
Processing Last.fm Tag Data 
 
We used the complete Million Song Dataset as basis for our tag processing. We mined all the tags 
of all songs from Last.fm in February 2015, using the Last.fm API. At this point, the database 
consisted of 416,212 songs and 529,088 distinct tags. Due to the fact that our final lab study was 
performed in anonymous country, and that we played audio from Spotify, we filtered the library 
to songs available from Spotify in this country, leaving us with 333,857 songs and 482,325 tags.  
 
In order to improve the tag quality, we had to perform multiple data wrangling steps. (1) We first 
removed special characters (- _ : ; /), stop-words, and prepositions, and changed all tags to lower 
case.  
 
(2) Next, we computed an importance score for each tag to determine whether it should remain in 
our dataset. For this score, we used the weights of each tag/song association provided by Last.fm, 
along with the number of listeners and play counts for the songs. Since the distributions of the two 
latter numbers resembled a logarithmic one, we used logarithms in our formula, to bring them back 
into a more linear space. The formula for importance score, normalized to output a value between 
0 and 1 for each tag was: 
 

1
max	
   _over_all_tags( 𝑙𝑎𝑠𝑡𝑓𝑚_𝑤𝑒𝑖𝑔ℎ𝑡(log 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟𝑠 + log 𝑝𝑙𝑎𝑦𝑐𝑜𝑢𝑛𝑡 )DEE_FGHIF_JKLM_LDI

 

 
As such, each occurrence of a tag contributed to its final importance score and this contribution 
was scaled based on the popularity of the songs that the tag occurred in and the weight of 
association provided by Last.fm for each occurrence. 
 
(3) We next used the Double Metaphone similarity replacement algorithm to find misspelled words 
and replace them with close words that had the highest importance scores. This algorithm uses the 
phonetic codes of words to group them. Within all groups, it then computes the Jaccard index 
between all words. Low importance tags with small distances to a high importance tag are then 
replaced with the latter. Since there is no ground truth for Last.fm tags and the “wisdom of the 
crowd” is the decisive factor, we did not use any dictionaries in this step. Use of dictionaries could 
force the algorithm to choose a “correct” but unpopular tag in place of a popular one that the 
community uses. 
 
(4) Our fourth step was to detect compound tags like “hard-rock”. We used a two stage process for 
this purpose. In one stage we computed the relative frequency of all 2 and 3-word grams and 
grouped together all the word grams with a frequency above a certain threshold. We then computed 
Jaccard distances between all groups and once more put all words with distances below a certain 
threshold in a new group. 
 
(5) At this step, we ran the similarity replacement algorithm from step 3 again, in order to find 
misspelled groups.  
 
(6) Since steps three to five change the tag space, in this phase, we computed importance scores 
for all tags again.  



 
(7) Next, we took the top 550 tags with the highest importance scores and manually went through 
them to remove subjective terms like “awesome” and “favourite”.  
 
(8) With the help of a regular expression matcher, we then searched for important tags inside 
unimportant tags to salvage any usable information. This greatly increased our information about 
the songs (by a factor of 30%). An example outcome is extracting the tags “hip-hop” and “rap” 
from “raphiphopsong”. 
 
(9) In the final step, we computed importance scores once again for the resulting dataset for 
exporting to TagFlip. At this point, we had 300,500 songs and 362 tags left. The top 100,000 songs 
of this set in terms of number of tags were chosen to be used in TagFlip. With this subset, the 
number of tags was reduced to 358. 


