the sample after
data cleaning. The results we saw in study 3were very similar
to study 1. Plotting aggregated mean errors and CIs from
a total of 14,400 samples, there is no overlap between the
highest and the lowest neighborhood conditions (see Fig. 9).
Neighborhood effects show up at five out of six target bar
rank levels. There is a substantial overlap between CIs of
the two neighborhoods at target bar rank = 60. Looking into
more details, we see neighborhood effects in 13 targets (in
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Figure 9: Neighborhood effects: Mean errors and CIs in two
neighborhoods with all 14,400 samples from study 3.

total 36) from 5 datasets while other two targets showed a
reversed pattern corresponding to length assimilation in PLI.
Next, we performed regression analysis over the 14,400

collected samples. First, we only use the linear predictor
neighborhood rank to explain residuals. Results show that
this predictor is significant (coefficient is estimated to be
-1.34e-2, p = 3.15e-6) but it only accounts for a small percent-
age of all the variances in error (Adj .R2 = 1.44e-3). Further
exploration shows that the target bar rank and other fac-
tors related to datasets are also associated with changes in
residuals. Then we extended Model 2 by adding neighbor-
hood rank as a new linear predictor to directly account for
variances of error in study 3. After stepwise model selection,
we derived Model 3 (F (7, 14392) = 1208,p < 2.2e-16,AIC =
121329.8,Adj .R2 = 0.37). As shown in Tab. 3, all predictors
are significant, meaning that they are likely to be meaningful
addition to the model. The coefficient of neighborhood rank
is negative as hypothesized. A target bar being judged as at
rank e.g., 60 in its highest neighborhood will be judged as
at 61.32 in its lowest neighborhood. Adding neighborhood
rank as the last predictor improves model fit (AIC drops
by 24.8 and Adj.R2 increases by 0.001)1. Based on Model 3,
we also sorted predictors according to their effect sizes us-
ing Cohen’s f2 (Large effect: 0.35; Medium: 0.15; Small: 0.02
[33]): skewness (0.42) > target bar rank3 (0.12) > N (0.021) >
target bar rank2 (0.015) > kurtosis (0.010) > neighborhood
rank (0.002). Unit increase (value +1.00) in skewness brings
-25.00 in rank; unit increase in number of data items results
in -0.57 while unit increase in kurtosis brings +7.69 in rank.
This shows how each data characteristics influences the es-
timation error. The power analyses we conducted for each
predictor in Model 2 and Model 3 revealed that all the power
values exceeded 0.99. This means that the sample sizes are
adequate to catch effect sizes for all predictors.
Note that although Model 3 only explains 37% of all the

variances, there is still a reliable relationship between the
significant predictors and the dependent variable. Large inter-
individual differences and higher level cognitive tasks [5]
1We only compared models trained with the same regression samples.

Figure 10: Model 3 predictions (color encodes datasets) and
regression samples (scatterplots, alpha = 0.01) showing both
neighborhood effects and data-inherent effects.

Table 3: Coefficients of Model 3, extending Tab.2 with
the predictor neighborhood rank (Neighbor).

Estimate Std.Error t value Pr (>|t|)

(Intercept) 1.38e+01 1.52e+00 9.10 < 2e-16***
Rank3 5.95e-05 7.18e-06 8.28 < 2e-16***
Rank2 -7.65e-03 6.99e-04 -10.95 < 2e-16***
N -5.73e-01 5.60e-02 -10.22 < 2e-16 ***

Skewness -2.51e+01 4.74e-01 -53.08 < 2e-16***
Kurtosis 7.70e+00 6.54e-01 11.77 < 2e-16***
Neighbor -1.33e-02 2.75e-03 -4.84 1.31e-06***
N:Rank -3.27e-03 9.56e-04 -3.42 0.000629***

can be the underlying reasons for such unexplainable high-
variability. Predicted R2 for Model 3 equals 0.3695, which
is close to the adjusted R2, meaning that Model 3 is not
overfitting. Both the predictions from Model 3 (see Fig. 10)
and Cohen’s f2 suggest that compared to the data-inherent
effects, the impact from neighborhoods is rather small.

With all these analyses, we conclude that neighborhood ef-
fects exist but their effect size is small on the rank estimation
tasks.

5 DISCUSSION
In this section, we discuss design implications from our re-
sults, limitations, and future work.

Design implications: Random (alphabetical order as one
typical case), and sorted orders are the two most commonly
used approaches in bar charts. In study 2, we hypothesized
that we would see a perceptual effect of data-inherent fac-
tors in random orders while see very little of this effect in
sorted orders. This hypothesis is partially confirmed. We also
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see some data-inherent effects in sorted orders although the
effect size (Adj .R2 = 0.48) is smaller than that in random
orders (Adj .R2 = 0.70). Nevertheless, the sorted order is still
the more accurate approach to convey rank-related infor-
mation as the mean of all estimation errors is closer to zero
with smaller variances. Besides, results suggest that—despite
their existence—designers do not need to worry too much
about neighborhood effects. Our findings show that a local
neighborhood manipulation does not substantially influence
the perceptual rank estimation tasks in bar charts.

To the best of our knowledge, no one else has investigated
perceptions on rank estimation tasks so far. A surprising
result was the large amount of biases that is introduced
by data-inherent effects. Following Cleveland & McGill [5],
we calculate the accuracy defined on estimation errors for
our task, Accuracy = loд2(|estimated value − true value | +
.125). The accuracy can exceed 4.0 (marked as a large log
absolute error [5]) when the estimation error goes beyond
20 in rank. This means the accuracy can be rather low in
our task. Considering the comparatively large effect size
of data-inherent factors such as skewness, we encourage
designers to provide additional clues if they would like to
convey rank-related information precisely.

Limitation: We understand neighborhood effects as an
interplay between all bars instead of the influence only from
neighboring bars. Although we hypothesized to see length
contrast effect in our study (based on previous work [18, 29]),
there is no reason to rule out length assimilation effect under
other experimental settings. Confounding factors could come
from the ‘shape’ in the baseline charts (e.g., influence from
Gestalt symmetry and continuity laws [31, 41]) and target
bar positions in the chart. In three out of five assimilation
cases (from 5 different datasets where length contrast effect
also showed up), we found that the top highest bar was
just positioned at/very close to the border of the lowest
neighborhood (study 1 screenshots #96 and #123, study 3
screenshot #58 in auxiliary material), which could be the
confounding factor reversing the effect.

Following previous work in quantifying perceptual biases
in visualizations [40], we used multiple regression to quan-
tify both the data-inherent and neighborhood effects. We
simplify the models by neglecting potential interactions be-
tween predictors. From further analysis we found that these
complex but currently excluded interactions (e.g., the interac-
tion between target bar rank and skewness) also contributed
to model fit and helped in explaining varying patterns be-
tween datasets (Fig. 6), which demonstrates the challenge
and importance of using real datasets. Also, the relationship
between estimation errors and target bar ranks is simplified
by using a cubic fitting function and the inter-individual
differences [3] are not taken into account in current models.

One of the differences from our work to others on bar
chart perceptions is the one-second time limit for presenting
charts. Cleveland & McGill pointed out that a substantial
danger in graphical perceptual research is to perform judg-
ments differently from the way people adopt in real life [5].
A possible solution is to have participants judge much more
quickly than they do in real life in order to prevent them
from performing higher level cognitive tasks other than basic
graphical perceptual tasks. This time limit in our work helped
in preventing precise counting on the bars, but it might also
result in other confounds such as random judgements.
Another difference is that we used several real datasets

instead of simple, highly-controlled stimuli. Our goal in do-
ing so was to bring this line of research closer to applied
visualization design. As a consequence, however, our results
also did not lead to a simple, clear-cut picture. We found that
patterns varied between datasets, and even observed patterns
contrary to our hypothesized effects. Moreover, one could
argue that the observed neighborhood effects may only be
exclusive to the six datasets in our study. Although including
more datasets could decrease the consistency and accuracy
of a study, we still believe our current results provide some
actionable insights into the question of how to account for
neighboring effects when designing bar chart visualizations.

Future work: One direction of future work is to expand
this work by including more datasets. As our study started
from an exploratory end with no benchmark, we also suggest
exploring other parameters, e.g., chart exposure time, neigh-
borhood size, neighboring bar ranks, and measurements (e.g.,
sliders in our study). Although we found evidence of dif-
ferent rank estimation effects, we haven’t figured out any
counter-acting methods yet. Find counter-acting methods
might become even more complicated due to constraints
from real world requirements such as efficiency (e.g., to find
every target item quickly) and saliency (e.g., to notice a dis-
tinct target item quickly). We regard our work as a first step
and hope it can inspire more work on investigating solutions
for counter-acting perceptual biases.

6 CONCLUSION
We studied the perception of ordering in bar charts on rank
estimation tasks. Our results showed that neighborhood ef-
fects can be observed yet their effect size is small. Accuracy
on these rank estimation tasks is dominated by other effects
stemming from the choice of target bars and certain dataset
characteristics. We regard our work as a further piece to bet-
ter understand the perception of the widely-used bar chart
encoding.
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